5.1 The field of *p*-adic numbers

Definition 5.1. The field of *p*-adic numbers \mathbb{Q}_p is the fraction field of \mathbb{Z}_p .

As a fraction field, the elements of \mathbb{Q}_p are by definition all pairs $(a, b) \in \mathbb{Z}_p^2$, typically written as a/b, modulo the equivalence relation $a/b \sim c/d$ whenever ad = bc. But we can represent elements of \mathbb{Q}_p more explicitly by extending our notion of a *p*-adic expansion to allow negative indices, with the proviso that only finitely many *p*-adic digits with negative indices are nonzero. If we view *p*-adic expansions in \mathbb{Z}_p as formal power series in *p*, in \mathbb{Q}_p we now have formal Laurent series in *p*.

Recall that every element of \mathbb{Z}_p can be written in the form up^n , with $n \in \mathbb{Z}_{\geq 0}$ and $u \in \mathbb{Z}_p^{\times}$, and it follows that the elements of \mathbb{Q}_p can all be written in the form up^n with $n \in \mathbb{Z}$ and $u \in \mathbb{Z}_p^{\times}$. If (b_0, b_1, b_2, \ldots) is the *p*-adic expansion of $u \in \mathbb{Z}_p^{\times}$, then the *p*-adic expansion of $p^n u$ is $(c_n, c_{n+1}, c_{n+2}, \ldots)$ with $c_{n+i} = b_i$ for all $i \geq 0$ and $c_{n-i} = 0$ for all i < 0 (this works for both positive and negative n).

We extend the *p*-adic valuation v_p to \mathbb{Q}_p by defining $v_p(p^n) = n$ for any integer *n*; as with *p*-adic integers, the valuation of any *p*-adic number is just the index of the first nonzero digit in its *p*-adic expansion. We can then distinguish \mathbb{Z}_p as the subset of \mathbb{Q}_p with nonnegative valuations, and \mathbb{Z}_p^{\times} as the subset with zero valuation. We have $\mathbb{Q} \subset \mathbb{Q}_p$, since $\mathbb{Z} \subset \mathbb{Z}_p$, and for any $x \in \mathbb{Q}_p$, either $x \in \mathbb{Z}_p$ or $x^{-1} \in \mathbb{Z}_p$. Note that analogous statement is not even close to being true for \mathbb{Q} and \mathbb{Z} .

This construction applies more generally to the field of fractions of any discrete valuation ring, and a converse is true. Suppose we have a field k with a discrete valuation, which we recall is a function $v: k \to \mathbb{Z} \bigcup \{\infty\}$ that satisfies:

- (1) $v(a) = \infty$ if and only if a = 0,
- (2) v(ab) = v(a) + v(b),
- (3) $v(a+b) \ge \min(v(a), v(b)).$

The subset of k with nonnegative valuations is a discrete valuation ring R, called the *valuation ring of k*, and k is its fraction field. As with p-adic fields, the unit group of the valuation ring of k consists of those elements whose valuation is zero.

5.2 Absolute values

Having defined \mathbb{Q}_p as the fraction field of \mathbb{Z}_p and noting that it contains \mathbb{Q} , we now want to consider an alternative (but equivalent) approach that constructs \mathbb{Q}_p directly from \mathbb{Q} . We can then obtain \mathbb{Z}_p as the valuation ring of \mathbb{Q} .

Definition 5.2. Let k be a field. An *absolute value* on k is a function $\| \| : k \to \mathbb{R}_{\geq 0}$ with the following properties:

(1) ||x|| = 0 if and only if x = 0,

(2)
$$||xy|| = ||x|| \cdot ||y||,$$

(3) $||x+y|| \le ||x|| + ||y||.$

The last property is known as the *triangle inequality*, and it is equivalent to

(3) $||x - y|| \ge ||x|| - ||y||$

(replace x by $x \pm y$ to derive one from the other). The stronger property

(3) $||x + y|| \le \max(||x||, ||y||)$

is known as the *nonarchimedean triangle inequality* An absolute value that satisfies (3') is called *nonarchimedean*, and is otherwise called *archimedean*.

Absolute values are sometimes called "norms", but since number theorists use this term with a more specific meaning, we will stick with absolute value. Examples of absolute values are the usual absolute value | | on \mathbb{R} or \mathbb{C} , which is archimedean and the *trivial absolute* value for which ||x|| = 1 for all $x \in k^{\times}$, which is nonarchimedean. To obtain non-trivial examples of nonarchimedean absolute values, if k is any field with a discrete valuation v and c is any positive real number less than 1, then it is easy to check that $||x||_v := c^{v(x)}$ defines a nonarchimedean absolute value on k (where we interpret c^{∞} as 0). Applying this to the p-adic valuation v_p on \mathbb{Q}_p with c = 1/p yields the p-adic absolute value $||_p$ on \mathbb{Q}_p :

$$|x|_p = p^{-v_p(x)}.$$

We now prove some useful facts about absolute values.

Theorem 5.3. Let k be a field with absolute value || || and multiplicative identity 1_k .

- (a) $||1_k|| = 1$.
- (b) ||-x|| = ||x||.
- (c) || || is nonarchimedean if and only if $||n|| \le 1$ for all positive integers $n \in k$.

Proof. For (a), note that $||1_k|| = ||1_k|| \cdot ||1_k||$ and $||1_k|| \neq 0$ since $1_k \neq 0_k$. For (b), the positive real number $||-1_k||$ satisfies $||-1_k||^2 = ||(-1_k)^2|| = ||1_k|| = 1$, and therefore $||-1_k|| = 1$. We then have $||-x|| = ||(-1_k)x|| = ||-1_k|| \cdot ||x|| = 1 \cdot ||x|| = ||x||$.

To prove (c), we first note that a positive integer $n \in k$ is simply the *n*-fold sum $1_k + \cdots + 1_k$. If $\| \|$ is nonarchimedean, then for any positive integer $n \in k$, repeated application of the nonarchimedean triangle inequality yields

$$||n|| = ||1_k + \dots + |1_k|| \le \max(||1_k||, \dots, ||1_k||) = 1.$$

If || || is instead archimedean, then we must have $||x+y|| > \max(||x||, ||y||)$ for some $x, y \in k^{\times}$. We can assume without loss of generality that $||x|| \ge ||y||$, and if we divide through by ||y||and replace x/y with x, we can assume y = 1. We then have $||x|| \ge 1$ and

$$||x + 1|| > \max(||x||, 1) = ||x||.$$

If we divide both sides by ||x|| and let z = 1/x we then have $||z|| \le 1$ and ||z+1|| > 1. Now suppose for the sake of contradiction that $||n|| \le 1$ for all integers $n \in k$. then

$$||z+1||^n = ||(z+1)^n|| = \left\|\sum_{i=0}^n \binom{n}{i} z^i\right\| \le \sum_{i=0}^n \left\|\binom{n}{i}\right\| ||z||^i \le \sum_{i=0}^n \left\|\binom{n}{i}\right\| \le n+1.$$

But ||z + 1|| > 1, so the LHS increases exponentially with *n* while the RHS is linear in *n*, so for any sufficiently large *n* we obtain a contradiction.

Corollary 5.4. In a field k of positive characteristic p every absolute value || || is nonarchimedean and is moreover trivial if k is finite.

Proof. Every positive integer $n \in k$ lies in the prime field $\mathbb{F}_p \subseteq k$ and therefore satisfies $n^{p-1} = 1$. This means the positive real number ||n|| is a root of unity and therefore equal to 1, so ||n|| = 1 for all positive integers $n \in k$ and || || is therefore nonarchimedean, by part (c) of Theorem 5.3. If $k = \mathbb{F}_q$ is a finite field, then for every nonzero $x \in \mathbb{F}_q$ we have $x^{q-1} = 1$ and the same argument implies ||x|| = 1 for all $x \in \mathbb{F}_q^{\times}$.

5.3 Absolute values on \mathbb{Q}

As with \mathbb{Q}_p , we can use the *p*-adic valuation v_p on \mathbb{Q} to construct an absolute value. Note that we can define v_p without reference to \mathbb{Z}_p : for any integer $v_p(a)$, is the largest integer *n* for which $p^n|a$, and for any rational number a/b in lowest terms we define

$$v_p\left(\frac{a}{b}\right) = v_p(a) - v_p(b).$$

This of course completely consistent with our definition of v_p on \mathbb{Q}_p . We then define the *p*-adic absolute value of a rational number x to be

$$|x|_p = p^{-v_p(x)},$$

with $|0|_p = p^{-\infty} = 0$, as above. Notice that rational numbers with *large p*-adic valuations have *small p*-adic absolute values. In *p*-adic terms, p^{100} is a very small number, and p^{1000} is even smaller. Indeed,

$$\lim_{n \to \infty} |p^n| = \lim_{n \to \infty} p^{-n} = 0.$$

We also have the usual archimedean absolute value on \mathbb{Q} , which we will denote by $| |_{\infty}$, for the sake of clarity. One way to remember this notation is to note that archimedean absolute values are unbounded on \mathbb{Z} while nonarchimedean absolute values are not (this follows from the proof of Theorem 5.3).

We now wish to prove Ostrowski's theorem, which states that every nontrivial absolute value on \mathbb{Q} is equivalent either to one of the nonarchimedean absolute values $||_p$, or to $||_{\infty}$. We first define what it means for two absolute values to be equivalent.

Definition 5.5. Two absolute values $\| \|$ and $\| \|'$ on a field k are said to be *equivalent* if there is a positive real number α such that

$$\|x\|' = \|x\|^{\alpha}$$

for all $x \in k$.

Note that two equivalent absolute values are either both archimedean or both nonarchimedean, by Theorem 5.3 part (c), since $c^{\alpha} \leq 1$ if and only if $c \leq 1$, for any $c, \alpha \in \mathbb{R}_{>0}$.

Theorem 5.6 (Ostrowski). Every nontrivial absolute value on \mathbb{Q} is equivalent to some $||_p$, where p is either a prime, or $p = \infty$.

Proof. Let $\| \|$ be a nontrivial absolute value on \mathbb{Q} . If $\| \|$ is archimedean then $\|b\| > 1$ for some positive integer b. Let b be the smallest such integer and let α be the positive real

number for which $||b|| = b^{\alpha}$ (such an α exists because we necessarily have b > 1). Every other positive integer n can be written in base b as

$$n = n_0 + n_1 b + n_2 b^2 + \dots + n_t b^t$$

with integers $n_i \in [0, b-1]$ and $n_t \neq 0$. We then have

$$\begin{aligned} \|n\| &\leq \|n_0\| + \|n_1b\| + \|n_2b^2\| + \dots + \|n_tb^t\| \\ &= \|n_0\| + \|n_1\|b^{\alpha} + \|n_2\|b^{2\alpha} + \dots + \|n_t\|b^{t\alpha} \\ &\leq 1 + b^{\alpha} + b^{2\alpha} + \dots + b^{t\alpha} \\ &= (1 + b^{-\alpha} + b^{-2\alpha} + \dots + b^{-t\alpha}) b^{t\alpha} \\ &\leq cb^{t\alpha} \\ &\leq cn^{\alpha} \end{aligned}$$

where c is the sum of the geometric series $\sum_{i=0}^{\infty} (b^{-\alpha})^i$, which converges because $b^{-\alpha} < 1$. This holds for every positive integer n, so for any integer $N \ge 1$ we have

$$||n||^N = ||n^N|| \le c(n^N)^{\alpha} = c(n^{\alpha N})$$

and therefore $||n|| \leq c^{1/N} n^{\alpha}$. Taking the limit as $N \to \infty$ we obtain

 $\|n\| \le n^{\alpha},$

for every positive integer n. On the other hand, for any positive integer n we can choose an integer t so that $b^t \leq n < b^{t+1}$. By the triangle inequality $||b^{t+1}|| \leq ||n|| + ||b^{t+1} - n||$, so

$$\begin{split} \|n\| &\geq \|b^{t+1}\| - \|b^{t+1} - n\| \\ &= b^{(t+1)\alpha} - \|b^{t+1} - n\| \\ &\geq b^{(t+1)\alpha} - (b^{t+1} - n)^{\alpha} \\ &\geq b^{(t+1)\alpha} - (b^{t+1} - b^{t})^{\alpha} \\ &= b^{(t+1)\alpha} \left(1 - (1 - b^{-1})^{\alpha}\right) \\ &\geq dn^{\alpha} \end{split}$$

for some real number d > 0 that does not depend on n. Thus $||n|| \ge dn^{\alpha}$ holds for all positive integers n and, as before, by replacing n with n^N , taking Nth roots, and then taking the limit as $N \to \infty$, we deduce that

$$||n|| \ge n^{\alpha}$$

and therefore $||n|| = n^{\alpha} = |n|_{\infty}^{\alpha}$ for all positive integers n. For any other positive integer m,

$$||n|| \cdot ||m/n|| = ||m||$$

$$||m/n|| = ||m||/||n|| = m^{\alpha}/n^{\alpha} = (m/n)^{\alpha},$$

and therefore $||x|| = x^{\alpha} = |x|_{\infty}^{\alpha}$ for every positive $x \in \mathbb{Q}$, and $||-x|| = ||x|| = x^{\alpha} = |-x|_{\infty}^{\alpha}$, so $||x|| = |x|_{\infty}^{\alpha}$ for all $x \in \mathbb{Q}$ (including 0).

We now suppose that || || is nonarchimedean. If ||b|| = 1 for all positive integers b then the argument above proves that ||x|| = 1 for all nonzero $x \in \mathbb{Q}$, which is a contradiction since || || is nontrivial. So let b be the least positive integer with ||b|| < 1. We must have b > 1, so b is divisible by a prime p. If $b \neq p$ then $||b|| = ||p|| ||b/p|| = 1 \cdot 1 = 1$, which contradicts ||b|| < 1, so b = p is prime.

We know prove by contradiction that p is the only prime with ||p|| < 1. If not then let $q \neq p$ be a prime with ||q|| < 1 and write up + vq = 1 for some integers u and v, both of which have absolute value at most 1, since || || is nonarchimedean.¹ We then have

$$1 = \|1\| = \|up + vq\| \le \max(\|up\|, \|vq\|) = \max(\|u\| \cdot \|p\|, \|v\| \cdot \|q\|) \le \max(\|p\|, \|q\|) < 1,$$

which is a contradiction.

Now define the real number $\alpha > 0$ so that $||p|| = p^{-\alpha} = |p|_p^{\alpha}$. Any positive integer n may be written as $n = p^{v_p(n)}r$ with $v_p(r) = 0$, and we then have

$$||n|| = ||p^{v_p(n)}r|| = ||p^{v_p(n)}|| \cdot ||r|| = ||p||^{v_p(n)} = |p|_p^{\alpha v_p(n)} = |n|_p^{\alpha}.$$

This then extends to all rational numbers, as argued above.

¹This is a simplification of the argument given in class, as pointed out by Ping Ngai Chung (Brian).