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4.1 Inverse limits

Definition 4.1. An inverse system is a sequence of objects (e.g. sets/groups/rings) (An)
together with a sequence of morphisms (e.g. functions/homomorphisms) (fn)

· · · −→ An+1
fn−→ An −→ · · · −→ A2

f1−→ A1.

The inverse limit
A = lim←−An

is the subset of the direct product
∏
nAn consisting of those sequences a = (an) for which

fn(an+1) = an for all n ≥ 1. For each n ≥ 1 the projection map πn : A→ An sends a to an.

Remark 4.2. For those familiar with category theory, one can define inverse limits for any
category. In most cases the result will be another object of the same category (unique up
to isomorphism), in which case the projection maps are then morphisms in that category.
We will restrict our attention to the familiar categories of sets, groups, and rings. One can
also generalize the index set {n} from the positive integers to any partially ordered set.

4.2 The ring of p-adic integers

Definition 4.3. For a prime p, the ring of p-adic integers Zp is the inverse limit

Zp = lim←−Z/pnZ

of the inverse system of rings (Z/pnZ) with morphisms (fn) given by reduction modulo pn

(for a residue class x ∈ Z/pn+1Z, pick an integer x ∈ x and take its residue class in Z/pnZ).

The multiplicative identity in Zp is 1 = (1̄, 1̄, 1̄, . . .), where the nth 1̄ denotes the residue
class of 1 in Z/pnZ. The map that sends each integer x ∈ Z to the sequence (x̄, x̄, x̄, . . .) is
a ring homomorphism, and its kernel is clearly trivial, since 0 is the only integer congruent
to 0 mod pn for all n. Thus the ring Zp has characteristic 0 and contains Z as a subring.
But Zp is a much bigger ring than Z.

Example 4.4. If we represent elements of Z/pnZ by integers in [0, pn − 1], in Z7 we have

2 = (2, 2, 2, 2, 2, . . .)

2002 = (0, 42, 287, 2002, 2002, . . .)

−2 = (5, 47, 341, 2399, 16805, . . .)

2−1 = (4, 25, 172, 1201, 8404, . . .)

√
2 =

{
(3, 10, 108, 2166, 4567 . . .)

(4, 39, 235, 235, 12240 . . .)

5
√

2 = (4, 46, 95, 1124, 15530, . . .)

Note that 2002 is not invertible in Z7, and that while 2 has two square roots in Z7, it has
only one fifth root, and no cube roots.



While representing elements of Zp as sequences (an) with an ∈ Z/pnZ follows naturally
from the definition of Zp as an inverse limit, it is redundant. The value of an constrains the
value of an+1 to just p of the pn+1 elements of Z/pn+1Z, namely, those that are congruent
to an modulo pn. If we uniquely represent each an as an integer in the interval [0, pn − 1]
we can always write an+1 = an + pnbn with bn ∈ [0, p− 1].

Definition 4.5. Let a = (an) be a p-adic integer with each an uniquely represented by an
integer in ∈ [0, pn − 1]. The sequence (b0, b1, b2, . . .) with b0 = a1 and bn = (an+1 − an)/pn

is called the p-adic expansion of a.

Theorem 4.6. Every element of Zp has a unique p-adic expansion and every sequence
(b0, b1, b2, . . .) of integers in [0, p− 1] is the p-adic expansion of an element of Zp.

Proof. This follows immediately from the definition: we can recover (an) from its p-adic
expansion (b0, b1, b2, . . .) via a1 = a0 and an+1 = an + pbn for all n ≥ 1.

Thus we have a bijection between Zp and the set of all sequences of integers in [0, p− 1]
indexed by the nonnegative integers.

Example 4.7. We have the following p-adic expansion in Z7:

2 = (2, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .)

2002 = (0, 6, 5, 5, 0, 0, 0, 0, 0, 0, . . .)

−2 = (5, 6, 6, 6, 6, 6, 6, 6, 6, 6, . . .)

2−1 = (4, 3, 3, 3, 3, 3, 3, 3, 3, 3, . . .)

5−1 = (3, 1, 4, 5, 2, 1, 4, 5, 2, 1, . . .)

√
2 =

{
(3, 1, 2, 6, 1, 2, 1, 2, 4, 6 . . .)

(4, 5, 4, 0, 5, 4, 5, 4, 2, 0 . . .)

5
√

2 = (4, 6, 1, 3, 6, 4, 3, 5, 4, 6 . . .)

You can easily recreate these examples (and many more) in Sage. To create the ring of
7-adic integers, just type Zp(7). By default Sage will use 20 digits of p-adic precision, but
you can change this to n digits using Zp(p,n).

Performing arithmetic in Zp using p-adic expansions is straight-forward. One computes
a sum of p-adic expansions (b0, b1, . . .) + (c0, c1, . . .) by adding digits mod p and carrying
to the right (don’t forget to carry!). Multiplication corresponds to computing products of
formal power series in p, e.g. (

∑
bnp

n) (
∑
cnp

n), and can be performed by hand using the
standard schoolbook algorithm for multiplying integers represented in base 10, except now
one works in base p. But Sage will do happily do all this arithmetic for you; I encourage
you to experiment in Sage in order to build your intuition.

4.3 Properties of Zp
Recall that a sequence of group homomorphisms is exact if, for each intermediate group
in the sequence, the image of the incoming homomorphism is equal to the kernel of the
outgoing homomorphism. In the case of a short exact sequence

0 −→ A
f−→ B

g−→ C −→ 0,



this simply means that f is injective, g is surjective, and im f = ker g. In this situation the
the homomorphism g induces an isomorphism B/f(A) ' C.

Theorem 4.8. For each positive integer m, the sequence

0 −→ Zp
[pm]−→ Zp

πm−→ Z/pmZ −→ 0,

is exact. Here [pm] is the multiplication-by-pm map and πm is the projection to Z/pmZ.

Proof. The map [pm] shifts the p-adic expansion (b0, b1, . . .) of each element in Zp to the
right by m digits (filling with zeroes) yielding

(c0, c1, c2, . . .) = (0, . . . , 0, b0, b1, b2, . . .),

with cn = 0 for n < m and cn = bn−m for all n ≥ m. This is clearly an injective operation
on p-adic expansions, and hence on Zp, and the image of [pm] consists of the elements in Zp
whose p-adic expansion (c0, c1, c2, . . .) satisfies c0 = · · · = cm−1 = 0.

Conversely, the map πm sends the p-adic expansion (b0, b1, b2, . . . , ) to the sum

b0 + b1p+ b2p
2 + · · · bm−1pm−1

in Z/pmZ. Each element of Z/pmZ is uniquely represented by an integer in [0, pm−1], each
of which can be (uniquely) represented by a sum as above, with b0, . . . , bm−1 integers in
[0, p−1]. It follows that πm is surjective, and its kernel consists of the elements in Zp whose
p-adic expansion (b0, b1, b2, . . .) satisfies b0 = · · · = bm−1 = 0, which is precisely im[pm].

Corollary 4.9. For all positive integers m we have Zp/pmZp ' Z/pmZ.

Definition 4.10. For each nonzero a ∈ Zp the p-adic valuation of a, denoted vp(a), is the
greatest integer m for which a lies in the image of [pm]; equivalently, vp(a) is the index of
the first nonzero entry in the p-adic expansion of a. We also define vp(0) = ∞, and adopt
the conventions that n <∞ and n+∞ =∞ for any integer n.

Theorem 4.11. The p-adic valuation vp satisfies the following properties:

(1) vp(a) =∞ if and only if a = 0.

(2) vp(ab) = vp(a) + vp(b).

(3) vp(a+ b) ≥ min(vp(a), vp(b)).

Proof. The first property is immediate from the definition. The second two are clear when
either a or b is zero, so we assume otherwise and let m = vp(a) and n = vp(b).

For (2) we have a = pma′ and b = pnb′, for some a′, b′ ∈ Zp, and therefore ab = pm+na′b′

lies in im[pm+n] and vp(ab) ≥ m+ n. On the other hand, the coefficient of pm in the p-adic
expansion of a and the coefficient of pn in the p-adic expansion of b are both nonzero, so
the coefficient of pm+n in the p-adic expansion of ab is nonzero, thus vp(ab) ≤ m+ n.

For (3) we assume without loss of generality that m ≤ n, in which case im[pn] ⊆ im[pm],
so a and b both lie in im[pm], as does a+b, and we have vp(a+b) ≥ m = min(vp(a), vp(b)).

The p-adic valuation vp is an example of a discrete valuation.

Definition 4.12. Let R be a commutative ring. A discrete valuation (on R) is a function
v : R→ Z

⋃
{∞} that satisfies the three properties listed in Theorem 4.11.



Corollary 4.13. Zp is an integral domain (a ring with no zero divisors).

Proof. If a and b are both nonzero then vp(ab) = vp(a) + vp(b) <∞, so ab 6= 0.

Definition 4.14. The group of p-adic units Z×p is the multiplicative group of invertible
elements in Zp.

Theorem 4.15. The following hold:

(1) Z×p = Zp − pZp; equivalently, Z×p = {a ∈ Zp : vp(a) = 0}.

(2) Every nonzero a ∈ Zp can be uniquely written as pnu with n ∈ Z≥0 and u ∈ Z×p .

Proof. We first note vp(p
m) = m for all m ≥ 0, and in particular, vp(1) = 0. If a ∈ Z×p , then

a has a multiplicative inverse a−1 and we have vp(a) + vp(a
−1) = vp(1) = 0, which implies

that vp(a) = vp(a
−1) = 0, since vp(a) is nonnegative for all a ∈ Zp. Conversely, if a = (an)

with each an ∈ Z/pnZ and vp(a) = 0, then a1 6≡ 0 mod p is invertible in Z/pZ, and since
an ≡ a1 6≡ 0 mod p, each an is invertible in Z/pnZ. So a−1 = (a−1n ) ∈ Zp, which proves (1).

For (2), if a ∈ Zp is nonzero, let vp(a) = m. Then a ∈ im[pm] and therefore a = pmu for
some u ∈ Zp. We then have

m = vp(a) = vp(p
mu) = vp(p

m) + vp(u) = m+ vp(u),

so vp(u) = 0, and therefore u ∈ Z×p .

Theorem 4.16. Every nonzero ideal in Zp is of the form (pm) for some integer m ≥ 0.

Proof. Let I be a nonzero ideal in Zp, and let m = inf{vp(a) : a ∈ I}. Then m < ∞
(since I is nonzero), and every a ∈ I lies in im[pm] = (pm). On the other hand, vp(a) = m
for some a ∈ I (since vp is discrete), and we can write a = pmu for some unit u. But then
u−1a = pm ∈ I (since I is closed under multiplication by elements of R), thus pm ∈ I ⊆ (pm)
which implies I = (pm).

Corollary 4.17. The ring Zp is a principal ideal domain with a unique maximal ideal.

Definition 4.18. A discrete valuation ring is a principal ideal domain which contains a
unique maximal ideal and is not a field.

This definition of a discrete valuation ring might seem strange at first glance, since it
doesn’t mention a valuation. But given a discrete valuation ring R with maximal ideal (p),
where p is any irreducible element of R, we can define v : R→ Z

⋃
{∞} by setting v(0) =∞

and for every nonzero a ∈ R defining v(a) as the greatest positive integer n for which
a ∈ (pn). It is then easy to check that v is a discrete valuation on R.

Discrete valuation rings are about as close as a commutative ring can get to being a
field without actually becoming one. To turn a discrete valuation ring into a field, we only
need to invert one element (any generator for its maximal ideal). Another remarkable fact
about discrete valuation rings is that (up to units) they are unique factorization domains
with exactly one prime!
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