18.721 Assignment 9

This assignment is due Wednesday, April 29.

1. On the projective line \mathbb{P}^1, when are two direct sums $\mathcal{O}(m) \oplus \mathcal{O}(n)$ and $\mathcal{O}(r) \oplus \mathcal{O}(s)$ isomorphic?

2. There is an error in the statement of this problem. See web page.

 Let f and g be homogeneous polynomials in $\mathbb{C}[x_0, x_1, x_2, x_3]$, of degrees d and e respectively, and with no common factor. Let X be the locus of common zeros of f and g in the projective space \mathbb{P}^3 with coordinates x, and let i be the inclusion $X \rightarrow \mathbb{P}$.

 (a) Construct an exact sequence

 $$0 \rightarrow \mathcal{O}_{\mathbb{P}}(-d - e) \rightarrow \mathcal{O}_{\mathbb{P}}(-d) \oplus \mathcal{O}_{\mathbb{P}}(-e) \rightarrow \mathcal{O}_{\mathbb{P}} \rightarrow i_* \mathcal{O}_X \rightarrow 0$$

 (b) Prove that X is connected, i.e., that it is not the union of two proper disjoint Zariski-closed subsets of \mathbb{P}.

 (c) Determine the cohomology of \mathcal{O}_X.

3. (a) Let K be the function field of a projective space X, and let \mathcal{F} be the constant function field \mathcal{O}_X-module, whose module of sections on any open set U is $\mathcal{F}(U) = K$ (see notes). Prove that $H^q(X, \mathcal{F}) = 0$ for all $q > 0$.

 (b) Let $\{U^i\}$ be an open covering of X. Suppose that rational functions f_i are given such that $f_i - f_j$ is a regular function on $U^i \cap U^j$ for all i, j. The Cousin Problem asks for a regular function f on \mathbb{P} such that $f - f_i$ is regular on U^i for each i. Analyze the Cousin Problem, making use of the exact sequence

 $$0 \rightarrow \mathcal{O} \rightarrow \mathcal{F} \rightarrow \mathcal{Q} \rightarrow 0$$

 where \mathcal{Q} is the quotient \mathcal{F}/\mathcal{O}.