Summary of May 8 class

Applications of Riemann-Roch

Let Y be a smooth projective curve, let D be a divisor on Y, and let K be canonical divisor on Y. Riemann-Roch asserts that $h^0 \mathcal{O}(D) = h^1 \mathcal{O}(K - D)$ and $h^1 \mathcal{O}(D) = h^0 \mathcal{O}(K - D)$.

I. proof that $p_a = g$.

We put $D = 0$ into Riemann-Roch: $h^0 \mathcal{O} = h^1 \mathcal{O}(K)$ and $h^1 \mathcal{O} = h^0 \mathcal{O}(K)$. Moreover, $h^0 \mathcal{O} = 1$ and by definition, $h^1 \mathcal{O}$ is the arithmetic genus p_a. Thus $\chi \mathcal{O}(K) = h^0 - h^1 = p_a - 1$. By Riemann-Roch 1, $\chi \mathcal{O}(K) = \deg K + 1 - p_a$. Therefore $\deg K = 2p_a - 2$.

Next, we look at a branched covering $Y \xrightarrow{\pi} X = \mathbb{P}^1$. Let n be the degree of π, and let's assume that the covering isn't branched above the point of X at infinity. Let x be a coordinate of X on the standard affine open set U^0. If q_i are the branch points of the covering, and e_i are the ramification indices, then on Y, dx has zeros of orders $e_i - 1$ at q_i. Also, on X, dx has a pole of order 2 at ∞. Therefore dx has poles of order 2 at each of the n points of the fibre over ∞. Then if K denotes the divisor of dx on Y,

$$\deg K = \sum (e_i - 1) - 2n$$

Now we compute the topological Euler characteristic of Y. In terms of the covering,

$$e(Y) = ne(X) - \sum (e_i - 1) = 2n - \sum (e_i - 1) = -\deg K$$

On the other hand, $e(Y) = 2 - 2g$. Therefore $\deg K = 2g - 2$. So $g = p_a$.

II. Base Points.

Let D be a divisor on Y. A point p of Y is a base point of $\mathcal{O}(D)$ if every global section of $\mathcal{O}(D)$ is also a global section of $\mathcal{O}(D - p)$, i.e., if $h^0 \mathcal{O}(D) = h^0 \mathcal{O}(D - p)$. The usual exact sequence $0 \rightarrow \mathcal{O}(D - p) \rightarrow \mathcal{O}(D) \rightarrow \mathcal{O} \rightarrow 0$ shows that if p is a base point, then $h^1 \mathcal{O}(D - p) = h^1 \mathcal{O}(D) + 1$, and if p is not a base point, then $h^1 \mathcal{O}(D - p) = h^1 \mathcal{O}(D)$.

When D is effective and $\mathcal{O}(D)$ has no base point, a generic global section of $\mathcal{O}(D)$ will have poles equal to D, not less than D.

Examples. $\mathcal{O}(K)$ has no base point if $g > 0$, because $h^1 \mathcal{O}(K - p) = h^0 \mathcal{O}(p)$, and there can be no function with just one simple pole, $h^0 \mathcal{O}(p) = h^0 \mathcal{O} = 1$.

On the other hand, p is a base point of $\mathcal{O}(K + p)$ because $h^1 \mathcal{O}(K + p) = h^0 \mathcal{O}(-p) = 0$, which is less than $h^0 \mathcal{O}$.

Let D be an effective divisor. Assume that $h^0 \mathcal{O}(D) \geq 2$, and that $\mathcal{O}(D)$ has no base point. We use a basis $(\alpha_0, ..., \alpha_r)$ of $H^0 \mathcal{O}(d)$ to map Y to projective space, say $Y \xrightarrow{\pi} \mathbb{P}$. The degree of π is defined to be the number of points of Y in the inverse image of a generic hyperplane H.
Proposition. With the above notation, the degree of π is equal to the degree of D.

proof Say that H is the hyperplane $\sum c_ix_i = 0$. Then its inverse image is the set of points q of Y such that $\sum c_i\alpha_i(q) = 0$. The rational function $\beta = \sum c_i\alpha_i$ is a generic global section of $O(D)$, so its polar divisor is equal to D. It has the same number of zeros as poles.

The Canonical Map.

Here Y is a curve of genus at least 2. The canonical map is the map $Y \xrightarrow{\pi} \mathbb{P}^{g-1}$ defined by a basis of $O(K)$. Since $O(K)$ has no base point, the degree of this map is $\deg K = 2g - 2$.

If $g = 2$, π maps Y to \mathbb{P}^1, and its degree is 2.

Recall that Y is called hyperelliptic if it can be represented as a double cover of the projective line X. Thus every curve of genus 2 is hyperelliptic. Though this isn’t obvious, most curves of genus 3 or more aren’t hyperelliptic.

Theorem. Let Y be curve of genus at least 2. Then either Y is hyperelliptic, or else the canonical map π is an embedding of Y into projective space.

Sketch of the proof We suppose that the canonical map π is not injective, and we show that then Y is hyperelliptic. Let q_1 an q_2 be points of Y such that $\pi(q_1) = \pi(q_2)$, and let’s assume that K is chosen so that q_i are not in its support. Then a section of $O(K)$ that vanishes at q_1 also vanishes at q_2. So $H^0O(K - q_1 - q_2) = H^0O(K - q_1)$, and since $O(K)$ has no base point, $h^0O(K - q_1 - q_2) = h^0O(K - q_1) = h^0O(K) - 1 = g - 1$. Then $h^1O(q_1 + q_2) = g - 1$. By RR, $\chi(q_1 + q_2) = \deg(q_1 + q_2) + 1 - g = 3 - g$. Then $h^0O(q_1 + q_2) = 2$. Since $h^0O(q_i) = 1$, $O(q_1 + q_2)$ has no base points. A basis of $H^0O(q_1 + q_2)$ defines a map $Y \rightarrow \mathbb{P}^1$ of degree 2. So Y is hyperelliptic.

Thus, if Y isn’t hyperelliptic, the map $\pi : Y \rightarrow \mathbb{P}^{g-1}$ is injective. This isn’t quite enough to show that Y is isomorphic to its image X. When $Y \rightarrow X$ is bijective, the function fields will be equal, and we can conclude that Y is the normalization of X. But, could X have a cusp?

To show that this doesn’t occur, we go over the argument above, replacing the point pair $q_1 + q_2$ by a divisor of the form $2q$. The same reasoning shows that if $h^0O(K - 2q) = O(K - q)$, then $h^0O(2q) = 2$, and Y is hyperelliptic. Consequently, if Y isn’t hyperelliptic, then for every point q of Y, there is a section α of $O(K)$ that vanishes at q, but doesn’t have a zero of order 2 there. We can use α as one element of the basis of $H^0O(K)$, say $\alpha = \alpha_0$. Then $\pi^{-1}(x_0)$ contains the point q but doesn’t contain $2q$. This means that a nonzero tangent vector to Y at q doesn’t map to zero in X, and it implies that the map $Y \rightarrow X$ is an isomorphism. There is a clumsy proof in the notes.

There is one more remarkable fact about hyperelliptic curves:

Theorem. A smooth projective curve Y of genus $g \geq 2$ can be represented as a double covering of $X = \mathbb{P}^1$ in at most one way.

I ran out of time to do the proof.