Summary of April 17 class

Review of characteristic properties of cohomology.

Let \(X \) be a variety. Cohomology is a sequence of functors \(H^0, H^1, \ldots \) from \(\mathcal{O} \)-modules to vector spaces, with these characteristic properties:

1. \(H^0(\mathcal{M}) \) is the space \(\mathcal{M}(X) \) of global sections of \(\mathcal{M} \).

2. Cohomology sequence: Let \(0 \to \mathcal{L} \to \mathcal{M} \to \mathcal{N} \to 0 \) be a short exact sequence of \(\mathcal{O} \)-modules. Then there is an exact sequence

\[
0 \to H^0(\mathcal{L}) \to H^0(\mathcal{M}) \to H^0(\mathcal{N}) \to H^1(\mathcal{L}) \to H^1(\mathcal{M}) \to \cdots
\]

3. If \(U \) is an affine open subset of \(X \), and let \(j \) denote the inclusion \(U \to X \). For any \(\mathcal{O}_U \)-module \(\mathcal{N} \) and for all \(q > 0 \), \(H^q(x, j_* \mathcal{N}) = 0 \).

The third property can be generalized:

Theorem 1. Let \(f : Y \to X \) be a morphism, where \(Y \) is an affine variety. For any \(\mathcal{O}_Y \)-module \(\mathcal{N} \) and any \(q > 0 \), \(H^q(X, f_* \mathcal{N}) = 0 \).

Let’s omit the proof.

Affine Morphisms

A morphism \(f : Y \to X \) is an affine morphism if for all affine open sets \(U \) of \(X \), the inverse image \(V = f^{-1}U \) is an affine variety.

For example, the inclusion of a closed subvariety is an affine morphism. So is the inclusion of an affine open subvariety. A finite morphism is an affine morphism.

On the other hand, if \(X \) is the affine plane and \(Y \) is the complement of the origin, the inclusion \(Y \to X \) isn’t an affine morphism. The map from \(\mathbb{P}^1 \) to a point isn’t an affine morphism.

Theorem 2. Let \(f : Y \to X \) be an affine morphism, and let \(\mathcal{N} \) be an \(\mathcal{O}_Y \)-module. Then \(H^q(X, f_* \mathcal{N}) \) is isomorphic to \(H^q(Y, \mathcal{N}) \).

Corollary. If \(i : Y \to X \) is the inclusion of a closed subvariety and \(\mathcal{M} \) is an \(\mathcal{O}_Y \)-module, then \(H^q(Y, \mathcal{M}) \approx H^q(X, i_* \mathcal{M}) \).

proof To simplify notation, we denote \(H^q(X, f_* \mathcal{N}) \) by \(F^q(\mathcal{N}) \) for the proof. So \(F^q \) are functors on \(\mathcal{O}_Y \)-modules. We are to show that \(F^q(\mathcal{N}) \) is isomorphic to \(H^q(Y, \mathcal{N}) \), and to do this, we verify the characteristic properties for \(F^q \).

First, \(F^0(\mathcal{N}) = H^0(X, f_* \mathcal{N}) = [f_* \mathcal{N}](X) \) which, by definition of \(f_* \), is equal to \(\mathcal{N}(Y) = H^0(Y, \mathcal{N}) \).

Next, we show that there is a cohomology sequence for \(F^q \). Let

\[
A : \quad 0 \to \mathcal{L} \to \mathcal{M} \to \mathcal{N} \to 0
\]
be a short exact sequence of O_Y-modules. The sequence of O_X-modules

$$B : 0 \to f_*\mathcal{L} \to f_*\mathcal{M} \to f_*\mathcal{N} \to 0$$

is exact because, when U is an affine open subset of X, its inverse image $V = f^{-1}U$ is affine open in Y. (f is an affine morphism.) By definition, $f_*\mathcal{L}(U) = \mathcal{L}(V)$. So the sequence of sections of B on U is the same as the sequence of sections of A on V, which is exact because A is exact and V is affine.

Finally, we verify the third property by showing that, if $j : V \to Y$ is the inclusion of an affine open set and N is an O_V-module, then $F^q(j_*N) = 0$ for $q > 0$. Let g be the composed map $fj : V \to X$. Then $F^q(j_*N) = H^q(X, f_*j_*N) = H^q(X, g_*N)$, which is zero by Theorem 1, because V is affine. □

Cohomology of $O(n)$ on Projective Space

We denote the dimension of the cohomology group $H^q(X, \mathcal{M})$ by $h^q(\mathcal{M})$. We’ll use the next lemma, omitting the proof:

Lemma. Cohomology is compatible with limits. If $\mathcal{M}_0 \to \mathcal{M}_1 \to \cdots$ is a sequence of O-modules, then $\lim H^q(X, \mathcal{M}_k) \approx H^q(X, \lim \mathcal{M}_k)$.

Theorem 3. On the projective space \mathbb{P}^d of dimension d

(i) If $n \geq 0$, $h^0(O(n)) = \binom{n+d}{d}$, and $h^q(O(n)) = 0$ when $q > 0$.

(ii) If $n = -r < 0$, $h^d(O(-r)) = \binom{r-1}{d}$ and $h^q(O(-r)) = 0$ if $q \neq d$.

proof We know that $H^0(\mathbb{P}, O(n))$ is the space of homogeneous polynomials of degree n, which has dimension $\binom{n+d}{d}$ when $n \geq 0$ and is zero when $n < 0$.

Let H be the hyperplane $x_0 = 0$. This is a projective space of dimension $d - 1$, and by the Corollary above, $H^q(H, O_H(n)) \approx H^q(\mathbb{P}, i_* O(n))$, i being the inclusion $H \to \mathbb{P}$.

There are exact sequences

$$0 \longrightarrow \mathcal{O}_\mathbb{P}(n-1) \overset{x_0}{\longrightarrow} \mathcal{O}_\mathbb{P}(n) \overset{r}{\longrightarrow} i_*\mathcal{O}_H(n) \longrightarrow 0$$

where r is the restriction, which is obtained by setting $x_0 = 0$. This gives us a cohomology sequence

$$\cdots \to H^q(\mathbb{P}, O(n-1)) \to H^q(\mathbb{P}, O(n)) \to H^q(H, O(n)) \to H^{q+1}(\mathbb{P}, O(n-1)) \to \cdots$$
The Case \(n \geq 0 \)

Instead of exhibiting the cohomology sequence, we make a table showing the dimensions of the cohomology. We denote the dimension of \(H^q(X, \mathcal{M}) \) by \(h^q(\mathcal{M}) \).

The table looks like this:

\[
\begin{array}{ccc}
\h_0 & (n-1+d) & (n+d) & (n+d-1) \\
\h_1 & * & * & * \\
\h_2 & * & * & * \\
\h_3 & \\
\end{array}
\]

where the columns contain the dimensions of cohomology of \(\mathcal{O}_\mathbb{P}(\mathcal{O}(n-1)), \mathcal{O}_\mathbb{P}(\mathcal{O}(n)), \mathcal{O}_H(\mathcal{O}(n-1)) \), the asterisks being entries not yet determined.

The top row contains the dimensions of the spaces of global sections, which form a short exact sequence. The exactness is easy to verify directly, and it corresponds to the standard combinatorial formula

\[
(n+d) = (n-1+d) + (n+d-1)
\]

By induction on \(d \), the entries * in the third column are zero. Looking at the table, we see that the maps \(H^q(bbp, \mathcal{O}((n-1)) \to H^q(\mathbb{P}, \mathcal{O}(n)) \) are bijective for all \(q > 0 \). We remember that the limit \(\mathcal{O}(nH) \) is the module \(j_*\mathcal{O}_\mathbb{U}^0 \), where \(j \) is the inclusion of the standard affine \(\mathbb{U}^0 \) into \(\mathbb{P} \), and \(\mathcal{O}(n) \approx \mathcal{O}(nH) \). By the lemma, \(\lim H^q(\mathbb{P}, \mathcal{O}(nH)) \) is isomorphic to \(H^q(\mathbb{P}, j_*\mathcal{O}_\mathbb{U}^0) \), which is zero when \(q > 0 \), because \(\mathbb{U}^0 \) is affine. Since the maps \(H^q(bbp, \mathcal{O}((n-1)) \to H^q(\mathbb{P}, \mathcal{O}(n)) \) are bijective for all \(q > 0 \) and the limit is zero, \(H^q(\mathbb{P}, \mathcal{O}(n)) = 0 \) for all \(n \geq 0 \).

Note. I neglected to refer to the lemma in class. This was a mistake.

The Case \(n = -r < 0 \)

We compute the cohomology of \(\mathcal{O}(-1) \) using the exact sequence

\[
0 \to \mathcal{O}_\mathbb{P}(-1) \to \mathcal{O}_\mathbb{P} \to \mathcal{O}_H \to 0
\]

Since \(h^q(\mathcal{O}_\mathbb{P}) \) and \(h^q(\mathcal{O}_H) \) are zero when \(q > 0 \) and equal to 1 when \(q = 0 \), we find that \(h^q(\mathcal{O}(-1)) = 0 \) for all \(q \). Then the exact sequence

\[
0 \to \mathcal{O}_\mathbb{P}(-r - 1) \to \mathcal{O}_\mathbb{P}(-r) \to \mathcal{O}_H(-r) \to 0
\]

verifies the assertion for \(n < 0 \) by induction on \(r \) and \(d \). \(\square \)
Cohomology of a Plane Curve

Let Y be a curve of degree d in \mathbb{P}^2, the zero locus of an irreducible polynomial f of degree r. Then one has an exact sequence

$$0 \to \mathcal{O}_{\mathbb{P}}(-r) \to \mathcal{O}_{\mathbb{P}} \to i_*\mathcal{O}_Y \to 0$$

where i is the inclusion $Y \to \mathbb{P}$. The previous theorem computes the cohomology of $\mathcal{O}_{\mathbb{P}}(-r)$ and $\mathcal{O}_{\mathbb{P}}$:

- $h^0: 0, 1, 1$
- $h^1: 0, 0, *$
- $h^2: (r-1), 0, *
- $h^3: 0, 0, *$

The exact cohomology sequence shows that $h^1(\mathcal{O}_Y) = (r-1)$ and that $h^q(\mathcal{O}_Y) = 0$ for $q > 1$.

The dimension $h^1(\mathcal{O}_Y)$ is called the \textit{arithmetic genus} of Y and is denoted by p_a. When Y is smooth, it is equal to the geometric genus g. We’ll provethat later. But the arithmetic genus is $(r-1)$ also when Y is singular, even when it is a reducible curve.

The values of p_a when the degrees of Y are 1, 2, 3, 4, 5... are 0, 0, 1, 3, 6... respectively. A plane curve cannot have arithmetic genus 2.