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As before, k is a perfect field, k̄ is a fixed algebraic closure of k, and An = An(k̄) is
n-dimensional affine space.

13.1 Affine varieties

Definition 13.1. An algebraic set Z ∈ An is said to be defined over k if its ideal is
generated by polynomials in k[x1, . . . , kn], that is, I(Z) is equal to the ideal generated by
I(Z) ∩ k[x1, . . . , xn] in k̄[x1, . . . , kn]. We write Z/k to indicate that Z is an algebraic set
that is defined over k and define the ideal

I(Z/k) = I(Z) ∩ k[x1, . . . , xn].

When Z is defined over k the action of the absolute Galois group Gk on An induces an
action on Z, since for any σ ∈ Gk, any f ∈ k[x1, . . . , xn], and any P ∈ An we have

f(P σ) = f(P )σ.

In this case we have Z(k) = {P ∈ Z : P σ = P for all σ ∈ Gk} = ZGk .

Definition 13.2. Let Z be an algebraic set defined over k. The affine coordinate ring of
Z/k is the ring

k[Z] =
k[x1, . . . , xn]

I(Z/k)
.

We similarly define

k̄[Z] =
k̄[x1, . . . , xn]

I(Z)
.

The coordinate ring k[Z] may have zero divisors; it is an integral domain if and only if
I(Z/k) is a prime ideal. Even if k[Z] has no zero divisors, k̄[Z] may still have zero divisors
(the fact that I(Z/k) is a prime ideal does not guarantee that I(Z) is a prime ideal; the
principal ideal (x2 + 1) is prime in Q but not in Q, for example). We want k[Z] to be an
integral domain so that we can work with its fraction field. Recall from last lecture that
I(Z) is a prime ideal if and only if Z is irreducible. This motivates the following definition.

Definition 13.3. An affine variety V is an irreducible algebraic set in An.1

An algebraic set Z is a variety if and only if I(Z) is a prime ideal; the one-to-one corre-
spondence between algebraic sets and radical ideals restricts to a one-to-one correspondence
between varieties and prime ideals (note that every prime ideal is necessarily a radical ideal).
The set An is a variety since I(An) is the zero ideal, which is prime in the ring k̄[x1, . . . , kn]
because it is an integral domain (the zero ideal is prime in any integral domain).

Definition 13.4. Let V/k be an affine variety defined over k. The function field k(V ) of V
is the fraction field of the coordinate ring k[V ].

We similarly define the function field of V over any extension of k on which V is defined.
Every variety is defined over k̄, so we can always refer to the function field k̄(V ).

1Not all authors require varieties to be irreducible (but many do).



13.1.1 Dimension

Definition 13.5. The dimension of an affine variety V is the transcendence degree of the
field extension k̄(V )/k̄.

Lemma 13.6. The dimension of An is n, and the dimension of any point P ∈ An is 0.

Proof. We have k̄[An] = k̄[x1, . . . , xn]/(0) = k̄[x1, . . . , xn], so k̄(An) = k̄(x1, . . . , xn) is a
purely transcendental extension of k̄ with transcendence degree n. For the point P , the
ideal I(P ) = mP is maximal, so the coordinate ring k̄[P ] = k̄[x1, . . . , xn]/mP is a field
isomorphic to k̄, as is k̄(P ), and the transcendence degree of k̄/k̄ is obviously 0.

Let us note an alternative definition of dimension using the Krull dimension of a ring.

Definition 13.7. The Krull dimension of a commutative ring R is the supremum of the
set of integers d for which there exists a chain of distinct prime R-ideals

p0 ( p1 ( · · · ( pd.

The Krull dimension of a ring need not be finite, even when the ring is noetherian,
but the Krull dimension of k̄[x1, . . . , xn] is finite, equal to n, and this bounds the Krull
dimension of the coordinate ring of any variety V ⊆ An. The following theorem implies
that dimension of a V is equal to the Krull dimension of k̄[V ].

Theorem 13.8. Let k be a field and let R be an integral domain finitely generated as a
k-algebra. The Krull dimension of R is the transcendence degree of its fraction field over k.

Proof. See [1, Theorem 7.22].

Now consider a chain of distinct prime ideals in k̄[V ] of length d equal to the Krull
dimension of k̄[V ].

p0 ( p1 ( · · · ( pd.

Since k̄[V ] is an integral domain, the zero ideal is prime, so p0 = (0) (otherwise the chain
would not be maximal). There is a one-to-one correspondence between ideals of the quotient
ring k̄[V ] = k̄[x1, . . . , xn] and ideals of k̄[x1, . . . , xn] that contain I(V ), and this correspon-
dence preserves prime ideals (this follows from the third ring isomorphism theorem). Thus
we have a chain of distinct prime ideals in k̄[x1, . . . , xn]:

I(V ) = I0 ( I1 ( · · · ( Id,

This corresponds to a chain of distinct varieties (with inclusions reversed):

Vd ( V1 ( · · · ( V0 = V.

Conversely, we could have started with a chain of distinct varieties V and obtained a chain of
distinct prime ideals in k̄[V ]. This one-to-one correspondence yields an alternative definition
of the dimension of V .

Definition 13.9. The geometric dimension of a variety V is the largest integer d for which
there exists a chain

V0 ( · · · ( Vd = V

of distinct varieties contained in V .

The discussion above shows that this agrees with our earlier definition. This notion of
dimension also works for algebraic sets: the dimension of an algebraic set Z is the largest
integer d for which there exists a chain of distinct varieties (irreducible algebraic sets)
contained in Z.



13.1.2 Singular points

Definition 13.10. Let V ⊆ An be a variety, and let f1, . . . , fm ∈ k̄[x1, . . . , xn] be a set of
generators for I(V ). A point P ∈ V is a nonsingular (or smooth) if the m × n Jacobian
matrix M(P ) with entries

Mij(P ) =
∂fi
∂xj

(P )

has rank n− dimV ; otherwise P is a singular point of V . If V has no singular points than
we say that V is smooth.

A useful fact that we will not prove is that if one can show that the rank of M(P ) is
equal to n− d for every point P ∈ An, then V is a smooth variety of dimension d.

13.2 Projective space

Definition 13.11. n-dimensional projective space Pn over k is the set of all points in
An+1 − {0} modulo the equivalence relation

(a0, . . . , an) ∼ (λa0, . . . , λan)

for all λ ∈ k̄×. We use the ratio notation (a0 : . . . : an) to denote the equivalence class of
(a0, . . . , an), and call it a projective point or a point in Pn. The set of k-rational points in
Pn is

Pn(k) = {(a0 : . . . : an) ∈ Pn : a0, . . . , an ∈ k}

(and similarly for any extension of k in k̄).

Remark 13.12. Note that (a0 : . . . : an) ∈ Pn(L) does not necessarily imply that all ai lie
in L, it simply means that there exists some λ ∈ k̄× for which all λai lie in L. However we
do have ai/aj ∈ L for all 0 ≤ i, j ≤ n.

The absolute Galois group Gk acts on Pn via

(a0 : . . . : an)σ = (aσ0 : . . . : aσn).

This action is well defined, since (λP )σ = λσP σ ∼ P σ for any λ ∈ k̄× and P ∈ An+1 −{0}.
We then have

Pn(k) = (Pn)Gk .

13.3 Homogeneous polynomials

Definition 13.13. A polynomial f ∈ k̄[x0, . . . , xn] is homogenous of degree d if

f(λx0, . . . , λxn) = λdf(x0, . . . , xn)

for all λ ∈ k̄. Equivalently, every monomial in f has total degree d. We say that f is
homogeneous if it is homogeneous of some degree.

Fix an integer i ∈ [0, n]. Given any polynomial f ∈ k̄[x0, . . . , xi−1, xi+1, . . . , xn] in n
variables, let d be the total degree of f and define the homegenization of f (with respect
to xi) to be the polynomial

F (x0, . . . , xn) = xdi f

(
x0
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
.



Conversely, given any homogenous polynomial F ∈ k̄[x0, . . . , xn], the polynomial

f(x0, . . . , xi−1, xi+1, . . .) = f(x0, . . . , xi−1, 1, xi+1, . . . , xn)

is the dehomegenization of F (with respect to xi).
Let P = (a0 : . . . : an) be a point in Pn and let and f be a homogeneous polynomial in

k̄[x0, . . . , xn]. The value f(a0, . . . , an) will depend, in general, on our choice of representative
(a0, . . . , an) for P . However,

f(a0, . . . , an) = 0 ⇐⇒ f(λa0, . . . , λan) = 0 for all λ ∈ k̄×.

Thus it makes sense to write f(P ) = 0 (or f(P ) 6= 0), and the zero locus of a homogeneous
polynomial is a well-defined subset of Pn.

13.3.1 Affine covering of projective space

For 0 ≤ i ≤ n, the zero locus of the homogeneous polynomial xi is the hyperplane

Hi = {(a0 : . . . : ai−1 : 0 : ai+1 : . . . : an) ∈ Pn},

which corresponds to a copy of Pn−1 embedded in Pn.

Definition 13.14. The complement of Hi in Pn is the affine patch (or affine chart)

Ui = {(a0 : . . . : ai−1 : 1 : ai+1 : . . . : an) ∈ Pn},

which corresponds to a copy of An embedded in Pn (note that fixing ai = 1 fixes a choices
of representative for the projective point (a0 : . . . : ai−1 : 1 : ai+1 : . . . : an)).

If we pick a hyperplane, say H0, we can partition Pn as

Pn = U0 tH0 ' An t Pn−1.

We can now apply the same procedure to H0 ' Pn−1, and repeating this yields

Pn ' An t An−1 t · · · t A1 t P0,

where the final P0 corresponds a single projective point in Pn.
Alternatively, we can view Pn as the union of n + 1 (overlapping) affine patches, each

corresponding to a copy of An embedded in Pn. Note that every projective point P lies in
at least one affine patch.

Remark 13.15. Just as a manifold is locally defined in terms of an atlas of overlapping
charts (each of which maps the neighborhood of a point to an open set in Euclidean space),
we can view Pn as being locally defined in terms of its overlapping affine patches, viewing
each as mapping a neighborhood of Pn to An (this viewpoint can be made quite rigorous,
but we will not do so here).



13.4 Projective varieties

For any set S of polynomials in k̄[x0, . . . , xn] we define the (projective) algebraic set

ZS = {P ∈ Pn : f(P ) = 0 for all homogeneous f ∈ S}.

Definition 13.16. A homogeneous ideal in k̄[x0, . . . , xn] is an ideal that is generated by a
set of homogeneous polynomials.

Note that not every polynomial in a homogeneous ideal I is homogeneous (the sum
of homogeneous polynomials of different degrees is not homogeneous), but this has no
impact on the algebraic set ZI , since our definition of ZI ignores elements of I that are not
homogeneous.

Definition 13.17. Let Z be an algebraic set in Pn, the (homogeneous) ideal of Z is the
ideal I(Z) generated by all the homogeneous polynomials in k̄[x0, . . . , xn] that vanish at
every point in Z.

We say that Z is defined over k if its ideal can be generated by homogeneous polynomials
in k[x0, . . . , xn], and write Z/k to indicate this. If Z is defined over k the set of k-rational
points on Z is

Z(k) = Z ∩ Pn(k) = ZGk ,

and similarly for any extension of k in k̄.
As with affine varieties, we say that an algebraic set in Pn is irreducible if it is nonempty

and not the union of two smaller algebraic sets in Pn.

Definition 13.18. A (projective) variety is an irreducible algebraic set in Pn.

As you will show on the problem set, an algebraic set Z ⊆ Pn is irreducible if and only
if I(Z) is prime. One can then define the coordinate ring k[V ] and function field k(V ) of
a projective variety exactly as in the affine case. Here we take a different approach using
affine patches, which yields the same result.

Definition 13.19. Let V be a projective variety with homogeneous ideal I = (f1, . . . , fm).
Let Ii be the ideal generated by the dehomegenizations of f1, . . . , fm at xi. Then Ii is a
prime ideal (since I is) and the ith affine part of V is the affine variety Vi = V ∩ Ui whose
ideal is Ii. We can then write V =

⋃
i Vi as the union of its affine parts.

Definition 13.20. The dimension of a projective variety V is the maximum of the dimen-
sions of its affine parts, and V is smooth if and only if all its affine parts are.

Finally, we define the coordinate ring k[V ] of a projective variety V/k to be the coor-
dinate ring of any of its nonempty affine parts (we will prove below that it doesn’t matter
which one we pick), and the function field k(V ) of V is the fraction field of its coordinate
ring, and similarly for any extension of k in k̄.

13.5 Projective closure

Definition 13.21. If Z ⊆ An is any affine algebraic set, we can embed it in Pn by identifying
An with the affine patch U0 of Pn; we write Z ⊆ An ⊂ Pn to indicate this embedding. The
projective closure of Z in Pn, denoted Z, is the projective algebraic set defined by the ideal
generated by all the homogenizations (with respect to x0) of all the polynomials in I(Z).



When the ideal of an algebraic set Z ⊆ An is principal, say I(Z) = (f), then I(Z)
is generated by the homogenization of f . But in general the homegenizations of a set of
generators for I(Z) do not generate I(Z), as shown by the following example.

Example 13.22. Consider the twisted cubic C = {(t, t2, t3) : t ∈ k̄} ⊆ A3 ⊂ P3. It is the
zero locus of the ideal

(x2 − y, x3 − z)

in k̄[x, y, z], hence an algebraic set, in fact, an affine variety of dimension 1 (an affine curve).
To see this note that k̄[C] = k̄[x, y, z]/I(C) ' k̄[x] is obviously an integral domain, so I(C)
is prime, and the function field k̄(C) ' k̄(x) has transcendence degree 1.

If we homogenize the generators of I(C) by introducing a new variable w, we get the
homogeneous ideal I = (x2 − wy, x3 − w2z). The zero locus of this ideal in P3 is

{(1 : t : t2 : t3) : t ∈ k̄} ∪ {(0 : 0 : y : z) : y, z ∈ k̄},

which ought to strike you as a bit too large to be the projective closure of C; indeed, the
homogeneous polynomial y2 − xz is not in I even though y2 − x is in I(C), so this cannot
be C. But if we instead consider the homogeneous ideal

(x2 − wy, xy − wz, y2 − xz),

we see that its zero locus is

{(1 : t : t2 : t3) : t ∈ k̄} ∪ {(0 : 0 : 0 : 1)},

and we claim this is C. There are many ways to prove this, but here is completely elementary
argument: Suppose that f ∈ k̄[w, x, y, z] is homogeneous of degree d, with C in its zero
locus. Then the polynomial g(t) = f(1, t, t2, t3) must be the zero polynomial (here we use
that k̄ is infinite). If f(0, 0, 0, 1) 6= 0, then f must contain a term of the form czd with
c ∈ k̄×. But then g(t) = ct3d + h(t) with deg h ≤ 3(d− 1) + 2 = 3d− 1 < 3d, which means
that g cannot be the zero polynomial, a contradiction. The claim follows.

Theorem 13.23. If V ∈ An ⊂ Pn is an affine variety then its projective closure V is a
projective variety, and V = V ∩ An is an affine part of V .

Proof. For any polynomial f ∈ k̄[x1, . . . , xn], let f ∈ k̄[x0, x1, . . . , xn] denote its homoge-
nization with respect to x0. For any f ∈ k̄[x1, . . . , xn] and any point P ∈ An, we have
f(P ) = 0 if and only if f(P ) = 0, where P = (1 : a1 : . . . : an) is the projective closure of P
(viewing points as singleton algebraic sets). It follows that V = V ∩ An.

To show that V is a projective variety, we just need to show that it is irreducible,
equivalently (by Problem Set 6), that its ideal is prime. So let fg ∈ I(V ). Then fg vanishes
on V , hence it vanishes on V , as does the dehomegenization f(1, x1, . . . , xn)g(1, x1, . . . , xn)
But I(V ) is prime (since V is a variety), so either f(1, x1, . . . , xn) of g(1, x1, . . . , xn) lies in
I(V ), and therefore one of f and g lies in I(V ). Thus I(V ) is prime.

Theorem 13.24. Let V be a projective variety and let Vi be any of its nonempty affine
parts. Then Vi is an affine variety and V is its projective closure.

Proof. Without loss of generality we assume i = 0 and use the notation introduced in the
proof above, identifying An with U0. As above, for any f ∈ k̄[x1, . . . , xn] and any point
P ∈ An, we have f(P ) = 0 if and only if f(P ) = 0. It follows that V0 is an algebraic set



defined by the ideal generated by the dehomegenization of all the homogeneous polynomials
in I(V ), and therefore V = V0.

To show that V0 is an affine variety, we just need to check that I(V0) is a prime ideal.
So let fg ∈ I(V0). Then fg ∈ I(V ) and therefore either f or g is in I(V ) (since I(V ) is
prime), and then either f or g must lie in I(V0). Thus I(V0) is prime.

Remark 13.25. Theorem 13.23 is still true if “variety” is replaced by “algebraic set”, but
Theorem 13.24 is not.

Corollary 13.26. The dimension, coordinate ring, and function field of an affine variety
are equal to those of its projective closure. The dimension, coordinate ring, and function
field of a projective variety are equal to those of each of its nonempty affine parts.

Remark 13.27. One can define the function field of a projective variety V directly in
terms of its homogeneous ideal I(V ) rather than identifying it with the function field
of its nonempty affine pieces (all of which are isomorphic), but some care is required.
The function field k̄(V ) is not the fraction field of k̄[x0, . . . , xn]/I(V ), it is the subfield
of k̄[x0, . . . , xn]/I(V ) consisting of all fractions g/h where g and h are both homogeneous
polynomials (modulo I(V )) of the same degree, with h 6= 0. This restriction is necessary
in order for us to sensibly think of elements of k̄(V ) as functions from V to k̄. In order to
evaluate a function f(x0, . . . , xn) at a projective point P = (a0 : . . . : an) in a well-defined
way we must require that

f(λa0, . . . , λan) = f(a0, . . . , an)

for any λ ∈ k̄×. If f = g/h with g and h homogeneous of degree d, then

f(λa0, . . . , λan) =
g(λa0, . . . , λan)

h(λa0, . . . , λan)
=
λdg(a0, . . . , an)

λdh(a0, . . . , an)
=
g(a0, . . . , an)

h(a0, . . . , an)
= f(a0, . . . , an),

as required. With this definition the function field k̄(V ) is isomorphic to the function field
of each of its nonempty affine parts.
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