18.721 Assignment 6

This assignment is due Monday, April 6

1. Let α be an element of a domain A, and let $\beta = \alpha^{-1}$. Prove that if β is integral over A, then it is an element of A.

2. Let $X = \text{Spec } A$, where $A = \mathbb{C}[x, y, z]/(y^2 - xz^2)$. Identify the normalization of X.

3. Prove that every nonconstant morphism $\mathbb{P}^2 \to \mathbb{P}^2$ is a finite morphism. Do this by showing that the fibres cannot have positive dimension.

4. The cyclic group $< \sigma >$ of order n operates on the polynomial ring $R = \mathbb{C}[x, y]$, by $\sigma(x) = \zeta x$ and $\sigma(y) = \zeta y$, $\zeta = e^{2\pi i/n}$. Let A be the ring of invariants.
 (a) Describe the invariant polynomials.
 (b) Show that the polynomials $u_i = x^iy^{n-i}$, $i = 0, ..., n$, generate the ring A.
 (c) Find generators for the ideal of relations among the generators u_i (the kernel of the homomorphism from the polynomial ring $\mathbb{C}[y_0, ..., y_n]$ to A that sends y_i to u_i).