18.721 Assignment 8 (corrected)

This assignment is due Wednesday, April 22.

1. Let $X = \mathbb{P}^r$, and let Y be a closed subvariety of X. Describe the sections of $\mathcal{O}(n)$ on the complement $U = X - Y$ of Y.

2. Let X be the affine plane Spec A, where $A = \mathbb{C}[x, y]$, and let U be the complement of the origin in X.

 (a) Let \mathcal{M} be the \mathcal{O}_X-module that corresponds to the A-module $M = A/yA$. Show that \mathcal{M} is a finite \mathcal{O}-module, but that $\mathcal{M}(U)$ isn’t a finite module over the ring $\mathcal{O}(U)$.

 (b) Show that the homomorphism

 $$
 \mathcal{O} \times \mathcal{O} \xrightarrow{(x,y)^t} \mathcal{O}
 $$

 is surjective on U, though the associated map of sections on U isn’t surjective.

3. Let R be the polynomial ring $\mathbb{C}[x, y, z]$, and let $A = R/(f, g)$, where $f(x, y, z)$ and $g(x, y, z)$ are homogeneous polynomials of degrees m and n, and with no common factor.

 (a) Show that the sequence

 $$
 0 \rightarrow R \xrightarrow{(-g,f)} R^2 \xrightarrow{(f,g)^t} R \rightarrow A \rightarrow 0
 $$

 is exact.

 (b) Because f and g are homogeneous, A inherits a grading from the grading of R by degree: $A = A_0 \oplus A_1 \oplus \cdots$. Prove that $\dim A_k = mn$ for all sufficiently large k.

 (c) Explain in what way this is an algebraic version of Bézout’s Theorem.