
18.782 Introduction to Arithmetic Geometry Fall 2013
Lecture #2 09/10/2013

Andrew V. Sutherland

2.1 Plane conics

A conic is a plane projective curve C/k of degree 2. Such a curve is defined by an equation
of the form

ax2 + by2 + cz2 + dxy + exz + fyz = 0,

with a, b, c, d, e, f ∈ k. Assuming the characteristic of k is not 2, we can make d = e = f = 0
via an invertible linear transformation. First, if a = b = c = 0 we can make one of them
nonzero by replacing a variable by its sum with another; in this case one of d, e, f must be
nonzero, say d, and then replacing y with x + y yields an equation with a 6= 0. So assume
without loss of generality that a 6= 0. Replacing x with x− d

2ay kills the xy term, and we can
similarly kill the xz term by replacing x with x− e

2az (we are just completing the square).

Finally, if f 6= 0 we can make b nonzero and then replace y with y − f
2bz to eliminate the

yz term. Each of these substitutions corresponds to an invertible linear transformation of
the projective plane, as does their composition.

So we now assume char(k) 6= 2, and that C has the diagonal form

ax2 + by2 + cz2 = 0. (1)

If any of the coefficients a, b, c are zero, then this curve is not irreducible.1 For example, if
the coefficient c is zero, we can factor the LHS of (1) over k:

ax2 + by2 = (
√
ax +

√
−by)(

√
ax−

√
−by) = 0.

In this case C(k) is the union of two projective lines that intersect at (0 : 0 : 1) (but C(k)
might contain only one point, as when k = Q and a, b > 0, for example).

We now summarize this discussion with the following theorem.

Theorem 2.1. Over a field whose characteristic is not 2, every geometrically irreducible
conic is isomorphic to a diagonal curve ax2 + by2 + cz2 = 0 with abc 6= 0.

Remark 2.2. This does not hold in characteristic 2.

2.2 Parameterization of rational points on a conic

Suppose (x0 : y0 : z0) is a rational point on the diagonal conic C : ax2 + by2 + cz2 = 0.
Without loss of generality, we assume z0 6= 0 and consider the substitution

x = x0W + U, y = y0W + V, z = z0W (2)

1In Lecture 1 we defined a plane projective curve f(x, y, z) = 0 to be reducible if f = gh for some
g, h ∈ k[x, y, z], where k is the algebraic closure of k. Some authors distinguish between irreducibility over
k versus k, referring to the latter as geometric (or absolute) irreducibility. For us, irreducible will always
mean geometrically irreducible.

Our definition of a plane projective curve f(x, y, z) = 0 requires f to have no repeated factors in k[x, y, z],
which precludes the case where two of a, b, c are zero. In more general settings, curves defined by a polynomial
with repeated factors are said to be non-reduced. In this course all curves are reduced.



where U, V,W denote three new variables. We then have

a(x0W + U)2 + b(y0W + V )2 + c(z0W )2 = 0

(ax20 + by20 + cz20)W + 2(ax0U + by0V )W + aU2 + bV 2 = 0

2(ax0U + by0V )W = −aU2 − bV 2,

where we have used ax20 + by20 + cz20 = 0 to eliminate the quadratic term in W . After
rescaling by 2(ax0u + by0v) and substituting for W in (2) we obtain the parameterization

x = x0(−aU2 − bV 2) + 2(ax0U + by0V )U = ax0U
2 + 2by0UV − bx0V

2 = Q1(U, V )

y = y0(−aU2 − bV 2) + 2(ax0U + by0V )V = −ay0U2 + 2ax0UV + by0V
2 = Q2(U, V )

z = z0(−aU2 − bV 2) = −az0U2 − bz0V
2 = Q3(U, V )

Thus (Q1(U, V ) : Q2(U, V ) : Q3(U, V )) is a polynomial map defined over k that sends each
projective point (U : V ) on P1 to a point on the curve C. Moreover, we can recover the
point (U : V ) via the inverse map from C to P1 defined by

U = x− x0
z0

z, V = y − y0
z0

z.

Thus we have an invertible map from C to P1 that is given by rational (in fact polynomial)
functions that are defined at every point (such a map is said to be regular). In this situation
we regard C and P1 as isomorphic curves. This yields the following theorem.

Theorem 2.3. Let C/k be a geometrically irreducible conic with a k-rational point and
assume that char(k) 6= 2. Then C is isomorphic over k to the projective line P1.

Remark 2.4. This theorem also holds when char(k) = 2, but we will not prove this.

2.3 Conics over Q

We now consider the case k = Q. Given a diagonal conic

ax2 + by2 + cz2 = 0

with abc 6= 0, we wish to either find a rational point (which we can then use to parameterize
all the rational points), or prove that there are none. After clearing denominators we can
assume a, b, c are nonzero integers, and we note that if they all have the same sign then
there are clearly no rational points. So let us assume that this is not the case, and without
loss of generality suppose that a > 0 and b, c < 0. Multiplying both sides by a and setting
d = −ab and n = −ac, we can put our curve in the form

x2 − dy2 = nz2, (3)

where d and n are positive integers that we may assume are square-free. Solving this
equation is equivalent to expressing n = (xz + y

z

√
d)(xz −

y
z

√
d) as the norm of an element of

the real quadratic field Q(
√
d).

We now present a recursive procedure for doing this, based on Legendre’s method of
descent; the algorithm we give here is adapted from [1, Alg. I]. The basic idea is to either
determine that there are no integer solutions to (3) (and hence no rational solutions), or to



reduce the problem to finding a solution to a similar equation with smaller values of d or n
(this is why it is called a descent). In order to facilitate the recursion, we allow d and n to
also take negative values (but still insist that they be square-free).

Given square-free integers d and n, the procedure Solve(d, n) either returns an integer
solution to (3), or determines that no solution exists; we use the notation fail to indicate
that the latter has occured.



Solve(d, n)

1. If d, n < 0 then fail.

2. If |d| > |n| then let (x0, y0, z0) = Solve(n, d) and return (x0, z0, y0).

3. If d = 1 return (1, 1, 0); if n = 1 return (1, 0, 1); if d = −n return (0, 1, 1).

4. If d = n then let (x0, y0, z0) = Solve(−1, d) and return (dz0, x0, y0).

5. If d is not a quadratic residue modulo n then fail.

6. Let x20 ≡ d mod n, with |x0| ≤ |n|/2, and let t = t1t
2
2 = (x20−d)/n with t1 square-free.

7. Let (x1, y1, z1) = Solve(d, t1) and return (x0x1 + dy1, x0y1 + x1, t1t2z1).

It is clear that if the algorithm fails in steps 1 or 5 then (3) has no solutions, and that
the solutions returned in step 3 are all correct. Assuming the algorithm works correctly
when |d| ≤ |n|, then the solution returned in step 3 is clearly correct, and in step 4 with
d = n, if Solve(−1, d) succeeds then we have

x20 + y20 = dz20

dx20 + dy20 = (dz0)
2

(dz0)
2 − dx20 = dy20 = ny20,

and therefore the solution (dz0, x0, y0) is correct (note that −1 and d are both square-free,
assuming the input d is, so our square-free constraint is preserved in the recursive call).

It remains to show that the solution returned in step 7 is correct, and that the algorithm
is guaranteed to terminate. If we reach step 6 then we have |d| < |n|, and since x20−d = nt,
we have

|t| ≤ |x
2
0 − d|
|n|

≤ |x0|
2 + |d|
|n|

≤ |d|
2

4|n|
+
|d|
|n|

<
|n|
4

+
|d|
|n|
≤ |n|

2
,

where the last inequality is justified by checking each of the cases |n| = 2, |n| = 3, and
|n| ≥ 4, remembering that the integer |d| is at least 1 and strictly smaller than |n|. It
follows that |t1| ≤ |t| < |n|, which ensures that the algorithm will terminate, since either
|d| or |n| is reduced in every recursive call; indeed, the number of recursive calls is clearly
bounded by a logarithmic function of max(|d|, |n|).

To see that the solution returned in step 7 is correct, we first note that t1 is square-free as
required, and if Solve(d, t1) succeeds then we may inductively assume that x21−dy21 = t1z

2
1 .

Multiplying the LHS by x20 − d and the RHS by x20 − d = nt yields

(x20 − d)(x21 − dy21) = ntt1z
2
1

x20x
2
1 − dx20y

2
1 − dx21 + d2y21 = nt1t

2
2t1z

2
1

(x0x1)
2 + (dy1)

2 − d
(
(x0y1)

2 + x21
)

= n(t1t2z1)
2

(x0x1 + dy1)
2 − d(x0y1 + x1)

2 = n(t1t2z1)
2,

which shows that (x0x1 + dy1, x0y1 + x1, t1t2z1) is indeed a solution to (3), as desired.
Computationally, the most expensive step of the algorithm (by far) is the computation

of x0 in step 6. As we will see in the next lecture, it is easy to compute square-roots modulo
primes, but in general n may be composite, and the only known algorithm for computing



square-roots modulo a square-free composite integer n is to compute square-roots modulo
each of its prime factors and use the Chinese remainder theorem to get a square-root
modulo n. This requires factoring the integer n, a problem for which no polynomial-time
algorithm is known.

As described in [1], the algorithm Solve(d, n) can be modified to avoid factorization in
any of its recursive steps so that only one initial factorization is required. This does not
yield a polynomial-time algorithm, but it greatly speeds up the process, and in practice it
is now feasible to find rational solutions to ax2 + by2 + cz2 = 0 even when the coefficients
a, b, and c are as large as 10100.

Another deficiency of the algorithm Solve(d, n) is that the solutions it finds are typically
much larger than necessary. There is a theorem due to Holzer that gives us an upper bound
on the size of the smallest solution to (1), and hence of the smallest solution to (3).

Theorem 2.5 (Holzer). Let a, b, c be square-free integers that are pairwise coprime and
suppose that the equation ax2 + by2 + cz2 = 0 has a nonzero rational solution. Then there
exists a nonzero integer solution (x0, y0, z0) with

|x0| ≤
√
|bc|, |y0| ≤

√
|ac|, |z0| ≤

√
|ab|.

Proof. See [2] for a short and elementary proof.

On Problem Set 1 you will implement a simple improvement to algorithm Solve(d, n)
that significantly reduces the size of the solutions it finds (and reduces the number of
recursive calls), and generally comes close to achieving the Holzer bounds.

Finally, we note that there is a simple criterion for determining whether or not a diagonal
conic has a rational solution that does not require actually looking for one.

Theorem 2.6 (Legendre). Let a, b, c be square-free integers that are pairwise coprime and
whose signs are not all the same. The equation ax2 + by2 + cz2 = 0 has a rational solution
if and only if the congruences

X2 ≡ −bc mod a, Y 2 ≡ −ca mod b, Z2 ≡ −ab mod c

can be simultaneously satisfied.

The necessity of the condition given in Theorem 2.6 is easy to check; if we look at the
equation modulo a, for example, we have by2 ≡ −cz2 mod a, and it follows that −b/c and
therefore −bc must be a quadratic residue modulo a. The sufficiency can be proved by
showing that if the condition holds than Solve(d, n) will succeed in finding a solution to
the corresponding norm equation x2 − dy2 = nz2. This is basically how Legendre proved
the theorem, but we will prove a more general statement after we have developed the theory
of p-adic numbers.

It is worth noting that while the congruences in Legendre’s theorem apparently give
a very simple criterion for determining whether a conic has a rational point, in order to
apply them we need to know the factorization of the integers a, b, c. This means that, in
general, the problem of determining the existence of a rational solution is not significantly
easier than actually finding one, and we still do not have a polynomial-time algorithm for
determining the existence of a rational solution to a conic over Q.
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