1 Finite dimensional representations of semisimple Lie algebras

Let \(g \) be a finite dimensional semisimple Lie algebra, over an algebraically closed field \(\mathbb{F} \) of characteristic 0. Choose a Cartan subalgebra \(h \subset g \) and a subset of positive roots \(\Delta_+ \subset h^* \). Let

\[
 g = \mathfrak{N}_- \oplus h \oplus \mathfrak{N}_+.
\]

be the triangular decomposition. Recall that \(\mathfrak{N}_+ \) (resp. \(\mathfrak{N}_- \)) is generated by the vectors \(E_1, \ldots, E_r \) (resp. \(F_1, \ldots, F_r \)) or, equivalently, that \(\mathfrak{N}_\pm = \oplus_{\alpha \in \Delta_+} g_{\pm \alpha} \). Let us define

\[
 b = h \oplus \mathfrak{N}_+.
\]

\(b \) is called a Borel subalgebra. Note that

\[
 [b, b] = \mathfrak{N}_+.
\]

Indeed, \([b, b] \subset \mathfrak{N}_+\), follows immediately by the definition of \(b \), while \([b, b] \supset \mathfrak{N}_+\) follows from the fact that \([h, g_\alpha] \neq 0\), if \(\alpha(h) \neq 0 \) and such \(h \) always exists, since \(\alpha \neq 0 \). As \(\mathfrak{N}_+ \) is a nilpotent subalgebra, we see that \(b \) is a solvable subalgebra. Moreover, \(b \) is a maximal solvable subalgebra (and all such subalgebras are conjugated).

Since by Weyl’s complete reducibility theorem, every finite dimensional \(g \)-module is a direct sum of irreducible ones, it suffices to study finite dimensional, irreducible \(g \)-modules.

Proposition 1.1. Let \(V \) be a finite dimensional, irreducible \(g \)-module. Then \(\exists \Lambda \in h^* \) and \(0 \neq v_\Lambda \in V \) s.t. the following three properties hold:

\[
 \begin{align*}
 &i) \quad hv_\Lambda = \Lambda(h)v_\Lambda, \forall h \in h^*; \\
 &ii) \quad \mathfrak{N}_+v_\Lambda = 0; \\
 &iii) \quad \mathfrak{U}(g)v_\Lambda = V.
 \end{align*}
\]

It follows immediately that property \(iii) \) is equivalent to the following property

\[
 iii)' \quad \mathfrak{U}(\mathfrak{N}_-)
\]

Proof. By Lie’s Theorem, \(b \) has an eigenvector \(0 \neq v \in V \) so that \(\forall b \in b, \tilde{\Lambda}(b)v, \) for some \(\tilde{\Lambda} \in h^* \). But, by the property illustrated in (1), we see that \(\tilde{\Lambda}(\mathfrak{N}_+) = 0 \), since \(\Lambda([b_1, b_2]) = \Lambda(b_1)\Lambda(b_2) - \Lambda(b_2)\Lambda(b_1) \). Let \(\Lambda = \tilde{\Lambda}|_h \in h^* \), then \(i) \) and \(ii) \) hold and \(iii) \) follows from the irreducibility of the \(g \)-module \(V \), since \(\mathfrak{U}(g)v_\Lambda \) (we are identifying \(v_\Lambda = v \)) is a non-zero submodule of \(V \) (it contains \(v_\Lambda \) since \(Id \in \mathfrak{U}(g) \)).

Definition 1.1. A \(\mathfrak{g} \)-module \(V \) (not necessarily finite dimensional) with the property that \(\exists \Lambda \in \mathfrak{h}^* \) and \(0 \neq v_\Lambda \in V \) such that properties i), ii), iii) from the previous proposition hold, is called highest weight module with highest weight \(\Lambda \) and \(v_\Lambda \) is called a highest weight vector.

Let \(\Delta_+ = \{ \beta_1, \ldots, \beta_s \} \) be the set of positive roots for \(\mathfrak{g} \). Choose root vectors \(E_{\beta_i} \in \mathfrak{N}_+ \), \(E_{-\beta_i} \in \mathfrak{N}_- \) and let \(h_1, \ldots, H_n \) be a basis for \(\mathfrak{h} \), then vectors \(E_{\beta_i}, E_{-\beta_i} \) \((i = 1, \ldots, N)\), \(h_j \) \((j = 1, \ldots, n)\) form a basis for \(\mathfrak{g} \). By PBW theorem, monomials of the form

\[
E_{-\beta_1}^{m_1} \cdots E_{-\beta_s}^{m_s} H_1^{s_1} \cdots H_n^{s_n} E_{\beta_1}^{n_1} \cdots E_{\beta_s}^{n_s}, \quad m_i, n_j, s_k \in \mathbb{Z}_+.
\]

In particular

Definition 1.2. For an arbitrary \(\mathfrak{g} \)-module \(V \), let \(h \) be an element of \(\mathfrak{h}^* \), we denote \(V_\lambda = \{ v \in V \mid hv = \lambda(h)v, \forall h \in \mathfrak{h} \} \) the weight space for \(\mathfrak{h} \) attached to \(\lambda \). A non-zero vector \(v \in V_\lambda \) is called singular of weight \(\lambda \) if \(\mathfrak{N}_+ v = 0 \).

Example 1.1. Any \(\Lambda \in \mathfrak{h}^* \) is a singular weight of a highest weight \(\mathfrak{g} \)-module with highest weight \(\Lambda \).

Notation 1.1. Given \(\Lambda \in \mathfrak{h}^* \), let \(D(\Lambda) = \{ \Lambda - \sum_{i=1}^r k_i \alpha_i : k_i \in \mathbb{Z}_+ \} \subset \mathfrak{h}^* \), where \(\Pi = \{ \alpha_1, \alpha_2, \ldots, \alpha_r \} \) is the set of simple roots of \(\mathfrak{g} \).

Theorem 1.2. Let \(V \) be a highest weight \(\mathfrak{g} \)-module with highest weight \(\Lambda \in \mathfrak{h}^* \). Then,

(a) \(V = \bigoplus_{\lambda \in D(\Lambda)} V_\lambda \)

(b) \(V_\Lambda = \mathbb{F}v_\Lambda \) and \(\dim V_\Lambda < \infty \)

(c) \(V \) is an irreducible \(\mathfrak{g} \)-module if and only if \(\mathbb{F}^* v_\Lambda \) are the only singular vectors.

(d) \(V \) contains a unique proper maximal submodule.

(e) If \(v \) is a singular vector with weight \(\lambda \), then \(\Omega(v) = (\lambda + 2\rho, \lambda)v \). Here \((\cdot, \cdot) \) is a non-degenerate symmetric invariant bilinear form on \(\mathfrak{g} \) and \(\Omega \) is the corresponding Casimir operator, and

\[
2\rho = \sum_{\alpha \in \Delta_+} \alpha.
\]

(f) \(\Omega|_V = (\Lambda + 2\rho, \Lambda)Id_V \)

(g) If \(\lambda \) is a singular weight, then \((\lambda + \rho, \lambda + \rho) = (\Lambda + \rho, \Lambda + \rho) \).

Proof: Pf a), b)

By iii), \(V = U(\mathfrak{n}_-)v_\Lambda = \sum \mathbb{F} E_{-\beta_1}^{m_1} \cdots E_{-\beta_N}^{m_N} v_\Lambda \in V_\Lambda = \sum_{i=1}^N m_i \beta_i \in D(\Lambda) \), proving a) and b).

Pf c)

We know

\[
(*) \quad U = \bigoplus_{\lambda \in D(\Lambda)} (U \cap V_\lambda)
\]

for a submodule \(U \) by a previous lecture. So choose \(\lambda \in D(\Lambda) \) to be of minimal height with \(U \cap V_\Lambda \neq 0 \). Then \(E_\alpha v = 0 \) for any \(v \in U \cap V_\Lambda \), so \(v \) is a singular vector. And if \(v \) is a singular vector of weight \(\lambda \), then \(U(\mathfrak{g})v = U(\mathfrak{n}_-)v \) which is a proper submodule of \(V \) unless \(\lambda = \Lambda \).
Pf d)

The sum of proper submodules of V is again a proper submodule because it does not contain v_Λ. Thus this sum is a unique maximal submodule.

Pf e)

Take a a basis $\{E_{\beta_i}, E_{-\beta_i}, H_i\}$ and its dual $\{E_{-\beta_i}, E_{\beta_i}, H^i\}$ and compute Casimir operator $\Omega = \sum_i H_i H^i + \sum_{i}^N E_{\beta_i} E_{-\beta_i} + E_{-\beta_i} E_{\beta_i} = \sum_i H_i H^i + 2 \sum_{i}^N E_{-\beta_i} E_{\beta_i} + 2\nu^{-1}\alpha$. Apply this to a singular vector v_λ to get

$$\Omega v_\lambda = \sum_i \lambda(H_i)v_\lambda + \sum_1^N (\lambda, \beta_i)v_\lambda + 0$$

The right hand side is $(\lambda, \lambda) + 2(\lambda, \rho)$.

Pf f)

$$\Omega v_\lambda = (\Lambda + 2\rho, \Lambda)v_\lambda$$ by e) and since Ω commutes with $U(\mathfrak{g})$ we get $\Omega(E^m_{-\beta_1}....E_{-\beta_N}v_\lambda) = (\Lambda + 2\rho, \Lambda)E^m_{-\beta_1}....E_{-\beta_N}v_\lambda$

Pf g)

follows from f) and e).

Pf h)

If λ is singular weight, then $(\lambda + 2\rho, \lambda) = (\Lambda + 2\rho, \Lambda)$ by g). This describes a compact set in which the singular weights must lie. But $\lambda \in D(\Lambda)$, a discrete set. As the intersection of a discrete set and compact set is finite, we have that the singular weights must be finite in number.

A Verma module $M(\Lambda)$ is highest weight module with highest weight Λ such that any other module with highest weight Λ is quotient of $M(\Lambda)$. We construct $M(\Lambda)$ as $U(\mathfrak{g})/U(\mathfrak{g})(n_+; h - \Lambda(h), h \in \mathfrak{h})$

By Theorem 1 d), $M(\Lambda)$ has unique maximum submodule $J(\Lambda)$ such that $L(\Lambda) = M(\Lambda)/J(\Lambda)$ is unique highest weight module with highest weight Λ.

Theorem 1.3. (a) For any $\Lambda \in \mathfrak{h}^*$, there exists a Verma module $M(\Lambda)$, unique up to isomorphism.

(b) $M(\Lambda)$ has unique irreducible quotient $L(\Lambda)$

(c) $M(\Lambda) = M(\Lambda')$ (resp. $L(\Lambda) = L(\Lambda')$) iff $\Lambda = \Lambda'$

(d) $E^m_{-\beta_1}....E^m_{-\beta_N}v_\lambda$ form basis of $M(\Lambda)$.

Proof: a), b), c) are clear. d) follows from the PBW theorem because $E^m_{-\beta_1}....E^m_{-\beta_N}$ never lies in $J(\Lambda)$.

3