Summary of March 30 class

Projective double planes

$X = \mathbb{P}^2$, coordinates x_0, x_1, x_2. $f(x)$ a homogeneous, square-free polynomial of even degree $2d$. y a variable of weight d.

Then

$$y^2 = fx$$

is a homogeneous equation of degree $2d$ that has a locus Y in the weighted projective space \mathbb{WP} with coordinates (x_0, x_1, x_2, y). The equivalence relation that defines points of \mathbb{WP} is

$$(x_0, x_1, x_2, y) \sim (\lambda x_0, \lambda x_1, \lambda x_2, \lambda^d y)$$

The locus Y is the double plane.

The projection $\pi : Y \rightarrow X$ has fibres \{$(x, y), (x, -y)$\}. Two points in the fibre unless $f(x) = 0$. Then fibre is \{(x, 0)\} and has one point.

The branch locus Δ is the (possibly reducible) curve $f(x) = 0$ in the plane X.

There is an obvious automorphism σ of Y that sends $(x, y) \rightarrow (x, -y)$.

A curve in Y is a subvariety of dimension 1. Its projection will be a curve in X. Conversely, let C be a curve in X, say $h(x) = 0$ where h is an irreducible homogeneous polynomial. There are 3 possibilities for the inverse image $\pi^{-1}C$ in Y:

- **C ramifies**: if C is a component of Δ. Then the map $\pi^{-1}C = D \rightarrow C$ is bijective. This happens when h divides f. Then modulo h, the equation of Y becomes $y^2 = 0$.
- **C splits**: $\pi^{-1}C = D_1 \cup D_2$ where D_i are curves in Y, and $D_2 = \sigma D_1$. The map $D_1 \rightarrow C$ will be generically bijective. Some fibres through singular points may consist of two points.
- **C doesn’t split** (and doesn’t ramify): $\pi^{-1}C = D$ is irreducible. The fibres of the map $D \rightarrow C$ consist of two points, except for fibres over the points of $C \cap \Delta$.

This occurs when the ideal I of $\mathbb{C}[x, y]$ generated by $y^2 - f$ and h is a prime ideal. If C splits, the ideal I is the intersestion of two prime ideals.

analog from algebraic number theory: $A = \mathbb{Z}$, $B = \mathbb{Z}[\delta]$, $\delta^2 = -5$. The prime integer $p = 5$ ramifies.

- The prime $p = 3$ splits: $3B = (3, 1 + \delta)(3, 1 - \delta)$
- The primes $p = 7$ doesn’t split.

Note that in the example $p = 3$, though (3) splits, its ideal factors aren’t principal ideals.

Back to the double plane Y. Let’s say that $d = 2$, so that the degree of $f(x)$ is 4, and that f is a generic quartic polynomial. Then Y is a quartic double plane. The branch locus is the generic quartic curve $\Delta : f = 0$ in the plane X.

Does a line L in X split, or not, in Y. Let’s choose coordinates so that L is the line $x_0 = 0$. This is the same as asking about the ideal $(y^2 - f, x_0)$ in $\mathbb{C}[x, y]$ Is it is or is it not, a prime ideal? L splits if this ideal isn’t prime. We can work modulo x_0. Let $\overline{f}(x_1, x_2) = f(0, x_1, x_2)$. Modulo x_0, the question becomes: Is the principal ideal of the ring $\mathbb{C}[x_1, x_2, y]$? generated by $n y^2 - \overline{f}$ a prime ideal? Since $\mathbb{C}[x_1, x_2, y]$ is a polynomial ring,
the ideal will be prime if the polynomial \(y^2 - \overline{f} \) is irreducible. So \(L \) split if \(y^2 - \overline{f} \) factors. If it fattors, say \(y^2 - \overline{f} = (x + \alpha)(x + \beta) \), then \(\beta = -\alpha \), and \(y^2 - \overline{f} = y^2 - \alpha^2 \). So \(y^2 - \overline{f} \) factors if and only if \(\overline{f} \) is a square polynomial in \(x_1, x_2 \).

Is the rational function obtained from \(f \) by restriction to \(L \) a square? The rational functions on \(L \) are functions of one variable. A rational function is a square if and only if its zeros have even order. The zeros of \(\overline{f} \) are the intersections of \(L \) with the branch locus \(\Delta \). Those intersections have to have even multiplicity. Therefore \(L \) splits if and only if its a bitangent to the quartic curve \(\Delta \). (When \(\Delta \) is generic, it won’t have a fourfold tangent.) There are 28 bitangents, so 28 lines that split.

(If \(\Delta \) had degree 6, a line would split if it was a tritangent to \(\Delta \). This won’t occur when \(\Delta \) is generic.)

Quartic Double Planes and Cubic Surfaces

We use coordinates \((x_0, x - 1, x_2, z)\) in projective 3-space \(\mathbb{P}^3 \). Let \(S \) be a generic cubic surface, the zero locus of a homogeneous cubic polynomial \(g(x, z) \), but let’s choose coordinates so that \(q = (0, 0, 0, 1) \) is a generic point that lies on \(S \). Then the coefficient of \(z^3 \) in \(g \) is zero, and \(g \) has the form

\[
a z^2 + b z + c
\]

where \(a, b, c \) are homogeneous polynomials in \(x \) of degrees 1, 2, 3. Let \(f = b^2 - 4ac \) be the discriminant of this quadratic polynomial in \(z \), a homogeneous quartic curve. Let \(Y \) be the quartic double plane \(y^2 = f \).

Lemma: If \(g \) is generic, so is \(f \). \(\square \)

The quadratic formula defines a bijection almost everywhere \(S \leftrightarrow Y: z = (-b + y)/2a \) and \(y = 2az + b \). The bijection is undefined on the line \(L_0: a = 0 \).

the line \(L_0 \): Modulo \(a \), the equation of \(Y \) becomes \(y^2 = b^2 \). So \(L_0 \) splits in \(Y \). It is a bitangent.

The equation \(a = 0 \) defines a plane \(H_0 \) in \(\mathbb{P}^3 \) as well as the line \(L_0 \) in \(X = \mathbb{P}^2 \). The plane \(H_0 \) contains \(q = (0001) \), and it projects to \(L_0 \). The intersection \(S \cap H_0 \) is the cubic curve in the plane \(H_0 \) obtained from the cubic equation for \(S \) by setting \(a = 0 \). That equation is \(\overline{b}z + \overline{c} = 0 \), where \(\overline{b}, \overline{c} \) are the restrictions of \(b, c \) to \(H_0 \). It is singular at the point \(q \). Since \(q \) is supposed to be generic, it won’t lie on a line in \(S \). So the cubic is irreducible.

Next, let \(L \) be one of the 27 remaining bitangents to \(\Delta \). Then \(L \) meets \(L_0 \) in just one point \(p \). the bijection \(S \leftrightarrow Y \) is defined above all points of \(Y \) except \(p \). The linear equation that defines \(L \) also defines a plane \(H \) in \(\mathbb{P}^3 \) that contains \(q \), and \(S \cap H \) is a cubic curve \(C \) that maps to \(L \) when the point \(q \) is removed. Since \(S \leftrightarrow Y \) is defined except at one point of \(L, C \) must have at least two components, one of which contains \(q \). Since there is no line through the generic point \(q \), that component must be a conic, and the other component must be a line. This gives us 27 lines in the generic cubic surface \(S \).