18.721 Comments on Pset 8

1. Let \(X = \mathbb{P}^r \), and let \(Y \) be a closed subvariety of \(X \). Describe the sections of \(\mathcal{O}(n) \) on the complement \(U = X - Y \) of \(Y \).

By definition, the sections of \(\mathcal{O}(n) \) on \(U \) are the homogeneous fractions of degree \(n \) that are regular on \(U \). This means that if \(g/h \) is such a fraction, with \(g, h \) relatively prime, \(h \) cannot vanish at any point of \(U \). So there are three cases: If \(Y = X \), then \(U \) is empty and the only section of \(\mathcal{O}(n) \) is 0. If \(Y \) is a hypersurface, say \(f = 0 \), then \(h \) can be a scalar multiple of a power of \(f \). If \(Y \) isn’t \(X \) and isn’t a hypersurface, then it will have codimension at least 2. Since a nonconstant homogeneous polynomial vanishes on a subset of codimension 1, \(h \) must be a scalar. Then the sections of \(\mathcal{O}(n) \) on \(U \) are the global sections, which are homogeneous polynomials of degree \(n \).

2. Let \(X \) be the affine plane \(\text{Spec} \, A \), where \(A = \mathbb{C}[x, y] \), and let \(U \) be the complement of the origin in \(X \).

(a) Let \(\mathcal{M} \) be the \(\mathcal{O}_X \)-module that correponds to the \(A \)-module \(M = A/yA \). Show that \(\mathcal{M} \) is a finite \(\mathcal{O} \)-module, but that \(\mathcal{M}(U) \) isn’t a finite module over the ring \(\mathcal{O}(U) \).

(b) Show that, for any \(k \geq 1 \), the homomorphism

\[
\mathcal{O} \times \mathcal{O} \xrightarrow{(x,y)^i} \mathcal{O}
\]

is surjective on \(U \), though the associated map of sections on \(U \) isn’t surjective.

(a) The global sections of \(\mathcal{M} \) are the elements of the finite \(A \)-module \(M \). The module of sections of \(\mathcal{M} \) on an affine open subset \(V = \text{Spec} \, B \) of \(X \) is \(M \otimes_A B = B/yB \), which is a finite \(B \)-module. This shows that \(\mathcal{M} \) is a finite \(\mathcal{O} \)-module. To compute the sections of \(\mathcal{M} \) on \(U \), we cover \(U \) by the two affine open sets \(X_x = \text{Spec} \, A[x^{-1}] \) and \(X_y = A[y^{-1}] \), the complements of the two coordinate axes. The regular functions on \(U \) are the same as on \(X \): \(\mathcal{O}(U) = \mathcal{O}(X) = A \). The module of sections of \(\mathcal{M} \) on \(X_x \) is \(M[x^{-1}] \), and the module of sections on \(X_y \) is \(M[y^{-1}] \), which is the zero module. The sheaf property for this covering shows that \(\mathcal{M}(U) = M[x^{-1}] \). This isn’t a finite module over \(\mathcal{O}(U) = A \).

3. Let \(R \) be the polynomial ring \(\mathbb{C}[x, y, z] \), and let \(A = R/(f, g) \), where \(f(x, y, z) \) and \(g(x, y, z) \) are homogeneous polynomials of degrees \(m \) and \(n \), and with no common factor.

(a) Show that the sequence

\[
0 \to R \xrightarrow{(-g,f)} R^2 \xrightarrow{(f,g)} R \to A \to 0
\]
is exact.

(b) Because f and g are homogeneous, A inherits a grading from the grading of R by degree: $A = A_0 \oplus A_1 \oplus \cdots$. Prove that $\dim A_k = mn$ for all sufficiently large k.

(c) Explain in what way this is an algebraic version of Bézout’s Theorem.

(a) The only place where exactness isn’t obvious is at R^2. Let (u, v) be an element of R^2 such that $(u, v)(f, g)^t = 0$, i.e., $uf = -vg$. Since f, g are relatively prime, f divides v, say $v = fw$. Then $uf = -wfg$, so $u = -wg$, and (u, v) is the image of the element w of R via the map $(-g, f)$.

(b) The maps in the sequence change degrees. Multiplication by f raises degree by m etc.

So A_d fits into a sequence

\[
\begin{align*}
0 & \to R_{r-m-n} \to R_{d-m} \oplus R_{d-n} \to R_d \to A_d \to 0
\end{align*}
\]

The alternating sum of the dimensions in an exact sequence is zero. The dimension of R_d is the binomial coefficient $\binom{d+2}{2}$. Therefore

\[
\dim A_d = \binom{d+2}{2} - \binom{d-n+2}{2} - \binom{d-m+2}{2} + \binom{d-m-n+2}{2}
\]

This works out to $\dim A_d = mn$ when $d \geq m + n$.

(c) It is fairly difficult to make this precise, and there is more than one way to proceed.

first approach

Let C and D be the plane projective curves $f = 0$ and $g = 0$, and let’s suppose that C and D intersect transversally in N points. In the affine space \mathbb{A}^3 with coordinates x, y, z, the locus $f = g = 0$ is a bouquet of N lines L_1, \ldots, L_N through the origin corresponding to the points of $C \cap D$. The coordinate ring of L_i is a quotient of the coordinate algebra R of \mathbb{A}^3, and it is a polynomial ring in one variable. Let’s call it B_i, and let $B = B_1 \times \cdots \times B_N$. Then B is a finite module over R, and since B_i is a quotient of A, we have a map $A \to B$.

Let Y denote the disjoint union of the lines L_1, \ldots, L_N.

The point here is that the obvious map $Y \to X$ is bijective except at the origin. So the homomorphism $A \to B$ isn’t far from being an isomorphism. Each B_i is graded, and $\dim B_i = 1$ for all $k \geq 0$. We grade B accordingly, so that $\dim B_k = N$ for every $k \geq 0$. This grading is compatible with the grading of A.

Let K and C be the kernel and cokernel of the homomorphism $A \to B$:

\[
0 \to K \to A \to B \to C \to 0
\]

We grade K using the grading of A, and C using the grading of B.

Lemma. K and C are finite R-modules, and $K_k = C_k = 0$ when $k >> 0$.

It follows from the lemma that $A_k = B_k$ and therefore that $\dim A_k = N$, when $k >> 0$.
proof of the lemma The kernel is a finite module because it is a submodule of the finite module \(A \). The cokernel is a finite module because it is a quotient of the finite module \(B \). To show that these modules are zero in large degree, we choose a homogeneous linear polynomial whose zero locus \(H \) doesn’t contain any of the lines \(L_i \), and we localize. In \(X_s \), origin is removed from the lines \(L_i \), and we localize. In \(X_s \), origin is removed from the lines \(L_i \). So \(L_i \) are closed disjoint subsets of \(X_s \) to which the Chinese Remainder Theorem applies. The ideals \(I_i \) of \(L_i \) are comaximal, and the map \(A_s \to \prod B_i = B_s \) is surjective. Since \(A \subset B \), that map is also bijective. This means that \(K_s = C_s = 0 \). Therefore if \(r > 0 \), \(s^r \) annihilates \(K \) and \(C \), which shows that \(A_k = B_k \) for all \(k \geq r \).

second approach

We will use the exact sequence of part (a). There is an analogous an exact sequence of \(O \)-modules:

\[
\begin{array}{ccccccccc}
\vdots & & & \to & O(-m-n) & \to & O(-m) \oplus O(-n) & \to & O & \to & A & \to & 0
\end{array}
\]

where \(A \) is the cokernel of the map \((f, g)^t \), which is zero except at the finite set of intersection points \(C \cap D \).

Lemma. Suppose that coordinates are chosen so that the hyperplane \(H : \{ x_0 = 0 \} \) (a line) doesn’t contain any point of \(C \cap D \). Then, for every \(n \), the \(O \)-modules \(A \) and \(A(n) = A \otimes_O O(n) \) are isomorphic.

Assuming that the lemma is proved, we twist the exact sequence (***) by \(d >> 0 \):

\[
0 \to O(d-n) \to O(d-m) \to O(d-n) \to O(d) \to A(d) \to 0
\]

The cohomology \(H^q O(k) \) is zero for all \(q > 0 \), and this implies that the sequence of global sections is exact. (This is an exercise.)

The sequence of global sections is

\[
0 \to R_{d-n} \to R_{d-m} \oplus R_{d-n} \to R_d \to H^0 A(d) \to 0
\]

Looking at the sequence (**), we see that \(H^0 A(d) \approx A_d \). Since \(A(d) \approx A \), the dimension of \(H^0 A \) is the same as that of \(A_d \), which, according to (b), is \(mn \). This is Bézout’s Theorem.

proof of the lemma We cover \(\mathbb{P}^2 \) by three open sets: the standard affine set \(U^0 \), the complement \(V^1 \) of \(C \) in \(\mathbb{P}^2 \), and the complement \(V^2 \) of \(D \). Here \(U^0 \) contains all points of \(C \cap D \), and \(V^1, V^2 \) don’t contain any of those points. Therefore \(A(V^1) = A(V^2) = 0 \). The sheaf property for the covering \(U^0, V^1, V^2 \) shows that \(A(\mathbb{P}^2) = A(U^0) \). Similarly, for every open set \(W \) of \(\mathbb{P}^2 \), \(A(W \cap V^1) = A(W \cap V^2) = 0 \), and \(A(W) = A(W \cap U^0) \). On \(U^0 \), \(A = A(nH) \). Therefore this is true on \(\mathbb{P}^2 \) as well, and since \(A(nH) \approx A(n) \), \(A \approx A(n) \).