In this lecture we lay the groundwork needed to prove the Hasse-Minkowski theorem for \mathbb{Q} , which states that a quadratic form over \mathbb{Q} represents 0 if and only if it represents 0 over every completion of \mathbb{Q} (as proved by Minkowski). The statement still holds if \mathbb{Q} is replaced by any number field (as proved by Hasse), but we will restrict our attention to \mathbb{Q} .

Unless otherwise indicated, we use p througout to denote any prime of \mathbb{Q} , including the archimedean prime $p = \infty$. We begin by defining the Hilbert symbol for p.

10.1 The Hilbert symbol

Definition 10.1. For $a, b \in \mathbb{Q}_p^{\times}$ the Hilbert symbol $(a, b)_p$ is defined by

$$(a,b)_p = \begin{cases} 1 & ax^2 + by^2 = 1 \text{ has a solution in } \mathbb{Q}_p, \\ -1 & \text{otherwise.} \end{cases}$$

It is clear from the definition that the Hilbert symbol is symmetric, and that it only depends on the images of a and b in $\mathbb{Q}_p^{\times}/\mathbb{Q}_p^{\times 2}$ (their square classes). We note that

$$\mathbb{Q}_p^{\times}/\mathbb{Q}_p^{\times 2} \simeq \begin{cases} \simeq \mathbb{Z}/2\mathbb{Z} & \text{if } p = \infty, \\ \simeq (\mathbb{Z}/2\mathbb{Z})^2 & \text{if } p \text{ is odd,} \\ \simeq (\mathbb{Z}/2\mathbb{Z})^3 & \text{if } p = 2. \end{cases}$$

The case $p = \infty$ is clear, since $\mathbb{R}^{\times} = \mathbb{Q}_{\infty}^{\times}$ has just two square classes (positive and negative numbers), and the cases with $p < \infty$ were proved in Problem Set 4. Thus the Hilbert symbol can be viewed as a map $(\mathbb{Q}^{\times}/\mathbb{Q}^{\times 2}) \times (\mathbb{Q}^{\times}/\mathbb{Q}^{\times 2}) \rightarrow \{\pm 1\}$ of finite sets.

We say that a solution (x_0, \ldots, x_n) to a homogeneous polynomial equation over \mathbb{Q}_p is *primitive* if all of its elements lie in \mathbb{Z}_p and at least one lies in \mathbb{Z}_p^{\times} . The following lemma gives several equivalent definitions of the Hilbert symbol.

Lemma 10.2. For any $a, b \in \mathbb{Q}_p^{\times}$, the following are equivalent:

- (i) $(a,b)_p = 1$.
- (ii) The quadratic form $z^2 ax^2 by^2$ represents 0.
- (iii) The equation $ax^2 + by^2 = z^2$ has a primitive solution.
- (iv) $a \in \mathbb{Q}_p$ is the norm of an element in $\mathbb{Q}_p(\sqrt{b})$.

Proof. (i) \Rightarrow (ii) is immediate (let z = 1). The reverse implication is clear if $z^2 - ax^2 - by^2 = 0$ represents 0 with z nonzero (divide by z^2), and otherwise the non-degenerate quadratic form $ax^2 + by^2$ represents 0, hence it represents every element of \mathbb{Q}_p including 1, so (ii) \Rightarrow (i).

To show (ii) \Rightarrow (iii), multiply through by p^r , for a suitable integer r, and rearrange terms. The reverse implication (iii) \Rightarrow (ii) is immediate.

If b is square then $\mathbb{Q}_p(\sqrt{b}) = \mathbb{Q}_p$ and N(a) = a so (iv) holds, and the form $z^2 - by^2$ represents 0, hence every element of \mathbb{Q}_p including ax_0^2 for any x_0 , so (ii) holds. If b is not square then $N(z+y\sqrt{b}) = z^2 - by^2$. If a is a norm in $\mathbb{Q}(\sqrt{b})$ then $z^2 - ax^2 - by^2$ represents 0 (set x = 1), and if $z^2 - ax^2 - by^2$ represents 0 then dividing by x^2 and adding a to both sides shows that a is a norm. So (ii) \Leftrightarrow (iv).

Corollary 10.3. For all $a, b, c \in \mathbb{Q}_p^{\times}$, the following hold:

- (i) $(1, c)_p = 1$.
- (ii) $(-c, c)_p = 1$.
- (iii) $(a,c)_p = 1 \implies (a,c)_p (b,c)_p = (ab,c)_p.$
- (iv) $(c,c)_p = (-1,c)_p$.

Proof. Let N denote the norm map from $\mathbb{Q}_p(\sqrt{c})$ to \mathbb{Q}_p . For (i) we have N(1) = 1. For (ii), -c = N(-c) for $c \in \mathbb{Q}^{\times 2}$ and $-c = N(\sqrt{c})$ otherwise. For (iii), If a and b are both norms in $\mathbb{Q}(\sqrt{c})$, then so is ab, by the multiplicativity of the norm map; conversely, if a and ab are both norms, so is 1/a, as is (1/a)ab = b. Thus if $(a, c)_p = 1$, then $(b, c)_p = 1$ if and only if $(ab, c)_p = 1$, which implies $(a, c)_p(b, c)_p = (ab, c)_p$. For (iv), $(-c, c)_p = 1$ by (ii), so by (iii) we have $(c, c)_p = (-c, c)_p(c, c)_p = (-c^2, c)_p = (-1, c)_p$.

Theorem 10.4. $(a,b)_{\infty} = -1$ if and only if a, b < 0

Proof. We can assume $a, b \in \{\pm 1\}$, since $\{\pm 1\}$ is a complete set of representatives for $\mathbb{R}^{\times}/\mathbb{R}^{\times 2}$. If either a or b is 1 then $(a, b)_{\infty} = 1$, by Corollary 10.3.(i), and $(-1, -1)_{\infty} = -1$, since -1 is not a norm in $\mathbb{C} = \mathbb{Q}_{\infty}(\sqrt{-1})$.

Lemma 10.5. If p is odd, then $(u, v)_p = 1$ for all $u, v \in \mathbb{Z}_p^{\times}$.

Proof. Recall from Lecture 3 (or the Chevalley-Warning theorem on problem set 2) that every plane projective conic over \mathbb{F}_p has a rational point, so we can find a non-trivial solution to $z^2 - ux^2 - vy^2 = 0$ modulo p. If we then fix two of x, y, z so that the third is nonzero, Hensel's lemma gives a solution over \mathbb{Z}_p .

Remark 10.6. Lemma 10.5 does not hold for p = 2; for example, $(3, 3)_2 = -1$.

Theorem 10.7. Let p be an odd prime, and write $a, b \in \mathbb{Q}_p^{\times}$ as $a = p^{\alpha}u$ and $b = p^{\beta}v$, with $\alpha, \beta \in \mathbb{Z}$ and $u, v \in \mathbb{Z}_p^{\times}$. Then

$$(a,b)_p = (-1)^{\alpha\beta\frac{p-1}{2}} \left(\frac{u}{p}\right)^{\beta} \left(\frac{v}{p}\right)^{\alpha},$$

where $\left(\frac{x}{p}\right)$ denotes the Legendre symbol $\left(\frac{x \mod p}{p}\right)$.

Proof. Since $(a, b)_p$ depends only on the square classes of a and b, we assume $\alpha, \beta \in \{0, 1\}$.

Case $\alpha = 0, \beta = 0$: We have $(u, v)_p = 1$, by Lemma 10.5, which agrees with the formula. Case $\alpha = 1, \beta = 0$: We need to show that $(pu, v)_p = (\frac{v}{p})$. Since $(u^{-1}, v)_p = 1$, we have $(pu, v)_p = (pu, v)_p (u^{-1}, v)_p = (p, v)_p$, by Corollary 10.3.(iii). If v is a square then we have $(p, v)_p = (p, 1)_p = (1, p)_p = 1 = (\frac{v}{p})$. If v is not a square then $z^2 - px^2 - vy^2 = 0$ has no non-trivial solutions modulo p, hence no primitive solutions. This implies $(p, v)_p = -1 = (\frac{v}{p})$.

Case $\alpha = 1, \beta = 1$: We must show $(pu, pv)_p = (-1)^{\frac{p-1}{2}} \left(\frac{u}{p}\right) \left(\frac{v}{p}\right)$. Applying Corollary 10.3 we have

$$(pu, pv)_p = (pu, pv)_p (-pv, pv)_p = (-p^2uv, pv)_p = (-uv, pv)_p = (pv, -uv)_p$$

Applying the formula in the case $\alpha = 1, \beta = 0$ already proved, we have

$$(pv, -uv)_p = \left(\frac{-uv}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{u}{p}\right) \left(\frac{v}{p}\right) = (-1)^{\frac{p-1}{2}} \left(\frac{u}{p}\right) \left(\frac{v}{p}\right).$$

Lemma 10.8. Let $u, v \in \mathbb{Z}_2^{\times}$. The equations $z^2 - ux^2 - vy^2 = 0$ and $z^2 - 2ux^2 - vy^2 = 0$ have primitive solutions over \mathbb{Z}_2 if and only if they have primitive solutions modulo 8.

Proof. Without loss of generality we can assume that u and v are odd integers, since every square class in $\mathbb{Z}_2^{\times}/\mathbb{Z}_2^{\times 2}$ is represented by an odd integer (in fact one can assume $u, v \in \{\pm 1, \pm 5\}$) The necessity of having a primitive solution modulo 8 is clear. To prove sufficiency we apply the strong form of Hensel's lemma proved in Problem Set 4. In both cases, if we have a non-trivial solution (x_0, y_0, z_0) modulo 8 we can fix two of x_0, y_0, z_0 to obtain a quadratic polynomial f(w) over \mathbb{Z}_2 and $w_0 \in \mathbb{Z}_2^{\times}$ that satisfies $v_2(f(w_0)) = 3 > 2 = 2v_2(f'(w_0))$. In the case of the second equation, note that a primitive solution (x_0, y_0, z_0) modulo 8 must have y_0 or z_0 odd; if not, then z_0^2 and vy_0^2 , and therefore $2ux_0^2$, are divisible by 4, but this means x_0 is also divisible by 2, which contradicts the primitivity of (x_0, y_0, z_0) . Lifting w_0 to a root of f(w) over \mathbb{Z}_2 yields a solution to the original equation.

Theorem 10.9. Write $a, b \in \mathbb{Q}_2^{\times}$ as $a = 2^{\alpha}u$ and $b = 2^{\beta}v$ with $\alpha, \beta \in \mathbb{Z}$ and $u, v \in \mathbb{Z}_2^{\times}$. Then

$$(a,b)_2 = (-1)^{\epsilon(u)\epsilon(v) + \alpha\omega(v) + \beta\omega(u)}.$$

where $\epsilon(u)$ and $\omega(u)$ denote the images in $\mathbb{Z}/2\mathbb{Z}$ of (u-1)/2 and $(u^2-1)/8$, respectively.

Proof. Since $(a, b)_2$ only depends on the square classes of a and b, It suffices to verify the formula for $a, b \in S$, where $S = \{\pm 1, \pm 3, \pm 2, \pm 6\}$ is a complete set of representatives for $\mathbb{Q}_2^{\times}/\mathbb{Q}_2^{\times 2}$. As in the proof of Theorem 10.7, we can use $(pu, pv)_2 = (pv, -uv)_2$ to reduce to the case where one of a, b lies in \mathbb{Z}_p^{\times} . By Lemma 10.8, to compute $(a, b)_2$ with one of a, b in \mathbb{Z}_2^{\times} , it suffices to check for primitive solutions to $z^2 - ax^2 - by^2 = 0$ modulo 8, which reduces the problem to a finite verification which performed by Sage worksheet.

We now note the following corollary to Theorems 10.4, 10.7, and 10.9.

Corollary 10.10. The Hilbert symbol $(a, b)_p$ is a nondegenerate bilinear map. This means that for all $a, b, c \in \mathbb{Q}_p^{\times}$ we have

$$(a, c)_p(b, c)_p = (ab, c)$$
 and $(a, b)_p(a, c)_p = (a, bc)_p$,

and that for every non-square c we have $(b, c)_p = -1$ for some b.

Proof. Both statements are clear for $p = \infty$ (there are only 2 square classes and 4 combinations to check). For p odd, let $c = p^{\gamma}w$ and fix $\varepsilon = (-1)^{\gamma \frac{p-1}{2}}$. Then for $a = p^{\alpha}u$ and $b = p^{\beta}v$, we have

$$(a,c)_p(b,c)_p = \varepsilon^{\alpha} \left(\frac{u}{p}\right)^{\gamma} \left(\frac{w}{p}\right)^{\alpha} \varepsilon^{\beta} \left(\frac{v}{p}\right)^{\gamma} \left(\frac{w}{p}\right)^{\beta}$$
$$= \varepsilon^{\alpha+\beta} \left(\frac{uv}{p}\right)^{\gamma} \left(\frac{w}{p}\right)^{\alpha+\beta}$$
$$= (ab,c)_p.$$

To verify non-degeneracy, we note that if c is not square than either $\gamma = 1$ or $\left(\frac{w}{p}\right) = -1$. If $\gamma = 1$ we can choose b = v with $\left(\frac{v}{p}\right) = -1$, so that $(b, c)_p = \left(\frac{v}{p}\right)^{\gamma} = -1$. If $\gamma = 0$, then $\varepsilon = 1$ and $\left(\frac{w}{p}\right) = -1$, so with b = p we have $(b, c)_p = \left(\frac{w}{p}\right) = -1$.

For p = 2, we have

$$(a,c)_{2}(b,c)_{2} = (-1)^{\epsilon(u)\epsilon(w) + \alpha\omega(w) + \gamma\omega(u)} (-1)^{\epsilon(v)\epsilon(w) + \beta\omega(w) + \gamma\omega(v)}$$
$$= (-1)^{(\epsilon(u) + \epsilon(v))\epsilon(w) + (\alpha + \beta)\omega(w) + \gamma(\omega(u) + \omega(v))}$$
$$= (-1)^{\epsilon(uv)\epsilon(w) + (\alpha + \beta)\omega(w) + \gamma\omega(uv)}$$
$$= (ab,c)_{2},$$

where we have used the fact that ϵ and ω are group homomorphisms from \mathbb{Z}_2^{\times} to $\mathbb{Z}/2\mathbb{Z}$. To see this, note that the image of $\epsilon^{-1}(0)$ in $(\mathbb{Z}/4\mathbb{Z})^{\times}$ is $\{1\}$, a subgroup of index 2, and the image of $\omega^{-1}(0)$ in $(\mathbb{Z}/8\mathbb{Z})^{\times}$ is $\{\pm 1\}$, which is again a subgroup of index 2.

We now verify non-degeneracy for p = 2. If c is not square then either $\gamma = 1$, or one of $\epsilon(w)$ and $\omega(w)$ is nonzero. If $\gamma = 1$, then $(5, c)_2 = -1$. If $\gamma = 0$ and $\omega(w) = 1$, then $(2, c)_2 = -1$. If $\gamma = 0$ and $\omega(w) = 0$, then we must have $\epsilon(w) = 1$, so $(-1, c)_2 = -1$.

We now prove Hilbert's reciprocity law, which may be regarded as a generalization of quadratic reciprocity.

Theorem 10.11. Let $a, b \in \mathbb{Q}^{\times}$. Then $(a, b)_p = 1$ for all but finitely many primes p and

$$\prod_{p} (a,b)_p = 1$$

Proof. We can assume without loss of generality that $a, b \in \mathbb{Z}$, since multiplying each of a and b by the square of its denominator will not change $(a, b)_p$ for any p. The theorem holds if either a or b is 1, and by the bilinearity of the Hilbert symbol, we can assume that

$$a, b \in \{-1\} \cup \{q \in \mathbb{Z}_{>0} : q \text{ is prime}\}.$$

The first statement of the theorem is clear, since $a, b \in \mathbb{Z}_p^{\times}$ for $p < \infty$ not equal to a or b, and $(u, v)_p = 1$ for all $u, v \in \mathbb{Z}_p^{\times}$ when p is odd, by Lemma 10.5. To verify the product formula, we consider 5 cases.

Case 1: a = b = -1. Then $(-1, -1)_{\infty} = (-1, -1)_2 = -1$ and $(-1, -1)_p = 1$ for p odd.

Case 2: a = -1 and b is prime. If b = 2 then (1,1) is a solution to $-x^2 + 2y^2 = 1$ over \mathbb{Q}_p for all p, thus $\prod_p (-1,2) = 1$. If b is odd, then $(-1,b)_p = 1$ for $p \notin \{2,b\}$, while $(-1,b)_2 = (-1)^{\epsilon(b)}$ and $(-1,b)_b = (\frac{-1}{b})$, both of which are equal to $(-1)^{(b-1)/2}$.

Case 3: a and b are the same prime. Then by Corollary 10.3, $(b,b)_p = (-1,b)_p$ for all primes p, and we are in case 2.

Case 4: a = 2 and b is an odd prime. Then $(2,b)_p = 1$ for all $p \notin \{2,b\}$, while $(2,b)_2 = (-1)^{\omega(b)}$ and $(2,b)_b = (\frac{2}{p})$, both of which are equal to $(-1)^{(b^2-1)/8}$.

Case 5: a and b are distinct odd primes. Then $(a, b)_p = 1$ for all $p \notin \{2, a, b\}$, while

$$(a,b)_p = \begin{cases} (-1)^{\epsilon(a)\epsilon(b)} & \text{if } p = 2, \\ \left(\frac{a}{b}\right) & \text{if } p = b, \\ \left(\frac{b}{a}\right) & \text{if } p = a. \end{cases}$$

Since $\epsilon(x) = (x-1)/2 \mod 2$, we have

$$\prod_{p} (a,b)_p = (-1)^{\frac{a-1}{2}\frac{b-1}{2}} \left(\frac{a}{b}\right) \left(\frac{b}{a}\right) = 1,$$

by quadratic reciprocity.