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5.1 The field of p-adic numbers

Definition 5.1. The field of p-adic numbers Qp is the fraction field of Zp.

As a fraction field, the elements of Qp are by definition all pairs (a, b) ∈ Z2
p, typically

written as a/b, modulo the equivalence relation a/b ∼ c/d whenever ad = bc. But we can
represent elements of Qp more explicitly by extending our notion of a p-adic expansion to
allow negative indices, with the proviso that only finitely many p-adic digits with negative
indices are nonzero. If we view p-adic expansions in Zp as formal power series in p, in Qp

we now have formal Laurent series in p.
Recall that every element of Zp can be written in the form upn, with n ∈ Z≥0 and

u ∈ Z×p , and it follows that the elements of Qp can all be written in the form upn with
n ∈ Z and u ∈ Z×p . If (b0, b1, b2, . . .) is the p-adic expansion of u ∈ Z×p , then the p-adic
expansion of pnu is (cn, cn+1, cn+2, . . .) with cn+i = bi for all i ≥ 0 and cn−i = 0 for all i < 0
(this works for both positive and negative n).

We extend the p-adic valuation vp to Qp by defining vp(p
n) = n for any integer n; as

with p-adic integers, the valuation of any p-adic number is just the index of the first non-
zero digit in its p-adic expansion. We can then distinguish Zp as the subset of Qp with
nonnegative valuations, and Z×p as the subset with zero valuation. We have Q ⊂ Qp, since
Z ⊂ Zp, and for any x ∈ Qp, either x ∈ Zp or x−1 ∈ Zp. Note that analogous statement is
not even close to being true for Q and Z.

This construction applies more generally to the field of fractions of any discrete valuation
ring, and a converse is true. Suppose we have a field k with a discrete valuation, which we
recall is a function v : k → Z

⋃
{∞} that satisfies:

(1) v(a) =∞ if and only if a = 0,

(2) v(ab) = v(a) + v(b),

(3) v(a+ b) ≥ min(v(a), v(b)).

The subset of k with nonnegative valuations is a discrete valuation ring R, called the
valuation ring of k, and k is its fraction field. As with p-adic fields, the unit group of the
valuation ring of k consists of those elements whose valuation is zero.

5.2 Absolute values

Having defined Qp as the fraction field of Zp and noting that it contains Q, we now want to
consider an alternative (but equivalent) approach that constructs Qp directly from Q. We
can then obtain Zp as the valuation ring of Q.

Definition 5.2. Let k be a field. An absolute value on k is a function ‖ ‖ : k → R≥0 with
the following properties:

(1) ‖x‖ = 0 if and only if x = 0,

(2) ‖xy‖ = ‖x‖ · ‖y‖,

(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.



The last property is known as the triangle inequality, and it is equivalent to

(3) ‖x− y‖ ≥ ‖x‖ − ‖y‖

(replace x by x± y to derive one from the other). The stronger property

(3’) ‖x+ y‖ ≤ max(‖x‖, ‖y‖)

is known as the nonarchimedean triangle inequality An absolute value that satisfies (3’) is
called nonarchimedean, and is otherwise called archimedean.

Absolute values are sometimes called “norms”, but since number theorists use this term
with a more specific meaning, we will stick with absolute value. Examples of absolute values
are the usual absolute value | | on R or C, which is archimedean and the trivial absolute
value for which ‖x‖ = 1 for all x ∈ k×, which is nonarchimedean. To obtain non-trivial
examples of nonarchimedean absolute values, if k is any field with a discrete valuation v
and c is any positive real number less than 1, then it is easy to check that ‖x‖v := cv(x)

defines a nonarchimedean absolute value on k (where we interpret c∞ as 0). Applying this
to the p-adic valuation vp on Qp with c = 1/p yields the p-adic absolute value | |p on Qp:

|x|p = p−vp(x).

We now prove some useful facts about absolute values.

Theorem 5.3. Let k be a field with absolute value ‖ ‖ and multiplicative identity 1k.

(a) ‖1k‖ = 1.

(b) ‖ − x‖ = ‖x‖.

(c) ‖ ‖ is nonarchimedean if and only if ‖n‖ ≤ 1 for all positive integers n ∈ k.

Proof. For (a), note that ‖1k‖ = ‖1k‖·‖1k‖ and ‖1k‖ 6= 0 since 1k 6= 0k. For (b), the positive
real number ‖ − 1k‖ satisfies ‖ − 1k‖2 = ‖(−1k)

2‖ = ‖1k‖ = 1, and therefore ‖ − 1k‖ = 1.
We then have ‖ − x‖ = ‖(−1k)x‖ = ‖ − 1k‖ · ‖x‖ = 1 · ‖x‖ = ‖x‖.

To prove (c), we first note that a positive integer n ∈ k is simply the n-fold sum
1k + · · · + 1k. If ‖ ‖ is nonarchimedean, then for any positive integer n ∈ k, repeated
application of the nonarchimedean triangle inequality yields

‖n‖ = ‖1k + · · ·+ 1k‖ ≤ max(‖1k‖, . . . , ‖1k‖) = 1.

If ‖ ‖ is instead archimedean, then we must have ‖x+y‖ > max(‖x‖, ‖y‖) for some x, y ∈ k×.
We can assume without loss of generality that ‖x‖ ≥ ‖y‖, and if we divide through by ‖y‖
and replace x/y with x, we can assume y = 1. We then have ‖x‖ ≥ 1 and

‖x+ 1‖ > max(‖x‖, 1) = ‖x‖.

If we divide both sides by ‖x‖ and let z = 1/x we then have ‖z‖ ≤ 1 and ‖z+ 1‖ > 1. Now
suppose for the sake of contradiction that ‖n‖ ≤ 1 for all integers n ∈ k. then

‖z + 1‖n = ‖(z + 1)n‖ =

∥∥∥∥∥
n∑
i=0

(
n

i

)
zi

∥∥∥∥∥ ≤
n∑
i=0

∥∥∥∥(ni
)∥∥∥∥ ‖z‖i ≤ n∑

i=0

∥∥∥∥(ni
)∥∥∥∥ ≤ n+ 1.

But ‖z + 1‖ > 1, so the LHS increases exponentially with n while the RHS is linear in n,
so for any sufficiently large n we obtain a contradiction.



Corollary 5.4. In a field k of positive characteristic p every absolute value ‖ ‖ is nonar-
chimedean and is moreover trivial if k is finite.

Proof. Every positive integer n ∈ k lies in the prime field Fp ⊆ k and therefore satisfies
np−1 = 1. This means the positive real number ‖n‖ is a root of unity and therefore equal
to 1, so ‖n‖ = 1 for all positive integers n ∈ k and ‖ ‖ is therefore nonarchimedean, by
part (c) of Theorem 5.3. If k = Fq is a finite field, then for every nonzero x ∈ Fq we have
xq−1 = 1 and the same argument implies ‖x‖ = 1 for all x ∈ F×q .

5.3 Absolute values on Q

As with Qp, we can use the p-adic valuation vp on Q to construct an absolute value. Note
that we can define vp without reference to Zp: for any integer vp(a), is the largest integer n
for which pn|a, and for any rational number a/b in lowest terms we define

vp

(a
b

)
= vp(a)− vp(b).

This of course completely consistent with our definition of vp on Qp. We then define the
p-adic absolute value of a rational number x to be

|x|p = p−vp(x),

with |0|p = p−∞ = 0, as above. Notice that rational numbers with large p-adic valuations
have small p-adic absolute values. In p-adic terms, p100 is a very small number, and p1000

is even smaller. Indeed,
lim
n→∞

|pn| = lim
n→∞

p−n = 0.

We also have the usual archimedean absolute value on Q, which we will denote by | |∞,
for the sake of clarity. One way to remember this notation is to note that archimedean
absolute values are unbounded on Z while nonarchimedean absolute values are not (this
follows from the proof of Theorem 5.3).

We now wish to prove Ostrowski’s theorem, which states that every nontrivial absolute
value on Q is equivalent either to one of the nonarchimedean absolute values | |p, or to | |∞.
We first define what it means for two absolute values to be equivalent.

Definition 5.5. Two absolute values ‖ ‖ and ‖ ‖′ on a field k are said to be equivalent if
there is a positive real number α such that

‖x‖′ = ‖x‖α

for all x ∈ k.

Note that two equivalent absolute values are either both archimedean or both nonar-
chimedean, by Theorem 5.3 part (c), since cα ≤ 1 if and only if c ≤ 1, for any c, α ∈ R>0.

Theorem 5.6 (Ostrowski). Every nontrivial absolute value on Q is equivalent to some | |p,
where p is either a prime, or p =∞.

Proof. Let ‖ ‖ be a nontrivial absolute value on Q. If ‖ ‖ is archimedean then ‖b‖ > 1 for
some positive integer b. Let b be the smallest such integer and let α be the positive real



number for which ‖b‖ = bα (such an α exists because we necessarily have b > 1). Every
other positive integer n can be written in base b as

n = n0 + n1b+ n2b
2 + · · ·+ ntb

t,

with integers ni ∈ [0, b− 1] and nt 6= 0. We then have

‖n‖ ≤ ‖n0‖+ ‖n1b‖+ ‖n2b2‖+ · · ·+ ‖ntbt‖
= ‖n0‖+ ‖n1‖bα + ‖n2‖b2α + · · ·+ ‖nt‖btα

≤ 1 + bα + b2α + · · ·+ btα

=
(
1 + b−α + b−2α + · · ·+ b−tα

)
btα

≤ cbtα

≤ cnα

where c is the sum of the geometric series
∑∞

i=0(b
−α)i, which converges because b−α < 1.

This holds for every positive integer n, so for any integer N ≥ 1 we have

‖n‖N = ‖nN‖ ≤ c(nN )α = c(nαN )

and therefore ‖n‖ ≤ c1/Nnα. Taking the limit as N →∞ we obtain

‖n‖ ≤ nα,

for every positive integer n. On the other hand, for any positive integer n we can choose
an integer t so that bt ≤ n < bt+1. By the triangle inequality ‖bt+1‖ ≤ ‖n‖+ ‖bt+1 − n‖, so

‖n‖ ≥ ‖bt+1‖ − ‖bt+1 − n‖
= b(t+1)α − ‖bt+1 − n‖
≥ b(t+1)α − (bt+1 − n)α

≥ b(t+1)α − (bt+1 − bt)α

= b(t+1)α
(
1− (1− b−1)α

)
≥ dnα

for some real number d > 0 that does not depend on n. Thus ‖n‖ ≥ dnα holds for all
positive integers n and, as before, by replacing n with nN , taking Nth roots, and then
taking the limit as N →∞, we deduce that

‖n‖ ≥ nα,

and therefore ‖n‖ = nα = |n|α∞ for all positive integers n. For any other positive integer m,

‖n‖ · ‖m/n‖ = ‖m‖
‖m/n‖ = ‖m‖/‖n‖ = mα/nα = (m/n)α,

and therefore ‖x‖ = xα = |x|α∞ for every positive x ∈ Q, and ‖ − x‖ = ‖x‖ = xα = | − x|α∞,
so ‖x‖ = |x|α∞ for all x ∈ Q (including 0).

We now suppose that ‖ ‖ is nonarchimedean. If ‖b‖ = 1 for all positive integers b then
the argument above proves that ‖x‖ = 1 for all nonzero x ∈ Q, which is a contradiction



since ‖ ‖ is nontrivial. So let b be the least positive integer with ‖b‖ < 1. We must have
b > 1, so b is divisible by a prime p. If b 6= p then ‖b‖ = ‖p‖‖b/p‖ = 1 · 1 = 1, which
contradicts ‖b‖ < 1, so b = p is prime.

We know prove by contradiction that p is the only prime with ‖p‖ < 1. If not then let
q 6= p be a prime with ‖q‖ < 1 and write up + vq = 1 for some integers u and v, both of
which have absolute value at most 1, since ‖ ‖ is nonarchimedean.1 We then have

1 = ‖1‖ = ‖up+ vq‖ ≤ max(‖up‖, ‖vq‖) = max(‖u‖ · ‖p‖, ‖v‖ · ‖q‖) ≤ max(‖p‖, ‖q‖) < 1,

which is a contradiction.
Now define the real number α > 0 so that ‖p‖ = p−α = |p|αp . Any positive integer n

may be written as n = pvp(n)r with vp(r) = 0, and we then have

‖n‖ = ‖pvp(n)r‖ = ‖pvp(n)‖ · ‖r‖ = ‖p‖vp(n) = |p|αvp(n)p = |n|αp .

This then extends to all rational numbers, as argued above.

1This is a simplification of the argument given in class, as pointed out by Ping Ngai Chung (Brian).
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