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24.1 Isogenies of elliptic curves

Definition 24.1. Let E1/k and E2/k be elliptic curves with distinguished rational points
O1 and O2, respectively. An isogeny ϕ : E1 → E2 of elliptic curves is a surjective morphism
that maps O1 to O2.

As an example, the negation map that send P ∈ E(k̄) to its additive inverse is an
isogeny from E to itself; as noted in Lecture 23, it is an automorphism, hence a surjective
morphism, and it clearly fixes the identity element (the distinguished rational point O).

Recall that a morphism of projective curves is either constant or surjective, so any
nonconstant morphism that maps O1 to O2 is automatically an isogeny. The composition
of two isogenies is an isogeny, and the set of elliptic curves over a field k and the isogenies
between them form a category; the identity morphism in this category is simply the identity
map from an elliptic curve to itself, which is is clearly an isogeny. Given that the set of
rational points on an elliptic curve form a group, it would seem natural to insist that, as
morphisms in the category of elliptic curves, isogenies should preserve this group structure.
But there is no need to put this requirement into the definition, it is necessarily satisfied.

Theorem 24.2. Let E1/k and E2/k be elliptic curves and let ϕ : E1 → E2 be an isogeny
defined over k. Then ϕ is a group homomorphism from E1(L) to E2(L), for any algebraic
extension L/k.

Proof. This is essentially immediate (just consider the pushforward map on divisors), but
let us spell out the details.

By base extension to L, it suffices to consider the case L = k. For i = 1, 2, let Oi be the
distinguished rational point of Ei and let φi : Ei(k)→ Pic0k Ei be the group isomorphism that
sends P ∈ Ei(k) to the divisor class [P−Oi]. Let ϕ∗ : Pic0k E1 → Pic0k E2 be the pushforward
map on divisor classes of degree zero. For any P ∈ E1(k) we have ϕ∗([P ]) = [ϕ(P )], since
P and ϕ(P ) both have degree one, and

ϕ∗(φ1(P )) = ϕ∗([P −O1]) = [ϕ∗(P −O1)] = [ϕ(P )− ϕ(O1)] = [ϕ(P )−O2] = φ2(ϕ(P )).

For any P,Q ∈ E1(k) with P ⊕Q = R we have

P ⊕Q = R

φ1(P ) + φ1(Q) = φ1(R)

ϕ∗(φ1(P ) + φ(Q)) = ϕ∗(φ!(R))

ϕ∗(φ1(P )) + ϕ∗(φ1(Q)) = ϕ∗(φ1(R))

φ2(ϕ(P )) + φ2(ϕ(Q)) = φ2(ϕ(R))

ϕ(P )⊕ ϕ(Q) = ϕ(R),

where ⊕ denotes the group operation on both E1(k) and E2(k).

Now that we know that an isogeny ϕ : E1 → E2 is a group homomorphism, we can speak
of its kernel ϕ−1(O2). One can view kerϕ as a set of closed points of E1/k, but it is more
useful to view it as a subgroup of E1(k̄).



Definition 24.3. Let ϕ : E1 → E2 be an isogeny of elliptic curves over k. The kernel of ϕ,
denoted kerϕ is the kernel of the group homomorphism ϕ : E1(k̄)→ E2(k̄).

Recall the translation-by-Q automorphism τQ : E → E that sends P to P ⊕ Q. The
induced map τ∗Q : k̄(E)→ k̄(E) is an automorphism of the function field k̄(E).

Lemma 24.4. Let ϕ : E1 → E2 be an isogeny of elliptic curves. For each P ∈ kerϕ, the
automorphism τ∗P fixes ϕ∗(k̄(E2)), and the map kerϕ → Aut(k̄(E1)/ϕ

∗(k̄(E2))) defined by
P 7→ τ∗P is an injective group homomorphism.

Proof. Let P ∈ kerϕ and let f ∈ k̄(E2). Then

τ∗P (ϕ∗(f))(Q) = (f ◦ ϕ ◦ τP )(Q) = f(ϕ(P ⊕Q)) = f(ϕ(Q)) = (f ◦ ϕ)(Q) = ϕ∗(f)(Q),

since ϕ is a group homomorphism and P lies in its kernel. Thus τP fixes ϕ∗(k̄(E2)).
For any P,Q ∈ kerϕ and f ∈ k̄(E1) we have

τ∗P⊕Q(f) = f ◦ τP⊕Q = f ◦ τQ ◦ τP = τ∗P (f ◦ τQ) = τ∗P (τ∗Q(f)),

so τ∗P⊕Q = τ∗P ◦ τ∗Q, and the map P 7→ τ∗P is a group homomorphism. It is clearly injective,

since if P 6= Q then P 	Q 6= O and τ∗P	Q = τ∗P ◦ (τ∗Q)−1 is not the identity map (apply it

to any nonconstant f ∈ k̄(E1)).

Corollary 24.5. For any isogeny ϕ : E1 → E2 of elliptic curves, # kerϕ divides degϕ.
In particular, the kernel of an isogeny is finite.

Proof. By definition, degϕ = [k̄(E1) : ϕ∗(k̄(E2))], and we know from Galois theory that the
order of the automorphism group of a finite extension divides the degree of the extension.
Since kerϕ injects into Aut(k̄(E1)/ϕ

∗(k̄(E2))), its order must divide degϕ.

Remark 24.6. In fact, the homomorphism in Lemma 24.4 is an isomorphism, and the
corollary implies that when ϕ is separable we have # kerϕ = degϕ; see [1, III.4.10].

24.2 Torsion points on elliptic curves

Definition 24.7. Let E/k be an elliptic curve and let n be a positive integer. The
multiplication-by-n map [n] : E(k̄)→ E(k̄) is the group homomorphism defined by

nP = P ⊕ P ⊕ · · · ⊕ P.

The points P ∈ E(k̄) for which nP = O are called n-torsion points. They form a subgroup
of E(k̄) denoted E[n].

If ϕ : E1 → E2 is an isogeny, then we know from Corollary 24.5 that n = degϕ is a
multiple of the order of kerϕ. It follows that every point in kerϕ is an n-torsion point. By
definition, [n] is a group homomorphism. We now show that [n] is an isogeny.

Theorem 24.8. The multiplication-by-n map on an elliptic curve E/k is an isogeny.

Proof assuming char(k) 6= 2: The case n = 1 is clear, and for n = 2 the map P 7→ P ⊕ P
is a rational map, hence a morphism (by Theorem 18.6, a rational map from a smooth
projective curve is a morphism), since it can be defined in terms of rational functions of
the coordinates of P via the algebraic formulas for the group operation on E(k̄). More



generally, given any morphism φ : E → E, plugging the coordinate functions of φ into the
formulas for the group law yields a morphism that sends P to φ(P ) ⊕ P . It follows by
induction that [n] is a morphism, and it clearly fixes the identity element O.

It remains to show that [n] is surjective. For this it suffices to show that it does not
map every point to O, since a morphism of smooth projective curves is either surjective or
constant (by Corollary 18.7). We have already seen that there are exactly 4 points in E(k̄)
that are fixed by the negation map, three of which have order 2 (in short Weierstrass form,
these are the point at infinity and the 3 points whose y-coordinate is zero). For n odd, [n]
cannot map a point of order 2 to O, so [n] is surjective for n odd. For n = 2km with m odd
we may write [n] = [2] ◦ · · · ◦ [2] ◦ [m]. We already know that [m] is surjective, so it suffices
to show that [2] is. But [2] cannot map any of the infinitely many points in E(k̄) that are
not one of the 4 points fixed by the negation map to O, so [2] must be surjective.

Remark 24.9. Note that in characteristic 2 there are not four 2-torsion points, in fact
there may be none. But one can modify the proof above to use 3-torsion points instead.

Corollary 24.10. Let E/k be an elliptic curve. For any positive integer n, the number of
n-torsion points in E(k̄) is finite.

Remark 24.11. In fact one can show that the number of n-torsion points divides n2, and
for n not divisible by char(k), is equal to n2.

24.3 Torsion points on elliptic curves over Q

Let E be an elliptic curve Q, which we may assume is given by a short Weierstrass equation

E : y2 = x3 + a4x+ a6,

with a4, a6 ∈ Q. Let d be the LCM of the denominators of a4 and a6. After multiplying
both sides by d6 and replacing y by d3ny and x by d2nx, we may assume a4, a6 ∈ Z. Since
E is non-singular, we must have ∆ = ∆(E) := −16(4a34 + 27a26) 6= 0.1

For each prime p the equation for E also defines an elliptic curve over Qp. For the sake
of simplicity we will focus our attention on primes p that do not divide ∆, but everything
we do below can be extended to arbitrary p (as we will indicate as we go along). Let E0

denote the elliptic curve over Qp obtained by base extension from Q to Qp. Let E/Fp denote
the curve over Fp obtained by reducing the equation for E modulo p. Here we are assuming
∆ 6≡ 0 mod p so that the reduced equation has no singular points, meaning that E is an
elliptic curve. We say that E has good reduction at p when this holds.

The reduction map E0(Qp)→ E(Fp) is a group homomorphism, and we define E1(Qp)
to be its kernel; these are the points that reduce to (0 : 1 : 0) modulo p. In fact, E1(Qp) can
be defined as the kernel of the reduction map regardless of whether E has good reduction
at p or not and one can show that the points in E1(Qp) still form a group.

The points in E1(Qp) are precisely the points in E0(Qp) that can be represented as
(x : y : z), with vp(x), vp(z) > 0 and vp(y) = 0; equivalently, the points with vp(x/y) > 0
(note that vp(x/y) does not depend on how the coordinates are scaled). For all positive
integers n we thus define

En(Qp) =
{

(x : y : z) ∈ E0(Qp) : vp(x/y) ≥ n
}
,

and note that this agrees with our previous definition of E1(Qp).

1The leading factor of −16 appears for technical reasons that we won’t explain here, but it is useful to
have a factor of 2 in ∆ because a short Weierstrass equation always has singular points in characteristic 2.



Lemma 24.12. For n > 0, each of the sets En+1(Qp) is an index p subgroup of En(Qp).

Proof. Containment is clear from the definition, but we need to show that the sets En(Qp)
are actually groups. For O = (0 : 1 : 0) we have vp(x/y) =∞, so O ∈ En(Qp) for all n. Any
affine point P ∈ En(Qp)−En+1(Qp) has vp(x/y) = n, and and after dividing through by z
can be written as (x : y : 1) with vp(y) < 0. Since a4, a6 ∈ Zp, the equation y2 = x3+a4x+a6
implies 3vp(x) = 2vp(y), so

n = vp(x/y) = vp(x)− vp(y) = −vp(y)/3,

and therefore vp(y) = −3n and vp(x) = −2n. After multiplying through by p3n we can
write P = (pnx0 : y0 : p3n) with x0, y0 ∈ Z×p . We then have

p3ny20 = p3nx30 + a4p
7nx0 + a6p

9n

y20 = x30 + a4p
4nx0 + a6p

6n.

After reducing mod p we obtain an affine point (x0 : y0 : 1) whose coordinates are all
nonzero and which lies on the singular variety C0/Fp defined by

y2z = x3,

which also contains the reduction of O = (0 : 1 : 0). If we consider the image of the group
law on E0(Qp) on C0(Fp), we still have an operation defined by the rule that three colinear
points sum to zero. We claim that this makes the set S of nonsingular points in C0(Fp) into
a group of order p. To show this, we first determine S. We have

(∂/∂x)(y2z − x3) = −3x2,

(∂/∂y)(y2z − x3) = 2yz,

(∂/∂z)(y2z − x3) = y2.

It follows that a point in C0(Fp) is singular if and only if its y-coordinate is zero. In
particular all of the reductions of points in En(Qp) are non-singular, for any n ≥ 1. Every
non-singular point in C0(Fp) can be written as (x : 1 : x3), and this gives a bijection from
Fp to S defined by x 7→ (x : 1 : x3). Thus the set S has order p and it contains the identity
element. It is clearly closed under negation, and we now show it is closed under addition.
If P and Q are two elements of S not both equal to (0 : 1 : 0), then at least one of them
has non-zero z-coordinate and the line L defined by P and Q can be written in the form
z = ax+ by. Plugging this into the curve equation gives

y2(ax+ by) = x3,

and it is then clear that the third point R in C0 ∩L must have nonzero y-coordinate, since
y0 = 0 ⇒ x0 = 0 ⇒ z0 = 0 for any (x0 : y0 : z0) ∈ C0 ∩ L. Since P and Q are both
in C0(Fp), so is R, thus R lies in S, as does its negation, which is P ⊕ Q. Therefore the
reduction map En(Qp) → C0(Fp) defines a group homomorphism from En(Qp) to S, and
its kernel is En+1(Qp), an index p subgroup of En(Qp).

Definition 24.13. The infinite chain of groups

E0(Qp) ⊃ E1(Qp) ⊃ E2(Qp) ⊃ · · ·

is called the p-adic filtration of E/Q.



Theorem 24.14. Let E/Q be an elliptic curve and let p be a prime not dividing ∆(E).
The p-adic filtration of E satisfies

(1) E0(Qp)/E
1(Qp) ' E(Fp);

(2) En(Qp)/E
n+1(Qp) ' E(Fp) ' Z/pZ for all n > 0;

(3) ∩nEn = {O}.

Proof. The group E1(Qp) is, by definition, the kernel of the reduction map from E0(Qp) to
E(Fp). To prove (1) we just need to show that the reduction map is surjective.

Let P = (a1 : a2 : a3) be a point in E(Fp) with the ai ∈ Z/pZ. The point P is non-
singular, so at least one of the partial derivatives of the curve equation f(x1, x2, x3) = 0 for
E does not vanish. Without loss of generality, suppose ∂f/∂x1 does not vanish at P . If we
pick an arbitrary point P̂ = (â1 : â2 : â3) with coefficients âi ∈ Zp such that âi ≡ ai mod p,
we can apply Hensel’s to the polynomial g(t) = f(t, â2, â3) using a1 ∈ Z/pZ as our initial
solution, which satisfies g′(ai) 6= 0. This yields a point in E0(Qp) that reduces to P , thus
the reduction map is surjective, which proves (1).

Property (2) follows from the lemma above. For (3), note that E1(Qp) contains only
points with nonzero y-coordinate, and the only such point with vp(x/y) = ∞ is O; every
other other point (x : y : z) ∈ E1(Qp) lies in En(Qp)− En+1(Qp), where n = vp(x/y).

Remark 24.15. Theorem 24.14 can be extended to all primes p by replacing E(Fp) in (1)
with the set S of non-singular points on the reduction of E modulo p. As in the proof
of Lemma 24.12, one can show that S always contains O and is closed under the group
operation, but there are now three different group structures that can arise:

1. A cyclic group of order p isomorphic to the additive group of Fp; in this case E is said
to as additive reduction at p.

2. A cyclic group of order p−1 isomorphic to the multiplicative group of Fp; in this case
E is said to have split multiplicative reduction at p.

3. A cyclic group of order p+ 1 isomorphic to the subgroup of the multiplicative group
of a quadratic extension of Fp consisting of elements of norm one; in this case E is
said to have non-split multiplicative reduction at p.

Parts (2) and (3) of the theorem remain true for all primes p (as we will now assume).

Corollary 24.16. Suppose P = (x : y : 1) is an affine point in E0(Qp) with finite order
prime to p. Then x, y ∈ Zp.

Proof. Suppose not. Then both x and y must have negative p-adic valuations in order
to satisfiy y2 = x3 + a4x + a6 with a4, a6 ∈ Zp, and we must have 2vp(x) = 3vp(y), so
vp(x/y) > 0. Let n = vp(x/y). Then P ∈ En(Qp)− En+1(Qp), and the image of P in

En(Qp)/E
n+1(Qp) ' Z/pZ

is not zero, hence it has order p. The order m of P is prime to p, so the image of mP
in En(Qp)/E

n+1(Qp) is also nonzero. Thus mP 6∈ En+1(Qp), but this is a contradiction,
because mP = O ∈ En+1(Qp).

Lemma 24.17. Suppose P1, P2, P3 are colinear points in En(Qp), for some n > 0, with
Pi = (xi : 1 : zi). Then vp(x1 + x2 + x3) ≥ 5n.



Proof. We have already seen that for Pi ∈ En(Qp) we have xi ∈ pnZp and zi ∈ p3nZp.
Fixing y = 1, if P1 6= P2 then the equation of the line through P1 and P2 in the x-z
plane has the form z = αx + β with α = (z2 − z1)/(x2 − x1). Using the curve equation
z = x3 + a3xz

2 + z3 (with y = 1), we can rewrite α as

α =
z2 − z1
x2 − x1

=
z2 − z1
x2 − x1

· 1− a4z22 − a6(z22 + z1z2 + z21)

1− a4z22 − a6(z22 + z1z2 + z21)

=
(z2 − a6z32)− (z1 − a4x1z21 − a6z31)− a4x1z22

(x1 − x2)(1− a4z22 − a6(z22 + z1z2 + z21))

=
(x32 + a4x2z

2
2)− x31 − a4x1z22

(x1 − x2)(1− a4z22 − a6(z22 + z1z2 + z21))

=
(x2 − x1)(x22 + x1x2 + x21 + a4z

2
2)

(x1 − x2)(1− a4z22 − a6(z22 + z1z2 + z21))

=
x22 + x1x2 + x21 + a4z

2
2

1− a4z22 − a6(z22 + z1z2 + z21)
.

The key point is that the denominator of α is then a p-adic unit. It follows that α ∈ p2nZp,
and then β = z1 − αx1 ∈ p3nZp. Substituting z = αx+ β into the curve equation gives

αx+ β = x3 + a4x(αx+ β)2 + b(αx+ β)3.

We know that x1, x2, x3 are the three roots of the cubic defined by the equation above, thus
x1 + x2 + x3 is equal to the coefficient of the quadratic term divided by the coefficient of
the cubic term. Therefore

x1 + x2 + x3 =
2a4αβ + 3a6α

2β

1 + a4α2 + a6β3
∈ p5nZp.

The case P1 = P2 is similar.

Corollary 24.18. The group E1(Qp) is torsion-free.

Proof. By the previous corollary we only need to consider the case of a point of order p. So
suppose pP = 0 for some P ∈ En(Qp)− En+1(Qp). Consider the map

En(Qp)→ pnZp/p
5nZp

that sends P := (x : 1 : z) to the reduction of x in pnZp/p
5nZp. By the lemma above, this is

a homomorphism of abelian groups, so it sends pP to the reduction of px ∈ pn+1Zp−pn+2Zp

modulo p5nZp, which is not zero, a contradiction.

Corollary 24.19. Let E/Q be an elliptic curve and let p be a prime of good reduction. The
torsion subgroup of E(Q) injects into E(Fp). in particular, the torsion subgroup is finite.

Proof. The group E(Q) is isomorphic to a subgroup of E0(Qp) and E(Fp) = E0(Qp)/E
1(Qp).

But E1(Qp) is torison free, so the torsion subgroup of E(Q) injects into E(Fp).



Now that we know that each elliptic curve over Q has a finite number of rational torsion
points, one might ask whether there is a uniform upper bound that applies to every elliptic
curve over Q. It’s not a priori clear that this should be the case; one might suppose that
by varying the elliptic curve we could get an arbitrarily large number of rational torsion
points. But this is not the case; an elliptic curve over Q can have at most 16 rational points
of finite order. This follows from a celebrated theorem of Mazur that tells us exactly which
rational torsion subgroups can (and do) arise for elliptic curves defined over Q.

Theorem 24.20 (Mazur). Let E/Q be an elliptic curve. The torsion subgroup of E(Q) is
isomorphic to one of the fifteen subgroups listed below:

Z/nZ (n = 1, 2, 3, . . . , 9, 10, 12), Z/2Z× Z/2nZ (n = 1, 2, 3, 4).

The proof of this theorem is well beyond the scope of this course.2 However, as a further
refinement of our results above, we can prove the Nagell-Lutz Theorem.

Theorem 24.21 (Nagell-Lutz). Let P = (x0 : y0 : 1) be an affine point of finite order on
the elliptic curve y2 = x3 +a4x+a6 over Q, with a4, a6 ∈ Z. Then x0, y0 ∈ Z, and if y0 6= 0
then y20 divides 4a34 + 27a26.

Proof. For any prime p, if vp(x0) < 0 then 2vp(y0) = 3vp(x0) and vp(x0/y0) > 0. It follows
that P ∈ E1(Q), but then P cannot be a torsion point. So vp(x) ≥ 0 for all primes p. Thus
x0 is an integer, and so is y20 = x30 + a4x0 + a6, and therefore y.

If P has order 2 then y0 = 0; otherwise, the x-coordinate of 2P is an integer equal
to λ2 − 2x0, where λ = (3x20 + a4)/(2y0) is the slope of the tangent at P . Thus 4y20 and
therefore y20 divides λ2 = (3x20 + a4)

2, as well as x30 + a4x0 + a6. We now note that

(3x20 + 4a4)(3x
2
0 + a4)

2 = 27x60 + 54a4x
4
0 + 27a24x

2
0 + 4a34

(3x20 + 4a4)(3x
2
0 + a4)

2 = 27(x30 + a4x0)
2 + 4a34

0 ≡ 27a26 + 4a34 mod y20,

since (x30 + a4x0) ≡ −a6 mod y20, thus y0 divides 4a34 + 27a26.

The Nagell-Lutz theorem gives an effective method for enumerating all of the torsion
points in E(Q) that is quite practical when the coefficients a4 and a6 are small. By factoring
D = 4a34 + 27a26, one can determine all the squares y20 that divide D. By considering each
of these, along with y0 = 0, one then checks whether there exists an integral solution x0 to
y20 = x30 + ax0 + a6 (note that such an x0 must be a divisor of a6 − y20).

This yields a list of candidate torsion points P = (x0 : y0 : 1) that are all points in
E(Q), but do not necessarily all have finite order. To determine which do, one computes
multiples nP for increasing values of n (by adding the point P at each step, using the group
law on E), checking at each step whether nP = O. If at any stage it is found that the affine
coordinates of nP are not integers then nP , and therefore P , cannot be a torsion point,
and in any case we know from Mazur’s theorem that if nP 6= O for any n ≤ 12 then P is
not a torsion point; alternatively, we also know that n must divide #E(Fp), where p is the
least prime that does not divide ∆(E).

However, this method is not practical in general, both because it requires us to factor D,
and because D might have a very large number of square divisors (if D is, say, the product

2There was recently a graduate seminar at Harvard devoted entirely to the proof of Mazur’s theorem; see
http://www.math.harvard.edu/˜chaoli/MazurTorsionSeminar.html for notes and references.

http://www.math.harvard.edu/~chaoli/MazurTorsionSeminar.html


of the squares of the first 100 primes, then we have 2100 values of y0 to consider). But
Cororllary 24.19 gives us a much more efficient alternative that can be implemented to run
in quasi-linear time (roughly proportional to the number of bits it takes to represent a4
and a6 on a computer).

We first determine the least odd prime p that does not divide D; we don’t need to
factor D to do this and we will always have p bounded by O(logD) = O(log max(|a4|, |a6|).
We then exhaustively compute the set E(Fp), which clearly has cardinality at most 2p (in
fact, at most p + 1 + 2

√
p). For each integer m > 1 there is an m-division polynomial

fm ∈ Z[x] with the property that P = (x0, y0) ∈ E(Q) satisfies mP = 0 if and only if
fm(x0) = 0. The polynomials fm can be explicitly computed using formulas for the group
law on E and have integer coefficients that depend on the integer coefficients of E and degree
bounded by m2. If P = (x0, y0) is a point of order m in E(Fp) then f(x0) ≡ 0 mod p, and
we can use Hensel’s lemma to efficiently “lift” the root x0 of fm modulo p to a root x0 of fm
modulo pn, where n is chosen so that pn is more than twice as large as the absolute value
of the x-coordinate of any torsion point in E(Q); the fact that y20 must divide D gives us
an upper bound on both y0 and x0. We choose a representative x0 ∈ Z with |x0| < pn/2
and check whether fm(x0) = 0; if so then x30 + a4x + a6 must be the square of an integer
y0 ≡ y0 mod p (which we can also compute using Hensel lifting) and (x0, y0) ∈ E(Q) is
a torsion point. Repeating this process for each P ∈ E(Fp) yields the torsion subgroup
of E(Q). But we know from Mazur’s theorem that we only need to consider the points
P ∈ E(Fp) of order m ≤ 12, which means there at only O(1) points to consider; here we
are using the fact that E(Fp) is generated by at most two elements, which we will not prove
here. Provided we use fast algorithms for integer multiplication in our implementation of
Hensel lifting, this yields a quasi-linear running time.
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