In this lecture we lay the groundwork needed to prove the Hasse-Minkowski theorem for \mathbb{Q}, which states that a quadratic form over \mathbb{Q} represents 0 if and only if it represents 0 over every completion of \mathbb{Q} (as proved by Minkowski). The statement still holds if \mathbb{Q} is replaced by any number field (as proved by Hasse), but we will restrict our attention to \mathbb{Q}.

Unless otherwise indicated, we use p througout to denote any prime of \mathbb{Q}, including the archimedean prime $p=\infty$. We begin by defining the Hilbert symbol for p.

10.1 The Hilbert symbol

Definition 10.1. For $a, b \in \mathbb{Q}_{p}^{\times}$the Hilbert symbol $(a, b)_{p}$ is defined by

$$
(a, b)_{p}= \begin{cases}1 & a x^{2}+b y^{2}=1 \text { has a solution in } \mathbb{Q}_{p} \\ -1 & \text { otherwise }\end{cases}
$$

It is clear from the definition that the Hilbert symbol is symmetric, and that it only depends on the images of a and b in $\mathbb{Q}_{p}^{\times} / \mathbb{Q}_{p}^{\times 2}$ (their square classes). We note that

$$
\mathbb{Q}_{p}^{\times} / \mathbb{Q}_{p}^{\times 2} \simeq \begin{cases}\simeq \mathbb{Z} / 2 \mathbb{Z} & \text { if } p=\infty \\ \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2} & \text { if } p \text { is odd } \\ \simeq(\mathbb{Z} / 2 \mathbb{Z})^{3} & \text { if } p=2\end{cases}
$$

The case $p=\infty$ is clear, since $\mathbb{R}^{\times}=\mathbb{Q}_{\infty}^{\times}$has just two square classes (positive and negative numbers), and the cases with $p<\infty$ were proved in Problem Set 4. Thus the Hilbert symbol can be viewed as a map $\left(\mathbb{Q}^{\times} / \mathbb{Q}^{\times 2}\right) \times\left(\mathbb{Q}^{\times} / \mathbb{Q}^{\times 2}\right) \rightarrow\{ \pm 1\}$ of finite sets.

We say that a solution $\left(x_{0}, \ldots, x_{n}\right)$ to a homogeneous polynomial equation over \mathbb{Q}_{p} is primitive if all of its elements lie in \mathbb{Z}_{p} and at least one lies in \mathbb{Z}_{p}^{\times}. The following lemma gives several equivalent definitions of the Hilbert symbol.

Lemma 10.2. For any $a, b \in \mathbb{Q}_{p}^{\times}$, the following are equivalent:
(i) $(a, b)_{p}=1$.
(ii) The quadratic form $z^{2}-a x^{2}-b y^{2}$ represents 0 .
(iii) The equation $a x^{2}+b y^{2}=z^{2}$ has a primitive solution.
(iv) $a \in \mathbb{Q}_{p}$ is the norm of an element in $\mathbb{Q}_{p}(\sqrt{b})$.

Proof. (i) \Rightarrow (ii) is immediate (let $z=1$). The reverse implication is clear if $z^{2}-a x^{2}-b y^{2}=0$ represents 0 with z nonzero (divide by z^{2}), and otherwise the non-degenerate quadratic form $a x^{2}+b y^{2}$ represents 0 , hence it represents every element of \mathbb{Q}_{p} including 1 , so (ii) $\Rightarrow(\mathrm{i})$.

To show (ii) \Rightarrow (iii), multiply through by p^{r}, for a suitable integer r, and rearrange terms. The reverse implication $(\mathrm{iii}) \Rightarrow(\mathrm{ii})$ is immediate.

If b is square then $\mathbb{Q}_{p}(\sqrt{b})=\mathbb{Q}_{p}$ and $N(a)=a$ so (iv) holds, and the form $z^{2}-b y^{2}$ represents 0 , hence every element of \mathbb{Q}_{p} including $a x_{0}^{2}$ for any x_{0}, so (ii) holds. If b is not square then $N(z+y \sqrt{b})=z^{2}-b y^{2}$. If a is a norm in $\mathbb{Q}(\sqrt{b})$ then $z^{2}-a x^{2}-b y^{2}$ represents 0 (set $x=1$), and if $z^{2}-a x^{2}-b y^{2}$ represents 0 then dividing by x^{2} and adding a to both sides shows that a is a norm. So (ii) \Leftrightarrow (iv).

Corollary 10.3. For all $a, b, c \in \mathbb{Q}_{p}^{\times}$, the following hold:
(i) $(1, c)_{p}=1$.
(ii) $(-c, c)_{p}=1$.
(iii) $(a, c)_{p}=1 \Longrightarrow(a, c)_{p}(b, c)_{p}=(a b, c)_{p}$.
(iv) $(c, c)_{p}=(-1, c)_{p}$.

Proof. Let N denote the norm map from $\mathbb{Q}_{p}(\sqrt{c})$ to \mathbb{Q}_{p}. For (i) we have $N(1)=1$. For (ii), $-c=N(-c)$ for $c \in \mathbb{Q}^{\times 2}$ and $-c=N(\sqrt{c})$ otherwise. For (iii), If a and b are both norms in $\mathbb{Q}(\sqrt{c})$, then so is $a b$, by the multiplicativity of the norm map; conversely, if a and $a b$ are both norms, so is $1 / a$, as is $(1 / a) a b=b$. Thus if $(a, c)_{p}=1$, then $(b, c)_{p}=1$ if and only if $(a b, c)_{p}=1$, which implies $(a, c)_{p}(b, c)_{p}=(a b, c)_{p}$. For (iv), $(-c, c)_{p}=1$ by (ii), so by (iii) we have $(c, c)_{p}=(-c, c)_{p}(c, c)_{p}=\left(-c^{2}, c\right)_{p}=(-1, c)_{p}$.

Theorem 10.4. $(a, b)_{\infty}=-1$ if and only if $a, b<0$
Proof. We can assume $a, b \in\{ \pm 1\}$, since $\{ \pm 1\}$ is a complete set of representatives for $\mathbb{R}^{\times} / \mathbb{R}^{\times 2}$. If either a or b is 1 then $(a, b)_{\infty}=1$, by Corollary 10.3.(i), and $(-1,-1)_{\infty}=-1$, since -1 is not a norm in $\mathbb{C}=\mathbb{Q}_{\infty}(\sqrt{-1})$.

Lemma 10.5. If p is odd, then $(u, v)_{p}=1$ for all $u, v \in \mathbb{Z}_{p}^{\times}$.
Proof. Recall from Lecture 3 (or the Chevalley-Warning theorem on problem set 2) that every plane projective conic over \mathbb{F}_{p} has a rational point, so we can find a non-trivial solution to $z^{2}-u x^{2}-v y^{2}=0$ modulo p. If we then fix two of x, y, z so that the third is nonzero, Hensel's lemma gives a solution over \mathbb{Z}_{p}.

Remark 10.6. Lemma 10.5 does not hold for $p=2$; for example, $(3,3)_{2}=-1$.
Theorem 10.7. Let p be an odd prime, and write $a, b \in \mathbb{Q}_{p}^{\times}$as $a=p^{\alpha} u$ and $b=p^{\beta} v$, with $\alpha, \beta \in \mathbb{Z}$ and $u, v \in \mathbb{Z}_{p}^{\times}$. Then

$$
(a, b)_{p}=(-1)^{\alpha \beta \frac{p-1}{2}}\left(\frac{u}{p}\right)^{\beta}\left(\frac{v}{p}\right)^{\alpha}
$$

where $\left(\frac{x}{p}\right)$ denotes the Legendre symbol $\left(\frac{x \bmod p}{p}\right)$.
Proof. Since $(a, b)_{p}$ depends only on the square classes of a and b, we assume $\alpha, \beta \in\{0,1\}$.
Case $\alpha=0, \beta=0$: We have $(u, v)_{p}=1$, by Lemma 10.5 , which agrees with the formula.
Case $\alpha=1, \beta=0$: We need to show that $(p u, v)_{p}=\left(\frac{v}{p}\right)$. Since $\left(u^{-1}, v\right)_{p}=1$, we have $(p u, v)_{p}=(p u, v)_{p}\left(u^{-1}, v\right)_{p}=(p, v)_{p}$, by Corollary 10.3.(iii). If v is a square then we have $(p, v)_{p}=(p, 1)_{p}=(1, p)_{p}=1=\left(\frac{v}{p}\right)$. If v is not a square then $z^{2}-p x^{2}-v y^{2}=0$ has no nontrivial solutions modulo p, hence no primitive solutions. This implies $(p, v)_{p}=-1=\left(\frac{v}{p}\right)$.

Case $\alpha=1, \beta=1$: We must show $(p u, p v)_{p}=(-1)^{\frac{p-1}{2}}\left(\frac{u}{p}\right)\left(\frac{v}{p}\right)$. Applying Corollary 10.3 we have

$$
(p u, p v)_{p}=(p u, p v)_{p}(-p v, p v)_{p}=\left(-p^{2} u v, p v\right)_{p}=(-u v, p v)_{p}=(p v,-u v)_{p}
$$

Applying the formula in the case $\alpha=1, \beta=0$ already proved, we have

$$
(p v,-u v)_{p}=\left(\frac{-u v}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{u}{p}\right)\left(\frac{v}{p}\right)=(-1)^{\frac{p-1}{2}}\left(\frac{u}{p}\right)\left(\frac{v}{p}\right)
$$

Lemma 10.8. Let $u, v \in \mathbb{Z}_{2}^{\times}$. The equations $z^{2}-u x^{2}-v y^{2}=0$ and $z^{2}-2 u x^{2}-v y^{2}=0$ have primitive solutions over \mathbb{Z}_{2} if and only if they have primitive solutions modulo 8.

Proof. Without loss of generality we can assume that u and v are odd integers, since every square class in $\mathbb{Z}_{2}^{\times} / \mathbb{Z}_{2}^{\times 2}$ is represented by an odd integer (in fact one can assume $u, v \in$ $\{ \pm 1, \pm 5\})$ The necessity of having a primitive solution modulo 8 is clear. To prove sufficiency we apply the strong form of Hensel's lemma proved in Problem Set 4. In both cases, if we have a non-trivial solution $\left(x_{0}, y_{0}, z_{0}\right)$ modulo 8 we can fix two of x_{0}, y_{0}, z_{0} to obtain a quadratic polynomial $f(w)$ over \mathbb{Z}_{2} and $w_{0} \in \mathbb{Z}_{2}^{\times}$that satisfies $v_{2}\left(f\left(w_{0}\right)\right)=3>2=$ $2 v_{2}\left(f^{\prime}\left(w_{0}\right)\right)$. In the case of the second equation, note that a primitive solution $\left(x_{0}, y_{0}, z_{0}\right)$ modulo 8 must have y_{0} or z_{0} odd; if not, then z_{0}^{2} and $v y_{0}^{2}$, and therefore $2 u x_{0}^{2}$, are divisible by 4 , but this means x_{0} is also divisible by 2 , which contradicts the primitivity of (x_{0}, y_{0}, z_{0}). Lifting w_{0} to a root of $f(w)$ over \mathbb{Z}_{2} yields a solution to the original equation.

Theorem 10.9. Write $a, b \in \mathbb{Q}_{2}^{\times}$as $a=2^{\alpha} u$ and $b=2^{\beta} v$ with $\alpha, \beta \in \mathbb{Z}$ and $u, v \in \mathbb{Z}_{2}^{\times}$. Then

$$
(a, b)_{2}=(-1)^{\epsilon(u) \epsilon(v)+\alpha \omega(v)+\beta \omega(u)},
$$

where $\epsilon(u)$ and $\omega(u)$ denote the images in $\mathbb{Z} / 2 \mathbb{Z}$ of $(u-1) / 2$ and $\left(u^{2}-1\right) / 8$, respectively.
Proof. Since $(a, b)_{2}$ only depends on the square classes of a and b, It suffices to verify the formula for $a, b \in S$, where $S=\{ \pm 1, \pm 3, \pm 2, \pm 6\}$ is a complete set of representatives for $\mathbb{Q}_{2}^{\times} / \mathbb{Q}_{2}^{\times 2}$. As in the proof of Theorem 10.7, we can use $(p u, p v)_{2}=(p v,-u v)_{2}$ to reduce to the case where one of a, b lies in \mathbb{Z}_{p}^{\times}. By Lemma 10.8 , to compute $(a, b)_{2}$ with one of a, b in \mathbb{Z}_{2}^{\times}, it suffices to check for primitive solutions to $z^{2}-a x^{2}-b y^{2}=0$ modulo 8 , which reduces the problem to a finite verification which performed by Sage worksheet.

We now note the following corollary to Theorems 10.4, 10.7, and 10.9.
Corollary 10.10. The Hilbert symbol $(a, b)_{p}$ is a nondegenerate bilinear map. This means that for all $a, b, c \in \mathbb{Q}_{p}^{\times}$we have

$$
(a, c)_{p}(b, c)_{p}=(a b, c) \quad \text { and } \quad(a, b)_{p}(a, c)_{p}=(a, b c)_{p}
$$

and that for every non-square c we have $(b, c)_{p}=-1$ for some b.
Proof. Both statements are clear for $p=\infty$ (there are only 2 square classes and 4 combinations to check). For p odd, let $c=p^{\gamma} w$ and fix $\varepsilon=(-1)^{\gamma \frac{p-1}{2}}$. Then for $a=p^{\alpha} u$ and $b=p^{\beta} v$, we have

$$
\begin{aligned}
(a, c)_{p}(b, c)_{p} & =\varepsilon^{\alpha}\left(\frac{u}{p}\right)^{\gamma}\left(\frac{w}{p}\right)^{\alpha} \varepsilon^{\beta}\left(\frac{v}{p}\right)^{\gamma}\left(\frac{w}{p}\right)^{\beta} \\
& =\varepsilon^{\alpha+\beta}\left(\frac{u v}{p}\right)^{\gamma}\left(\frac{w}{p}\right)^{\alpha+\beta} \\
& =(a b, c)_{p} .
\end{aligned}
$$

To verify non-degeneracy, we note that if c is not square than either $\gamma=1$ or $\left(\frac{w}{p}\right)=-1$. If $\gamma=1$ we can choose $b=v$ with $\left(\frac{v}{p}\right)=-1$, so that $(b, c)_{p}=\left(\frac{v}{p}\right)^{\gamma}=-1$. If $\gamma=0$, then $\varepsilon=1$ and $\left(\frac{w}{p}\right)=-1$, so with $b=p$ we have $(b, c)_{p}=\left(\frac{w}{p}\right)=-1$.

For $p=2$, we have

$$
\begin{aligned}
(a, c)_{2}(b, c)_{2} & =(-1)^{\epsilon(u) \epsilon(w)+\alpha \omega(w)+\gamma \omega(u)}(-1)^{\epsilon(v) \epsilon(w)+\beta \omega(w)+\gamma \omega(v)} \\
& =(-1)^{(\epsilon(u)+\epsilon(v)) \epsilon(w)+(\alpha+\beta) \omega(w)+\gamma(\omega(u)+\omega(v))} \\
& =(-1)^{\epsilon(u v) \epsilon(w)+(\alpha+\beta) \omega(w)+\gamma \omega(u v)} \\
& =(a b, c)_{2},
\end{aligned}
$$

where we have used the fact that ϵ and ω are group homomorphisms from \mathbb{Z}_{2}^{\times}to $\mathbb{Z} / 2 \mathbb{Z}$. To see this, note that the image of $\epsilon^{-1}(0)$ in $(\mathbb{Z} / 4 \mathbb{Z})^{\times}$is $\{1\}$, a subgroup of index 2 , and the image of $\omega^{-1}(0)$ in $(\mathbb{Z} / 8 \mathbb{Z})^{\times}$is $\{ \pm 1\}$, which is again a subgroup of index 2 .

We now verify non-degeneracy for $p=2$. If c is not square then either $\gamma=1$, or one of $\epsilon(w)$ and $\omega(w)$ is nonzero. If $\gamma=1$, then $(5, c)_{2}=-1$. If $\gamma=0$ and $\omega(w)=1$, then $(2, c)_{2}=-1$. If $\gamma=0$ and $\omega(w)=0$, then we must have $\epsilon(w)=1$, so $(-1, c)_{2}=-1$.

We now prove Hilbert's reciprocity law, which may be regarded as a generalization of quadratic reciprocity.

Theorem 10.11. Let $a, b \in \mathbb{Q}^{\times}$. Then $(a, b)_{p}=1$ for all but finitely many primes p and

$$
\prod_{p}(a, b)_{p}=1 .
$$

Proof. We can assume without loss of generality that $a, b \in \mathbb{Z}$, since multiplying each of a and b by the square of its denominator will not change $(a, b)_{p}$ for any p. The theorem holds if either a or b is 1 , and by the bilinearity of the Hilbert symbol, we can assume that

$$
a, b \in\{-1\} \cup\left\{q \in \mathbb{Z}_{>0}: q \text { is prime }\right\} .
$$

The first statement of the theorem is clear, since $a, b \in \mathbb{Z}_{p}^{\times}$for $p<\infty$ not equal to a or b, and $(u, v)_{p}=1$ for all $u, v \in \mathbb{Z}_{p}^{\times}$when p is odd, by Lemma 10.5 . To verify the product formula, we consider 5 cases.

Case 1: $a=b=-1$. Then $(-1,-1)_{\infty}=(-1,-1)_{2}=-1$ and $(-1,-1)_{p}=1$ for p odd.
Case 2: $a=-1$ and b is prime. If $b=2$ then $(1,1)$ is a solution to $-x^{2}+2 y^{2}=1$ over \mathbb{Q}_{p} for all p, thus $\prod_{p}(-1,2)=1$. If b is odd, then $(-1, b)_{p}=1$ for $p \notin\{2, b\}$, while $(-1, b)_{2}=(-1)^{\epsilon(b)}$ and $(-1, b)_{b}=\left(\frac{-1}{b}\right)$, both of which are equal to $(-1)^{(b-1) / 2}$.

Case 3: a and b are the same prime. Then by Corollary $10.3,(b, b)_{p}=(-1, b)_{p}$ for all primes p, and we are in case 2 .

Case 4: $a=2$ and b is an odd prime. Then $(2, b)_{p}=1$ for all $p \notin\{2, b\}$, while $(2, b)_{2}=(-1)^{\omega(b)}$ and $(2, b)_{b}=\left(\frac{2}{p}\right)$, both of which are equal to $(-1)^{\left(b^{2}-1\right) / 8}$.

Case 5: a and b are distinct odd primes. Then $(a, b)_{p}=1$ for all $p \notin\{2, a, b\}$, while

$$
(a, b)_{p}= \begin{cases}(-1)^{\epsilon(a) \epsilon(b)} & \text { if } p=2, \\ \left(\frac{a}{b}\right) & \text { if } p=b, \\ \left(\frac{b}{a}\right) & \text { if } p=a .\end{cases}
$$

Since $\epsilon(x)=(x-1) / 2 \bmod 2$, we have

$$
\prod_{p}(a, b)_{p}=(-1)^{\frac{a-1}{2} \frac{b-1}{2}}\left(\frac{a}{b}\right)\left(\frac{b}{a}\right)=1,
$$

by quadratic reciprocity.

