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PREFACE

These are notes that have been used for an algebraic geometry course at MIT. I had thought of teaching
such a course for quite a while, motivated partly by the fact that MIT didn’t have very many courses suitable
for students who had taken the standard theoretical math classes. I got around to thinking seriously about this
twelve years ago, and have now taught the class seven times. I wanted to get to cohomology of O-modules
(aka quasicoherent sheaves) in one semester without presupposing a knowledge of sheaf theory or of much
commutative algebra, so it has been a challenge. Fortunately, MIT has many outstanding students who are
interested in mathematics. The students and I have made some progress, but much remains to be done. Ideally,
one would like the development to be so natural as to seem obvious. Though I haven’t tried to put in anything
unusual, this has yet to be achieved. And there are too many pages for my taste. To paraphrase Pascal, we
haven’t had the time to make it shorter.

To cut the material down, I decided to work exclusively with varieties over the complex numbers, and to
use that restriction freely. Schemes are not discussed. Some people will disagree with these decisions, but I
feel that absorbing schemes and general ground fields won’t be too difficult for someone who is familiar with
complex varieties. Also, I don’t go out of my way to state and prove things in their most general form.

If one plans to teach such a course in a single semester, it is essential to keep moving. One can’t linger
over the topics in the first Chapter. To save time, consider replacing some proofs with heuristic reasoning
or omitting them. Proposition [I.9.11] on the order of vanishing of the discriminant is a candidate for some
hand-waving, and Lemma|[I.10.7)on flex points may be a proof to skip.

Indices can cloud the picture. When that happens, I recommend focussing attention on a low dimensional
case. Schelter’s neat proof of Chevalley’s Finitness Theorem is a good example. Schelter discovered the proof
while studying P!. That case demonstrates the main point, and is a bit easier to follow.

In Chapter 6 on O-modules, all technical points about sheaves are eliminated when one sticks to affine
open sets and localizations. Sections over other open sets are important, mainly because one wants the global
sections, but the proof that a module extends to arbitrary open sets can safely be put on a back burner, as is
done in the notes.

In Chapter 7, I decided to restrict to O-modules when defining cohomology, and to characterize the coho-
mology axiomatically. This was in order to minimize technical points. Simplicial operations are eliminated,
though they appear in disguise in the resolution (7.4.13).

The special topics at the ends of Chapters 2,3,4 enrich the subject. I don’t recommend skipping them. And,
without some of the applications at the end of Chapter 8, the Riemann Roch Theorem would be pointless.

When T last taught the subject in the spring of 2020, MIT semester had 39 class hours. I followed this
schedule: Chapter 1, 6 hours, Chapters 2-7, roughly 4 hours each, Chapter 8, 7 hours, in-class quizzes, 2
hours. This was a brisk pace. The topics in the notes could be covered comfortably in a one-year course, and
there would be time for some extra material.

Great thanks are due to the students who have been in my classes. Many of you contributed to these
notes by commenting on the drafts or by creating figures. Though I remember you well, I’'m not naming you
individually because I’'m sure I’d overlook someone important. I hope that you will understand.

A Note for the Student

The prerequisites are standard undergraduate courses in algebra, analysis, and topology, and the definitions
of category and functor. I also suppose a familiarity with the implicit function theorem for complex variables.
But don’t worry too much about the prerequisites. You can look them up as needed, and many points are
reviewed briefly in the notes as they come up.

Proofs of some lemmas and propositions are omitted. I have omitted a proof when I consider it simple
enough that including it would just clutter up the text or, occasionally, when I feel that it is important for the
reader to supply a proof.

As with all mathematics, working exercises and, most importantly, writing up the solutions carefully is, by
far, the best way to learn the material well.
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We begin with plane curves. They were the first algebraic varieties to be studied, and they provide instructive
examples. Chapters [2]—[7] are about varieties of arbitrary dimension. We will see in Chapter [5] how curves
control higher-dimensional varieties, and we come back to curves in Chapter@

1.1 The Affine Plane

The n-dimensional affine space A™ is the space of n-tuples of complex numbers. The two-dimensional affine
space A? is the affine plane.

Let f(x1,22) be an irreducible polynomial in two variables, with complex coefficients. The set of points
of the affine plane at which f vanishes, the locus of zeros of f, is called a plane affine curve. Let’s denote that
locus by X. Writing « for the vector (z1, x2),

(1.1.1) X = {z|f(z) =0}

The degree of the curve X is the degree of its irreducible defining polynomial f.

When it seems unlikely to cause confusion, we may abbreviate the notation for an indexed set, using a
single letter, as here, where x stands for (x), z3).

1.1.2.

O

3

The Cubic Curve 32 = 23 — x (real locus)



About figures. In algebraic geometry, the dimensions are too big to allow realistic figures. Even with an affine
plane curve, one is dealing with a locus in the affine plane A2, whose topological dimension is 4. In some
cases, such as in the figure above, depicting the real locus can be helpful, but in most cases, even the real locus
is too big, and one must make do without a figure, or with a schematic diagram. U

We will get an understanding of the geometry of a plane curve as we go along, and we mention just one
point here. A plane curve is called a curve because it is defined by one equation in two variables. Its algebraic
dimension is 1. The only proper subsets of a curve X that can be defined by polynomial equations are the
finite sets (see Proposition[1.3.12). But because our scalars are complex numbers, the affine plane A? is a real
space of dimension 4, and X will be a surface in that space. This is analogous to the fact that the affine line
Al is the plane of complex numbers.

One can see that a plane curve X has dimension 2, geometrically, by inspecting its projection to a line. To
do this, one writes the defining polynomial as a polynomial in x5:

flz,20) = comg + clwgfl 4+ deyq
whose coefficients ¢; are polynomials in x;. Let’s suppose that d is positive, i.e., that f isn’t a polynomial in
x, alone. Let X —— A! be the projection from the plane curve X to the affine z;-line A'.

The fibre of amap V' — U over a point p of U is the inverse image of p, the set of points of V' that map to
p. One can describe the fibre of the map 7 over the point 1 = a, as the set of points (a, b) in which b is a root
of the one-variable polynomial

fla,z0) =cozd + G128+ 42y
with ¢; = ¢;(a). There will be finitely many points in this fibre, and it won’t be empty unless f(a,z3) is a
constant. The plane curve X covers most of the z;-line, a complex plane, finitely often.

1.1.3. Note. In contrast with complex polynomials in one variable, most polynomials in two or more variables
are irreducible — they cannot be factored. This can be shown by a method called “counting constants”. For in-
stance, quadratic polynomials in 21, 72 depend on the six coefficients of the monomials 1, z1, z2, 23, ¥1 22, 73
of degree at most two. Linear polynomials az1 +bxs+ ¢ depend on three coefficients, but the product of two
linear polynomials depends on only five parameters, because a scalar factor can be moved from one of the lin-
ear factors to the other. So the quadratic polynomials cannot all be written as products of linear polynomials.
This reasoning is fairly convincing. It can be justified formally in terms of dimension, which will be discussed
in Chapter[5] O

(1.1.4) changing coordinates

We allow linear changes of variable and translations in the affine plane A%2. When a point z is written as
the column vector (1, x2)?, the coordinates x’ = (), z4) after such a change of variable will be related to =
by a formula

(1.1.5) r=Qx +a

where @ is an invertible 2x2 matrix with complex coefficients and a = (a1, az)* is a complex translation vector.
This changes a polynomial equation f(z) = 0,to f(Qz'+ a) = 0. One may also multiply a polynomial f by
a nonzero complex scalar without changing its locus of zeros. Using these operations, all lines, plane curves
of degree 1, become equivalent.

An dffine conic is a plane affine curve of degree 2. Every affine conic is equivalent to one of the two loci

(1.1.6) x3—x5=1 or xzp=a

by a suitable linear change of variable, a translation, and scaling. The proof of this is similar to the one used
to classify real conics. These loci might be called a complex "hyperbola’ and ’parabola’, respectively. The
complex “ellipse’ 22 + 23 = 1 becomes the hyperbola’ when one multiplies the coordinate 3 by i.
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On the other hand, there are infinitely many inequivalent cubic curves. Cubic polynomials in two variables
depend on the coefficients of the ten monomials 1, x1,xa, 23, x122, 23, o3, 2229, 1123, 23 of degree at most
31in z1, z2. Linear changes of variable, translations, and scalar multiplication, give us only seven scalars to
work with, leaving three essential parameters.

1.2 The Projective Plane

The n-dimensional projective space P™ is the set of equivalence classes of nonzero vectors ¢ = (zq, 1, ..., Tn),
the equivalence relation being

(1.2.1) (X0 ey @) ~ (T ey ) 0 (TG ey ) = (AT oy ATy, (if 2’ =)

for some nonzero complex number A. The equivalence classes are the points of P™. One often refers to a point
by giving a particular vector in its class.

When 2 is a nonzero vector, the one-dimensional subspace of C™*! spanned by x consists of the vectors
Az, together with the zero vector. So points of P™ correspond to one-dimensional subspaces of the complex
vector space C™ 1,

(1.2.2)  the projective line

Points of the projective line P* are equivalence classes of nonzero vectors z = (xg, z1).

If the first coordinate x( of a vector z = (zo, x1) isn’t zero, we may multiply by A = x ! to normalize the
first entry to 1, and write the point that x represents in a unique way as (1, u;), with u; = x1/xo. There is one
remaining point, the point represented by the vector (0, 1). The projective line P! can be obtained by adding
this point, called the point at infinity, to the affine u,-line, which is a complex plane. As uq tends to infinity in
any direction, the point (1,u;) approaches (0, 1). Topologically, P! is a two-dimensional sphere.

(1.2.3) lines in projective space

Let p and ¢ be vectors that represent distinct points of the projective space P™. There is a unique /ine L in P™
that contains those points, the set of points L = {rp+ sq}, with r, s in C not both zero. Points of L correspond
bijectively to points of the projective line P!, by

(1.2.4) rp+sq <« (r,s)

A line in the projective plane P? can also be described as the locus of solutions of a homogeneous linear
equation

(125) S0 + 811 + S22 = 0

1.2.6. Lemma. [In the projective plane, two distinct lines have exactly one point in common, and in a pro-
Jective space of any dimension, a pair of distinct points is contained in exactly one line. O

(1.2.7) the standard covering of the projective plane
The projective plane P? is the two-dimensional projective space. Its points are equivalence classes of
nonzero vectors (g, 1, T2).

If the first entry xo of a point p = (zg,x1,x2) of the plane isn’t zero, we may normalize it to 1 without
changing the point: (zg,x1,72) ~ (1,u1,us), where u; = x;/zo. We did the analogous thing for P! above.
The representative vector (1, w1, uz) is uniquely determined by p, so points with xg # 0 correspond bijectively
to points of the affine plane A? with coordinates (uy,us):

($07x17x2) ~ (17u17u2) — (Ul,UQ)

9



We regard the affine uy, uo-plane as a subset of P? by this correspondence, and we denote that subset by U°.
The points of UY, those with zq # 0, are the points at finite distance. The points at infinity of P? are those of
the form (0, x1, x2). They are on the line at infinity L°, the locus {zo = 0} in P2. The projective plane is the
union of the two sets U? and L. When a point is given by a coordinate vector, one can assume that the first
coordinate is either 1 or 0.

We may write the point (g, z1,z2) that is in U° as (1,1, us), with u; = x;/z as above. The notation
u; = x;/xo is important when the coordinate vector (xg, x1, x2) has been given. When no coordinate vector
of a point p has been given, one may simply assume that the first coordinate is 1 and write p = (1, z1, z2).

There is an analogous correspondence between points (g, 1,72) and points of an affine plane A2, and
between points (zg, 1, 1) and points of an affine plane. We denote the subsets {x; # 0} and {z # 0} by U!
and U?, respectively. The three sets U?, U!, U2 form the standard covering of P? by three standard affine open
sets. Since the vector (0,0, 0) has been ruled out, every point of P2 lies in at least one of the three standard
open sets. Points whose three coordinates are nonzero lie in all of them.

1.2.8. Note. Which points of P? are at infinity depends on which of the standard open sets is taken to be the pointatin-

one at finite distance. When the coordinates are (xq, 1, x2), I like to normalize ¢ to 1, as above. Then the finity

points at infinity are those of the form (0, 1, z2). But when coordinates are (z,y, z), [ may normalize z to 1.

Then the points at infinity are the points (x, y, 0). I hope this won’t cause too much confusion. O

(1.2.9)  digression: the real projective plane realproj-
plane

Points of the real projective plane RP? are equivalence classes of nonzero real vectors z = (0,1, T2),
the equivalence relation being &’ ~ x if ' = Az for some nonzero real number \. The real projective plane
can also be thought of as the set of one-dimensional subspaces of the real vector space R3.

Let’s denote R? by V. The plane U in V defined by the equation o = 1 is analogous to the standard open
subset U° of the complex projective plane P2. We can project V' from the origin py = (0,0, 0) to U, sending
a point x = (xo,x1,x2) of V to the point (1, wuq,us), with u; = x; /. The fibres of this projection are the
lines through pg and z, with py omitted.

The projection to U is undefined at the points (0, z1, z2), which are orthogonal to the x-axis. The line
connecting such a point to pg doesn’t meet U. Those points are the points at infinity of RP?.

Looking from the origin, U becomes a “picture plane”.

10
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1.2.10.

The projection from three-space to a picture plane goes back to the the 16th century, the time of Desargues
and Diirer. Projective coordinates were introduced 200 years later, by Mobius.

The figure below shows the plane W: x+y+2 = 1 in the real vector space R?, together with its coordinate
lines and a conic. The one-dimensional subspace spanned by a nonzero vector (g, %o, zo) in R? will meet W
in a single point unless that vector is on the line L : x+y+2z = 0. So W is a faithful representation of most
of RP2. It contains all points except those on L.

1.2.11.

0 1 0) (100

(0 0 1)

The Real Projective Plane

(1.2.12)  changing coordinates in the projective plane

11



An invertible 3 x 3 matrix P determines a linear change of coordinates in P2. With z = (g, z1,72)" and
2’ = (xf, x}, z4)" represented as column vectors, that coordinate change is given by

(1.2.13) x = Pr’
The next proposition shows that four special points, the points

eo = (1,0,0)%, e; = (0,1,0)", ea = (0,0,1)* and €= (1,1,1)"
determine the coordinates in P2,

1.2.14. Proposition. Let pg, p1,p2, q be four points of P2, no three of which lie on a line. There is, up to a
scalar factor, a unique linear coordinate change Px' = x such that Pp; = e; and Pq = e.

proof. The hypothesis that the points pg, p1, p2 don’t lie on a line tells us that the vectors that represent those
points are independent. They span C3. So g will be a combination ¢ = copy + ¢1p1 + cap2, and because no
three of the four points lie on a line, the coefficients c; will be nonzero. We can scale the vectors p; (multiply
them by nonzero scalars) to make ¢ = pg—+p; +p2 without changing the points. Next, the columns of P can
be an arbitrary set of independent vectors. We let them be pg, p1, p2. Then Pe; = p;, and Pe = q. The matrix
P is unique up to scalar factor. O

(1.2.15) conics

A polynomial f(xq, ..., 2, ) is homogeneous, of degree d, if all monomials that appear with nonzero coef-
ficient have (total) degree d. For example, 23 + 23 — zox1 72 is a homogeneous cubic polynomial.

A homogeneous quadratic polynomal is a combination of the six monomials
2 2 2
Ty, T1, Ty, Tox1, T1T2, ToT2
The locus of zeros of an irreducible homogeneous quadratic polynomial is a conic.

1.2.16. Proposition. For any conic C, there is a choice of coordinates so that it becomes the locus
o1 + oo + X129 = 0

proof. A conic will contain three points that aren’t colinear. Let’s leave the verification of this fact as an
exercise. We choose three non-colinear points on the conic C, and adjust coordinates so that they become the
points eg, e1, e2. Let f be the homogeneous quadratic polynomial in those coordinates whose zero locus is
C'. Because ¢ is a point of C, f(1,0,0) = 0, and therefore the coefficient of x% in f is zero. Similarly, the
coefficients of 2 and z3 are zero. So f has the form

f =axgr 4+ brors + CT1T2
Since f is irreducible, a, b, c aren’t zero. By scaling appropriately (adjusting f, zq, 1, 2 by scalar factors),

we can make a = b = ¢ = 1. We will be left with the polynomial zgx; + xox2 + z122. O

1.3 Plane Projective Curves

The loci in projective space that are studied in algebraic geometry are the ones that can be defined by systems
of homogeneous polynomial equations. The reason that we use homogeneous equations is this:

To say that a polynomial f(zo, ..., z,) vanishes at a point of projective space P means that if the vector
a = (ao, ..., a, ) represents a point p, then f(a) = 0. Perhaps this is obvious. Now, if a represents p, the other
vectors that represent p are the vectors Aa (A # 0). When f vanishes at p, f(Aa) must also be zero. The
polynomial f(x) vanishes at p if and only if f(Aa) = 0 for every .

We write a polynomial f(zg, ..., Z,) as a sum of its homogeneous parts:
(13.1) Fefotfid-tfu

where fj is the constant term, f; is the linear part, etc., and d is the degree of f.
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1.3.2. Lemma. Let f = fo+ -+ + fq be a polynomial of degree d in xq, ..., x,, and let a = (ag, ..., an)
be a nonzero vector. Then f(\a) = 0 for every nonzero complex number X if and only if f;(a) = 0 for every
1=0,..d

This lemma shows that we may as well work with homogeneous equations.

proof of the lemma. We substitute into (1.3.1): f(A\z) = fo + Mf1(x) + A2 fo(2) + - + A\? f4(2). Evaluating at
r=a, f(Aa) = fo + Mfi(a) + N2 fa(a) + - + A f4(a), and f;(a) are scalars (complex numbers). The right
side of this equation is a polynomial of degree at most d in A, with complex coefficients f;(a). Since a nonzero
polynomial of degree at most d has at most d roots, f(Aa) won’t be zero for every A unless that polynomial is
zero — unless f;(a) is zero for every i. U

1.3.3. Lemma. (i) If the product f = gh of two polynomials is homogeneous, then g and h are homogeneous.
(ii) The zero locus in projective space of a product gh of homogeneous polynomials is the union of the two loci
{g =0} and {h = 0}.

(iii) The zero locus in affine space of a product gh of polynomials, not necessarily homogeneous, is the union
of the two loci {g = 0} and {h = 0}. O

(1.3.4) loci in the projective line

Before going to plane projective curves, we describe the zero locus in P! of a homogeneous polynomial in
two variables.

1.3.5. Lemma. A nonzero homogeneous polynomial f(x,y) = apz® + a129 1y + - - + aqy? with complex

coefficients is a product of homogeneous linear polynomials that are unique up to scalar factor.

To prove this, one uses the fact that the field of complex numbers is algebraically closed. A one-variable
complex polynomial factors into linear factors. To factor f(z,y), one can factor the one-variable polynomial
f(1,%) into linear factors, substitute y/z for y, and multiply the result by z%. When one adjusts scalar factors,
one will obtain the expected factorization of f(x,y). For instance, to factor f(z,y) = 2% — 3zy + 2y2,
we substitute = 1: 2y? — 3y + 1 = 2(y — 1)(y — 3). Substituting y = y/x and multiplying by 22,
f(z,y) = 2(y — z)(y — 1z). The scalar 2 can be distributed arbitrarily among the linear factors. O

When a homogeneous polynomial f is a product of linear factors, we can adjust the factors by scalars, to
put f into the form

(1.3.6) f(@,y) = cloie —uiy)™ - (opr — ugy)™

where no factor v;x — u;y is a constant multiple of another, c is a nonzero scalar, and ry + - -- + r is the
degree of f. The exponent r; is the multiplicity of the linear factor v;z — u;y.

A linear polynomial vz — uy determines the point (u, v) in the projective line P!, the unique zero of that
polynomial, and changing the polynomial by a scalar factor doesn’t change its zero. Thus the linear factors of
the homogeneous polynomial determine points of P!, the zeros of f. The points (u;,v;) are zeros of
multiplicity r;. The total number of those points, counted with multiplicity, will be the degree of f.

1.3.7. The zero (u;,v;) of f corresponds to a root x = wu; /v; of multiplicity r; of the one-variable polynomial
f(x, 1), except when the zero is the point (1,0). This happens when the coefficient aq of f is zero, and y is a
factor of f. One could say that f(z,y) has a zero at infinity in that case.

This sums up the information contained in the locus of a homogeneous polynomial in the projective line.
It will be a finite set of points with multiplicities.

(1.3.8) intersections with a line

Let Z be the zero locus of a homogeneous polynomial f(zy, ..., z,) of degree d in projective space P,
and let L be a line in P™ (1.2.4). Say that L is the set of points rp + sq, where p and ¢ are points that are

13



represented by specific vectors (ag, ..., a,) and (bo, ..., by,), respectively. So L corresponds to the projective
line P, by rp + sq <> (r,s). Let’s also assume that L isn’t entirely contained in the zero locus Z. The
intersection Z N L corresponds to the zero locus in P! of the polynomial f in r, s obtained by substituting
rp 4 sq into f. This substitution yields a homogeneous polynomial f(r, s) of degree d, and the zeros of f in
P! correspond to the points of Z N L. If f has degree d, there will be d zeros, counted with multiplicity.

For instance, let f be the polynomial xgx1 +2oxe+xz122. Then with p = (ag, a1, az) and ¢ = (bg, b1, b2),
f is the following quadratic polynomial in 7, s:

f(r,s) = f(rp+ sq) = (rag + sbo)(ray + sby) + (rag + sbo)(ras + sbz) + (ray + sby)(ras + sbs)
= (apay +apaz+ajaz)r? + (Zi# aib;)rs + (bob1 +boba+b1b2)s?

1.3.9. Definition. With notation as above, the intersection multiplicity of the zero locus Z and a line L at a
point p is the multiplicity of zero of the polynomial f. (]

1.3.10. Corollary. Let Z be the zero locus of a homogeneous polynomial f in projective space P™, and let L
be a line in P™ that isn’t contained in Z. The number of intersections of Z and L, counted with multiplicity, is
equal to the degree of f. O

(1.3.11) loci in the projective plane

The locus of zeros in P? of a single irreducible homogeneous polynomial f(z,y, z) is called a plane
projective curve. The degree of a plane projective curve is the degree of its irreducible defining polynomial.

The next proposition shows that plane projective curves are the most interesting loci in the projective plane.

1.3.12. Proposition. Homogeneous polynomials f1, ..., f in three variables with no common factor have
finitely many common zeros in P? if r > 1.

The proof of this proposition is below.

1.3.13. Note. Suppose that a homogeneous polynomial f(z,y, z) is reducible, say f = g1 - - - g, that g; are
irreducible, and that no two of them are scalar multiples of one another. Then the zero locus C of f is the
union of the zero loci V; of the factors g;. In this case, C' may be called a reducible curve.

When there are multiple factors, say f = g7* - - - g;* and some e; are greater than 1, it is still true that the
locus C' : {f = 0} is the union of the loci V; : {g; = 0}, but the connection between the geometry of C' and
the algebra is weakened. In this situation, the structure of a scheme becomes useful We won’t discuss schemes.
The only situation in which we may need to keep track of multiple factors is when counting intersections with
another curve D. For this purpose, one can use the divisor of f, which is defined to be the integer combination
elVi+---+epVi. O

A rational function is a fraction of polynomials. The polynomial ring Clxz,y] embeds into its field of
fractions, the field of rational functions in z, y. That field is often denoted by C(x, ), but let’s denote it by F’
here. The polynomial ring C[z, y, z] in three variables becomes a subring of the one-variable polynomial ring
F[z]. When one is presented with a problem about the ring C|z, y, 2], it can be useful to begin by studying
it in the ring F'[z], which is a principal ideal domain. The polynomial rings C|x, y] and C|x, y, z] are unique
factorization domains, but not principal ideal domains.

1.3.14. Lemma. Let F' = C(x,y) be the field of rational functions in x,y.

() If f1, ..., fr are homogeneous polynomials in x,y, z with no common factor, their greatest common divisor
in F|z] is 1, and therefore they generate the unit ideal of F|z]. (The unit ideal of a ring R is the ring R itself.)
So there is an equation of the form Y, g, f; = 1, with g} in F[z].

(ii) An irreducible element of C|x, y, | that has positive degree in z is also an irreducible element of F|z|.

proof. (i) This is a proof by contradiction. Let k' be a nonzero element of F[2] that isn’t a unit, i.e., isn’t an

element of F', and suppose that A’ divides f; in F'[z] for every i. Say that f; = u,h’ with u} in F[z]. The
coefficients of A’ and ! are rational functions, whose denominators are polynomials in x,y. We multiply by
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a polynomial in x, y to clear the denominators from the coefficients of all of the elements /' and w}. This will
give us equations of the form d; f; = u;h, where d; are polynomials in x,y, and h and u; are polynomials in
x,v, z. Since b’ isn’tin F', neither is 4. So h will have positive degree in z. Let g be an irreducible factor of h
of positive degree in z. Then g divides d; f;, but it doesn’t divide d;, which has degree zero in z. So g divides
fi» and this is true for every ¢. This contradicts the hypothesis that fi, ..., fxr have no common factor.

(ii) Say that a polynomial f(x,y, z) factors in F[z], f = ¢g’h/, where ¢’ and I’ are polynomials of positive
degree in z with coefficients in F'. When we clear denominators from ¢’ and »’, we obtain an equation of the
form df = gh, where g and h are polynomials in z, y, z of positive degree in z and d is a polynomial in x, y.
Since neither g nor h divides d, f must be reducible. U

proof of Proposition|l.3.12] We are to show that homogeneous polynomials f1, ..., f- in x, y, z with no com-
mon factor have finitely many common zeros. Lemma|1.3.14ftells us that we may write Y g/ f; = 1, with g
in F[z]. Clearing denominators from the elements g; gives us an equation of the form

Zgifi =d

where g; are polynomials in x, y, z and d is a polynomial in x, y. Taking suitable homogeneous parts of g; and
d produces an equation Y g; f; = d in which all terms are homogeneous.

Lemma asserts that d(z, y) is a product of linear polynomials, say d = ¢; - - - £,. A common zero of
f1s -y fr is also a zero of d, and therefore it is a zero of £; for some j. It suffices to show that, for each j,
fis -, fr and £; have finitely many common zeros.

Since f1, ..., fr have no common factor, there is at least one f; that isn’t divisible by ;. Then Corollary
1.3.10|shows that f; and ¢; have finitely many common zeros. O

1.3.15. Corollary. Every locus in the projective plane P2 that can be defined by a system of homogeneous
polynomial equations is a finite union of points and curves. (I

The next corollary is a special case of the Strong Nullstellensatz, which will be proved in the next chapter.

1.3.16. Corollary. Let f(x,vy,z) be an irreducible homogeneous polynomial that vanishes on an infinite set
S of points of P2. If another homogeneous polynomial g(x,y, z) vanishes on S, then f divides g. Therefore,
if an irreducible polynomial vanishes on an infinite set S, that polynomial is unique up to scalar factor.

proof. If the irreducible polynomial f doesn’t divide g, then f and g have no common factor, and therefore
they have finitely many common zeros. O

(1.3.17)  the classical topology

The usual topology on the affine space A™ will be called the classical topology. A subset U of A™ is open in
the classical topology if, whenever U contains a point p, it contains all points sufficiently near to p. We call this
the classical topology to distinguish it from another topology, the Zariski topology, which will be discussed in
the next chapter.

The projective space P" also has a classical topology. A subset U of P is open if, whenever a point p of
U is represented by a vector (x, ..., 2, ), all vectors 2’ = ({,, ..., z,) sufficiently near to 2 represent points of
U.

(1.3.18) isolated points

A point p of a topological space X is isolated if the set {p} is both open and closed, or if both {p} and
its complement X — {p} are closed. If X is a subset of A™ or P™, a point p of X is isolated in the classical
topology if X doesn’t contain points p’ distinct from p, but arbitrarily close to p.

1.3.19. Proposition Ler n be an integer greater than one. In the classical topology, the zero locus of a
polynomial in A™, or of a homogeneous polyomial in P", contains no isolated points.
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1.3.20. Lemma. Let f be a polynomial of degree d in x1,...,x,. After a suitable coordinate change and
scaling, f(z) will become a monic polynomial of degree d in the variable x.,.

proof. We write f = fo+ f1+-- -+ fq, where f; is the homogeneous part of f of degree 7. We choose a point
p of A™ at which fy isn’t zero, and change variables so that p becomes the point (0, ..., 0, 1). We call the new
variables z1, .., .z, and the new polynomial f. Then f4(0,...,0,,) will be equal to cz? for some nonzero
constant ¢, and f/c will be monic. O

proof of Proposition[1.3.19 The proposition is true for loci in affine space and also for loci in projective space.
We look at the affine case.

Let f(x1, ..., z,) be a polynomial, and let Z be its zero locus. If f is a product, say f = gh, then Z will
be the union of the zero loci Z; : {g = 0} and Z5 : {h = 0}. A point p of Z will be in one of those two
sets, say in Z;. If p is an isolated point of Z, then its complement U = Z — {p} in Z is closed. If so, then its
complement Z; — {p} in Z;, which is the intersection U N Z;, will be closed in Z;, and therefore p will be
an isolated point of Z;. So it suffices to prove the proposition in the case that f is irreducible. Let p be a point
of Z. We adjust coordinates and scale, so that p becomes the origin (0, ..., 0) and f becomes monic in z,,. We
relabel x,, as y, and write f as a polynomial in y:

f(y) = f(xla "'7xn—17y) = yd + Cd—l(x)ydil + -+ CO(J:)

where ¢; is a polynomial in x4, ..., x,,—1. Since f is irreducible, ¢o(x) # 0. Since p is the origin and f(p) = 0,
¢o(0) = 0. So ¢o(x), which is the product of the roots of f(y), will tend to zero with z. When ¢q(x) is small,

at least one root of f will be small. So there are points of Z distinct from p, but arbitrarily close to p. O

1.3.21. Corollary. Let C' be the complement of a finite set of points in a plane curve C. In the classical
topology, a continuous function g on C that is zero at every point of C' is identically zero. O

1.4 Tangent Lines
(1.4.1) a notation for working locally

We will often want to inspect a plane projective curve C' : {f(xo,21,22) = 0} in a neighborhood of a
particular point p. To do this we may adjust coordinates so that p becomes the point (1,0, 0), and work with
points (1, z1,x2) in the standard open set uo . {z¢ # 0}. When we identify U° with the affine ;, xo-plane,
p becomes the origin (0,0) and C' becomes the zero locus of the nonhomogeneous polynomial f(1, 21, x2).
The loci f(zg,1,22) = 0and f(1, 21, 22) = 0 are the same on the subset U°.

This will be a standard notation for working locally. Of course, it doesn’t matter which variable we set
to 1. If the variables are x, y, z, we may prefer to take for p the point (0,0, 1) and work with the polynomial

flz,y,1).

(1.4.2) homogenizing and dehomogenizing

Let f(xo,x1, ..., T,) be a homogeneous polynomial. The polynomial f(1,z1,...,x,) is called the deho-
mogenization of f, with respect to the variable xg. A simple procedure, homogenization, inverts this dehomog-
enization. Suppose given a nonhomogeneous polynomial F'(z1, z2) of degree d. To homogenize F', we replace
the variables x;, ¢ = 1,...,n, by u; = 2;/xo. Then since u; have degree zero in z, so does F'(uy, ..., uyn).
When we multiply by zd, the result will be a homogeneous polynomial of degree d in zo, ..., 7, that isn’t
divisible by zg.

For example, let F'(z1,72) = 1 + 21 + 3. Then 23 F[uy, us] = 23 + woz1 + 3.

1.4.3. Lemma. A homogeneous polynomial f(xo,x1,x2) that isn’t divisible by x is irreducible if and only if
f(1, 21, 22) is irreducible. O

(1.4.4) smooth points and singular points
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Let C be the plane curve defined by an irreducible homogeneous polynomial f(zg,z1,22), and let f;
denote the partial derivative 68751" computed by the usual calculus formula. A point of C' at which the partial
derivatives f; aren’t all zero is a smooth point of C'. A point at which all partial derivatives are zero is a singular
point. A curve is smooth, or nonsingular, if it contains no singular point. Otherwise, it is a singular curve.

The Fermat curve
(1.4.5) a4 af 428 =0

is smooth because the only common zero of the partial derivatives da:gfl7 d:vffl, dwgfl, which is (0,0, 0),
doesn’t represent a point of P2, The cubic curve 3 + 3 — xoz122 = 0 is singular at the point (0,0, 1).

The Implicit Function Theorem explains the meaning of smoothness. Suppose that p = (1,0, 0) is a point
of C. We set xp = 1 and inspect the locus f(1, 1, x2) = 0 in the standard open set U°. If f, = aaxfz isn’t zero
at p, the Implicit Function Theorem tells us that we can solve the equation f(1,x1,z2) = 0 for x5 locally (for
small z1), as an analytic function ¢ of x, with ¢(0) = 0, and then f(1, z1, ¢(x1)) will be zero. (See
below.) Sending x; to (1, z1, ¢(x1)) inverts the projection from C' to the affine z-line locally. So at a smooth
point, C is locally homeomorphic to the affine line.

1.4.6. Euler’s Formula. If f is a homogeneous polynomial of degree d in the variables x, ..., ,,, then
S - s

It suffices to check the formula when f is a monomial. You will be able to do this. For instance, if the variables
are x,, z, and f = x2y3z, then

efo +yfy + 2fs = 2(22y°2) + y(32%y?z) + 2(2y’) = 62°y*2 = 6 f O

1.4.7. Corollary. (i) If all partial derivatives of an irreducible homogeneous polynomial f(xo,x1,x2) are
zero at a point p of P2, then f is zero at p, and therefore p is a point, a singular point, of the curve {f = 0}.
(ii) At a smooth point of the plane curve defined by an irreducible homogeneous polynomial f, at least two
partial derivatives of f will be nonzero.

(iii) At a smooth point of the curve {f = 0}, the dehomogenization f(1,u1,us) will have a nonvanishing
partial derivative.

(iv) The partial derivatives of an irreducible polynomial have no common (nonconstant) factor.

(v) A plane curve has finitely many singular points. O

(1.4.8) tangent lines and flex points

Let C be the plane projective curve defined by an irreducible homogeneous polynomial f(zg,z1,z2). A
line L is tangent to C' at a smooth point p if the intersection multiplicity of C' and L at p is at least 2. (See
(1.3.9).) A smooth point p of C'is a flex point if the intersection multiplicity of C' and its tangent line at p is at
least 3, and p is an ordinary flex point if that intersection multiplicity is equal to 3.

Let L be a line through a point p and let g be a point of L distinct from p. We represent p and g by specific
vectors (po, p1,p2) and (qgo, ¢1, g2), to write a variable point of L as p + t¢, and we expand the restriction of f
to L in a Taylor’s series. The Taylor expansion carries over to complex polynomials because it is an identity.

i

Let f; = ng and f;; = %afmj' Taylor’s formula is
(1.4.9) fp+t)) = fp) + (fop)qi)t " ;(Zqi £0) qj>t2 + o)
i ij

where the symbol O(3) stands for a polynomial in which all terms have degree at least 3 in ¢. The point ¢ is
missing from this parametrization, but this won’t be important.
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The intersection multiplicity of C' and L at a point p was defined in (I.3.8). It is equal to the lowest power
of ¢ that has nonzero coefficient in f(p + tq). The point p lies on the curve C'if f(p) = 0. If so, and if p is a
smooth point of C, then the line L with the parametrization p + tq will be a tangent line to C at p, provided
that the coefficient ) . f;(p) ¢; of t is zero. If p is a smooth point and L is a tangent line, then p is a flex point
if in addition, 3, . ¢; fi;(p) ¢; is zero.

One can write the equation (1.4.9) in terms of the gradient vector V = (fo, f1, f2) and the Hessian matrix
H of f. The Hessian is the matrix of second partial derivatives f;;:

Joo  for  fo2
(1.4.10) H = |fio fir fi2
Jao  fa1 fa2

Let V,, and H,, denote the evaluations of V and H, respectively, at p.

When we regard p and q as the column vectors (po, p1,p2)" and (qo, q1, ¢2)*, Equation can be written
as

(1.4.11) fo+tg) = f(p) + ()t + 5(¢"H,q)t* + O(3)

in which ¢ is the transpose of the column vector ¢, a row vector, and where V,q and ' H,q are computed as
matrix products.

So p is a smooth point of C' if f(p) = 0 and V,, # 0. If p is a smooth point, then L is tangent to C' at p
when V, q is zero, and p is a flex point when V, ¢ and ¢" H,, q are both zero.

The equation of the tangent line L at a smooth point p of C'is V, x = 0, or

(1.4.12) fo()xo + fr(p)z1 + fo(p)r2 =0

The point ¢ lies on the tangent line L if the coefficient of ¢ in (I.4.11) is zero. So a line L is a tangent line at a
smooth point p if it is orthogonal to the gradient V,,. There is a unique tangent line at a smooth point.

Note. Taylor’s formula shows that the restriction of f to any line through a singular point has a multiple zero.
However, we will speak of tangent lines only at smooth points of the curve.

1.4.13. Lemma. V,p=df(p) and p'H,= (d—1)V,.

This lemma is obtained by applying Euler’s Formula to the entries of V, and H,,. O

We rewrite Equation one more time, using the notation (u, v) to represent the symmetric bilinear
form u'H,v on the complex 3-dimenional vector space. It makes sense to say that this form vanishes on a
pair of points of P2, because the condition (u,v) = 0 doesn’t change when  or v is multiplied by a nonzero
scalar \.

1.4.14. Proposition. With notation as above,
(i) Equation can be written as

fo+ta) = g@opp) + FZxa)t + 3(a.a)t* + O(3)
(ii) A point p is a smooth point of C' if and only if (p, p) = 0 but (p,v) is not identically zero.
proof. (i) This is obtained by applying Lemma[I.4.13|to (T.4.TT).
(i) (p,v) = Vpv/(d—1) is identically zero if and only if V,, = 0. O

1.4.15. Corollary. Let p be a smooth point of C, let q be a point of P? distinct from p, and let L be the line
through p and q. Then

(i) L is tangent to C at p if and only if (p,p) = (p,q) =0, and
(i) p is a flex point of C with tangent line L if and only if (p,p) = (p,q) = {q,q) = 0. O

1.4.16. Theorem. A smooth point p of the curve C' is a flex point if and only if the Hessian determinant
det H,, at p is zero.
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proof. Let p be a smooth point of C'. If det H, = 0, the form (u, v) is degenerate, and there is a nonzero null
vector ¢. Then (p,q) = (g, q) = 0. But p isn’t a null vector, because (p, v) isn’t identically zero at a smooth
point. So q is distinct from p. Therefore p is a flex point.

Conversely, suppose that p is a flex point and let g be a point on the tangent line at p and distinct from p, so
that (p, p) = (p, ¢) = {q, ¢) = 0. The restriction of the form to the two-dimensional space spanned by p and ¢
is zero, and this implies that the form is degenerate. If (p, ¢, v) is a basis of V, the matrix of the form will look

like this:
*

0 0
0 0 =
* % % O

1.4.17. Proposition.

(i) Let f(x,y, z) be an irreducible homogeneous polynomial of degree at least two. The Hessian determinant
det H isn’t divisible by f. In particular, the Hessian determinant isn’t identically zero.

(i) A plane curve that isn’t a line has finitely many flex points.

proof. (i) Let C be the plane curve defined by f. If f divides the Hessian determinant, every smooth point
of C will be a flex point. We set z = 1 and look on the standard open set U2, choosing coordinates so that
the origin p is a smooth point of C, and so that g—i = 0 at p. The Implicit Function Theorem tells us that we
can solve the equation f(z,y,1) = 0 for y locally, say y = ¢(z), where ¢ is an analytic function. The graph
I': {y = p(x)} will be equal to C' in a neighborhood of p. (See the review below.) A point of I is a flex
point if and only if ‘5;72’ is zero there. If this is true for all points near to p, then ZZT‘;’ will be identically zero,
which implies that ¢ is linear, and since p(0) = 0, that ¢(y) has the form az. Then y = ax solves f = 0,
and therefore y — ax divides f(z,y,1). But f(z,y, 2) is irreducible, and so is f(z,y,1). So f(z,y,1) and
f(z,y, z) are linear, contrary to hypothesis.

(ii) This follows from (i) and (1.3.12). The irreducible polynomial f and the Hessian determinant det H
have finitely many common zeros. (]

1.4.18. Review. (about the Implicit Function Theorem)

By analytic function p(z1, ..., Tk ), in one or more variables, we mean a complex-valued function, defined
for small x, which can be represented as a power series that converges when x is small.

If f(x,y) is a polynomial of two variables such that f(0,0) = 0 and %(0, 0) # 0, the Implicit Function
Theorem asserts that there is a unique analytic function ¢(z) such that ¢(0) = 0 and f(z, ¢(x)) is identically
Zero.

Let R be the ring af analytic functions in z. In the ring R[y] of polynomials with coefficients in R, the
polynomial y —(x) divides f(x,y). To see this, we do division with remainder of f by the monic polynoial
y— (@) iny:

(1.4.19) fx,y) = (v — p(x))q(z,y) +r(x)

The quotient ¢ and remainder r are in R[y], and r(x) has degree zero in y, so it is in R. Setting y = ¢(x) in
the equation, one sees that 7(z) = 0.

Let T be the graph of ¢ in a suitable neighborhood U of the origin in z,y-space. Since f(z,y) =
(y — o(x))q(x,y), the locus f(z,y) = 0in U has the form I" U A, where T is the zero locus of y — ¢(z)
and A is the zero locus of ¢(x, y). Differentiating, we find that %(0, 0) = ¢(0,0). So ¢(0,0) # 0. Then A
doesn’t contain the origin, while I does. This implies that A is disjoint from T, locally. A sufficiently small
neighborhood U of the origin won’t contain any points of A. In such a neighborhood, the locus of zeros of f
will be T".

If % (0, 0) is also nonzero, one can also solve for x as an analytic function 1 (y) of y. Then ¢ (y) will be a
local inverse function of . O

1.5 Transcendence Degree

19



A domain that contains another domain R as a subring will be called an R-algebra. Domains that contain the
complex numbers, C-algebras, will occur frequently, so we refer to them simply as algebras.

If F is a field, we use the customary notation F'[a, ..., ;] or F[] for the F-algebra generated by a set of
elements @ = {ay, ..., an }, and we may denote the field of fractions of F|ay, ..., ay] by F(ay, ..., oy ) or by
F(a).

Let F' C K be a field extension. A set o = {a, ..., ay, } of elements of K is algebraically dependent over
F if there is a nonzero polynomial f(z1, ..., 2, ) with coefficients in F', such that f(«) = 0. If there is no such
polynomial, the set « is algebraically independent over F'.

Aset{ay, ..., a, } is algebraically independent over F if and only if the surjective map from the polynomial
algebra F'|x1,...,x,] to Flag, ..., ;] that sends z; to «; is bijective. If so, we may say that Flaq, ..., ] is a
polynomial algebra.

An infinite set is called algebraically independent over F' if every finite subset is algebraically independent
over F' — if there is no polynomial relation among any finite set of its elements.

The set {1} consisting of a single element of K is algebraically dependent if «; is algebraic over F.
Otherwise, it is algebraically independent, and then «; is said to be transcendental over F'.

A transcendence basis for K over F' is a finite algebraically independent set & = {ay, ..., a;, } that isn’t
contained in a larger algebraically independent set. If there is a transcendence basis, its order is the transcen-
dence degree of the field extension K. Proposition[I.5.3]below shows that all transcendence bases for K over
F have the same order. If there is no (finite) transcendence basis, the transcendence degree of K over F'is said
to be infinite.

For example, when K = F'(x1, ..., x,) is the field of rational functions in n variables, the variables form a
transcendence basis of K over F', and the transcendence degree of K over F' is n. The elementary symmetric
functions s = x1+--4+%p , ..., Sy = X1 - - T, also form a transcendence basis.

An element a of aring R is a zero divisor if there is a nonzero element b of R such that the product ab is
zero. A domain is a nonzero ring with no zero divisors.

1.5.1. Proposition. Let F be a field, let A be domain that is an F-algebra, and let K be its field of fractions.
If K has transcendence degree n over F, then every algebaically independent set of elements of A is contained
in an algebraically independent set of order n. U

1.5.2. Proposition. Let K/F be a field extension, let o = {1, ...,a,} be a set of elements of K that is
algebraically independent over F, and let F'(«) be the field of fractions of the F-algebra that is generated by
Q.

(i) Let B be another element of K. The set {1, ...,n, S} is algebraically dependent if and only if (B is
algebraic over F(a).

(ii) The algebraically independent set « is a transcendence basis if and only if every element of K is algebraic

over F(a). O

1.5.3. Proposition. Let K/F be a field extension. If K has a finite transcendence basis, then all algebraically
independent subsets of K are finite, and all transcendence bases have the same order.

proof- Let o« = {ay, ..., } and 8 = {f1, ..., Bs} be subsets of K. Assume that K is algebraic over F'(«) and
that the set (3 is algebraically independent over F. We show that s < r. The fact that all transcendence bases
have the same order will follow: If both v and 3 are transcendence bases, then we can interchange « and 3,
sor < s.

The proof that s < r proceeds by reducing to the trivial case that 3 is a subset of . Suppose that some
element of j3, say S, isn’t in the set «. The set 8’ = {31, ..., Bs—1} is algebraically independent, but it isn’t
a transcendence basis. So K isn’t algebraic over F'(5’). Since K is algebraic over F'(«), there is at least one
element of o, say ., that isn’t algebraic over F/(8'). Then v = 8’ U{«,-} will be an algebraically independent
set of order s that contains more elements of the set « than 5 does. Induction shows that s < r. O

1.5.4. Corollary. Let L D K D F be fields. If the degree [L: K| of the field extension L/ K is finite, then L
and K have the same transcendence degree over F.

This follows from Proposition[1.5.2] O
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1.6 The Dual Curve

(1.6.1)  the dual plane

Let IP denote the projective plane with coordinates x¢, z1, T2, let sg, s1, s2 be scalars, not all zero, and let
L be the line in P with the equation

(162) Soxg + S1&1 + Sax2 = 0

The solutions (g, z1, z2) of this equation, the points of L, are unchanged when we multiply (so, s1, S2)
by a nonzero scalar A\. They determine the coefficients s; up to a common nonzero factor. So L determines a
point (s, $1, s2) in another projective plane P* called the dual plane. We denote the point (sg, s1, $2) of P*
by L*. Moreover, a point p = (xo, x1, 2) in P determines a line in the dual plane, the line with the equation
@I), when s; are regarded as the variables and z; as the scalar coefficients. We denote that line by p*. The
equation exhibits a duality between P and P*. A point p of P lies on the line L if and only if the equation is
satisfied, and this means that, in P*, the point L* lies on the line p*.

As this duality shows, the dual P** of the dual plane P* is the plane PP.

(1.6.3) the dual curve

Let C' be the plane projective curve defined by an irreducible homogeneous polyomial f of degree at least
two, and let U be the set of its smooth points. Corollary tells us that U is the complement of a finite set
in C. We define a map

U
as follows: Let p be a point of U and let L be the tangent line to C at p. The definition of the map is t(p) = L*,
where L* is the point of P* that corresponds to L. Thus the image ¢(U) is the locus of the tangent lines at the
smooth points of C. We assume that f has degree at least two because, if C' were a line, the image ¢(U) of U
would be a point.
Let Vf = (fo, f1, f2) denote the gradient of f, with a f; = g—f as before. The tangent line L at a smooth

T

point p = (xo, z1,x2) of C has the equation foxo + fix1 + foxo = 0. Therefore L* = t(p) is the point

(1.6.4) (50,51, 52) ~ (fo(x), f1(2), f2()) = Vf(z)

1.6.5. Lemma. Ler (s, s1,S2) be a homogeneous polynomial of degree v, and let g(xo,x1,22) =
©(Vf(x)). Then (s) is identically zero on the image t(U) of the set U of smooth points if and only if
g(x) is identically zero on U, and this is true if and only if f divides g.

proof. The point s = (s, s1,s2) is in t(U) if for some z in U and some A # 0, Vf(z) = As. Then
g(x) = p(Vf(z)) = o(As) = A"p(s). So g(x) = 0if and only if p(s) = 0. O

1.6.6. Theorem. Let C be the plane curve defined by an irreducible homogeneous polynomial f of degree at
least two. With notation as above, the image t(U) is contained in a curve C* in the dual plane P*.

The curve C* referred to in the theorem is the dual curve.

proof of Theorem If an irreducible homogeneous polynomial ¢(s) vanishes on ¢(U), it will be unique
up to scalar factor (Corollary . We show first that there is a nonzero polynomial ¢(s), not necessarily
irreducible or homogeneous, that vanishes on ¢(U). The field C(zg, 21, 22) has transcendence degree three
over C. Therefore the four polynomials fy, f1, f2, and f are algebraically dependent. There is a nonzero poly-
nomial t(so, $1, $2,t) such that ¥(fo(x), fi(x), f2(x), f(x)) is the zero polynomial. We can cancel factors
of ¢, so we may assume that ¢ isn’t divisible by ¢. Let ¢(s) = ¥(so, 1, S2,0). When ¢ doesn’t divide 1, this
isn’t the zero polynomial. If a vector z = (z1, 2, x3) represents a point of U, then f(x) = 0, and therefore

P(fo(x), fr(x), f2(x), f(2)) = P(Vf(2),0) = o(Vf(z))

Since the left side of this equation is identically zero, p(Vf(z)) = 0 for every x that represents a point of U.
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Next, say that f has degree d. Then the partial derivatives f; have degree d—1. Therefore Vf(Ax) = A1~1Vf(z)

for all )\, and because the vectors  and Az represent the same point of U, ¢(Vf(Ax)) = o(A¥~1Vf(z))) =0
for all A, when z is in U. Writing Vf(x) = s, p(A?~1s) = 0 for all A when x is in U. Since A?~! can be any
complex number, Lemmatells us that the homogeneous parts of ¢(s) vanish at s, when s = Vf(z) and
2 isin U. So the homogeneous parts of ¢(s) vanish on ¢(U). This shows that there is a nozero, homogeneous
polynomial (s) that vanishes on ¢(U). We choose such a polynomial (s). Let its degree be 7.

Let g(x) = ¢(Vf(z)). If f has degree d, then g will be homogeneous, of degree r(d — 1). It will vanish
on U, and therefore on C' (1.3.21). So f will divide g. If ¢(s) factors, then g(z) factors accordingly, and
because f is irreducible, it will divide one of the factors of g. The corresponding factor of ¢ will vanish on
t(U) . So we may replace the homogeneous polynomial ¢ by one of its irreducible factors. (]

In principle, the proof of Theorem[I.6.6 gives a method for finding a polynomial that vanishes on the dual
curve. That method is to find a polynomial relation among f, fy, f-, f, and set f = 0. But it is usually painful
to determine the defining polynomial of C* explicitly. Most often, the degrees of C' and C* will be different.
Moreover, several points of the dual curve C* may correspond to a singular point of C, and vice versa.

We give two examples in which the computation is easy.

1.6.7. Examples.
(i) (the dual of a conic) Let f = xox1 + xox2 + 122 and let C be the conic f = 0. Let (sg, 51, 2) =
(fo, f1, f2) = (x1+22, xo+22, Xo+x1). Then

(1.6.8) 2452453 —2w2+a24+23) =2f and  sgs; + s152 + s082 — (w5 + 27 +3) =3f
We eliminate (23 + 2% + x3) from the two equations:

(1.6.9) (824 53 + 53) — 2(s0s1 + 5152 + 8082) = —4f

Setting f = 0 gives us the equation of the dual curve. It is another conic.

(ii) (the dual of a cuspidal cubic) The dual of a smooth cubic is a curve of degree 6. It is too much work
to compute that dual here. We compute the dual of a singular cubic instead. The curve C' defined by the
irreducible polynomial f = y2z + 22 has a singularity, a cusp. at the point (0,0, 1). The Hessian matrix of f
is

6z 0 O
H=10 2z 2
0 2y O
and the Hessian determinant det H is h = —24xy%. The common zeros of f and h are the singular point

(0,0,1), and a single flex point (0, 1,0).
We scale the partial derivatives of f to simplify notation. Let u = f,/3 = 2%, v = f,/2 = yz, and
w = f, = y> Then

2

Vw—u? =yt —ab = (e + 2% (Y2 — 7)) = f(y°

2z —a®)

The zero locus of the irreducible polynomial v?w — u? is the dual curve, another singular cubic. O

(1.6.10) alocal equation for the dual curve

We label the coordinates in P and P* as z, y, z and u, v, w, respectively, and we work in a neighborhood
of a smooth point pg of the curve C' defined by a homogeneous polynomial f(z,y, z). We choose coordinates
so that pg = (0,0, 1), and that the tangent line Ly at py is the line {y = 0}. The image of py in the dual curve
C* is the point L§ at which (u, v,w) = (0,1, 0).

Let f(z,y) = f(z,y,1). In the affine z, y-plane, the point py becomes the origin (0,0). So f(po) = 0,
and since the tangent line is Lo, %(po) = 0, while g—i(po) # 0. We can solve the equation f = 0 for y

as an analytic function y(x), with y(0) = 0. Let y'(z) denote the derivative %. Differentiating the equation
f(z,y(z)) = 0 shows that ' (0) = 0.
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Let p; = (x1,y1) be a point of Cj near to py, so that y; = y(x1), and let y; = y'(x1). The tangent line
L, at pp has the equation

(1.6.11) y—y1 =y (x—x1)

Putting z back, the homogeneous equation of the tangent line L, at the point p; = (1,1, 1) is
—z+y+ (ye1—y1)z =0

The point L] of the dual plane that corresponds to L; is

(1.6.12) (u1,v1,w1) = (=91, L,y 21—11)

(1.6.13) the bidual

The bidual C** of C' is the dual of the curve C*. It is a curve in the space P**, which is P.

1.6.14. Theorem. A plane curve C of degree greater than one is equal to its bidual C**.

We use the following notation for the proof:

« U is the set of smooth points of the curve C, and U™ is the set of smooth points of the dual curve C*.

«U* P = Pis the map analogous to the map U - pr.

« V is the set of points p of C' such that p is a smooth point of C' and also ¢(p) is a smooth point of C*, and
V* is the image tV'.

ThenV CU CCand V* C U* C C*.

1.6.15. Lemma.
(i) V is the complement of a finite set in C.

(ii) Let p1 be a point near to a smooth point p of a curve C, let L1 and L be the tangent lines to C' at py and
p, respectively, and let q be intersection point L1 N L. Then lim q = p.
pP1—p

(iii) If L is the tangent line to C at a point p of V, then p* is the tangent line to C* at the point L*, and
t*(L*) = p.
(iv) V'* is the complement of a finite set in C*, and the map V' L vris bijective.

The points and lines that appear in (ii) are displayed in the figure below.

proof. (i) Let S and S* denote the finite sets of singular points of C' and C*, respectively. The set V' is obtained
from C by deleting points of .S and points in the inverse image of S*. The fibre of the map U 5 P* over
a point L* of C'* is the set of smooth points of C' whose tangent line is L. Since L meets C' in finitely many
points, the fibre is finite. So the inverse image of the finite set S™ is finite.

(ii) We work analytically in a neighborhood of p, choosing coordinates so that p = (0,0, 1) and that L is
the line {y = 0}. Let (24, yq, 1) be the coordinates of the point ¢. Since ¢ is a point of L, y, = 0. The
coordinate x, can be obtained by substituting z = z, and y = 0 into the local equation (T.6.TT) for L;:
T = T1—Y1/Y1-

Now, when a function has an nth order zero at the point « = 0, i.e, when it has the form y = 2™ h(z), where
n > 0 and h(0) # 0, the order of zero of its derivative at that point is n— 1. This is verified by differentiating

a™h(z). Since the function y(z) has a zero of positive order at p, lim y; /y; = 0. We also have lim z; = 0.
p1—Pp p1—p

Therefore lim z, =0, and lim ¢ = lim (z4,y4,1) = (0,0,1) = p.
—p

pP1—=p pP1—p P1

(iii) Let p; be a point of C near to p, and let Ly be the tangent line to C' at p;. The image L7 of p; is the point
(fo(p1), f1(p1), f2(p1)) of C*. Because the partial derivatives f; are continuous,

lim L} = (fo(p), f1(p), f2(p)) = L*

p1—p
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With ¢ = L N L as above, ¢* is the line through the points L* and Lj. As p; approaches p, L] approaches
L*, and therefore ¢* approaches the tangent line to C* at L*. On the other hand, it follows from (ii) that
q* approaches p*. Therefore the tangent line to C* at L* is p*. By definition, t*(L*) is the point of C' that
corresponds to the tangent line p* at L*. So t*(L*) = p** = p. [l

1.6.16.

L,

C*

A Curve and its Dual

In this figure, the curve C' on the left is the parabola y = 2. We used the local equation (1.6.11) to obtain a
local equation u? = 4w of the dual curve C*.

proof of theorem[1.6.14] Let p be a point of V, and let L be the tangent line at p. The map ¢* is defined at L*),
and t*(L*) = p. Since L* = t(p), t*t(p) = p. It follows that the restriction of ¢ to V' is injective, and that it
defines a bijective map from V" to its image V'*, whose inverse function is t*. So V' is contained in the bidual
C**. Since V is dense in C and since C** is a closed set, C' is contained in C**. Since C' and C** are curves,

C =C*. O
1.6.17. Corollary. (i) Let U be the set of smooth points of a plane curve C, and let t denote the map from U
to the dual curve C*. The image t(U) of U is the complement of a finite subset of C*.

(i) If C is a smooth curve, the map C Ly o, s defined at all points of C, and it is a surjective map.

proof. (i) With U, U*, and V as above, V = t*¢(V) C t*(U*) C C** = C. Since V is the complement of a
finite subset of C, so is t*(U*). The assertion to be proved follows when we interchange C' and C*.

(ii) The map ¢ is continuous, so its image t(C') is a compact subset of C*, and by (i), its complement S is a
finite set. Therefore .S is both open and closed. It consists of isolated points of C*. Since a plane curve has no
isolated point, S is empty. ]

1.6.18. Corollary. Let C' be a smooth curve, and suppose that the tangent line L at a point p of C isn’t tangent
to C at another point, i.e., that L isn’t a bitangent. Then the path defined by the local equation (I.6.12) traces
out the dual curve C* near to L* = (0, 1, 0).

proof. Let D be an open neighborhood of p in C in the classical topology, such that the equation (1.6.12)
describes the point L] when p; is in D. The complement of D in C' is compact, and so is its image tZ. If

L* = t(p) isn’t in tZ, then p has a neighborhood U whose image is disjoint from ¢Z. In that neighborhood,
the local equation traces out the dual curve.

The reasoning breaks down when C' is singular, because the locus of smooth points won’t be compact. [J
1.7 Resultants and Discriminants
Let
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(1.7.1) Flx)=a2™+a2z™ '+ +a, and Gz)=2"+bz" ' +---+b,

be monic polynomials. The resultant Res(F,G) of F and G is a certain polynomial in the undetermined
coefficients a;, b;. Its important property is that, when the coefficients are given values in a field, the resultant
is zero if and only if F' and G have a common factor.

For instance, suppose that F'(x) = x + a; and G(z) = 22 + byx + by. The root —ay of F is a root of G if
G(ay) = a? — byay + by is zero. The resultant of F' and G is a3 — bya; + bo.

1.7.2. Example. Suppose that the coefficients a; and b; in are polynomials in ¢, so that F' and G
become polynomials in two variables. Let C' and D be (possibly reducible) curves F' = 0 and G = 0 in the
affine plane AtzT The resultant Res(F, G), computed regarding x as the variable, will be a polynomial in ¢,
whose roots are the ¢-coordinates of the intersections of C' and D.

The analogous statement is true when there are more variables. If /' and G are relatively prime polynomials
inz,y,z theloci C : {F =0} and D : {G = 0} in A® will be surfaces, and the intersection S = C'N D will
be a curve. The resultant Res, (F, G), computed regarding z as the variable, is a polynomial in z, y. Its zero
locus is the projection of S to the x, y-plane. U

The formula for the resultant is nicest when one allows leading coefficients different from 1. We work with
homogeneous polynomials in two variables to prevent the degrees from dropping when a leading coefficient
happens to be zero. The common zeros of two homogeneous polynomials f(x,y) and g(z,y) correspond to
the common roots of the polynomials F'(z) = f(x,1) and G(z) = g(«, 1), except when the common zero is
the point (0, 1) at infinity.

Let

(1.7.3)  f(z,y) = apx™ + arx™ 'y + - +amy™ and g(x,y) = box" + bra" ty + - + by”

be homogeneous polynomials in = and y, of degrees m and n, respectively, and with complex coefficients. If
these polynomials have a common zero (z,y) = (u,v) in Py, , then vz—uy divides both g and f (see ).
Then the polynomial & = fg/(vz—uy), which has degree r = m+n—1, will be divisible by f and also by g.
Suppose that this is so, and that A = pf = gg, where p and g are homogeneous polynomials of degrees n—1
and m — 1, respectively. Then p will be a linear combination of the polynomials z?y?, with i+j = n—1 and ¢
will be a linear combination of the polynomials 2%y, with k4¢ = m —1. The fact that the two combinations

pf and qg are equal tells us that the 7+ 1 polynomials
(1.7.4) e ) T R A T A T

of degree r are (linearly) dependent. For example, if f has degree 3 and g has degree 2, and if f and g have a
common zero, then the polynomials

zf =  aox* + a1y + asx?y? + asxy®
yf = apx®y + a1y + azry® + agy*
22g = boxt + biady + bax?y?
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ryg = boz®y + b1z?y? + bozy?
y?g = bz?y? + byzy® + bay?

will be dependent. Conversely, if the polynomials are dependent, there will be an equation of the form
pf —qg = 0, with p of degree n—1 and q of degree m—1. Then since g has degree n while p has degree n — 1,
at least one zero of g must be a zero of f.

The polynomials have degree r = m-+n—1. We form a square (m+n) x (m+n) matrix R, the
resultant matrix, whose columns are indexed by the monomials 2", 2" 'y, ..., y" of degree r, and whose rows
list the coefficients of those monomials in the polynomials (I.7.4). The matrix is illustrated below for the cases
m,n = 3,2 and m,n = 1,2, with dots representing entries that are zero:

apg a1 az das

. ag a1 az as ap am .
(1.7.5) R=\1b b1 by - . or R=|[- - ay a1
-~ by by by - by by by
© by by by

The resultant of f and g is defined to be the determinant of k.

(1.7.6) Res(f,g) = detR

In this definition, the coefficients of f and g can be in any ring.

The resultant Res(F, G) of the monic, one-variable polynomials F(z) = 2™ +a;2™ 1 +---+a,, and
G(z) = 2" +byz" 1+ -+b, is the determinant of the matrix obtained from R by setting ag = by = 1.

1.7.7. Corollary. Let f and g be homogeneous polynomials in two variables, or monic polynomials in one
variable, of degrees m and n, respectively, and with coefficients in a field. The resultant Res(f, g) is zero if
and only if f and g have a common factor. If so, there will be polynomials p and q of degrees n—1 and m—1
respectively, such that pf = qg. If the coefficients are complex numbers, the resultant is zero if and only if f
and g have a common zero. O

When the leading coefficients ag and by of f and g are both zero, the point (1,0) of P! will be a zero of f and
of g. In that case, one could say that f and g have a common zero at infinity.

1.7.8. Aside. (the entries of the resultant matrix) Define a; = 0 when ¢ isn’t in the range 0, ...,m, and b; = 0
when ¢ isn’t in the range 0, ...,n. The resultant matrix has two parts. For rows 1 to n, the (i, j)-entry R;;
of R is the coefficient of 2" ~Jy/~! in the polynomial ™y’ f, which is equal to the coefficient a;_; of
™t =Iyi="in f. So R;; = a;_;. The computation for the bottom part of R is similar, except that one needs
to adjust the indices. For rows n + 1,..,m+n, let k = n — i. The (i, j)-entry of R is the coefficient of
amIn=kyk=Lin gn=kykg which is equal to the coefficient b, _, of 2™+*~Jyi~kg The i, j-entry of R is

Rij=a;_;wheni=1,...,n, and R;; =bj_pwheni=n+kandk=1,...,m

entries with negative subscripts being zero. U

(1.7.9)  weighted degree

When defining the degree of a polynomial, one may assign an integer called a weight to each variable. If
one assigns weight w; to the variable x;, the monomial z{* - - - ¢ gets the weighted degree

eitwy + -+ epwy

For instance, one may assign weight k to the coefficient ay, of the polynomial f(z) = 2" —a;2" 1 +aq2™ 2 —

-+ - £ a,,. This is natural because, if f factors into linear factors, f(z) = (x —ay) - - - (x — o), then ay, will be
the kth elementary symmetric function in the roots oy, ..., &,. When a; written as a polynomial in the roots,
its degree will be k.
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1.7.10. Lemma. Let f(x,y) and g(x,y) be homogeneous polynomials of degrees m and n respectively, with
variable coefficients a; and b;, as in . When one assigns weight i to a; and to b;, the resultant Res(f, g)
becomes a weighted homogeneous polynomial of degree mn in the variables {a;,b;}. ([

For example, when the degrees of f and g are 1 and 2, respectively, the resultant Res(f, g) is the determi-
nant of the 3 x 3 matrix depicted in (1.7.5), which is a%bg + a%bo — agpa1by. Its weighted degree is 1 -2 = 2.

1.7.11. Proposition. Let F and G be products of monic linear polynomials, say F = [[\~,(z — o;) and
G= H?Zl(as — B;). Then

Res(F,G) = H(Oéi—ﬁj) = HG(%’)

(2]

proof. The equality of the second and third terms is obtained by substituting «; for z into the formula G =
[1(z — B;). We prove the first equality. Let the polynomials F' and G have variable roots «; and (3, let R
denote the resultant Res(F, G), and let IT = [, (e — ;). Lemma tells us that, when we write the
coefficients of F' and G as symmetric functions in the roots, «; and §;, the resultant R will be homogeneous.
Its (unweighted) degree in {«;, 8, } will be mn. This is also the degree of II. To show that R = II, we choose
i and j. We view R as a polynomial in the variable «;, and divide by o;; — 3;, which is monic in a;:

R=(a; = Bj)g+r

where r has degree zero in «;. Corollary tells us that the resultant R vanishes when we make the
substitution o; = f3;, because the coefficients of F' and G are in the field of rational functions in {c;, 8;}.
Looking at the equation above, we see that the remainder r also vanishes when a; = 3;. On the other hand, the
remainder is independent of «;. It doesn’t change when we make that substitution. Therefore the remainder
is zero, and o; — 3; divides R. This is true for all ¢ and j, so II divides R, and since these two polynomials
have the same degree, R = clI for some scalar c. One can show that ¢ = 1 by computing R and II for some
particular polynomials. We suggest making the computation with F = 2" and G = ™ —1. (I

1.7.12. Corollary. Let F, G, and H be monic polynomials and let c be a scalar. Then
(i) Res(F,GH) = Res(F,G)Res(F,H), and
(ii) Res(F(z—c),G(x—c)) = Res(F(x), G(x)). O

(1.7.13) the discriminant

The discriminant Discr(F) of a polynomial F' = agz™ + a1z™ ' + .- - a,, is the resultant of F' and its
derivative F’:

(1.7.14) Discr(F) = Res(F, F')

It is computed using the formula for the resultant of a polynomial of degree m, and it will be a weighted
polynomial of degree m(m —1). The definition makes sense when the leading coefficient ag is zero, but the
discriminant will be zero in that case.

When F' is a polynomial of degree n with complex coefficients, the discriminant is zero if and only if F’
and F’ have a common factor, which happens when F' has a multiple root.

Note. The formula for the discriminant is often normalized by a scalar factor. We won’t make this normaliza-
tion, so our formula is slightly different from the usual one.

The discriminant of the quadratic polynomial F(x) = ax? + bz + ¢ is

a b ¢
(1.7.15) det [2¢ b | = —a(®® - 4ac)
- 2a b

27



and the discriminant of a monic cubic x> + px + ¢ whose quadratic coefficient is zero is

1 - p g
. 1 . p q
(1.7.16) det |3 - p - - = 4p3 + 274
. 3 . p .
3 - p

As mentioned, these formulas differ from the usual ones by a scalar factor. The usual formula for the discrimi-
nant of the quadratic az? + bx + ¢ is b? — 4ac, and the discriminant of the cubic 23 + pz + ¢ is usually written
as —4p3 — 274>

Though it conflicts with our definition, we’ll follow tradition and continue writing the discriminant of a
quadratic as b% — 4ac.

1.7.17. Example. Suppose that the coefficients a; of F' are polynomials in ¢, so that F' = F'(¢, z) becomes a
polynomial in two variables. Let’s suppose that I is an irreducible polynomial. Let C be the curve F' = 0 in
the ¢, z-plane. The discriminant Discr,, (F'), computed regarding z as the variable, will be a polynomial in .
At aroot g of the discriminant, F'(¢q, «) will have a multiple root. Therefore the vertical line {t = to} will be
tangent to C, or pass though a singular point of C. O

1.7.18. Proposition. Let K be a field of characteristic zero. The discriminant of an irreducible polynomial F
with coefficients in K isn’t zero. Therefore F' has no multiple root.

proof. When F is irreducible, it cannot have a factor in common with the derivative F”, which has lower
degree. (]

This proposition is false when the characteristic of K isn’t zero. In characteristic p, the derivative I might be
the zero polynomial.

1.7.19. Proposition. Ler F = [[(z — ;) be a polynomial that is a product of monic linear polynomials

x — «y. Then
Discr(F) = HF/(OQ') = H(ai —aj) = :I:H(ozi —a;)?

i#] 1<g

proof. The fact that Discr(F') = [[ F'(«;) follows from (1.7.11). We prove the second equality by showing
that F”(a;) = [; ;2 (ci — ;). By the product rule for differentiation,

—

Fllo)=) (x—a1) - (z—ax) - (z— an)
k
where the hat ~ indicates that that term is deleted. When we substitute z = «;, all terms in this sum, except
the one with £ = i, become zero. O
1.7.20. Corollary. Discr(F(z)) = Discr(F(z — ¢)). O

1.7.21. Proposition. Let F'(z) and G(x) be monic polynomials. Then

Discr(FG) = + Discr(F) Discr(G)Res(F, G)?

proof. This proposition follows from Propositions[I.7.1T]and[I.7.19for polynomials with complex coefficients.
It is true for polynomials with coefficients in any ring because it is an identity. For the same reason, Corollary
1.7.12)is true when the coefficients of the polynomials F, G, H are in any ring. O

When f and g are polynomials in several variables, one of which is z, Res,(f,g) and Discr,(f) will
denote the resultant and the discriminant, computed regarding f and g as polynomials in z. They will be
polynomials in the other variables.

1.7.22. Lemma. Let f be an irreducible polynomial in C[z,y, 2] of positive degree in z, and not divisible by
z. The discriminant Discr, (f), regarding f as a polynomial in z, is a nonzero polynomial in x, y.

proof. This follows from Lemmal|l.3.14](ii) and Proposition|1.7.18 O
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1.8 Nodes and Cusps

(1.8.1)  the multiplicity of a singular point

Let C be the projective curve defined by an irreducible homogeneous polynomial f(x,y, z) of degree d,
and let p be a point of C'. We choose coordinates so that p = (0,0, 1), and we set z = 1. This gives us an affine
2 -

curve Cp in A7 . the zero set of the polynomial f(x,y) = f(z,y, 1), and p becomes the origin. We write

(1.8.2) f@y)=fo+fi+fot-+fa

where f; is the homogeneous part of fof degree i. The homogeneous part f; is also the coefficient of 2%~ in
f(x,y, z). If the origin p is a point of Cj, the constant term f; will be zero, and the linear term f; will define
the tangent direction to Cj at p, If fy and f7 are both zero, p will be a singular point of C'. It seems permissible
to drop the tilde and the subscript 0 in what follows, denoting f(z,y,1) by f(z,y), and Cy by C.

We use analogous notation for an analytic function f(x,y) , denoting the homogeneous part of
degree 7 of the series f by f;:

(1.8.3) flz,y)=fo+ fr+---

Let C denote the locus of zeros of f in a neighborhood of the origin p. To describe the singularity of C' at the
origin, we look at the part of f of lowest degree. The smallest integer r such that f,.(z,y) isn’t zero is called
the multiplicity of C at p. When the multiplicity is , f will have the form f, + f,41 +---.

Let L be the line {vz = uy} through p, and suppose that © # 0. In analogy with Definition the
intersection multiplicity (1.3.9) of C' and L at p is the order of zero of the series in  obtained by substituting
y = vz /uinto f. The intersection multiplicity will be r unless f,.(u, v) is zero. If f,.(u,v) = 0, the intersection
multiplicity will be greater than 7. A line L through p whose intersection multiplicity with C' at p is greater
than the multiplicity of C will be called a special line. The special lines correspond to the zeros of f,. in P,
Because f, has degree r, there will be at most r special lines.

1.8.4.

a Singular Point, with its Special Lines (real locus)

#i#H#please make point a visible dot in this figure###

(1.8.5)  double points

To analyze a singularity at the origin, one may blow up the plane. The map W —— X from the (z, w)-
plane to the (z,y)-plane defined by 7 (x, w) = (z,zw) is called an affine blowup because the fibre over the
origin in X is the line {x = 0} in W : (0, w) = (0, 0) for all w. (It might seem more appropriate to call the
inverse of 7 the blowup, but the inverse isn’t a map.)
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The blowup is bijective at points (x,y) of X at which x # 0, and points (z,0) of X with z # 0 aren’t in
its image.

Suppose that the origin p is a double point, a point of multiplicity 2, and let the quadratic part of f be
fo = azx? + bxy + cy? quadrat-

icterm
To blow up the plane, we adjust coordinates so that c isn’t zero, and normalize c to 1. Writing

fx,y) = az® + by + y° + da® + - -
we make the substitution y = zw and cancel z2. This gives us a polynomial
g(x,w) = f(z,zw)/z* = a+bw+w? +dx + -

in which all of the terms represented by - - - are divisible by . Let D be the locus {g = 0} in W. The blowup

map 7 restricts to a map D —— C. Since T is bijective at points at which 2 # 0, so is 7.

Suppose first that the quadratic polynomial 32 4 by + a has distinct roots «, 3, so that ax? + bxy + 32 =
(y — ax)(y — ). Then g(x, w) = (w — o)(w — ) + dx + - - - . The fibre of D over the origin p = (0,0) in
X is obtained by substituting = = 0 into g. It consists of the two points (z,w) = (0, «) and (z,w) = (0, ).
The partial derivative g—g isn’t zero at either of those points, so they are smooth points of D. At each of the
points, we can solve g(x, w) = 0 for w as analytic functions of z, say w = u(x) and w = v(z), with u(0) = «
and v(0) = B. So the curve C has two analytic branches y = zu(z) and y = zv(x) through the origin, with
distinct tangent directions « and /3. This singularity is called a node. A node is the simplest singularity that a
curve can have.

1.8.6. mapton-
ode

a Map to a Nodal Curve

###This figure is ugly. Curves aren’t smooth . ###

When the discriminant b2 — 4ac is zero, f2 will be a square, and f will have the form

flz,y) = (y — ax)® +da’ + -
Let’s change coordinates, substituting y + ax for y, so that
(1.8.7) flx,y) =vy* +da® +--- cuspeq
The blowup substitution y = xw gives
g(x,w) = w? +dx + - -

Here the fibre over (z,y) = (0,0) is the point (z,w) = (0,0), and ¢,,(0,0) = 0. However, if d # 0, then
g:(0,0) # 0, and if so, then D will be smooth at (0, 0), and the equation of C' will have the form y*+dz3+- - - .
This singularity is called a cusp.

The standard cusp is the locus y? = 2. All cusps are analytically equivalent with the standard cusp.
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1.8.8. Corollary. A double point p of a curve C is a node or a cusp if and only if the blowup of C' is smooth
at the points that lie over p. O

The simplest example of a double point that isn’t a node or cusp is a tacnode, a point at which two smooth
branches of a curve intersect with the same tangent direction.

1.8.9. a Node, a Cusp, and a Tacnode (real locus)

Cusps have an interesting geometry. Let T denote the complex conjugate of x. The intersection of the
standard cusp X : {y? = 23}, with a small 3-sphere S : {ZTx + 7y = €} in C2 is a trefoil knot, as is illustrated
below.

1.8.10.

/
7
Intersection of a Cusp Curve with a Three-Sphere

This nice figure was made by Jason Chen and Andrew Lin.

The standard cusp X, the locus y? = 23, can be parametrized as (x,y) = (t2,t%). The trefoil knot is
the locus of points (z,y) = (€%, e3?), the set of points of X of absolute value /2. It embeds into the
product of a unit z-circle and a unit y-circle in C2, a torus that we denote by 7. The figure depicts T as the
usual torus Tp in R?, but the mapping from T to T} distorts the torus. The circumference of T} represents the
z-coordinate, and the loop through the hole represents y. As 6 runs from 0 to 27, the point (z, y) goes around
the circumference twice, and it loops through the hole three times, as is illustrated. O

1.8.11. Proposition. Let x(t) = t> + --- and y(t) = t3 + --- be analytic functions of t, whose orders of
vanishing are 2 and 3, as indicated. For small t, the path (x,y) = (z(t),y(t)) in the x,y-plane traces out a
curve with a cusp at the origin.

proof. We show that there are analytic functions b(z) = baz? + - -+ and ¢(x) = 2® + - - - that vanish to orders
2 and 3 at = 0, such that x(t) and y(t) solve the equation y? + b(x)y + c¢(x) = 0. The locus of such an
equation has a cusp at the origin.

We solve for b and c. The function x = t2 + --- = t2(1 + - --) has an analytic square root of the form
z =1+ ---. This follows from the Implicit Function Theorem, which also tells us that ¢ can be written as an
analytic function of z. So the function z is a coordinate equivalent to ¢, and we may replace ¢ by z. Then we
will have z = #2, and y will still have a zero of order 3, y = B4, though the series for y is changed.

Let’s call the even part of a series Y a,t™ the sum of the terms a,,t™ with n even, and the odd part the
sum of terms with n odd. We write y(¢) = u(t) + v(t), where u an v are the even and the odd parts of y,
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respectively. The convergent series y(t) is absolutely convergent its radius of convergence. Therefore u(t) and
v(t) are convergent series too. Since y has a zero of order 3, v has a zero of order 3 and u has a zero of order
at least 4.

Now y? = (u? + v?) + 2uv, uy = u? + uv, and y* — 2uy + (u* — v?) = 0. The terms —2u and u? + v?
in this last equation are even series. They can be written as convergent series in @ = t2, say —2u = b(x) and
u?—v? = c¢(x). Then b will have a zero of order at least 2, c will have a zero of order 3, and y?+b(z)y+c(z) =
0.

(1.8.12) projection to a line coverline

Let 7 denote the projection P> — P! that drops the last coordinate, sending a point (z,y, 2) to (z,y).
The projection is defined at all points of P? except at the center of projection, the point ¢ = (0,0, 1).

The fibre of 7 over a point b = (z¢, yo) of P is the line through p = (¢, 0, 0) and ¢ = (0, 0, 1), with the
point ¢ omitted — the set of points (o, yo, z0). We denote that line by L,,, or L.

1.8.13. projtoline

T IP)Q

Projection from the Plane to a Line

###The letters in this figure should be same size as in the text. Also, I’m not happy with the dashed arrows.
I’d like more space between the dashes###

Let f(x,y, z) be an irreducible homogeneous polynomial whose zero locus C'is a plane curve that doesn’t
contain the center of projection ¢, and let d be the degree of f. the projection 7 will be defined at all points of
the curve. We write f as a polynomial in z,

(1.8.14) f= ozt + ez b ey poly-
inztwo
with ¢; homogeneous, of degree i in =, y. When ¢ isn’t in C, the scalar ¢y = (0,0, 1) won’t be zero, and we

can normalize cg to 1, so that f becomes a monic polynomial of degree d in z.
Let’s assume that C'is a smooth curve. The fibre of C' over a point p = (¢, yo) of P! is the intersection of
C with the line L, described above. Its points are (o, yo, &), where « is a root of the one-variable polynomial

(1.8.15) F(2) = f(xo, 0. 2) effp

We call the smooth curve C' a branched covering of P!, of degree d. All but finitely many fibres of C over P*
consist of d points.

The fibres of  with fewer than d points are those above the zeros of the discriminant (see Lemma[[.7.22).
Those zeros are the branch points of the covering. We use the same term for points of C, calling a point of C
a branch point if its tangent line is L, in which case its image in P! will also be a branch point.
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1.8.16. Proposition. Let C' be a smooth plane curve, let q be a generic point of the plane, and let p be a
branch point of C, so that the tangent line L at p contains q. The intersection multiplicity of L and C at p is 2,
and L and C have d — 2 other intersections of multiplicity 1.

The proof is below, but we explain the word generic first.

(1.8.17) generic and general position

In algebraic geometry, the word generic is used for an object, a point for instance, that has no special "bad’
properties. Typically, the object will be parametrized somehow, and the adjective generic indicates that the
parameter representing that particular object avoids a proper closed subset of the parameter space, which may
be described explicitly or not. The phrase general position has a similar meaning. It indicates that an object is
not in a special "bad’ position. In Proposition[I.8.16] what is required of the generic point ¢ is that it shall not
lie on a flex tangent line or on a bitangent line — a line that is tangent to C' at two or more points. We have
seen that a smooth curve C' has finitely many flex points (I.4.17), and Lemma [I.8.18| below states that it has
finitely many bitangents. So ¢ must avoid a finite set of lines. Most points of the plane will be generic in this
sense. (]

proof of Proposition[I.8.16] The intersection multipicity of the tangent line L with C at p is at least 2 because
L is a tangent line. It will be equal to 2 unless p is a flex point. The generic point ¢ won’t lie on any of
the finitely many flex tangents, so the intersection multiplicity at p is 2. Next, the intersection multiplicity at
another point p’ of L N C will be 1 unless L is tangent to C' at p’ as well as at p, i.e., unless L is a bitangent.
The generic point ¢ won’t lie on a bitangent. (]

1.8.18. Lemma. A plane curve has finitely many bitangent lines.

proof. We use the map U —Y5 C* from the set U of smooth points of C' to the dual curve C*. If L is tangent to
C' at distinct smooth points p and p/, then ¢ will be defined at those points, and t(p) = t(p’) = L*. Therefore
L* will be a singular point of C*. Since C* has finitely many singular points, C' has finitely many bitangents.
O

(1.8.19) the genus of a plane curve

We describe the topological structure of a smooth plane curve in the classical topology here.

1.8.20. Theorem. A smooth projective plane curve of degree d is a compact, orientable and connected
two-dimensional manifold.

The fact that a smooth curve is a two-dimensional manifold follows from the Implicit Function Theorem. (See

the discussion (1.4.4)).

orientability: A two-dimensional manifold is orientable if one can choose one of its two sides (as in front
and back of a sheet of paper) in a continuous, consistent way. A smooth curve C' is orientable because its
tangent space at a point, the affine line with the equation (T.4.T1)), is a one-dimensional complex vector space.
Multiplication by ¢ orients the tangent space by defining the counterclockwise rotation, and the right-hand rule
tells us which side of C' is “up”.

compactness: A plane projective curve is compact because it is a closed subset of the compact space P2.

connectedness: The fact that a plane curve is connected is subtle. It mixes topology and algebra. Unfortunately,
I don’t know a proof that fits into our discussion here. It will be proved later (see Theorem[8.2.11]).

The topological Euler characteristic of a compact, orientable two-dimensional manifold M is the alter-
nating sum b° — b! + b? of its Betti numbers. The Betti numbers are the dimensions of the homology groups
of M. The Euler characteristic, which we denote by e, can be computed using a topological triangulation, a
subdivision of M into topological triangles, called faces, by the formula

(1.8.21) e = |vertices| — |edges| + |faces|
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For example, a sphere is homeomorphic to a tetrahedron, which has four vertices, six edges, and four faces.
Its Euler characteristic is 4 — 6 +4 = 2. Any other topological triangulation of a sphere, such as the one given
by the icosahedron, yields the same Euler characteristic.

Every compact, connected, orientable two-dimensional manifold is homeomorphic to a sphere with a finite
number of “holes” or “handles”. Its genus is the number of handles. A torus has one handle. Its genus is one.
The projective line P!, a two-dimensional sphere, has genus zero.

The Euler characteristic and the genus are related by the formula
(1.8.22) e=2—2g
The Euler characteristic of a torus is zero, and the Euler characteristic of P! is two.

To compute the Euler characteristic of a smooth curve C of degree d, we analyze a generic projection (a
projection from a generic point ¢ of the plane), to represent C' as a branched covering of the projective line:
C 5 Pt (see . We choose generic coordinates z,y, z in P2 and project from the point ¢ = (0,0, 1).
When the defining equation of C' is written as a monic polynomial in z: f = 2¢ + ¢;297! 4+ --- + ¢4 where
¢; is a homogeneous polynomial of degree ¢ in the variables x, y, the discriminant Discr, (f) with respect to z
will be a homogeneous polynomial of degree d(d—1) = d*—d in z,y.

Let p be the image in P! of a point p of C. The covering C' — P* will be branched at 7 when the tangent
line at p is the line L, through p and g. Proposition @] tells us that if L, is a tangent line, there will be
one intersection of multiplicity 2 and d — 1 simple intersections. The discriminant will have a simple zero at
such a point p. This is proved in Proposition[1.9.12]below. Let’s assume it for now.

Since the discriminant has degree d? — d, there will be d? —d points p of P! at which the discriminant
vanishes, and the fibre over such a point will contain d— 1 points. Those points p are the branch points of the
covering. All other fibres consist of d points.

We triangulate the sphere P! in such a way that the branch points are among the vertices, and we use the
inverse images of the vertices, edges, and faces to triangulate C'. Then C will have d faces and d edges lying
over each face and each edge of P!, respectively. There will also be d vertices of C lying over a vertex of P!,
except when the vertex is one of the branch points. In that case the the fibre will contain only d—1 vertices. So
the Euler characteristic of C' can be obtained by multiplying the Euler characteristic of P* by d and subtracting
the number d? — d of branch points:

(1.8.23) e(C) = de(P') — (d*~d) = 2d— (d*~d) = 3d—d?

This is the Euler characteristic of any smooth curve of degree d, so we denote it by ey :

(1.8.24) eq =3d—d?

Formula shows that the genus g4 of a smooth curve of degree d is

(1.8.25) g9a = 3(d®—3d+2)= (")

Thus smooth curves of degrees 1, 2, 3,4, 5,6, ... have genus 0,0, 1, 3, 6, 10, ..., respectively. A smooth plane

curve cannot have genus 2.

The generic projection to P! with center ¢ can also be used to compute the degree of the dual curve of a
smooth curve C of degree d. The degree of the dual C* is the number of its intersections with the generic line
¢* in IP*. The intersections of C* and ¢* are the points L*, where L is a tangent line that contains q. As we
saw above, there are d? —d such lines.

1.8.26. Corollary. Let C' be a smooth plane projective curve of degree d. The degree d* of the dual curve C*
is the number of tangent lines to C that pass through a generic point q of the plane. It is equal to d*> — d. O

When C is a singular curve, the degree of C* will be less than d? — d.

When d = 2, C will be a conic, and d* = d. As we have seen, the dual curve of a conic is also a conic.
But when d > 2, d* = d? — d will be greater than d. Then the dual curve C* must be singular. If it were
smooth, the degree of its dual curve C** would be d*? — d*, which would be greater than d. This would
contradict the fact that C** = C. For instance, when d = 3, d* = 32 — 3 = 6, and d*2 — d* = 30. The dual
curve C* is singular enough to account for the discrepancy between 30 and 3. (See
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1.9 Hensel’s Lemma
The resultant matrix (1.7.5)) arises in a second context that we explain here.
Suppose given a product P = F'G of two polynomials, say

(1.9.1) (coxm+” +eg™r 4 ~—|—cm+ﬂ) = (aoxm +az™ 4 +am) (bO:I:" +bz" +bn)

We call the relations among the coefficients that are implied by this polynomial equation the product equations.
The product equations are

i
¢; = aibo + ai—1by + - + aob; = Zai—jbj
§j=0
fori = 0, ..., m+n. For instance, when m = 3 and n = 2, the product equations are

1.9.2.
Co — aobo
C1 = a1b0 + Cl()bl
ca = asby + a1by + apba
cs = azbg + azby + a1be
Cy = asby + asbs
s = asbs

Let J denote the Jacobian matrix of partial derivatives of ¢y, ..., ¢+, With respect to the variables by, ..., by,
and aq, ..., ay,, treating ag, by and c( as constants. Since % = a;—; and % = b;—j, the i, j-entry of J is
J J

Jij =a;—; whenj=1,...,nand J;; =b;_ whenj =n+kandk =1,...m
entries with negative subscripts being set to 0.

When m,n = 3,2,

ap . bo .
b S a; Qo bl bo .
(1.9.3) J = # —las a1 by b by
( j’ak) asz az . b2 b1
as . . bg

1.9.4. Lemma. The Jacobian matrix J is the transpose of the resultant matrix R .

See (I.7.8). But this seems like an occasion to quote Cayley. While discussing the the Cayley-Hamilton
Theorem, he wrote: I have not thought it necessary to undertake the labour of a formal proof of the theorem
in the general case.’ U

1.9.5. Corollary. Let F' and G be polynomials with complex coefficients. The Jacobian matrix is singular if
and only if, either F' and G have a common root, or ag = by = 0. U

This corollary has an application to polynomials with analytic coefficients. Let
(1.9.6) P(t,z) = co(t)z? + c1 (a1 + -+ cqt)

be a polynomial in 2 whose coefficients c; are analytic functions of ¢, and let P = P(0, ) = cox? +¢ 241 +
-+ + ¢4 be the evaluation of P at t = 0, so that ¢; = ¢;(0). Suppose given a factorization P = F G, where
F =a™4a 2™ "+ 4G, and G = boz"+b12" 1 +- - -+b,, are polynomials with complex coefficients, and
F is monic. Are there polynomials F'(t,7) = 2™ +a;2™ 14 -+a,, and G(t, ) = box" +b12" 14+ -+b,,
with F' monic, whose coefficients a; and b; are analytic functions of ¢, such that F'(0, z) = F, G(0,7) =G,
and P=FG?
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1.9.7. Hensel’s Lemma. With notation as above, suppose that F and G have no common root. Then P
factors: P = FG, where F and G are polynomials in x, whose coefficients are analytic functions of t, and F
is monic.

proof. We look at the product equations. Since F is supposed to be monic, we set ag(t) = 1. The first product
equation tells us that by (t) = co(¢). Corollarytells us that the Jacobian matrix for the remaining product
equations is nonsingular at ¢ = 0, so according to the Implicit Function Theorem, the product equations have
a unique solution in analytic functions a;(t), b; (¢). O

Note that P isn’t assumed to be monic. If ¢y = 0, the degree of P will be less than the degree of P. In that
case, GG will have lower degree than G.

1.9.8. Example. Let P = co(t)z? + c1(t)x + c2(t). The product equations P = F'G with F' = x + a; monic
and G = bgx + by, are

(199) Co :bo, C1 :a1b0+b1, C2 =a1b1
and the Jacobian matrix is d(c1, ) 1 b
(b, a1) <a1 b1>

Suppose that P = P(0, z) factors: ¢yz? + ¢,z + ¢ = (v + a@1)(box + b1) = F G. The determinant of the
Jacobian matrix at t = 0 is by — @1bp. It is nonzero if and only if the factors F' and G are relatively prime, in
which case P factors too.

On the other hand, the one-variable Jacobian criterion allows us to solve the equation P(t,x) = 0 for x as
function of ¢ with x(0) = —ay, provided that 2& = 2cyx + ¢; isn’t zero at the point (t,z) = (0, —a). If P
factors as above, then when we substitute into P, we find that 22(0, —a;) = —2¢ga;1 +¢1 = by —a1bo.
Not surprisingly, %—I:(O, —a1) is equal to the determinant of the Jacobian matrix at ¢t = 0. U

(1.9.10) order of vanishing of the discriminant

We introduce some terminology for use in the next proposition. Let X be the affine x-line, let Y be the
affine x, y-plane and let p be the origin in Y. Two curves are said to intersect transversally at a point p if they
are smooth at p and if their tangent lines there are distinct.

Let C be the plane affine curve defined by a polynomial f(x,y) with no multiple factors, and suppose that
C' contains the origin p. Let L be the y-axis {x = 0} in Y. Suppose that all intersections of C' with L are
transversal, except for the point p. This will be true when the coordinates x, y are generic.

1.9.11. Proposition.
(i) a) Let p be a smooth point of C with tangent line L. If p isn’t a flex point of C, the discriminant
Discry (f) has a simple zero at the origin.
b) If p is a node of C and L is not a special line at p, Discr,(f) has a double zero at the origin.
¢) Ifpis a cusp of C and L is not its special line at p, Discr, (f) has a triple zero at the origin.
(ii) If p is an ordinary flex point of C and L is its tangent line, then Discr,(f) has a double zero at the origin.

### make figure ?7###

proof. (i) Let f(g) = f(0,y). In each of the three cases, f(y) will have a double zero at y = 0. We will
have f(y) = y*h(y), with h(0) # 0. So y* and h(y) have no common root. We apply Hensel’s Lemma:
flz,y) = g(z,y)h(z,y), where g and h are polynomials in y whose coefficients are analytic functions of z,

g is monic, (0, y) = %, and h(0,y) = h. Then Discr, (f) = =+ Discr, (g) Discr, (h) Resy (g, h)? (1.7.21).
Since C is tranversal to L except at ¢, h has simple zeros (1.8.16). Then Discr, (h) doesn’t vanish at
y = 0. Neither does Res, (g, k). So the orders of vanishing of Discr, (f) and Discr,(g) at p are equal.

We replace f by g, so that f becomes a monic quadratic polynomial in y, of the form
fla,y) =y + b(a)y + ()
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where the coefficients b and ¢ are now analytic functions of z, and f(0, y) = y2. The discriminant Discr, (f) =
b2 — 4c is unchanged when we complete the square by the substitution of i — %b for y, and if p is a smooth
point, a node or a cusp, that property isn’t affected by this operation. So we may assume that f has the form
y? + c(z). The discriminant is then D = 4c(x).
We write c¢(z) as a series:
c(x) = co + 1o + cox® 4 gz + - -

Since C contains p, the constant coefficient ¢g is zero. If ¢; # 0, p is a smooth point with tangent line Z, and
D has a simple zero. If p is a node, cg = ¢; = 0 and ¢o # 0. Then D has a double zero. If p is a cusp,
co =c1 = ¢ =0, and ¢z # 0. Then D has a triple zero at p.

(ii) In this case, the polynomial f(y) = f(0,y) will have a triple zero at y = 0. Proceding as above, we
may factor: f = gh where g and h are polynomials in y whose coefficients are analytic funcicton so z,
g(z,y) = v + a(x)y? + b(x)y + c(x), and g(0,y) = y>. We eliminate the quadratic coefficient a by

substituting y — for y. With ¢ = y® + by + c in the new coordinates, the discriminant Discry(g) is

4b® 4 27¢? (1.7.16). We write ¢(z) = ¢o + c1z + - - - and b(x) = by + byx + - - - . Since p is a point of C' with
tangent line {y =0}, ¢p = 0 and ¢; # 0. Since the intersection multiplicity of C' with the line {y =0} at p is
three, by = 0. The discriminant 453 + 27¢? has a zero of order two. O

Now let f(z,y,z) be a homogeneous polynomial with no multiple factors, and let C' be the (possibly
reducible) plane curve {f = 0}. We project to X = P! from a point ¢ that is not on C. Let L,, denote the
line through a point p = (xg, Yo, 0) and g, the set of points (xo, Yo, 20), and let p = (z, yo). Suppose that all
intersections of C' with L,, except at g are transversal.

1.9.12. Corollary. (i) With notation as above:
a) If p is a smooth point of C with tangent line L, the discriminant Discr,(f) has a simple zero at p.
b) If p is a node of C, Discr,(f) has a double zero at p.
¢) If p is a cusp, Discr, (f) has a double zero at p.

(ii) If p is an ordinary flex point of C, Discr, (f) has a double zero at z=0. ([

In cases (i a,b,c), the hypotheses are satisfied when the center of projection ¢ is in general position. To be
precise about what is required of the generic point g in those cases, we ask that ¢ not lie on any of these lines:

(1.9.13)
flex tangent lines and bitangent lines,
lines that contain more than one singular point,
special lines through singular points,
tangent lines that contain a singular point.

This is a list of finitely many lines that ¢ must avoid.

1.9.14. Corollary. Let C : {g = 0} and D : {h = 0} be plane curves that intersect transversally at a point
p = (20, Yo, 20). With coordinates in general position, Res, (g, h) has a simple zero at (xo, yo).

proof. Proposition [1.9.12] (i b) applies to the product gh, whose zero locus is the union C' U D. It shows that
the discriminant Discr, (gh) has a double zero at p. We also have the formula

Discr, (gh) = Discr, (g) Discr, (h) Res(g, h)?

(1.7.21) with f = gh. When coordinates are in general position, Discr (g) and Discr, (h) will not be zero at
p. Then Res; (g, h) has a simple zero at p. O

1.10 Bézout’s Theorem

Bézout’s Theorem counts intersections of plane curves. We state it here in a form that is ambiguous because
it contains a term “multiplicity” that hasn’t yet been defined.
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1.10.1. Bézout’s Theorem. Let C and D be distinct curves of degrees m and n, respectively. When in-
tersections are counted with an appropriate multiplicity, the number of intersections is mn. Moreover, the
multiplicity at a transversal intersection is 1.

As before, C and D intersect transversally at p if they are smooth at p and their tangent lines there are distinct.

1.10.2. Proposition. Bézout’s Theorem is true when one of the curves is a line.
See Corollary[I.3.10] The multiplicity of intersection of a curve and a line is the one that was defined there. [J

The proof in the general case requires some algebra that we would rather defer. It will be given later
(Theorem[7.8.1)), but we will use the theorem in the rest of this chapter.

It is possible to determine the intersections by counting the zeros of the resultant with respect to one of the
variables. To do this, one chooses coordinates x, y, z, so that neither C nor D contains the point (0,0, 1). One
writes their defining polynomials f and g as polynomials in z with coefficients in C[z, y]. The resultant R with
respect to z will be a homogeneous polynomial in z, y, of degree mn. It will have mn zeros in P}r’y, counted
with multiplicity. Let p = (xo, yo) be a zero of R. Then f(zo, yo, z) and g(xo, Yo, 2), which are polynomials
in z, have a common root z = zp, and then p = (zo, Yo, 20) Will be a point of C' N D. It is a fact that the
multiplicity of the zero of the resultant R at the image p is the (as yet undefined) intersection multiplicity of
C and D at p. Unfortunately, this won’t be obvious, even when the multiplicity is defined. However, one can
prove the next proposition using this approach.

1.10.3. Proposition. Let C and D be distinct plane curves of degrees m and n, respectively.
(i) C and D have at least one intersection, and the number of intersections is at most mn.
(ii) If all intersections are transversal, the number of intersections is precisely mn.

It isn’t obvious that two curves in the projective plane intersect. If two curves in the affine plane have no
intersection, If they are parallel lines, for example, their closures in the projective plane meet on the line at
infinity.

1.104. Lemma. Let f and g be homogeneous polynomials in x,y, z of degrees m and n, respectively, and
suppose that the point (0,0, 1) isn’t a zero of f or g. If the resultant Res, (f, g) with respect to z is identically
zero, then f and g have a common factor.

proof. Let F denote the field of rational functions C(z,y). If the resultant is zero, f and g have a common
factor in F'[z]. There will be polynomials p and ¢ in F'[z], of degrees at most n—1 and m—1 in z, respectively,
such that pf = gg (I.7.3). We may clear denominators, so we may assume that the coefficients of p and ¢
are in C[z, y]. This doesn’t change their degree in z. Then pf = qg is an equation in C[z,y, 2], and p isn’t
divisible by g. Since C|[z, y, 2] is a unique factorization domain, f and g have a common factor. ([

proof of Proposition (i) Let C and D be distinct curves, defined by irreducible homogeneous poly-
nomials f and g. Proposition shows that there are finitely many intersections. We project to P! from
a point ¢ that doesn’t lie on any of the finitely many lines through pairs of intersection points. Then a line
through ¢ passes through at most one intersection, and the zeros of the resultant Res, (f, ¢) that correspond to
the intersection points will be distinct. The resultant has degree mn (I.7.10). It has at least one zero, and at
most mn of them. Therefore C' and D have at least one and at most mn intersections.

(ii) Every zero of the resultant will be the image of an intersection of C' and D. To show that there are mn
intersections if all intersections are transversal, it suffices to show that the resultant has simple zeros. This is

Corollary[1.9.14] O

1.10.5. Corollary. If the zero locus X of a homogeneous polynomial f(x,vy,z) is smooth, then f is irre-
ducible, and therefore X is a smooth curve.

proof.  Suppose that f = gh, and let p be a point of intersection of the loci {g = 0} and {h = 0}. Proposition
1.10.3| shows that such a point exists. All partial derivatives of f vanish at p, so p is a singular point of the

locus f = 0 (L4.7). O

1.10.6. Proposition. (i) Let d be an integer > 3. A smooth plane curve of degree d has at least one flex
point, and the number of flex points is at most 3d(d—2).

(ii) If all flex points are ordinary, the number of flex points is 3d(d—2).
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Thus smooth curves of degrees 2, 3,4, 5, ... have at most 0,9, 24, 45, ... flex points, respectively.

proof. (i) Let C be the smooth curve defind by a homogeneous polynomial f of degree d. Let H be the Hessian
matrix of f,letdetH = h? . hzk be the factorization of the determinant into irreducible polynomials h;, and

let Z; be the locus of zeros of h;. The Hessian divisor is defined to be the combination D = e; Z1 +- - -+ e 2.
The flex points of C are its intersections with its Hessian divisor D (1.4.16). The entries of the 3x3 Hessian
2
matrix H, the second partial derivatives af- afw -, are homogeneous polynomials of degree d—2. So the Hessian
10T j

determinant is homogeneous, of degree 3(d—2). Propositions(1.4.17|and [1.10.3|tell us that there are at most
3d(d—2) intersections.

(ii) A flex point is ordinary if the multiplicity of intersection of the curve and its tangent line is 3 (L.4.8).
Bézout’s Theorem asserts that the number of flex points is 3d(d—2) if the intersections of C' with its Hessian
divisor D are transversal, and therefore have multiplicity 1. So the next lemma completes the proof.

1.10.7. Lemma. A curve C : {f = 0} intersects its Hessian divisor D transversally at a point p if and only
p is an ordinary flex point of C.

proof. We prove the lemma by computation. I don’t know a conceptual proof.

Let D be the Hessian divisor {det H = 0}. The Hessian determinant det H vanishes at a smooth point p
of C'if and only if p is a flex point (I.4.16).

Assume that p is a flex point, let L be the tangent line to C' at p, and let h denote the restriction of the
determinant det H to L. The Hessian divisor D will be transversal to C' at p if and only if it is transversal to L
there, which will be true if and only if & has a zero of order 1.

We adjust coordinates x, y, z so that p is the point (0,0, 1) and L is the line {y = 0}, and we set z = 1 to

work in the affine space Afw. Because p is a flex point, the coefficients of the monomials 1, z and 2?2 in the

polynomial f(z,v,1) are zero. So
f(@,y,1) = ay + bry + cy® + da® + ex®y + - --
To restrict to L, we set y = 0, keeping z = 1: f(x,0,1) = dz® + O(4), where O(k) stands for a polynomial

all of whose terms have degree > k.
To compute the determinant det H, we put the variable z back. If f has degree n, then

flx,y,2) = ayz" "t +bryz""2 + cy?2" 2 4 da®2" 3 Featy" T 4

We set y = 0 and z = 1 in the second order partial derivatives. With v = 6dz and w = (n—1)a + (n—2)bz,
foa(2,0,1) = 6dz + O(2) = v+ O(2),
faz(2,0,1) =0+ 0(2),
fyz(2,0,1) = (n—1)a+ (n—2)bx + O(2) = w+ O(2),
foz(2,0,1) =0+ 0(2),
We won’t need f,, or fy,. The Hessian matrix at y = 0, z = 1 has the form

v 0
(1.10.8) H(z,0,1) = | = w| + 0(2)
0 0

S % x

Because of the zeros, the entries marked with * don’t affect the determinant of H(z,0,1). It is

h = —vw? 4+ 0(2) = —6d(n—1)%a*z + O(2)

and it has a zero of order 1 at z = 0 if and only if a and d aren’t zero there. Since C' is smooth at p and
since the coefficient of = in f is zero, the coefficient of y, which is a, can’t be zero. Thus the curve C' and its
Hessian divisor D intersect transversally, if and only if d isn’t zero. This is true if and only if p is an ordinary
flex point. (]

1.10.9. Corollary. A smooth cubic curve contains exactly 9 flex points.

proof. Let C be a smooth cubic curve. The Hessian divisor D of C also has degree 3, so Bézout’s Theorem
predicts at most 9 intersections of D with C'. To derive the corollary, we show that D intersects C' transversally,
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and to do this, we show that D intersects the tangent line L to C' at p transversally. According to Lemma[T.10.7]
a nontransversal intersection of D and L would correspond to a point at which C has a flex that isn’t ordinary,
and at such a point, the intersection multiplicity of C' and L would be greater than 3. This is impossible when
the curve is a cubic. (]

(1.10.10) singularities of the dual curve

Let C be a plane curve. As before, an ordinary flex point is a smooth point p such that the intersection
multiplicity of the curve and its tangent line L at p is equal to 3. A bitangent, a line L that is tangent to C' at
distinct points p and p’, is an ordinary bitangent if neither p nor p’ is a flex point. A tangent line L at a smooth
point p of C'is an ordinary tangent if p isn’t a flex point and L isn’t a bitangent.

The tangent line L at a point p will have other intersections with C'. Most often, those other intersections
will be transversal unless L is a bitangent, in which case it will be tangent to C' at another point. However,
it may also happen that one of the other intersections of L with C' is a singular point of C. Or, L may be a
tritangent, tangent to C' at three points. Let’s call such occurences accidents.

1.10.11. Definition. A plane curve C' is ordinary if it is smooth, all of its bitangents and flex points are
ordinary, and if there are no accidents.

1.10.12. Lemma. A generic curve C' is ordinary.

We verify this by counting constants (see (I.1.3)). The reasoning is fairly convincing, though not completely
precise.

There are three ways in which a curve C might fail to be ordinary:

« C' may be singular.

o C' may have a flex point that isn’t ordinary.

« A bitangent to C' may be a flex tangent or a tritangent.
The curve will be ordinary if none of these occurs.

Let the coordinates in the plane be x,y, 2. The homogeneous polynomials of degree d form a vector
space whose dimension is equal to the number N of monomials 2y’ z* of degree i+j+k = d. Let f be a
homogeneous polynomial of degree d, and let f = [] f;* be its factorization into irreducible polynomials. If
Z; denotes the zero locus of f;, the divisor associated to f is > e;Z;. The divisors of degree d are parametrized
by points of a projective space of dimension n = N —1, and curves correspond to points in a subset of that
space.

singular points. We look at the point py = (0,0, 1), and we set z = 1. If pg is a singular point of a curve C
defined by a polynomial f, the coefficients of 1, z,y in the polynomial f(x,y,1) will be zero. This is three
conditions. So the curves that are singular at py are parametrized by a linear subspace of dimension n — 3 in
the projective space of dimension n, and the same will be true when py is replaced by any other point of P2,
The points of P? depend on only 2 parameters. Therefore, in the space of divisors, the singular curves form a
subset of dimension at most n — 1. Most curves are smooth.

flex points. Let’s look at curves that have a four-fold tangency with the line L : {y = 0} at py. Setting z = 1 as
before, we see that the coefficients of 1,7, 32,y in f must be zero. This is four conditions. The lines through
po depend on one parameter, and the points of P? depend on two parameters, giving us three parameters to
vary. We can’t get all curves this way. Most curves have no four-fold tangencies, and therefore they have only
ordinary flexes.

bitangents. To be tangent to the line L : {y = 0} at the point py, the coefficients of 1 and y in f must be zero.
This is two conditions. Then to be tangent to L at three given points pg, p1, p2 imposes 6 conditions. A set of
three points of L depends on three parameters, and a line depends on two parameters, giving us 5 parameters
in all. Most curves don’t have a tritangent. Similar reasoning takes care of bitangents in which one tangency
is a flex. (]
1.10.13. Propeosition. Let p be a point of an ordinary curve C, and let L be the tangent line at p.

If L is an ordinary tangent at p, then L* is a smooth point of C*.

If L is a bitangent, then L* is a node of C"*.

If p is a flex, then L* is a cusp of C"*.
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proof. We refer to the map C' —Y5 C* from C to the dual curve li Because C' is smooth, ¢ is defined s at
all points of C.

We dehomogenize the defining polynomial f by setting z = 1, and choose affine coordinates, so that p is
the point (z,y, z) = (0,0, 1), the tangent line L at p is the line {y = 0}. Then L* is the point (u,v,w) =
(0,1,0). Let f(a:,y) = f(x,y,1). We solve f = 0 for y = y(x) as an analytic function of x, as before.
The tangent line L; to C' at a nearby point p; = (x1,y;) has the equation , and L7 is the point
(u,v,w) = (—yi,1,yiz1 — y1) of P* (1.6.12). Since there are no accidents, this path traces out all points of

C* near to L* (Corollary[1.6.18).

If L is an ordinary tangent line, y(x) will have a zero of order 2 at x = 0. Then v = —y’ will have a simple
zero. So the path (—y/, 1,y’x — y) is smooth at z = 0, and therefore C* is smooth at the origin.

If L is an ordinary bitangent, tangent to C at two points p and p’, the reasoning given for an ordinary tangent
shows that the images in C* of small neighborhoods of p and p’ in C will be smooth at L*. Their tangent lines
p* and p’* will be distinct, so p is a node.

Suppose that p is an ordinary flex point. Then, in the power series y(x) = co + c1@ + cox® + - -+, the
coefficients cg, ¢1, co are zero and since the flex is ordinary, c3 # 0. We may assume that c3 = 1 and that
y(z) = 2%+ - . Then, in the local equation (u,v,w) = (=¥, 1,y'w — y) for the dual curve, u = —32% +- - -
and w =223 + -+ -. Propositiontells us that the singularity at the origin is a cusp. O

1.11 The Pliicker Formulas

The Pliicker formulas compute the number of flexes and bitangents of an ordinary plane curve. The fact
that there is a sfle formula for bitangents is particularly interesting. The bitangents aren’t very easy to count
directly.

1.11.1. Theorem: Pliicker Formulas. Let C be an ordinary curve of degree d at least two, and let C* be its
dual curve. Let f and b denote the numbers of flex points and bitangents of C, and let d*, 6* and k* denote
the degree, the numbers of nodes, and the number of cusps of C*, respectively. Then:

(i) The dual curve C* has no flexes or bitangents. Its singularities are nodes or cusps.
(i) d*=d*>—d, f=k*=3d(d—2), and b=05"= %d(d —2)(d? - 9).

proof. (i) A bitangent or a flex on C* would produce a singularity on the bidual C**, which is the smooth
curve C.

(ii) The degree d* was computed in Corollary|1.8.26] Bézout’s Theorem counts the flex points: f = 3d(d —
2)(1.10.6). The facts that x* = f and 6* = b are in Proposition [1.10.13| Thus x* = 3d(d — 2).

When we project C* to P! from a generic point s of P*. The number of branch points that correspond to
tangent lines through s at smooth points of C* is the degree d of the bidual C' (1.8.26).

Next, let F'(u,v,w) be the defining polynomial for C*. The discriminant Discr,, (F) has degree d*? — d*.
Corollary describes the order of vanishing of the discriminant at the images of the d tangent lines
through s, the § nodes of C*, and the x cusps of C*. It tells us that d*2 — d* = d + 26* + 3x*. Substituting
the known values d* = d’>—d, and k* = 3d(d—2) into this formula gives us (d?> — d)? — (d> —d) =
d+26* +9d(d —2), or

20* = d* —2d* —9d* +18d = d(d —2)(d* - 9)

d
1.11.2. Examples.
(i) All curves of degree 2 and all smooth curves of degree 3 are ordinary.
(ii) A curve of degree 2 has no flexes and no bitangents. Its dual curve has degree 2.
(iili) A smooth curve of degree 3 has 9 flexes and no bitangents. Its dual curve has degree 6.
(iv) An ordinary curve C' of degree 4 has 24 flexes and 28 bitangents. Its dual curve has degree 12. (]
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We will make use of the fact that a quartic curve has 28 bitangents in Chapter[d](see (4.6.31))). The Pliicker
Formulas are rarely used for curves of larger degree, but the fact that there is such a formula is interesting.

1.11.3. goober13

A Quartic Curve whose 28 Bitangents are Real (real locus)

To obtain this quartic, we added a small constant e to the product of the quadratic equations of the two ellipses
that are shown. The equation of the quartic is (222 + y? — 1)(22 +2y?> — 1) + e = 0.
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1.12 Exercises

1.12.1. Prove that a plane curve contains infinitely many points.
1.12.2. Prove that the path (t) = ¢, y(t) = sint doesn’t lie on any plane algebraic curve in A2

1.12.3. Using counting constants, prove that most (nonhomogeneous) polynomials in two or more variables
are irreducible.

1.12.4. Let f(x,y, 2) be a homogeneous polynomial not divisible by z. Prove that f is irreducible if and only
if f(x,y,1) is irreducible.

1.12.5. (i) Describe the points that lie in the interior of the coordinate triangle in Figurgl.2.11
(ii) What can be deduced about the equation of the conic that is depicted in the figure?

1.12.6. Prove that all affine conics can be put into one of the forms m by linear changes of variable,
translations, and scalar multiplication.

1.12.7. (i) Classify conics in P? by writing an irreducible quadratic polynomial in three variables in the form
XtAX where A is symmetric, and diagonalizing this quadratic form.

(ii) Quadrics in projective space P" are zero sets of irreducible homogeneous quadratic polynomials in xq, ..., Z,.
Classify quadrics in P3,

1.12.8. Let f and g be irreducible homogeneous polynomials in z,y, z. Prove that if the loci {f = 0} and
{g = 0} are equal, then g = cf.

1.12.9. Without using Bézout’s Theorem, prove that a plane cubic curve can have at most one singular point.

1.12.10. Let C be the plane projective curve defined by the equation zgx1 + x122 + T2xg = 0, and let p be
the point (—1,2,2). What is the equation of the tangent line to C at p?

1.12.11. Let C be a smooth cubic curve in P2, and let p be a flex point of C. Choose coordinates so that p is
the point (0, 1, 0) and the tangent line to C' at p is the line {z = 0}.

(i) Show that the coefficients of 22y, zy2, and %> in the defining polynomial f of C are zero.

(i) Show that with a suitable choice of coordinates, one can reduce the defining polynomial to the form
Y2z + 23 + axz? + b23, and that 23 + az + b will be a polynomial with distinct roots.

(iii) Show that one of the coefficients a or b can be eliminated, and therefore that smooth cubic curves in P2
depend on just one parameter.

1.12.12. Using Euler’s formula together with row and column operations, show that the Hessian determinant
is equal to adet H’, where

cf fi [ )
H = | fi fu fiz], a=(%2)", and c=7%4
2 far fa2

1.12.13. (i) Verify that the vanishing of the Hessian determinant isn’t affected by a change of coordinates.

(ii) Prove that a smooth point of a curve is a flex point if and only if the Hessian determinant is zero, in this
way: Given a smooth point p of X, choose coordinates so that p = (0,0, 1) and the tangent line / is the line
{z1 = 0}. Then compute the Hessian.

1.12.14. Prove that the elementary symmetric functions s = x1+ - +xp, ..., S, = ¥7 - - - T, are algebaically
independent.

1.12.15. Let K be a field extension of a field F', and let o be an element of K that is transcendental over F'.
Prove that every element of the field F'(«) that isn’t in F is transcendental over F'.

1.12.16. Let td(K/F) denote the transcendence degree of a field extension K/ F'. Prove that, if L D K D F
are fields, then td(L/F) = td(L/K) + td(L/F).
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1.12.17. Let f(xq,x1,22) be a homogeneous polynomial of degree d, let f; = %, and let C' be the plane
curve {f = 0}. Use the following method to prove that the image in the dual plane of the set of smooth points
of C is contained in a curve C*: Let N,.(k) be the dimension of the space of polynomials of degree < k in
r variables. Determine N,.(k) for r = 3 and r = 4. Show that Ny(k) > N3(kd) if k is sufficiently large.
Conclude that there is a nonzero polynomial G (g, 21, x2) such that G(fo, f1, f2) = 0.

(This method doesn’t give a good bound for the degree of C'*. One reason may be that f and its derivatives
are related by Euler’s Formula. It is tempting try using Euler’s Formula to help compute the equation of C*,
but I haven’t succeeded in getting anywhere that way.)

1.12.18. Let C be a smooth cubic curve in the plane P2, and let ¢ be a generic point of P2. How many lines
through ¢ are tangent lines to C'?

1.12.19. Let X and Y be the surfaces in A3 defined by the equations z* = 2? and yz* + z +y = 0,
respectively. The intersection C' = X NY is a curve. Determine the equation of its projection to the z, y-

plane.

1.12.20. Complete the proof of Proposition |1.7.11| by computing the resultant of the polynomials =™ and
" — 1.

1.12.21. Let f, g, and h be polynomials. Prove that

() Res(f, gh) = Res(f,g) Res(f, h).

(ii) If the degree of gh is less than or equal to the degree of f, then Res(f, g) = Res(f + gh, g).

1.12.22. With notation as in |1.7.3] suppose that ag and by are not zero, and let o; and 3; be the roots of
f(z,1) and g(z, 1), respectively. Show that Res(f, g) = agby’ [[(a; — B;).

1.12.23. Prove that a generic line meets a plane projective curve of degree d in d distinct points.

1.12.24. Let f = 22 + 2z + yz and g = 22 + y2. Compute the resultant Res,(f,g) with respect to the
variable z.

1.12.25. Compute H#j((i — ¢9) when ¢ = €2/,

1.12.26. If F'(z) = [[(z — o), then Discr(F) = £]]; (s — )%, Determine the sign.

1.12.27. Let f = apz™ + ayz™ ' +---a,, and g = box™ + byx" " + - b, and let R = Res(f, g) be the
resultant of these polynomials. Prove that
(i) R is a polynomial that is homogeneous in each of the sets of variables @ and b, and determine its degree.

(ii) If one assigns weighted degree i to the coefficients a; and b;, then R is homogeneous, of weighted degree
mn.

1.12.28. Let coordinates in A* be z,y, 2, w, let Y be the variety defined by 2% = 22 — y? and w(z — x) = 1,
and let 7 denote projection from Y to (z, y)-space. Describe the fibres and the image of .

1.12.29. Let p be a cusp of the curve C defined by a homogeneous polynomial f. Prove that there is just one
line L through p such that the restriction of f to L has as zero of order > 2 at p, and that the order of zero for
that line is precisely 3.

1.12.30. Describe the intersection of the node xy = 0 at the origin with the unit 3-sphere in A2,

1.12.31. Prove that the Fermat curve C : {z? 4+ y? + z¢ = 0} is connected by studying its projection to P*
from the point (0,0, 1).

1.12.32. Let p(t,z) = 2® + 2% + t. Then p(0,z) = 2%(x + 1). Since 22 and z + 1 are relatively prime,
Hensel’s Lemma predicts that p factors: p = fg, where g and g are polynomials in x whose coefficients are
analytic functions in ¢, and f is monic, f(0,z) = 22, and g(0,x) = = + 1. Determine this factorization up to
degree 3 in t. Do the same for the polynomial tz* + 23 + 2 + ¢.

1.12.33. Let f(t,y) = ty? — 4y + t.

(i) Solve f = 0 for y by the quadratic formula, and sketch the real locus f = 0 in the ¢, y plane.
(i) What does Hensel’s Lemma tell us about f?

(i) Factor f, modulo t*.
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1.12.34. Factor f(t,z) = 2® + 2tz? + t?x + x + t, modulo ¢2.

1.12.35. (i) Show that there is a conic C' that passes through any five points of P2,
(ii) Use (i) to prove that a plane curve X of degree 4 can have at most three singular points.

1.12.36. By parametrizing a conic C, show that C' meets a plane curve X of degree d and distinct from C' in
2d points, when counted with multiplicity.

1.12.37. Using a generic projection to P!, determine the degree of the dual C* of
(i) a plane cubic curve C' with a cusp.
(ii) a plane curve C' of degree 4 with three nodes.

1.12.38. Let C be a cubic curve with a node. Determine the degree of the dual curve C*, and the numbes of
flexes, bitangents, nodes, and cusps of C' and of C™*.

1.12.39. Prove that every cusp lb is analytically equivalent with the standard cusp.
1.12.40. Prove that a plane curve is connected.

1.12.41. This is about the order of vanishing of the discriminant. With notation as in : If one perturbs
the equation of C, the line L that meets C at p will be replaced by a finite set of nearby tangent lines. Choose
particular examples for C' in parts (i b,c),(ii) of and compare the number of nearby tangents with the
order of vanishing of the discriminant.

1.12.42. Analyze the singularities of the plane curve 23y — 2322 4 322 = 0.

1.12.43. Exhibit an irreducible homogeneous polynomial f(z,y, z) of degree 4 whose locus of zeros is a
curve with three cusps.

1.12.44. Let f(z,y, z) be an irreducible homogeneous polynomial of degree > 1. Prove that the locus f = 0
in IP? contains three points that do not lie on a line.
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Chapter 2 AFFINE ALGEBRAIC GEOMETRY

Rings and Modules

The Zariski Topology

Some Affine Varieties

The Nullstellensatz

The Spectrum

Localization

Morphisms of Affine Varieties
Finite Group Actions

SHEENEEEE

Exercises

The next chapters are about varieties of arbitrary dimension. We will use some of the terminology, such as
discriminant and transcendence degree, that was introduced in Chapter[I] but many of the results in Chapter |I]
won’t be used again until we come back to curves in Chapter 8]

We begin with a review of some basic facts about rings and modules, omitting proofs. Give the next section
a quick read, but don’t spend too much time on it. You can refer back as needed, and look up information on
the concepts that aren’t familiar.

2.1 Rings and Modules

By the word ‘ring’, we mean commutative ring: ab = ba, unless the contrary is stated explicitly. A commuta-
tive ring has two associative and commutative operations, addition and multiplication, that are related by the
distributive law. It contains additive and multiplicative identity elements denoted by 0 and 1, respectively and
it is a group with the operation of addition,

As before, a domain is a ring that has no zero divisors and isn’t the zero ring. An algebra is a ring that
contains the field C of complex numbers as a subring.

A set of elements o = {«, ..., a,, } generates an algebra A if every element of A can be expressed, usually
not uniquely, as a polynomial in ., ..., o, with complex coefficients. Another way to state this is that the set
« generates A if the homomorphism C[z1, ..., z,,] — A that evaluates a polynomial at 2 = « is surjective.
If « generates A, then A will be isomorphic to the quotient C[x]/I of the polynomial algebra C[z], where I is
the kernel of 7. A finite-type algebra is an algebra that can be generated by a finite set of elements.

We usually regard an R-module M as a left module, writing the scalar product of an element m of M by an
element a of R as am. However, it is sometimes convenient to view M as a right module, writing ma instead
of am. So we define ma = am. This is permissible when the ring is commutative.

A homomorphism of modules M — N over a ring R may also be called an R-linear map. When we say that
a map is linear without mentioning a ring, we mean a C-linear map, a homomorphism of vector spaces.

The term "generate’ is used in a second way, for modules and ideals. A set (my, ..., m) of elements of
an R-module M generates M if every element of M can be obtained as a combination rymy + - - - + rgmyg
with coefficients r; in R, or that the homomorphism from the free R-module R* to M that sends a vector
(r1,...,7) to the combination r1mq + -+ + rpmy is surjective. A set (my, ..., my) that generates M is an
R-basis if every element of M is a combination in a unique way, or if rym; + - -+ + rpymy = 0 only when
ry =--- =1 = 0. Amodule M that has a basis of order k is a free R-module, of rank k.
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A setof elements (v, ..., g ) generates an ideal I of aring R it generates I as s R-module, if every element
of I can be written as a combination 71y + - - - + rpag, with r; in R.

A finite module M is one that is spanned, or generated, by some finite set of elements. A ideal I of a ring
R is finitely generated if it is a finite R-module.

It is important not to confuse the concept of a finite module with that of a finite-type algebra. An R-module
M is a finite module if every element of M can be written as a (linear) combination rymy + - - - + rpmy, of
some finite set {my, ..., my} of elements of M, with coefficients in the ring R. A finite-type algebra A is an
algebra in which every element can be written as a polynomial f(asq, ..., ) in some finite set {1, ..., ay } of
elements of A, with complex coefficients.

If I and J are ideals of a ring R, the product ideal, which is denoted by I.J, is the ideal whose elements
are finite sums of products > a;b;, with a; € I and b; € J. The product ideal is usually different from the
product set whose elements are products ab. The product set may not be an ideal.

The power I* of I is the product of k copies of I — the ideal generated by products of k elements of I.
The intersection I N J of two ideals is an ideal, and

(2.1.1) INnJ)*clJcInJ

Anideal M of aring R is a maximal ideal if M isn’t the unit ideal, M < R, and if there is no ideal I with
M < I < R. Anideal M is a maximal ideal if and only if the quotient ring R/M is a field.

An ideal P of a R is a prime ideal if the quotient R/ P is a domain. A maximal ideal is a prime ideal.
2.1.2. Lemma. Let P be an ideal of a ring R, not the unit ideal. The following conditions are equivalent.
(i) P is a prime ideal.

(ii) If a and b are elements of R, and if the product ab isin P, then a € P or b € P.
(iii) If A and B are ideals of R, and if the product ideal AB is contained in P, then A C P or B C P. O

The following equivalent version of (iii) is sometimes convenient:

(iii”) If A and B are ideals that contain P, and if the product ideal AB is contained in P, then A = P or
B=P. O

2.1.3. Lemma. Let A —25 Bbea ring homomorphism. The inverse image of a prime ideal of B is a prime
ideal of A. O
2.1.4. the Mapping Property of quotients.

(i) Let K be an ideal of a ring R, let R — R denote the canonical map from R to the quotient ring R = R /K,

and let S be another ring. Ring homomorphisms R 8 correspond bijectively to ring homomorphisms
R -5 S whose kernels contain K, the correspondence being ¢ = G o 7:

R -2 8

A

R—*55
If ker ¢ =1, then ker p = I /K.
(ii) Let M and N be modules over a ring R, let L be a submodule of M, and let M — M denote the canon-

ical map from M to the quotient module M = M /L. Homomorphisms of modules M N correspond

bijectively to homomorphisms M —2 N whose kernels contain L, the correspondence being ¢ = @ o T. If
ker ¢ = L, then ker = L/L. O

The word canonical that appears here is used often, to mean a construction that is the natural one in the given
context. Exactly what this means is usually left unspecified.

(2.1.5) commutative diagrams

48

intersect-
product

defprime

invim-
prime

mapprop

commdiag



corrthm

comax

quotof-
prod

noethr

basisthm

gnoeth

ascchcond

In the diagram displayed above, the maps @7 and ¢ from R to S are equal. This is referred to by saying
that the diagram is commutative. A commutative diagram is one in which every map that can be obtained by
composing its arrows depends only on the domain and range of that map. In these notes, almost all diagrams
of maps are commutative. We won’t mention commutativity most of the time. U

2.1.6. Correspondence Theorem.

() Let R 25 Sbea surjective ring homomorphism with kernel K. (For instance, @ might be the canonical
map from R to the quotient ring R/K. In any case, S will be isomorphic to R/K.) There is a bijective
correspondence

{ideals of R that contain K} <— {ideals of S}

This correspondence associates an ideal I of R that contains K with its image (1) in S and it associates an
ideal J of S with its inverse image p~1(J) in R.

If an ideal I of R that contains K corresponds to the ideal J of S, then @ induces an isomorphism of
quotient rings R/I — S/J. If one of the ideals, I or J, is prime or maximal, they both are.

(ii) Let R be a ring, and let M s Nbea surjective homomorphism of R-modules with kernel L. There is a
bijective correspondence

{submodules of M that contain L} +— {submodules of N}

This correspondence associates a submodule V' of M that contains L with its image ©(V') in N and it asso-
ciates a submodule W of N with its inverse image o~ *(W) in M. g

2.1.7. Chinese Remainder Theorem. Let I, ..., I}, be comaximal ideals of a ring R.
(i) The product ideal I - - - Iy, is equal to the intersection I; N - - - N I.

(ii) The map R — R/Iy X ---x R/I} that sends an element a of R to the vector of its residues in R/, is a
surjective homomorphism. Its kernelis Iy N --- N Iy, or I - - - I,.

(iii) Ler M be an R-module, and let M,, = M /I,. The canonical homomorphism M — M X --- X My, is
surjective. U

Ideals I, ..., I of aring R are said to be comaximal if the sum of any two of them is the unit ideal.

2.1.8. Proposition. Let R be a product of rings, R = Ry X---X Ry, let I be an ideal of R. There are ideals
I of Rj such that I = Iy X---x1Iy and R/I = Ry /Iy X+ - - X Ry /1. O

(2.1.9) Noetherian rings

A ring R is noetherian if all of its ideals are finitely generated. The ring Z of integers is noetherian. Fields
are notherian. If I is an ideal of a noetherian ring R, the quotient ring R/ is noetherian.

2.1.10. Hilbert Basis Theorem. Let R be a noetherian ring. The ring R[x1, ..., x,| of polynomials with
coefficients in R is noetherian. ([

Thus Z[x1, ..., 2,] and Fxy, ..., 2,], F a field, are noetherian rings.

2.1.11. Corollary. Every finite-type algebra is noetherian. O

(2.1.12) the ascending chain condition

The condition that a ring R be noetherian can be rewritten in several ways that we review here.

Our convention is that, if X’ and X are sets, the notation X’ C X means that X’ is a subset of X, while
X' < X means that X’ is a subset that is distinct from X . A proper subset X' of a set X is a nonempty subset
distict from X, a set such that ) < X’ < X.

A sequence X7, Xo, ..., finite or infinite, of subsets of a set Z forms an increasing chain if X,, C X, 1
for all n, equality X,, = X, 11 being permitted. If X,, < X, 1, for all n, the chain is strictly increasing.

49



When S is a set whose elements are subsets of a set Z, we may refer to an element of S as a member of
S to avoid confusion with the elements of Z. A member of S is a subset of Z. So the words *member’ and
“element’ are synonymous.

A member M of S is a maximal member if it isn’t properly contained in another member — if there is
no member M’ of S such that such that M < M’. For example, the set of proper subsets of a set of five
elements contains five maximal members, the subsets of order four. The set of finite subsets of the set of
integers contains no maximal member.

A maximal ideal of a ring R is a maximal member of the set of ideals of R that are different from the unit
ideal.

2.1.13. Proposition. The following conditions on a ring R are equivalent:

(i) Every ideal of R is finitely generated.

(ii) The ascending chain condition: Every strictly increasing chain I < Iy < --- of ideals of R is finite.
(iii) Every nonempty set of ideals of R contains a maximal member. (I

It is customary, though ungrammatical, to say that a ring has the ascending chain condition if it has no
infinite, strictly increasing sequence of ideals.

The next corollaries follow from the ascending chain condition, though the conclusions are true whether
or not R is noetherian.
2.1.14. Corollary. Let R be a noetherian ring.
(i) Every ideal of R except the unit ideal is contained in a maximal ideal.
(i) A nonzero ring R contains at least one maximal ideal.
(iii) An element of R that isn’t in any maximal ideal is a unit — an invertible element of R. ]
2.1.15. Corollary. Let sy, ..., Si be elements that generate the unit ideal of a ring R. For any positive integer
n, the powers s7, ..., sjt generate the unit ideal. (]
2.1.16. Proposition. Let R be a noetherian ring, and let M be a finite R-module.
(i) Every submodule of M is a finite module.
(ii) The set of submodules of M satisfies the ascending chain condition.
(iii) Every nonempty set of submodules of M contains a maximal member. O

(2.1.17) exact sequences

An exact sequence

N N AN VS R
of modules over a ring R is a sequence of homomorphisms, finite or infinite, such that for all &, the image of
d*~1 is equal to the kernel of d*. For instance, a sequence 0 — V/ L5 V' is exact if d is injective, and a

sequence V/ LV S5 0is exact, if d is surjective.
A short exact sequence is an exact sequence of the form
b
(2.1.18) 0=Vo——=Vi—= V250

To say that this sequence is exact means that the map a is injective, and that b induces an isomorphism from
the quotient module V4 /aV} to Va.

The short exact sequence 1b splits if there is a map V; <> V5 such that bs is the identity on V5. If the
sequence splits, V7 will be isomorphic to the direct sum V; @ V5.

LetV -4 V' bea homomorphism of R-modules, and let W be the image of d. The cokernel of d is the
module C = V’'/W (= V’/dV). The homomorphism d embeds into an exact sequence

(2.1.19) 0KV -5V 500
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where K and C are the kernel and cokernel of d, respectively.

A module homomorphism V' L M with cokernel C induces a homomorphism C' — M if and only if
the composed homomorphism fd is zero. This follows from the mapping property Corollary 2.1.4[(ii).

Let V be a finite-dimensional C-module V' (a vector space). The dual module V* is the module of linear
maps (homomorphisms of C-modules) V' — C. When V' 4 Visa homomorphism of C-modules, there is

a canonical dual homomorphism V* L V'*. The dual of the sequence (2.1.19) is an exact sequence
0 K« V<& v« o

So the dual of the kernel K is the cokernel of d*, which is K*, and the dual of the cokernel C is the kernel C*
of d*. This is the reason for the term “cokernel”.

2.1.20. Proposition. (functorial property of the kernel and cokernel) Suppose given a diagram of R-modules

Vv 2 v V' ——5 0
fl f’l f”l
0 w w’ w”

v

whose rows are exact sequences. Let K, K', K" and C,C"',C" denote the kernels and cokernels of f, f', and
1", respectively.
(i) (kernel is left exact) The kernels form an exact sequence K — K' — K. If u is injective, the sequence
0— K — K'— K" is exact.
(ii) (cokernel is right exact) The cokernels form an exact sequence C — C' — C". If v is surjective, the
sequence C — C' — C" — 0 is exact.
(iii) (Snake Lemma) There is a canonical homomorphism K" i) C that combines with the sequences above
to form an exact sequence

K> K 5K 500 o

If u is injective and/or v is surjective, the sequence remains exact with zeros at the appropriate ends. [l

(2.1.21)  presenting a module

Let R be aring. A presentation of an R-module M is an exact sequence of modules of the form
R R s M =0
The map R’ — R will be given by an /x k R-matrix, a matrix with entries in R, and that matrix determines

the module M up to isomorphism as the kernel of that map.

Every finite module over a noetherian ring R has a presentation. To obtain a presentation, one chooses
a finite set m = (myq, ..., my) of generators for the finite module M, so that multiplication by m defines a
surjective map R* — M. Let N be the kernel of that map. Because R is noetherian, NN is a finite module.
Next, one chooses a finits set of generators of IV, which gives us a surjective map R* — N. Composition of
that map with the inclusion N' C R’ produces an exact sequence R’ — R*¥ — M — 0.

(2.1.22) direct sum and direct product

Let M and N be modules over a ring R. The product module M x N is the product set, whose elements
are pairs (m,n), with m in M and n in N. The laws of composition are the same as the laws for vectors:

(m1,m1) + (ma,n2) = (M1 +ma,ny+n2) and r(m,n) = (rm,rn). There are homomorphisms M RN
M x N and M x N % M, defined by i,(m) = (m,0) and 71 (m,n) = m, and similarly, homomorphisms
N 22 Mx N and M x N =2 N. So i, and i- are inclusions, and 7, and 7 are projections.

51



The product module is characterized by this mapping property:

e Let 7" be an R-module. Homomorphisms 7' s MxN correspond bijectively to pairs of homomorphisms

T Mand T -5 N. The homomorphism ¢ that corresponds to the pair «, 5 is ¢(m,n) = (am, fn),
and when ¢ is given, the homomorphisms to M are o = w1 and 5 = map.

There is another product, the fensor product module M ®r N which is defined below.

The product module M x N is isomorphic to the direct sum M & N. Elements of M @ N can be written
either as m + n, or with product notation, as (m, n).

The direct sum M @ N is characterized by this mapping property:

e Let S be an R-module. Homomorphisms M & N 25 correspond bijectively to pairs u, v of homo-
morphisms M —%+ S and N - S. The homomorphism 1> that corresponds to the pair u, v is ¥ (m,n) =
um + vn, and when 1) is given, u = i1 and v = Pis.

We use the direct product and direct sum notations interchangeably, but we note that the direct sum of an
infinite set of modules isn’t the same as the product.

(2.1.23) localization

This is a preliminary dicsussion of an important construction. We will come back to it in Section[2.7]

Let s be a nonzero element of a domain A. The ring A[s~!], obtained by adjoining an inverse of s to A
is called a localization of A. If Alz] denotes the ring of polynomials in one variable z, with coefficients in A,
the localization is isomorphic to the quotient A[z]/(sz — 1) of A[z] modulo the principal ideal generated by
sz — 1. The residue of z becomes the inverse of s. We will often denote this localization by A,. If A is a
finite-type domain, so is A;.

(2.1.24) localizing a module

Let A be a domain, and let M be an A-module. Let’s regard M as a right module here. A torsion element
of M is an element that is annihilated by some nonzero element s of A: ms = 0. A nonzero element m such
that ms = 0 is an s-forsion element.

The set of all torsion elements of M is the torsion submodule of M, and a module whose torsion submodule
is zero is torsion-free.

Let s be a nonzero element of a domain A. The localization M of an A-module M is defined in the natural
way, as the A;-module whose elements are equivalence classes of fractions m/s” = ms~", with m in M and
r > 0. An alternate notation for the localization M is M|[s~1].

The only complication comes from the fact that M/ may contain s-torsion elements. If ms = 0, then m
must map to zero in My, because in M,, we will have mss~! = m. To define M,, one must to modify the
equivalence relation, as follows: Two fractions s~ " and mys~ "2 are defined to be equivalent if m;s™2 7" =
mas™ " when n is sufficiently large. This takes care of torsion, and M, becomes an A,-module. There is a
homomorphism M — M that sends an element m to the fraction m/1. If M is an s-torsion module, then
M, =0.

In this definition of localization, it isn’t necessary to assume that s # 0. But if s = 0, then M, = 0 for
every module M.

(2.1.25) tensor products

Let U and V' be modules over a ring R. The tensor product U @ gV is an R-module that is generated by
elements u ®@v called tensors, one for each v in U and each v in V. The elements of the tensor product are

combinations Zlf r;(u; ® v;) of tensors with coefficients in R.
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The defining relations among the tensors are the bilinear relations:
(2.1.26) (u14u2) ®v =u; @Vtuza v, U (V1+v2) =u® v1+u® Vg
and rlu®v) = (ru) ®v=u® (rv)
foralluwin U, vin V, and r in R. The symbol ® is used as a reminder that tensors are to be manipulated using

these relations.

One can absorb a coefficient from R into either one of the factors of a tensor, so every element of U @ gV’
can be written as a finite sum »_ u; ®v; with u; in U and v; in V.

2.1.27. Examples. (i) If U is the space of m dimensional (complex) column vectors, and V is the space of
n-dimensional row vectors, then U ®c V identifies naturally with the space of m x n-matrices.

(ii) If U and V are free R-modules of ranks m and n, with bases {u1, ..., u,, } and {v1, ..., v, }, respectively,
the tensor product U ® gV is a free R-module of rank mn, with basis {u; ® vj}. In contrast, the product
module U x V is a free module of rank m + n, with basis {(u;,0)} U {(0,v,)}.

There is an obvious map of sets

(2.1.28) UxV L Uepv

from the product set to the tensor product, that sends a pair (u,v) to the tensor © ® v. This map isn’t a
homomorphism of R-modules. The defining relations (2.1.26) show that 3 is R-bilinear, not R-linear.

The next corollary follows from the defining relations of the tensor product.

2.1.29. Corollary. Let U,V, and W be R-modules. Homomorphisms of R-modules U @V — W
correspond bijectively to R-bilinear maps U XV — W. O

Thus the map U xV/ U ®pg V is a universal bilinear map. Any R-bilinear map U x V' L Wioa
module W can be obtained from a module homomorphism U @ gV Jow by composition with the bilinear

map [ UXVLU@RVLW.

2.1.30. Proposition. There are canonical isomorphisms
e URrR ~U, definedbyu®r «~ ur
e (UaUNYRRV = (UgrV)® (U ®RrV), defined by (u1 + u2) QU e 11 QU+ ug @ v
e URRV = V®RgrU, definedby u @v «~vQu
o (URrV)QrW ~U®g(VerW), defined by (u Q@ v) @ w e~ u® (v @ w) O

2.1.31. Proposition. tensor product is right exact Let U LUt L U 0 be an exact sequence of
R-modules. For any R-module V', the sequence

UorV I8 U @V U 05V =0

in which [f @ 1J(u ® v) = f(u) ® v, is exact. O

Tensor product isn’t left exact. For example, if R = C[z], then R/zR ~ C. There is an exact sequence
0 - R~ R — C — 0. When we tensor with C we get a sequence 0 — C — C — C — 0, in which the
first map C — C is the zero map.

proof of Proposition We suppose that an exact sequence of R-modules U Lo 45U = 0and

another R-module V' are given. We are to prove that the sequence U @ gV IR U orV U @RV — 0
is exact. It is evident that the composition (¢ ® 1)(f ® 1) is zero, and that g ® 1 is surjective. We must prove
that U” ® gV is isomorphic to the cokernel of f ®1.

Let C be the cokernel of f ® 1. The mapping property li (ii) gives us a canonical map C 2 U"®RrV
that we want to show is an isomorphism. To show this, we construct the inverse of ¢. We choose an element
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v of V, and form a diagram of R-modules

Uxv —— Uxv —— U"xv —— 0

Bvl B;l l%

UorV 2% UepV —— ¢ —— 0

in which U x v denotes the module of pairs (u, v) with « € U. It is isomorphic to U.

The rows in the diagram are exact sequences of modules. The vertical arrows 3, and /3, are obtained by
restriction from the canonical bilinear maps (2.1.28). They are R-linear because v is held constant. The map
vy 18 determined by the definition of the cokernel, because the composition of the maps in the top row of the
diagram is zero. Putting the maps ~,, together for all v in V' gives us a bilinear map U x V' — C' That bilinear
map induces a linear map U @z V' — C, the inverse of . ]

2.1.32. Corollary. Let U and V' be modules over a domain R and let s be a nonzero element of R. Let Rs be
the localization of RV .

(i) The localization Usis isomorphic to U Qg (Rs).
(i) Tensor product is compatible with localization: Us®@p_ Vs = (UQRV)s

proof. (ii) The composition of the canonical maps U x V' — Uy x V; — Us ®pg_ Vs is R-bilinear. It defines
an R-linear map U ® gV — Us ®pg, V5. Since s is inverible in U; ®p_ Vs, this map extends to an Rg-linear
map (U ®gV)s — Us ®g, Vs. Next, we define an R-bilinear map Us x Vi — (U ® g V') s by mapping a pair
(us™™, vs™™) to (u ® v)s~ ™", This bilinear map induces the inverse map U;®@g Vs — (U @V )s. O

(2.1.33) extension of scalars

Let A 5 Bbea ring homomorphism. Extension of scalars is an operation that constructs an B-module from
an A-module.

Let’s write scalar multiplication on the right. So M will be a right A-module. Then M ®4 B becomes
a right B-module, scalar multiplication by b € B being defined by (m ® b')b = m ® (b'b). This gives the
functor
A—modules 22 B—modules

called the extension of scalars from A to B.

(2.1.34)  restriction of scalars

If A 5 B is a ring homomorphism, a (left) B-module M can be made into an A-module by restriction
of scalars. Scalar multiplication by an element a of A is defined by the formula

(2.1.35) am = p(a)m

It is customary to denote a module and the one obtained by restriction of scalars by the same symbol. But
when it seems advisable, one can denote a B-module M and the A-module obtained from M by restriction of
scalars by p M and 4 M, respectively. The additive groups of g M and 4 M are the same.

For example, a module over the prime field IF,, beomes a Z-module by restriction of scalars. If @ denotes
the residue of an integer a in IF, and V' is an [F,-module, scalar multiplication in 7V is defined in the obvious
way, by av = av.

2.1.36. Lemma. (extension and restriction of scalars are adjoint operators)

Let A 25 Bbea ring homomorphism, let M be an A-module, and let N be an B-module. Homomorphisms
M 25 4N of A-modules correspond bijectively to homomorphisms of B-modules M ® 4 B N BN. O

This concludes our review of rings and modules.
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2.2 The Zariski Topology

Affine algebraic geometry is a study of subsets of affine space that can be defined by systems of polynomial
equations. Those subsets are the closed sets in the Zariski topology on A", the Zariski closed sets. A Zariski
open set is a set whose complement, the set of points not in U, is Zariski closed.

Let f1, ..., fr. be polynomials in x1, ..., 2,,. The set of points of A" that solve the system of equations
(2.2.1) fi=0,..., fr=0

the locus of zeros of f, may be denoted by V'(f1, ..., f) or by V(f). Thus V(f) is a Zariski closed set.

We use analogous notation for infinite sets. If F is any set of polynomials, V' (F) denotes the set of points
of affine space at which all elements of F are zero. In particular, if I is an ideal of the polynomial ring, V' (T)
denotes the set of points at which all elements of I vanish.

As before, the ideal I of Clxy, ..., z,] generated by polynomials fi, ..., fi is the set of combinations
r1f1+- - -+ fr with polynomial coefficients r;. Some notations for this ideal are (f1, ..., fx) and (f). All
elements of I vanish on the zero set V(f), so V(f) = V(I). The Zariski closed subsets of A™ can also be
described as the sets V' (I), where I is an ideal.

An ideal isn’t determined by its zero locus. For one thing, all powers f* of a polynomial f have the same
zeros as f.

2.2.2. Lemma. Let I and J be ideals of the polynomial ring C[x, ..., z,].
OIfICJ thenV(I)DV(J).

(i) V(I*) = v (I).

Gii) V(INJ) = V(IJ) = V() UV(J).

(iv) If I, are ideals, then V (>_ 1) is the intersection (\V (I,).

proof. (iii) Recall that (I N J)?> C IJ C I N J. Then (i) and (ii) show that V(I N J) = V(IJ). Because I
and J contain I.J, V(I.J) D V(I) UV (J). To prove that V(I.J) C V(I) UV (J), we note that V(I1.J) is the
locus of common zeros of the products fg with f in I and g in J. Suppose that a point p is a common zero:
f(p)g(p) = 0 forall fin I and all g in J. If there is an element f in I such that f(p) # 0, we must have
g(p) = 0 for every g in J, and then p is a point of V'(.J). If f(p) = 0 for all f in I, then p is a point of V'(I).
In either case, p is a point of V' (I) UV (J). O

2.2.3. To verify that the Zariski closed sets are the closed sets of a topology, one must show that

« the empty set and the whole space are Zariski closed,
« the intersection () C,, of an arbitrary family of Zariski closed sets is Zariski closed, and
o the union C'U D of two Zariski closed sets is Zariski closed.

The empty set and the whole space are the zero sets of the elements 1 and 0, respectively. The other conditions
follow from Lemma[2.2.7] O

2.2.4. Example. The proper Zariski closed subsets of the affine line, or of a plane affine curve, are the
nonempty finite sets. The proper Zariski closed subsets of the affine plane are finite unions of points and
curves. We omit the proofs of these facts. The corresponding facts for loci in the projective line and the
projective plane have been noted before. (See (1.3.4) and (1.3.13).) O
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2.2.5.

A Zariski closed subset of the affine plane (real locus)

A subset of a topological space X becomes a topological space with its induced topology. The closed (or
open) subsets of a subset .S in the induced topology are intersections S MY, where Y is closed (or open) in X.
When we speak of a subset .S as a subspace of X, we mean that .S is given the induced topology.

The topology induced on a subset S from the Zariski topology on A™ will be called the Zariski topology
on S too. A subset of S is closed in its Zariski topology if it has the form SN Z for some Zariski closed subset
Z of A™. If S is a Zariski closed subset of A", a closed subset of S can also be described as a closed subset of
A™ that is contained in S.

2.2.6. Lemma. Let {X'} be a covering of a topological space X by open sets. A subset V of X is open if
and only if V.0 X% is open in X* for every i, and V is closed if and only if V N X' is closed in X* for every i.
In particular, if {U%} is the standard open covering of P", a subset V of P™ is open (or closed) if and only if
V NU? is open (or closed) in U? for every i. (I

When two topologies 7" and 7" on a set X are given, T” is said to be coarser than T if every closed set
in T” is closed in T i.e., if T' contains fewer closed sets (or fewer open sets) than T, and T" is finer than T
if it contains more closed sets (or more open sets) than 7". The Zariski topology is coarser than the classical
topology, and the next proposition shows that it is much coarser.

2.2.7. Proposition. Every nonempty Zariski open subset of A" is dense and path connected in the classical
topology.

proof. The (complex) line L through distinct points p and g of A™ is a Zariski closed subset of A™, whose
points can be written as p + t(q — p), with ¢ in C. It corresponds bijectively to the affine ¢-line A', and the
Zariski closed subsets of L correspond to Zariski closed subsets of A. They are the finite subsets, and L itself.

Let U be a nonempty Zariski open subset of A", and let C' be the Zariski closed complement of U. To
show that U is dense in the classical topology, we choose distinct points p and ¢ of A", with p in U. If L is
the line through p and ¢, C N L will be a Zariski closed subset of L, a finite set that doesn’t contain p. The
complement of this finite set in L is U N L. In the classical topology, the closure of U N L will be the whole
line L. The closure of U contains the closure of U N L, which is L. So it contains ¢, and since g was arbitrary,
the closure of U is A™.

Next, let L be the line through two points p and ¢ of U. As before, C' N L will be a finite set of points.
In the classical topology, L is a complex plane. The points p and ¢ can be joined by a path in that plane that
avoids a finite set. (]

Thus the Zariski topology is very different from the classical topology (1.3.17), but it is very useful in
algebraic geometry. We will use the classical topology from time to time, but the Zariski topology will appear

56

closedi-

naff

opendense



irrclosed

noethgq-
comp

deschain

de-
firrspace

ir-
redspacetwo

ir-
redlemma

closurein-
ters

quasicom-
pact

more often. Because of this, we refer to a Zariski closed subset simply as a closed set. Similarly, by an open
set we mean a Zariski open set. We will mention the adjective “Zariski” only for emphasis.

(2.2.8) irreducible closed sets

The fact that the polynomial algebra is a noetherian ring has an important consequence for the Zariski
topology that we discuss here.

A topological space X has the descending chain condition on closed subsets there is no infinite, strictly
descending chain C; > C5 > --- of closed subsets of X. (See (2.1.13).) The descending chain condition on
closed subsets is equivalent with the ascending chain condition on open sets.

A noetherian space is a topological space that has the descending chain condition on closed sets. In a
noetherian space, every nonempty family S of closed subsets has a minimal member, one that doesn’t contain
any other member of S, and every nonempty family of open sets has a maximal member. (See (2.1.12).)

2.2.9. Lemma. A noetherian topological space is quasicompact: Every open covering has a finite subcover-
ing. U

2.2.10. Proposition. With its Zariski topology, A™ is a noetherian space.

proof. Suppose that a strictly descending chain C; > Ca > -- - of closed subsets of A" is given. Let I; be the
ideal of elements of the polynomial ring C[z1, ..., z,,] that are identically zero on C;. Then C; = V/(I;). The
fact that C; > Cj4 implies that I; < I; . The ideals I; form a strictly increasing chain. Since C[z1, ..., Z,,]
is noetherian, that chain is finite. Therefore the chain C} is finite. O

2.2.11. Definition. A topological space X is irreducible if it isn’t the union of two proper closed subsets.

Another way to say that a topological space X is irreducible is this:

2.2.12. If Cand D are closed subsets of an irreducible toplogical space X, andif X = CUD, then X = C
or X =D.

The concept of irreducibility is useful primarily for noetherian spaces. The only irreducible subsets of a
Hausdorff space are its points. So, in the classical topology, the only irreducible subsets of affine space are
points.

Irreducibility may seem analogous to connectedness. A topological space is connected if it isn’t the union
C U D of two proper disjoint closed subsets. However, the condition that a space be irreducible is much more
restrictive because, in Definition [2.2.T1] the closed sets C' and D aren’t required to be disjoint. In the Zariski
topology on the affine plane, lines are irreducible closed sets. The union of two intersecting lines is connected,
but not irreducible.
2.2.13. Lemma. The following conditions on a topological space X are equivalent.
o X is irreducible.
o The intersection U NV of nonempty open subsets is nonempty.
o Every nonempty open subset U of X is dense — its closure is X. (I

The closure of a subset U of a topological space X, is the smallest closed subset of X that contains U. The
closure exists because it is the intersection of all closed subsets that contain S.

2.2.14. Lemma. Let Y be a subspace of a topological space X, let S be a subset of Y, and let C be the
closure of S 'in X. The closure of SinY isCNY.

proof. Let S be the closure of S in Y. It is is the intersection of the closed subsets of Y that contain S. A
subset W is closed in Y if and only if W = V N'Y for some closed subset V' of X, and if W contains S, so
does V. The intersection of those subsets V is C. Then S= W =(VNY) = (NV)NY =CnY. O

2.2.15. Lemma. (i) The closure Z of a subspace Z of a topological space X is irreducible if and only if Z is
irreducible.

(ii) A nonempty open subspace W of an irreducible space X is irreducible.

(iii) Let Y — X be a continuous map of topological spaces. The image of an irreducible subset D of Y is an
irreducible subset of X.
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proof. (i) Let Z be an irreducible subset of X, and suppose that its closure Z is the union C'U D of two closed
sets C and D. Then Z is the union of the sets C = CNZ and D = DN Z, and they are closed in Z. Therefore
Z is one of those two sets, say Z = C. Then Z C C, and since C is closed, Z C C. Because C' C Z as well,
C = Z. Conversely, suppose that the closure Z of a subset Z of X is irreducible, and that Z is a union C' U D
of closed subsets. Then Z = C U D, and therefore Z = Cor Z = D. f Z=C,then Z =CnNnZ = C
(2:2.14). So Z is irreducible.

(ii) See (2.2.13)). The closure of W is the irreducible space X.

(iii) Let D be an irreducible subspace of Y, and suppose that its image C' is the union C; UC5 of closed subsets
of C. The inverse image D; of C; is closed in D, and D = Dy U D,. Therefore either D1 = D or Dy = D.
Say that D1 = D. Then the map D — C'is surjective, and so is the map D; — (. Therefore C; = C. [

2.2.16. Theorem. In a noetherian topological space, every closed subset is the union of finitely many irre-
ducible closed sets.

proof. If a closed subset Cy of a topological space X isn’t a union of finitely many irreducible closed sets, then
it isn’t irreducible, so it is a union C; U D1, where C and D1 are proper closed subsets of C, and therefore
closed subsets of X. Since Cj isn’t a finite union of irreducible closed sets, C; and D4 cannot both be finite
unions of irreducible closed sets. Say that C; isn’t such a union. We have the beginning Cy > C of a chain
of closed subsets. We repeat the argument, replacing Cy by C', and we continue in this way, to construct an
infinite, strictly descending chain Cy > C7 > C5 > ---. So X isn’t a noetherian space. O

2.2.17. Definition. An affine variety is an irreducible closed subset of affine space A".

Theorem tells us that every closed subset of A™ is a finite union of affine varieties. Since an affine
variety is irreducible, it is connected in the Zariski topology. An affine variety is also connected in the classical
topology, but this isn’t easy to prove. We may not get to the proof.

(2.2.18) noetherian induction

In a noetherian space Z one can use noetherian induction in proofs. Suppose that a statement X is to be
proved for every closed subvariety X of Z. It suffices to prove X for X under the assumption that it is true for
every closed subvariety that is a proper subset of X. Or, to prove a statement X for every closed subset X of
Z, it suffices to prove it for X under the assumption that ¥ is true for every proper closed subset of X.

The justification of noetherian induction is similar to the justification of complete induction. Let S be the
family of closed subvarieties for which ¥ is false. If S isn’t empty, it will contain a minimal member X. Then
3 will be true for every proper closed subvariety of X, etc.

(2.2.19)  the coordinate algebra of a variety

Let I be an ideal of R. The radical of I of is the set of elements « of R such that some power o" is in I.
It is an ideal that contains /. The radical will be denoted by rad I:

(2.2.20) rad] = {a € R|a" € I for some r > 0}

An ideal that is equal to its radical is a radical ideal. A prime ideal is a radical ideal.

2.2.21. Lemma. (i) An ideal I of a noetherian ring R contains a power of its radical.
(ii) If I is an ideal of the polynomial ring C|x], then V (I) = V (rad I).

proof. (i) Since R is noetherian, rad I is generated by a finite set of elements o = {ay, ..., ay }, and for large
r, of isin I. We can use the same large integer r for every i. A monomial 3 = af* ---ag* of sufficiently
large degree n in o will be divisible o] for at least one ¢, and therefore it will be in /. The monomials of degree

n generate (rad I)™, so (rad I)™ C I. O
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Consequently, if I and J are ideals and if rad I = rad J, then V' (I) = V(J). The converse of this statement
is also true: If V(I) = V(J), then rad I = rad J. This is a consequence of the Strong Nullstellensatz that is
proved below (see (2.4.9)).

Because (INJ)2CIJCINdJ,

(2.2.22) rad(IJ) =rad(I N J)

Also, rad(I N J) = (rad I) N (rad J). Therefore V(rad(I N J)) = V(I) UV (J).
Recall that V' (P) denotes the set of points of affine space at which all elements of P vanish.

2.2.23. Proposition. The affine varieties in A™ are the sets V (P), where P is a prime ideal of the polynomial
algebra Clz] = Clxy, ..., xp]. If P is a radical ideal of C[z), then V (P) is an affine variety if and only if P is
a prime ideal.

We will use Proposition [2.2.23|in the next section, where we give a few examples of varieties, but we defer the
proof to Section[2.5] where the proposition will be proved in a more general form. (See Proposition[2.5.13).)

2.2.24. Definition. Let P be a prime ideal of the polynomial ring C[z1, ..., 2], and let V be the affine variety
V(P) in A™. The coordinate algebra of V is the quotient algebra A = C[z]/P.

Geometric properties of the variety are reflected in algebraic properties of its coordinate algebra and vice
versa. In a primitive sense, one can regard the geometry of an affine variety V' as given by closed subsets
and incidence relations — the inclusion of one closed set into another, as when a point lies on a line. A finer
study of the geometry takes into account other things, tangency, for instance, but it is reasonable to begin by
studying incidences C’ C C among closed subvarieties. Such incidences translate into inclusions P’ D P in
the opposite direction among prime ideals.

2.3 Some affine varieties
This section contains a few simple examples of varieties.

23.1. Apointp = (as,...,ay,) of affine space A is irreducible, so it is a variety. It is the set of solutions of
the n equations z; —a; = 0, ¢ = 1,...,n. The polynomials z; — a; generate a maximal ideal in the polynomial
algebra C[x], and a maximal ideal is a prime ideal. We will denote the maximal ideal that corresponds to the
point p by m,,. It is the kernel of the substitution homomorphism 7, : C[z] — C that evaluates a polynomial
g(xla EaS) xn) at p: ’/Tp(g) = g(ala ) an) = g(p)

The coordinate algebra of the point p is the quotient C[z]/m,,. It is called the residue field at p, and it will
be denoted by k(p). The residue field k(p) is isomorphic to the image of 7, the field of complex numbers, but
it is a particular quotient of the polynomial ring.

2.3.2. The varieties in the affine line A! are its points and the whole line A'. The varieties in the affine plane
A? are points, plane affine curves, and the whole plane.

This is true because the varieties correspond to the prime ideals of the polynomial ring. The prime ideals of
Clx1, 2] are the maximal ideals, the principal ideals generated by irreducible polynomials, and the zero ideal.
The proof is an exercise.

2.3.3.  The set X of solutions of a single irreducible polynomial equation fi(x1,...,x,) = 0in A™ is a
variety called an affine hypersurface.

A hypersurface in the affine plane A? is a plane affine curve. The special linear group SLs, the group of
complex 2 x 2 matrices with determinant 1, is a hypersurface in A*. It is the locus of zeros of the irreducible
polynomial T11X22 —T12L21 — 1.

The reason that an affine hypersurface is a variety is that an irreducible element of a unique factorization
domain is a prime element, and a prime element generates a prime ideal. The polynomial ring C[z1, ..., z,] is
a unique factorization domain.

2.3.4. A line in the plane, the locus of a linear equation ax + by = c, is a plane affine curve. Its coordinate
algebra, which is C[z,y|/(az + by — ¢), is isomorphic to a polynomial ring in one variable. Every line is
isomorphic to the affine line A'.
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23.5. Letp = (a1,...,a,) and ¢ = (by,...,b,) be distinct points of A™. The point pair (p,q) isn’t
irreducible, so itisn’t a variety. Itis the closed set defined by the system of n? equations (z; —a;)(x; —b;) = 0,
1 < ,j < n, and the ideal I generated by the polynomials (z; — a;)(z; — b;) isn’t a prime ideal. The next
corollary, which follows from the Chinese Remainder Theorem [2.1.7] describes that ideal:

2.3.6. Corollary. The ideal I of polynomials that vanish on a point pair p,q is the product mym, of the
maximal ideals at those points, and the quotient algebra C[x]/I is isomorphic to the product algebra C x C.
O

2.4 Hilbert’s Nullstellensatz

The Hilbert Nullstellesatz establishes the fundamental relation between affine algebraic geometry and algebra.
It identifies the points of an affine variety with maximal ideals.

2.4.1. Nullstellensatz (version 1). Let C[z] be the polynomial algebra in the variables x1,. .., x,. There
are bijective correspondences between the following sets:

e points p of the affine space A",
o algebra homomorphisms m, : Clz] — C,
o maximal ideals m,, of C[z].

The homomorphism T, evaluates a polynomial at a point p of A™. If p = (ax, ..., an), then mp(g) = g(p) =
g(ai, ....,an). The maximal ideal my, is the kernel of my. It is the ideal generated by the linear polynomials
T1—Q1, ..., Ty —Cn. O

It is obvious that every algebra homomorphism C[z] — C is surjective, so its kernel is a maximal ideal. Tt
isn’t obvious that every maximal ideal of C|x] is the kernel of such a homomorphism. The proof can be found
manywhere[']

The Nullstellensatz gives a way to describe the set V(1) of zeros of an ideal I in affine space in terms of
maximal ideals. The points of V' (I) are those at which all elements of I vanish — the points p such that I is
contained in m,.

(2.4.2) V(I)={pe A" |I Cm,}

2.4.3. Proposition. Let I be an ideal of the polynomial ring C|x]. If the zero locus V (I) is empty, then I is
the unit ideal.

proof. Every ideal I except the unit ideal is contained in a maximal ideal. (|

2.4.4. Nulistellensatz (version 2). Let A be a finite-type algebra. There are bijective correspondences
between the following sets:

o algebra homomorphisms 7@ : A — C,
o maximal ideals ™ of A.
The maximal ideal w that corresponds to a homomorphism T is the kernel o, T.

If A is presented as a quotient of a polynomial ring, say A =~ C|x1, ...,x,]|/1, then these sets also corre-
spond bijectively to points of the set V (I) of zeros of I in A™.

The symbol = stands for an isomorphism.

As before, a finite-type algebra is an algebra that can be generated by a finite set of elements. A presentation
of a finite-type algebra A is an isomorphism of A with a quotient C[x1, ..., 2,,]]/I of a polynomial ring. (This
isn’t the same as a presentation of a module (2.1.21).)

proof of version 2 of the Nullstellensatz. We choose a presentation of A as a quotient of a polynomial ring, to
identify A with a quotient C[z]/I. The Correspondence Theorem tells us that maximal ideals of A correspond
to maximal ideals of Clx] that contain I. Those maximal ideals correspond to points of V' (I).

'While writing a paper, the mathematician Nagata decided that the English language needed this unusual word. Then he found it in a
dictionary.
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Let 7 denote the canonical homomorphism C[z] — A.

s

Cla] —— C
(2.4.5) Tl H
A —T5C

The Mapping Property , applied to 7, tells us that homomorphisms A I C correspond to homo-
morphisms C[z] —— C whose kernels contain I. Those homomorphisms also correspond to points of V (I).
O

2.4.6. Strong Nullstellensatz. Let I be an ideal of the polynomial algebra Clx1, ..., x,], and let V denote
its locus of zeros in affine space: V. = V(I). If a polynomial g(x) vanishes at every point of V, then I
contains a power of g.

proof. This is Rainich’s beautiful proof. Let g(x) be a polynomial that is identically zero on V. We are to
show that I contains a power of g. The zero polynomial is in I, so we may assume that g isn’t zero.

The Hilbert Basis Theorem tells us that I is a finitely generated ideal. Let f = (f1,..., fx) be a set of gen-
erators. We introduce a new variable y. In the n+1-dimensional affine space with coordinates (z1, ..., Zn,¥y),
let W be the locus of solutions of the £+ 1 equations

(2.4.7) fil®)=0,...,fk(z)=0 and g(x)y—1=0

Suppose that we have a solution of the equations f(z) = 0, say (z1,...,2,) = (a1, ...,ayn). Then a is
a point of V, and our hypothesis tells us that g(a) = 0 too. There can be no b such that g(a)b = 1. So
there is no point (a1, ..., a,, b) that solves the equations (2.4.7): The locus W is empty. Proposition [2.4.3]tells
us that the polynomials f1, ..., fx, gy — 1 generate the unit ideal of C[z1, ..., z,, y]. There are polynomials

pl(x7y)a s apk'(x7y) and q(a:7y) such that

(2.4.8) pifit+oefet+algy—1)=1

The ring R = C|x,y]/(gy — 1) can be described as the one obtained by adjoining an inverse of g to the
polynomial ring C[x]. The residue of y becomes the inverse. Since g isn’t zero, Clz] is a subring of R. In
R, gy —1 = 0, and the equation becomes p1 f1 + -+ + prf = 1. When we multiply both sides
of this equation by a large power g” of g, we can use the equation gy = 1, which is true in R, to eliminate
all occurences of y in the polynomials p;(z,y). Let h;(z) denote the polynomial in x that is obtained by
eliminating y from g~ p;. Then

ha(2)fi(x) + -+ + hi(2) fi(z) = g™ (x)

is a polynomial equation that is true in R and in its subring C[z]. Since fi, ..., fj are in I, this equation shows
that g isin I. O

2.4.9. Corollary. Let C[x] denote the polynomial ring in the variables x1, ..., Tp,.

(i) Let P be a prime ideal of C[x], and let V' = V (P) be the variety of zeros of P in A™. If a polynomial g
vanishes at every point of V, then g is an element of P.

(ii) Let f be an irreducible polynomial in C[z]. If a polynomial g vanishes at every point of V (f), then f
divides g.

(iii) Let I and J be ideals of Clx]. Then V(I) D V(J) if and only if radI C rad J, and V(I) > V(J) if
and only if rad I > rad J (see (2.2.20)). O

2.4.10. Examples.

61



(i) Let I be the ideal of the polynomial algebra C[z,y] generated by 3° and 4> — 3. In the affine plane, the
origin (0, 0), is the only common zero of these polynomials, and the polynomial x also vanishes at the origin.
The Strong Nullstellensatz predicts that I contains a power of x. This is verified by the following equation:

vy’ — (y* +yPa® + 2% (y* —2®) = 2°

(ii) We may regard pairs A, B of nxn matrices as points of an affine space A of dimension 2n2, with coordinates
aij,bij, 1 < 1,5 < n. The pairs of commuting matrices (AB = BA) form a closed subset of A, the locus of
common zeros of the n? polynomials ci; that compute the entries of the matrix AB — BA:

(2.4.11) cij(a,b) = aiby; — biay,

If I is the ideal of the polynomial algebra Cla, b] generated by the set of polynomials {c;; }, then V' (I) is the
set of pairs of commuting complex matrices. The Strong Nullstellensatz asserts that, if a polynomial g(a, b)
vanishes on every pair of commuting matrices, some power of g isin I. Is g itself in I? It is a famous conjecture
that 7 is a prime ideal. If so, g would be in I. Proving the conjecture would establish your reputation as a
mathematician, but I don’t recommend spending very much time on it right now. U

2.5 The Spectrum

When a finite-type domain A is presented as a quotient of a polynomial ring C[x]/P, where P is a prime
ideal, A becomes the coordinate algebra of the variety V' (P) in affine space. The points of V' (P) correspond
to maximal ideals of A and also to homomorphisms A — C.

The Nullstellensatz allows us to associate a set of points to a finite-type domain A without reference to a
presentation. We can do this because the maximal ideals of A and the homomorphisms A — C don’t depend
on a presentation. We replace the variety V' (P) by an abstract set of points, the spectrum of A, that we denote
by Spec A and call an affine variety. We put one point p into the spectrum for every maximal ideal of A, and
then we turn around and denote the maximal ideal that corresponds to a point p by m,,. The Nullstellensatz tells
us that p also corresponds to a homomorphism A — C whose kernel is m,. We denote that homomorphism
by 7. In analogy with (2.2.24), A is called the coordinate algebra of the affine variety Spec A. To work with
Spec A, we may interpret its points as maximal ideals or as homomorphisms to C, whichever is convenient.

When defined in this way, the variety Spec A isn’t embedded into any affine space, but because A is a
finite-type domain, it can be presented as a quotient C[z]/P, where P is a prime ideal. When this is done,
points of Spec A correspond to points of the subset V' (P) in A™.

Even when the coordinate ring A of an affine variety X is presented as C[z]/P, we will often denote X
by Spec A rather than by V' (P).

2.5.1. Note. In modern terminology, the word “spectrum” is usually used to denote the set of prime ideals of
a ring. This becomes important when one studies rings that aren’t finite-type algebras. When working with
finite-type domains, there are enough maximal ideals. The other prime ideals aren’t needed to fill out Spec A,
so we don’t include them. O

Let X = Spec A. An element « of A defines a (complex-valued) function on X that we denote by the
same letter o. The definition of the function « is as follows: A point p of X corresponds to a homomorphism

AT By definition The value c(p) of the function « at p is 7, (v):

(2.5.2) a(p) = Tp(a)

Thus the kernel of 7,,, which is m,,, is the set of elements « of the coordinate algebra A at which the value of
ais 0:
m, = {a € Ala(p) =0}

The functions defined in this way by the elements of A are called the regular functions on X . (See Proposition

[2:6.2]below.)

When A is a polynomial algebra C[zy, ..., z,], the function defined by a polynomal g(z) is simply the
usual polynomial function, because 7, is defined by evaluating a polynomial at p: g(p) = m,(g) (2.3.1).
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2.5.3. Lemma. Let A be a quotient Cx]/ P of the polynomial ring C[x1, ..., x,], modulo a prime ideal P, so
that Spec A identifies with the closed subset V (P) of A™. Then a point p of Spec A becomes a point of A™:
p = (a1, ...,an). When an element o of A is represented by a polynomial g(z), the value of « at p can be
obtained by evaluating g: «(p) = g(p) = g(a, ..., an).

So the value a(p) at a point p of Spec A can be obtained by evaluating a suitable polynomial g. However,
unless P is the zero ideal, that polynomial won’t be unique.

proof of Lemma[2.5.3] The point p of Spec A gives us a diagram (2.4.5), with 7 = 7, and T = 7, and
where 7 is the canonical map C[z] — A. Then o = 7(g), and

(2.54) g(p) = mp(g9) =Tp7(9) = Tp(a) = a(p). O

2.5.5. Lemma. The regular functions determined by distinct elements o and § of A are distinct. In particular,
the only element o of A that is zero at all points of Spec A is the zero element.

proof. We replace o by oo — 3. Then what is to be shown is that, if the function determined by an element « is
the zero function, then « is the zero element.

We present A as C[z]/P, = = x1,...,x,, where P is a prime ideal. Let X be the locus of zeros of P in
A", Corollary(i) tells us that P is the ideal of all elements that are zero on X. Let g(z) be a polynomial
that represents «. If p is a point of X, and if a(p) = 0, then g(p) = 0. So if « is the zero function, then g is in
P, and therefore o = 0. O

(2.5.6) the Zariski topology on an affine variety

Let X = Spec A be an affine variety with coordinate algebra A. An ideal J of A defines a locus in X, a

closed subset, that we denote by V'(.J), using the same notation as for loci in affine space. The points of V()
are the points of X at which all elements of J vanish. This is analogous to (2.4.2):

(2.5.7) V(J) = {p€ SpecA|J Cm,}

2.5.8. Lemma. Let A be a finite-type domain that is presented as A = C[x]/P. An ideal J of A corresponds
to an ideal J of C[x] that contains P, and J = J/P. Let V(J) denote the zero locus of J in A". When we

regard Spec A as a subvariety of A", the loci V (J) in Spec A and V' (J) in A™ will be equal. O

2.5.9. Proposition. Let J be an ideal of a finite-type domain A. The zero set V(.J) in X = Spec A is empty
if and only if J is the unit ideal of A. If X is empty, then A is the zero ring.

proof. The only ideal that isn’t contained in a maximal ideal is the unit ideal. O

2.5.10. Note. We have put bars on the symbols m, 7, and .J in this section up to now, in order to distinguish

ideals of A from ideals of C[x] and homomorphisms A — C from homomorphisms C[z1,...,2,] — C.
From now on we will put bars over the letters only when there is a danger of confusion. Most of the time, we
will drop the bars, and write m, 7, and J instead of m, 77 , and J. O

2.5.11. Proposition. Let I be an ideal of noetherian ring R. The radical of I is the intersection of the prime
ideals of R that contain I.

proof. Let x be an element of rad /. Some power 2¥isinI. If Pisa prime ideal that contains I, then zk e P,

and since P is a prime ideal, x € P. So rad I C P. Conversely, let x be an element not in rad I. So no power
of x is in 1. We show that there is a prime ideal that contains I but not z. Let S be the set of ideals that contain
1, but don’t contain any power of x. The ideal [ is one such ideal, so S isn’t empty. Since R is noetherian, S
contains a maximal member P 2.1.12)). We show that P is a prime ideal by showing that, if two ideals A and
B are strictly larger than P, their product AB isn’t contained in P (2.1.2))(iii’). Since P is a maximal member
of S, A and B aren’tin S. They contain I and they contain powers of z, say ¥ € A and 2* € B. Then z***
is in AB but not in P. Therefore AB ¢ P. (I

The properties of closed sets in affine space that are given in Lemmas [2.2.2]and [2.2.2T] are true for closed
subsets of an affine variety. In particular, V/(J) = V(rad J),and V(IJ)=V(INJ)=V(I)UV(J).
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2.5.12. Corollary. Let I and J be ideals of a finite-type domain A, and let X = Spec A. Then V(1) D V(J)
if and only if rad I C rad J.

This follows from the case of a polynomial ring, Corollary (iii), and Lemma2.5.8 (]
The next proposition includes Proposition [2.2.23] as a special case.

2.5.13. Proposition. Let A be a finite-type domain, let X = Spec A, and let P be a radical ideal of A. The
closed set V(P) of zeros of P is irreducible if and only if P is a prime ideal.

proof. Let Y = V(P), and let C and D be closed subsets of X such that Y = C U D. Say C = V(I) and
D = V(J). We may suppose that T and J are radical ideals. Then the inclusion C' C Y implies that I D P,
and similarly, J O P (2.5.12). Because Y = CUD, we also have V(P) = V(I)UV (J) = V(I.J). Therefore
rad(IJ) = P. If P is a prime ideal, then P = [ or P = J, and therefore C = Y or D = Y. Then Y is
irreducible. Conversely, suppose that P isn’t a prime ideal. So there are ideals I, J strictly larger than the
radical ideal P, such that I.J C P. In this case, Y will be the union of the two proper closed subsets V' (I) and

V(J) (2.5.12), so Y isn’t irreducible. O

(2.5.14) the nilradical

The nilradical of a ring is the set of its nilpotent elements. It is the radical of the zero ideal. If a ring R is
noetherian, its nilradical N will be nilpotent: some power of N will be the zero ideal (Lemma [2.2.21). The
nilradical of a domain is the zero ideal.

The next corollary follows from Proposition 2.5.11}

2.5.15. Corollary. The nilradical of a noetherian ring R is the intersection of the prime ideals of R. O

Note. The conclusion of this corollary is true whether or not R is noetherian.

2.5.16. Corollary.
(i) Let A be a finite-type algebra. An element of A that is in every maximal ideal of A is nilpotent.
(ii) Let A be a finite-type domain. The intersection of the maximal ideals of A is the zero ideal.

proof. (i) Say that A is presented as C[x1, ..., 2,,]/I. Maximal ideals of A correspond to the maximal ideals of
C[x] that contain I, and to points of the closed subset V' (I) of A™. Let « be the element of A that is represented
by a polynomial g(z) in C[z]. Then « is in every maximal ideal of A if and only if g = 0 at all points of V'(I).
If so, the Strong Nullstellensatz asserts that some power g” is in 1. Then oV = 0. ([

2.5.17. Corollary. An element « of a finite-type domain A is determined by the function that o defines on
Spec A.

proof. It is enough to show that an element « that defines the zero function is the zero element. Such an
element « is in every maximal ideal (2.5.9), so it is nilpotent, and since A is a domain, ov = 0. O

2.6 Morphisms of Affine Varieties
Morphisms are the maps between varieties that are allowed. Morphisms between affine varieties, as will be de-

fined in this section, correspond to algebra homomorphisms in the opposite direction between their coordinate
algebras. Morphisms of projective varieties will be defined in the next chapter.

(2.6.1) regular functions

The function field K of an affine variety X = Spec A is the field of fractions of A. A rational function
on X is a nonzero element of the function field. A rational function f is regular at a point p of X if it can be
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written as a fraction f = a/s with s(p) # 0, and f is regular on a subset U of X if it is regular at every point
of U.

In (2.5.2), we have seen that an element of the coordinate algebra A defines a function on X. The value
a(p) of a function a at a point p is m,(a), where m, is the homomorphism A — C that corresponds to p.
A rational function f = a/s is an element of A,. It defines a function on the open subset X of X, with

f(p) = a(p)/s(p).

2.6.2. Proposition. The regular functions on an affine variety X = Spec A are the elements of the coordinate
algebra A.

proof. Let f be arational function that is regular on X. So for every point p of X, f can be written as a fraction
a/s such that s(p) # 0. The localization X, = Spec A, contains p, and f is an element of A;. Because X
is quasicompact, a finite set of such localizations, say X, , ..., Xs,, will cover X. Then s, ..., s; have no
common zeros on X, so they generate the unit ideal of A. Since f is in A,,, we can write f = s;"b;, or
s f = b;, with b; in A, and we can use the same exponent n for each 7. Since the elements s; generate the
unit ideal of A, so do the powers s'. Writing 1 = > sl'c; with¢; in A, f=>"sl¢;f = > ¢;b;. So fisan
element of A.

This reasoning, in which one writes the identity element as a sum, occurs often. O

(2.6.3) morphisms

Let X = Spec A and Y = Spec B be affine varieties, and let A —— B be an algebra homomorphism. A
point g of Y corresponds to an algebra homomorphism B Z9 C. When we compose 7, with ¢, we obtain

a homomorphism A % C. By definition, points p of Spec A correspond to homomorphisms A T*, C. So
there is a unique point p of X = Spec A such that 7,9 = 7).

2.6.4. Definition. Let X = Spec A and Y = Spec B. A morphism Y — X is a map that is defined, as
above, by an algebra homomorphism A s B. Ifqisa point of Y, then uq is the point p of X such that

Tp = Tqp:

A_% . B X > VY
2.6.5) Wpl lﬂq T T
C C p—— ¢

So p = uq means that T, = 7).

2.6.6. Lemma. Let X = SpecA and Y = SpecB, and let Y — X be the morphism defined by a
homomorphism A 25 B. Also, let ¢ be a point of Y, and let p = uq be its image in X.

() If « is an element of A and 8 = ¢(«), then 5(q) = a(p).

(i) Let m,, and m be the maximal ideals of A and B at p and q, respectively. Then m,, = ¢~ 'm,.

proof. (i) 5(q) = m4(B) = me(pa) = mp(@) = alp).

(ii) a(p) = 0 if and only if [pa](q) = 0. O
Thus the homomorphism ¢ is determined by the morphism u, and vice-versa. But just as a map A — B

needn’t be a homomorphism, a map Y — X needn’t be a morphism.

Notation. Parentheses tend to accumulate, and this can make expressions hard to read. When we want to
denote the value of a complicated function such as ¢ («) on an object ¢ we may, for clarity, drop some paren-
theses and enclose the functor in square brackets, writing [pa](q) instead of (¢(«))(¢q). When a square bracket
is used this way, there is no logical difference between it and a parenthesis. (|

A morphism Y — X is an isomorphism if and only if it is bijective, and its inverse function is a morphism.
This will be true if and only if A —~5 Bisan isomorphism of algebras.
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2.6.7. Proposition. (i) The morphismY — X defined by a homomorphism A s Bisan isomorphism if
and only if ¢ is an isomorphism.

(ii) The morphism X — X defined by a homomorphism A 25 Ais the identity if and only if p is the identity.
O

The definition of a morphism can be confusing because the direction of the arrow is reversed. It will
become clearer as we expand the discussion, but the reversal of arrows will remain a potential source of
confusion.

morphisms to affine space.

A morphism Y -+ A! from a variety Y = Spec B to the affine line Spec C[z] is defined by an al-

gebra homomorphism C|z] 5 B, and such a homomorphism substitutes an element 8 of B for . The
corresponding morphism u sends a point g of Y to the point z = §(q) of the z-line.

For example, let Y be the space of 2 x 2 matrices, Y = Spec (C[yl-j], where y;; are variable matrix entries,
1 <4,57 < 2. The determinant defines a morphism ¥ — A that sends a matrix to its determinant. The
corresponding algebra homomorphism C|[z] LN Clys;] substitutes y11y22—y12y21 for 2. It sends a polynomial
f(x) to f(y11y22 — Y12Y21)-

A morphism in the other direction, from the affine line A' to a variety Y may be called a (complex)
polynomial path in Y. When Y is the space of matrices, a morphism A' — Y corresponds to a homomorphism
Clyi;] — Clx]. It substitutes a polynomial in « for each variable y; ;.

A morphism from an affine variety ¥ = Spec B to affine space A™ is defined by a homomorphism

Clxy ooy Tp] 2, B, which substitutes elements j; of B for z;: ®(f(z)) = f(B). (We use an upper case
® here, keeping ¢ in reserve.) The corresponding morphism ¥ — A™ sends a point ¢ of Y to the point

(/Bl(q)v vﬁn(Q)) of A™.

morphisms to affine varieties.

Let X = SpecA and Y = Spec B be affine varieties. Say that we have chosen a presentation A =
Clx1, ooy zm]/(f1, .-y fr) Of A, so that X becomes the closed subvariety V(f) of affine space A™. There
is no need to choose a presentation of B. A natural way to define a morphism from a variety ¥ to X is
as a morphism Y —%5 A" to affine space, whose image is contained in X. We check that this agrees with

Definition 2.6.41

A morphism Y %5 A™ corresponds to a homomorphism C[z1, ..., Z,,] 2, B, determined by a set
(B, ..., Bm,) of elements of B, with the rule that ®(z;) = ;. Since X is the locus of zeros of the polynomials
f, the image of Y will be contained in X if and only if f;(51(q), .., Bm(q)) = 0 for every point ¢ of Y and
every 4, i.e., if and only if f;(5) is in every maximal ideal of B, in which case f;(8) = 0 (2.5.16)(ii). A better
way to say this is: The image of Y is contained in X if and only if 8 = (84, ..., B) solves the equations

f(x) =0. And, if 5 is a solution, the homomorphism ® defines a homomorphism A . B.

Clz] —* B

l H

L}B

This is an elementary, but important, principle:

o Homomorphisms from the algebra A = Clx]/(f) to an algebra B correspond to solutions

of the equations f = 0 in B.
2.6.8. Corollary. Let X = SpecA and let Y = Spec B be affine varieties, and suppose that A =
Clx1y ooy Tm]/(f1, -y fre). There are bijective correspondences between the following sets:

e algebra homomorphisms A — B,

o morphisms Y — X,

o morphisms Y — A™ whose images are contained in X,

o solutions of the equations f;(x) =0in B, i=1,..., k. (]
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The second and third sets refer to an embedding of the variety X into affine space, but the first one does not.
It shows that a morphism depends only on the varieties X and Y, not on their embeddings.

2.6.9. Example. Let B = C[z] be the polynomial ring in one variable, and let A be the coordinate algebra
Clu,v]/(v? — u?) of a cubic curve with a cusp. A homomorphism A — B is determined by a solution of the
equation v = u? in C[z]. The solutions have the form u = g2, v = ¢g> with g in C[x]. For instance, u = 2>
and v = 23 is a solution. O

We note a few more facts about morphisms here. Their geometry will be analyzed further in Chapters []
and

2.6.10. Proposition. Let Y — X be the morphism of affine varieties that corresponds to a homomorphism
of finite-type domains A —2+ B.

(i) Suppose that B = A/P, where P is a prime ideal of A, and that o is the canonical homomorphism
A — A/P. Then u is the inclusion of the variety of zeros Y = V(P) of P into X.

(ii) The homomorphism  is surjective if and only if w maps Y isomorphically to a closed subvariety of X.

(iii) Let Z - Y be another morphism, that corresponds to a homomorphism B R of finite-type domains,
the composed map Z > X corresponds to the composed homomorphism A 9, R. O

It can be useful to phrase the definition of the morphism Y —— X that corresponds to a homomorphism
A -5 B in terms of maximal ideals. Let m, be the maximal ideal of B at a point q of Y. The inverse image
of my in A is the kernel of the composed homomorphism A %5 B ™% C, so it is a maximal ideal of A:
¢~ 'm, = m,, for some p in X. That point p is the image of ¢: If p = ug, thenm,, = ¢~ 'm,,.

The fibre over a point p of the morphism Y — X defined by a homomorphism A 5 B is described
as follows: let m;, be the maximal ideal at a point p of X, and let .J be the extended ideal m, 5, the ideal
generated by the image of m, in B. Its elements are finite sums )  ¢(z;)b; with z; in m;, and b; in B. (See
(2.7.5) below.) If g is is a point of Y, then ug = p if and only if m,, = ¢ ~'m,. This will be true if and only
J Cm,.

2.6.11. Example. (blowing up the plane)

Let W and X be planes with coordinates (x,w) and (x,y), respectively. The affine blowup morphism
W -5 X was described before . It is defined by the substitution 7(z, w) = (x, zw), and if corresponds
to the algebra homomorphism C[z, ] —— Cl[xz, w] defined by (z) = x and ¢(y) = zw. To be specific, the
image of a point ¢ : (z,w) = (a, c) of W is the point p : (z,y) = (a, ac) of X.

As was explained in , the blowup 7 is bijective at points (z, y) at which z # 0. The fibre of Z over
a point of Y of the form (0, y) is empty unless y = 0, and the fibre over the origin (0,0) in Y is the w-axis,
the line x = 0 in the plane V. O

2.6.12. Proposition. A morphismY —= X of affine varieties is a continuous map in the Zariski topology
and also in the classical topology.

proof. the Zariski topology: Let X = Spec A and Y = Spec B, so that u corresponds to an algebra homo-
morphism A % B. A closed subset C' of X will be the zero locus of a set @ = {aq, ..., ap} of elements

of A. Let B; = pa;. The inverse image u~!C is the set of points ¢ such that p = ugq is in C, i.e., such that
a;(uq) = Bi(q) = 0 (2.6.6). So u=1C is the zero locus in Y of the elements 3; = p(a;). Itis a closed set.

the classical topology: We use the fact that polynomials are continuous functions. First, a morphism of

affine spaces Ay Y, A" is defined by an algebra homomorphism Clx1, ..., Zp] 2, Cly1, -, Yn), and
that homomorphism is determined by the polynomials hy(y), ..., ., (y) that are the images of the variables
X1, ..., L. The morphism U sends the point (y1, ..., y,) of A™ to the point (hi(y), ..., hm(y)) of A™. Ttis
continuous because polynomials are continuous functions.

Next, say that a morphism ¥ —— X is defined by a homomorphism A 5 B of algebras that are
presented as A = C[z]/I and B = C[y]/J. We form a diagram of homomorphisms and the associated
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diagram of morphisms:

Clz] —2— Cly] A L Am
- P [
A —“25 B X «+* Y

Here the map « sends 1, ..., T, t0 @1, ..., &y, and [ sends y; to B; = ¢(«;). Then @ is obtained by choosing
elements h; of Cly], such that 5(h;) = f;.

In the diagram on the right, U is a continuous map, and the vertical arrows are the embeddings of X and
Y into their affine spaces. Since the topologies on X and Y are induced from their embeddings into affine
spaces, u is continuous. O

Thus every morphism of affine varieties can be obtained by restriction from a morphism of affine spaces.
However, in the diagram above, the morphism U depends on the choice of the polynomials h; and on the
presentations of A and B. It isn’t unique.

2.7 Localization

In these notes, the word “localization” refers to the process of adjoining inverses to an algebra, and to the effect
of that process on the spectrum.

Let s be a nonzero element of a domain A. As before (2.1.23)), the ring A, = A[s~!] obtained by adjoining
an inverse of s to A is called a localization of A. If X denotes the variety Spec A, X, will denote the variety
Spec A,. It will be called a localization of X too.

2.7.1. Proposition. The localization Xs = Spec A is homeomorphic to the open subspace of X of points
at which the function defined by s isn’t zero.

proof. Let p be a point of X, let A %, C be the corresponding homomorphism. If s isn’t zero at p, say
s(p) = ¢ # 0, then 7, extends uniquely to a homomorphism A; — C that sends s~* to ¢~ *. This gives us a
unique point of X that corresponds to p. If ¢ = 0, then 7, doesn’t extend to A;.

A closed subset C' of X will be the set of zeros of the elements ay, ..., ap of A. Then C'N X, will be the
set of zeros of those same elements in X;. It will be closed in Xs. Conversely, let D be a closed subset of
X, say the zero set in X, of some elements f31, ..., B, where 3; = b;s~™ with b; in A. Since s~! doesn’t
vanish on X, the elements b; and (3; have the same zeros in X;. If C is the zero set of by, ..., b; in X, then
CnNnX,=D. O

Thus we may identify a localization X ¢ with the open subset of X of points at which the value of s isn’t
zero. Then the effect of adjoining the inverse is to throw out the points of X at which s vanishes. For example,
the spectrum of the Laurent polynomial ring C[t, 1] becomes the complement of the origin in the affine line
A! = SpecC[t].

Most varieties contain open sets that aren’t localizations. The complement X’ of the origin in the affine
plane X = SpecClxy,x2] is a simple example. Every polynomial that vanishes at the origin vanishes on an
affine curve, which has points distinct from the origin. Its inverse doesn’t define a function on X’. So X’ isn’t
a localization of X . This is rather obvious, but in other situations, it is often hard to tell whether or not a given
open set is a localization.

Localizations are important for two reasons:

2.7.2.
o The relation between an algebra A and a localization A, is easy to understand.
o The localizations X of an affine variety X form a basis for the Zariski topology on X.

A basis for the topology on a topological space X is a family B of open sets with this property: Every open
subset of X is a union of open sets that are members of B.

To show that the localizations X of an affine variety X form a basis for the topology on X, we must show
that every open subset U of X = Spec A can be covered by sets of the form X . Let C be the complement
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X —U of U in X. Then C is closed, so it is the set of common zeros of some nonzero elements s, ..., Sy of
A. The zero set V(s;) of s; is the complement of the locus X, in X, C is the intersection of the sets V' (s;),
and U is the union of the sets X,. ]

2.7.3. Corollary. Let X = Spec A be an affine variety.

(i) Let s1, ..., s, be elements of A. If the localizations X, ..., X, cover X, then si, ..., s generate the unit
ideal of A.

(i) If {U, } is an open covering of X, a covering by open sets, there are elements s1, ..., si of A such that each
X, is contained in one of the open sets U,,, and the localizations X, ..., X, cover X. O

2.7.4. Lemma. Let X = Spec A be an affine variety.

() If if As and Ay are localizations of A, and if As D Ay, then A is a localization of A;. Or, if X5 and X,
are localizations of X, and if X C Xy, then X is a localization of X;.

(i) If u is an element of a localization A of A, then (As),, is also a localization of A. O

(2.7.5) extension and contraction of ideals

Let A C B be the inclusion of a ring A as a subring of a ring B. The extension of an ideal I of A is the
ideal IB of B generated by I. Its elements are finite sums » ; 2ib; with z; in I and b; in B. The contraction
of an ideal J of B is the intersection J N A. It is an ideal of A.

When A, is a localization of A and I is an ideal of A, the elements of the extended ideal I A, are fractions
of the form zs—*, with z in I. We denote this extended ideal by I,.

2.7.6. Lemma. Let s be a nonzero element of a domain A.

(i) Let J be an ideal of the localization Ag and let I = JNA. Then J = I,. Every ideal of A, is the extension
of an ideal of A.

(ii) Let P be a prime ideal of A. If s isn’t in P, the extended ideal P is a prime ideal of As. If I is any ideal
of A that contains I, the extended ideal I, is the unit ideal. O

2.7.7) multiplicative systems

To work with the inverses of finitely many nonzero elements, one may simply adjoin the inverse of their
product. For working with an infinite set of inverses, the concept of a multiplicative system is useful. A
multiplicative system S in a domain A is a subset of A that consists of nonzero elements, is closed under
multiplication, and contains 1. If S is a multiplicative system, the ring of S-fractions AS~! is the ring obtained
by adjoining inverses of all elements of S. Its elements are equivalence classes of fractions as~! with a in A
and s in .S, the equivalence relation and the laws of composition being the usual ones for fractions. The ring
AS~! will be called a localization too. When necessary to avoid confusion, the ring obtained by inverting a
single nonzero element s may be called a simple localization.

2.7.8. Examples. (i) The set consisting of the powers of a nonzero element s of a domain A is a multiplicative
system. Its ring of fractions is the simple localization As.

(ii) The set S of all nonzero elements of a domain A is a multiplicative system. Its ring of fractions is the field
of fractions of A.

(iii) An ideal P of a domain A is a prime ideal if and only if its complement, the set of elements of A not in
P, is a multiplicative system. (]

2.7.9. Proposition. Let S be a multiplicative system in a domain A, and let A’ be the localization AS™1.

(i) Let I be an ideal of A. The extended ideal 1A' is the set IS~' whose elements are classes of fractions
281, with x in I and s in S. The extended ideal is the unit ideal if and only if I contains an element of S.

(ii) Let J be an ideal of the localization A’ and let I = J N A. Then IA' = J.

(iii) If P is a prime ideal of A and if P N S is empty, the extended ideal P' = P A’ is a prime ideal of A’,
and the contraction P' N A is equal to P. If PN S isn’t empty, the extended ideal is the unit ideal. Thus prime
ideals of AS™" correspond bijectively to prime ideals of A that don’t meet S. O
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2.7.10. Corollary. Every localization AS™" of a noetherian domain A is a noetherian domain. O

2.7.11. When S is a multiplicative system in a domain A, the localization M S~ of an A-module M is
defined in a way analogous to the one used for simple localizations: It is the AS~'-module whose elements
are equivalence classes of fractions ms~! with m in M and s in S. To take care of torsion, two fractions
mq 31_1 and masy ! are defined to be equivalent if there is a nonzero element s in S such that mso5 = masys.
Then msl_l = 0 if and only if ms = 0 for some nonzero s in S. As with simple localizations, there will be a
homomorphism M — M S~1 that sends an element m to the fraction m,/1.

2.7.12. Proposition. Let S be a multiplicative system in a domain A.

(i) Localization is an exact functor: A homomorphism M < N of A-modules induces a homomorphism
MS—1 25 NS~ of AS~Y-modules. If M -2+ N Y P is an exact sequence of A-modules, the localized
sequence MS— £ NS~1 Y PS—is exact.

(ii) Let M be an A-module and let N be an AS™'-module. When N is made into an A-module by restriction
of scalars, homomorphisms of A-modules M — 4 N correspond bijectively to homomorphisms of AS™"'-
modules MS~! — N.

(iii) If multiplication by s is an injective map M — M for every s in S, then M C MS~'. If multiplication
by every s is a bijective map M — M, then M ~ M S~ (I

(2.7.13) a general principle

An elementary principle for working with fractions is that any finite sequence of computations in a local-
ization AS~! will involve finitely many denominators, and can therefore be done in a simple localization A,
where s is a common denominator for the fractions that occur.

2.8 Finite Group Actions

Let GG be a finite group of automorphisms of a finite-type domain B. An invariant element ( of B is an element
such that o3 = f3 for every element ¢ of G. For example, for all b in B, the product and the sum

28.) [[ov . S ob

ceCG ceG

are invariant elements. The invariant elements form a subalgebra of B that is often denoted by BS. Theo-
rem below asserts that B¢ is a finite-type domain, and that points of the variety Spec B correspond
bijectively to G-orbits in the variety Spec B.

2.8.2. Examples.

(i) The symmetric group G = S, operates on the polynomial algebra R = Cl[yy, ..., y,] by permuting the
variables. The Symmetric Functions Theorem asserts that the elementary symmetric functions

siW) =Y wir $200) =D i s 5n(y) =11Y2" Un
[

i<j

generate the algebra R® of invariant polynomials. Moreover, s, ..., s,, are algebraically independent, so R
is the polynomial algebra C[sy, ..., 5,,]. The inclusion of R into R gives us a morphism Y — S, from affine
y-space Y = AJ to affine s-space S = A{. The operation of G on R defines an operation on Y. We use the
same symbol s; to denote the symmetric function s,(y) and the coordinate variable in the affine space S. If
¢1, ..., ¢, are scalars, one can evaluate the variables sq, ..., s, at y = ¢, to obtain a point ¢ = (¢q, ..., ¢y, ) of
S. The points a = (a1, ..., a,) of Y with image c in S are those such that s;(a) = ¢;, and a1, ..., a,, are the
roots of the polynomial 4" — ¢;™ ! + - - - £ ¢,,. The roots form a G-orbit, so the set of G-orbits in Y maps
bijectively to S.

(ii) Let o be the automorphism of the polynomial ring B = C[y1, 32| defined by o1 = Cy1 and oyz = Ly,
where ¢ = e2™/". Let G be the cyclic group of order n generated by o, and let A denote the algebra BS
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of invariant elements. A monomial m = yiy% is invariant if and only if n divides ¢ — j, and an invariant
polynomial is a linear combination of invariant monomials. You will be able to show that the three monomials

(2.8.3) uy =y, uz =Yy, and w = y1yo

generate the algebra A of invariants. Let’s use the same symbols w1, u2, w to denote variables in a polynomial
ring C[uy, uz, w]. Let J be the kernel of the canonical homomorphism C[uy, uz,w] — A that sends w1, uo
and w to y1', y4 and y;ya, respectively.

2.8.4. Lemma. With notation as above, the kernel of 7 is the principal ideal of Clu, ug, w), generated by the
polynomial f = w™ — ujug. Thus A =~ Cluy, ug, w]/(w™ — ujus).

proof. First, fisin J. Let g(u1, us, w) be any element of J. So g(y},y%,y1y2) = 0. We divide g by
f, considered as a monic polynomial in w, say ¢ = fq + r, where the remainder r(uy, u2,w) has degree
< n in w. The remainder will be in J too: r(y}, y¥,y1y2) = 0. We write r as a polynomial in w: r =
ro(ur, ug) + 71 (ur, ug)w + - - - + 1,1 (ug, ug)w™ L. When we substitute y7, y%, 4192, the term 7; (uq, ug)w®
becomes 7;(y7, y%)(y1y2)®. The degree in y; of every monomial that appears there will be congruent to i
modulo n, and the same is true for the degree in yo. Since 7(y7, y%,y1y2) = 0, and since the indices ¢ are
distinct, ;(y}, y%) must be zero for every . This implies that r;(uy, uz) = 0 for every i. So r = 0, which
means that f divides g. O

We go back to the operation of the cyclic group G on B = C[yi, y»] and the algebra of invariants A. Let Y
denote the affine plane Spec B, and let X = Spec A. The group G operates on Y, and except for the origin,
which is a fixed point, the orbit of a point (y;,y2) consists of the n points ((*y1,( ‘ya), i = 0,...,n — 1.
To show that G-orbits in Y correspond bijectively to points of X, we fix complex numbers w1, uo, w with
w" = wujus, and look for solutions of the equations . When u; # 0, the equation u; = yI* has n
solutions for y;, and when a soluion is given, 2 is determined by the equation y;y2 = w. So the fibre has
order n. Similarly, there are n points in the fibre if ug # 0. If u1 = us = 0, then y; = yo = w = 0, and the
fibre contains just one point. In all cases, the fibres are the G-orbits. ]

2.8.5. Theorem. Let G be a finite group of automorphisms of a finite-type domain B, and let A denote the
algebra B of invariant elements. Let Y = Spec B and X = Spec A.

(i) A is a finite-type domain and B is a finite A-module.

(i) G operates by automorphisms on 'Y .

(iii) The morphism 'Y — X defined by the inclusion A C B is surjective. Its fibres are the G-orbits of points
of Y.

When a group G operates on a set Y, one often denotes the set of G-orbits of Y by Y/G, which is read as 'Y
mod G’. With that notation, part (iii) of the theorem asserts that there is a bijective map

Y/G— X

proof of (i): The invariant algebra A = B€ is a finite-type algebra, and B is a finite A-module.
This is an interesting indirect proof. To show that A is a finite-type algebra, one constructs a finite-type
subalgebra R of A such that B is a submodule of a finite R-module.

Let {z1,..., z; | be the G-orbit of an element z; of B. The orbit is the set of roots of the polynomial

fit) = (t—2z1)--(t—2z) = tF— s tF Tl sy

Its coefficients s;(z) are the elementary symmetric functions in {z1, ..., zx }. Let Ry denote the algebra gen-
erated by those symmetric functions. Because the symmetric functions are invariant, Ry C A. Using the
equation f(z1) = 0, we can write any power of z; as a polynomial in z; of degree less than k, with coeffi-
cients in R;.

We choose a finite set of generators {y1, . ..,y } for the algebra B. If the order of the orbit of y; is k;, then
y; will be the root of a monic polynomial f; of degree k; with coefficients in A. Let R denote the finite-type
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algebra generated by all of the coefficients of all of the polynomials fi, ..., f,.. Forevery j = 1,...,r, we can
write any power of ¥, as a polynomial in y; with coefficients in R, and of degree less than k;. Using such
expressions, we can write every monomial in y1, ..., ¥, as a polynomial with coefficients in R, whose degree
in the variable y; is less than k;. Since yi,...,y, generate B, we can write every element of B as such a
polynomial. Then the finite set of monomials y7* - - - y5~ with e; < k; spans B as an R-module. Therefore B
is a finite R-module.

The algebra A of invariants is a subalgebra of B that contains R. Since R is a finite-type algebra, it is
noetherian. When regarded as an R-module, A is a submodule of the finite R-module B. Therefore A is also
a finite R-module. When we put a finite set of algebra generators for R together with a finite set of R-module
generators for A, we obtain a finite set of algebra generators for A, so A is a finite-type algebra. And, since B
is a finite R-module, it is also a finite module over the larger ring A.

proof of 2.8.5](ii): The group G operates on'Y .

A group element ¢ is a homomorphism B ——+ B. It defines a morphism Y <= Y, as in Deﬁnitionm
Since o is an invertible homomorphism, i.e., an automorphism of B, u, is an automorphism of Y. Thus G
operates on Y. However, there is a point that should be mentioned.

We write the operation of G on B on the left as usual, so that a group element o maps an element /3 of B
to ob. Then if o and 7 are two group elements, the product o7 acts as first do 7, then o (o7)p = o(75).

(2.8.6) B-—B-5B

We substitute © = u, into Definition If ¢ is a point of Y, the morphism ¥ < Y sends ¢ to the
point p such that 7, = m,0. It seems permissible to drop the symbol u, and to write the morphism simply as
Y «Z- Y. But since arrows are reversed when going from homomorphisms of algebras to morphisms of their

spectra (2.6.5)), the maps displayed in (2.8.6) above, give us morphisms
(2.8.7) Y- Y+ Y

On Y = Spec B, the product o7 acts as first do o, then 7. This is a problem, but we can get around it by
putting the symbol o on the right when it operates on Y, so that o sends a point ¢ to go. Then if ¢ is a point of
Y, we will have ¢(o7) = (qo)T, as required of the operation.

. If G operates on the left on B, then it operates on the right on Spec B.

This is important only when one wants to compose morphisms. In Definition [2.6.4] we followed custom
and wrote the morphism w that corresponds to an algebra homomorphism ¢ on the left. We will continue to
write morphisms on the left where possible, but not here.

Let 3 be an element of B and let ¢ be a point of Y. The value of the function o3 at a point ¢ is the same
as the value of 3 at the point go (2.6.6):

(2.8.8) [0B](q) = B(qo) O

proof of 2.8.3)(iii): The fibres of the morphismY — X are the G-orbits in'Y .
We go back to the subalgebra A = BY. For o in G, we have a diagram of algebra homomorphisms and
the corresponding diagram of morphisms of varieties

B—25 B Y «+ 72— Y
(2.8.9) T T l l
A—=-—" A X —— X

The diagram of morphisms shows that points of Y that are in a G-orbit have the same image in X, and therefore
that the set of G-orbits in Y, which we may denote by Y/G, maps to X. We show that the map Y/G — X is
bijective.

2.8.10. Lemma. (i) Let p1,...,pr be distinct points of affine space A", and let cq,...,cr be complex
numbers. There is a polynomial f(x1,...,x,) such that f(p;) =c¢; for i=1,...,n.

(ii) Let B be a finite-type algebra, let q, . . ., qx be distinct points of Spec B, and let ¢y, . .., ¢y be distinct
complex numbers. There is an element 3 in B such that 3(¢;) = c¢; fori=1,... k. ([l
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extideal

injectivity of the map Y/G — X : Let Oy and O be distinct G-orbits in Y. Lemma tells us that there
is an element 8 in B whose value is 0 at every point of Oy, and 1 at every point of Oy. Since G permutes
the orbits, o3 will also be 0 at points of Oy and 1 at points of O,. Then the product v = [[_ o will be 0
at points of O and 1 at points of O, and the product + is invariant. If p; denotes the image in X of the orbit
O, the maximal ideal m,,, of A is the intersection A Nm,, where g is any point in the orbit O;. Therefore  is
in the maximal ideal m,,,, but not in m,,,. The images of the two orbits are distinct.

surjectivity of the map Y/G — X : It suffices to show that the map Y — X is surjective.

2.8.11. Lemma. If [ is an ideal of the invariant algebra A, and if the extended ideal I B is the unit ideal of B,
then I is the unit ideal of A.

As before, the extended ideal I B is the ideal of B generated by I.

Let’s assume the lemma for the moment, and use it to prove surjectivity of the map ¥ — X. Let p be a
point of X. The lemma tells us that the extended ideal m, 3 isn’t the unit ideal. So it is contained in a maximal
ideal m, of B, where ¢ is a point of Y. Then m, C (m,B) N A C myN A. The contraction m; N A is an
ideal of A, and it isn’t the unit ideal because it doesn’t contain 1, which isn’t in m,. Since m,, is contained in
m, N A and m,, is a maximal ideal, m,, = m, N A. This means that ¢ maps to p in X. O

proof of the lemma. If IB = B, there will be an equation ) . z;b; = 1, with z; in I and b; in B. The sums
o = ZU ob; are invariant, so they are elements of A, and the elements z; are invariant because they are in A.
Therefore > o(2:b;) = z; ), 0b; = z;a; isin I. Then

o,

The right side is in I, and the left side is the order of the group which, because A contains the complex
numbers, is an invertible element of A. So I is the unit ideal. O
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2.9 Exercises

2.9.1. Prove that relatively prime polynomials in F, G two variables x, y, not necessarily homogeneous, have
finitely many common zeros in A2,

2.9.2. Prove that if A, B are finite-type domains, defining (a1 ® b1)(az ® ba) = (a1as ® b1by) makes the
tensor product A ® B into a finite-type domain.

2.9.3. Prove that if a noetherian ring contains just one prime ideal, then that ideal is nilpotent.

2.9.4. Prove that an algebra A that is a complex vector space of dimension d contains at most d maximal
ideals.

2.9.5. Let T denote the ring Cle], with €2 = 0. If A is the coordinate ring of an affine variety X, an
(infinitesimal) tangent vector to X is, by definition, given by an algebra homomorphism ¢ : A — T'.

(i) Show that such a homomorphism can be written in the form p(a) = f(a) + d(a)e, where f and d are
functions A — C. Show that f is an algebra homomorphism, and that d is an f-derivation, a linear map that
satisfies the identity d(ab) = f(a)d(b) + d(a)f(b).

(i) Let A = Clxy, ..., 2]/ (f1, ..., fr). Show that the tangent vectors to X = Spec A are defined by the
equations V f;(p)x = 0. In other words, the tangent vectos are the vectors that are the vectors that are
orthogonal to the gradients.

2.9.6. Leti = (i1,...,4,) be a set of non-negative integers, and let (*) denote the monomial z%' - - - zir. A
formal power series is a sum a(i)x(i), where a(;) are arbitrary complex numbers. There is no condition of
convergence. Prove that the set of formal power series forms a ring C[[x1, ..., 2, ]|, and that an element whose
constant term is nonzero is invertible.

2.9.7. Prove that that the varieties in the affine plane A? are points, curves, and the affine plane A? itself.
2.9.8. Classify algebras that are complex vector spaces of dimensions two or three.

2.9.9. Derive version 1 of the Nullstellensatz from the Strong Nulletellensatz.

2.9.10. Find generators for the ideal of C[x, y] of polynomials that vanish at the three points (0, 0), (0, 1), (1, 0).

2.9.11. Let A be a noetherian ring. Prove that a radical ideal I of A is the intersection of finitely many prime
ideals.

2.9.12. Let C and D be closed subsets of an affine variety X = Spec A. Suppose that no component of D
is contained in C. Prove that there is a regular function f that vanishes on C' and isn’t identically zero on any
component of D.

2.9.13. A minimal prime ideal is an ideal that doesn’t properly contain any other prime ideal. Prove that a
nonzero, finite-type algebra A (not necessarily a domain) contains at least one and only finitely many minimal
prime ideals. Try to find a proof that doesn’t require much work.

2.9.14. Let K be a field and let R be the polynomial ring K|[z1, ..., z,], with n > 0. Prove that the field of
fractions of R is not a finitely generated K -algebra.

2.9.15. Prove that the algebra A = C[z,y]/(2% + y? + 1) is isomorphic to the Laurent Polynomial Ring
Cl[t,t™'], but that R[z, y] /(2% + y? + 1) is not isomorphic to R[¢, ¢~ 1].

2.9.16. Let B be a finite type domain, and let p and ¢ be points of the affine variety Y = Spec B. Let A be
the set of elements f € B such that f(p) = f(q). Prove

(i) A is a finite type domain.

(i) B is a finite A-module.

(iii) Let ¢ : Spec B — Spec A be the morphism obtained from the inclusion A C B. Show that ¢(p) = ¢(q),
and that ¢ is bijective everywhere else.

2.9.17. The equation y? = x> defines a plane curve X with a cusp at the origin, the spectrum of the algebra
A = C[z,y]/(y* — z*). There is a homomorphism A — C[t], such that (z) = ¢ and p(y) = 3, and the

associated morphism A} —“+ X sends a point ¢ of A' to the point (z,%) = (¢2,t%) of X. Prove that v is a
homeomorphism in the Zariski topology and in the classical topology.
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2.9.18. Explain what a morphism Spec B — Spec A means in terms of polynomials, when
A=Clzy,...,xm]/(f1,---, fr)and B = Cly1, ..., ynl/(91,- -, k)

29.19. Let A = C[zy,...,x2], and let B = A[a], where « is an element of the fraction field C(z) of A.
Describe the fibres of the morphism Y = Spec B — Spec A = X.

2.9.20. Let X be the plane curve y? = z(z — 1)%,let A = C[x, y]/(y* — z(z — 1)?) be its coordinate algebra,
and let x, y denote the residues of those elements in A too.

(i) Points of the curve can be parametrized by a variable ¢. Use the lines y = ¢(z — 1) to determine such a
parametrization.

(ii) Let B = CJ[t] and let T" be the affine line Spec C[t]. The parametrization gives us an injective homomor-
phism A — B. Describe the corresponding morphism 7" — X.

2.9.21. Let X be the affine line Spec C[x]. When we view Spec C[z1, x2] as the product X x X, a homo-
morphism C[z] — C[z1, 2] defines a law of composition on X, a morphism X x X — X. Determine the
homomorphisms that are group laws on X with the point = 0 as the identity.

2.9.22. The cyclic group G = (o) of order n operates on the polynomial algebra A = C[z, y] by o(x) = (x
and o (y) = Cy, where ¢ = ™/,

(i) Describe the invariant ring A® by exhibiting generators and defining relations.

(ii) Prove that the there is a 2 x n matrix whose 2 x 2-minors are defining relations for A%,

(iii) Prove that the morphism Spec A = A? — Spec B defined by the inclusion B C A is surjective, and that
its fibres are the G-orbits. Don’t use Theorem

2.9.23. Let A be a finite-type domain, and let f be an irreducible element of C[xz1, ..., x,,] of positive degree.
Prove that f is an irreducible element of A[x1, ..., Z,].

2.9.24. try to make exercise: missing points in C* are L*, where L is a special line.
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Chapter 3 PROJECTIVE ALGEBRAIC GEOMETRY

Projective Varieties
Homogeneous Ideals
B3] Product Varieties
Rational Functions
B3] Morphisms

Affine Varieties
Lines in Three-Space
B.8 Exercises

As before, points of projective space P are equivalence classes of nonzero vectors (zo, ..., Z,,), the equiva-
lence relation being that, for any nonzero complex number A

(3.0.1) (T0y ooy ) ~ (AZQ, ooy Ay).
Projective varieties are irreducible closed subsets of projective space.

Though affine varieties are important, most of algebraic geometry concerns projective varieties. It isn’t
completely clear why this is so, but one property of projective space gives a hint of its importance: With its
classical topology, projective space is compact. Therefore a projective variety is compact.

A topological space is compact if:

It is a Hausdorff space: Distinct points p, ¢ of X have disjoint open neighborhoods, and
it is quasicompact: If X is covered by a family {U*} of open sets, then a finite subfamily covers X .

By the way, when we say that the sets {U*} cover a topological space X, we mean that X is the union [ JU?.
We don’t allow U* to contain elements that aren’t in X, though that would be a customary usage in English.

In the classical topology, affine space A" isn’t quasicompact, and therefore it isn’t compact. The Heine-
Borel Theorem asserts that a subset of A™ is compact in the classical topology if and only if it is closed and
bounded.

We show that P™ is compact, assuming that the Hausdorff property has been verified. The 2n + 1-
dimensional sphere S of unit length vectors in A"*! is a bounded set, and because it is the zero locus of
the equation Toxg + - - - + Tpx, = 1, it is closed. The Heine-Borel Theorem tells us that S is compact, and
the map S — P that sends a vector (x, ..., Z,,) to the point of projective space with that coordinate vector is
continuous and surjective. The next lemma of topology shows that P" is compact.

3.0.2. Lemma. Let Y L5 X be a continuous map. Suppose that'Y is compact and that X is a Hausdorff
space — that it has the Hausdorf{f property. Then the image f(Y') is a closed, compact subset of X. O

3.1 Projective Varieties

A subset of P™ is Zariski closed if it is the set of common zeros of a family of homogeneous polynomials
f1, ..., fx in the coordinate variables xq, ..., T, or if it is the set of zeros of the ideal Z generated by such a
family. As was explained in (1.3.1), f(Az) = 0 for all A if and only if all of the homogeneous parts of f vanish
at x.
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The Zariski closed sets are the closed sets in the Zariski topology on P™. We usually refer to Zariski closed
sets simply as closed sets.

Because the polynomial ring Clxy, ..., ;] is noetherian, projective space P is a noetherian space: Every
strictly increasing family of ideals of Clz] is finite, and every strictly decreasing family of closed subsets of
P™ is finite. Therefore every closed subset of P™ is a finite union of irreducible closed sets (2.2.16)).

3.1.1. Definition. A projective variety is an irreducible closed subset of a projective space P".

We will want to know when two projective varieties are isomorphic. This will be explained in Section [3.5]
when morphisms are defined.

The Zariski topology on a projective variety X is induced from the topology on the projective space that
contains it (??). Since a projective variety X is closed in P"*, a subset of X is closed in X if and only if it is
closed in P".

3.1.2. Lemma. The one-point sets in projective space are closed.

proof. Let p be the point (aq, ..., a,). The first guess might be that the one-point set {p} is defined by the
equations x; = a;, but the polynomials z; — a; aren’t homogeneous in z. This is reflected in the fact that,
for any A\ # 0, the vector (Aag, ..., Aa,, ) represents the same point, but it doesn’t satisfy those equations. The
equations that define the set {p} are

3.1.3) aiT; = a;Ty,
fori,j =0, ...,n, which imply that the ratios a,/a; and x; /x; are equal. ]

3.1.4. Lemma. The proper closed subsets of the projective line are its nonempty finite subsets, and the proper
closed subsets of the projective plane are finite unions of points and curves. U

The rest of this section contains a few examples of projective varieties.

(3.1.5) linear subspaces

If W is a subspace of dimension 7+ 1 of the vector space C"*!, the points of P that are represented by
the nonzero vectors in W form a linear subspace L of P™, of dimension 7. If (wq, ..., w;.) is a basis of W, the
linear subspace L corresponds bijectively to a projective space of dimension r, by

cowo + -+ crw, — (coy .., Cr)

For example, the set of points (zo, ..., 2,0, ...,0) is a linear subspace of dimension r. A line is a linear
subspace of dimension 1. O

(3.1.6) a quadric surface

A quadric in projective three-space IP? is the locus of zeros of an irreducible homogeneous quadratic polyno-
mial in four variables.

We describe a bijective map from the product P*xP! of projective lines to a quadric in P3. Let coordinates
in the two copies of P! be (zg, 1) and (yo, y1), respectively, and let the four coordinates in P? be z;;, with
0 <4,7 < 1. The map is defined by z;; = x;y;. Its image is the quadric () whose equation is

3.1.7 Z00Z11 = Z01%10

To check that the map P! x P! — @) defined by the euation z;; = z;y; is bijective, we choose a point w of
Q. One of its coordinates, say zgg, will be nonzero. Then if (x, ) is a point of P! x P! whose image is w, so
that z;; = x;y;, the coordinates z( and yy must be nonzero too. When we normalize 2, zg, and yg to 1, the
equation of the quadric becomes 217 = zp1210. This equation has a unique solution for z; and y; such that
Zij = T3y, namely 1 = 210 and y; = 2o1.
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The quadric whose equation is (3.1.7) contains two families of lines, the images of the subsets 2 x P! and
P'xy of PxP.

The equation (3.1.7) can be diagonalized by substituting zpp = s+t, 211 = s — ¢, 201 = u+v, 210 = U — V.
This changes the equation (3.1.7) to s> — > = u? —v?. When we look at the affine open set {u = 1}, the
equation becomes s?+v? —¢2 = 1. The real locus of this equation is a one-sheeted hyerboloid in R®, and
the two families of complex lines in the quadric correspond to the familiar rulings of that hyperboloid by real
lines.

#iHtinsert figure##

(3.1.8) hypersurfaces

A hypersurface in projective space P is the locus of zeros of an irreducible homogeneous polynomial
f(xo, ..., xy). Its degree is the degree of the polynomial f. Plane projective curves and quadric surfaces are
hypersurfaces.

3.1.9) the Segre embedding of a product

The product ;" x PPy of projective spaces can be embedded by its Segre embedding into a projective space
PY that has coordinates z;;, with i = 0,....,m and j = 0,....,n. So N = (m+1)(n+1)—1. The Segre
embedding is defined by

(3.1.10) Zij = TiYj

We call the coordinates z;; the Segre variables. The map from P! x P! to P? that was described in (3.1.6) is
the simplest case of a Segre embedding.

3.1.11. Proposition. The Segre embedding maps the product P™ x P™ bijectively to the locus S of the Segre
equations

(3.1.12) Zijzke — Ziezk; = 0

The proof is analogous to the one given in (3.1.6). O

The Segre embedding is important because it makes the product of projective spaces into a projective
variety, the closed subvariety of PV defined by the Segre equations. However, to show that the product is a
variety, we need to show that the locus of the Segre equations is irreducible, and this isn’t obvious. We defer
the proof to Section[3.3]below. (See Proposition [3.3.4])

(3.1.13) the Veronese embedding of projective space

Let the coordinates in P" be x;, and let those in P be v;;, with 0<i<j<n. So N = (";2) — 1. The

Veronese embedding is the map P" L PN defined by v;; = x;x;. The Veronese embedding resembles the
Segre embedding, but in the Segre embedding, there are distinct sets of coordinates = and y, and ¢ < j isn’t
required.

The proof of the next proposition is similar to the proof of (3.1.1T), once one has untangled the inequalities.

3.1.14. Proposition. The Veronese embedding f maps P™ bijectively to the locus X in PN of the equations

VijUke = VigVkj fOl‘ OSZSkS]SESR 0

For example, the Veronese embedding maps P! bijectively to the conic vggv1; = vé; in P2.
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(3.1.15) the twisted cubic twistcubic

There are higher order Veronese embeddings. They are defined by evaluating the monomials of some
degree d > 2. The first example is the embedding of P! by the cubic monomials in two variables, which maps
P! to IP3. Let the coordinates in P be vy, ..., v3. The cubic Veronese embedding is defined by

Y _ .2 _ 2 _ .3
Vo = T, U1 = Ty, Vg = T, V3 = Iq

Its image, the locus (vg,v1,v2,v3) = (23, 2dw1, 202%3, 23), is called a twisted cubic in P3. It is the set of
common zeros of three polynomials:

(3.1.16) Vol — v% , UlV2 — VU3 , V1U3 — v% twcubic

the 2 x 2 minors of the 2 x 3 matrix

(3.1.17) (”0 1 “2> twothree-
v V2 U3 .
matrix

A 2x3 matrix has rank < 1 if and only if its 2x 2 minors are zero. So a point (v, v1, v2, v3) lies on the twisted
cubic if (3.1.17) has rank one, which means that the vectors (vg, v1,v2) and (v, ve, v3), if both are nonzero,
represent the same point of P2,

Setting xo = 1 and @7 = t, the twisted cubic becomes the locus of points (1,¢,¢2,¢%). There is one point
on the twisted cubic at which z¢ = 0, the point (0,0, 0, 1). O

3.2 Homogeneous Ideals

Let R denote the polynomial algebra Clzy, ..., Z,]. homogen
3.2.1. Lemma. Let T be an ideal of R. The following conditions are equivalent. ho-

(i) Z can be generated by homogeneous polynomials. mogideal
(ii) A polynomial is in 7L if and only if its homogeneous parts are in I. O

An ideal Z that satisfies these conditions is a homogeneous ideal.

3.2.2. Corollary. Let S be a subset of projective space P". The set of elements of R that vanish at all points ideal-

of S is a homogeneous ideal. ishom
This follows from Lemma[[.3.21 O

3.2.3. Lemma. The radical of a homogeneous ideal is homogeneous. radicalho-
proof. Let Z be a homogeneous ideal, and let f be an element of its radical rad Z. So for some r, f" is in Z. Teoog:;

When f is written as the sum fy + - - - + f4 of its homogeneous parts, the highest degree part of f” is (f4)".
Since 7 is homogeneous, (f;)" isin Z and fgisin radZ. Then fo +- - - + f4—1 is also in rad Z. By induction
on d, all of the homogeneous parts fy, ..., fg are in rad Z. O

3.2.4. The locus of zeros of a set f of homogeneous polynomials in P may be denoted by V(f), and the defVXI
locus of zeros of a homogeneous ideal Z may be denoted by V' (Z). We use the same notation as for closed
subsets of affine space.

The complement of the origin in the affine space A"*! is mapped to the projective space P" by sending
a vector (o, ..., T, ) to the point of P™ defined by that vector. A homogeneous ideal Z has a zero locus W in
affine space and V' in projective space. Unless Z is the unit ideal, the origin = 0 will be a point of W. The
complement of the origin in W will map surjectively to V.

If W contains a point = other than the origin, then every point of the one-dimensional subspace of A"*!
spanned by z is in W, because a homogeneous polynomial f vanishes at « if and only if it vanishes at Az. An
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affine variety that is the union of lines through the origin is called an gffine cone. If the locus W contains a
point  other than the origin, it is an affine cone.

The loci {22 + 23 — 23 = 0} and {z¢z3 + 2323 + 23x2 = 0} are affine cones in A3.

Note. The real locus 23 + 27 — 22 = 0 in R decomposes into two parts when the origin is removed. Because
of this, it is sometimes called a “double cone”. However, the complex locus doesn’t decompose.

3.2.5) the irrelevant ideal

In the polynomial algebra R = C|xo, ..., ], the maximal ideal M = (zo,...,2z,) generated by the
variables is called the irrelevant ideal because its zero locus in projective space is empty.

3.2.6. Proposition. The zero locus V(Z) in P™ of a homogeneous ideal T of R is empty if and only if T
contains a power of the irrelevant ideal M.

Another way to say this is: The zero locus of a homogeneous ideal Z is empty if and only if either Z is the unit
ideal R, or its radical is the irrelevant ideal.

proof of Proposition[3.2.6] Let V be the zero locus of Z in P". If 7 contains a power of M, it contains a power
of each variable. Powers of the variables have no common zeros in projective space, so V' is empty.

Suppose that V' is empty, and let W be the locus of zeros of Z in the affine space A"! with coordinates
Zo, ..., Tn. Since the complement of the origin in W maps to the empty locus V/, it is empty. The origin is the
only point that might be in W. If W is the one point space consisting of the origin, then radZ = M. If W is
empty, Z is the unit ideal. U

3.2.7. Strong Nullstellensatz, projective version. Let g be a nonconstant homogeneous polynomial in
X0y -wes T, and let T be a homogeneous ideal of C|x], not the unit ideal. If g vanishes at every point of the zero
locus V(I) in P™, then T contains a power of g.

proof. Let W be the locus of zeros of Z in the affine space with coordinates x, ..., x,. A homogeneous
polynomial g that vanishes on V' (Z) vanishes at every point of W different from the origin, and if ¢ isn’t a
constant, it vanishes at the origin too. So the affine Strong Nullstellensatz [2.4.6] applies. If a nonconstant
homogeneous polynomial g vanishes on W, then Z contains a power of g. (]

3.2.8. Corollary. (i) Let f and g be homogeneous polynomials. If f is irreducible and if V(f) C V(g),
then f divides g.

(ii) Let T and J be homogeneous radical ideals, neither of which is the unit ideal. If V(Z) = V(J), then
I=J.

proof. (i) Suppose that V(f) = V(g). Let g be a homogeneous element of 7 that vanishes on V' (7) and
therefore on V(7). Since Z is a radical ideal, the Strong Nullstellensatz tells us that Z contains g. This shows
that 7 C Z. Similarly, Z C J. O

3.2.9. Lemma. Let P be a homogeneous ideal in the polynomial algebra Clxy, ..., x,], not the unit ideal. The
following conditions are equivalent:

(i) P is a prime ideal.
(ii) If f and g are homogeneous polynomials, and if fg € P, then f € P org € P.

(iii) If A and B are homogeneous ideals, and if AB C P, then A C P or B C P. Or, if Aand B are
homogeneous ideals that contain P, and if AB C P, then A =P or B="P.

In other words, a homogeneous ideal is a prime ideal if the usual conditions for a prime ideal are satisfied
when the polynomials or ideals are homogeneous.

proof of the lemma. When the word homogeneous is omitted, (ii) and (iii) become the definition of a prime
ideal. So (i) implies (ii) and (iii). The fact that (iii) = (ii) is proved by considering the principal ideals
generated by f and g.
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(ii) = (i) Suppose that a homogeneous ideal P satisfies condition (ii), and that the product fg of two poly-
nomials, not necessarily homogeneous, is in P. If f has degree d and g has degree e, the highest degree part
of fg is the product of the homogeneous parts f; and g.. Since P is a homogeneous ideal that contains fg, it
contains f;g.. Therefore one of the factors, say f4,isin P. Leth = f — f;. Then hg = fg — fqgisin P, and
it has lower degree than fg. By induction on the degree of fg, h or g isin P, and if i is in P, so is f. O

3.2.10. Proposition. Let V be the zero locus in P™ of a homogeneous radical ideal T that isn’t the irrelevant
ideal or the unit ideal. Then V' is a projective variety (an irreducible closed subset of P") if and only if T is a
prime ideal. Thus a subset V of P™ is a projective variety if and only if it is the zero locus of a homogeneous
prime ideal other than the irrelevant ideal.

proof. The closed set V isn’t empty, so the locus W of zeros of the radical ideal Z in the affine space A"*!
contains points other than the origin. Let W’ be the complement of the origin in . Then W’ maps surjectively
to V. If V is irreducible, then W is irreducible and therefore W is irreducible (ii). Proposition
tells us that Z is a prime ideal.

Conversely, suppose that Z isn’t a prime ideal. Then there are homogeneous ideals A > 7 and B > Z, such
that AB C Z. Since 7 is aradical ideal, rad(.AB) C Z, and since rad Arad B C rad(AB), rad Arad B C Z.
Therefore we may suppose that .4 and B are radical ideals. If « is an element of A that isn’t in Z, the Strong
Nullstellensatz asserts that « doesn’t vanish on V/(Z). So V(A) < V(Z) and similarly, V(B) < V(Z). But
V(A)UV(B) =V(AB) D V(Z). Then V(Z) isn’t an irreducible space. O

(3.2.11)  quasiprojective varieties

We may somwtimes want to study a nonempty open subset of a projective variety in addition to the pro-
jective variety itself. We call such an open subset a variety too. The topology on a variety is induced from the
topology on projective space. It will be an irreducible topological space (Lemma [2.2.15). However, most of
the the varieties we encounter will be either affine or projective.

For example, the complement of a point in a projective variety is a variety.

We denote the open subspace {x; # 0} of P" by U?, as we did for subsets of P2. The points of U° can be
written as (1, uy, ..., u, ), with u; = x; /x. This subspace is an affine space of dimension n that we refer to as
a standard open subset of projective space.

An affine variety X = Spec A may be embedded as a closed subvariety into the standard open set U°. It
becomes an open subset of its closure in P”, which is a projective variety (Lemma [2.2.15). So it is a variety.
And of course, a projective variety is a variety.

Elsewhere, what we call a variety is called a quasiprojective variety. We drop the adjective ’quasipro-
jective’. There are abstract varieties that aren’t quasiprojective, varieties that cannot be embedded into any
projective space. But such varieties aren’t very important and we won’t study them. In fact, it is hard enough
to find examples that we won’t try to give one here. So for us, the adjective ’quasiprojective’ is superfluous as
well as ugly.

3.2.12. Lemma. The topology on the affine open subset U° of P" induced from the Zariski topology on
P" is same as the Zariski topology that is obtained by viewing U° as the affine space Spec Cluy, ..., u,],
u; = x;/xo.

This follows from the fact that a homogeneous polynomial f (o, ..., x, ) and its dehomogeniztion F'(u1, ..., uy,)
f(1,uy, ..., u,) have the same zeros on U°. O

3.3 Product Varieties

The properties of products of varieties are intuitively plausible, but one must be careful because the Zariski
topology on a product isn’t the product topology.

The product topology on the product X x Y of topological spaces is the coarsest topology such that the
projection maps X xY — X and X XY — Y are continuous. If C' and D are closed subsets of X and Y’
respectively, then C'x D is a closed subset of X xY in the product topology, and every closed set in the product
topology is a finite union of such subsets. The product topology is much coarser than the Zariski topology. For
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example, the proper Zariski closed subsets of P! are the nonempty finite subsets. In the product topology, the
proper closed subsets of P! x P! are finite unions of sets of the form p xP!, P! x ¢, and pxq ('vertical’ lines,
“horizontal” lines, and points). Most Zariski closed subsets of P! x P!, the diagonal A = {(p, p) | p € P!} for
instance, aren’t of this form.

(3.3.1) the Zariski topology on P™ x P"

As has been mentioned, the product of projective spaces P x P™ can be embedded into a projective
space PV by the Segre map, which identifies the product as a closed subset of PV, with N = mn+m+n.
It is the locus of the Segre equations z;;zke = 202k, Since P™ x P™, with its Segre embedding, becomes
a closed subset of PV, we don’t really need a separate definition of its Zariski topology. Its closed subsets
are the zero sets of families of homogeneous polynomials in the Segre variables z;;, families that include the
Segre equations. However, it is important to know that the Segre embedding maps the product P™ x P” to an
irreducible closed subset of PYV, so that the product becomes a projective variety. This will be proved below,

in Corollary [3.3.3]

One can describe the closed subsets of P x P™ directly, in terms of bihomogeneous polynomials. A
polynomial f(x,y) in x = (x,..., %) and y = (yo, ..., Yn) is bihomogeneous if it is homogeneous in the
variables = and homogeneous in the variables y. For example, 23y + o219 is a bihomogeneous polynomial,
of degree 2 in x and degree 1 in y.

The bihomogeneous part of bidegree i, j of a polynomial f(x,y) is the sum of terms whose degrees in
x and y are ¢ and j, respectively. Because (x,y) and (Ax, uy) represent the same point of P™ x P for all
nonzero scalars A and u, we want to know that f(z,y) = 0 if and only if f(Az, uy) = 0 for all nonzero A and
p. This will be true if and only if all of the bihomogeneous parts of f are zero. (See (1.3.2).)

3.3.2. Proposition. (i) Let Z be a subset of P xP". The Segre image of Z is closed if and only if Z is the
locus of zeros of a family of bihomogeneous polynomials.
(ii) If X and Y are closed subsets of P™ and P", respectively, then X XY is a closed subset of P™ xP".

1 2

(iii) The projection maps P x P — P™ and P™ x P — P" are continuous.

(iv) For all x in P™ the fibre xxP™ is homeomorphic to P™, and for all y in P, the fibre P""xy is homeomorphic
to P™.

proof. (i) Let IT denote the Segre image of P x P, and let f(z) be a homogeneous polynomial in the Segre
variables z;;. When we substitute z;; = x;y; into f, we obtain a bihomogeneous polynomial f(x, y) whose
degree in = and in y is the same as the degree of f. The inverse image of the zero set of f in II is the zero set of
fin P x P™. Therefore the inverse image of a closed subset of I is the zero set of a family of bihomogeneous
polynomials in P™ x P™.

Conversely, let g(x, y) be a bihomogeneous polynomial, say of degrees r in x and degree s in y. If r =,
we may collect variables that appear in g in pairs z;y; and replace each pair z;y; by z;;. We will obtain a
homogeneous polynomial g in z such that g(z) = g(z,y) when z;; = z,y;. The zero set of ¢ in IT is the image
of the zero set of g in P x P,

Suppose that r > s, and let kK = r —s. Because the variables y cannot all be zero at any point of P”, the
equation g = 0 on P™ x P™ is equivalent with the system of equations gyf = gy¥ = --- = gy¥ = 0. The
polynomials gy¥ are bihomogeneous, of same degree in z as in y. This puts us back in the first case.

(ii) A homogeneous polynomial f(z) is a bihomogeneous polynomial of degree zero in y, and a homogeneous
polynomial g(y) as a bihomogeneous polynomial of degree zero in . So X x Y, which is a locus of the form
f(z) = g(y) = 0in P xP", is closed in P x P™.

(iii) For the projection 71, we must show that if X is a closed subset of P, its inverse image X xPP" is closed.
This is a special case Y = P" of (ii).

(iv) It will be best to denote the chosen point of P by a symbol other than = here. We’ll denote it by x. Part
(i) tells us that the bijective map x x P* — P is continuous. To show that the inverse map is continuous, we
must show that a closed subset Z of 2 xP" is the inverse image of a closed subset of P". Say that Z is the zero
locus of a set of bihomogeneous polynomials f(x,y). The polynomials f(y) = f(x,%) are homogeneous in
vy, and the inverse image of their zero locus is Z. O
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3.3.3. Corollary. Let X and Y be projective varieties, and let 11 denote the product X XY, regarded as a
closed subspace of P""xP"™.

o The projections Il — X and I1 — Y are continuous.
eForallzin X and all y in'Y, the fibres x XY and X Xy are homeomorphic to Y and X, respectively. [

3.3.4. Proposition. Suppose that a topology is given on the product X XY = 1l of irreducible topological
spaces X and 'Y, and that it has these properties:

o The projections T1 = X and 11 =Y are continuous.

eForallxin X and all yin'Y, the fibres x XY and X Xy are homeomorphic to' Y and X, respectively.

Then 11 is an irreducible topological space.

The first condition tells us that the topology on X xY is at least as fine as the product topology, and the second
one tells us that the topology isn’t too fine. (We don’t want to give II the discrete topology.)

Some notation for use in the proof of the proposition: Let « be a point of X. If W is a subset of X XY, we
denote the intersection W N (z xY") by ,W. Similarly, if y is a point of Y, we denote W N (X x y) by W,,.
By analogy with the z, y-plane, we call ;W and W,, a vertical slice and a horizontal slice, of W, respectively.

proof of Proposition We prove irreducibility by showing that the intersection of two nonempty open
subsets W and W’ of X xY isn’t empty (2.2.13).

We show first that the image U = w2 W of an open subset W of X x Y via projection to Y is an open
subset of Y. We are given that, for every z, the fibre £ XY is homeomorphic to Y. Since W is open in X XY,
the vertical slice , WV is open in 2 x Y. Its image m2(, V) is open in the homeomorphic space Y. Since W is
the union of the sets , W, U is the union of the open sets 72(,, V). So U is open.

Now let W and W’ be nonempty open subsets of X x Y, and let U and U’ be their images via projection
to Y. So U and U’ are nonempty open subsets of Y. Since Y is irreducible, U N U’ isn’t empty. Let y be a
point of U N U’. Since U = moW and y is a point of U, the horizontal slice W, which is an open subset of
the fibre X Xy, isn’t empty. Similarly, W; isn’t empty. Since X Xy is homeomorphic to the irreducible space
X, it is irreducible. So W, N W; isn’t empty. Therefore W N W' isn’t empty, as was to be shown. (]

3.3.5. Corollary. The product X XY of projective varieties X and Y is a projective variety. U

(3.3.6)  products of affine varieties

Let X = SpecA and Y = Spec B be affine varieties. Say that X is embedded as a closed subvariety
of A™, so that A = Clxy, ..., %]/ P for some prime ideal P, and that Y is embedded similarly into A",
B = Cly1,-..,yn]/Q for some prime ideal Q. Then in affine x, y-space A™T™, X x Y is the locus of the
equations f(z) = 0 and g(y) = 0, with f in P and g in Q. Proposition shows that X xY is irreducible,
so it is a variety. Let P’ be the ideal of C|x, y] generated by the elements of P. It consists of sums of products
of elements of P with polynomials in z, 3. Let Q" be defined in the analogous way.

3.3.7. Proposition. The elements of the ideal I = P’'+ Q' are the polynomials that vanish on the variety
X xY. Therefore I is a prime ideal.

The fact that X x Y is a variety tells us only that the radical of I is a prime ideal.

proof of Proposition[3.3.7] Let R = C[x, y]/I. The projection X xY — X is surjective. Therefore the map
A — R is injective, and similarly, B — R is injective. We identify A and B with their images in R.

Any polynomial f(z,y) can the written, in many ways, as a sum, each of whose terms is a product of a
polynomial in  with a polynomial in y:  f(x,y) = Y a;(x)b;(y). Therefore any element p of R can be
written as a finite sum of products

k

(33.8) p=> b

i=1

with a; in A and b; in B. To show that 0 is the only element of R that vanishes identically on X xY’, we show
that a sum p of k£ products a;b; that vanishes on X XY can also be written as a sum of k—1 products.
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Say that p = le‘ a;b;. If a, = 0, then p is the sum Z,’i:ll a;b; of k—1 products. If a; # 0, the function
on X defined by ay isn’t identically zero. We choose a point z of X such that ax(z) # 0. Let a; = a;(x)
and p(y) = p(z,y). Then p(y) = Zle a;b; is an element of B. Since p vanishes on X x Y, p vanishes on
Y = Spec B. Therefore p = 0. Let ¢; = @;/ax. Then by, = — Zi:ll ¢;b;. Substituting for by, into p and
collecting coefficients of by, ..., by_1 gives us an expression for p as a sum of k—1 terms. When k =1, b =0,
and therefore p = 0. O

3.4 Rational Functions

(3.4.1) the function field

Let X be a projective variety, say a closed subvariety of P", and let U’ : {x; # 0} be one of the standard
open subsets of P". The intersection X* = X N U, if it isn’t empty, will be a closed subvariety of the affine
space U’ and a dense open subset of X. It will be an affine variety, and its localizations will also be affine
varieties. (The intersection X N U? is empty when X is contained in the hyperplane {z; = 0}.) Let’s call the
nonempty sets X* = X N U’ the standard open subsets of X.

3.4.2. Lemma. The localizations of the standard open sets sets X* = X NU’ are affine varieties, and they
form a basis for the topology on X.

This follows from 2.7.2)). U

There are affine open sets that aren’t localizations of these standard open sets, but we don’t yet have a
definition of affine varieties. Rather than defining affine open sets here, we postpone discussion to Section[3.6]

Let X be a closed subvariety of P", and let x, ..., z,, be coordinates in P™. For each ¢ = 0,...,n, let
X% = X NU’. We omit the indices for which X is empty. Then X will be affine, and the intersection
X% = X*N X7 will be alocalization, both of X? and of X7. The coordinate algebra A; of X’ is generated by
the images of the elements u;; = x;/x; in A;, and if we denote those images by u;; too, then X% = Spec A

where A;; = Afu;;'] = Ajfug;'].

e

3.4.3. Definition. The function field K of a projective variety X is the function field of any one of the standard
open subsets X ¢ (3.4.1), and the function field of an open subvariety X' of a projective variety X is the function
field of X. All open subvarieties of variety have the same function field.

For example, let z¢, x1, 22 be coordinates in P2, To describe the function field of P2, we can use the
standard open set U, which is an affine plane Spec C[uy, u] with u; = x; /1. The function field of P? is
the field of rational functions: K = C(u1,us2). We must use w1, us as coordinates here. It wouldn’t be good
to normalize g to 1 and use coordinates x, x2, because we may want to change to another standard open set
such as U'. The coordinates in U! are vy = x¢ /x1 and vy = xo/x1, and the function field K is also the field
of rational functions C(vg, v2). The two fields C(u1, uz) and C(vp, v2) are the same.

A rational function on a variety X is an element of its function field. If a point p of X lies in a standard
open set X® = Spec A;, a rational function « is regular at p if it can be written as a fraction a/s of elements
of A; with s(p) # 0. If so, its value at p is a(p) = a(p)/s(p). If X’ is an open subvariety of a projective
variety X, a rational function on X" is regular at a point p of X" if it is a regular function on X at p.

When we regard an affine variety X = Spec A as a closed subvariety of U°, its function field will be the
field of fractions of A, and Proposition [2.6.2] shows that the regular functions on the affine variety Spec A are
the elements of A.

Thus a rational function on a projective variety X will define a function on a nonempty open subset of X.
It can be evaluated at some points of X, not at all points.

3.4.4. Lemma. (i) Let p be a point of a projective variety X. The regularity of a rational function at p doesn’t
depend on the choice of a standard open set that contains p.

(ii) A rational function that is regular on a nonempty open subset X' is determined by the function it defines
on X',
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Part (ii) follows from Corollary O

(3.4.5) points with values in a field

Let K be a field that contains the complex numbers. A point of projective space P™ with values in K is an
equivalence class of nonzero vectors & = (v, ..., a, ) with «; in K, the equivalence relation being analogous
to the one for ordinary points: « ~ o’ if &’ = A« for some A in K. If X is the subvariety of P" defined by a
homogeneous prime ideal P of C[z], a point « of X with values in K is a point of P with values in K such
that f(a) = 0 for all f in P.

Let K be the function field of a projective variety X. If X is embedded into P, the embedding defines
a point of X with values in K. To get this point, we choose a standard affine open set U’ of P such that
X% = X NU"isn’t empty, say i = 0. Then X° will be affine, X° = Spec Ag. The embedding of X" into the
affine space U is defined by a homomorphism Cluy, ..., u,] — Ag, with u; = x;/x¢. If @; denotes the image
of u; in Ag, fori = 1,...,n and ag = 1, then (ay, ..., a,) is the point of P with values in K defined by the
projective embedding of X.

3.4.6. Note. (the function field of a product) The function field of the product X xY of varieties isn’t generated
by the function fields K'x and Ky of X and Y. For example, let X = SpecC[z] and Y = Spec C[y] (one
x and one y). Then X XY = SpecCl[z,y]. The function field of X x Y is the field of rational functions
C(x,y) in two variables. The algebra generated by the fraction fields C(z) and C(y) consists of the rational
functions p(z,y)/q(z,y) in which g(x,y) is a product of a polynomial in z and a polynomial in y. Most
rational functions, 1/(x + y) for instance, aren’t of that type. O

(3.4.7) interlude: rational functions on projective space

Let R denote the polynomial ring Clz, ..., x,]. A homogeneous fraction is a fraction of homogeneous
polynomials in zg, ..., x,. The degree of a homogeneous fraction is the difference of degrees: deg g/h =
deg g — deg h.

A homogeneous fraction f is regular at a point p of P™ if, when it is written as a fraction g/h of relatively
prime homogeneous polynomials, the denominator A isn’t zero at p, and f is regular on a subset U if it is
regular at every point of U.

A homogeneous fraction f of degree d # 0 won’t define a function anywhere on projective space, beause
f(Az) = A%f(z). In particular, a nonconstant homogeneous polynomial g of won’t define a function, though
it makes sense to say that such a polynomial vanishes at a point of P”.

On the other hand, a homogeneous fraction f = g/h of degree zero, so that g and h have the same degree
r, then f does define a function wherever h isn’t zero, because g(Ax)/h(Ax) = A"g(x) /\"h(z) = g(x)/h(z).

3.4.8. Lemma. (i) Let h be a homogeneous polynomial of positive degree d, and let V' be the open subset of
P" of points at which h isn’t zero. The rational functions that are regular on V are those of the form g/hF,
where k > 0 and g is a homogeneous polynomial of degree dk.

(ii) The only rational functions that are regular at every point of P™ are the constant functions.

For example, the homogeneous polynomials that don’t vanish at any point of the standard open set U are the
scalar multiples of powers of xg. So the rational functions that are regular on U are those of the form g/xf,
with g homogeneous of degree k. This agrees with the fact that the coordinate algebra of U° is the polynomial
ring Cluy, ..., un], u; = /0, because g(zo, ..., T )/2f = g1, ..., up).

proof of Lemma (i) Let « be a regular function on the open set V, say a = g1 /h1, where ¢; and h; are
relatively prime homogeneous polynomials. Then h; doesn’t vanish on V/, so its zero locus in P™ is contained
in the zero locus of h. According to the Strong Nullstellensatz, h; divides a power of h. Say that h* = fh;.

Then g1 /h1 = fg1/fh1 = fg1/h".

(ii) If a rational function f is regular at every point of P", then it is regular on U°. It will have the form g /x5,
where g is a homogeneous polynomial of degree k not divisible by z. Since f is also regular on U, it will
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have the form h/z!, where h is homogeneous and not divisible by x1. Then gx% = hak. Since x doesn’t
divide g, k = 0. Therefore g is a constant. O

It is also true that the only rational functions that are regular at every point of a projective variety are the
constants. The proof of this will be given later (Corollary [8.2.9). When studying projective varieties, the
constant functions are useless, so one has to look at at regular functions on open subsets. Affine varieties
appear in projective algebraic geometry, as open subsets on which there are enough regular functions.

3.5 Morphisms

As with affine varieties, morphisms are the allowed maps between varieties. Some morphisms, such as the
projection from a product X x Y to X, are sufficiently obvious that they don’t require much discussion, but
many morphisms aren’t obvious.

Let X and Y be subvarieties of the projective spaces P™ and P", respectively. A morphism Y — X, as
defined below, will be determined by a morphism from Y to P"* whose image is contained in X. However,
in most cases, such a morphism won’t be the restriction of a morphism from P™ to P™. This is an important
point: It is usually impossible to define f using polynomials in the coordinate variables of P".

3.5.1. Example. Let the coordinates in P2 be yg, y1, y2. The Veronese map from the projective line P* to P2,
defined by (zg,21) ~ (23,2071, 23%), is an obvious morphism. Its image is the conic C' in P? defined by the

polynomial {yoy2 — 3% }. The Veronese map defines a bijective morphism P! L , whose inverse function
7 sends a point (yo, Y1, y2) of C with yo # 0 to the point (zo, 1) = (y1,y2), and it sends the remaining point,
which is (0,0, 1), to (0,1). Though 7 is a morphism C' — P!, there is no way to extend it to a morphism
P? — P!, In fact, the only morphisms from IP? to P! are the constant morphisms, whose images are points. (]

It is convenient, though somewhat artificial, to use points with values in a field to define morphisms.

(3.5.2) morphisms to projective space

In this section, it will be helpful to have a separate notation for the point with values in a field K determined
by a nonzero vector & = («o, ..., ), With entries in K. We’ll denote that point by . So if « and o' are
points with values in K, then o = o/ if &/ = A\« for some nonzero A in K. We’ll drop this notation later.

Let Y be a variety with function field K. A morphism from Y to projective space P" will be defined by a
point of P™ with values in K. The fact that points of projective space are equivalence classes of vectors, not
the vectors themselves, will be useful.

Let o = («v, ..., ) be a vector with entries in the function field K of a variety Y. We try to use the point
« to define a morphism from Y to projective space P™. To define the image «(g) of a point ¢ of Y (an ordinary
point), we look for a vector o/ = (&, ..., @}, ), such that &' = @, i.e., @/ = Aa, with A\ € K, and such that the
rational functions o are regular at ¢ and not all zero there. Such a vector may exist or not. If o’ exists, we
define

(3.5.3) alq) = (ap(q), . (@) (=2/(q))

We call « a good point if such a vector o’ exists for every point g of Y.

3.5.4. Lemma. A point o of P™ with values in the function field K of a variety Y is a good point if either one
of the two following conditions holds for every point q of Y :

o There is an element \ of K such that the rational functions o), = Aa;, © = 0, ...,n, are regular and not all
zero at q, fori =0, ...,n.

o There is an index j such that a; # 0, and the rational functions o; /c; are regular at q, for i =0, ..., n.

proof. The first condition simply restates the definition. We show that it is equivalent with the second one.
Suppose that «; /c; is regular at g for every . Let A = a;l, and let o, = Aa; = /. The rational functions
o are regular at ¢, and they aren’t all zero there because ag = 1. Conversely, suppose that for some nonzero

Ain K, ag = A\q are all regular at ¢ and that 0/7. isn’t zero there. Then 04;71 is a regular function at g, so the
rational functions ag / a;-, which are equal to «;/ o, are regular at ¢ for all 7. O
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3.5.5. Lemma. Let o be a good point with values in the function field K of a variety Y. The image a(q) in
P™ of a point q of Y is independent of the choice of the vector that represents .

This follows from Lemma [3.5.4] because the second condition doesn’t involve \. O

3.5.6. Definition. Let Y be a variety with function field K. A morphism from Y to projective space P" is a
map that can be defined, as in (3.5.3), by a good point « with values in K.

We may denote the morphism defined by a good point « by the same symbol a.

3.5.7. Proposition. Let o be a vector with values in the function field K of a variety Y, and suppose that o is
a good point, that defines a morphism'Y — P". Suppose that the inverse image of the standard open set U°
in P is nonempty. Then g # 0, and the inverse image of U° the set of points ¢ € Y at which the functions
«;/ag are regular, for j = 1,... n.

proof. If oy were zero, a would map Y to the hyperplane {zy = 0}. So oy # 0. Let ¢ be a point of
Y. Since « is a good point, there is a A such that o} = A are all regular at ¢ and not all zero, and then
alq) = (af(q), ..., al,(q)). The image will be in U if a(q) # 0. If so, we let o' = oy "o/ = g Lev. Then

o are all regular at ¢ and o (¢) = 1. 0

3.5.8. Examples.

(i) The identity map P* — P!. Let X = P!, and let (o, 1) be coordinates in X. The function field of X is
the field K’ = C(t) of rational functions in the variable ¢ = x1 /x¢. The identity map X — X is defined by the
point & = (1,¢) with values in K. For every point p of X except the point (0,1), a(p) = a(p) = (1,t(p)).
For the point ¢ = (0,1), welet o/ =t ta = (¢t~ 1,1). Then a(q) = o’ (q) = (20(q)/21(¢),1) = (0,1). So
is a good point.

(i) We go back to Example in which C is the conic yoy2 = y? and f is the morphism P* — C' defined
by f(zo,x1) = (23, zow1,2%). The inverse morphism 7 can be described as the projection from C to the line
Lo : {yo =0}, 7(yo,y1,y2) = (Y1, y2). This formula for 7 is undefined at the point ¢ = (1,0, 0), though the
map extends to the whole conic C'. Let’s write this projection using a point with values in the function field K
of C. The standard affine open set {yo # 0} of P? is the polynomial algebra Cluy, us], with u; = y; /yo and
us = Y2 /1o. Denoting the restriction of the function u; to C° = C' MUY by wu; too, the restricted functions are
related by the equation uy = u? that is obtained by dehomogenizing f. The function field K is C(uy).

The projection 7 is defined by the point o = (uy,u) with values in K: 7(yo,y1,y2) = 7(1,u1,u2) =
(u1,u?). Lemma [3.5.4]tells us that « is a good point if and only if one of the two vectors o = (1,u;) or

o = (ufl, 1) is regular at every (ordinary) point p of C. Since u; = y1/y0, < is regular at all points at
which yo # 0. This leaves just one point p = (0,0, 1) to consider. Noting that u; ' = yo/y1 = y1/ya, We see
that o’ is regular there. So « is a good point. O

3.5.9) morphisms to projective varieties

3.5.10. Definition. Let Y be a variety, and let X be a subvariety of a projective space P”*. A morphism of

varieties Y — X is the restriction of a morphism ¥ — P™ whose image is contained in X.

3.5.11. Lemma. Let X be a projective variety that is the locus of zeros of a family f of homogeneous polyno-
mials. A morphism'Y = pm defines a morphism'Y — X if and only if f(a)) = 0.

proof. Let f(xg,...,x,) be a homogeneous polynomial of degree d, with zero locus X in P™. We show that

the image of a morphism Y’ —5 P™ is contained in X if and only if f(«) = 0. Whether or not X is a variety
is irrelevant. Suppose that f(«) = 0, and let ¢ be a point of Y. Since « is a good point, the ratios a; = /oy

are regular at ¢ for some 4, and a(q) = a/(g). Then f(a’) = a; *f(a) = 0. Therefore ¢ is a point of X.

Conversely, suppose that f(a) # 0. Let Y’ be the open subset of Y of points at which all nonzero «;
are invertible regular functions. Then f(a’) = alf(a) will be a nonzero rational function on Y”. It will be
nonzero at some points q. O

We remark that a morphism Y —5 X won’t restrict to a map of function fields Kx — Ky unless the image
of Y is dense in X.

88

doesntde-
pend

defmor-
phtoP

maptoui

identmap

morphtoV

defmor-
phtoX

ptfvalK-
fzero



morphcont

firstprop-
morph

mapprop-
prod

mapprop-
var

isomor-
phisms

3.5.12. Proposition. A morphism of varieties Y -5 X is a continuous map in the Zariski topology, and a
continuous map in the classical topology.

proof. Since the topologies on a projective variety X are induced from those on projective space P™, we may
suppose that X = P, Let U’ be a standard open subset of X whose inverse image in Y isn’t empty, and let
Y’ be a localization of a standard open subset of that inverse image. The restriction Y/ — U? of the morphism
« is continuous in either topology because it is a morphism of affine varieties (3.5.7). Since Y is covered by
open sets such as Y, « is continuous. O
3.5.13. Lemma.

(i) The inclusion of an open or a closed subvariety Y into a variety X is a morphism.

(ii) Let Y i> X be a map whose image lies in an open or a closed subvariety Z of X. Then f is a morphism
if and only if its restriction Y — Z is a morphism.

B
(iii) A composition of morhisms Z —'Y = Xisa morphism.

(i) Let {Y'} be an open covering of a variety Y, and let Y* L X be morphisms. If the restrictions of f* and
f7 to the intersections Y N'Y7 are equal for all i, j, there is a unique morphism f whose restriction to Y is

fr
We omit the proofs of (i) - (iii). Part (iv) is true because the points with values in K that define the morphisms
f* will be equal. 0O

(3.5.14) the mapping property of a product

The product X xY of sets X and Y can be characterized by this property: Maps from a set 7" to the product
X XY correspond bijectively to pairs of maps T’ L XandT % Y. The map T’ 5 XxY that corresponds
to a pair of maps f, g sends a point ¢ to the point pair (f(t), g(t)). Soh = (f,g). f T Iy XxYisa map to
the product, the corresponding maps to X and Y are the compositions with the projections X x Y % X and
XxY 2 Y: f =mhand g = moh.

The analogous statements are true for morphisms of varieties:
3.5.15. Proposition. Let X and Y be varieties, and let X XY be the product variety.

() The projections X xY ™% X and X xY 2'Y are morphisms.

(i) Morphisms from a variety T to the product variety X XY correspond bijectively to pairs of morphisms
T — X andT — 'Y, the correspondence being the same as for maps of sets.

(iii) If X N UandY -2V are morphisms of varieties, the product map X XY it UxV, which is defined
by [f xgl(z,y) = (f(z),9(y)), is a morphism.

proof. Perhaps it suffices to exhibit the points with values in the function fields that define the morphisms.

(i) The function field of X xY contains the function field K'x of X. The point with values in K that defines
the projection 7 is the point with values in K x defined by the embedding of X into projective space.

(ii) Let z;; = x;y, be the Segre coordinates for X XY, and let x = « and y = § be the points with values in
the function field K1 of T that define the morphisms 7' — X and T' — Y. The point with values in K the
defines the map T' — X XY is z;; = o 8;.

(iii) Let the coordinates in U, V, and U x V be u; and v; and w;; = u;v;, respectively. Say that the morphism
f is defined by the point o with values in Kx, and that ¢ is defined by the point 5 with values in Ky . The
function field K x.y contains K x and Ky . Then w;; = o;3; defines the product morphism X xY — UxV.
O

(3.5.16) isomorphisms

An isomorphism of varieties is a bijective morphism Y — X whose inverse function is also a morphism.
Isomorphisms are important because they allow us to identify different incarnations of what might be called
the “same” variety.
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3.5.17. Example. The projective line P!, a conic in P2, and a twisted cubic in P are isomorphic. Let Y’
denote the projective line with coordinates g, y1. The function field K of Y is the field of rational functions
int = y; /yo. The degree 3 Veronese map Y — P3 defines an isomorphism from Y to its image X,
a twisted cubic. It is defined by the vector o = (1,¢,t2,3) of P? with values in K, and o’ = (t73,¢72,¢t71,1)
defines the same point.

The twisted cubic X is the locus of zeros of the equations vove = v% , VU] = VU3 , U1U3 = v%. To
identify the function field of X, we put vy = 1, obtaining relations vy = v#, v3 = v§. The function field is the
field ' = C(vy). The point of Y = P! with values in F' that defines the inverse X — Y of the morphism « is
defined by the point 5 = (1, v1). O

3.5.18. Lemma. Ler Y —5 X be a morphism of varieties, let {X*} and {Y '} be open coverings of X and

Y, respectively, such that the image of Y in X is contained in X°. If the restrictions Y I xi of f are
isomorphisms, then f is an isomorphism.

proof. Let g* denote the inverse of the morphism f?. Then ¢° = ¢/ on X* N X7, because f* = ffonY'NY7.
By (3.5.13) (iv), there is a unique morphism X — Y whose restriction to Y is g¢. That morphism is the
inverse of f. O

(3.5.19) the diagonal

Let X be a variety. The diagonal X a is the set of points (p, p) in the product variety X x X. It is a subset of
the product that is closed in the Zariski topology, but not in the product topology.

3.5.20. Proposition. Let X be a variety. The diagonal X a is a closed subvariety of the product X x X, and
it is isomorphic to X.

proof- Let P denote the projective space P™ that contains X, and let z, ..., ,, and yo, ..., y,, be coordinates in
the two factors of P x P. The diagonal Px in P x P is the closed subvariety defined by the bilinear equations
x;y; = x;Y;, or in the Segre variables, by the equations z;; = z;;, which show that the ratios x; /z; and y; /y;
are equal.

Next, let X be the closed subvariety of P defined by a system of homogeneous equations f(x) = 0. The
diagonal X A can be identified as the intersection of the product X x X with the diagonal Px in Px P, so it is
a closed subvariety of X x X. As a closed subvariety of P x P, the diagonal X A is defined by the equations

(3.5.21) zy; = x;y;, and  f(z) =0

The morphisms X (id—’ig) XA =% X show that XA is isomorphic to X. O

It is interesting to compare Proposition with the Hausdorff condition for a topological space. The
proof of the next lemma is often assigned as an exercise in topology.

3.5.22. Lemma. A topological space X is a Hausdorff space if and only if, when X x X is given the product
topology, the diagonal X A becomes a closed subset of X x X. ]

Though a variety X, with its Zariski topology, isn’t a Hausdorff space unless it is a point, Lemma [3.5.22]
doesn’t contradict Proposition because the Zariski topology on X x X is finer than the product topology.

(3.5.23) the graph of a morphism

LetY L> X be a morphism of varieties. The graph I'y of f is the subset of Y x X of pairs (g, p) such
that f(q) = p.

3.5.24. Proposition. The graph Iy of a morphismY s X isaclosed subvariety of 'Y x X, isomorphic to
Y.
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proof. We form a diagram of morphisms
'y —— YxX
(3.5.25) l lfxz‘d
XA — XxX

where v sends a point (g, p) of I'y to the point (f(g),p) = (p, p) of the diagonal X A. The graph is the inverse
image of X in Y x X. Since X4 is closedin X x X, I'risclosedin Y x X.

Let 7, denote the projection from Y x X to Y. The composition of the morphisms Y’ (ﬂ) YxX 5 Yis
the identity map on Y, and the image of the map (id, f) is the graph I'y. The twomaps Y — I'yandI'y — Y
are inverses, so I'; is isomorphic to Y. O

(3.5.26)  projection

The map
(3.5.27) pr -~y prnt

that drops the last coordinate of a point: 7(zg, ..., Z,) = (2o, ..., Zn—1) is called a projection. It is defined at
all points of P" except at the center of projection, the point ¢ = (0,...,0,1), . So 7 is a morphism from the
complement U = P"—{q} to P"~1:

U-—-pr

The points of U are the ones that can be written in the form (xq, ..., x,—1, 1)

Let the coordinates in P and P"~! be # = x, ..., 2, and y = yo, .., Yn_1, respectively. The fibre 71 (y)
over a point (yo, ..., yn—1) is the set of points (g, ..., ) such that (g, ...,2n—1) = A(Yo, ---s Yn—1), While
Xy, is arbitrary. It is the line in P"* through the points (y1, ..., yn—1,0) and ¢ = (0, ..., 0, 1), with the center of
projection ¢ omitted.

In Segre coordinates, the graph of 7 in U X ]P’?’f1 is the locus I of solutions of the equations z;; = z;; for
0<1,j<n-—1, which imply that the vectors (zo, ..., z,—1) and (yo, ..., Yyn—1) are proportional.

3.5.28. Proposition. In [P} x ]P’Zil, the locus W of the equations x;y; = ;y;, or zij = 2, with 0 <14, j <
n — 1 is the closure of the graph T of m.

proof. At points x distinct from ¢, the solutions of these equations are the points of ', and all remaining points
of P" x P"~1, points of the form (g, y) are also solutions. So the locus W, a closed set, is contained in the
union I' U (¢ x P"~1). To show that W is equal to that union, we show that a homogeneous polynomial g(w)
that vanishes on I', vanishes at all points of gxP" 1. Given (yo, ..., Yn_1) in P" 1, let 24 = (tyo, ..., tyn_1, 1).
For all ¢ # 0, the point (z;,y) is in I" and therefore g(x;,y) = 0. Since g is a continuous function, g(z¢, y)
approaches g(q,y) ast — 0. So g(g,y) = 0. O

We denote the closure W of I' by T now. The projection I' — P that sends a point (z,y) to x is bijective
except when = = ¢, and the fibre over g, which is ¢ x P" 1, is a projective space of dimension n— 1. Because
the point ¢ of P™ is replaced by a projective space in T, the map I' — P? is called a blowup of the point q.
This is a projective blowup.

3.6 Affine Varieties

We have used the term ’affine variety’ in several contexts: An irreducible closed subset of affine space A” is
an affine variety. The spectrum Spec A of a finite type domain A is an affine variety. A closed subvariety in
A" becomes a variety in P when the ambient affine space A™ is identified with the standard open subset U°.
We combine these definitions now, in a rather obvious way: An affine variety X is a variety that is isomorphic
to a variety of the form Spec A.

If X is an affine variety with coordinate algebra A, the function field K of X will be the field of fractions
of A, and as Proposition [2.6.2] shows, the regular functions on X are the elements of A. So A and Spec A are
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determined uniquely by X. The isomorphism Spec A — X is also determined uniquely. It seems permissible
to identify X with Spec A, when A is the coordinate algebra of an affine variety X.

(3.6.1) affine open sets

Now that we have a definition of an affine variety, we can make the next definition. Though obvious, it is
important: An affine open subset of a variety X is an open subvariety that is an affine variety. From now on,
this will be the definition. A nonempty open subset V' of X is an affine open subset if and only if

(a) the algebra R of regular functions on V is a finite-type domain, so that Spec R is defined, and
(b) V is isomorphic to Spec R.

Since the localizations of the standard open sets are affine, the affine open subsets form a basis for the
topology on X.

3.6.2. Lemma. Let U and V be affine open subsets of an affine variety X.
() If U is a localization of X and 'V is a localization of U, thenV is a localization of X.
(i) If V C U andV is a localization of X, then'V is a localization of U.

(iii) Let p be a point of U N'V. There is an open set Z containing p that is a localization of U and also a
localization of V. [l

3.6.3. Lemma. Let X = Spec A be an affine variety, and let R be the algebra of regular functions on an

arbitrary variety Y. An algebra homomorphism A — R defines a morphism'Y I x.

proof. (i) The point here is that Y isn’t assumed to be affine. The algebra R consists of the regular functions
on Y. Other than that, we don’t know much about R.

Let {Y?} be a covering of Y by affine open sets, and let R; be the coordinate algebra of Y. A rational
function that is regular on Y is regular on Y%, so R C R;. The composition of the homomorphism A — R C
R; define morphisms Y’ = Spec R; RN Spec A for each 4, and it is true that f* = f7 on the affine variety

YN Y7. Lemma|3.5.13|(iv) shows that there is a unique morphism Y’ N Spec A that restricts to ¢ on Y7,
O

3.6.4. Corollary. Let Y L X bea morphism of varieties, let q be a point of X, and let p = f(q). If a
rational function g on X is regular at p, its pullback go f is a regular function on'Y at q.

proof- We choose an affine open neighborhood U of p in X on which g is a regular function and an affine
open neighborhood V' of ¢ in Y that is contained in the inverse image f~'U. The morphism f restricts to a
morphism V' — U that we denote by the same letter f. Let A and B be the coordinate algebras of U and
V', respectively. The morphism V' L> U corresponds to an algebra homomorphism A —2s B. On U, the
function g is an element of A, and go f = ¢(g). d

3.6.5. Proposition. The complement of a hypersurface is an affine open subvariety of P™.

proof. Let H be the hypersurface defined by an irreducible homogeneous polynomial f of degree d, and let
Y be the complement of H in P". Let R be the algebra of regular functions on Y. The elements of R are
the homogeneous fractions of degree zero, of the form g/ f* . The fractions m/ f, where m are the
monomials of degree d, generate R. Since there are finitely many monomials of degree d, R is a finite-type
domain. Lemma gives us a morphism Y — X = Spec R. We show that v is an isomorphism.

Let A be the algebra of regular functions on the standard affine open set U° of P™. The intersection
YY =Y NT is a localization of U°, the spectrum of A[s~!], where s = f/zd. Lett = s~ = xd/f. This is
an element of R.

3.6.6. Lemma. The localizations A[s~'] and R[t~'] are equal.

proof of the lemma. The generators m/f of R, m a monomial of degree d, can be written as products
s~ (m/xd). Since m/z is in A, the generators are in A;. So R C A,, and since t™! = s is in 4,
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R; C A,. Next, the fractions x; /x generate A, and x; /xo can be written as t~*(m/ f), with m = z;z3 . so

they are in R;. Then A C R; and since s~ =tisin R, A, C R;. [l

We go back to the proof of the Proposition According Lemma , the morphism ¥ — X
restricts to an isomorphism Y° — X = Spec A[s~!], and the index 0 can be replaced by any i = 0, ..., n.
The next lemma, together with Lemma|[3.5.18]shows that  is an isomorphism. O

3.6.7. Lemma. The open sets X* cover X.

proof. Suppose that a point p of X isn’t contained in any of the subsets X°. Let s; = f/x¢ and let t; = 55 1
Then ¢;(p) = O for all 4. If m is any monomial of degree d, m¢ will divisible by z¢ for some 4 and then
(m/f)? will be divisible by t;. So if t;(p) = 0, then [m/f](p) = 0 for every monomial of degree d, and
therefore [f/f](p) = 0. Since f/f = 1, this is a contradiction. O

3.6.8. Theorem. Let U and V be affine open subvarieties of a variety X. The intersection U NV is an affine
open subvariety. If , say U =~ Spec A and V =~ Spec B, the coordinate algebra of U NV is generated by the
two algebras A and B.

proof. Let [A, B] denote the subalgebra generated by two subalgebras A and B of the function field K of X.
The elements of [A, B] are finite sums of products > a;b; with a; in A and b; in B. If A = Clay, ..., a,], and
B = Clb, ..., bg], the algebra [A, B] is generated by the set {a; } U {b;}. It is a finite-type algebra.

The algebras A and B that appear in the statement of the theorem are subalgebras of the function field K of
X.Let R=[A, B]andlet W = Spec R. To prove the theorem, we show that W is isomorphic to U N V. The
varieties U, V, W, and X have the same function field K, and the inclusions of coordinate algebras A — R
and B — R give us morphisms W — U and W — V. We also have inclusions U C X and V C X, and
X is a subvariety of a projective space P". Restricting the projective embedding of X gives us embeddings
of U and V and it gives us a morphism from W to P". All of these morphisms to P" will be defined by
the same good point o with values in K, the point that defines the projective embedding of X. Let’s denote
the morphisms to P by ax, oy, @y, and ayy,. The morphism ayy, can be obtained as the composition of the
morphisms W — U C X C P”, and also as the analogous composition, in which V' replaces U. Therefore
the image of T/ in P™ is contained in U N V. Thus ay, restricts to a morphism W —= U N V. We show that
€ is an isomorphism.

Let p be a point of U N V. We choose an affine open subset Us of U N V that is a localization of U and
that contains p . The coordinate algebra of U, will be A, with s in A, and B will be a subalgebra of
Ag. Then

Ry =[A, B]s = [As, B] = A;

So e maps the localization W, = Spec R, of W isomorphically to the open subset U; = Spec A; of UN V.
Since we can cover U NV by open sets such as Us, Lemma (ii) shows that € is an isomorphism. O

3.7 Lines in Three-Space

The Grassmanian G(m,n) is a variety whose points correspond to subspaces of dimension m of the vector
space C", or to linear subspaces of dimension m —1 of P"~L. One says that G(m,n) parametrizes those
subspaces. For example, the Grassmanian G(1, n+1) is the projective space P"™. The points of P parametrize
one-dimensional subspaces of C" 11,

The Grassmanian G (2, 4) parametrizes two-dimensional subspaces of C*, or lines in P. We denote that
Grassmanian by G, and we describe it in this section. The point of G that corresponds to a line £ in P? will be
denoted by [¢].

One can get some insight into the structure of G using row reduction. Let V = C*, let u;, uy be a basis
of a two-dimensional subspace U of V, and let M be the 2 x 4 matrix whose rows are uj, us. The rows of
the matrix M’ obtained from M by row reduction span the same space U, and the row-reduced matrix M’ is
uniquely determined by U. Provided that the left hand 2 x 2 submatrix of M is invertible, M’ will have the
form

;{1 0 % =%
(3.7.1) M(O 1« *>
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The Grassmanian G contains, as an open subset, a four-dimensional affine space whose coordinates are the
variable entries of M’.

In any 2 x 4 matrix M with independent rows, some pair of columns will be independent, and the corre-
sponding 2 x 2 submatrix will be invertible.. That pair of columns can be used in place of the first two in a row
reduction. So G is covered by six four-dimensional affine spaces that we denote by W7, 1 <4 < j <4, W¥
being the space of 2 x 4 matrices such that column 4 is (1,0)? and column j is (0, 1)*.

The fact that P* and G are both covered by affine spaces of dimension four might lead one to guess that
they are similar. They are quite different.

(3.7.2) the exterior algebra extalgone

Let V be a complex vector space. The exterior algebra \V (‘wedge V) is a noncommutative algebra —
an algebra whose multiplication law isn’t commutative. It is generated by the elements of V', with the relations

3.7.3) vw = —wv forall v,w in V. extalg
3.7.4. Lemma. The condition is equivalent with: vv = 0 forallvin'V. vvzero

proof. To get vv = 0 from (3.7.3)), one sets w = v. Suppose that vv = 0 for all v in V. Then vv, ww, and
(v+w)(v+w) are all zero. Since (v+w)(v+w) = Vv + vw + wv + ww, it follows that vw + wv =0. O

To familiarize yourself with computation in A V, verify that vzvov; = —vjvgvs and that vyvgvov, =
V1V20V3V4.

Let A"V denote the subspace of A\ V spanned by products of length  of elements of V. The exterior algebra
/\ 'V is the direct sum of the subspaces /\" V. An algebra A that is a direct sum of subspaces A?, and such that
multiplication maps A’ x A7 to A*7, is called a graded algebra. The exterior algebra is a noncommutative
graded algebra.

3.7.5. Proposition. If (v1,...,vy,) is a basis for V, the products v;, - - - v, of length r, with increasing indices depen-
i1 <y < -+ < iy, forma basis for \" V. dentprod-
uct

The proof of this proposition is at the end of the section.
3.7.6. Corollary. Let vy, ...,v, be elements of V. In \" V, the product vy - - - v, is zero if and only if the wedgezero

elements are dependent. O

For the rest of the section, we let V' be a vector space of dimension four, with basis (vy, ..., v4). Proposition
[B.Z3ltells us that

3.7.7 extba-
A’V = Cis a space of dimension 1, with basis {1} sistwo
A'V =V is a space of dimension 4, with basis {v1,vs, v3, 04}

/\2 V is a space of dimension 6, with basis {v;v; |1 < j} = {v1v2,v103, V104, V2V3, V2V, V34 }
/\3 V is a space of dimension 4, with basis {v;vjvi |1 < j < k} = {v10v203, V10204, V10304, VU3V }
/\4 V is a space of dimension 1, with basis {vjvavzvs}
A?V =0 when g > 4.
The elements of /\2 V' are combinations
(3.7.8) w = Z QiU wedgetwo

i<j

We regard /\2 V' as an affine space of dimension 6, identifying the combination w with the vector

(a12,a13, a14, ass, as4, asy), and we use the same symbol w to denote the corresponding element of the pro-
jective space P°.
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3.7.9. Definition. An element of /\2 V' is decomposable if it is the product of two elements of V.

3.7.10. Proposition. The decomposable elements w of /\2 V' are those such that ww = 0, and the relation
ww = 0 is equivalent with the following equation in its coefficients a;;:

(3.7.11) (12034 — Q13024 + 14023 = 0

proof. If w is decomposable, say w = ujus with u; in V, then w? = ujusuius = —u?u? is zero because
2 . 2 . o .

uj = 0. For the converse, we compute w* with w = Zi<j a;jv;v;. The result is

ww = 2(a12a34 — A13024 + A14023) V1 V2V3Vy

To show that w is decomposable if w? = 0, it seems simplest to factor w explictly. Since the assertion is trivial
when w = 0, we may suppose that some coefficient of w is nonzero. Say that a;5 # 0. Then if w? = 0,

1
(3.7.12) w = P (alzvz + a13vs + a14v4)( — @121 + ag3v3 + a24v4)
12
The computation for another pair of indices is similar. (I

3.7.13. Corollary. (i) Let w be a nonzero decomposable element of /\2 V, say w = ujug, withu; in'V.
Then (u1,us) is a basis for a two-dimensional subspace of V.

(ii) Let (u1,u2) and (u},uy) be bases for two subspaces U and U’ of V, and let w = ujug and w' = ujub.
Then U = U’, if and only if w and w' differ by a scalar factor — if and only if they represent the same point
of 5.

(iii) The Grassmanian G corresponds bijectively to the quadric Q) in P® whose equation is . IfU is
a two-dimensional subspace of V with basis (u1,us), the point of G that represents U is sent to the point
w = ujuz of Q.

Thus the Grassmanian G can be represented as the quadric (3.7.11)) in P°.

proof. (i) If an element w of /\2 V' is decomposable, say w = wujus, and if w isn’t zero, then u; and uy must
be independent (3.7.6). They span a two-dimensional subspace.

(ii) Suppose that U’ = U. Then, when we write the second basis in terms of the first one, say (u},ub) =
(auy +bug, cuy +dus), the product w’ becomes the scalar multiple (ad—bc)w of w, and ad—be # 0.

If U’' # U, then at least three of the vectors uy, us, u}, v will be independent. Say that uy,uq,u] are
independent. Then, according to Corollary the product wjusu} isn’t zero. Since ujubu) = 0, wujub
cannot be a scalar multiple of uqus.

(iii) This follows from (i) and (ii). [l

For the rest of this section, we will use the concept of the algebraic dimension of a variety X. This
dimension can be defined as the length d of the longest chain Cy > C; > --- > (Cy of closed subvarieties of
X. We refer to the algebraic dimension simply as the dimension, and we use some of its properties informally
here, deferring proofs to the discussion of dimension in the next chapter.

The topological dimension of X, its dimension in the classical topology, is always twice the algebraic
dimension. Because the Grassmanian G is covered by affine spaces of dimension 4, its algebraic dimension is
4 and its topological dimension is 8.

3.7.14. Proposition. Let P be the projective space associated to a four dimensional vector space V. In the
product P? x G, the locus T of pairs p,[{] such that p lies on { is a closed subset of dimension 5.

proof. Let £ be the line in P3 that corresponds to a subspace U with basis (uy,uz), let w = ujus, and let p be
the point represented by a vector z in V. Then p € £ means « € U, which is true if and only if (x, u1,us) is a
dependent set — if and only if zw = 0 . An element w of /\2 V is decomposable when w? = 0. So "
is the closed subset of points (x,w) of P3 x P> defined by the bihomogeneous equations zw = 0 and w? = 0.
]
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When we project I' to G, the fibre over a point [¢] of G is the set of pairs p, [¢] such that p € ¢. The
projection maps that fibre bijectively to the line £. Thus I" can be viewed as a family of lines, parametrized by
G. Its dimension is dim¢+dimG =144 =5.

(3.7.15) lines on a surface

When one is given a surface S in P, one may ask: Does S contain a line? One surface that contains lines is
the quadric @ in P> whose equation is 291210 = 200211, the image of the Segre embedding P* x P! — P3
. It contains two families of lines, the lines that correspond to the two “rulings” px P! and P! x ¢ of
P! x PL. There are surfaces of arbitrary degree that contain lines, but a generic surface of degree four or more

won’t contain any line.

We use coordinates z; with i = 1,2, 3,4 for P2 here. There are N = (d‘g?’) monomials of degree d in four
variables, so homogeneous polynomials of degree d are parametrized by an affine space of dimension NV, and
surfaces of degree d in P by a projective space of dimension n = N —1. Let S denote that projective space,
let [S] denote the point of S that corresponds to a surface S, and let f be the irreducible polynomial whose
zero locus is S. The coordinates of [S] are the coefficients of f. Speaking infomally, we say that a point of S
is a surface of degree d in P2. (When f is reducible, its zero locus isn’t a variety. Let’s not worry about this.)

Consider the line ¢, defined by x3 = x4 = 0. Its points are those of the form (1, 22,0, 0), and a surface
S : {f = 0} will contain ¢ if and only if f(x1,x2,0,0) = O for all 21, 5. Substituting 3 = x4 = 0 into f
leaves us with a polynomial in two variables:

(3.7.16) f(x1,29,0,0) = cox{ + cra{ g + - + cqxd

where ¢; are some of the coefficients of the polynomial f. If f(x1,x2,0,0) is identically zero, all of those
coefficients will be zero. So the surfaces that contain ¢, correspond to the points of the linear subspace IL of
S defined by the equations ¢y = - - - = ¢4 = 0. Its dimension is n—d—1. This is a satisfactory answer to the
question of which surfaces contain ¢y, and we can use it to make a guess about lines in a generic surface of
degree d.

3.7.17. Lemma. In the product variety G XS, the set 3 of pairs [{),|S] such that { is a line, S is a surface of
degree d, and £ C S, is a closed set.

proof. Let W9, 1 <i < j <4 denote the six affine spaces that cover the Grassmanian, as at the beginning of
this section. It suffices to show that the intersection £ = XN (W xS) is closed in W% xS for all i, j (2.2.6).
We inspect the case ¢, 7 = 1, 2.

A line £ such that [¢] is in W2 corresponds to a subspace of C? with basis (u1,uz) of the form u; =
(1,0,a2,a3), uz = (0,1, be, b3), and the coordinates of the points of ¢ are combinations ruj + sus of uy, us.
Let f(x1,x2, T3, 24) be the polynomial that defines a surface S of degree d. The line / is contained in S if and
only if f(r, s, ras+sba, ras+sbs) = f(r, s) is zero for all r and s, and f(r, s) is a homogeneous polynomial
of degree d in r, s. If we write f(r,s) = 2or® 4+ 2,79 L5+ - - - + z45%, the coefficients z, will be polynomials
in a;, b; and in the coefficients of f. The locus zg = --- = zg = 0 is the closed subset 3'? of W!2 x S that
represents surfaces containing a line. O

The set of surfaces that contain our special line ¢y corresponds to the linear space Ly of S of dimension
n—d—1, and £, can be carried to any other line ¢ by a linear map P2 — P3. So the sufaces that contain another
line £ also form a linear subspace of S of dimension n—d—1. Those subspaces are the fibres of ¥ over G. The
dimension of the Grassmanian G is 4. Therefore the dimension of ¥ is

dim¥ = dimLy+dimG = (n—d-1)+4
Since S has dimension n,

(3.7.18) dim» = dimS—-d+3

When we project the product G x S and its subvariety X to S, the fibre of 3 over a point [S] is the set of
pairs [¢],[S] such that ¢ is contained in .S — the set of lines in S.
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3.7.19. When the degree d of the surfaces we are studying is 1, dim > = dim S+2. Every fibre of X over S
will have dimension at least 2. In fact, every fibre has dimension equal to 2. Surfaces of degree 1 are planes,
and the lines in a plane form a two-dimensional family.

When d = 2, dim ¥ = dim S+ 1. We can expect that most fibres of ¥ over S will have dimension 1. This
is true: A smooth quadric contains two one-dimensional families of lines. (All smooth quadrics are equivalent
with the quadric .) But if a quadratic polynomial f(z1, z2, 3, 24) is the product of linear polynomials,
its locus of zeros will be a union of planes. It will contain two-dimensional families of lines. Some fibres have
dimension 2.

When d > 4, dim¥ < dimS. The projection ¥ — S cannot be surjective. Most surfaces of degree 4 or
more contain no lines.

The most interesting case is that the degree d is 3. In this case, dim Y = dim S. Most fibres will have
dimension zero. They will be finite sets. In fact, a generic cubic surface contains 27 lines. We have to wait to
see why the number is precisely 27 (see Theorem [4.6.27).

Our conclusions are intuitively plausible, but to be sure about them, we need to study dimension carefully.
We do this in the next chapters.

(3.7.20) proofofProposition3.7.5]

Letv = (vy, ..., v, ) be a basis of a vector space V. The proposition asserts that the products v;, - - - v;, of
length r with increasing indices i; < iy < - -- < 4, form a basis for A" V. To prove this, we need to be more
precise about the definition of the exterior algebra A V.

3.7.21. We start with the algebra T'(V') of noncommutative polynomials in the basis v, which is also called the
tensor algebra on V. The part T (V') of T'(V') of degree r has, as basis, the n” noncommutative monomials of
degree r, the products v;, - - - v;,. of length r of elements of the basis. Its dimension is n”. For example, when
n=2, the eight-dimensional space 7°(V') has basis (23, 232, 117271, T227, 2173, Tox1T2, T321, T3).

The exterior algebra /\ V is the quotient of T'(V') obtained by forcing the relations vw+wv = 0 (3.7.3).
Using the distributive law, one sees that the relations v;v; +v;v; = 0, 1 <4, j <n, are sufficient to define this
quotient.

We can multiply the relations v;v;+v;v; on left and right by noncommutative monomials p(v) and ¢(v) in
V1, ..., Up. When we do this with all pairs p, ¢ of monomials whose degrees sum to r — 2, the noncommutative
polynomials

(3.7.22) p(v)(viv;+v;v;)q(v)

span the kernel of the linear map 77 (V) — A" V. Soin A"V, p(v)(v;v;)q(v) = —p(v)(vjv;)g(v). Using
these relations, any product v;, - --v;,_ in A" V' is, up to sign, equal to a product in which the indices i, are in
increasing order. Thus the products with indices in increasing order span /\" V, and because v;v; = 0, such a
product will be zero unless the indices are strictly increasing.

We go to the proof now. Let v = (vy, ..., v, ) be a basis for V. We show first that the product w = vy -+ - v,
of the basis elements in increasing order is a basis of the space A" V. We have shown that w spans A" V, and
it remains to show that w # 0, or that A" V' # 0.

Let’s use multi-index notation, writing (i) = (i1, ..., %), and v(;) = v;, ---v;,. We define a surjective
linear map 77 (V') == C. The products vy = (v, -+ - vy, ) of length n form a basis of 7 (V). If there is no
repetition among the indices i1, ..., i,, then (i) will be a permutation of the indices 1, ...,n. In that case, we
set o(v()) = @(vi, -+ - vy, ) = sign(i). If there is a repetition, we set ¢ (v(;)) = 0.

Let p and ¢ be noncommutative monomials whose degrees sum to n—2. If the product p(v;v;)q has no
repeated index, the indices in p(v;v;)q and in p(v;v; )q will be permutations of 1, ..., n, and those permutations
will have opposite signs. So p(v;v; + v;v;)g will be in the kernel of . Since these elements span the space of

relations that define \" V as a quotient of 7" (V'), the surjective map 7" (V') —2+ C defines a surjective map
A"V — C. Therefore \" V # 0.
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To prove , we must show that for < n, the products v;, - - - v; with iy < 79 < --- < 7, form a basis for
A"V, and we have seen that those products span A" V. We must show that they are independent. Suppose that
a combination z = ) C(i)V(s) 18 zero, the sum being over the sets {41, ..., 4, } Of strictly increasing indices. We
choose a particular set (j1, ..., j,) of n strictly increasing indices, and we let (k) = (k1, ..., k) be the set of
indices that don’t occur in (j), listed in arbitrary order. Then all terms in the sum zv () = > () V() (k) Will
be zero except the term with (i) = (7). On the other hand, since z = 0, zv() = 0. Therefore c(;yv(;yv(x) = 0,
and since V(G)V(k) differs by sign from vy - - - v,, it isn’t zero. It follows that ¢y = 0. This is true for all (j),
so z = 0. O
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3.8 Exercises

3.8.1. Let X be the affine surface in A® defined by the equation 3 + x12223 + x123 + 23 + 23 = 0, and let
X be its closure in P2, Describe the intersection of X with the plane at infinity in P3.

3.8.2. Let C be a cubic curve, the locus of a homogeneous cubic polynomial f(z,y, z) in P2. Suppose that
(0,0,1) and (0, 1,0) are flex points of C, that the tangent line to C at (0,0, 1) is the line {y = 0}, and the
tangent line at (0, 1,0) is the line {z = 0}. What are the possible polynomials f? Disregard the question of
whether f is irreducible.

3.8.3. LetY and Z be the zero sets in [P of relatively prime homogeneous polynomials g and h of the same
degree r. Prove that the rational function o = g/h will tend to infinity as one approaches a point of Z that isn’t
also a point of Y and that, at intersections of Y and Z, « is indeterminate in the sense that the limit depends
on the path.

3.8.4. Let f be a homogeneous polynomial in x, y, z, not divisible by z. Prove that f is irreducible if and
only if f(z,y, 1) is irreducible.

3.8.5. Let P be a homogeneous ideal in C[zy, ..., z,], and suppose that its dehomogenization P is a prime
ideal. Is P a prime ideal?

3.8.6. Let U be the open complement of a closed subset Z in a projective variety X in P™. Say that X is the
set of solutions of the homogeneous polynomial equations f = 0 and that Z is the set of solutions of some
equations g = 0. What conditions must a point p of P" satisfy in order to be a point of U?

3.8.7. Describe the ideals that define closed subsets of A™ x P,

3.8.8. With coordinates g, z1, 22 in the plane P and sg, s1, s2 in the dual plane P*, let C' be a smooth
projective plane curve f = 0 in [P, where f is an irreducible homogeneous polynomial in . Let I' be the locus
of pairs (z, s) of P x P* such that the line spxg + s121 + soxa = 0 is the tangent line to C' at .. Prove that I'
is a Zariski closed subset of the product P x P*.

3.8.9. Let U be a nonempty open subset of P". Prove that if a rational function is bounded on U, it is a
constant.

3.8.10. LetY be the cusp curve Spec B, where B = C[z,y]/(y* — 23). This algebra embeds as subring into
C[t], by x = t2. y = t3. Show that the two vectors vg = (r—1,y—1) and v; = (t+1,t2+¢+1) define
the same point of P! with values in the fraction field K of B, and that they define morphisms from Y to P!
wherever the entries are regular functions on Y. Prove that the two morphisms they define piece together to
give a morphism Y — P!,

3.8.11. Let C be a conic in P2, and let 7 be the projection to P! from a point g of C. Prove that there is no
way to extend this map to a morphism from P? to P!.

3.8.12. Verify that the following maps are morphisms of projective varieties:

(i) the projection from a product variety X xY to X,

(ii) the inclusion of X into the product X x Y as the set X xy for a point y of Y,

(iii) the morphism of products X xY — X’xY when a morphism X — X’ is given.

3.8.13. A pair fy, f1 of homogeneous polynomials in z, z; of the same degree d can be used to define a
morphism P! — P!, At a point ¢ of P!, the morphism evaluates (1, f1/fo) or (fo/f1,1) at q.

(i) The degree of such a morphism is the number of points in a generic fibre. Determine the degree.
(i) Describe the group of automorphisms of P*.

3. A pair (fo, f1) of relatively prime, homogeneous polynomials in xg,x; of the same degree d defines a

morphism u : P! — P! that maps a point ¢ to (1, f1(q)/fo()) if fo(a) # 0 and to (fo()/f1(a),1) it
f1(q) # 0. By inspecting the inverse images of a few points, determine the maps that are injective, and use
your result to describe the group of automorphisms of P*.
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3.8.14. (i) What are the conditions that a triple of f = (fo, f1, f2) homogeneous polynomials in xg, 1, z2 of
the same degree d must satisfy in order to define a morphism P2 — P2?

(ii) If f does define a morphism, what is its degree?

3.8.15. Let C be the plane projective curve 3 — y%z = 0.
(i) Show that the function field K of C'is the field C(¢) of rational functions in ¢ = y/x.
(ii) Show that the point (2 — 1,#3 — 1) of P! with values in K defines a morphism C' — P!.

3.8.16. Describe all morphisms P2 — P*.

3.8.17. blowing up a point in P*. Consider the Veronese embedding of P2, — P} by monomials of degree

2 defined by (ug, w1, ug, u3, ug, us) = (22,92, 2%, yz, vz, xy). If we drop the coordinate ug, we obtain a map

P2 25 P4 (2, y,2) = (y2, 22, yz, o2, zy) that is defined at all points except the point ¢ = (0,0, 1). Find
-1

defining equations for the closure of the image X . Prove that the inverse map X Z— P? is everywhere defined,

that the fibre of ! over ¢ is a projective line, and that f is bijective everywhere else.

3.8.18. Show that the conic C in P? defined by the polynomial y2 + y# + y5 = 0 and the twisted cubic V in
IP3, the zero locus of the polynomials vovy — v?, vovs — v1v2, V1v3 — v5 are isomorphic by exhibiting inverse
morphisms between them.

3.8.19. Let X be the affine plane with coordinates (x,y). Given a pair of polynomials u(z,y),v(z,y) in
x,7, one may try to define a morphism f : X — P! by f(z,y) = (u,v). Under what circumstances is f a
morphism?

3.8.20. Let xq,x1,x2 be the coordinate variables in the projective plane X, and for i = 1,2, let u; = x;/xo.
The function field K of X is the field of rational functions in the variables ;. Let f(u1, uz2) and g(u1,uz) be
polynomials. Under what circumstances does the point (1, f, g) with values in K define a morphism X — P??

3.8.21. Prove that every finite subset S of a projective variety X is contained in an affine open subset.
3.8.22. Describe the affine open subsets of the projective plane P2,
3.8.23. What is the dimension of the Grassmanian G (m,n)?

3.8.24. According to (3.7.19), a generic quartic surface in P> won’t contain any lines. Will a generic quartic
surface contain a plane conic?

3.8.25. Let V be a vector space of dimension 5, and let G denote the Grassmanian G(2,5) of lines in
P(V) = P*. So G is a subvariety of the projective space P(W), W = AV, which has dimension 10. let D
denote the subset of decomposable vectors in P(TW). Prove that there is a bijective correspondence between
two-dimensional subspaces of V' and points of D, and that a vector w in /\2 V' is decomposable if and only if
ww = 0. Exhibit defining equations for G in the space P(W).

3.8.26. a flag variety. Let P = P3. The space of planes in P is the dual projective space P*. The variety F
that parametrizes triples (p, ¢, H) consisting of a point p, a line ¢, and a plane H in P, withp € £ C H, is
called a flag variety. Exhibit defining equations for I in P® x P? x P3*. The equations should be homogeneous
in each of 3 sets of variables.

3.8.27. Let Y be an affine variety. Prove that morphisms Y — P" whose images are in U° correspond
bijectively to morphisms of affine varieties Y — UV, as defined in (2.6.4).

3.8.28. Determine all morphisms P? — P!,
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Chapter 4 INTEGRAL MORPHISMS

The Nakayama Lemma

Integral Extensions
Normalization

Geometry of Integral Morphisms
Dimension
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Chevalley’s Finiteness Theorem
?? Double Planes
Exercises

The concept of an algebraic integer was one of the essential ideas in the development of algebraic number
theory in the 19th century. Then, largely through the work of Noether and Zariski, an analog was seen to be
essential in algebraic geometry. We study that analog here.

4.1 The Nakayama Lemma

4.1.1) eigenvectors

It won’t be a surprise that eigenvectors are important, but the way that they are used to study modules may
be less familiar.

Let P be an n X n matrix with entries in a ring A. The concept of an eigenvector for P makes sense when
the entries of a vector are in an A-module. A column vector v = (v1, ..., v, ) with entries in an A-module M
is an eigenvector of P with eigenvalue A in A if Pv = Av.

When the entries of a vector are in a module, it becomes hard to adapt the usual requirement that an
eigenvector must be nonzero. So we drop it, though the zero vector tells us nothing.

4.1.2. Lemma. Let P be a square matrix with entries in a ring A and let p(t) be the characteristic polynomial

det (tI—P) of P. If v is an eigenvector of P with eigenvalue )\, then p(\)v = 0.

The usual proof, in which one multiplies the equation (A\]—P)v = 0 by the cofactor matrix of (A\[—P), carries
over. (]

The next lemma is a cornerstone of the theory of modules. In it, JM denotes the set of (finite) sums
> aym; with a; in J and m; in M.

4.1.3. Nakayama Lemma. Let M be a finite module over a ring A, and let J be an ideal of A such that
M = JM. There is an element z in J such that m = zm for all m in M, i.e., such that (1—2z)M = 0.

Since it is always true that M O JM, the hypothesis M = JM could be replaced by M C JM.

proof of the Nakayama Lemma. Let vy, ..., v, be generators for the finite A-module M. The equation M =
JM tells us that there are elements p;; in J such that v; = > p;;v;. We write this equation in matrix notation,
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as v = Pv, where v is the column vector (v1, ..., v, )" and P is the matrix P = (p;;). Then v is an eigenvector
of P with eigenvalue 1, and if p(t) is the characteristic polynomial of P, then p(1)v = 0. Since the entries of
P are in the ideal J, inspection of the determinant of I — P shows that p(1) has the form 1—z, with z in J.
Then (1—z)v; = 0 for all ¢. Since vy, ...., v, generate M, (1—z)M = 0. O

With notation as in the Nakayama Lemma, let s = 1—z, so that sM = 0. The localized module M is the
zero module.

4.1.4. Corollary. Let I and J be ideals of a noetherian domain A.
(i) If I = J1, then either I is the zero ideal or J is the unit ideal.

(ii) Let B be a domain that contains A, and that is a finite A-module. If the extended ideal J B is the unit ideal
of B, then J is the unit ideal of A.

proof. (i) Since A is noetherian, [ is a finite A-module. If I = JI, the Nakayama Lemma tells us that there is
an element z of J such that zz = x for all = in I. Suppose that I isn’t the zero ideal. We choose a nonzero
element = of . Because A is a domain, we can cancel x from the equation zx = x, obtaining z = 1. Then 1
isin J, and J is the unit ideal.

(ii) The elements of the extended ideal J B are sums Y u;b; with u; in J and b; in B. Suppose that B = JB.
Then there is an element 2z of J such that b = zb for all b in B. Setting b = 1 shows that z = 1. So J is the
unit ideal. U

4.1.5. Corollary. Let x be an element of a noetherian domain A, not a unit, and let J be the principal ideal
TA.

(i) The intersection (| J™ is the zero ideal.
(i) If y is a nonzero element of A, the integers k such that x* divides vy in A are bounded.
(iii) For every k > 0, JF > Jk+1,

proof. Let I = (| J™ and let y be an element of I. Since J" = z™ A, the elements of I are divisible by =™ for
every n. So for every n, there is an element a,, in A such that y = a,z". Then y/x = a,z" !, which is an
element of J"~ 1. Since this is true for every n, y/x is in I, and y is in JI. Here y can be any element of I,
so I = JI. Since x isn’t a unit, J isn’t the unit ideal. Corollary .T.4{i) tells us that = 0. This proves (i),
and (ii) follows. For (iii), we note that if J¥ = J¥*1, then, multiplying by J"~*, we see that J" = J"*! for
every n > k. Therefore J* = () J™ = 0. But since A is a domain and z # 0, J* = 2F A # 0. O

4.2 Integral Extensions

An extension of a domain A is a domain B that contains A as a subring.

Let B be an extension of a domain A. An element 3 of B is integral over A if it is a root of a monic
polynomial with coefficients in A. An extension B of A is an integral extension if all elements of B are
integral over A.

4.2.1. Lemma. Let A C B be an extension of noetherian domains.

(i) An element b of B is integral over A if and only if the subring A[b] of B generated by b is a finite A-module.
(ii) The set of elements of B that are integral over A is a subring of B.

(iii) If B is generated as A-algebra by finitely many integral elements, then B is a finite A-module.

(iv) Let R C A C B be domains, and suppose that A is an integral extension of R. An element of B is integral
over A if and only if it is integral over R. Therefore, if A is an integral extension of R and B is an integral
extension of A, then B is an integral extension of R. U

4.2.2. Corollary. An extension A C B of finite-type domains is an integral extension if and only if B is a
finite A-module. O

Thus, if f(z) is a monic irreducible polynomial with cofficients in A, and if B = Alx]/(f), then every
element of B will be integral over A.

4.2.3. Lemma. Let A C B be an extension of domains, with A noetherian, let I be a nonzero ideal of A, and
let b be an element of B. If bl C I, then b is integral over A.
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proof. Because A is noetherian, [ is finitely generated. Let v = (v1, ..., v, )¢ be a vector whose entries generate
I. The hypothesis b C I allows us to write bv; = > pi;jv; with p;; in A, or in matrix notation, bv = Pv. So
v is an eigenvector of P with eigenvalue b, and if p(t) is the characteristic polynomial of P, then p(b)v = 0.
Since I isn’t zero, at least one v; is nonzero, but p(b)v; = 0. Since A is a domain, p(b) = 0. The characteristic
polynomial is a monic polynomial with coefficients in A, so b is integral over A. t

4.2.4. Definition. LetY = Spec B and X = Spec A be affine varieties. The morphism ¥ — X defined
by an integral extension A C B will be called an integral morphism of affine varieties.

Thus an integral morphism of affine varieties ¥ — X is a morphism whose associated algebra homo-

morphism A 5 Bis injective, and such that B is a finite A-module. The inclusion u of a proper closed
subvariety Y into X isn’t an integral morphism, though B is a finite A-module.

4.2.5. Proposition. An integral morphismY — X of affine varieties is a surjective map.

proof. Let m, be the maximal ideal at point = of X. Corollary [ij_?f] (ii) shows that the extended ideal m,B
isn’t the unit ideal of B, so m;B is contained in a maximal ideal m, of B, where y is a point of Y. Then
m, N A contains m,, and it isn’t the unit ideal because it doesn’t contain 1. So m, N A = m,, and z is the
image uy. Therefore u is surjective. U

4.2.6. Example. Let G be a finite group of automorphisms of a normal, finite-type domain B, let A be the
algebra B of invariant elements of B. According to Theorem [2.8.5, A is a finite-type domain, B is a finite
integral extension of A, and points of X = Spec A correspond to G-orbits of points of Y = Spec B. O

The next example is helpful for an intuitive understanding of the geometric meaning of integrality.

4.2.7. Example. Let f be an irreducible polynomial in C[z,y] (one = and one y), let A = C|x], and let
B = Clz,y]/(f). So X = Spec A is an affine line and Y = Spec B is a plane affine curve. The canonical
map A — B defines the morphism Y — X that is obtained by restricting the projection A2 — Al to Y.

T,y
We write f as a polynomial in y, whose coefficients are polynomials in x, say

(4.2.8) f(@,y) =ay" +ary" '+ +a,

with a; = a;(x). Let o be a point of X . The fibre of the map Y — X over x( consists of the points (2, yo)
such that yy is a root of the one-variable polynomial f(xg,y).

Let §(x) be the discriminant of f(x,y), viewed as a polynomial in y. This discriminant isn’t identically
zero because f is irreducible (1.7.22). For all but finitely many values x( of z, both ay and ¢ will be nonzero.
Then f(xg,y) will have n distinct roots, and the fibre of Y over z will have order n.

When f(z,y) is a monic polynomial in y, the morphism ¥ — X will be an integral morphism. If so, the
leading term y™ of f will be the dominant term, when y is large. For x; near to a point xy of X, there will be
a positive real number N such that

" > lar(@1)y" ™" + -+ an(@1)]

when |y| > N, and therefore f(x1,y) # 0. So the roots y of f(x1,y) are bounded by N for all 21 near to xo.

On the other hand, when the leading coefficient ag(x) isn’t a constant, B won’t be integral over A. If
Zo is a root of ag(x), f(zo,y) will have degree less than n. What happens there is that, for points x; near
to xg, some roots of f(x1,y) are unbounded. In calculus, one says that the locus f(z,y) = 0 has a vertical
asymptote at xg.

To see this, we divide f by its leading coefficient. Let g(x,y) = f(x,y)/ao = y" + c1y™ 4+ -+ cn
with ¢;(x) = a;(x)/ag(x). For any x at which ag(x) isn’t zero, the roots of g are the same as those of f.
However, let z be a root of ag. Because f is irreducible. At least one coefficient a;(x) doesn’t have ¢ as a
root. Then c; (z) is unbounded near x, and because the coefficient ¢; is a symmetric function in the roots, the
roots are not all bounded.

This is the general picture: The roots of a polynomial remain bounded near points at which the leading
coefficient isn’t zero, but some roots are unbounded near to a point at which the leading coefficient is zero. [J
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4.2.9. Noether Normalization Theorem. Let A be a finite-type domain over an infinite field k. There
exist elements y1, ..., ¥y, in A that are algebraically independent over k, such that A is a finite module over
the polynomial subalgebra R = k[y1, - - . , yn], i-€., such that A is an integral extension of R.

When k£ = C, the theorem can be stated by saying that every affine variety X admits an integral morphism
to an affine space. (It is trivial that an affine variety admits a finite morphism to affine space, because its
embedding into affine space is a finite morphism.)

The Noether Normalization Theorem remains true when A is a finite-type algebra over a finite field, though
the proof given below needs to be modified.

4.2.10. Lemma. Let k be an infinite field, and let f(x) be a nonzero polynomial of degree d in x1,. .., Ty,
with coefficients in k. After a suitable linear change of variable and scaling, f will be a monic polynomial in
T

proof. Let f; be the homogeneous part of f of maximal degree d. We regard fy as a function k" — k.
Since k is infinite, that function isn’t identically zero. We choose coordinates 1, ..., z, so that the point
q = (0,...,0,1) isn’t a zero of f;. Then f4(0,...,0,z,) = czl, and the coefficient ¢, which is f4(0, ...,0,1),

will be nonzero. We can multiply by ¢! to make f monic. (|

proof of the Noether Normalization Theorem. Say that the finite-type domain A is generated by elements
Z1,...,T,. If those elements are algebraically independent over k, A will be isomorphic to the polynomial al-
gebra C[z]. In that case we let R = A. If 21, ..., z,, aren’t algebraically independent, they satisfy a polynomial
relation f(z) = 0 of some positive degree d, with coefficients in k. The lemma tells us that, after a suitable
change of variable and scaling, the coefficient of z¢ in f will be 1. Then f will be a monic polynomial in x,,

with coefficients in the subalgebra B of A generated by x1,...,z,—1. So x, will be integral over B, and A
will be a finite B-module. By induction on n, we may assume that B is a finite module over a polynomial
subalgebra R. Then A will be a finite module over R too. ]

The next corollary is an example of the general principle, as has been noted before, that in any localization,
a construction involving finitely many denominators can be done in a simple localization.

4.2.11. Corollary. Let A C B be finite-type domains. There is a nonzero element s in A such that By is a
finite module over a polynomial subring As[y1, .., yr|-

proof. Let S be the multiplicative system of nonzero elements of A, so that K = AS~! is the fraction field
of A, and let Bx = BS~! be the ring obtained from B by adjoining inverses of all elements of S. Also,
let 5 = (f1, ..., Bx) be a set of algebra generators for the finite-type algebra B. Then as K-algebra, By is
generated by f3. It is a finite-type K -algebra. The Noether Normalization Theorem tells us that By is a finite
module over a polynomial subring Rx = K[y1, ..., yr]. So By is an integral extension of Rx. An element of
B will be in By . Therefore it will be the root of a monic polynomial, say

fl@)=a"+cp 1z '+ =0

where the coefficients ¢;(y) are elements of Ry . Each coefficient ¢; is a combination of finitely many mono-
mials in y, with coefficients in K. If d € A is a common denominator of those coefficients, cj(x) will have
coefficients in A4[y]. Since the generators 31, ..., B of B are integral over R, we may choose a single de-
nominator s so that they are all integral over A,[y]. The algebra B, is generated over A, by 3, so B; will be
an integral extension of A[y]. O

4.3 Normalization

Let A be a domain with fraction field K. The normalization A# of A is the set of elements of K that are
integral over A. The normalization is a domain that contains A @.2.1) (ii).

A domain A is normal if it is equal to its normalization, and a normal variety X is a variety that has an
affine covering { X* = Spec A, }, a covering by affine open sets, in which the algebras A; are normal domains.

To justify the definition of normal variety, we need to show that if an affine variety X = Spec A has an
affine covering {X i = Spec A;}, in which A; are normal domains, then A is a normal domain. This follows
from Lemma[4.3.4] (iii) below.

Our goal here is the next theorem, whose proof is at the end of the section.
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4.3.1. Theorem. Let A be a finite-type domain with fraction field K of characteristic zero. The normalization
A# of A is a finite A-module and a finite-type domain.

Thus there is an integral morphism Spec A% — Spec A.
The theorem is true also when the characteristic of K isn’t zero.

4.3.2. Corollary. With notation as above, there is a nonzero element s in A such that sA# C A.

proof. We assume that the theorem has been proved. Since A and A* have the same fraction field, every
element o of A¥ can be written as a fraction a = a /s with a, s in A, and then s« is in A. Since A# is a finite
A-module, one can find a nonzero element s in A such that s« is in A for all o in A#. Then sA# C A. O

4.3.3. Example. (normalization of a nodal cubic curve) The algebra A = C[u,v]/(v? —u® —u?) can be

embedded into the one-variable polynomial algebra B = C[x], by u = 22 — 1 and v = 2® — 2. The fraction
fields of A and B are equal because x = v/u, and the equation 22 = u+1 shows that x is integral over A. The
algebra B is normal, so it is the normalization of A.

The plane curve C' = Spec A has a node at the origin p = (0,0), and Spec B is the affine line A'. The
inclusion A C B defines an integral morphism A* — C' whose fibre over p is the point pair = -1, and that
is bijective at all other points. I think of C' as the variety obtained by gluing the points x = =1 of the affine
line together.

In this example, the effect of normalization can be visualized geometrically. This is fairly unusual, because
normalization is an algebraic process. Its effect on geometry may be subtle. (]

4.3.4. Lemma. (i) A unique factorization domain is normal. In particular, a polynomial algebra over a field
is normal.

(ii) A localization A, of a normal domain A is normal.

(iii) Let s1, ..., s, be nonzero elements of a domain A that generate the unit ideal. If the localizations As, are
normal for all i, then A is normal.

proof. (i) Let A be a unique factorization domain, and let 5 be an element of its fraction field that is integral
over A. Say that

(4.3.5) B 4+ a B+ a1 fta,=0

with a; in A. We write 5 = /s, where r and s are relatively prime elements of A. Multiplying by s™ gives us
the equation
"= —s(ar" "t A aps™h)

This equation shows that if a prime element of A divides s, it also divides r. Since r and s are relatively prime,
there is no such prime element. So s is a unit, and (3 is in A.

(ii) Let 5 be an element of the fraction field of A that is integral over A,. There will be a polynomial relation of
the form (4.3.5)), where the coefficients a; are elements of A,. The element v = s¥3 is a root of the polynomial

,yn+(Skal),}/n—l+(SQka2),}/n—2_~_._.++(Snkan):0

Since a; are in Ag, all coefficients in this polynomial will be in A when k is sufficiently large, and then v will
be integral over A. Since A is normal, v will be in A, and 3 = s~*~ will be in A,.

(iii) This proof follows a common pattern. Suppose that A, is normal for every 4. If an element 8 of K is
integral over A, it will be in A, for all ¢, and s}'8 will be an element of A, when n is large. We can use
the same exponent n for all ¢. Since sq, ..., 55, generate the unit ideal, so do their powers s, ..., s;'. Say that
>oris? =1, withr; in A. Then 8 =Y r;s? 5 is in A. O

We prove Theorem .3.T]in a slightly more general form. Let A be a finite type domain with fraction field
K, and let L be a finite field extension of K. The integral closure of A in L is the set of all elements of L that
are integral over A.

4.3.6. Theorem. Let A be a finite type domain with fraction field K of characteristic zero, and let L be a finite
field extension of K. The integral closure of A in L is a finite A-module.
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The proof that we give at the end of the section makes use of the characteristic zero hypothesis, though the
theorem is true for a finite-type algebra over any field k.

4.3.7. Lemma. Let A be a normal noetherian domain with fraction field K of characteristic zero, and let L
be an algebraic field extension of K. An element 3 of L is integral over A if and only if the monic irreducible
polynomial f for 8 over K has coefficients in A.

proof. If the monic polynomial f has coefficients in A, then [ is integral over A. Suppose that 3 is integral over
A. We may replace L by any field extension that contains 3. So we may replace L by K[3]. Then L becomes a
finite extension of K, which embeds into a Galois extension. So we may replace L by a Galois extension. Let
G be its Galois group, and let {1, . .., 8} be the G-orbit of /3, with 5 = ;. Then the irreducible polynomial
for 5 over K is

(4.3.8) fl@)y=(@-=p51) - (x—05)

If 3 is integral over A, all elements of the orbit are integral over A. Therefore the coefficients of f, which are
elemetary symmetric functions in the orbit, are integral over A, and since A is normal, they are in A. So f has
coefficients in A. O

4.3.9. Example. A nonconstant polynomial f(x,y) in the polynomial ring A = Clz, y] is said to be square-

free if it has no nonconstant square factors.

Let f be an irreducible, square-free polynomial, and let B denote the integral extension Clx, y, w]/(w? — f)

of A. Let K and L be the fraction fields of A and B, respectively. Then L is a Galois extension of K. Its
Galois group is generated by the automorphism o of order 2 that is defined by o(w) = —w. The elements of
L have the form 8 = a + bw with a,b in K, and () = ' = a — bw.

We show that B is the integral closure of A in L. Suppose that 5 = a + bw is integral over A, with a, b in
K. If b = 0, then 8 = a. This is an element of A and therefore it is in B. If b # 0, the irreducible polynomial
for 8 will be

(x — B)(x — ') = 2* — 2ax + (a* —b*f)

Because [ is integral over A, 2a and a?—b? f will be in A, and because the characteristic isn’t 2, this is true if
and only if @ and b? f are in A. We write b = u/v, with u, v relatively prime elements of A, so b2 f = u?f /v?.
If v weren’t a constant, then since u and v are relatively prime and f is square-free, v? couldn’t be canceled
from u2f. So b%f wouldn’t be in A. From b?f in A we can conclude that v is a constant and that b is in A.
Summing up, [ is integral if and only if a and b are in A, which means that 3 is in B. U

(4.3.10) trace

Let L be a finite field extension of a field K and let 3 be an element of . When L is viewed as a K -vector
space, multiplication by 3 becomes a K -linear operator L — L. The trace of that operator will be denoted by
trace(8). The trace is a K-linear map L — K.

4.3.11. Lemma. Let L/K be a field extension of degree n, let K' = K[| be the extension of K generated
by an element B of L, and let f(z) = " + ayz" ' + - - - + a,. be the irreducible polynomial of 3 over K. Say
that [L: K'] = d, so that n = rd. Then trace(8) = —day. If 3 is an element of K, then trace(3) = np.

proof. The set (1, 3,...,3" 1) is a K-basis for K’. On this basis, the matrix of multiplication by /3 has the
form illustrated below for the case r = 3. Its trace is —a;.

0 0 —as
M=[1 0 —a
0 1 —aq

Next, if (u1, ..., uq) is a basis for L over K', the set {3'u;}, withi =0,...,r—landj =1,...,d, willbe a
basis for L over K. When this basis is listed in the order

(Ul,’U,lﬂ, ceey ulﬁn_l;u27u2ﬂ7 e u26n_1; e ;U/d,’u/dﬁ, "'7udﬁn_1)a

the matrix of multiplication by 3 will be made up of d blocks of the matrix M. (]
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4.3.12. Corollary. Let A be a normal domain with fraction field K and let L be a finite field extension of K.
If an element 3 of L is integral over A, its trace is in A.

This follows from Lemmas [4.3.7]and £.3.11] O

4.3.13. Lemma. Let A be a normal noetherian domain with fraction field K of characteristic zero, and let L
be a finite field extension of K. The form Lx L — K defined by {(«, 8) = trace(af) is K -bilinear, symmetric,
and nondegenerate. If o and 3 are integral over A, then («, ) is an element of A.

proof. The form is obviously symmetric, and it is K -bilinear because multiplication is K -bilinear and trace is
K-linear. A form is nondegenerate if its nullspace is zero, which means that when « is a nonzero element, there
is an element 3 such that (o, 3) # 0. Given o # 0, let 3 = L. Then («, 8) = trace(1), which, according
to , is the degree [L: K] of the field extension. It is here that the hypothesis on the characteristic of K
enters: The degree is a nonzero element of K.

If o and (3 are integral over A, so is their product a8 (4.2.1)) (ii). Corollary |4.3.12|shows that («, 8) is an
element of A. O

4.3.14. Lemma. Let A be a domain with fraction field K, let L be a field extension of K, and let B be an
element of L that is algebraic over K. If B is a root of a polynomial f = anx™ + ap_12"" 1 4+ -+ + ag with
a; in A, then v = a, 3 is integral over A.

proof. One finds a monic polynomial with root v by substituting = = y/a,, into f and multiplying by a”~1. O

(4.3.15) proof of Theorem (4.3.1

Let A be a finite-type domain with fraction field K of characteristic zero, and let L be a finite field extension
of K. We are to show that the integral closure of A in L is a finite A-module.

Step 1. We may assume that A is normal.

We use the Noether Normalization Theorem to write A as a finite module over a polynomial subalgebra
R =Clyi,...,ya4) Let F be the fraction field of R. Then K and L are finite extensions of F'. An element of
L will be integral over A if and only if it is integral over R (iv). So the integral closure of A in L is the
same as the integral closure of R in L. We replace A by the normal algebra R and K by F.

Step 2. Bounding the integral extension.

We assume that A is normal. Let (vy,...,v,) be a K-basis for L whose elements are integral over A.
Such a basis exists because we can multiply any element of L by a nonzero element of K to make it integral

(Lemma[43.14). Let

(4.3.16) T:L— K"

be the map defined by T'(8) = ((v1,8),...,(vs,3)), where { , ) is the bilinear form defined in Lemma
This map is K-linear. If (v;, 8) = 0 for all 7, then because (vy, ..., v,) is a basis for L, (v, 8) = 0 for
every v in L, and since the form is nondegenerate, 5 = 0. Therefore 7 is injective.

Let B be the integral closure of A in L. We are to show that B is a finite A-moule. The basis elements v;
are in B, and if 8 is in B, then v;8 will be in B too. Then (v;, ) = trace(v;b) will be in A, and T'(8) will be
in A™ (#.3.13). When we restrict 7' to B, we obtain an injective map B — A" that we denote by Tj. Since
T is K-linear, Tj is A-linear. It is an injective homomorphism of A-modules that maps B isomorphically to
its image, a submodule of A™. Since A is noetherian, every submodule of the finite A-module A™ is a finite
module. Therefore the image of T is a finite A-module, and so is the isomorphic module B. (]

4.4 Geometry of Integral Morphisms

The main geometric properties of an integral morphism of affine varieties are summarized by the theorems in
this section, which show that the geometry is as nice as could be expected.
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Let Y — X be an integral morphism of affine varieties. We say that a closed subvariety D of Y lies over
a closed subvariety C' of X if C'is the image of D.

Similarly, if A — B is an integral extension of finite-type domains, we say that a prime ideal ) of B lies
over a prime ideal P of A if P is the contraction ) N A. For example, if Y — X is the morphism of affine
varieties that corresponds to a homomorphism A — B, and if a point y of Y has image x in X, then y lies
over x, and the maximal ideal m,, lies over the maximal ideal m,,.

4.4.1. Lemma. Let A C B be an integral extension of finite-type domains, and let J be an ideal of B. If J
isn’t the zero ideal of B, then its contraction J N A isn’t the zero ideal of A.

proof. An element /3 of J will be a root of a monic polynomial with coefficients in A, say 8%+ aj,_1 81+
-+4ag. If ag = 0, then since B is a domain, we can cancel  from this polynomial. So we may assume that
ag # 0. The equation shows that ag is in J as well as in A. O

4.4.2. Proposition. Let A — B be an integral extension of finite-type domains, and let X = Spec A and
Y = SpecB.

(i) Let P and Q be prime ideals of A and B, respectively, let C' be the locus of zeros of P in X, and let D be
the locus of zeros of Q in'Y. Then Q lies over P if and only if D lies over C.

(ii) Let Q and Q' be prime ideals of B that lie over the same prime ideal P of A. If Q C @', then Q = Q'.
Therefore, if D' and D are closed subvarieties of Y that lie over the same subvariety C of X and if D' C D,
then D' = D.

proof. (i) Let A= A/Pand B = B/Q. Then D = Spec B and C = Spec A. Suppose that Q lies over P. So
P = @Q N A. Then the canonical map A — B will be injective, and B will be generated as A-module by the
residues of a set of generators of the finite A-module B. So B is an integral extension of A, and the map from
D to C is surjective (Proposition , which means that D lies over C'. Conversely, if D lies over C, the
morphism D — C is surjective. Then the canonical map A — B is injective, and this implies that QN A = P.

(11) Suppose that @ and @’ lie over P and that Q C Q'. With A = A/P and B = B / Q as before, let
Q Q'/Q. Because B is an integral extension of A, B is an mtegral extension of A, and Q is an ideal of B.
Since @ and Q' lie over P, QN A = Q' N A = P. We show that Q N A = 0. Let x be an element of Q NA,
and let x € Q' and z € A be elements whose residues in Ql are equal to z. Then the residue of x — z is zero,
0 — zisin Q and in Q. Therefore zisin Q' N A = P,andz = 0. So Q N A = 0. Lemmal4.4.1|tells us
that Q' = 0. Therefore Q' = Q. O

4.4.3. Theorem. LetY — X be an integral morphism of affine varieties.
(i) The fibres of u have bounded cardinality.

(ii) The image of a closed subset of Y is a closed subset of X, and the image of a closed subvariety of Y is a
closed subvariety of X.

(iii) The set of closed subvarieties of Y that lie over a closed subvariety C of X is finite and nonempty.

proof. Let Y = Spec B and X = Spec A, and let A C B be the extension that corresponds to the integral
morphism u.

(i) (bounding the fibres) Lety, ..., y, be points of Y in the fibre over a point = of X. For each ¢, the contraction
of the maximal ideal m,, of B at y; is the maximal ideal m, of A at x. To bound the number r, we use the
Chinese Remainder Theorem to show that B cannot be spanned as A-module by fewer than r elements.

Let k; and k denote the residue fields B /my,, and A/m,, respectively, all of these fields being isomorphic
to C. Let B = k1 X - -+ X k,. We form a diagram of algebra homomorphisms

B —* BrCr

I I

A—— k=C

which we interpret as a diagram of A-modules. The minimal number of generators of the A-module B is equal
to its dimension as k-module, which is r. The Chinese Remainder Theorem asserts that ¢ is surjective, so B
cannot be spanned by fewer than r elements.
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(ii) (the image of a closed set is closed) The image of an irreducible set via a continuous map is irreducible
(2.2.15)(ii), so it suffices to show that the image of a closed subvariety is closed. Let D be the closed subvariety
of Y that corresponds to a prime ideal @ of B, and let P = () N A be its contraction, which is a prime ideal
of A. Let C be the variety of zeros of P in X. The coordinate algebras of the affine varieties D and C' are
B = B/Qand A = A/P, respectively, and B is an integral extension of A because B is an integral extension
of A @.2.5). The map D — C'is surjective. Therefore C' is the image of D.

(iii) (subvarieties that lie over a closed subvariety) Let C be a closed subvariety of X. Its inverse image
Z =wu"!'Cisclosedin Y. Itis the union of finitely many irreducible closed sets, say Z = D} U---U D} Part
() tells us that the image C of D; is a closed subvariety of X. Since w is surjective, C' = | J C/, and since C
is irreducible, C = C for at least one ¢. For such an 4, D; lies over C'. Next, any subvariety D that lies over
C will be contained in the inverse image Z, and therefore contained in D/ for some 4. Proposition (ii)
shows that D = D;. Therefore the varieties that lie over C' are among the varieties D). O

4.5 Dimension

Every variety has a dimension, and as is true for the dimension of a vector space, the dimension is important,
though it is a very coarse measure. We give two definitions of dimension of a variety X here. However, the
proof that they are equivalent requires work.

The first definition is that the dimension of a variety X is the transcendence degree of its function field.
For now, we’ll refer to this as the ¢t-dimension of X.

4.5.1. Corollary. Let Y — X be an integral morphism of affine varieties. The t-dimensions of X andY are
equal. O

The second definition of dimension is the combinatorial dimension, which is defined as follows: A chain
of closed subvarieties of a variety X is a strictly decreasing sequence

“4.5.2) Co>Ci>Cy>--->Cy

of closed subvarieties. The length of this chain is defined to be k. The chain is maximal if it cannot be
lengthened by inserting another closed subvariety, which means that Cy = X, that there is no closed subvariety
C with C; > C > C;14 for i < k, and that C}, is a point.

For example, P"* > P"~1 > ... > P9, where [P’ is the linear subspace of points (zo, ..., 7;,0, ...,0), is a
maximal chain in projective space X = P, and its length is n.

Theorem [.5.6] below shows that all maximal chains of closed subvarieties have the same length. The
combinatorial dimension of X is the length of a maximal chain. We’ll refer to it as the c-dimenson. Theorem
[4.5.6] also shows that the t-dimension and the c-dimension of a variety are equal. When we have proved that
theorem, we will refer to the t-dimension and to the c-dimension simply as the dimension, and we will use the
two definitions interchangeably.

In an affine variety Spec A, a strictly decreasing chain (4.5.2) of closed subvarieties corresponds to a
strictly increasing chain

(4.5.3) Ph< P <Py<- - <Py,

of prime ideals of A of length k, a prime chain. This prime chain is maximal if it cannot be lengthened
by inserting another prime ideal, which means that P is the zero ideal, that there is no prime ideal P with
P, < P < P41 fori < k, and that P}, is a maximal ideal. The c-dimension of a finite-type domain A is the
length k of a maximal chain of prime ideals. If X = Spec A, then the c-dimensions of X and of A are
equal.

The next theorem is the basic tool for studying dimension. Though the statement is intuitively plausible,
its proof isn’t easy. It is a subtle theorem. We have put the proof at the end of this section.

4.5.4. Krull’s Principal Ideal Theorem. Let X = Spec A be an affine variety of t-dimension d, and let V'
be the zero locus in X of a nonzero element « of A. Every irreducible component of V' has t-dimension d—1.
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4.5.5. Corollary. Let X = Spec A be an affine variety of t-dimension d, and let C' be a component of the zero
locus of a nonzero element o of A. Then among proper closed subvarieties, C' maximal. There is no closed
subvariety D such that C < D < X.

proof. Let C' < D < X be closed subvarieties of X = Spec A. Some nonzero element 3 of A will vanish on
D. Then D will be a subvariety of the zero locus of 3, so by Krull’s Theorem, its t-dimension will be at most
d — 1. Similarly, if D = Spec B, some nonzero element of B will vanish on C, so the t-dimension of C' will
be at most d—2, and C isn’t the zero locus of a nonzero element of A. O

4.5.6. Theorem. Let X be a variety of t-dimension d. All chains of closed subvarieties of X have length at
most d, and all maximal chains have length d. Therefore the c-dimension and the t-dimension of X are equal.

proof. We do the case that X is affine. Induction allows us to assume that the theorem is true for an affine
variety whose t-dimension is less than d. Let X = Spec A be an affine variety of t-dimension d, and let
Co > Cq > --- > ()}, be a chain of closed subvarieties of X. We must show that k& < d and that £ = d if
the chain is maximal. We may insert closed subvarieties into the chain where possible, so we may assume that
Co = X. Next, C1, being a proper closed subset of X, is contained in the zero locus Z of a nonzero element
« of A, and it will be contained in an irreducible component C' of Z. If C' > (', we insert C' into the chain,
to reduce ourselves to the case that C'; is a component of the zero locus of a. By Krull’s Theorem, C has
t-dimension d — 1. By Corollary [4.5.5]C is a maximal proper closed subvariety, and induction applies to the
chain C7 > --- > C}, of closed subvarieties of C';. The length of that chain, which is k¥ — 1 is less than d — 1,
and it is equal to d — 1 if the chain is maximal. Therefore the chain {C;} has length at most n, and it has length
n if it is a maximal chain.

Theorem [.5.6|for an arbitrary variety follows from the next lemma. d

4.5.7. Lemma. Let X' be an open subvariety of a variety X. There is a bijective correspondence between
chains Cy > --- > CY, of closed subvarieties of X such that Cy;N X' # 0 and chains Cjy > - -- > C}. of closed
subvarieties of X'. Given the chain {C;} in X, the chain {C/} in X' is defined by C} = C; N X'. Given a
chain C} in X', the corresponding chain in X consists of the closures C; in X of the varieties C..

proof. Suppose given a chain C; and that Cy, N X’ # (). Then for every 1, the intersection C] = C; N X' is a
dense open subset of the irreducible closed set C; . So the closure of C is C;, and since C; > Cj11,
it is also true that Cj > C; . Therefore Cj > --- > (] is a chain of closed subsets of X'. Conversely, if
Cy > --- > C) is achain in X', the closures in X form a chain in X. (See.) O

From now on, we use the word dimension to denote either the t-dimension or the c-dimension, and we
denote the dimension of a variety by dim X.

4.5.8. Examples. (i) The polynomial algebra C[xy, . .., ;] in n+1 variables has dimension n+1. The chain
of prime ideals

4.5.9) 0< (330) < (330,.731) < < (xo,. .. ,In)

is a maximal prime chain. When the irrelevant ideal (), ..., 2,,) is removed from this chain, it corresponds to
a maximal chain
P >Pprts > PO

of closed subvarieties of projective space P, which has dimension n.

(ii) The maximal chains of closed subvarieties of P2 have the form P? > C' > p, where C is a plane curve and

p is a point. O
If (.5.2) is a maximal chain in X, then

(4.5.10) Ci>Cy > >Cf

will be a maximal chain in the variety C;. So when X has dimension k, the dimension of Cy WiE be k—1.
Similarly, let Py < Py < --- < P be amaximal chain of prime ideals in a finite-type domain A, let A = A/ Py
and let P; denote the image P;/P; of P; in A, for j > 1. Then

6:?1 <?2<"'<Pk

will be a maximal prime chain in A, and therefore the dimension of the domain A will be k—1.
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4.5.11. Corollary. Let X be a variety.

(i) If X' is an open subvariety of a X, then dim X' = dim X.

(i) If Y — X is an integral morphism of varieties, then dimY = dim X.

(iii) If Y is a proper closed subvariety of X, then dimY < dim X. O

One more term: A closed subvariety C of a variety X has codimension 1 if C' < X and if dimC =
dim X — 1. If so, there is no closed set C with C' < C' < X. A prime ideal P of a noetherian domain has
codimension 1 if it isn’t the zero ideal, and if there is no prime ideal P with (0) < P <P.

In the polynomial algebra C[z1, ..., z,], the prime ideals of codimension 1 are the principal ideals gener-
ated by irreducible polynomials.

(4.5.12) proof of Krull’s Theorem
4.5.13. Lemma. Krull’s Theorem is true when X is an affine space.

proof. Here A is the polynomial ring Clz1, ..., x,]. Let g - - - ag, be the factorization of the polynomial « into
irreducible polynomials, and let V; be the zero locus of «;. The irreducible factors generate prime ideals of A,
so V; are irreducible, and V is their union. We replace « by the irreducible factor ov; whose zero locus is V7,
and we relabel that factor as f(z). Then V becomes the zero locus V' (f), and the coordinate algebra of V' is
A = A/Af. We may assume that f is monic in x4 . Then A is an integral extension of C[x1, ..., 74_1].
Its t-dimension is d—1. (|

4.5.14. Lemma. To prove Krull’s Theorem, it suffices to prove it when the coordinate ring A is normal and
the zero locus of « is irreducible.

proof. We are given an affine variety X = Spec A of t-dimension d, a nonzero element « of A, and an
irreducible component C' of the zero locus of . We are to show that the t-dimension of C'is d — 1.

Let A% be the normalization of A and let X# = Spec A%. There is an integral morphism X# — X. The
t-dimensions of X7 and X are the same. Let VV/ and V be the zero loci of o in X# and in X, respectively.
Then V' is the inverse image of V in X#. The map V' — V is surjective because the integral morphism
X7 — X is surjective.

Let Dy,--- , Dy be the irreducible components of V', and let C; be the image of D; in X. The closed
sets C; are irreducible @ (ii), and their union is V. So at least one C; is equal to the chosen component
C. Let D be a component of V' whose image is C. The map D — C is also an integral morphism, so the
t-dimensions of D and C are equal. We may therefore replace X and C by X# and D, respectively. Hence
we may assume that A is normal.

Next, suppose that the zero locus of « has the form C' U A, where C is the chosen irreducible component,
and A is the union of the other components. We choose an element s of A that is identically zero on A but
not identically zero on C'. Inverting s eliminates all points of A, but X, N C' = Cs won’t be empty. If X is
normal, so is X, (#.3.4) (ii). Since localization doesn’t change t-dimension, we may replace X and C by X
and Cj, respectively. O

We go to the proof of Krull’s Theorem now. According to Lemma[4.5.14] we may assume that X = Spec A
is a normal affine variety of dimension d, and that the zero locus of « is an irreducible closed set C'. We are to
prove that the t-dimension of C'is d — 1.

We apply the Noether Normalization Theorem. Let X — S be an integral morphism to an affine space
S = Spec R of dimension d, where R is a polynomial ring Cluy, ..., ug].

Let K and F be the function fields of X and S, respectively, and let f(¢) be the monic irreducible poly-
nomial for o over F'. The coefficients of f are in R. Let oy, ..., . be the roots of f in a splitting field L of
f over K, with a; = «, let B be the integral closure of A in L, and let Y = Spec B. Then Y is an integral
extension of X and of S. We have morphisms

y L x -5 9

Let w denote the composed morphism Y % S. The Galois group G of L/F operates on B and on Y. and S
is the space Y/G of G-orbits.
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The coefficients of f(t) = (t—aq) - - - (t—a,) are G-invariant. They are elements of R, and the constant
term is the product oy - - - cv,.. Let’s denote that product by .

4.5.15. Lemma. Let Z be the zero locus of 3 in S. The morphism X —— S maps C' surjectively to Z.

C —— 7

Lo

Y X S

Assuming the lemma, Z will be irreducible because C' is irreducible. Lemma [.5.13] shows that the t-
dimension of Z is d — 1. Therefore the t-dimension of C is at least d — 1, and since it is a closed subset of X,
it is less than d. So the t-dimension of C'is equal to d — 1. O

proof of Lemmad.5.13| The element /3 of R defines functions on S, X, and Y, the functions on X and Y being
obtained from the function on .S by composition with the maps v and w, respectively. We denote all of those
functions by 3. If y is a point of Y, z = uwy and s = wy, then S(y) = S(z) = B(s). Similarly, « defines
functions on X and on Y that we denote by a: a(y) = a(z).

Let = be a point of C. So a(x) = 0. Since « divides 5, S(x) = 0. If s is the image of x in 5, then
B(s) = B(x), so B(s) = 0. This shows that s is a point of Z. Therefore Z contains the image of C'.

For the other inclusion, let z be a point of Z. Then 5(z) = 0. Let y be a point of Y such that wy = z.
So B(y) = 0. The fibre of Y over z is the G-orbit of y, and since 5 is a function on S, it vanishes at every
point of that orbit. Since 8 = ay - - - g, «;(y) = 0 for some i. Let o be an element of G such that «; = ca.
We recall that [ca](y) = a(yo). So a(yo) = 0. We replace y by yo. Then a(y) = 0, and it is still true that
wy = z. Let x = uy. Because a(y) = 0, it is also true that a(z) = 0. So « is a point of C'. The image of x in
S'is v = wy = z. Since z can be any point of Z, the map C' — Z is surjective. O

4.6 Chevalley’s Finiteness Theorem

(4.6.1) finite morphisms

The concept of an integral morphism of affine varieties was defined in Section A morphism Y — X
of affine varieties X = Spec A and Y = Spec B is a finite morphism if the homomorphism A “s B
that corresponds to v makes B into a finite A-module. We extend these definitions to varieties that aren’t
necessarily affine here.

As has been noted, the difference between a finite morphism and an integral morphism of affine varieties
is that for a finite morphism, the homomorphism ¢ needn’t be injective. If w is a finite morphism and ¢ is
injective, B will be an integral extension of A, and u will be an integral morphism.

By the restriction of a morphism Y — X to an open subset X’ of X, we mean the induced morphism
Y’ — X', where Y’ is the inverse image of X’.

4.6.2. Definition. A morphism of varieties Y —— X is a finite morphism if X can be covered by affine
open subsets X * such that the restriction of u to each X is a finite morphism of affine varieties, as defined in
. Similarly, a morphism w is an integral morphism if X can be covered by affine open sets X’ to which
the restriction of u is an integral morphism of affine varieties.

4.6.3. Corollary. An integral morphism is a finite morphism. The composition of finite morphisms is a finite
morphism. The inclusion of a closed subvariety into a variety is a finite morphism. O

When X is affine, Definitions[d.2.4|and[4.6.2] both apply. Proposition4.6.5] which is below, shows that the
two definitions are equivalent. Unfortunately, the proof is rather long. Such verifications are a cost of doing
business with affine open sets.

4.6.4. Lemma. (i) Ler A -2 B be a homomorphism of finite-type domains that makes B into a finite A-
module, and let s be a nonzero element of A. Then By is a finite Az-module.

(i) Using Definition the restriction of a finite (or an integral) morphismY —— X to an open subset of
a variety X is a finite (or an integral) morphism.
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proof. (i) Here B, denotes the localization of B as an A-module. This localization can also be obtained
by localizing the algebra B with respect to the image s’ = ¢(s), provided that s” isn’t zero. If s’ is zero,
then s annihilates B, so B; = 0. In either case, a set of elements that spans B as A-module will span B as
Ag-module, so B is a finite A;-module.

(i) Say that X is covered by affine open sets to which the restriction of  is a finite morphism. The localiza-
tions of these open sets form a basis for the Zariski topology on X, so X’ can be covered by such localizations.
Part (i) shows that the restriction of u to X’ is a finite morphism. O

4.6.5. Proposition. Let Y — X be a finite (or an integral) morphism, as defined in , and let X, be
an affine open subset of X. The restriction of u to X1 is a finite (or an integral) morphism of affine varieties,

as defined in [#.2.4).

The proof isn’t difficult proof, but there are several things to check. We’ve put it at the end of the section.

Let P denote the projective space P™ with coordinates yq, ..., Y, and let X be a variety. For next theorem,
we abbreviate the notation for a product of a variety V' with X, writing
V=VxX
4.6.6. Chevalley’s Finiteness Theorem. Letr X be a variety, let Y be a closed subvariety of the product

P = Px X, and let 7 denote the projection Y — X, respectively. If all fibres of m are finite sets, then m is a
finite morphism.

Y —— P

1

X ——X
4.6.7. Example. Let A = CJ[t], and let X = Spec A. The zero locus of the polynomial y3 + v + y3 +
tyoy1y2 = 0 in P2 x X can be regarded as a family of plane cubic curves, parametrized by X. O

4.6.8. Corollary. LetY be a projective variety, and let Y —— X be a morphism. If the fibres of T are finite

sets, then  is a finite morphism. If 'Y is a projective curve, every nonconstant morphismY — X is a finite
morphism.

proof. This follows from the theorem when one replaces Y by the graph of 7 in Y =Y xX . The graph is
isomorphic to Y. If Y is a closed subvariety of P, the graph will be a closed subvariety of P (Proposition
3.5.24). When Y is a curve, the fibres of any nonconstant morphism Y~ — X will be finite sets. O

We need two lemmas for the proof of Chevalley’s Theorem.

Let yo, ..., Yn be coordinates in P = P", and let Alyo, ..., y»] be the algebra of polynomials in y with
coefficients in A. In analogy for terminology used with complex polynomials, we say that a polynomial with
coefficients in A is homogeneous if it is homogeneous as a polynomial in y, and that an ideal of A[y] that can
be generated by homogeneous polynomials is a homogeneous ideal.

4.6.9. Lemma. (i) Ler X = Spec A be an affine variety, and let Y be a nonempty subset of P =PxX. The
ideal T of elements of Aly] that vanish at every point of Y is a homogeneous radical ideal. If Y is a closed
subvariety of P, then 1L is a prime ideal.

(i) If the zero locus of a homogeneous ideal T of Aly] is empty, then T contains a power of the irrelevant ideal

M = (y07 "'7y7l) OfA[y]

proof. This is similar to Proposition and Let yo, ..., yn be coordinates in PP, let A be the affine
space of dimension n + 1 with those coordinates, and let o bethe origin in A. Let Z be the inverse image of
Y in A = Ax X, and let Z’ be the complement of 6 = 0x X in Z. Because Y isn’t empty, Z is the ideal of
all polynomials that vanish on Z’, and also the ideal of all polynomials that vanish on Z. Proposition
shows that 7 is a prime ideal.

If the zero locus of Z in P x X is empty, the zero locus in A will be contained in 0. The radical of Z will
contain the ideal of ¢'in A[y], which is the irrelevant ideal. O
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4.6.10. Lemma. Let A be a finite type domain, let I be an ideal of the polynomial algebra Aluy, ..., uy], and
let k be a positive integer. Suppose that, for eachi = 1, ..., n, there is a polynomial g;(u1, ..., u,) of degree at
most k—1, with coefficients in A, such that u¥ — g;(u) is in I. Then B = Alu]/I is a finite A-module.

proof. Let’s denote the residue of u; in B by the same symbol u;. In B, we will have u¥ = g;(u). Any
monomial m of degree at least nk in uy, ..., u,, will be divisible by u¥ for at least one i. Then in B, m is
equal to a polynomial in w1, ..., u, of degree less than d, with coefficients in A. It follows by induction that
the monomials in ug, ..., u,, of degree at most nk—1 span B as an A-module. O

proof of Chevelley’s Finiteness Theorem. This is Schelter’s proof.
We are given a closed subvariety Y of P=PxX , with P = IP", and the fibres of Y over X are finite sets. We
are to prove that the projection ¥ — X is a finite morphism. By induction, we may assume that the theorem
is true when P is a projective space of dimension n—1.

We may suppose that X is affine, say X = Spec A (see Definition4.6.2).

Case 1. There is a hyperplane H in IP such that Y is disjoint from H=HxXinP.

This is the main case. We adjust coordinates g, ..., ¥, in P so that H is the hyperplane at infinity {yo = 0}.
Because Y is disjoint from H, it is a subset of the affine variety U0 =1xX, U° being the standard open
set {yo # 0} in P. Since Y is irreducible and closed in P, it is a closed subvariety of the affine variety U°. So
Y is affine.

Let P be the homogeneous prime ideal of A[y] whose zero set in Pis Y. The ideal Q whose zero set is H
is the principal ideal of A[y]generated by yo. Let Z = P+ Q. A homogeneous polynomial of degree k in Z
has the form f(y) + yog(y), where f is a homogeneous polynomial in P of degree k, and g is a homogeneous
polynomial of degree k—1 in Afy].

By hypothesis, Y N H is empty. Therefore the sum Z = P+ Q contains a power of the irrelevant ideal
M = (yo,...,yn) of Aly]. Say that M* C Z. Then y¥ is in Z, for i = 0,...,n. So there are polynomial
equations

(4.6.11) y¥ = fily) + vogi(y)

with f; in P homogeneous, of degree k and g; in A[y] homogeneous, of degree k—1.

Recall that Y is a closed subset of U°. Its (nonhomogenous) ideal P in A[u] can be obtained by dehomog-
enizing the ideal P. We dehomogenize the equations @.6.11). With u; = y;/yo, let F; = fi(1,u1, ..., up)
and G; = g;(1,uq,...,up). Then F; = uf — G;. The important points are that F; is in the ideal P, and that
the degree of G; is at most k—1. Lemma4.6.10|shows that Y — X is a finite morphism. This completes the
proof of Case 1.

Case 2. the general case.

We have taken care of the case in which there exists a hyperplane H such that Y is disjoint from H. The
next lemma shows that we can cover the given variety X by open subsets to which this special case applies.
Then Lemma4.6.4) and Proposition 4.6.5]apply, to complete the proof. O

4.6.12. Lemma. Let Y be a closed subvariety of P x X, and suppose that the projection Y — X has
finite fibres. Suppose also that Chevalley’s Theorem has been proved for closed subvarieties of P~ x X. For
every point p of X, there is an open neighborhood X' of p in X, and there is a hyperplane H in P such that
Y’ = n~ X’ is disjoint from H.

proof. Let p be a point of X, and let ¢ = (g1, ..., g,-) be the finite set of points of Y making up the fibre over p.
We project ¢ from Px X to [P, obtaining a finite set ¢ = (qz, ..., ¢,-) of points of P, and we choose a hyperplane
H in P that avoids this finite set. Then H avoids the fibre q. Let Z denote the closed set Y N H. Because the
fibres of Y over X are finite, so are the fibres of Z over X. By hypothesis, Chevalley’s Theorem is true for
subvarieties of P"~! x X, and H is isomorphic to P"~! x X. It follows that, for every component Z’ of Z,
the morphism Z’ — X is a finite morphism, and therefore its image is closed in X (Theorem . Thus the
image of Z is a closed subset of X that doesn’t contain p. Its complement is the required neighborhood of p.[J

(4.6.13)  proof of Proposition |4.6.5
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We’ll do the case of an integral morphism. The case of a finite morphism is similar.

Step 1. Preliminaries.

We are given a morphism Y — X, and we are given an affine covering { X’} of X, such that, for every
1, the restriction u' of u to X" is an integral morphism of affine varieties. We are to show that the restriction
of u to any affine open subset X; of X is an integral morphism of affine varieties.

The affine open set X is covered by the affine open sets X{ = X; N X*. For every i, the restriction u} of
u to X1 can also be obtained by restricting u’. So u! are integral morphisms (ii). We may replace X
by X;. Since the localizations of an affine variety form a basis for its Zariski topology, we see that what is to
be proved is this:

A morphism Y —%+ X is given in which X = Spec A is affine. There are elements s, ..., s, that generate
the unit ideal of A such that, for every 4, the inverse image Yiof Xt =X s, 1s affine, and its coordinate algebra
B; is an integral extension of the localized algebra A; = A,,. We must show that Y is affine, and that its
coordinate algebra B is an integral A-module.

Step 2. The algebra of regular functions on 'Y .

We assume that X is affine, X = Spec A. Let B be the algebra of regular functions on Y. If Y is affine,
B will be its coordinate algebra, and Y will be its spectrum. Here Y isn’t assumed to be affine. By hypothesis,
the inverse image Y of X" is the spectrum of an integral A;-algebra B;. Then B and B; are subalgebras of
the function field of Y. Since the localizations X* cover X, the affine varieties Y* cover Y. A function is
regular on Y if and only if it is regular on each Y, and therefore

B=()B;

Step 3. The coordinate algebra B; of Y7 is a localization of B.

Denoting the images in B of the elements s; by the same symbols, we show that B; is the localization
Bls; ']. The localization X" is the set of points of X at which s; # 0. The inverse image Y of X" is the set
of points of Y at which s; # 0, and the affine variety Y7 N Y™ is the set of points of Y7 at which s; # 0. So
the coordinate algebra of Y7 N Y is the localization B;[s; ']. Then

Bl 2 N(Bl51) C N8l 2 Bl 2 B
The explanation of the numbered equalities is as follows:

(1) A rational function 3 is in B; [sj_l] if s? B is in B; for large n, and we can use the same exponent n for all
i =1,...,7. Then B is in ), (Bl-[sj_l]) if and only if 573 isin (); B; = B. So Bisin [ (Bi[sj_l]) if and
only if it is in B[s;'].

(2) Bi[s;'] = Bj[s; '] because YA NY' =Y  NY7,

(3),(4) Since s; is one of the elements s;, (), B;[s; '] C B; [sj_l] For all 4, B; C Bj[s;']. Moreover, s,
doesn’t vanish on Y7. It is a unit in B;, and therefore B; [53_1] = B;. Then B; C (", B;[s; '] C B; [sj_l] =
B;.

Step 4. B is an integral extension of A.

With A; = A,, as before, we choose a finite set (b1, ...,b,) of elements of B that generates the A;-
module B; for every i. We can do this because we can span the finite A;-module B; = Bls; 1] by finitely
many elements of B, and there are finitely many algebras B;. We show that the set (by, ..., b,,) generates the
A-module B.

Let z be an element of B. Then z is in B;, so it is a combination of (b1, ..., b, ) with coefficients in A;. For
large k, s¥x will be a combination of those elements with coefficients in A, say

k,._
s;x = g a;,,by
v

with a;,, in A. We can use the same exponent k for all i. The powers s¥ generate the unit ideal. With

Sorsk =1,
T = g risfﬂc: E T E a;i by,
7 v

%
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The right side is a combination of by, ..., b, with coefficients in A.

Step 5. Y is affine.

The algebra B of regular functions on Y is a finite-type domain because it is a finite module over the finite-
type domain A. Let Y = Spec B. The fact that B is the algebra of regular functions on Y gives us a morphism

Y —<5 Y (Corollary . Restricting to the open subset X7 of X gives us a morphism Y7 <, ¥ in which
since B; = B[s}l], Y7 and Y are both equal to Spec Bj;. Therefore €/ is an isomorphism. Corollary 3.5.13
(i) shows that € is an isomorphism. So Y is affine, and by Step 4, its coordinate algebra B is an integra
A-module. O

(4.6.14) affine double planes

Let A be the polynomial algebra C[z, y] and let X be the affine plane Spec A. An affine double plane is alocus
of the form w? = f(x,v) in the affine 3-space with coordinates w, z,y, where f is a square-free polynomial
in =,y (see Example 4.3.9). The affine double plane is Y = Spec B, where B = Clw, z,y]/(w? — f), and

the inclusion A C B gives us an integral morphism ¥ — X.

Let w, z,y denote the variables and also their residues in B. As in Example d.3.9] B is a normal domain
of dimension two, and a free A-module with basis (1, w). It has an automorphism o of order 2, defined by
ola+bw) = a — bw.

The fibres of Y over X are the o-orbits in Y. If f(xg,yo) # 0, the fibre over the point xo of X consists
of two points, and if f(xg,yo) = 0, it consists of one point. The reason that Y is called a double plane is that
most points of the plane X are covered by two points of Y. The branch locus of the covering, which will be
denoted by A, is the (possibly reducible) curve { f = 0} in X. The fibres over the branch points, the points of
A, are single points.

If a closed subvariety D of Y lies over a curve C in X, then D’ = Do lies over C' too. The curves D and
D’ may be equal or not. They will have dimension one, and we call them curves too. Let g be the polynomial
whose zero locus in X is C. Krull’s Theorem tells us that the components of the zero locus of g in Y have
dimension one. If a point g of Y lies over a point p of C, then ¢ and go are the only points of Y lying over p.
One of them will be in D, the other in D’. So the inverse image of C'is D U D’. There are no isolated points
in the inverse image, and there is no room for another curve.

Thus if D = D’, then D is the only curve lying over C. Otherwise, there will be two curves D and D’ that
lie over C'. In that case, we say that C splitsin Y.

A curve C' in the plane X will be the zero set of a principal prime ideal P of the polynomial algebra A,
and if D lies over C, it will be the zero set of a prime ideal @) of B that lies over P (4.4.2) (i).

4.6.15. Example. Let f(z,y) = 2% + y? — 1. The double plane Y : {w? = 22 +y%—1} is an affine quadric
in A3. Its branch locus A in the affine plane X is the curve {z?+y% = 1}.

The line C; : {y = 0} in X meets the branch locus A transversally at the points (z,y) = (£1,0), and
when we set y = 0 in the equation for Y, we obtain w? = x? — 1. The polynomial w? — 22 +1 is irreducible,
so y generates a prime ideal of B. On the other hand, the line C5 : {y = 1} is tangent to A at the point (0, 1),
and it splits. When we set y = 1 in the equation for Y, we obtain w? = z2. The locus {w? = 2} is the union
of the two lines {w = x} and {w = —x} that lie over C;. The prime ideals of B that correspond to these lines
aren’t principal ideals.

Cy

O

This example illustrates a general fact: A curve that intersects the branch locus transversally doesn’t split.
We explain this now.
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(4.6.16) local analysis

Suppose that a plane curve C : {g = 0} and the branch locus A : {f = 0} of a double plane w? = f meet at
a point p. We adjust coordinates so that p becomes the origin (0, 0), and we write

f(z,y) = Zaijxiyj = a107 + aq1y + agz® + - -

Since p is a point of A, the constant coefficient of f is zero. If the two linear coefficients aren’t both zero, p
will be a smooth point of A, and the tangent line to A at p will be the line {a19x + ag1y = 0}. Similarly,
writing g(z,y) = > b;;x'y?, the tangent line to C, if p is a smooth point, is the line {b1oz + bo1y = 0}.

Let’s suppose that the two tangent lines are defined and distinct, i.e., that A and C intersect transversally at
p. We change coordinates once more, to make the tangent lines the coordinate axes. After adjusting by scalar
factors, the polynomials f and g will have the form

flz,y) =x+u(r,y) and g(z,y) =y+v(z,y),

where » and v are polynomials all of whose terms have degree at least 2.

Let X; = SpecClzy,y;] be another affine plane. The map X; — X defined by the substitution 21 =
x + u(z,y), y1 =y + v(x,y) is invertible analytically near the origin, because the Jacobian matrix

8(-1717 yl)
(4.6.17) (3(%3/)) (0,0)

at the origin p is the identity matrix. When we make that substitution, A becomes the locus {z; = 0} and C'
becomes the locus {y; = 0}. In this local analytic coordinate system, the equation w? = f that defines the
double plane becomes w? = x1. When we restrict it to C by setting y; = 0, 21 becomes a local coordinate
function on C'. The restriction of the equation remains w? = z1. So the inverse image Z of C can’t be split
analytically. Therefore it doesn’t split algebraically either.

4.6.18. Corollary. A curve that intersects the branch locus transversally at some point doesn’t split. O

This isn’t a complete analysis. When a curve C' and the branch locus A are tangent at every point of in-
tersection, C' may split or not, and which possibility occurs cannot be decided locally in most cases. However,
one case in which a local analysis suffices to decide splitting is that C'is a line. Let ¢ be a coordinate in a line
L, so that L ~ Spec C|[t]. The restriction of the polynomial f to L will give us a polynomial f(t) in t. A root
of f corresponds to an intersection of L with A, and a multiple root corresponds to an intersection at which L
and A are tangent, or at which A is singular. The line L will split if and only if the polynomial w? — f factors,
i.e., if and only if f is a square in C[t]. This will be true if and only if every root of f has even multiplicity —
if and only if the intersection multiplicity of L and A at every intersection point is even.

(4.6.19) projective double planes
Let X be the projective plane P2, with coordinates xq, 21, 22. A projective double plane is a locus of the form
(4.6.20) y? = f(wo, 1, 72)

where f is a square-free, homogeneous polynomial of even degree 2d. To regard as a homogeneous
equation, we must assign weight d to the variable y (see [I.7.9). Then, since we have weighted variables,
we must work in a weighted projective space WP with coordinates xq, z1, 2, y, where x; have weight 1
and y has weight d. A point of this weighted space is represented by a nonzero vector (zg, x1, z2,y), with
the equivalence relation that, for all nonzero \, (zo,x1,22,y) ~ (Azo, \x1, Ax2, A%y). The points of the
projective double plane Y are the points of WP that solve the equation (4.6.20).

The projection WP — X that sends (zg,21,Z2,y) to (xg,21,22) is defined at all points except at
(0,0,0,1). If (x,y) solves and if z = 0, then y = 0 too. So (0,0,0,1) isn’t a point of Y. The
projection is defined at all points of Y. The fibre of the morphism Y — X over a point x consists of points
(z,y) and (z, —y), which will be equal if and only if x lies on the branch locus of the double plane, the (pos-
sibly reducible) plane curve A : {f = 0} in X. The map o : (z,y) ~» (z, —y) is an automorphism of Y, and
points of X correspond bijectively to o-orbits in Y.

117



Since the double plane Y is embedded into a weighted projective space, it isn’t presented to us as a pro-
jective variety in the usual sense. However, it can be embedded into a projective space in the following way:
The projective plane X can be embedded by a Veronese embedding of higher order, using as coordinates the
monomials m = (mj,ms,...) of degree d in the variables z. This embeds X into a projective space PV
where N = (d;rz) — 1. When we add a coordinate y of weight d, we obtain an embedding of the weighted
projective space WP into PV *1, that sends the point (x, ) to (m,y). The double plane can be realized as a
projective variety by this embedding.

When Y — X is a projective double plane, then, as with affine double planes, a curve C' in X may split in
Y or not. If C' has a transversal intersection with the branch locus A, it will not split. On the other hand, if L
is a line all of whose intersections with the branch locus A have even multiplicity, it will split.

4.6.21. Corollary. Let Y be a generic quartic double plane — a double plane whose branch locus A is a
generic quartic curve. The lines that split in Y are the bitangent lines to A. O

(4.6.22) homogenizing an affine double plane

To construct a projective double plane from an affine double plane, we write the affine double plane as
(4.6.23) w? = F(uy,uz)

for some nonhomogeneous polynomial F'. We suppose that F' has even degree 2d, and we homogenize F’,
setting u; = x;/x9. We multiply both sides of this equation by x2¢ and set y = zdw. This produces an

equation of the form (4.6.20), where y has weight d and f is the homogenization of F'.
d

If F has odd degree 2d — 1, one needs to multiply I’ by x in order to make the substitution y = zfw
permissible. When one does this, the line at infinity {z( = 0} becomes a part of the branch locus.

(4.6.24) cubic surfaces and quartic double planes

Let P2 be the ordinary projective 3-space with coordinates xg, 21, 2, z of weight one, and let X be be the
projective plane P? with coordinates x¢, z1, 2o. We consider the projection P> — X that sends (z, 2) to x.
It is defined at all points except at the center of projection ¢ = (0,0, 0, 1), and its fibres are the lines through
q, with q omitted.

Let S be a cubic surface in P, the locus of zeros of an irreducible homogeneous cubic polynomial g(z, z),
and suppose that ¢ is a point of S. Then the coefficient of 2 in g will be zero, so g will be quadratic in z:
g(z,2) = az® + bz + ¢, where a, b, ¢ are homogeneous polynomials in z, of degrees 1, 2, 3, respectively. The
defining equation g for .S becomes

(4.6.25) az? +bz+c=0

The discriminant f(x) = b% — 4ac of g with respect to z is a homogeneous polynomial of degree 4 in z. Let
Y be the projective double plane

(4.6.26) y? = b* — dac

in which the variable y is given weight 2.
The quadratic formula solves for z in terms of the chosen square root y of the disriminant, wherever a # 0:
_ =b+y

(4.6.27) z= or y=2az+b
2a

The formula y = 2az + b remains correct when a = 0, and it defines amap S — Y. The inverse map Y — Z
given by the quadratic formula (4.6.27) is defined wherever a # 0. So the cubic surface and the quartic double
plane are isomorphic except above the line {a = 0} in X.
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4.6.28. Lemma. The discriminants of the cubic polynomials az?> + bz + c include every homogeneous
quartic polynomial f(x) whose divisor of zeros A : {f = 0} has at least one bitangent line. Therefore the
discriminants of those polynomials form a dense subset of the space of quartic polynomials.

proof. Let f be a quartic polynomial whose zero locus has a bitangent line ¢y. Then {; splits in the double
plane y? = f. Say that /; is the zero set of a homogeneous linear polynomial a(z). Then f is congruent to
a square, modulo a. There is a homogeneous quadratic polynomial b(x) such that f = b2, modulo a. Then
f = b? — 4ac for some homogeneous cubic polynomial ¢(z). The cubic polynomial g(x,z) = az? + bz + ¢
has discriminant f.

Conversely, let g(z,z) = az? + bz + ¢ be given. The intersections of the line £y : {a = 0} with
the discriminant divisor A : {b*> — 4ac = 0} are the solutions of the equations @ = 0 and b = 0. Since
the quadratic polynomial b appears as a square in the discriminant, the intersections of ¢, and A have even
multiplicity. So ¢y will be a bitangent, provided that the locus b = 0 meets ¢y two distinct points, and this will
be true when g is generic. O

From now on, we suppose that S is a generic cubic surface. With a suitable change of coordinates any
point of a generic surface can become the point g, so we may suppose that both S and ¢ are generic. Then S
contains only finitely many lines, and those lines won’t contain ¢ (3.7.19).

Let £ be a line in the plane X, say the locus of zeros of the linear equation roxg + r121 + roxe = 0. The
same equation defines a plane H in ]P’i’y that contains ¢, and the intersection S N H is a cubic curve C' in the
plane H. The curve C'is the inverse image of £ in .S.

4.6.29. Lemma. Let S be a generic cubic surface. The lines L contained in S correspond bijectively to lines
{in X whose inverse images C' are reducible cubic curves. If C' is reducible, it will be the union L U Q) of a
line and a conic.

proof. Aline L in S won’t contain ¢g. So its image in X will be a line, call it £, and L will be a component of
its inverse image. Therefore C' will be reducible.

Let ¢ be a line in X. At least one irreducible component of its inverse image C' will contain ¢, and there
are no lines through ¢. So if the cubic C' is reducible, it will be the union of a conic and a line L, and ¢ will be
a point of the conic. Then L will be one of the lines in S. ]

Let {y be the line {a = 0}. The points of Y that lie above £ are the points (x,y) such that a = 0 and
y = £b. Also, let Hy denote the inverse image of ¢y in P3, the plane {a = 0}, and let C) be the cubic curve
S N Hy. The points of Cy are the solutions in P of the equations a = 0 and bz + ¢ = 0.

4.6.30. Lemma. The curve Cy is irreducible.

proof. We may adjust coordinates so that a becomes the linear polynomial zo. When we restrict to Hy by
setting ¢y = 0 in the polynomial bz 4 ¢, we obtain a polynomial bz +¢, where b and ¢ are generic homogeneous
polynomials in x1, zo of degrees 2 and 3, respectively. Such a polynomial is irreducible, and Cj is the locus
bz +¢=0. O

4.6.31. Theorem. A generic cubic surface S in P contains precisely 27 lines.

This theorem follows from next lemma, which relates the 27 lines in the generic cubic surface S to the 28
bitangents of its generic quartic discriminant curve A.

4.6.32. Lemma. Let S be a generic cubic surface az* + bz + c = 0, and suppose that coordinates are chosen
so that ¢ = (0,0,0,1) is a generic point of S. Let A : {b?> — 4dac = 0} be the quartic discriminant curve, and
let Y be the double plane y*> = b*> — 4ac.

(i) If a line L is contained in S, its image in X will be a bitangent to the quartic curve A. Distinct lines in S
have distinct images in X.

(ii) The line £y : {a = 0} is a bitangent. It isn’t the image of a line in S.
(iii) Every bitangent { except { is the image of a line in S.

proof. Let L be aline in S, let £ be its image in X, and let C be the inverse image of £ in S. Lemma tells
us that C' is the union of the line L and a conic. So L is the only line in .S that has ¢ as its image. The quadratic

119



formula shows that, because the inverse image C' of ¢ is reducible, ¢ splits in the double plane Y too,
and therefore / is a bitangent to . This proves (i). Moreover, Lemma [4.6.30| shows that ¢ cannot be the line
£y. This proves (ii). If a bitangent ¢ is distinct from ¢y, the map Y — Z given by the quadratic formula is
defined except at the finite set £ N £y. Since ¢ splits in Y, its inverse image C in .S will be reducible, and one
component of C is a line in .S. This proves (iii). U
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4.7 Exercises

4.7.1. Aring A is said to have the descending chain condition (dcc) if every strictly decreasing chain of ideals
Iy > I > --- is finite. Let A be a finite type C-algebra. Prove

(i) A has dcc if and only if it is a finite dimensional complex vector space.
(ii) If A has dcc, then it has finitely many maximal ideals, and every prime ideal is maximal.
(iii) If a finite-type algebra A has finitely many maximal ideals, then it has dcc.

(iv) Suppose that A has dcc, let M be an arbitrary A-module, and let I denote the intersection of the maximal
ideals of A. If IM = M, then M = 0. (This might be called the Stong Nakayama Lemma. The usual
Nakayama Lemma requires that M be finitely generated.)

4.7.2. Let A C B be noetherian domains and suppose that B is a finite A-module. Prove that A is a field if
and only if B is a field.

4.7.3. Prove this alternate form of the Nullstellensatz: Let k be a field, and let B be a domain that is a finitely
generated k-algebra. If B is a field, then [B : k] < co.

4.7.4. Let o be an element of a domain A, and let 5 = o~ !. Prove that if 3 is integral over A, then it is an
element of A.

4.7.5. Let X and Y be varieties with the same function field K. Show that there are nonempty open subsets
X’ of X and and Y’ of Y that are isomorphic.

4.7.6. Let A C B be finite type domains with fraction fields K C L of characteristic zero, and let Y — X be
the corresponding morphism of affine varieties. Prove the following:

(i) There is a nonzero element s in A such that A is integrally closed.

(i) There is a nonzero element s in A such that By is a finite module over a polynomial ring A[y1, ..., Ya-

(iii) Suppose that L is a finite extension of K of degree d. There is a nonzero element s € A such that all fibres
of the morphism Y — X consist of d points.

4.7.7. Verify directly that the prime chain is maximal.
4.7.8. Prove that P* > P"~! > ... > PV is a maximal chain of closed subsets of P".

4.7.9. Let G be a finite group of automorphisms of a normal, finite-type domain B, let A be the algebra of
invariant elements of B, and let Y — X be the integral morphism of varieties corresponding to the inclusion
A C B. Prove that there is a bijective correspondence between G-orbits of closed subvarieties of Y and closed
subvarieties of X.

4.7.10. Let A C B be an extension of finite-type domains such that B is a finite A-module, and let P be a
prime ideal of A. Prove that the number of prime ideals of B that lie over P is at most equal to the degree
[L : K] of the field extension.

4.7.11. LetY = Spec B be an affine variety, let D, ..., D,, be distinct closed subvarieties of Y and let V'
be a closed subset of Y. Assume that V" doesn’t contain any of the sets D;. Prove that there is an element /3 of
B that vanishes on V, but isn’t identically zero on any D;.

4.7.12. LetY —% X be a surjective morphism of affine varieties, and let K and L be the function fields of
X and Y, respectively. Show that if dimY = dim X, there is a nonempty open subset X’ of X such that all
fibres over points of X’ have the same order n, and that n = [L : K].

4.7.13. Work out the proof of Chevalley’s Theorem in the case that Y is a closed subset of P! x X that doesn’t
meet the locus at infinity H = HxX. (InP*, H will be the point at infinity.) Do this in the following way: Say
that X = Spec A. Let By = A[u], By = A[v], and Byy = Alu, v], where u = y; /yo and v = u™l = yo/y1.
Then U° = U°x X = Spec By, U! = Spec By, and U°' = Spec Bo;. Let P; be the ideal of B that
defines Y N U 1. and let P, be the analogous ideal of By. In By, the ideal of H is the principal ideal v Bj.
Since Y N H =, P, + vB; is the unit ideal of B;. Write out what this means. Then go over to the open set
UY, and show that the residue of  in the coordinate algebra By /P of Y is the root of a monic polynomial.

4.7.14. Prove that a nonconstant morphism from a curve Y to P! is a finite morphism without appealing to

xmapcurvefin  Chevalley’s Theorem.
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4.7.15. Let A be a finite type domain, R = C[t], X = SpecA, and Y = SpecR. Let o : A — Rbea
homomorphism whose image is not C, and let 7 : Y — X be the corresponding morphism.

(i) Show that R is a finite A-module.
(ii) Show that the image of 7 is a closed subset of X.

4.7.16. Prove that every nonconstant morphism P? — P? is a finite morphism.

4717. LetY - X be a finite morphism of curves, and let K and L be the function fields of X and Y,
respectively, and suppose [L : K] = n. Prove that all fibres have order at most n, and all but finitely many
fibres of Y over X have order equal to n.

4.7.18. Prove that a variety of any dimension contains no isolated point.

4.7.19. Let X be the subset obtained by deleting the origin from A2. Prove that there is no injective morphism
from an affine variety Y to A? whose image is X.

4.7.20. With reference to Example4.6.15] show that the prime ideal that corresponds to the line w = x is not
a principal ideal.

4.7.21. Identify the double plane 3> = f(z) defined as in (4.6.19) by a quadratic polynomial f.

4.7.22. A double line is alocus y? = f(x¢, 1) analogous to a double plane (4.6.20), where f is a homoge-
neous polynomial of even degree 2d with distinct roots. Determine the genus of a double line.

4.7.23. LetY — X be an affine double plane, and let D be a curve in Y whose image in X is a plane curve
C. Say that C has degree d. Define deg D to be d if C splits and 2d if C remains prime or ramifies. Most
curves C in X will intersect the branch locus transversally. Therefore they won’t split. On the other hand,
most curves D in Y will not be symmetric with respect to the automorphism o of Y over X. Then there will
be two curves D, Do lying over C, so C will split. Try to explain this curious point.

4.7.24. Let Y be a closed subvariety of projective space P™ with coordinates y = (yo, ..., yn), let d be a
positive integer, and let w = (wy, ..., wy) be homogeneous polynomials in y of degree d with no common
zeros on Y. Prove that sending a point ¢ of Y to (wo(q), ..., wx(q)) defines a finite morphism Y —%5 P*,
Consider the case that w; are linear polynomials first.

4.7.25. Let M be a module over a finite-type domain A, and let & be an element of A. Prove that for all but
finitely many complex numbers c, scalar multiplication by s = o — ¢ is an injective map M —— M.

4.7.26. Prove that every nonconstant morphism P? — P? is a finite morphism. Do this by showing that the
fibres cannot have positive dimension.
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Exercises

In this chapter, we will see how algebraic curves control the geometry of higher dimensional varieties.

5.1 Local Rings

A local ring is a noetherian ring that contains just one maximal ideal. We make a few comments about local
rings here though we will be interested mainly in some special ones, the discrete valuation rings that are
discussed below.

Let R be a local ring with maximal ideal M. An element of R that isn’t in M/ isn’t in any maximal ideal,
so it is a unit. The quotient R/M is a field called the residue field of R. For us, the residue field will often be
the field of complex numbers.

The Nakayama Lemma[4.1.3has a useful version for local rings:

5.1.1. Local Nakayama Lemma. Ler R be a local ring with maximal ideal M and residue field k = R/M.
Let V be a finite R-module, and let V. =V/MV. If V =0, then V = 0.

proof. If V.= 0, then V' = MV The usual Nakayama Lemma tells us that M/ contains an element z such that
1—z annihilates V. Then 1—z isn’tin M, so it is a unit. A unit annihilates V', and therefore V' = 0. O

5.1.2. Corollary. Let R be a local ring. A set z1, ..., zy, of elements generates M if the set of its residues
generates M /M?. O

A local domain R with maximal ideal M has dimension one if it contains only two prime ideals, (0) and
M, and they are distinct. We describe the normal local domains of dimension one in this section. They are the
discrete valuation rings that are defined below.

5.1.3. A note about the overused word local.

A property is true locally on a topological space X if every point p of X has an open neighborhood U such
that the property is true on U.

In these notes, the words localize and localization refer to the process of adjoining inverses. The (simple)
localizations of an affine variety X = Spec A form a basis for the topology on X. If some property is true
locally on X, one can cover X by localizations on which the property is true. There will be elements s1, ..., i
of A that generate the unit ideal, such that the property is true on each of the localizations X, .

Let A be a noetherian domain. An A-module M is locally free if there are elements s1, ..., Si that generate
the unit ideal of A, such that M, is a free A,,-module for each i. The free modules M, will have equal rank
That rank is the rank of the locally free A-module M.
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An ideal I of a domain A is locally principal if A contains elements s; that generate the unit ideal, such
that I, is a principal ideal of A, for every i. A locally principal ideal is a locally free module of rank one. [

(5.1.4) Valuations

Let K be a field. A discrete valuation v on K is a surjective homomorphism
(5.1.5) K* 5zt v(ab) =v(a)+ v(b)

from the multiplicative group K * of nonzero elements of K to the additive group Z* of integers, such that, if
a, b are elements of K, and if a, b and a+b aren’t zero, then

v(a+b) > min{v(a),v(b)}

The word “discrete” refers to the fact that ZT is given the discrete topology. Other valuations exist. They
are interesting, but less important, and we won’t use them. To simplify terminology, we refer to a discrete
valuation simply as a valuation.

Let r be a positive integer. If v is a valuation and if v(a) = r, then r is the order of zero of a, and if
v(a) = —r, then r is the order of pole of a, with respect to the valuation.

The valuation ring R associated to a valuation v on a field K is the subring of K of elements with non-
negative value, together with zero:

(5.1.6) R={aeK*|v(a)>0} U {0}

Valuation rings are usually called “discrete valuation rings”, but we are dropping the word discrete.

5.1.7. Proposition. Valuations of the field C(t) of rational functions in one variable correspond bijectively
to points of the projective line. The valuation ring that corresponds to a point p # oo is the ring of rational
functions that are regular at p..

beginning of the proof. Let a be a complex number. To define the valuation v that corresponds to the point
p : {t = a} of P!, we write a nonzero polynomial f as (¢t — a)*h, where t — a doesn’t divide h, and we
define, v(f) = k. Then we define v(f/g) = v(f) — v(g). You will be able to check that, with this definition,
v becomes a valuation whose valuation ring is the algebra of functions that are regular at p (2.6.I). This
valuation ring is called the local ring of P! at p (see below). Its elements are rational functions in ¢
whose denominators aren’t divisible by ¢+ — a. The valuation that corresponds to the point of P! at infinity is
obtained by working with ¢! in place of ¢.

The proof that these are all of the valuations of C(¢) will be given at the end of the section.

5.1.8. Proposition. Ler v be a valuation on a field K, and let x be a nonzero element of K with value
v(z) =1

(i) The valuation ring R of v is a normal local domain of dimension one. Its maximal ideal M is the principal
ideal xR. The elements of M are the elements of K with positive value, together with zero:

M ={a e K*|v(a) >0} U{0}

(ii) The units of R are the elements of K> with value zero. Every nonzero element z of K has the form
k

z = x"u, where u is a unit and k, is an integer, not necessarily positive.

(iii) The proper R-submodules of K are the sets x* R, where k is an integer. The set x* R consists of zero
and the elements of K* with value > k. The sets ¥ R with k > 0 are the nonzero ideals of R. They are the
powers of the maximal ideal, and they are principal ideals.

(iv) There is no ring properly between R and K: If R is a ring and if R C R' C K, then either R = R' or
R =K.
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proof. We prove (i) last.

(ii) Since v is a homomorphism, v(u~!) = — v(u) for any nonzero u in K. Then u and u~! are both in R,
i.e., u is a unit of R, if and only if v(u) is zero. If z is a nonzero element of K with v(z) = k, then u = 27 %2

has value zero, so v is a unit, and z = zFu.

(iii) It follows from (ii) that 2* R consists of the elements of K of value at least k. Suppose that a nonzero
R-submodule J of K contains an element z with value k. Then z = uz* and w is a unit, so J contains z*.
Therefore J contains z*R. If 2R < J, then J contains an element with value < k. So if k is the smallest
integer such .J contains an element with value k, then J = z*R. If there is no minimum value among the

elements of .J, then J contains z* R for every k,and J = K.

(iv) This follows from (iii). The ring R’ will be a nonzero R-submodule of K. If R’ < K, then R’ = z*R
for some k, and if R C R/, then k£ < 0. But 2" R isn’t closed under multiplication when £ < 0. So the only
possibility is that k = 0 and R = R’.

(i) Part (iii) tells us that R is a principal ideal domain, so it is noetherian. Its maximal ideal is M = xR. It
also follows from (iii) that M and {0} are the only prime ideals of R. So R is a local ring of dimension 1. If
the normalization of R were larger than R, then according to (iv), it would be equal to K, and ="' would be
integral over R. There would be a polynomial relation =" + a;2~("~1) + ... + @, = 0 with a; in R. When
one multiplies this relation by =", one sees that 1 would be a multiple of . Then = would be a unit, which it
is not, because its value is 1. (]

5.1.9. Theorem.
(i) A local domain whose maximal ideal is a nonzero principal ideal is a valuation ring.
(i) A normal local domain of dimension 1 is a valuation ring.

proof. (i) Let R be a local domain whose maximal ideal M is a nonzero principal ideal, say M = xR, with
x # 0, and let y be a nonzero element of R. The integers k such that 2* divides y are bounded . Let 2*
be the largest power that divides y. Then y = uz®, where k > 0 and w is in R but not in M. So u is a unit.
Every nonzero element z of the fraction field /i of R will have the form z = uz” where w is a unit and r is
an integer, possibly negative. This is shown by writing the numerator and denominator of a fraction in such a
form.

The valuation whose valuation ring is R is defined by v(z) = r when z = wz” with u a unit, as above.
Suppose that z; = w;x" for i = 1,2, where wu; are units and 0 < r; < ro, then 27 + 20 = az™ and
a = uj + ugx™ "™ is an element of R. Therefore v(z; + z2) > r1 = min{v(z1),v(22)}. We also have
v(z122) = v(z1) + v(22). Thus v is a surjective homomorphism. The requirements for a valuation are
satisfied.

(ii) The fact that a valuation ring is a normal, one-dimensional local ring is Proposition (i). We show that
a normal local domain R of dimension 1 is a valuation ring by showing that its maximal ideal M is a principal
ideal. The proof is tricky.

Let z be a nonzero element of M. Because R is a local ring of dimension 1, M is the only prime ideal
that contains z, so M is the radical of the principal ideal zR, and M" C zR if r is large (Proposition 2.5.TT).
Let 7 be the smallest integer such that A" C zR. Then there is an element y in M"~! but not in zR, such
that yM C zR. We restate this by saying that w = y/z isn’t in R, but wM C R. Since M is an ideal,
multiplication by an element of R carries wM to wM. So wM is an ideal. Since M is the maximal ideal of
the local ring R, either wM C M, or wM = R. If wM C M, Corollary 4.1.4] (iii) shows that w is integral
over R. This can’t happen because R is normal and w isn’t in R. Therefore wM = R and M = w~!R. This
implies that w~! is in R and that M is a principal ideal. (]

(5.1.10) the local ring at a point

Let m be the maximal ideal at a point p of an affine variety X = Spec A, and let S be the complement of
m in A, a multiplicative system . The prime ideals P of the localization AS~! are the extensions of the
prime ideals Q) of A that are contained inm: P = QS~! . Since m is a maximal ideal of A, mS~!is
the unique maximal ideal of AS~1, and AS~! is a local ring. This ring is called the local ring of A at p . It is
often denoted by A,,. Lemma@ shows that, if A is a normal domain, then A, is normal.
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For example, let X = Spec A be the affine line, A = C[t], and let p be the point t = 0. The local ring A,
is the ring whose elements are fractions of polynomials f(t)/g(t) with g(0) # 0.

The local ring at a point p of any variety, not necessarily affine, is the the local ring at p of an affine open
neighborhood of p.

5.1.11. Corollary. Let X = Spec A be an affine variety.
(i) The coordinate algebra A is the intersection of the local rings A, at the points of X.

A=) 4

peX

(ii) The coordinate algebra A is normal if and only if all of its local rings A,, are normal. [l

5.1.12. Proposition. Let M be a finite module over a finite-type domain A, and let p be a point of Spec A. If
the localized module M), [2.7.11)) is a free A,-module, then there is an element s, not in my, such that M, is a
free Ag-module.

This is an example of the general principle (2.7.13). O

5.1.13. Note. The notations A, and A,, are traditional, though inconsistent. In the localization A, the element
s is the one that is inverted, while in the local ring A,,, the elements of the maximal ideal m,, are the ones that
are not inverted. O

Completion of the proof of Proposition We show that every valuation v of the function field C(t) of P*
corresponds to a point of P*.

Let R be the valuation ring of v. If v(¢) < 0, we replace ¢ by ¢t !, so that v(¢) > 0. Then ¢ is an element
of R, and therefore C[t] C R. The maximal ideal M of R isn’t zero. It contains a nonzero fraction g/h of
polynomials in ¢. The denominator A is in R, so M also contains the numerator g. Since M is a prime ideal,
it contains a monic irreducible factor of g of the form ¢ — a for some complex number a. The local ring Ry of
CJt] at the point t = a is a valuation ring that is obtained by inverting ¢ — ¢ for all ¢ # a. When ¢ # a, the
scalar c—a isn’tin M, so t—c won’t be in M. Since R is a local ring, t—c will be a unit of R for all ¢ # a. So
Ry is contained in R (5.1.7). There is no ring properly containing Ry except K (5.1.8), so Ry = R. O

5.2 Smooth Curves

A curve is a variety of dimension 1. The proper closed subsets of a curve are finite subsets.

A point p of a curve X is a smooth point if the local ring at p is a valuation ring. Otherwise, it is a singular
point. A curve X is smooth if all of its points are smooth. If X = Spec A is a smooth affine curve, the prime
ideals different from the zero ideal are maximal.

If v,, is the valuation associated to a smooth point p of a curve X and r is a positive integer, a rational
function v on X has a zero of order r > 0 at p if v,(a)) = r, and it has a pole of order r at p if v,(a) = —r.

5.2.1. Note. Suppose that an affine curve X is the spectrum of an algebra A = Clz, ...,2,]/P, and that
f1, .-, fr generate the prime ideal P. A better definition of a smooth point p is that the rank of the Jacobian

matrix J = gf: L evaluated at p, is n—1. However, we will use the Jacobian matrix just once, at the end of this
J
section. For us, the definition given above is more convenient. O

5.2.2. Lemma. (i) An affine curve X is smooth if and only if its coordinate algebra is a normal domain.

(ii) A curve has finitely many singular points.

(iii) The normalization X# of a curve X is a smooth curve, and the finite morphism X# — X becomes an
isomorphism when singular points of X and their inverse images are deleted.

proof. (i) This follows from Theorem [5.1.9]and Proposition

(ii) The statement that a morphism is an isomorphism can be verified locally, so we may replace X by an affine
open subset Spec A. Let A# be the normalization of A. There is a nonzero element s in A such that sA# C A
(Corollary|4.3.2). Then A, = A%. So Spec A,, which is the complement of a finite set in Spec A, is smooth.

(iii) This is rather obvious. O
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5.2.3. Example. We go back to Example of a nodal cubic curve C' = Spec A, A = Clu,v]/(v?—u3—u?)

and its normalization B = C[z], the map A —~ B being defined by ¢(u) = > — 1 and ¢(v) = 2 — z. The
normalization C# = Spec B is the affine line. The curve C has a node at the origin p, and the fibre of C#
over p is the point pair x = 1. Let’s denote the points x = 1 and x = —1 by ¢; and ¢, respectively, and
the polynomial 22 — 1 by w. The open subset U = C — {p} is the localization Spec A,,. Its inverse image in
C# is the complement of the point pair ¢, g2, which is the localization W = Spec B,,. Since o(u) =w, ¢
extends to a map A, — By, and its inverse maps x to v/u. So W and U are isomorphic. t

5.2.4. Proposition. Let X be a smooth curve with function field K. Every point of P" with values in K
defines a morphism X — P™.

proof. A point («y, ..., a, ) of P™ with values in K determines a morphism X — P™ if it is a good point, which
means that, for every (ordinary) point p of X, there is an index j such that the functions ¢; /«; are regular at
pfori=0,...n @ This will be true when j is chosen so that the order of zero of «; at p is the minimal
integer among the orders of zero of «; of the elements «; that aren’t zero. (]

The next example shows that this proposition doesn’t extend to varieties X of dimension greater than one.

5.2.5. Example. Let X' be the complement of the origin in the affine plane X = SpecClz,y], and let
K = C(xz,y) be the function field of X. The vector (x,y) defines a good point of X’ with values in K, and
therefore a morphism X’ — P!, If (, ) were a good point of X then, according to Proposition at least
one of the two rational functions z/y or y/x would be regular at the origin ¢ = (0, 0). This isn’t the case, so
(x,y) isn’t a good point of X. The morphism X’ — P! doesn’t extend to X. O

5.2.6. Proposition. Let X = Spec A be a smooth affine curve with function field K.
(i) The local rings of X are the valuation rings of K that contain A.
(ii) The maximal ideals of A are locally principal.

In fact, it follows from Proposition[5.2.9)below that every ideal of A is locally principal.

proof of the proposition. Since A is a normal domain of dimension one, its local rings are valuation rings that
contain A (see Theorem[5.1.9]and Corollary [5.1.T1). Let R be a valuation ring of K that contains A, let v be
the associated valuation, and let M be the maximal ideal of R. The intersection M N A is a prime ideal of
A. Since A has dimension 1, the zero ideal is the only prime ideal of A that isn’t a maximal ideal. We can
multiply by an element of R to clear the denominator of an element of A, obtaining an element of A while
staying in M. So M N A isn’t the zero ideal. It is the maximal ideal m,, of A at a point p of X. The elements of
A that aren’t in m,, aren’t in M either. They are invertible in R. So the local ring A,, at p, which is a valuation
ring, is contained in R, and is therefore equal to R (5.1.8) (iii). Since M is a principal ideal, so is the maximal
ideal of A, and m,, is locally principal. (]

5.2.7. Proposition. Let X' and X be smooth curves with the same function field K.

(i) A morphism X' L> X that is compatible with the identity map on the function field K maps X' isomor-
phically to an open subvariety of X.

(ii) If X is projective, X' is isomorphic to an open subvariety of X.

(iii) If X’ and X are both projective, they are isomorphic.

(iv) If X is projective, every valuation ring of K is the local ring at a point of X.

proof. (i) Let p be the image in X of a point p’ of X, let U be an affine open neighborhood of p in X, and let
V be an affine open neighborhood of p’ in X’ that is contained in the inverse image of U. Say U = Spec A
and V = Spec B. The morphism f gives us an injective homomorphism A — B, and since p’ maps to p, this
homomorphism extends to an inclusion of local rings A, C B,. These local rings are valuation rings with
the same field of fractions, so they are equal. Since B is a finite-type algebra, there is an element s in A, with
s(p’) # 0, such that A; = B,. Then the open subsets Spec A; of X and Spec B, of X’ are equal. Since p’ is
arbitrary, X’ is a union of open subvarieties of X. So X’ is an open subvariety of X.

(ii) The projective embedding X C P" is defined by a point (ay, ..., @, ) with values in K. That point also
defines a morphism X’ — P™. If f(xg,...,z,) = 0 is a set of defining equations of X in P, then f(a) = 0
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in K. Therefore f vanishes on X’ too. So the image of X’ is contained in the zero locus of f, which is X.
Then (i) shows that X’ is an open subvariety of X.

(iii) This follows from (ii).

(iv) The local rings of X are normal and they have dimension one. They are valuation rings of K. Let R be
any valuation ring of K, let v be the corresponding valuation, and let 5 = (S, ..., 3,,) be the point with values
in K that defines the projective embedding of X. When we order the coordinates so that v(fy) is minimal, the
ratios ; = f3;/Bo will be in R. The coordinate algebra A of the affine variety X° = X N T is generated by
the coordinate functions 1, ..., ¥, s0 A9 C R. Prposition tells us that R is the local ring of X at some
point. U

5.2.8. Proposition. Let p be a smooth point of an affine curve X = Spec A, and let m and v be the maximal

ideal and valuation, respectively, at p. The valuation ring R of v is the local ring of A at p.

(i) The power m* consists of the elements of A whose values are at least k. If I is an ideal of A whose radical

is m, then I = m* for some k > 0.
(ii) For every n > 0, the algebras A/m™ and R/M™ are isomorphic to the truncated polynomial ring

Clel/ (™).

proof. (i) Proposition [5.1.8] tells us that the nonzero ideals of R are powers of its maximal ideal M, and that
M* is the set of elements of R with value > k. Let I be an ideal of A whose radical is m, and let k be the
minimal value v(z) of the nonzero elements = of I. We will show that T is the set of all elements of A with

value > k, i.e., that I = M* N A. Since we can apply the same reasoning to m”, it will follow that I = m*.

We must show that if an element y of A has value v(y) > k, then it is in I. We choose an element z of T
with value k. Then z divides y in R, say y/x = w, with w in R. The element w will be a fraction a/s with s
and a in A and s not in m: sy = ax. The element s will vanish at a finite set of points ¢, ..., ¢,-, but not at p.
We choose an element z of A that vanishes at p but not at any of the points ¢, ..., ¢-. Then z is in m, and since
the radical of I is m, some power of z is in /. We replace z by such a power, so that z is in /. By our choice,
z and s have no common zeros in X. They generate the unit ideal of A, say 1 = ¢s + dz with c and d in A.
Then y = csy + dzy = cax + dzy. Since x and z are in I, so is ¥.

(ii) Since p is a smooth point, the local ring of A at p is the valuation ring R. Let s be an element of A that
isn’t in m. Then A/m* will be isomorphic to A,/m¥. We may localize A by inverting s. Doing so suitably,
we may suppose that m is a principal ideal, say tA. Then m* = t*A. Let B be the subring C[t] of A, and let
By = B/tFB, Ay, = A/m* = A/tFA, and R}, = R/M* = R/t*R. The quotients t* ! B/t* B, m*~1 /mk,
and M*~!/M* are one-dimensional vector spaces. So the map labelled g;_; in the diagram below is bijective.

0 — *1B/t*B By Bey —— 0
gk—lJ/ fki fk—lJ/
0 — s mh/mh A A, — 0

By induction on k, we may assume that the map fy 1 is bijective, and then fy, is bijective too. So By, and Ay,
are isomorphic. Analogous reasoning shows that B, and Ry, are isomorphic.

5.2.9. Proposition. Let X = Spec A be a smooth affine curve. Every nonzero ideal I of A is a product of
powers of maximal ideals: I = m{" ---m".

proof. Let I be a nonzero ideal of A. Because X has dimension one, the locus of zeros of [ is a finite set
{p1, ..., pr. }. Therefore the radical of I is the intersection m;N - - - N my, of the maximal ideals my at p;, which,
by the Chinese Remainder Theorem, is the product ideal m; - - - my, Moreover, I contains a power of that
product, say 7 D m{¥ ---m¥. Let J = m{ ... m{. The quotient algebra A/.J is the product By x - - - X By,
with B; = A/mév, and A/I is a quotient of A/.J. Propositiontells us that A/ is a product A;x- - -x Ay,
where A; is a quotient of B;. By Proposition ii), each Bj is a truncated polynomial ring, so the quotient
A; is also a truncated polynomial ring. The kernel of the map A — A; is a power of m;. The kernel / of the
map A — Ay x---xAisa product of powers of my, ..., my. [l

(5.2.10) isolated points, again
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Recall that a point g of a topological space Y is an isolated point if the one-point set {¢} is openin Y.

5.2.11. Propesition. In the classical topology, a curve, smooth or not, contains no isolated point.

This was proved for plane curves in Chapter [I] (Proposition[I.3.19).

5.2.12. Lemma.
(i) Let Y’ be an open subvariety of a variety Y. A point q of Y' is an isolated point of Y if and only if it is an
isolated point of Y.

(ii) Let Y 'Y be a nonconstant morphism of curves, let ¢’ be a point of Y, and let q be its image in Y. If
q is an isolated point of Y, then q' is an isolated point of Y.

proof. (ii) Because Y’ has dimension one, the fibre over g will be a finite set. Say that the fibre is {¢} U S,
where S is a finite set of points distinct form ¢. Let Y denote the open complement Y’ —S of S in Y”, and let
u’’ be the restriction of u’ to Y. The fibre of Y over ¢ is the point ¢’. If {¢} is open in Y, then because u”
is continuous, {¢’} will be open in Y. By (i), {¢’} is openin Y. O

proof of Proposition Let ¢ be a point of a curve Y. Part (i) of Lemma[5.2.12]allows us to replace Y by
an affine neighborhood of . Let Y'# be the normalization of Y. Part (ii) of that lemma allows us to replace Y’
by Y#. So we may assume that Y is a smooth affine curve, say Y = Spec B. We can still replace Y by an
open neighborhood of ¢, so we may assume that the maximal ideal m, of B is a principal ideal . Say
that B = Clx1, ..., ]/ (f1, .-, fr), and that ¢ is the origin in A™. Let f; be a polynomial whose residue in B
generates m,. Then fo, f1, ..., fr generate the maximal ideal of the polynomial ring C[z] at g.

Let f and 2 be the column vectors (fo, ..., fx)! and (x1,...,x,)?, respectively. Since f generates the
maximal ideal at g, there is an n X (k+1) polynomial matrix P such that Pf = x. Let J be the (k+1) xn
Jacobian matrix Jf;/0x;, and let J and P denote the constant terms of J and P, respectively. Then f =
Jz + O(2), where O(2) stands for a polynomial in z, all of whose terms have degree at least 2. Since
Pf =z, x = PJx + O(2), and therefore x = PJz. This shows that P.J is the identity matrix, and that
the (k1) x n matrix J has rank n. Adjusting coordinates, we may assume that the submatrix @ of .J with
the indices 1 < 4,5 < n—1 is invertible at gq. The Implicit Function Theorem tells us that the equations
fi == fn_1 = 0can be solved for z1, ..., z,_1 as analytic functions of x,,. It follows that the locus of
zeros Z of fi,..., fn—1 is locally homeomorphic to the affine z,,-line , and it contains Y. Since Y has
dimension 1, the component of Z that contains ¢ is equal to Y. So Y is locally homeomorphic to A!, which
has no isolated point. Therefore ¢ isn’t an isolated point of Y. U

5.3 Constructible Sets

In this section, X will denote a noetherian topological space. Every closed subset of X is a finite union of
irreducible closed sets [2.2.16).

The intersection L = Z N U of a closed set Z and an open set U is a locally closed set. Open sets and
closed sets are locally closed. The following conditions on a subset L of X are equivalent.

o L is locally closed.
o L is a closed subset of an open subset U of X.
« L is an open subset of a closed subset Z of X.
A constructible set is a subset that is the union of finitely many locally closed sets.

5.3.1. Examples.

(i) A subset .S of a curve X is constructible if and only if it is either a finite set or the complement of a finite
set. Thus S is constructible if and only if it is either closed or open.

(ii) In the affine plane X = Spec C[x, y], let U be the complement of the line {y = 0}, and let p be the origin.
The union U U {p} is constructible, but not locally closed. O

We use the following notation: Z will denote a closed set, U will denote an open set. and L will denote a
locally closed set, suchas Z NU.
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5.3.2. Theorem. The set S of constructible subsets of a noetherian topological space X is the smallest family
of subsets that contains the open sets and is closed under the three operations of finite union, finite intersection,
and complementation.

By closure under complementation, we mean that if S is in S, then its complement S¢ = X — S'is in S too.
proof. Let Sy denote the family of subsets obtained from the open sets by the three operations mentioned in
the statement. Open sets are constructible, and using those three operations, one can make any constructible
set from the open sets. So S C S;. To show that S = S, we show that the family of constructible sets is closed
under the three operations.

It is obvious that a finite union of constructible sets is constructible. The intersection of two locally closed
sets Ly = Z3 NU;y and Ly = Zs N Us is locally closed because L1 N Ly = (Z1 N Z3) N (U NU,). If
S=L;U---ULgand 8" = L] U---U L] are constructible sets, the intersection S N .S’ is the union of the
locally closed intersections L; N L;, so it is constructible.

Let S be the constructible set Ly U - - - U Ly,. Its complement .S¢ is the intersection of the complements L
of Ly: §¢ = L{nN---N Lf. We have shown that intersections of constructible sets are constructible. So to
show that S¢ is constructible, it suffices to show that the complement of any locally closed set is constructible.
Let L be the locally closed set Z N U, and let Z¢ and U* be the complements of Z and U, respectively. Then
Z¢ is open and U¢ is closed. The complement L¢ of L is the union Z¢ U U of two constructible sets, so it is
constructible. (]

5.3.3. Proposition. In a noetherian topological space X, every constructible set is a finite union of locally
closed sets, L; = Z; N\ U, in which the irreducible sets Z; are irreducible and distinct.

proof. Let L = Z N U be a locally closed set, and let Z = Z; U --- U Z, be the decomposition of Z into
irreducible components. Then L = (Z; NU) U ---U (Z, NU), which is constructible. So every constructible
set S is a union of locally closed sets L; = Z; N U; in which Z; are irreducible. Next, suppose that two of the
irreducible closed sets are equal, say Z1 = Z5. Then L1 U Ly = (Z1NU1) U (Z1NU2) = Zy N (U1 UU,) is
locally closed. So we can find an expression in which the irreducible closed sets are distinct. (]

5.3.4. Lemma.
(i) Let X, be a closed subset of a variety X, and let X5 be its open complement. A subset S of X is con-
structible if and only if S N X1 and S N Xs are constructible.
(ii) Let X' be an open or a closed subvariety of a variety X.
a) If S is a constructible subset of X, then S N X' is a constructible subset of X'.
b) A subset S’ of X' is a constructible subset of X' if and only if it is a constructible subset of X.

proof. (i) This follows from Theorem[5.3.2}

(iia) It suffices to prove that, if L is a locally closed subset of X, the intersection L' = L N X’ is a locally
closed subsetof X'. If L = ZNU,then Z' = ZN X' isclosed in X', and U’ = U N X’ is open in X’. So
L' = 7' NnU’ is locally closed.

(iib) It follows from a) that if a subset S’ of X' is constructible in X, then it is constructible in X’. To
show that a constructible subset of X’ is contructible in X, it suffices to show that a locally closed subset
L' = Z' nU’ of X’ is locally closed in X. If X’ is a closed subset of X, then Z’ is a closed subset of X,
and U’ = X N U for some open subset U of X. Since Z' C X', L' =2'NnU' =2'nX'NnU=2"NU,
which is locally closed in X. If X’ is open in X, then U’ is open in X. Let Z be the closure of Z’ in X. Then
L'=ZnU' =ZnX'NnU' =2Z'NU’'. Again, L’ is locally closed in X. O

The next theorem illustrates a general fact, that many of the sets that arise in algebraic geometry are
constructible.

5.3.5. Theorem. Let Y i> X be a morphism of varieties. The inverse image of a constructible subset of X
is a constructible subset of Y. The image of a constructible subset of Y is a constructible subset of X.

proof. The fact that a morphism is continuous implies that the inverse image of a constructible set is con-
structible. It is less obvious that the image of a constructible set is constructible. To prove that, we keep
pecking away until there is nothing left to do. There may be a shorter proof.
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Let S be a constructible subset of Y. Lemma [3.3.4] and Noetherian induction allow us to assume that the
theorem is true when S is contained in a proper closed subset of Y, and also when its image f(.5) is contained
in a proper closed subvariety of X.

Suppose that Y is the union of a proper closed subset Y7 and its open complement Y5. The sets S; = SNY;
are constructible subsets of Y;. It suffices to show that their images f(.S;) are constructible, and Noetherian
induction applies to Y;. So we may replace Y by the open subvariety Y5, which can be arbitrary.

Next, suppose that X is the union of a proper closed subset X; and its open complement X5. Let Y7 and
Y5 denote the inverse images of X7 and X5, respectively, and let S; = S N'Y;. As before, it suffices to show
that the images f(.S;) are constructible. Here f(.S;) is contained in X, and induction applies to X;. So we
may replace X by the arbitrary open subvariety Xs.

Summing up, we may replace X by any nonempty open subset X', and Y by any nonempty open subset
of its inverse image Y. We can do this finitely often.

Since a constructible set S is a finite union of locally closed sets, it suffices to show that the image of a
locally closed subset S of Y is constructible. Moreover, we may suppose that .S has the form Z N U, where
U is open and Z is closed and irreducible. Then Y is the union of the closed set Z = Y] and its complement
Yo =(Y—Z%),and SNYs = (). We may replace Y by Y; = Z. Then S = U, and we may replace Y by U.
We are thus reduced to the case that S =Y.

We may again replace X and Y by nonempty open subsets, so we may assume that they are affine, say
Y = Spec B and X = Spec A, so that the morphism ¥ — X corresponds to an algebra homomorphism
A %5 B. If the kernel P of ¢ were nonzero, the image of ¥ would be contained in the proper closed subset
Spec A/ P of X, to which induction would apply. So we may assume that ¢ is injective.

Corollarytells us that, for suitable nonzero element s in A, the localization B, will be a finite module
over a polynomial subring Ag[y1, ..., yx]. We may replace Y and X by the open subsets Yy = Spec B and
Xs = Spec A,. Then the maps Y — Spec Afy| and Spec Aly] — X are both surjective, so Y = S maps
surjectively to X. ]

5.4 Closed Sets

Limits of sequences are often used to analyze subsets of a topological space. In the classical topology, a subset
Y of C™ is closed if, whenever a sequence of points in Y has a limit in C", the limit is in Y. In algebraic
geometry, curves can be used as substitutes for sequences.

We use the following notation:

5.4.1. C is a smooth affine curve, q is a point of C, and C' is the complement of q in C.

The closure of C’ will be C, and we think of ¢ as a limit point. In fact, the closure will be C' in the classical
topology as well as in the Zariski topology, because C' has no isolated point (5.2.TT). Theorem [5.4.3] which is
below, characterizes constructible subset of a variety in terms of such limit points.

The next theorem tells us that there are enough curves to do the job.

5.4.2. Theorem. (enough curves) Let Y be a constructible subset of a variety X, and let p be a point of its

closure Y. There exists a morphism C i> X from a smooth affine curve to X and a point q of C, such that
f(q) = p. and that the image of C' = C — {q} is contained in'Y .

proof:- If X = p, then Y = p. In this case, we may take for f the constant morphism from any curve C to p.
So we may assume that X has dimension at least one. Next, we may replace X by an affine open subset X’
that contains p, and Y by Y/ = Y N X’. If Y denotes the losure of Y in X, the closure of Y’ in X’ will be
Y N X', and it will contain p. So we may assume that X is affine, say X = Spec A.

Since Y is constructible, it is a union Ly U - - - U Ly, of locally closed sets, say L; = Z; N U; where Z; are
irreducible closed sets and U; are open. The closure of Y is the union Z; U - - - U Zj, and p will be in at least
one of the closed sets, say p € Z;. We replace X by Z; and Y by U;. This reduces us to the case that Y is a
nonempty open subset of X.

We use Krull’s Theorem to slice X down to dimension one. Suppose that the dimension n of X is at least
two. Let D = X — Y be the closed complement of the open set Y. The components of D have dimension at
most n— 1. We choose an element « of the coordinate algebra A of X that is zero at p and isn’t identically zero
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on any component of D, except at p itself, if p happens to be a component. Krull’s Theorem tells us that every
component of the zero locus of « has dimension n — 1, and at least one of those components, call it V', contains
p. If V were contained in D, it would be a component of D because dimV =n —1and dim D <n — 1. By
our choice of «, this isn’t the case. So V' ¢ D, and therefore V NY # (. Let W = V NY. Because V is
irreducible and Y is open, W is a dense open subset of V, its closure is V, and p is a point of V. We replace
X by V and Y by W. The dimension of X is thereby reduced to n — 1.

Thus it suffices to treat the case that X has dimension one. Then X will be a curve that contains p, and Y
will be a nonempty open subset of X. The normalization of X will be a smooth curve X# that comes with an
integral, and therefore surjective, morphism to X. Finitely many points of X# will map to p. We choose for
C an affine open subvariety of X# that contains just one of those points, and we call that point g. (]

5.4.3. Theorem (curve criterion for a closed set) LetY be a constructible subset of a variety X. The following
conditions are equivalent:

(@) Y is closed.
(b) For any morphism C' Jox from a smooth affine curve to X, the inverse image f~'Y is closed in C.

(c) Let q be a point of a smooth affine curve C, let C' = C —{q}, and let C L X bea morphism. If
f(C") CY, then f(C) CY.

The hypothesis that Y be constructible is necessary. For example, in the affine line X, the set W of points
with integer coordinates isn’t constructible, but it satisfies condition (b). Any morphism C’ — X whose image
is in W will map C” to a single point, and therefore it will extend to C.

proof of Theorem The implications (a) = (b) = (c) are obvious. We prove the contrapositive of the
implication (¢) = (a). Suppose that Y isn’t closed. We choose a point p of the closure Y that isn’tin Y, and

we apply Theorem There exists a morphism C L X from a smooth curve to X and a point ¢ of C
such that f(q) =pand f(C’) C Y. Since ¢ € Y, this morphism shows that (¢) doesn’t hold either. O

5.4.4. Theorem. A constructible subsetY of a variety X is closed in the Zariski topology if and only if it is
closed in the classical topology.

proof. A Zariski closed set is closed in the classical topology because the classical topology is finer than the
Zariski topology. Suppose that a constructible subset Y of X is closed in the classical topology. To show that
Y is closed in the Zariski topology, we choose a point p of the Zariski closure Y of Y, and we show that p is a
point of Y.

We use the notation (5.4.1). Theorem tells us that there is a map C L X from a smooth curve C
to X and a point g of C such that f(q) = p and f(C’) C Y. Let C; denote the inverse image f~1(Y) of Y.
Because C contains C’, either C; = C’ or C; = C. In the classical topology, a morphism is continuous.
Since Y is closed, its inverse image C is closed in C. If C; were C’, then C’ would closed as well as open.
Its complement {q} would be an isolated point of C'. Because a curve contains no isolated point, the inverse
image of Y is C, which means that f(C') C Y. In particular, p is in Y. Therefore Y is closed in the Zariski
topology. O

5.5 Projective Varieties are Proper

As has been noted before, an important property of projective space is that, in the classical topology, it is
compact. A variety isn’t compact in the Zariski topology unless it is a single point. However, in the Zariski
topology, projective varieties have a property closely related to compactness: They are proper.

Before defining the concept of a proper variety, we explain an analogous property of compact spaces.

5.5.1. Proposition. Let X be a compact space, let Z be a Hausdorff space, and let V be a closed subset of
Z x X. The image of V via the projection Z x X — Z is closed in Z.

proof. Let W be the image of V' in Z. We show that if a sequence of points z; of the image W has a limit 2z
in Z, then that limit is in . For each 4, we choose a point p; of V' that lies over z;. So p; is a pair (z;, z;),
x; being a point of X. Since X is compact, there is a subsequence of the sequence z; that has a limit z in X.
Passing to a subsequence of {p; }, we may suppose that x; has limit z. Then p; has limit p = (2, z). Since V
is closed, p is in V. Therefore z is in its image W. B O
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5.5.2. Definition. A variety X is proper if it has the following property: Let Z x X be the product of X
with another variety Z, let m denote the projection Z x X — Z, and let V be a closed subvariety of Z x X.
The image W of V is a closed subvariety of Z.

vV —S 5 ZxX

(5.5.3) l Jﬂz

w—~- =z
If X is proper, then because every closed set is a finite union of closed subvarieties, the image of a closed
subset of Z x X will be a closed subset of Z.

5.5.4. Corollary. Let X be a proper variety, let V be a closed subvariety of X, and let X L> Y be a
morphism. The image (V') of V is a closed subvariety of Y.

proof. In X xY', the graph 'y of f is a closed set isomorphic to X, and V' corresponds to a subset V' of I'y
that is closed in I'y and in X xY". The points of V"’ are pairs (z, y) such that € V and y = f(x). The image
of V' via the projection to X xY — Y is the same as the image of V. Since X is proper, the image of V"’ is
closed. (|

The next theorem is the most important application of the use of curves to characterize closed sets.

5.5.5. Theorem.
(i) Projective varieties are proper.

(ii) If X is a projective variety and X — Y is a morphism, the image in'Y of a closed subvariety of X is a
closed subvariety of X.

proof. Part (ii) follows from (i) and Corollary Let X be a projective variety. Suppose we are given a
closed subvariety V' of the product Z x X. We must show that its image W in Z is a closed subvariety of Z
(see Diagram . Since V is irreducible, its image is irreducible, so it suffices to show that W is closed.
Theorem [5.3.5]tells us that TV is a constructible set, and since X is closed in projective space, it is compact in
the classical topology. Proposition [5.5.1]tells us that W is closed in the classical topology, and [5.4.4]tells us
that T is closed in the Zariski topology too. (]

5.5.6. Note. Since Theorem is about algebra, an algebraic proof would be preferable. To make an
algebraic proof, one could attempt to replace the limit argument used in the proof of Proposition [5.5.1] by the
curve criterion, proceeding as follows: Given a closed subset V' of Z x X with image W and a point p in the

closure of W, one chooses a map C L Z from an affine curve C' to Z such that fl@g) =pand f(C") C W,
C’ being the complement of ¢ in C. Then one tries to lift this map by finding a morphism C 25 Zx X such
that g(C") C V and f = wog. Since V is closed, it would contain ¢(g), and therefore f(q) = 7g(q) would be
in 7(V) = W. However, to find the lifting ¢, it may be necessary to replace C by a suitable covering. It isn’t
difficult to make this method work, but it takes longer. That is why we resorted to the classical topology. [

The next examples show how Theorem [5.5.5]can be used.

5.5.7. Example. (singular curves) We parametrize the plane projective curves of a given degree d. The
number of monomials zfz] x5 of degree d = i+ j+k is the binomial coefficient (‘“2'2). We label those
monomials as my, ..., m,., ordered arbitrarily, with r = (d;2) — 1. A homogeneous polynomial of degree d
will be a combination Y z;m; with complex coefficients z;, so the homogeneous polynomials f of degree d in
x, taken up to scalar factors, are parametrized by the projective space of dimension r with coordinates z. Let’s
denote that projective space by Z. Points of Z correspond bijectively to divisors of degree d in the projective
plane, as defined in (T.3.13).

The product variety Z x P2 represents pairs (D, p), where D is a divisor of degree d and p is a point of P2,
A variable homogeneous polynomial of degree d in & can be written as a bihomogeneous polynomial f(z, x)
of degree 1 in z and degree d in x. For example, in degree 2, f would be

2 2 2
20%y + 217 + 2205 + 23T0T1 + 24X0%2 + 250122
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The locus I': {f(z,2) = 0} in Z x P? is closed. A point z = ¢, x = a of I is a pair (D, p) such that D is the
divisor f(c,z) = 0 and p is the point (¢, a) of D.

The set X of pairs (D, p) such that p is a singular point of D is also a closed set, because it is defined by
the system of equations fy(z,z) = fi(z,2) = f2(z,x) = 0, where f; are the partial derivatives 5—1{:. (Euler’s
Formula shows that f(z, z) = 0 follows from those equalities.) The partial derivatives f; are bihomogeneous,
of degree 1 in z and degree d—1 in z.

The next proposition isn’t especially easy to verify directly, but the proof becomes easy when one uses the
fact that projective space is proper.

5.5.8. Proposition The singular divisors of degree d, those that contain at least one singular point, form a
closed subset S of the projective space Z of all divisors of degree d.

proof. The subset S is the projection of the closed subset . of Z x P2, Since P? is proper, the image of the
closed set X is closed. (]

5.5.9. Example. (surfaces that contain a line) We go back to the discussion (3.7.15) of lines in a surface. Let
S denote the projective space that parametrizes surfaces of degree d in P3,

5.5.10. Proposition In P3, the surfaces of degree d that contain a line form a closed subset of the space S.

The Grssmanian G = G/(2,4) of lines in P? is a projective variety (Corollary [3.7.13). Let = be the subset
of G xS of pairs of pairs [¢], [S] such that £ C S. Lemma|3.7.17|tells us that = is a closed subset of G x S.
Therefore its image in S is closed. U

5.6 Fibre Dimension

A function Y 2+ 7 from a variety to the integers is a constructible function if, for every integer n, the set
of points of Y such that §(p) = n is constructible, and 0 is an upper semicontinuous functiion if for every n,
the set of points such that §(p) > n is closed. For brevity, we refer to an upper semicontinuous function as
semicontinuous, though the term is ambiguous. A function might be lower semicontinuous.

A function J on a curve Y is semicontinuous if and only if there exists an integer n and a nonempty open
subset Y of Y such that 6(p) = n for all points p of Y/ and 6(p) > n for all points of Y not in Y.

The next curve criterion for semicontinuous functions follows from the criterion for closed sets.

5.6.1. Proposition. (curve criterion for semicontinuity) LetY be a variety. A function Y — Z is semicon-

tinuous if and only if it is a constructible function, and for every morphism C i> Y from a smooth curve C
to'Y, the composition § o f is a semicontinuous function on C. (|

LetY L5 X bea morphism of varieties, let ¢ be a point of Y, and let Y, be the fibre of f over p = f(q).
The fibre dimension 0(q) of f at ¢ is the maximum among the dimensions of the components of the fibre that
contain q.

5.6.2. Theorem. (semicontinuity of fibre dimension) LetY —— X be a morphism of varieties, and let § (9)
denote the fibre dimension at a point q of Y.

(i) Suppose that X is a smooth curve, that Y has dimension n, and that u does not map Y to a single point.
Then 0 is constant — the nonempty fibres have constant dimension: 6(q) =n — 1 forallq € Y.

(i) Suppose that the image of Y is dense in X. Then it contains a nonempty open subset of X. Let the
dimensions of X and Y be m and n, respectively. There is a nonempty open subset X' of X such that
d(q) = n—m for every point q in the inverse image of X'.

(iii) 0 is a semicontinuous function on'Y.

The proof of this theorem is left as a long exercise. When you have done it, you will have understood the
chapter.
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5.7 Exercises

5.7.1. Prove that, if v is a (discrete) valuation on a field K that contains the complex numbers, every nonzero
complex number c has value zero.

5.7.2. Prove that a closed subset of dimension zero of a variety X is a finite set.

5.7.3. Let X = Spec A be an affine curve, with A = C|xo, ..., 2, ]/ P, and let x; also denote the residues
of the variables in A. Let p be a point of X. We adjust coordinates so that p is the origin (0, ..., 0), and are
otherwise generic. Let z; = x;/xg, ¢ = 1,...,n, let B = Clxg, 21, 22, ..., 2], and let Y = Spec B. The
inclusion A C B defines a morphism Y — X called the blowup of p in X. There will be finitely many points
of Y in the fibre over p, and there will be at least one such point. We choose a point p; of the fibre, we replace
X by Y and p by p; and repeat. Prove that this blowing up process yields a curve that is smooth above p in
finitely many steps.

5.7.4. Prove that the ring k[[z, y]] of formal power series with coefficients in a field & is a local ring and a
unique factorization domain.

5.7.5. Let A be a normal finite-type domain. Prove that the localization Ap of A at a prime ideal P of
codimension 1 is a valuation ring.

5.7.6. Let X = Spec A, where A = Cl[z, v, 2]/(y* — 22?). Identify the normalization of X.

5.7.7. Let A be the polynomial ring C[x, ..., 2], and let P be the principal ideal generated by an irreducible
polynomial f(z1,...,2,). The local ring Ap consists of fractions g/h of polynomials in which g is arbitrary,
and h can be any polynomial not divisible by f. Describe valuation v associated to this local ring.

5.7.8. In the space A™*™ of n xn matrices, let X be the locus of idempotent matrices: P2 = P. The general
linear group G L,, operates on X by conjugation.

(i) Decompose X into orbits for the operation of G L,,, and prove that the orbits are closed subsets of A™*".
(ii) Determine the dimensions of the orbits.

5.7.9. Prove that, when a variety X is covered by countably many constructible sets, a finite number of those
sets will cover X.

5.7.10. Let f(z,y) and d(z, y) be polynomials. Show that if d divides the partial derivatives f, and f,, then
f is constant on the locus d = 0.

5.7.11. Let S be a multiplicative system in a finite-type domain R, and let A and B be finite-type domains
that contain R as subring. Let R, A’, B’ be the rings of S-fractions of R, A, B, respectively. Prove:

1 a set of elements o, ..., a generates A as fi-algebra, 1t also generates as ' -algebra.
() If f el g A as R-algebra, it also g A’ as R'-algeb

(ii) Let A’ 25 B’ bea homomorphism. For suitable s in S, there is a homomorphism A, 4, B, whose
localization is ¢’. If ¢’ is injective, so is . If ¢’ is surjective or bijective, there will be an s such that ¢, is
surjective or bijective, respectively.

(iii) If A’ C B’ and if B’ is a finite A’-module, then for suitable sin S, A, C By, and B; is a finite A;-module.

5.7.12. Let G denote the Grassmanian G/(2, 4) of lines in P2, and let [¢] denote the point of G that corresponds
to the line ¢. In the product variety G x G of pairs of lines, let Z denote the set of pairs [¢1], [¢2] whose
intersection isn’t empty. Prove that Z is a closed subset of G x G.

5.7.13. Is the constructibility hypothesis in necessary?
5.7.14. Prove Theorem directly, without appealing to Theoremm

5.7.15. With reference to Note , let X = P! and Z = A! = Spec C[t]. Find a closed subset V of Z x X
whose image is Z, such that the identity map Z — Z can’t be lifted toamap Z — V.

5.7.16. Let f : Y — X be a morphism of varieties. Suppose we know that the fibre dimension is a con-
structible function. Use the curve criterion to show that fibre dimension is semicontinuous. (This is a part of

Theorem[5.6.2})
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57.17. LetY 5 X bea morphism with finite fibres, and for p in X, let N(p) be the number of points in
the fibre f~!(p). Prove that N is a constructible function on X.

5.7.18. Prove that fibre dimension is a semicontinuous function. I recommend this outline:

(i) We may assume that Y ane X are affine, Y = Spec B and X = Spec A.

(ii) The theorem is true when A C B and B is an integral extension of a polynomial subring A[y1, ..., ¥d]-
(iii) The fibre dimension is a constructible function.

(iv) The theorem is true when X is a smooth curve.

(v) The theorem is true for all X.

5.7.19. 777 twisted cubic specializes to plane nodal cubic???

5.7.20. Prove that a (quasiprojective) variety X that is proper is projective.
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Chapter 6 MODULES

6.1 The Structure Sheaf
6.2] O-Modules

6.3 Some O-Modules
The Sheaf Property
6.5 Some More Modules

Direct Image

Support

Twisting

[6.9 Extending a Module: proof
Exercises

A brief review:

localization.

If s is a nonzero element of a domain A, the symbol A; stands for the simple localization A[s~!], and if
X = Spec A, then X, = Spec Ag. This is what we will mean by the word ’localization’.
o Let s be a nonzero element of a domain A and let M be an A-module. The localized module M, is the
A,z-module whose elements are equivalence classes of fractions ms~ ", with m in M. The localized module
M, becomes an A-module by restriction of scalars. A homomorphism of A-modules N — M extends in a
natural way to a homomorphism of A-modules Ny — M.
e Let X = Spec A be an affine variety. The intersection of two localizations Xy = Spec A and X; =
Spec A; is the localization X4 = Spec Ag;.
e LetW C V C U be affine open subsets of a variety X. If V is a localization of U and W is a localization
of V, then W is a localization of U.
o The affine open subsets form a basis for the topology on a variety X, and the localizations of an affine
variety form a basis for its topology.
o If U and V are affine open subsets of X, the open sets W that are localizations of U as well as localizations
of V, form a basis for the topologyon U N V.

regular functions.

The function field of a variety X is the field of fractions of the coordinate algebra of any one of its affine
open subsets, and a rational function on X is an element of its function field. A rational function f is regular
on an affine open set U = Spec A if it is an element of A, and f is regular on any open set U that can be
covered by affine open sets on which it is regular. Thus the function field contains the regular functions on
every nonempty open subset, and the regular functions on an open subset are governed by the regular functions
on its affine open subsets.

See Chapters 2] and [3] for these assertions. We will use them without further comment. We will also need the
concepts of category and functor. If you aren’t familiar with these concepts, please read about them. You
won’t need to know much. Learn the definitions and look at a few examples.

6.1 The Structure Sheaf.
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We associate two categories to a variety X. The first is the category (opens). Its objects are the open subsets
of X, and its morphisms are inclusions. If U and V are open sets and if V' C U, there is a unique morphism
V' — Uin (opens). If V ¢ U there is no morphism V' — U.

The other category, (affines), is a subcategory of the category (opens), and it is the more important category.
Its objects are the affine open subsets of X, and its morphisms are localizations. A morphism V' — U in
(opens) is a morphism in (affines) if U and V are affine and V is a localization of U — a subset of the form
Us, where s is a nonzero element of the coordinate algebra of U.

The structure sheaf Ox on a variety X is the functor

(6.1.1) (affines)° &) (algebras) strshdef

from affine open sets to algebras, that sends an affine open set U = Spec A to its coordinate algebra A. When
speaking of the structure sheaf, the coordinate algebra of U will be denoted by Ox (U). If it is clear which
variety is being studied, we may write O for Ox.

Let V' C U be affine open subsets of a variety X, say U = Spec A and V = Spec B. Then A C B. If V
is the localization Uy, then B = A[s’l]. But if B isn’t a localization of A, it won’t be clear how to construct
B from A., and The exact relationship between A and B will remain obscure.

A variety that isn’t affine won’t be determined by its regular functions. For instance, the only rational
functions that are regular at all points of the projective line are the constants, which are useless. Nevertheless,
the structure sheaf extends with little difficulty to all open sets (see Poposition [6.1.2] below). We will be
interested in regular functions on non-affine open sets, especially in regular functions on the whole variety, but
one should work with affine open sets and localizations, because the relation between the coordinate algebras
of an affine variety and a localization is easy to understand.

6.1.2. Proposition. Let X be a variety. Defining Ox (U) to be the algebra of regular functions on the open exten-
subset U extends the structure sheaf Ox to a functor dOone

(opens)° Ox, (algebras) 0
The regular functions on U, the elements of Ox (U), are the sections of the structure sheaf Ox on U. The
elements of O x (X), the rational functions that are regular everywhere, are the global sections.

Thus, if U is a nonempty open subset of a variety X, Ox (U) will be a subring of the function field of
X, and when V' — U is a morphism in (opens), Ox (U) will be contained in Ox (V). This gives us the
homomorphism, an inclusion,
Ox(U) = Ox(V)

that makes Ox into a functor. Note that arrows are reversed by Ox. If V. — U, then Ox(U) — Ox (V). A
functor that reverses arrows is a contravariant functor. The superscript © in (6.1.1)) and (6.1.2) is a customary
notation to indicate that a functor is contravariant.

IfV CcUC X, then Ox(V) =0y (V) = Oy (V).
6.1.3. Proposition The extended structure sheaf has the following sheaf property: extendO

e LetY be an open subset of X, and let U* = Spec A; be affine open subsets that cover Y. Then
Ox(Y)=(0x(U")  (=[)4)

The fact that regular functions are elements of the function field makes the statement of the sheaf property
especially simple here.

By definition, f is a regular function on X if there is an affine covering U*, a covering by affine open sets,
such that f is in Ox (U?) for every i. Therefore the next lemma proves the proposition.

6.1.4. Lemma. LetY be an open subset of a variety X. The intersection (\Ox (U?) is the same for every capsame
affine covering {U'} of Y.

We prove the lemma first in the case of a covering of an affine open set by localizations.

138



sheaffor-
loc

module

defO-
modtwo

isloc

6.1.5. Sublemma. Let U = Spec A be an affine variety, and let {U*} be a covering of U by localizations,
say U' = Spec A;, where A; is a localization As, of A. Then A = (N A;, i.e, O(U) = N O(UY).

proof. It is clear that A C [ As,. We prove the opposite inclusion. A finite subset of the set {U*} will cover
U, so we may assume that the index set is finite. Let o be an element of (] As,. So for every i, a = s; "ag,
or sTa = a; with a; in A and r an integer. We can use the same r for every i. Because {U*} covers U,
the elements s; generate the unit ideal in A, and so do their powers s}. There are elements b; in A such that
> bisT =1. Thena =Y b;sfa = > b;a; is an element of A. O

proof of Lemma Say that Y is covered by affine open sets {U*} and also by affine open sets {V7}.
We cover the intersections U® N V7 by open sets W/¥ that are localizations of U? and also localizations of
V3. Fixing i and letting j and v vary, the set {IW#¥"}; , will be a covering of U’ by localizations, and the
sublemma shows that O(U*) = );,, O(W*"). Then (), O(U*) =, ;,, O(W""). Similarly, (); O(V7) =
N, OOWY), O

6.2 (O-Modules

On an affine variety Spec A, one can work with A-modules. There is no need to do anything else. However,
one can’t do this when a variety X isn’t affine. The best one can do is to work with modules on affine open
subsets. An O x-module associates a module to every affine open subset.

To define an O-module, we need notation for working when both the module and the ring are allowed to
vary. Let R and R’ be rings. A homomorphism from an R module M to an R’-module M’ consists of a ring
homomorphism R L R anda homomorphism of abelian groups M —— M’ that is compatible with f, in
the sense that, if m’ = p(m) and ' = f(r), then o(rm) = r'm’.

We use the symbol (modules) for the category whose objects are modules over rings, and whose morphisms
are homomorphisms of modules, as defined above. Because the ring homomorphisms are usually clear from
context, we suppress notation for them, denoting a module M over R and a homomorphism ¢ to a module M’
over aring R’ by the symbols M and M —2 M.

6.2.1. Definition. An O-module M on a variety X is a (contravariant) functor

(affines)° M, (modules)

such that, for every affine open set U, M(U) is an O(U)-module, and when s is a nonzero element of O(U),
the module M (Us) is the localization M (U), of M(U). The map M(U) — M(U) that makes M into a
functor is the canonical map from a module to a localization.

Thus if U is an affine open set, M (U) stands for a module over the ring O(U) of regular functions on U,
and if U — U, the map M(U) — M(U’) is compatible with the map O(U) — O(U’). As was explained
above, the compatibility means that, if a € O(U) has image o’ in O(U’) and m € M(U) has image m’ in
M(U"), then the image of am in O(U") is a'm/.

6.2.2. Note. To say that M(U,) is the localization of M(U), isn’t completely correct. One should say
that M(U,) and M(U), are canonically isomorphic. The map M(U) — M(U,) induces a map from the
localization M(U ) to M(Us), and that map should be an isomorphism. But let’s not worry about this point.
O

Though the definition of an O-module will seem complicated at first, perhaps too complicated for com-
fort, there is no need to worry. When a module has a natural definition, the data involved are taken care of
automatically. This will become clear as we go along.

Some terminology:

o A section of an O-module M on an affine open set U is an element of M (U), and an element of M (X) is
a global section . The module of sections on U is M(U).

o When Uj is a localization of U, the image of a section m on U via the map M(U) — M(Us) is the
restriction of m to U,.
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o An O-module M is a finite O-module if M(U) is a finite O(U)-module for every affine open set U.

o A homomorphism M — N of O-modules consists of homomorphisms of O(U)-modules

M) Y )

for each affine open subset U, such that, when s is a nonzero element of O(U), the homomorphism ¢(Us) is
the localization of the homomorphism ¢ (U).

« A sequence of homomorphisms
(6.2.3) M—=N—=P

of O-modules on a variety X is exact if, for every affine open subset U of X, the sequence M(U) — N (U) —
P(U) is exact. O

6.2.4. Lemma. Let M %5 N be a homomorphism of O-modules, and let U be an affine open set. The

homomorphism M(Us) 20 s (Us) can be obtained by localizing the homomorphism M(U) 2O ).

proof. This follows from the fact that ¢ is a functor, which tells us that the diagram

I I

MU) —— M(U)

commutes. O

6.3 Some O-Modules

6.3.1. The free module O is an O-module. Its sections on an affine open set U are the elements of the free
O(U)-module O(U)*. In particular, O is an O-module.

6.3.2. The kernel, image, and cokernel of a homomorphism M 5 N are among the operations that can be

made on O-modules. The kernel K of ¢ is the O-module defined by K(U) = ker (M(U) 29 N (U)) for
every affine open set U, and the image and cokernel are defined analogously. The reason that we work with
localizations is that many operations, including these, are compatible with localization.

6.3.3. modules on a point

Let’s denote the affine variety Spec C, a point, by p. The point has just one nonempty open set, the whole
space p. It is an affine open set, and O, (p) = C. To define an Op-module M, the vector space M (p) can be
assigned arbitrarily. One may say that a module on the point is a complex vector space.

6.3.4. the residue field module «,,.

Let p be a point of a variety X . The residue field module x,, is defined as follows: If an affine open subset
U of X contains p, then O(U) has a residue field k(p) at p, and k,(U) = k(p). If U doesn’t contain p, then
kp(U) = 0.

For example, let p be the point at infinity of X = P! and let U° and U* be the standard affine open sets.
Then £,(U%) = 0 and x,(U') = C.

6.3.5. torsion modules.
An O-module M is a torsion module if M(U) is a torsion O(U)-module for every affine open set U (see

(2.1.24)).

6.3.6. ideals.

A submodule N of an O-module M is an O-module such that A/ (U) is a submodule of M (U) for every
affine open set U. An ideal Z of the structure sheaf is an O-submodule of O. If Y is a closed subvariety of
a variety X, the ideal of Y is the submodule of O whose sections on an affine open subset U of X are the
rational functions on X that are regular on U and that vanishon Y N U.
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Let p be a point of a variety X. The maximal ideal at p, which we denote by m,, is an ideal. If an affine
open subset U contains p, its coordinate algebra O(U) will have a maximal ideal whose elements are the
regular functions that vanish at p. That maximal ideal is the module of sections m,(U) on U. If U doesn’t
contain p, then m,(U) = O(U).

We use the notation V' (Z) for the zero set in a variety X of an ideal Z in the structure sheaf Ox. A point
p of X isin V(Z) if, whenever U is an affine open subset of X that contains p, all elements of Z(U) vanish at
p. When Z is the ideal of functions that vanish on a closed subvariety Y, V(Z) =Y.
6.3.7. some homomorphisms

o Let k, be the residue field module at a point p of X. There is a homomorphism of O-modules O — &,
whose kernel is the maximal ideal m,,.

o Homomorphisms O™ — O™ of free O-modules correspond to m X n-matrices of global sections of O.

« Multiplication by a global section f of O defines a homomorphism M N M.
e Let M be an O-module. Homomorphisms of O-modules O s M correspond bijectively to global
sections of M.

This last example is analogous to the fact that, when M is a module over a ring A, homomorphisms
A — M correspond to elements of M. If m is a global section of M, the homomorphism O(U) @ MU)is
multiplication by the restriction of m to U. If we denote that restriction by the same letter m, then p(f) = fm.

Similarly, (c) is analogoues to the fact that multipliexation by an element a of R defines a homomorphism
M — M.

6.4 The Sheaf Property

In this section, we extend an O-module M on a variety X to a functor (opens)° M, (modules) on all open
subsets of X with these properties:

« M(Y) is an O(Y')-module for every open subset Y .
o When U is an affine open set, MV(U) = M(U).
« M has the sheaf property that is described below.

The tilde ~ is used for clarity. When we have finished with the discussion, we will use the same notation
for the functor on (affines) and for its extension to (opens).

6.4.1. Let (opens)° M, (modules) be a functor. If U is an open subset of X, an element of M (U) is a section
of MonU. If V -5 U is an inclusion of open subsets, the associated homomorphism M U) — M (V) is
the restriction from U to V.

When V' — U is an inclusion of open sets, the restriction to V' of a section m on U may be denoted by
7°m. However, the restriction operation occurs very often. Because of this, we usually abbreviate, using the
same symbol m for a section and /ﬁ)r its restriction. If an open set V' is contained in two open sets U and U’,
and if m and m’ are sections of M on U and U’, respectively, we may say that m and m' are equal on V' if
their restrictions to V' are equal. For example, if the restriction of a setcion m to V' is zero, we may say m = 0
onV. (]

6.4.2. Theorem. An O-module M extends uniquely to a functor

(opens)° M, (modules)

that has the sheaf property below. Moreover, for every open set U, M (U) is an O(U)-module, and
Sor every inclusion V. — U of nonempty open sets, the map M(U) — M(V) is compatible with the map
o) — O).

The proof of this theorem isn’t especially difficult, but it is lengthy because there are several things to check.
In order not to break up the discussion, we have put the proof into Section at the end of the chapter.

Though the theorem describes the sections of an O-module on every affine open set, one always works
with the affine open sets. Sometimes, we will want to look at sections of an O-module on a non-affine open
set, but most of the time, the non-affine open sets are just along for the ride.
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(6.4.3) the sheaf property

The sheaf property is the key requirement that determines the extension of an O-module M to a functor M
on (opens).

Let Y be an open subset of X, and let {U} be an affine covering of Y. The intersections U = U* N U7
are also affine open sets, so M (U*) and M (U%) are defined. The sheaf property asserts that an element m of
M (Y') corresponds to a set of elements m; in M (U?) such that the restrictions of m; and m; to U% are equal.

If the affine open subsets U’ are indexed by @ = 1,...,n, the sheaf property asserts that an element of
M(Y) is determined by a vector (my, ..., my,) with m; in M(U?), such that the restrictions of m; and m; to
U are equal. This means that M(Y') is the kernel of the difference map §3:

(6.4.4) [[m@) 2 T mw™)

.9

that sends the vector (my, ..., my,) to the nxn matrix (z;;), where z;; is the difference m; —m, of restrictions
of the sections m; and m; to U*. The analogous description is true when the index set is infinite.

In short, the sheaf property tells us that sections of M are determined locally: A section on an open set Y
is determined by its restrictions to the open subsets U* of any affine covering of Y.

Note. With notation as above, there is a morphism U% — U’ in (opens) because U¥ is contained in U*.
However, this morphism needn’t be a localization, and if it isn’t a localization, it won’t be a morphism in
(affines). Then the restriction maps M(U?) — M(U%) won’t be a part of the structure of an O-module. We
need a definition of the restriction map for an arbitrary inclusion V' — U of affine open subsets. This point
will be taken care of in the proof of Theorem [6.4.2] (See Step 2 in Section[6.9]) So we don’t need to worry
about it here. O

We drop the tilde now, and denote the extension of an O-module M to all open sets by the same symbol
M. The sheaf property for M is the statement that, when {U*} is an affine covering of an open set U, the
sequence

(6.4.5) 0— MU) -2 [ M) 2 TImw™)

is exact, where « is the product of the restriction maps, and 3 is the difference map described in (6.4.4). So
M(U) is mapped isomorphically to the kernel of 5. Elements of M(U) correspond bijectively to vectors
(m1, ..., my), with m; in M(U?), such that the restrictions of m; and m; to M(U%) are equal.

The next corollary follows from Theorem[6.4.2]

6.4.6. Corollary. Let {U'} be an affine covering of a variety X.

(i) An O-module M is the zero module if and only if M(U?) = 0 for every i.

(i) A homomorphism M LN of O-modules is injective, surjective, or bijective if and only if the maps
M(U?) #Uy) N (U?) are injective, surjective, or bijective, respectively, for every i.

proof. (i) Let V be an open subset of X. We cover each intersection V' N U i by affine open sets V' that
are localizations of U*. These sets, taken together, cover V. If M(U*) = 0, then the localizations M (V%)

are zero too. The sheaf property shows that the map M(V) — [[ M(V®) is injective, and therefore that
M) =0.

(ii) This follows from (i) because a homomorphism ¢ is injective or surjective if and only if its kernel or its
cokernel is zero. (]

(6.4.7) families of open sets
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It is convenient to have a more compact notation for the sheaf property (6.4.5), and for this, one can
introduce symbols to represent families of open sets. Say that U and V represent families of open sets {U}
and {V"}, respectively. A morphism of families V — U consists of a morphism from each V” to one of the
subsets U*?. Such a morphism will be given by a map of index sets sending v ~+ i,,, such that V¥ C U'~.

There may be more than one morphism V — U, because a subset V¥ may be contained in more than
one of the subsets U*. To define a morphism, one must make a choice among those subsets. For example, let
U = {U"} be a family of open sets, and let V' be another open set. For each i such that V' C U*, there is a
morphism V' — U that sends V to U®. In the other direction, there is a unique morphism U — V provided
that U* C V for all i.

We extend a functor (opens)° M, (modules) to families U = {U*}, defining
(6.4.8) M(U) = [[Mm@).

Then a morphism of families U L V defines a map M (V) L M(U) in a way that is fairly obvious,
though our notation for it is clumsy. Say that V = {V¥}, that U = {U*}, and that f is given by amap v ~ i,,
of index sets, such that V¥ — U . A section of M on U, an element of M(U), can be thought of as a vector
u = (u;) with u; € M(U?), and a section of M(V) as a vector v = (v,) with v, € M(V"). If v, denotes
the restriction of u;, to V', the restriction f°(u) of u = {u;} to Visv = {v, }.

We write the sheaf property in terms of families of open sets: Let Uy = {U*} be an affine covering of an
open set Y, and let U; denote the family {U"} of intersections: U% = U* N U’. The intersections are also
affine, and there are two sets of inclusions

UY cU" and UY c U’

They give us two morphisms of families U; ‘2% Uy of affine open sets: U %% U7 and U % U, We

also have a morphism Uy — Y, and the composed morphisms U} N Uy — Y are equal. These maps form
what we all a covering diagram

(6.4.9) Y<—Uye=U
When we apply a functor (opens) M, (modules) to this diagram, we obtain a sequence

(6.4.10) 0= M(Y) 2% M(Ug) 2% M(Uy)

where ay is the restriction map and Sy is the difference dy — d; of the maps induced by the two morphisms
U; = Uy. The sheaf property for the covering U of Y (6.4.5) is the assertion that this sequence is exact,
which means that oy is injective, and that its image is the kernel of By.

6.4.11. Note. Let {U’} be an affine covering of Y. Then, with U = U’ N UJ, we will have U" = U’
and U = U’¢. These coincidences lead to redundancy in the statement of the sheaf property. If
the indices are i = 1, ..., k, we only need to look at intersections U% with i < j. The product M(U;) =
Hz} j M (U™ that appears in the sheaf property can be replaced by the product with increasing pairs of indices

IL- j M(U%). For instance, if an open set Y is covered by two affine open sets U and V, the sheaf property
for this covering is an exact sequence

0= MY) -5 [MU)xMV)] 5 [MUNT)x MUNV)x M(VAT)x M(VAV)]

The exact sequence
(6.4.12) 0 = MY) = [MU)xM(V)] =5 MU NV)
is equivalent. (]
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6.4.13. Example.

Let A denote the polynomial ring C[x, y], and let V' be the complement of a point p in the affine space X =
Spec A. This is an open set, but it isn’t affine. We cover V' by two localizations of X: X, = Spec A[z~!]
and X, = Spec Aly~']. The sheaf property for Ox and for this covering is equivalent to an exact
sequence

0= Ox(V) = Ale™ | x Ay~ '] = Al(zy) ']

It shows that a regular function on V is in the intersection A[z~!] N A[y~!], which is equal to A. Therefore
the sections of the structure sheaf Ox on V' are the elements of A. They are the same as the sections on X. [

We have been working (tacitly) with nonempty open sets. This isn’t much of a problem, but when a module
M on (affines) is extended to a module on all open sets, the empty set should be included. The next lemma
takes care of the empty set.

6.4.14. Lemma. The only section of an O-module M on the empty set is the zero section: M(Q)) = {0}. In
particular, O(0) is the zero ring.

proof- This follows from the sheaf property. The empty set () is covered by the empty covering, the covering
indexed by the empty set. Therefore M (()) is contained in an empty product. We want the empty product to
be a module, and we have no choice but to define it to be zero. Then M () is zero too.

If you find this reasoning pedantic, you can take M((})) = {0} as an axiom. O

6.5 Some More Modules

6.5.1. kernel

As we have noted, many operations that one makes on modules over a ring are compatible with localization,
and therefore can be made on @-modules. However, for sections over a non-affine open set one must use the
sheaf property. The sections over a non-affine open set are almost never determined by an operation. The
kernel of a homomorphism is among the few exceptions.

6.5.2. Proposition. Let X be a variety, and let K be the kernel of a homomorphism of O-modules M — N,
so that the there is an exact sequence 0 — K — M — N. For every open subset Y of X, the sequence of
sections

(6.5.3) 0= KY)—=>MY) = NY)
is exact.

proof. We choose a covering diagram Y +— U, & Uy, and inspect the diagram

l | l

where the vertical maps are the difference maps Sy described in (6.4.10). The rows are exact because Uy
and U, are families of affines, and the sheaf property asserts that the kernels of the vertical maps form the
sequence (6.5.3). The sequence of kernels is exact because taking kernels is a left exact operation (2.1.20). O

The section functor isn’t right exact. When M — N is a surjective homomorphism of O-modules and
Y is a non-affine open set, the map M(Y) — N (Y) often fails to be surjective. There is an example below.
Cohomology, which will be discussed in the next chapter, is a substitute for right exactness.

6.5.4. modules on the projective line

The projective line P! is covered by the standard open sets U° and U?, and the intersection Ut = U° N U!
is a localization of U° and of U!. The coordinate algebras of these affine open sets are O(U°) = Ay = C[u,
O(UY) = A; = Clu™!], and O(U") = Ag; = Clu,u"!]. The form (6.4.12)) of the sheaf property asserts
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that a global section of O is determined by polynomials f(z) and g(z) such that f(u) = g(u™1) in Ap;.
The only such polynomials are the constants. So the constants are the only rational functions that are regular
everywhere on P. I think we knew this.

If M is an O-module, then My = M(U°) and M; = M(U") will be modules over the algebras Ay and
Ay, respectively. The Ag;-module M(U®) = My, will be obtained by localizing M and also by localizing
M. Letv = v~ L. Then

Mo[uil} ~ My ~ M, [Uﬁl]

As (6.4.12) tells us, a global section of M is determined by a pair of elements m; and mg in M; and Mo,
respectively, that become equal in the common localization Mj;. The next lemma shows that this data deter-
mines the module M.

6.5.5. Lemma. With notation as above, let My, My, and My, be modules over the algebras Ay, A1, and

Ao, respectively, and let Moy[u~"] #9% My, and M, [v™1] 24 Moy be Agy-isomorphisms. There is an

Ox-module M, unique up to isomorphism, such that M(U°) and M(U') are isomorphic to My and Mj,
respectively, and such that the diagram below commutes.

M(U®) —— M(U) «—— M(UY)

l l !

My —25% My, +2— M
The proof is at the end of this section.

Suppose that My and M; are free modules over Ay and A;. The common localization My, will be a free
Api-module. A basis By of the free Ag-module M, will also be a basis of the Ag;-module My, and a basis
B of M; will be a basis of My;. When regarded as bases of My, Bg and By will be related by an invertible
Api-matrix P, and as Lemma [6.5.5] tells us, that matrix determines M up to isomorphism. When M; have
rank one, P will be an invertible 1 x 1 matrix in the Laurent polynomial ring Ay, = Clu, u_l], a unit of that
ring. The units in Ap; are scalar multiples of powers of u. Since the scalar can be absorbed into one of the
bases, an O-module of rank 1 is determined, up to isomorphism, by a power of w. It is one of the twisting
modules that will be described below, in Section [6.8]

The Birkhoff-Grothendieck Theorem, which will be proved in Chapter 8] describes the O-modules on the
projective line whose sections on U° and on U* are free, as direct sums of free O-modules of rank one. This
means that by changing the bases By and B, one can diagonalize the matrix P. The changes of basis will
be given by an invertible Ap-matrix Q)¢ and an invertible A;-matrix ()1, respectively. In down-to-Earth terms,
the Birkhoff-Grothendieck Theorem asserts that, for any invertible Ag;-matrix P, there exist an invertible Ag-
matrix (o and an invertible A;-matrix ) , such that 1 PQ, is diagonal, and its diagonal entries are powers
of u. (]

6.5.6. tensor products

Tensor products are compatible with localization. If M and N are modules over a domain A and s is a
nonzero element of A, the canonical map (M ®4 N)s — M, ® 4, N, is an isomorphism (Corollary .
Therefore the tensor product M ®o N of O-modules M and N is defined. On an affine open set U, [M ®0
N](U) is the tensor product M(U) @0 )N (U).

Let M and NV be O-modules, let M @ N be the tensor product module, and let V' be an arbitrary open
subset of X. There is a canonical map

(6.5.7) M(V)@o(V)J\/(V) — M@0 N](V)

By definition of the tensor product module, this map is an equality when V' is affine. To describe the map for
arbitrary V', we cover V by a family Uy of affine open sets and form a diagram

MV)@oyN(V) — M(Up)@owgN(Ug) —2—= M(U1) @0, N (U1)
J- [ g
0 —— [M@oN](V) ——  [MeoN]|(U) —L— [MeoN|(Up)
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The family U; of intersections consists of affine open sets, as does Uy, so the vertical maps b and c are
equalities. The bottom row is exact, and the composition g f is zero. So f maps M(V)®@o )N (V) to the
kernel of g, which is equal to [M ®o N|(V). The map a is (6.5.7). When V isn’t affine, this map needn’t be
either injective or surjective.

6.5.8. Examples. These examples illustrate the failure of bijectivity of .
(i) Let p and ¢ be distinct points of the projective line X, and let x,, and x4 be the residue field modules on X.
Then ry(X) = kq(X) =C, 50 £p(X)R0(x)kq(X) = C®c C=C. Butk,®e kq = 0. The map
withV = X,

kip(X) ®o(x) kq(X) = [Kp ®0 kg](X)

is the zero map. It isn’t injective.

(ii) Let p a point of a variety X, and let m,, and x, be the maximal ideal and residue field modules at p. There
is an exact sequence of O-modules

(6.5.9) 0—my,— 05k, —0
In this case, the sequence of global sections is exact.

(iii) Let p and ¢ be the points (1,0) and (0, 1) of the projective line P1. We form a homomorphism
m, xm; - O

¢ being the map (a, b) — b — a. On the open set U°, m, — O is bijective and therefore surjective. Similarly,
m,, — O is surjective on U'. Since U° and U* cover P!, ¢ is surjective (6.4.6)(ii). The only global section of
m, X m, is zero, while O has the nonzero global section 1. The map on global sections determined by ¢ isn’t
surjective. (]

6.5.10. the function field module
Let F' be the function field of a variety X. The function field module F is defined as follows: The module

of sections F(U) on any nonempty open set U is the field F'. It is called a constant O-module because F(U)
is the same for every nonempty U. It won’t be a finite module unless X is a point.

Tensoring with the function field module: Let M be an O-module on a variety X, and let F be the function
field module. We describe the tensor product module M ®¢ F.

If U = Spec A is an affine open set and M = M(U), the module of sections of on U is the F-vector
space M ® 4 F. If S is the multipicative system of nonzero elements of A, then M ®4 F is the localization
MS~!. On a simple localization U, the module of sections will be M, ® A, F', which is the same as M @ 4 F,
because s is invertible in F'. The vector space M ® 4 F' is independent of the affine open set U. So M ®p F
is a constant @-module. If M is a torsion module, the tensor product M ®¢ F will be zero.

(6.5.11) O-modules on affine varieties

The next proposition shows that, on an affine variety Spec A, O-modules correspond to A-modules .

6.5.12. Proposition. Let X = Spec A be an affine variety. Sending an O-module M to the A-module
M(X) of its global sections defines a bijective correspondence between O-modules and A-modules.

proof. We must invert the functor O—(modules) — A—(modules) that sends M to M(X). Given an A-module
M, the corresponding O-module M is defined as follows: Let U = Spec B be an affine open subset of X.
The inclusion U C X corresponds to an algebra homomorphism A — B. We define M(U) to be the B-
module B ® 4 M. If s is a nonzero element of B, then B; ® 4 M is canonically isomorphic to the localization
(B®a M)s of B®4 M. Therefore M is an O-module, and M (X) = M.

Conversely, let M be an @-module such that M(X) = M. Then, with notation as above, the map M =
M(X) — M(U) induces a homomorphism of B-modules M ® 4 B — M (U). When U is a localization X
of X, so that B = A, both M ® 4 A, and M(X) are localizations of M, so they are isomorphic. Therefore
the module M is determined up to isomorphism. (]
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6.5.13. Example.

This example shows that, when an open set isn’t affine, defining M(V') = B ®4 M, as in the proof of
Proposition may be wrong. Let X be the affine plane Spec A, A = C[z, y], let V be the complement
of the origin in X, and let M be the A-module A/yA. This module can be identified with C[z], which
becomes an A-module when scalar multiplication by y is defined to be zero. Here O(V) = O(X) = A
(6.4.13). If we followed the method used for affine open sets, we would set M(V) = A®4 M = Clz]. To
identify M (V) correctly, we cover V by the two affine open sets X,, = Spec A{z~!] and X, = Spec A[y~!].
Then M(X,) = Mz~ '] = C[z, 2], while M(X,) = 0. The sheaf property of M shows that M(V) ~
M(X,) =Clz,z71]. O

(6.5.14) limits of O-modules

A directed set M, of modules over a ring R is a sequence of homomorphisms My — My — My — ---. Its
limit limy M, is the R-module whose elements are equivalence classes on the elements of the union J My, the

equivalence relation being that elements m in M; and m/ in M; are equivalent if they have the same image in
M,, when n is sufficiently large. An element of hﬂ M, will be represented by an element of M, for some <.

6.5.15. Example. Let R = C[z] and let m be the maximal ideal R. Repeated multiplication by x defines a
directed set
R“R>R-5R— -

Its limit is isomorphic to the Laurent polynomial ring R[z~!] = C[z, z~!]. O
6.5.16. A directed set of O-modules on a variety X is an infinite sequence My = { My = M1 = My —
-+ - } of homomorphisms of O-modules. For every affine open set U, the O(U)-modules M,, (U) will form a
directed set, as defined above. The direct limit lig/\/l. is defined simply, by taking the limit for each affine
open set: [h%m MJ(U) = lim [Mq(U)]. This limit operation is compatible with localization, so lim M, is
an O-module. In fact, the equality [hg M,(U) = lim [M(U)] will be true for every open set, not only for
affine open sets.

A map of directed sets of O-modules M, — N, is a diagram
M — My ——— -
Ny —— Ny —— -+

A sequence M, — N, — P, of maps of directed sets is exact if the sequences M; — N; — P; are exact for
every 1.

6.5.17. Lemma. (i) The limit operation is exact. If Mo — Ny — P, is an exact sequence of directed sets
of O-modules, the limits form an exact sequence.

(ii) Tensor products are compatible with limits: If N, is a directed set of O-modules and M is another

O-module, then lim [M @0 N,| & M @0 [lim N]. O

(6.5.18) the module of homomorphisms

Let M and N be modules over a ring A. The set of homomorphisms M — N, which is often denoted
by Homy (M, N), becomes an A-module with some fairly obvious laws of composition: If ¢ and 1) are
homomorphisms and a is an element of A, then ¢+ and ayp are defined by

(6.5.19) [p+4](m) = p(m) +¢(m) and  [ag](m) = ap(m)

Because ¢ is a module homomorphism, it is also true that ¢(mj +ms) = @(m1) + @(ms), and that
ap(m) = p(am).
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6.5.20. Lemma. (i) An A-module N is canonically isomorphic to the module Hom 4 (A, N'). The homomor-
phism A 5 N that corresponds to an element v of N is multiplication by v: p(a) = av. The element of N
that corresponds to a homomorphism A 2+ N is v = ¢(1).

(i) Hom (A, N) is isomorphic to N*, and Hom (A, AY) is isomorphic to the module A% of k x ¢

A-matrices. O

6.5.21. Lemma. As a functor in two variables, Hom 4 is left exact and contravariant in the first variable:

For any A-module N, an exact sequence M, — M, LN Mz — 0 of A-modules induces an exact sequence
0 — Homu(Ms, N) =% Hom a4 (Ma, N) =% Homa(My, N)

Hom 4 is left exact and covariant in the second variable. O

6.5.22. Corollary. If M and N are finite A-modules over a notherian ring A, then Hom (M, N) is a finite
A-module.

proof. Because M is finitely generated, there is a surjective map A* — M, which gives us an injective map
Hom (M, N) — Hom4(A*, N) = N*. So Hom 4 (M, N) is isomorphic to a submodule of the finite module
N*. Therefore it is a finite module. O

6.5.23. Lemma. Let M and N be modules over a noetherian domain A, and suppose that M is a finite
module. Let s be a nonzero element of A. The localization (Hom A(M,N ))5 is canonically isomorphic to
Hom g, (Mg, Ny). The analogous statement is true for localization by a multiplicative system S.

proof. Since Homy (A, M) ~ M, it is true that (Homa (A4, M))s ~ My ~ Homy_(As, M) and that
(Hom4 (A%, M))s ~ MF ~ Hom 4 (A¥, M).

We choose a presentation A — A* — M — 0 of the A-module M (2.1.21). Its localization A% — A* —
M, — 0, is a presentation of the Ag-module M,. The sequence

0 — Hom 4 (M, N) — Hom 4 (A*, N) — Hom4 (A", N)

is exact, and so is its localization. So the lemma follows from the case that M = A*. O

This lemma shows that, when M and A are finite O-modules on a variety X, an O-module of homo-
morphisms M — N is defined. This O-module may be denoted by Hom, (M, N). When U = Spec A
is an affine open set, M = M(U), and N = N(U), the module of sections of Hom (M, N) on U is the
A-module Hom 4 (M, N).

The analogues of Lemma[6.5.20|and lemma [6.5.21] are true for Hom:

6.5.24. Corollary. (i) An O-module M on a smooth curve Y is isomorphic to Hom (O, M).

(ii) The functor Hom is left exact and contravariant in the first variable, and it is left exact and covariant in
the second variable. (]

6.5.25. Note. The notations Hom and Hom are cumbersome as well as confusing. It seems permissible to
drop the symbol Hom, and to write 4(M, N) for Hom 4 (M, N). Similarly, if M and M are O-modules on a
variety X, we may write o(M, ') or x(M, N') for Hom, (M, N).

(6.5.26) the dual module

Let M be a locally free O-modules on a variety X. The dual module M* is the O-module of homo-
morphisms M — O: M* = o(M,O). A section of M* on an affine open set U is an O(U)-module
homomorphism M(U) — O(U). The dualizing operation is contravariant. A homomorphism M — N of
locally free O-modules induces a homomorphism M* < N*.

The dual O* of the structure sheaf O is O. If M is a free module with basis v, ..., vg, then M* is also
free, with the dual basis vy, ..., v}, defined by

vi(v;) =1 and o] (v;)=01if i#j

When M is locally free, M* is also locally free.

148

Nequal-
sHom

homfinite

homfinitetwo

localize-
Hom

leftexco

dropHom

dualmod



bidualm

dualseq

directim-
age
affinemorph

6.5.27. Corollary. (i) Let M and N be locally free O-modules. The module o(M,N') of homomorphisms is
canonically isomorphic to the tensor product M* Qo N.

(ii) A locally free O-module M is canonically isomorphic to its bidual: (M*)* ~ M.
(iii) If M and N are locally free O-modules, the tensor product M*@o N * is isomorphic to (M @oN)*.

proof.(i) We identify A" with the module (O, ) (6.5.24). Given sections ¢ of M* = (M, O) and 7 of
N = o(0,N), the composition y¢ is a homomorphism M — N, a section of (M, N). This composition
is bilinear, so it defines a map M* @ N — (M, N). To show that this map is an isomorphism is a local
problem, so we may assume that Y = Spec A is affine and that M and A are free modules of ranks k an £,
respectively. Then both M* @0 A and o (M, N) are the modules of k x ¢ matrices with entries in A. O

6.5.28. Proposition. Let X be a variety.

@) Let P i> N L5 P be homomorphisms of O-modules such that the composition g f is the identity map
P — P. So f is injective and g is surjective. Then N is the direct sum of the image of f, which is isomorphic
to P, and the kernel K of g: N ~P & K.

(ii) Let 0 = M — N — P — 0 be an exact sequence of O-modules. If P is locally free, the dual modules
form an exact sequence 0 — P* — N* — M* — 0.

proof. (i) This follows from the analogous statement about modules over a ring.

(ii) The sequence 0 — P* — N* — M* is exact whether or not the modules are locally free (ii).
The zero on the right comes from the fact that, when P is locally free, there is an affine covering on which it
is free. When P is free, the given sequence splits: N is isomorphic to M & P (2.1.22). Therefore the map
N* — M* is locally surjective. O

6.5.29. proof of Proposition [6.5.5]

With notation as in the statement of the proposition, we suppose given modules My, M; and an isomor-
phism Mo[u~=1] — M;[v~]. We are to show that this data comes from an O-module M. Proposition
shows that M, defines O-modules M, on U? for ¢ = 0,1, and the restrictions of Mg and M; to UYL are
isomorphic. Let’s denote all of these modules by M. Then M is defined on any open set that is contained in
U° orin UL

Let V be an arbitrary open set V, and let Vi=VNU, fori=0,1,01. We define M(V) to be the kernel
of the map [M(V?) x M(V1)] — M(V'). With this definition, M becomes a functor. We must verify
the sheaf property, and the notation gets confusing. We suppose given an affine covering {WW"} of V. We
denote this covering by W, and we denote {W* N WH#} by W7, so that the corresponding covering diagram
sV« Wy &= Wi

For+=0,1,01, let Wé = WyNU"and Wi = W; N U’. We form a diagram

0 0 0
0 —— M(V) — M(Wy) — M(W1)

! l

0 —— MVHYXM((VY) —— M(W)XxM(W}) —— M(W)x M(WH)

! I

0 —— M(VOL) N MW _ M(WI)

The columns are exact by our definition of M, and the second and third rows are exact because the open sets
involved are contained in U° or U'. Since kernel is a left exact operation, the top row is exact too. This is the
sheaf property. (]

6.6 Direct Image

(6.6.1)  affine morphisms
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6.6.2. Definition. An affine morphism is a morphism Y’ L X of varieties with the property that the inverse
image f~!(U) of every affine open subset U of X is an affine open subset of Y. O

The following are examples of affine morphisms:

« the inclusion of an affine open subset Y into X,
« the inclusion of a closed subvariety Y into X,
« a finite morphism, an integral morphism.

However, if Y is the complement of a point of the projective plane X, the inclusion of Y into X isn’t an affine
morphism.

As one sees from these examples, affine morphisms form a rather miscellaneous collection. However, the
concept is convenient.

6.6.3. Definition. Let Y — X be an affine morphism and let A/ be an Oy -module. The direct image f N
of \V is the O x-module such that if U is an affine open subset of X and V is its inverse image in Y, then

[fNIU) = N(V), or, [£N)(U) = N(f710).de., [AN](U) = N(f710).

The direct image generalizes restriction of scalars in modules over rings. Recall that, if A —~5 Bisan
algebra homomorphism and g N is a B-module, one can restrict scalars to make N into an A-module. Scalar
multiplication by an element a of A on the restricted module 4 N is defined to be scalar multiplication by the
image ¢(a) of a.

6.6.4. Lemma. Let Y X, with X = Spec A andY = Spec B, be the morphism defined by an algebra

homomorphism A 25 B. If N is the Oy -module determined by the B-module gN, its direct image f N is
the O x -module determined by the A-module s N. O

6.6.5. Lemma. LetY Ly X be an affine morphism of varieties, and letN be an Oy -module. The direct
image f.N is an Ox-module.

proof. Let U’ — U be an inclusion of affine open subsets of X, and let V = f~'U and V' = f~'U’. These
inverse images are affine open subsets of Y. The inclusion V' — V gives us a homomorphism A (V) —
N (V’), and therefore a homomorphism f, N (U) — f.N(U’). Composition with f defines a homomorphism
Ox(U) = Oy (V), and N (V) is an Oy (V)-module. Restriction of scalars to Ox (U) makes [f.N](U) =
N (V) into an Ox (U)-module.

To verify that f, N is an O x-module, one must show that if U is an affine open subset of X and s is a
nonzero element of Ox (U), then [f.N](Us) is obtained by localizing [f.N](U). Let V be the inverse image
of U and let s’ be the image of s in Oy (V). Then [f.N](Us) = N (Vi) = N(V)y, provided that s” # 0. If
s" = 0, then both f.N](Us) and N (Vy/) will be zero. O

It isn’t difficult to extend the definition of direct image to an arbitrary morphism of varieties, but since we
will use direct images only for affine morphisms, we leave the extension as an exercise.

6.6.6. Lemma. Ler Y 5 X be an affine morphism and let N' — N’ — N’ be an exact sequence of
Oy -modules. The direct images form an exact sequence of Ox -modules f N — f N — f N". O

6.6.7. Lemma. Direct images are compatible with limits: If Mg is a directed set of O-modules, then

lim (£ M) ~ f.(lig M) O

Two important cases of direct image will be that f is the inclusion of a closed subvariety or an affine open
subvariety. We discuss those special cases now.

(6.6.8) extension by zero — the inclusion of a closed subset

When Y —- X is the inclusion of a closed subvariety into a variety X and A is an Oy -module, the direct
image .V is also called the extension of N by zero. If U is an affine open subset of X then, because 7 is an
inclusion map, i~1U = U NY. Therefore
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L N](U) = N(UNY)

The term “extension by zero” refers to the fact that, when an affine open set U of X doesn’t meet Y, the
intersection UNY" is empty, and the module of sections of [¢..N](U) is zero. So 4. is zero on the complement
of Y.

6.6.9. Examples.

(i) Letp —“y X be the inclusion of a point into a variety. When we view the residue field k(p) as a module
on the point p, its extension by zero is the residue field module «,,.

(ii) LetY —*% X be the inclusion of a closed subvariety, and let Z be the ideal of Y in Oy . The extension by
zero of the structure sheaf on Y fits into an exact sequence of O x-modules

0—-7Z—0x —i,0y =0

So i, Oy is isomorphic to the quotient module Ox /Z. ]

6.6.10. Proposition. Let Y Yy X be the inclusion of a closed subvariety Y into a variety X, and let I be
the ideal of Y. Let . denote the subcategory of the category of Ox-modules s that are annihilated by 7.
Extension by zero defines an equivalence of categories

Oy —modules N4

proof. Let U be an affine open subset of X. The intersection U NY = V is a closed subvariety of U. Let o be
a section of i, N (U) ( = N(V)). Scalar multiplication on i, is defined by restriction of scalars from Ox
to it quotient Oy-. If £ is a section of Ox on U and f is its restriction to V, then fa = fa. If £ is in Z(U),
then f = 0 and therefore foo = fa = 0. So the extension by zero of an Oy -module is annihilated by Z. The
direct image i, is an object of .Z .

To complete the proof, we construct an inverse to the direct image. Starting with an O x-module M that
is annihilated by Z, we construct an Oy--module A such that 3, is isomorphic to M.

Let V' be an open subset of Y. The topology on Y is induced from the topology on X, soV = X3 NY
for some open subset X7 of X. We try to set N'(V) = M(X7). To show that this is well-defined, we show
that if X is another open subset of X and if V' = X, NY, then M(X3) is isomorphic to M(X;). Let
X3 = X1 N Xo. Then it is also true that V' = X3 NY. Since X3 C X3, we have a map M (X;) - M(X3).
It suffices to show that this map is an isomorphism, because the same reasoning will give us an isomorphism
M(XQ) — M(X?,)

The complement U = X;—V of V in X is an open subset of X; and of X, and U NY = (). We cover U
by a set {U*} of affine open sets. Then X is covered by the open sets {U*} together with X3. The restriction
of Z to each of the sets U’ is the unit ideal, and since Z annihilates M, M (U?) = 0. The sheaf property
shows that M (X) is isomorphic to M (X3).

The rest of the proof, checking localization and verifying that N is determined up to isomorphism, is
boring. (|

(6.6.11) inclusion of an affine open subset

Let Y -5 X be the inclusion of an affine open subvariety Y into a variety X.

Before going to the direct image, we mention a rather trivial operation, the restriction of an O x- module
from X to Y. By definition, the sections of the restricted module on a subset U of Y are simply the elements of
M(U). This makes sense because open subsets of Y are open subsets of X too. We can use subscript notation
for restriction, writing M+ for the restriction of an O x-module M to Y, and denoting the given module M
by M x when that seems advisable for clarity. If U is an open subset of Y,

(6.6.12) My (U) = Mx(U)

This subscript notation is permissible becuse the restriction of the structure sheaf Ox to the open set Y is the
structure sheaf Oy on Y.
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Now the direct image: Let Y 4 X be the inclusion of an affine open subvariety Y, and let A/ be an
Oy-module. The inverse image of an open subset U of X is the intersection Y N U, which is affine. So by
definition, the direct image j, N s defined by

NIU) = N(Y NU)

For example, [j.Oy](U) is the algebra of rational functions on X that are regularon Y N U.

6.6.13. Example. Let X —25 X be the inclusion of a localization X into an affine variety X = Spec A.
Modules on X correspond to their global sections, which are A-modules. Similarly, modules on X, correspond
to As-modules. When we restrict the O x-module M x that corresponds to an A-module M to the open set
X, we obtain the Ox_-module M x, that corresponds to the As-module M. The module M is also the
module of global sections of j.Mx_ on X:

def

[ Mx J(X) = Mx, (Xs) = M,

The localization My is made into an A-module by restriction of scalars. O

6.6.14. Proposition. Let Y 2 X be the inclusion of an affine open subvariety Y into a variety X.

(i) The restriction Ox-modules — Oy -modules is an exact operation.

(ii) The direct image functor j, is exact.

(iii) Let M = M x be an O x-module. There is a canonical homomorphism from M x to the direct image of
its restriction: Mx — j«[My].

(iv) Let N be an Oy -module. The restriction of the direct image j.N toY is equalto N': [j.N]y = N.

proof. (ii) Let U be an affine open subset of X, and let M — N — P be an exact sequence of Oy -modules.
The sequence j,M(U) — j N(U) — 5. P(U) is the same as the sequence M(UNY) - N({UNY) —
P(U NY), though the scalars have changed. Since U and Y are affine, U N'Y is affine. By definition of
exactness, this sequence is exact.

(iii) Let U be open in X. Then j,My (U) = MU NY). SinceUNY C U, M(U) maps to M(U NY).
(iv) An open subset V of Y is also open in X, and [j.N]y (V) = [j.N](V) =NV NY) =N (V). O

6.6.15. Example. Let X = P, and let j denote the inclusion of the standard affine open subset U° into X.
The direct image j.Oyo is the algebra of rational functions that are allowed to have poles on the hyperplane at
infinity. The inverse image of an open subset W of X is its intersection with U%: j ='W = W N U, and the
sections of the direct image j,Opo on an open subset W of X are the regular functions on W N U°:

[1: O] (W) = O (W NT°) = Ox(WNTY)

Say that we write a rational function « on X as a fraction g/h of relatively prime polynomials. Then « is a
section of Ox on W if h doesn’t vanish at any point of W, and « is a section of [j.Oyo] on W if h doesn’t
vanish on W N U°. Arbitrary powers of x( can appear in the denominator of a section of j,Oypo. O

6.7 Support

Annihilators. Let M be a module over a ring A. The annihilator I of an element m of M is the set of
elements o of A such that m = 0. It is an ideal of A that is often denoted by ann(m). The annihilator of
an A-module M is the set of elements of A such that aM = 0. It is an ideal too.

Support. Let A be a finite-type domain and let X = Spec A. The support of a finite A-module M is the locus
C = V(1) of zeros in X of its annihilator I, the set of points p of X such that p € C, or I C m, (2.4.2). The
support of a finite module is a closed subset of X.

The next lemma allows us to extend the concepts of annihilator and support to finite O-modules on a
variety X.
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6.7.1. Lemma. Let X = Spec A be an affine variety, let I be the annihilator of an element m of an A-module
M, and let s be a nonzero element of A. The annihilator of m in the localized module M, is the localized
ideal 1. If M is a finite module with support C, the support of M is the intersection C'N X of C with X. [

If 7 is the annihilator of a finite O-module M on a variety X, the support of M is defined to be the closed
subset V' (Z) of zeros of the ideal. For example, the support of the residue field module &, is the point p. The
support of the maximal ideal m,, at p is the whole variety X.

(6.7.2)  O-modules with support of dimension zero

6.7.3. Proposition. Let X be a variety.

(i) Suppose that the support of a finite O-module M is a single point p, let M = M(X), and let U be an
affine open subset of X. If U contains p, then M(U) = M, and if U doesn’t contain p, then M(U) = 0.
(ii) (Chinese Remainder Theorem) If the support of a finite O-module M is a finite set {p1, ..., p}, then M is
the direct sum My & - - - & My, of O-modules supported at the points p;.

proof. (i) Let Z be the annihilator of an O-module M with support p. The locus V' (Z) is the support p. If p
isn’t contained in U, then when we restrict M to U, we obtain an Oy -module whose support is empty. So
Z(U) is the unit ideal, and the restriction of M to U is the zero module.

Next, suppose that p is contained in U, and let V' denote the complement of p in X. We cover X by a finite
set {U'} of affine open sets such that U = U!, and such that U* C V if i > 1. By what has been shown,
M(U?) = 0if i > 0. The sheaf axiom for this covering shows that M(X) ~ M(U). O

Note. If ¢ denotes the inclusion of a point p into a variety X, it is natural to suppose that an O-module M
supported at p will be the extension by zero of a module on the point p (a vector space). However, this won’t
be true unless M is annihilated by the maximal ideal m,,. ]

6.8 Twisting
The twisting modules that we define here are among the most important modules on projective space.

As before, a homogeneous fraction of degree n in x, ..., T, is a fraction g/h of homogeneous polynomials,
such that deg g — deg h = n. When g and h are relatively prime, the fraction g/h is regular on an open subset
V of P} if and only if h isn’t zero at any point of V.

The definition of the twisting module O(n) is this: The sections of O(n) on an open subset V' of P" are
the homogeneous fractions of degree n that are regular on V. In particular, O(0) = O.

6.8.1. Proposition.

(i) Let V be an affine open subset of P™ that is contained in the standard affine open set U°. The sections of the
twisting module O(n) on'V form a free module of rank one with basis x{}, over the coordinate algebra O(V').

(ii) The twisting module O(n) is an O-module.

proof. (i) Let V be an open set contained in U, and let & = g/h be a section of O(n) on V, with g, h relatively
prime. Then f = az;" has degree zero. It is a rational function. Since V' C U°, x, doesn’t vanish at any
point of V. Since « is regular on V/, f is a regular function on V, and o = fzy.

(ii) It is clear that O(n) is a contravariant functor. We verify compatibility with localization. Let V' = Spec A
be an affine open subset of X and let s be a nonzero element of A. We must show that [O(n)](V;) is the
localization of [O(n)](V). We must show that, if 3 is a section of O(n) on Vj, then s*§ is a section on V'
when k is sufficiently large.

We cover V by the affine open sets V' = V N U?. It suffices to show that s*3 is a section on V' for every
i. For the case i = 0, we apply (i). Since V? is contained in U°, 3 can be written uniquely in the form fz7,
where f is a regular function on V and n is an integer. Then s* f is a regular function on V° when k is large,
and then s*a = s* fz is a section of O(n) on V. The analogous statement is true for every index i. g

As part (i) of the proposition shows, O(n) is quite similar to the structure sheaf. However, O(n) is only
locally free.
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6.8.2. Proposition. When d > 0, the global sections of the twisting module O(n) on P™ are the homogeneous
polynomials of degree n. When n < 0, the only global section of O(n) is the zero section.

proof. A nonzero global section u of O(n) will restrict to a section on the standard affine open set UY. Since
elements of O(U®) are homogeneous fractions of degree zero whose denominators are powers of x¢, and since
[O(n)](UY) is a free module over O(UY) with basis zd, we will have u = g/zk for some some homogeneous
polynomial g not divisible by xy and some k. Similarly, restriction to U' shows that u has the form g1 /z%. It
follows that k = ¢ = 0 and that u = gg. Since u has degree n, so does gg. O

6.8.3. Examples.

(i) The product uv of homogeneous fractions of degrees r and s is a homogeneous fraction of degree r+ s,
and if u and v are regular on an open set V, so is their product wv. Multiplication defines a homomorphism of
O-modules

(6.8.4) O(r)® O(s) = O(r+s)

(ii) Multiplication by a homogeneous polynomial f of degree n defines an injective homomorphism

(6.8.5) O(k) L O(k+n) .

The twisting modules O(n) on projective space P? have a second interpretation. They are isomorphic to
the modules that we denote by O(nH ), of rational functions with poles of order at most n on the hyperplane
H : {z¢ = 0} at infinity.

By definition, the sections of O(nH) on an open set V' are the rational functions f such that x f is a
section of O(n) on V. Thus multiplication by x{} defines an isomorphism

(6.8.6) O(nH) 225 O(n)

If f is a section of O(nH) on an open set V, and if we write f as a homogeneous fraction g/h of degree
zero, with g, h relatively prime, the denominator h may have xlg, with k < n, as factor. The other factors of h
cannot vanish anywhere on V. If f = g/h is a global section of O(nH), then the denominator /4 has the form
czk, with ¢ € C and k < n. A global section of O(nH) can be represented as a homogeneous fraction g/z§
of degree zero.

Since 1 doesn’t vanish at any point of the standard open set U?, the sections of O(n.H) on an open subset
V of U° are simply the regular functions on V. Using the subscript notation (6.6.11) for restriction to an open
set,

(687) O(TLH)[UO = O[UO

Let V be an open subset of one of the other standard affine open sets, say of U'. The ideal of H N U in
U? is the principal ideal generated by vy = xo/z1, and the element vy generates the ideal of H NV in V too.
If f is a rational function, then because x; doesn’t vanish on UL, the function fvg will be regular on V' if and
only if the homogeneous fraction fx{ is regular there, i.e., if an only if f is a section of O(nH) on V. We say
that such a function f has a pole of order at most n on H because v, generates the ideal of H in V.

The isomorphic @-modules O(n) and O(nH) are interchangeable. The twisting module O(n) is often
better because its definition is independent of coordinates. On the other hand, O(nH) can be convenient
because its restriction to U is the structure sheaf.

6.8.8. Proposition. LetY be a hypersurface of degree n in P", the zero locus of an irreducible homogeneous
polynomial f of degree n. Let T be the ideal of 'Y, and let O(—n) be the twisting module. Multiplication by

f defines an isomorphism O(—n) Sz
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proof. We choose coordinates so that f isn’t isn’t divisible by any of the coordinate variables ;.
If cis a section of O(—n) on an open set V, then fo will be a regular function on V' that vanishes on YNV

Therefore the image of the multiplication map O(—n) L, O is contained in the ideal Z. The multiplication
map is injective because C[xo, ..., ] is a domain. To show that it is an isomorphism, it suffices to show that
its restrictions to the standard affine open sets U are surjective (6.4.6). We work with U°, as usual.

Because zo desn’t divide f, Y N U will be a nonempty, and therefore dense, open subset of Y. The
sections of O on U° are the homogeneous fractions g/zk of degree zero. Such a fraction is a section of Z on
UV if and only if g vanishes on Y N U, If so, then since Y N U is dense in Y and since the zero set of g is
closed, g will vanish on Y, and therefore it will be divisible by f: ¢ = fq. The sections of Z on U° have the

form fq/xk. They are in the image of the map O(—n) N d
The proposition has an interesting corollary:

6.8.9. Corollary. When regarded as O-modules, the ideals of all hypersurfaces of degree n are isomorphic.

(6.8.10) twisting a module

6.8.11. Definition Let M be an O-module on projective space P4, and let O(n) be the twisting module.
The (nth) twist of M is defined to be the tensor product M(n) = M ®p O(n). Similarly, M(nH) =
M ®@o O(nH). If X is a closed subvariety of P? and M is an O x-module, M(n) and M(nH) are obtained
by twisting the extension of M by zero. (See the equivalence of categories (6.6.10).)

Since z7 is a basis of O(n) on U, a section of M(n) on an open subset V of UY can be written in the
form oo = m ® g, where g is a regular function on V and m is a section of M on V' (6.8.1). The function
g can be moved over to m, so « can also be written in the form o = m ® (. This expression for « is unique
because the operation of tensoring with xg is injective.

The modules O(n) and O(nH) form directed sets that are related by a diagram
0O —S— OH) —=— O@2H) —S— ...
(6.8.12) H Il ll
0o 25 01 25 002 — -

In this diagram, the vertical arrows are bijections and the horizontal arrows are injections. The limit of the
upper directed set is the module whose sections on an open set V' are rational functions that can have arbitrary
poles on H NV, and are otherwise regular. This is also the module j,Oyo, where j denotes the inclusion of
the standard affine open set U° into X (see (iii)):

(6.8.13) lim, O(nH) = j.Ogo

Tensoring (6.8.12)) with M give us the diagram

M— MH) —— MQ2H) —— ---
(6.8.14) H Ioi mgl
M 2B M) A2 M@2) —— -

The vertical maps here are bijective, but because M may have torsion, the horizontal maps needn’t be injective.
Let U = UY. Since tensor products are compatible with limits,

(6.8.15) limy, M(nH) UM R0 (lgnO(nH)) ~ M ®o j+Ou 2 My

The isomorphism (1) comes from the fact that tensor produts are compatible with limits, and (2) is part (ii) of
the next lemma.
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6.8.16. Lemma. Let M be an O-module on P*, and let j be the inclusion of U = U°.

(i) For every k, the restriction of M(kH) to U is the same as the restriction of M, which is My, and the
restriction of j. My to U is also My. The restriction of the map M(kH) — j.(Muy) to U is the identity map.

(ii) The direct image j. My is isomorphic to M ¢ j.Ovy.

proof. (i) Because H N U is empty, the restrictions of M (kH) and M to U are equal. The fact that the
restriction of j,. My is also equal to My is Proposition [6.6.14|(iv).

(ii) Suppose given a section of M ®¢ j.Oy of the form o ® f on an open set V, where « is a section of M
on V and and f is a section of 5,Oy on V, a regular function on V N U. We denote the restriction of « to
V' N U by the same symbol a.. Then af will be a section of M on V' N U and therefore a section of j, My
on V. The map (¢, f) — af is O-bilinear, so it corresponds to a homomorphism M ®¢ j.Oy — j.My.
To show that this homomorphism is an isomorphism, it suffices to verify that it restricts to an isomorphism
on each of the standard affine open sets U?. The restrictions of M ®¢ j,Oy and j, My to U are both equal
to My. So that case is trivial. We look at U'. On that open set, [j.My](U') = M(U"), and with vy =
zo/r1, [j.0v](UY) = O(UY) = O(UY)[v, !]. By definition of the tensor product, [M®¢ j.Opo](U') =
M(U1)®O(U1)O(U01) and

MUY ®ow) O(U*) = M(U)[v5 '] = M(U*) = [jMu](U") O

(6.8.17) generating an O-module

A set of global sections m = (my, ..., my) of an O-module on a variety X defines a map
(6.8.18) oF s M

that sends a section (a, ..., ) of OF on an open set to the combination > a;m;. The global sections
ma, ..., my are said to generate M if this map is surjective. If the sections generate M, then they (or to be
precise, their restrictions), generate the O(U)-module M (U) for every affine open set U. When U isn’t affine,
they may fail to generate M (U).

6.8.19. Example. Let X = P!. For n > 0, the global sections of the twisting module O(n) are the polyno-

mials of degree n in the coordinate variables xq, 1 . Consider the map O & O (xﬂf) O(n). On TO,
O(n) has basis 3. Therefore the map is surjective on UY. Similarly, it is surjective on U'. So it is a surjective
map on all of X (6.4.6). The global sections z}, 27 generate O(n). However, the global sections of O(n)
are the homogeneous polynomials of degree n. When n > 1, the two sections z, ] don’t span the space of
global sections. (]

The next theorem explains the importance of the twisting operation.

6.8.20. Theorem. Let M be a finite O-module on a projective variety X. For sufficiently large k, the twist
M(k) is generated by global sections.

proof. We may assume that X is the projective space P™. We are to show that if M is a finite O-module, and
k is sufficiently large, M (k) is generated by its global sections. It suffices to show that for each i = 0, ..., n,
the restrictions of the global sections generate the O(U?)-module [M (k)](U?) (6.4.6). We work with the index
1 =0.

We replace M (k) by the isomorphic module M (kH). Recall that the maps limpM(kH) = j.Myo
(6.8.15) and that the M(kH) — j.Mypo restrict to bijections on U° for every k (6.8.16|(i)).

k

We have maps M B2 M(kH) — j.Myo, that are isomorphisms on UY. Let 49 = O(U°) and
My = M(U°). Then My is a finite Ag-module because M is a finite O-module. We choose a finite set of
generators my, ..., m,. for the Ag-module M. The elements of My, and in particular, the chosen generators, are
global sections of j,Myo. Since hﬂkM(kH ) = j«Myo, they are represented by global sections m/, ..., m/..
of M(kH) when k is large. The restrictions of M(kH) and M to Uy are equal , and the restrictions
of m/; to U is equal to the restriction of m;. So the restrictions of m/, ..., m/. generate My too. Therefore M,
is generated by global sections of M (kH ), as was to be shown. O
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6.9 Extending a Module: proof

We prove Theorem [6.4.2) here.
The statement to be proved is that an O-module M on a variety X has a unique extension to a functor

(opens) M, (modules)

with the sheaf property (6.4.3)), and that a homomorphism of O-modules M — AN has a unique extension to a
homomorphism M — A.

The proof has the following steps:

1. Verification of the sheaf property for a covering of an affine open set by localizations.
Extension of the functor M to all morphisms between affine open sets.
3. Definition of M.

Step 1. the sheaf property for a covering of an affine open set by localizations

Suppose that an affine open subset Y = Spec A of X is covered by a family of localizations Uy =
{Us, }, and let M be an O-module. Let M, M;, and M;; denote the modules of sections M(Y"), M(Us,),
and M(Us,s, ), respectively. The exact sequence that expresses the sheaf property for the covering diagram
Y +— Uy & U, becomes

6.9.1) 0— M -5 [[ M 2 T My

where a sends an element m of M to the vector (m, ..., m) of its images in [ ], M;, and the difference map
sends a vector (my, ...,my) in [ [, M; to the matrix (z;;), with z;; = m; — m; in M;; (6.4.5). We must show
that the sequence (6.9.1)) is exact.

exactness at M: Since the open sets U? cover Y, the elements sq, ..., 5j generate the unit ideal. Let m be
an element of )M that maps to zero in every M;. Then there exists an n such that sim = 0, and we can
use the same exponent n for all . The elements s]* generate the unit ideal. Writing Y a;s!" = 1, we have
m=> a;stm=>3 a,0=0.

exactness at | [ M;: Let m; be elements of M, such that m; = m,; in M;; for all ¢, j. We must find an element
w in M that maps to m; in M; for every j.

We write m; as a fraction: m; = s; "x;, or x; = s}'m;, with ; in M, using the same integer n for all <.
The equation m; = m; in Mj; tells us that sj'z; = s7'a; in M;;. Since M;; is the localization M|(s;s;) "]
(sisj)"spxj = (sis;)"s}w; will be true in M, if r is large.

The exponents here confuse the argument, so we adjust the notation. Let Z; = s} z;, and 5; = s;ur”. Then
in M, z; = s;m;ands;z; = 5;2;. The elements s; generate the unit ideal. So there is an equation in A, of
the form Z a{s“i =1.

Let w = ) a;T;. This is an element of M, and
Ej = (Zal@)fj = Z aigjfi = ij
i i
1

So z; = s;w and also £; = s;m;. Since s; is invertible on U, w= 5]_ Z; = my, in M;. Since j is
arbitrary, w is the required element of M. (]

Step 2. extending an O-module to all morphisms between affine open sets

The O-module M comes with localization maps M(U) — M (Us). It doesn’t come with homomorphisms
M(U) = M(V)when V — U is an arbitrary inclusion of affine open sets. We define those maps here.

Let M be an O-module and let V' — U be an inclusion of affine open sets. To describe the homomorphism
M(U) — M(V), we cover V by a family Vo = {V'! ..., V"} of open sets that are localizations of U and
therefore also localizations of V. Then V¥ are localizations of V' and of V7. So we have a covering diagram
Vi = Vy — V. Composing with the map V' — U gives us a map Vo — U such that the two maps
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V; — U obtained by composition are equal. Therefore image of the map M(U) — V(U) is contained in

the kernel of the difference map M (V) N M(V1), and by Step 1, that kernel is M (V). This defines the
map M(U) — M(V). We must show that it is independent of the choice of the covering V.

One can go from one affine covering to another in a finite number of steps, each of which adds or deletes
a single affine open set. So to prove independence of the map M(U) — M (V') defined above, it suffices to
relate V to the family Wy = {V1, ..., V" W} obtained by adding one localization W of U to the covering
V. Let W, be the family of intersections of pairs of elements of W. The inclusion Vo C W, defines a map
M(Vy) = M(Wy), and similarly, we have a map M (V1) — M(W7y). This gives us a diagram

MU) —— M(Vy) -2 M(V))

(6.9.2) H al ”l

MU) —— M(Wy) -2y M(W))
in which M(U) is mapped to the kernels of Sy and Sw, both of which are equal to M(V'). Looking at the
diagram, one sees that the maps M(U) — M (V') defined using the two coverings V and W, are the same.

To show that this extended functor has the sheaf property for an arbitrary affine covering Vo = {V?} of an
affine variety U, we let W be the affine covering of U that is obtained by covering each V* by localizations
of U. We substitute the covrings V,; and W, into the diagram (??), and add zeros on the left to each row of the
diagram. The sheaf property to be verified is that the top row of this diagram is exact. Since Wy, is an affine
covering of the affine variety U, the bottom row is exact. Because W covers V3, W covers V; as well. So
the maps a and b are injective. It follows that the top row is exact.

Step 3. definition of M

We introduce some temporary notation: Suppose that a covering diagram U < U, &= U; and an O-

module M are given, and let M(Uj) LN M(Uy) be the difference map (6.4.10). We denote the kernel of
fu by Ku.

Let Y be an open subset of X. We define M (Y) in a fairly obvious way: We choose an affine covering
Vo = {V!,..V"} of Y, and we define M(Y) = Kvy. When we show that Ky doesn’t depend on the
covering V), it will follow that Mis well-defined, and that it has the sheaf property.

As explained in Step 2, it suffices to relate the covering V to a covering Wy = {V! ..., V" W} that is
obtained by adding one affine open subset W of Y to Vy. The inclusion Vo C W, defines a map M(Vy) —
M(Wy), and amap M (V1) = M(W). It gives us a map Kw — Ky. We will show that, for any element
(v1,...,v,) in the kernel Ky, there is a unique element w in M (W) such that (vy, ..., v,, w) is in the kernel
Kw . This will show that Kvw and K+ are isomorphic.

LetW!=ViNW, i=1,..,r. Since Vy is an affine covering of Y, Wy = {W*} is an affine covering
of W. Let w; denote the restriction of the section v; to W*. Since (v1,...,v,) is in the kernel of By, ie.,
v; = v; on V. Then it is also true that w; = w; on the smaller open set W*. So (wy, ..., w,) is in the kernel
Kw, and since Wy, is an affine covering of the affine variety W, Step 2 tells us that Kyy = M (W). So there
is a unique element w in M (W) that restricts to w; on W for each i. We show that, with this element w,
(v1, ..., U, w) is in the kernel of Bw.

When the subsets in the family W are listed in the order

W, ={VinVi}l,; {WnVvi}; {VinWw}, {WnWw}

the difference map Sw sends (vy, ..., vy, w) to [(v;—v;), (v;—w), (w — v;), 0], the sections being restricted
appropriately. Here v; = v; on V¥ N V7 because (v1, ..., v,) is in the kernel K. By definition, v; = w; = w
onVIiNnW =W,

It remains to prove that M is a functor. This proof has no interesting features, and we won’t use the
functorality, so we omit it. (]
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6.10 Exercises

6.10.1. Let U be the complement of the origin in the affine plane X = Spec A, A = Clz, y].

(i) Let M be the O xanodule that correponds to the A-module M = A/yA. Show that M is a finite O-module,
but that M (U) isn’t a finite module over the ring O(U).

(i1) Show that, for any £ > 1, the homomorphism O x (Ml O is surjective on U, but that the map of sections

on U isn’t surjective.

6.10.2. An R-modue is simple if it is nonzero and if it has no proper submodules. Prove that a simple module
over a finite type C-algebra has dimension 1.

6.10.3. Prove that if an O-module has the coherence property for affine open sets, then it has the sheaf
property for affine coverings of affine open sets.

6.10.4. Let V be the complement of a finite set in P¢. Determine Op (V).

6.10.5. Let U’ C U be affine open subsets of a variety X, and let M be an O x-module. Say that O(U) = A,
oU)y=A, MU)=M,and M(U") = M'. Prove that M' = M ®4 A’.

6.10.6. Show that if 7 and 7 are ideals of O, soisZ N .J.
6.10.7. Let s be an element of a domain A, and let M be an A-module. Identify the limit of the directed set
M -5 M -5 ... is isomorphic.

6.10.8. Let R = C[xg, 21, 22), and let f = 23 — v 29.

(i) Determine generators and defining relations for the ring Ry of homogeneous fractions of degree zero
whose denominators are powers of f.

(ii) Prove that the twisting module O(1) isn’t a free module on the open subset Uy ¢y of P2 at which f # 0.

6.10.9. Let X be a variety. Prove that every strictly ascending chain of submodules of a finite O-module M
is finite.

6.10.10. Let R = Clz,y, 2], let X = P2, and let s = 22 — zy. Determine the degree one part of R, and
prove that O(1) is not free on X.

6.10.11. What are the sections of O(nH) on an open set V' that isn’t contained in any U*?

6.10.12. In the description (6.5.4) of modules over the projective line, we considered the standard affine open
sets U% and U'. Interchanging these open sets changes the variable ¢ to ¢!, and it changes the matrix P
accordingly. Does it follow, when the rank is 1, that the O-modules defined by t* and by ¢~* are isomorphic?

6.10.13. Describe the kernel and cokernel of the multiplication mmap M (k) N M(k + d) when f is a

homogeneous polynomial of degree d.

6.10.14. Let X = P2, What are the sections of the twisting module Ox (n) on the open complement of the
line {z1 + xz2 = 0}?

6.10.15. Let M be a finite module over a finite-type domain A, and let « be a nonzero element of A. Prove
that for all but finitely many complex numbers c, scalar multiplication by s = « — ¢ defines an injective map
M =5 M.

6.10.16. Prove the following coherence property of an O-module: Let Y be an open subset of a variety X,
let s be a nonzero regular function on Y, and let Y; be a localization. If M is an Ox-module, then M(Y5) is
the localization M(Y'); of M(Y'). In particular, Ox (Us) is the localization Ox (U)s. (This is a requirement
for an O-module, when Y is affine.)

6.10.17. Using Exercise|6.10.16| extend the definition of direct image to an arbitrary morphism of varieties.
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Chapter 7 COHOMOLOGY
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7.1 Cohomology

This chapter is adapted from Serre’s classic 1956 paper “Faisceaux Algébriques Cohérents”, in which Serre
showed how the Zariski topology could be used to define cohomology of O-modules.

To save time, we define cohomology only for O-modules. Anyway, the Zariski topology has limited use
for cohomology with other coefficients. For instance, the constant coefficient cohomology H?(X,Z) is zero
for all ¢ > 0, when X is given the Zariski topology.

Let M be an O-module on a variety X. The zero-dimensional cohomology of M is the space M(X) of
its global sections. When speaking of cohomology, one denotes that space by H° (X, M).

The functor .
(O-modules) L (vector spaces)

that carries an O-module M to HY(X, M) is left exact: If

(7.1.1) O M—-N—=-P—=0

is a short exact sequence of O-modules, the associated sequence of global sections

(7.1.2) 0— H°(X,M) - H°(X,N) = H°(X,P)

is exact, but unless X is affine, the map H%(X, N') — H°(X,P) needn’t be surjective (6.5.8). The cohomol-

ogy on X is a sequence of functors (O-modules) iq> (vector spaces),
H° H' H? ...

beginning with H, one for each dimension, that compensates for the lack of exactness in the way that is
explained in (a) and (b) below:

(a) To every short exact sequence (7.1.1) of O-modules, there is an associated long exact cohomology se-
quence

(7.13) 0 = HO(X, M) — HO(X,N) — HY(X,P) 2
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O HY(X M) = HY(X,N) = HYX,P) 2

VO HU(X, M) - HI(X,N) — HI(X,P) 2 .
The maps §7 in this sequence are called the coboundary maps.

(b) A map of exact sequences of O-modules, a diagram

0 M N P 0
! Lo
0 M N’ P’ 0

whose rows are short exact sequences of J-modules, induces a map of cohomology sequences

(7.1.4)
S HYX,N) —— HYX,P) —2 HIHX,M) —— HIFH(X,N) —— -

| | | |
D HIX,N') —— HUX, P —2y HAYX, M) —— HIFH(X,N) —— -

A sequence of functors H? , ¢ = 0,1,2,... from O-modules to vector spaces that comes with long
cohomology sequences (a) for every short exact sequence of O-modules and that satisfies (b) is called a
cohomological functor. Cohomology is a cohomological functor.

Most of Diagram comes from the fact that the H9 are functors. The only additional property is that
the squares

HY(X,P) -2 HIHL (X, M)
(7.1.5) l l

HY(X, P2 HH (X, M)
that involve the coboundary maps § commute.

Unfortunately, there is no canonical construction of cohomology. We present a construction in Section|/.4}
but it isn’t canonical. One needs to look at an explicit construction sometimes, but most of the time, it is best
to work with the characteristic properties of cohomology that are described below, in Section

The one-dimensional cohomology H! has an interesting interpretation that you can read about if you like.

We won’t use it. The cohomology in dimension greater than one has no useful direct interpretation.

7.2 Complexes

Complexes are used in the construction of cohomology, so we discuss them here.
A complex V'* of vector spaces is a sequence of homomorphisms of vector spaces

n—1 n n+1
(7.2.1) N e NN v NN 7 NN

indexed by the integers, such that the composition d"d”~! of adjacent maps is zero, which means that, for
every n, the image of d" ! is contained in the kernel of d". The g-dimensional cohomology of the complex
V'* is the quotient

(7.2.2) CY(V*) = (ker d?)/(im d971).

A complex whose cohomology is zero is an exact sequence.

162

deltadia-
gram

deltadia-
gramtwo

complexes

complex-
one

cohcoplx-
one



k r—1 .o
A finite sequence of homomorphisms V¥ A yRtl 2 V7 such that the compositions d'd*~! are
zero for ¢ = k, ...,r—1, can be made into a complex, defining V™ = 0 for all other integers n. For example, a

. d® .
homomorphism of vector spaces V0 V! can be made into the complex
0o d° 1
= 0=V —= Vi =0—- -

For this complex, the cohomology C is the kernel of d°, C! is its cokernel, and C? is zero for all other q.
In the complexes that arise here, V¢ will be zero when ¢ < 0.

Amap V* 25 V'® of complexes is a collection of homomorphisms V" Sp—n> V'™ making a diagram

dn—l ar
V- 1 V4L Vn+1 .

Lpnfll (Pnl (pn#»ll

/n—l d/n—l V/n d/n V/n+1 .

— V

A map of complexes induces maps on the cohomology
CiUV*) = CUV"")

because ker d? maps to kerd’? and im d? maps to imd'“.
An exact sequence of complexes

exseqeplx (7.2.3) SRR VL I N VAN NG v/ BN

is a sequence of maps in which the sequences

(7.2.4) NS VE B N VAL RS VLN
are exact for every q.

coheplx 7.2.5. Proposition.
Let 0 = V* = V'®* = V"* — 0 be a short exact sequence of complexes. For every q, there are maps
CaV"*) LN Ca+L(V*) such that the sequence

0 COV*) = CO(V'*) = CO(V"*) 225 cL(v*) = CL(V'*) = C (V") 25 c2(v*) —
is exact.

The proof of the proposition is below.

This long exact sequence is the cohomology sequence associated to the short exact sequence of complexes.
The set of functors {C?} is a cohomological functor on the category of complexes.

snakeco- 7.2.6. Example. We make the Snake Lemma|2.1.20|into a cohomology sequence. Suppose given a diagram
homology

Vv —— Vv V' — 0
I
0 1474 w’ w"

v

with exact rows. We form the complex V*: 0 = V LW = 0with Vin degree zero, so that CO(V*) =
ker f and C*(V'*) = coker f, and we do the analogous thing for the maps f’ and f”. Having done that, the
Snake Lemma becomes an exact sequence

C'(V*) = CO(V'"*) = CO'(V"*) = CH(V*) = CH(V'*) — CH(V"*) 0
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proof of Proposition Given a complex V'*:

_1d?! d? detl
eVl Yy Syt T,

let BY be the image of d9=1, let D? be the cokernel of d9~1, the quotient V4/B?, and let Z4 be the kernel of
d?. The cohomology C%(V'*) isis Z7/B1.

A . . e de
7.2.7. Lemma. (i) With the above notation, there is a map D4 f—> Z9tY such that V4 = VIt becomes a
composition of the three maps

T 4at1

ve = po LY gert T pat
where 9 is the projection from V1 to its quotient D? and i1 is the inclusion of Z9" into V1.
(>ii) With f7 as in (i),
CYV*®) =ker f? and CT(V*) = coker f¢

proof. (i) The image Bt of d9 is contained in Z9t!, and the kernel Z9 of d? contains B?. So d9 factors as
indicated.

(ii) Since the kernel Z9 of d? contains BY, and since D? = V/BY, the kernel of f9is Z9/B? = C4. The
image BIT! of d? is also the image of f? in Z9+1. So the cokernel of f7is Z9+! /Bt = Ca+1, O

Let0 — V* — V'* — V"”* — 0 be a short exact sequence of complexes, as in Proposition We
apply Lemma In the diagram below, the top row is exact because D?, D'?, D"? are cokernels, and
cokernel is a right exact operation. The bottom row is exact because Z?, Z'?, Z''? are kernels, and kernel is
left exact:

pi —— D7 —— D" — 0
fql £ £
0 — zatl o gratt _ goatd
The Snake Lemma gives us an exact sequence

CU(V*) = CIUV'*) = CU V") 25 Cotl(V*) - CTHL(V'®) — CrHL (V"®)

The cohomology sequence associated to the short exact sequence of complexes is obtained by splicing these
sequences together. O

The coboundary maps 49 in cohomology sequences are related in a natural way. If

0 U* U Ut —— 0
I !
0 ve v vt —— 0

is a diagram of maps of complexes whose rows are short exact sequences of complexes, the diagrams

cu U Lert (U

| l

co(v*) Leat(ve)

commute. It isn’t difficult to check this. Thus a map of short exact sequences induces a map of cohomology
sequences.
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7.3 Characteristic Properties

The cohomology of O-modules, which is a sequence of functors H°, H!, H?, --.

(O-modules) iq> (vector spaces)

is characterized by the three properties below. The first two have already been mentioned.

(7.3.1) Characteristic Properties of Cohomology

1. HY(X, M) is the space M(X) of global sections of M.
2. The sequence H°, H', H?,--. is a cohomological functor on O-modules: A short exact sequence of
O-modules produces a long exact cohomology sequence.

3. LetY i> X be the inclusion of an affine open subset Y into X, let A/ be an Oy -module, and let f, N be
its direct image on X. The cohomology HY(X, f. /) is zero for all ¢ > 0.

Note. When X is an affine variety, the global section functor is exact: If 0 - M — AN — P — 0 s a short
exact sequence of O-modules on X, the sequence

0— H'(X,M) - H*(X,N) — H°(X,P) = 0

is exact . There is no need for the higher cohomology H', H?,--- when X is affine. One may as well
define H?(X,-) = 0 when X is affine and ¢ > 0. This is the third characteristic property for the identity
map X — X, and the third property is based on this observation. Intuitively, the third property tells us that
allowing poles on the complement of an affine open set kills cohomology in positive dimension.

7.3.2. Theorem. There exists a cohomology theory with the properties , and it is unique up to unique
isomorphism.

The proof is in the next section.

7.3.3. Corollary. If X is an affine variety, H4(X, M) = 0 for all O-modules M and all q¢ > 0.

This follows when one applies the third characteristic property to the identity map X — X. (]

We begin with an example, which shows how the third characteristic property can be used.

7.3.4. Example. let j be inclusion of the standard affine U° into X = PP. Then h_H;nO(nH ) &~ j«Opo, where

Mo is the restriction of M to U° (6.8.13). The third property tells us that the cohomology H? of the direct
image j. O} is zero when ¢ > 0. We will see below (7.4.24) that cohomology commutes with direct limits.
Therefore ligan(X, Ox(nH)) and ligan(X, Ox (n)) are zero when ¢ > 0. O

7.3.5. Lemma. Let M and N be O-modules on a variety X. The cohomology of the direct sum M & N is
canonically isomorphic to the direct sum H1(X, M) ® HY(X,N).

In this statement, one could substitute just about any functor for H9. And, since the direct sum and the direct
product are equal, one could substitute x for &

proof. We have homomorphisms of O-modules M S MO N T M and analogous homomorphisms

N 2 M@ N 22 N. The direct sum can be characterized by these maps, together with the relations
Tt = tdaq, Mol = idpr, moip = 0, w92 = 0, and 4171 + t2me = idpmqas- The proof of this is an exercise.
Applying the functor H? gives analogous homomorphisms relating H4(M), H4(N'), and HY(M & N).
Therefore H{(M @& N) ~ HY(M) & HI(N). U
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7.4 Existence of Cohomology

The proof of existence and uniqueness of cohomology are based on the following facts:
« The intersection of two affine open subsets of a variety is an affine open set.

o A sequence --- =+ M — N — P — .- of O-modules on a variety X is exact if and only if, for every
affine open subset U, the sequence of sections -+ - — M(U) — N(U) — P(U) — --- is exact. (This is the
definition of exactness.)

We begin by choosing an arbitrary affine covering U = {U"} of our variety X by finitely many affine open
sets U, and we use this covering to describe the cohomology. When we have shown that the cohomology is
unique, we will know that it doesn’t depend on our choice of covering.

Let U - X denote the family of inclusions U” -~ X of our chosen affine open sets into X. If M
is an O-module, R o will denote the O-module [] j%¥ My, where My~ denotes the restriction of M to U
. We can also write [ [ j¥ My as j.My. As has been noted, there is a canonical map M — j¥ My,
and therefore a canonical map M — R4 (6.6.14).

7.4.1. Lemma. (i) Let X' be an open subset of X. The module Ry (X') of sections of Raq on X' is
the product [],M(X' N U"). The space of global sections R (X), which is H*(X,Rm), is the product
[T, MU").

(ii) The canonical map M — R4 is injective. Thus, if Sy denotes the cokernel of that map, there is a short
exact sequence of O-modules

(7.4.2) 0>M—=>Rpmy—>8Sm—0
(iii) For any cohomology theory with the characteristic properties and for any ¢ > 0, H1(X, R n) = 0.
proof. (i) This is seen by going through the definitions:

R(X') = L ¥ Mo )(X') = ], Mo» (X" 0 UY) = [, M(X' 0 UY).

(ii) Let X’ be an open subset of X. The map M(X’) — R (X’) is the product of the restriction maps
M(X") = M(X'NU"). Because the open sets U” cover X, the intersections X’ N U cover X’. The sheaf
property of M tells us that the map M(X’) — [[, M(X' N UY) is injective.

(iii) This follows from the third characteristic property. O
7.4.3. Lemma. (i) A short exact sequence 0 = M — N — P — 0 of O-modules embeds into a diagram

M — N — P

! | !

(7.4.4) Ry — Ry —— Rp

| l !

Sm — Sy —— Sp

whose rows and columns are short exact sequences. (We have suppressed the surrounding zeros.)
(i) The sequence of global sections 0 — Ry (X) = Ry (X) = Rp(X) — 0 is exact.

proof. (1) We are given that the top row of the diagram is a short exact sequence, and we have seen that the
columns are short exact sequences. To show that the middle row

(7.4.5) 0=>Rm >Ry —>Rp—0

is exact, we must show that if X’ is an affine open subset of X, the sections on X’ form a short exact sequence.
The sections are explained in Lemma (i). Since products of exact sequences are exact, we must show
that the sequence

0> MX'NUY) = N(X'NUY) = P(X' NUY) =0
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is exact. This is true because X’ N U" is an intersection of affine opens, and is therefore affine.

Now that we know that the first two rows of the diagram are short exact sequences, the Snake Lemma tells
us that the bottom row is a short exact sequence.

(ii) The sequence of of global sections referred to in the statement is the product of the sequences
0— MU") - NU") = PU")—0

These sequences are exact because the open sets U" are affine. O

(7.4.6) uniqueness of cohomology

Suppose that a cohomology with the characteristic properties is given, and let M be an O-module.
The cohomology sequence associated to the sequence 0 -+ M — R — Spp — 0 s

0 = HO(X, M) = HO(X,Raq) — HO(X,Sn0) 25 HY(X, M) = H' (X, Rps) — -

Lemma|[7.4.1](iii) tells us that H?(X, R r¢) = 0 when ¢ > 0. So this cohomology sequence breaks up into an
exact sequence

0
(7.4.7) 0— HY(X, M) — H(X,R) — H(X,Spm) > HY(X, M) =0
and isomorphisms

(7.4.8) 0— HY(X,Spm) - HIH(X, M) = 0

for every ¢ > 0. The first three terms of the sequence (7.4.7), and the arrows connecting them, depend on
our choice of covering of X, but the important point is that they don’t depend on the cohomology. So that
sequence determines H' (X, M) up to unique isomorphism as the cokernel of a map that is independent of the
cohomology. This this is true for every O-module M, including for the module Sxq. Therefore it is also true
that H' (X, Spq) is determined uniquely. This being so, H?(X, M) is determined uniquely for every M, by
the isomorphism (7.4.8), with ¢ = 1. The isomorphisms determine the rest of the cohomology up to
unique isomorphism by induction on gq. (]

(7.4.9) construction of cohomology

One can use the sequence and induction to construct cohomology, but it seems clearer to proceed
by iterating the construction of R 4.

Let M be an O-module. We rewrite the exact sequence (7.4.2), labeling R ¢ as R}, and Spq as M*:

(7.4.10) 0= M-—=RYy = M =0
and we repeat the construction with M?. Let R}M = 729\41 (= j«My{), so that there is an exact sequence

(7.4.11) 0— M - Ry = M =0

analogous to the sequence (7.4.10), with M? = R}/ M'. We combine the sequences (7.4.10) and (7.4.11)
into an exact sequence

(7.4.12) 0= M—=RYy = Ry = M> =0
and we let Rf\/l = R(/)\/(Z- Continuing in this way, we construct modules R’jvl that form an exact sequence
(7.4.13) 0+ M—=RYy =Ry =Ry —

The next lemma follows by induction from Lemma (iii) and Lemma (i,ii).
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7.4.14. Lemma.
(i) Let0 — M — N — P — 0 be a short exact sequence of O-modules. For every n, the sequences

0—=RYy =Ry —=>Rp—0
are exact, and so are the sequences of global sections
0= RX) = RyX) = REX)—0
(i) IfH°, H', ...is a cohomology theory, then H1(X, R ;) = 0 for all n and all ¢ > 0. O
An exact sequence such as is called a resolution of M, and because H?(X,R’},) = 0 when ¢ > 0,
it is an acyclic resolution.

Continuing with the proof of existence, we consider the complex of O-modules that is obtained by omitting
the term M from (7.4.13). Let R, denote that complex:

(7.4.15) Ry = 0= Ry =Ry =Ry — -
The complex R ((X) of its global sections
(7.4.16) 0 — R (X) = Riu(X) = RA(X) — -+
can also be written as
0— HY(X,R%,) — H°(X,Rh\) — H'(X,R%,) — -

The complex R, becomes the resolution when the module M is inserted. So it is an exact sequence
except at RO/\/[' However, the global section functor is only left exact, and the sequence of global sec-
tions R% ((X) needn’t be exact anywhere. It is a complex though, because R% ; is a complex. The composition
of adjacent maps is zero.

0 1
Recall that the cohomology of a complex 0 — V° syt Ly of vector spaces is C4(V*) =
(ker d?)/(im d9~1), and that {CY} is a cohomological functor on complexes (7.2.5).

7.4.17. Definition. The cohomology of an O-module M is the cohomology of the complex R ((X):
HI(X, M) = C*(Ri(X))
Thus if we denote the maps in the complex by d?:

0= RO, (X) 2 RL(X) L5 R2,(X) = -

then H9(X, M) = (ker d?)/(im d?71).

7.4.18. Lemma. Let X be an dffine variety. With cohomology defined as above, H4(X, M) = 0 for all
O-modules M and all q > 0.

proof- When X is affine, the sequence of global sections of the exact sequence is exact. O

To show that our definition gives the unique cohomology, we verify the three characteristic properties.
Since the sequence is exact and since the global section functor is left exact, M(X) is the kernel of
the map RG,(X) — R1(X). This kernel is also equal to C°(R%,(X)), so our cohomology has the first
property: H°(X, M) = M(X).

To show that we obtain a cohomological functor, we apply Lemma to conclude that, for a short
exact sequence 0 — M — N — P — 0, the spaces of global sections

(7.4.19) 0= RUX) = Ry (X) = Rp(X) =0,

form an exact sequence of complexes. The cohomology H9(X, -) is a cohomological functor because coho-
mology of complexes is a cohomological functor. This is the second characteristic property.
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We make a digression before verifying the third characteristic property.

LetY -5 X bea morphism of varieties. Let U —2 X be the inclusion of an open subvariety into X and
let V be the inverse image f~1U, which is an open subvariety of Y. These varieties and maps form a diagram

[
(7.4.20) gl fl
R e

When we restrict the direct image f. N of A to U, we obtain an Oy-module [f.N]y. We can obtain an
Opy-module in a second way: First restrict the module A to the open subset V' of Y, and then take its direct
image. This gives us the Oy -module g. [Ny ].

7.4.21. Lemma. The Oy -modules g.[Nv| and [f Ny are equal.
proof. Let U’ be an open subset of U, and let V/ = g~ 'U’. Then
[f N (U') = [FNIU') = N (V') = Ny (V') = [0 NV]](T) 0

7.4.22. Proposition. Let Y s X bean affine morphism, and let N" be an Oy -module. Let H1(X, - ) be the
cohomology defined as in , and let H1(Y, - ) be the cohomology that is defined in the analogous way,
using the covering V of Y. Then HY(X, f.N) is isomorphic to H1(Y,N).

proof. This proof requires untangling the notation. Except for that, it is easy.
To compute the cohomology of f, N on X, we substitute M = £, N into (7.4.17):

HY(X, fN) = CU(RF_n(X)).
To compute the cohomology of N on Y, we let
Ry = iAW)

where i is as in Diagram[7.4.20} and we continue, to construct a resolution 0 — N — R’ 9\f — R /1\/ —
The prime is there to remind us that R’ is defined using the covering V of Y. Let R’} be the complex that is
obtained by replacing the term N\ by zero. Then

HI(Y,N) = CH(R3(Y)).
It suffices to show that the complexes of global sections R}, \-(X) and R'}(Y') are isomorphic. If so, we will
have
HY(X, f.N) = C1(R} x(X)) = CUR'}(Y)) = H'(Y,N)

as required.

By definition of the direct image, [f.R'%\/]J(X) = R'$/(Y). So we must show that (R, A )(X) is iso-
morphic to [f.R'{/](X), and it suffices to show that R - ~ f.R'{,. We look back at the definition of the
modules R in the form (7.4.10). On Y, the analogous sequence for A is

0N RN 5N 50

where R’?\/ = i,[Nv], 7 being the map V — Y. When f is an affine morphism, the direct image of this
sequence
0— fN = f RS = LN =0

is exact. We substitute U = U nd V' = V into Diagram|/7.4.20} Then
0 . . 1), .
f*RIN = fuix[NV] = JugeNv] — G [fN]u = R?*N
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the equality (1) being Lemma|7.4.21| So f. R’ 5)\/ = R(} .- Now induction on g completes the proof. ]

We go back to verify the third characteristic property of cohomology, which is that when Y L> X is the
inclusion of an affine open subset, H4(X, f.A) = 0 for all Oy-modules A and all ¢ > 0. The inclusion
of an affine open set is an affine morphism, so H4(Y,N) = HY(X, f.N') (7.4.22), and since Y is affine,

HY(Y,N) = 0forall ¢ > 0 (7.4.18). O
7.4.23. Corollary. Let Y 5 X be the inclusion of a closed subvariety Y into a variety X, and let N be an cohextbyO
Oy -module. With cohomology defined as above, H1(Y,N') and H1(X,i.N') are isomorphic for every q. O

Proposition is one of the places where a specific construction of cohomology is used. The charac-

teristic properties don’t apply directly. The next proposition is another such place.

7.4.24. Lemma. Cohomology is compatible with limits of directed sets of O-modules: H(X, %ﬂM.) & cohlimit
lim HY(X, M) for all q.

proof. The direct and inverse image functors and the global section functor are all compatible with direct
limits, and liny is exact (6.5.17). So the module Riim a1, that is used to compute the cohomology of lim M,
-

is isomorphic to lin [R%,.], and Rﬁ_n;M.(X) is isomorphic to lim [R7,1(X). O

7.5 Cohomology of the Twisting Modules

. . . cohprojsp
As we will see, the cohomology H?(PP", O(d)) of the twisting modules O(d) on P™ is zero for most values of
q. This fact will help to determine the cohomology of other modules.

Lemma about vanishing of cohomology on an affine variety, and Lemma about the direct
image via an affine morphism, were stated using a particular affine covering. Since we know that cohomology
is unique, that particular covering is irrelevant. Though it isn’t strictly necessary, we restate those lemmas here
as a corollary:

7.5.1. Corollary. (i) On an affine variety X, H1(X, M) = 0 for all O-modules M and all g > 0. affineco-

(i) LetY L X be an affine morphism. If N is an Oy -module, then H1(X, f.N') and HY(Y,N') are hzerotwo
isomorphic. If 'Y is an affine variety, H4(X, f,N') = 0 for all ¢ > 0. O

One case to which (ii) applies is that f is the inclusion of a closed subvariety Y into a variety X:

7.5.2. Corollary. Let X 5 P" be the embedding of a projective variety into projective space, and let cohXcohP
M be an Ox-module. For all q, the cohomology H1(X, M) of M on X is isomorphic to the cohomology
H1(P",i.M) of its extension by zero to P™. O

Recall also that, on projective space, M(d) = M ®o O(d). If M is an Ox-module on a projective variety
X, its twist M(d) is defined to be the O x-module that corresponds to the twist of its extension by zero i, M,
which is [i,M] @ O(d).

Let M be a finite O-module on projective space P™. The twisting modules O(d) and the twists M(d) =
M ®p O(d) are isomorphic to O(dH ) and M (dH ), respectively (6.8.11)) and there are maps of directed sets

0o 0oH % 0@2H) — ... M —— MH) —— M2H) — -
0%, 001 25 002 —2s.. M—5 M1 —— M2 —— .-

The second diagram is obtained from the first one by tensoring with M.
Let U denote the standard affine open subset U0 of P, and let j be the inclusion of U into P™. Then

hﬂd(’)(dH) ~ j.Op and @dM(dH) ~ j«Muy (6.8.15).
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7.5.3. Corollary. (i) Letr j denote the inclusion U - P™. For all ¢ > 0, H1(P", j,Oy) = 0 and
HA(P" j, My) = 0.

(ii) For all projective varieties X, for all O-modules M and for all ¢ > 0, hgqu(X, O(d)) = 0 and
lim HO(X, M(d)) = 0

proof. (i) This follows from the facts that the inclusion j is an affine morphism and that U is affine.

(i) This follows from (i) because M (d) is isomorphic to M (dH ), and cohomology is compatible with direct
limits (7.4.24). O

7.5.4. Notation. If M is an O-module, we denote the dimension of H?(X, M) by h?M, or by h?(X, M) if
there is ambiguity about the variety. We can write h? M = oo if the dimension is infinite. However, in Section
we will see that, when M is a finite @-module on a projective variety X, the dimension h?(X, M) will
be finite for every q. U

7.5.5. Theorem.
(i) Ford >0, hO(P",0(d)) = (*I") and h(P",O(d)) =0 ifq# 0.
(i) For r > 0, h"™(P™, (’)(— )= ("") and hi(P",O(-r)) =0 ifq#n.

Note that, in (i), the case d = 0 asserts that h®(P", O) = 1 and h?(P", O) = 0 for all ¢ > 0, while (ii) asserts
that h?(P™, O(—1)) =0 forall ¢, if 1 <g.

proof. We have described the global sections of O(d) before: If d > 0, H(X, O(d)) is the space of homoge-
neous polynomials of degree d in the coordinate variables. Its dimension is (d+") and H°(P",O(d)) = 0 if

d < 0. (See (6:32).) "

Let X = P, and let Y be the hyperplane at infinity { = 0}, and let Y’ — X be the inclusion of Y into
X.

(i) the case d > 0.

By induction on n, we may assume that the theorem has been proved for Y, which is a projective space of
dimension n—1. We consider the exact sequence

(7.5.6) 0= Ox(-1) 2% 0x = i,0y =0
and its twists
(7.5.7) 0— Ox(d—1) =% Ox(d) = i,Oy(d) = 0
The twisted sequences are exact because they are obtained by tensoring with the invertible O-modules
O(d). Because the inclusion 7 is an affine morphism, H?(X, 4,0y (d)) = H1(Y, Oy (d)).
The monomials of degree d in n+1 variables form a basis of the space of global sections of Ox (d). Setting

xo = 0 and deleting terms that become zero gives us a basis of Oy (d). Every global section of Oy (d) is the
restriction of a global section of Ox (d). So the sequence of global sections

0— H(X,0x(d—1)) 2% H(X,0x(d)) = H*(Y,Oy(d)) — 0

is exact. The cohomology sequence associated to tells us that the map H'(X,Ox(d—1)) —
H'(X,Ox(d)) is injective.

By induction on the dimension of X, H?(Y, Oy (d)) = O ford > 0 and ¢ > 0. When combined with
the injectivity noted above, the cohomology sequence of (7.5.7) shows that the maps H4(X,0x(d—1)) —
HY(X,0x(d)) are bijective for every ¢ > 0. Since the 11m1ts are zero (7.5.3), H4(X,Ox(d)) = 0 for all
d > 0andall ¢ > 0.

(ii) the case d < 0, or r > 0.

We use induction on the integers  and n. We suppose the theorem proved for a given r, and we substitute
d = —r into the sequence (7.5.7):

(7.5.8) 0= Ox(—(r4+1)) 2% Ox(—r) = .0y (1) = 0
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For r = 0, the exact sequence is 0 — Ox(—1) —» Ox — i,Oy — 0. In the cohomology sequence
associated to that sequence, the terms H?(X, Ox) and H%(Y, Oy ) are zero when ¢ > 0, and H°(X,Ox) =
H°(Y,Oy) = C. Therefore H(X,Ox(—1)) = 0 for every q. This proves (ii) for r = 1.

Our induction hypothesis is that, h"(X,O(—r)) = ("') and h? = 0 if ¢ # n. By induction on n, we
may suppose that h" (Y, O(—r)) = (/~}) and that h? = 0if ¢ # n — 1.

Instead of displaying the cohomology sequence associated to (7.5.8)), we assemble the dimensions of co-
homology into a table, in which the asterisks stand for entries that are to be determined:

Ox(=(r+1)) Ox(=r) iOy(=r)

h' * 0 0
(1.5.9)

h"2: * 0 0

Rt 0 ()

h" * ("1 0

The second column is our induction hypothesis, and the third column is determined by induction on n. The
exact cohomology sequence shows that that

h"(X,0(r+1))) = (Z20) + (1)

n—1 n

and that the other entries labeled with an asterisk are zero. The right side of this equation is equal to ( ) O

7.6 Cohomology of Hypersurfaces

We begin with the cohomology of a plane projective curve. Let X be the projective plane P2 and let C N ¢
denote the inclusion of a plane curve C of degree k. The ideal of functions that vanish on C' is isomorphic to
the twisting module Ox (—k) (6.8.8) so one has an exact sequence

(7.6.1) 0— Ox(—k) = Ox = i.0c — 0

The table below displays the dimensions of the cohomology. Theorem [7.5.5]determines the first two columns,
and the cohomology sequence determines the last column.

OX(_k) Ox 1.Oc¢
ho: 0 1 1

(7.6.2) h! - 0 0 (k;l)

L (e 0

Since the inclusion of C' into X is an affine morphism, h?(C, O¢) = h?(X,i,.O¢). Therefore

(7.6.3) h’(C,0¢) =1, h'(C,0¢c) = (*;'), and h?=0 when ¢>1

The dimension of H'(C, O¢), which is (kgl) , is called the arithmetic genus of C'. It is usually denoted by p,
or p,(C). We will see later (8.8.2) that the arithmetic genus of smooth curve is equal to its topological genus:
pa = g. But the arithmetic genus of a plane curve of degree k is equal to (kgl) when the curve C' is singular
too.

We restate the results as a corollary.

7.6.4. Corollary. For a plane curve C of degree k, h°O¢ = 1, h'O¢ = (kgl) = pg, andh?=0ifq #0, 1.
O

The fact that h°O¢c = 1 tells us that the only rational functions that are regular everywhere on C are the
constants. It follows that a plane curve is connected in the Zariski topology, and it hints at a fact to be proved
later, that a plane curve is connected in the classical topology, but it isn’t a proof of that fact.
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In the next section we will see that the cohomology of any O-module on a projective curve is zero except in
dimensions 0 and 1. To determine cohomology of a curve that is embedded in a higher dimensional projective
space, we will need to know that its cohomology is finite-dimensional, which is Theorembelow, and that
it is zero in dimension greater than one, which is Theorem [7.7.1] also below. The cohomology of projective
curves will be studied again, in Chapter|§]

One can make a similar computation for the hypersurface Y in X = P" defined by an irreducible homo-
geneous polynomial f of degree k. The ideal of such a hypersurface Y is isomorphic to Ox (—k) (6.8.8), so
there is an exact sequence

0= Ox(—k) L 0x 1.0y =0

Since we know the cohomology of Ox (—k) and of Ox, and since H4(X,i,Oy) ~ HI(Y,Oy), we can use
this sequence to compute the dimensions of the cohomology of Oy .

7.6.5. Corollary. LetY be a hypersurface of dimension d and degree k in a projective space of dimension
d+ 1. Then h°(Y,0y) = 1, h(Y,Oy) = (SH) and h1(Y, Oy) = 0 for all other q. O
In particular, when S is the surface in P defined by an irreducible polynomial of degree k, h%(S,Og) = 1,
h!(S,05) =0, h%(S,04) = (kgl), and h? = 0if ¢ > 2. When a projective surface S is embedded into a
higher dimensional projective space, it is still true that h? = 0 if ¢ > 2, but h'(S, Og) may be nonzero. The
dimensions h!(S, Og) and h?(S, Og) are invariants of a surface S that are somewhat analogous to the genus
of a curve. In classical terminology, h?(S, Og) is the geometric genus p, and h'(S, Og) is the irregularity
q. The arithmetic genus p, of S is defined to be

(7.6.6) pa = h*(S,05) —h'(S,05) =p, — q
Therefore the irregularity of S'is ¢ = py — p,. When S is a surface in IP3, the irregularity is zero, and Dg = Pa-

In modern terminology, it might seem more natural to replace the arithmetic genus by the Euler charac-
teristic of the structure sheaf x(Os), which is defined to be }° (—1)?h?Og (see (7.7.7) below). The Euler
characteristic of the structure sheaf on a curve is

X(OC) - hO(C, OC) — }11((77 Oc) =1- Pa
and on a surface S it is
X(0s) = 1°(S,05) —h'(S,0g) + h?(S,05) = 1 +p,

But because of tradition, the arithmetic genus is still used quite often.

7.7 Three Theorems about Cohomology

7.7.1. Theorem. Let X be a projective variety, and let M be a finite Ox-module. If the support of M has
dimension k, then H1(X, M) = 0 for all ¢ > k. In particular, if X has dimension n, then H4(X, M) = 0
forall g > n.

See Section [6.7)for the definition of support.

7.7.2. Theorem. Let M(d) be the twist of a finite O x -module M on a projective variety X. For sufficiently
large d and for all ¢ > 0, H1(X, M(d)) =0.

7.7.3. Theorem. Let M be a finite O-module on a projective variety X. The cohomology HY(X, M) is a
finite-dimensional vector space for every q.

7.7.4. Notes. (a) As the first theorem asserts, the highest dimension in which cohomology of an O x-module
on a projective variety X can be nonzero is the dimension of X. It is also true that, on a projective variety X
of dimension n, there will be O x-modules M such that H™ (X, M) # 0. In contrast, in the classical topology
on a projective variety X of dimnsion n, the constant coefficient cohomology H>" (X jass,Z) isn’t zero. As
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we have mentioned, in the Zariski topology, the cohomology H9(X ..., Z) with constant coefficients is zero
for every ¢ > 0. When X is an affine variety, the cohomology of any O x-module is zero for all ¢ > 0.

(b) The third theorem tells us that the space of global sections H°(X, M) of a finite O-module on a projective
variety is finite-dimensional. This is one of the most important consequences of the theorem, and it isn’t easy
to prove directly. Cohomology needn’t be finite-dimensional on a variety that isn’t projective. For example,
on an affine variety X = Spec A, H°(X, ) = A isn’t finite-dimensional unless X is a point. When X is
the complement of a point in P2, H*(X, ©) isn’t finite-dimensional.

(¢) The proofs have an interesting structure. The first theorem allows us to use descending induction to
prove the second and third theorems, beginning with the fact that H*(X, M) = 0 when k is greater than the
dimension of X. ]

In these theorems, we are given that X is a closed subvariety of a projective space P". We can replace
an O x-module by its extension by zero to P™, since this doesn’t change the cohomology or the dimension of
support. The twist M(d) of an Ox-module that is referred to in the second theorem is defined in terms of the
extension by zero. So we may assume that X is a projective space.

The proofs are based on the cohomology of the twisting modules (7.5.5) and on the vanishing of the limit

limq H?(X, M(d)) for g > 0 (7.5.3).
proof of Theorem (vanishing in large dimension)

Here M is a finite O-module whose support .S has dimension at most k. We are to show that H4(X, M) =0
when ¢ > k. We choose coordinates so that the hyperplane H : xo = 0 doesn’t contain any component of the
support S. Then H N S has dimension at most k — 1. We inspect the multiplication map M (—1) =% M. The
kernel IC and cokernel Q are annihilated by z, so the supports of IC and Q are contained in H. Since they are
also in S, the supports have dimension at most k—1. We can apply induction on % to them. In the base case
k = 0, the supports of K and Q will be empty, and their cohomology will be zero.

We break the exact sequence 0 — K — M(—1) = M — Q — 0 into two short exact sequences by
introducing the kernel N of the map M — Q:

(7.7.5) 0->K—>M(-1)=-N =0 and 0N ->M—->Q9—-0

The induction hypothesis applies to K and to Q. It tells us that H%(X,K) = 0 and H4(X, Q) = 0, when
q > k. For ¢ > k, the cohomology sequences associated to the two exact sequences give us bijections

HY(X, M(-1)) = HY(X,N) and HY(X,N)— HY(X, M)

Therefore the composed map H?(X, M(—1)) — H(X, M) is bijective, and this is true for every O-module
whose support has dimension < k, including for the O-module M (d). For every O-module whose support
has dimension at most &, every d, and every g > k, the canonical map H%(X, M(d—1)) — H?(X, M(d)) is
bijective. According to , the limit limy H¥(X, M(d)) is zero. It follows that H7(X, M(d)) = 0 for all
d when ¢ > 0, and in particular, H4(X, M) = 0.

proof of Theorem[7.7.2] (vanishing for a large twist)

Let M be a finite O-module on a projective variety X. We recall that M (r) is generated by global sections
when r is sufficiently large . Choosing generators gives us a surjective map O™ — M(r). Let N be
the kernel of this map. When we twist the exact sequence 0 — N — O™ — M(r) — 0, we obtain short
exact sequences

(7.7.6) 0= N(d) — Od)" - M(d+r) =0

for every d > 0. These sequences are useful because H4(X, O(d)) = 0 when d > 0 and ¢ > 0 (7.5.5).
To prove Theorem [7.7.2] we must show this:

(*)  Let M be a finite O-module. For sufficiently large d and for all ¢ > 0, H1 (X, M(d)) = 0.

Let n be the dimension of X. By Theorem[7.7.1] H?(X, M) = 0 for any O-module M, when ¢ > n, In
particular, H?(X, M(d)) = 0 when ¢ > n. This leaves a finite set of integers ¢ = 1, ..., n to consider, and it
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suffices to consider them one at a time. If (*) is true for each individual ¢, there will be a sufficiently large d
such that it is true for each of the integers ¢ = 1, ..., n at the same time, and therefore for all positive integers
q, as the theorem asserts.

We use descending induction on g, the base case being ¢ = n + 1, for which (¥) is true with d = 0. We
suppose that (*) is true for every finite O-module M when ¢ = p + 1, and that p > 0, and we show that (*) is
true for every finite O-module M when q = p.

We substitute ¢ = p into the cohomology sequence associated to the sequence (7.7.6). The relevant part of
that sequence is

— HP(X,0(d)™) — HP(X, M(d+r)) 25 HPY(X, N(d)) —

Since p is positive, H?(X,O(d)) = 0 for all d > 0. The map 67 is injective. We note that A" is a finite
O-module. So our induction hypothesis applies to it. The induction hypothesis tells us that, when d is large,
HPT1(X, N (d)) = 0 and therefore H? (X, M(d+r)) = 0. The particular form of the integer d+r isn’t useful.
Our conclusion is that, for every finite O-module M, HP(X, M(d;)) = 0 when d; is large enough. O

proof of Theorem[T.7.3] (finiteness of cohomology)

This proof uses ascending induction on the dimension of support and descending induction on the degree
d of a twist. As has been mentioned, it isn’t easy to prove directly that the space H°(X, M) of global sections
is finite-dimensional.

Let M be an O-module whose support has dimension at most k. We go back to the sequences and
their cohomology sequences, in which the supports of X and Q have dimension < k—1. Ascending induction
on the dimension of support allows us to assume that H" (X, K) and H" (X, Q) are finite-dimensional for all
r. Denoting finite-dimensional spaces ambiguously by finite, the two cohomology sequences become

o> finite — HY(X, M(-1)) — HY(X,N) — finite — - -

and
<o = finite - HY(X,N) = HI{(X, M) — finite — -

The first of these sequences shows that if H%(X, M(—1)) has infinite dimension, then H?(X, ') has infinite
dimension, and the second sequence shows that if H?(X,\') has infinite dimension, then HY(X, M) has
infinite dimenson. Therefore either H9(X, M(—1)) and H?(X, M) are both finite-dimensional, or else they
are both infinite-dimensional. This applies to the twisted modules M (d) as well as to M: H?(X, M(d—1))
and H?(X, M(d)) are both finite-dimensional or both infinite-dimensional.

Suppose that ¢ > 0. Then H?(X, M(d)) = 0 when d is large enough (Theorem[7.7.2). Since the zero
space is finite-dimensional, we can use the sequence together with descending induction on d, to conclude
that H9(X, M(d)) is finite-dimensional for every finite module M and every d. In particular, H%(X, M) is
finite-dimensional.

This leaves the case that ¢ = 0. To prove that H°(X, M) is finite-dimensional, we put d = —r with r > 0

into the sequence (7.7.6):
0= N(-r)=0(-r"—>M=0

The corresponding cohomology sequence is
0 = HO(X, N (=r)) = H(X,0(=r)™ = HO(X, M) 5 HY(X, N (1)) - - -

Here H°(X,O(—r))™ = 0, and we’ve shown that H'(X, N (—r)) is finite-dimensional. It follows that
H°(X, M) is finite-dimensional, and this completes the proof.

Notice that the finiteness of H° comes out only at the end. The higher cohomology is essential for the
proof. U

(7.7.7)  Euler characteristic
Theorems and[7.7.3]allow us to define the Euler characteristic of a finite module on projective variety.
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7.7.8. Definition. Let X be a projective variety. The Euler characteristic of a finite O-module M is the
alternating sum of the dimensions of its cohomology:

(7.7.9) X(M) => (=1)%h?(X, M).

This makes sense because h?( X, M) is finite for every ¢, and is zero when g is large.

Try not to confuse the Euler characterstic of an O-module with the topological Euler characteristic of the
variety X.

7.7.10. Proposition. (i) If 0 - M — N — P — 0 is a short exact sequence of finite O-modules on a
projective variety X, then x(M) — x(N) + x(P) = 0.

@ If 0 - Mo —> My — - = M, — 0is an exact sequence of finite O-modules on X, the alternating
sum > (—1)'x(M,) is zero.

7.7.11. Lemma. Let 0 — V°® — V! — ... — V™ — 0 be an exact sequence of finite dimensional vector
spaces. The alternating sum »_(—1)?dim V'Y is zero. O

proof of Proposition|/.7.10, (i) Let n be the dimension of X. The cohomology sequence associated to the
given sequence is

0— H'M) - H'WN) - H'(P) - H'(M) - ... — H"(N)—= H"(P) =0

and the lemma tells us that the alternating sum of its dimensions is zero. That alternating sum is also equal to
X(M) = X(N) + x(P).

(i) Let’s denote the given sequence by Sy and the alternating sum . (—1)%x(M;) by x(So). Let N' =
M /M,. The sequence Sy decomposes into the two exact sequences

S1: 0= Myg—-M; -N—=>0 and Ss: 0N > Myg— - = Mp—0

One sees directly that x(Sp) = x(S1) — x(S2), so the assertion follows from (i) by induction on n. O

7.8 Bézout’s Theorem

As an application of cohomology, we use it to prove Bézout’s Theorem. We restate it here:

7.8.1. Bézout’s Theorem. LetY and Z be distinct curves, of degrees m and n, respectively, in the projective
plane X. The number of intersection points Y N Z, when counted with an appropriate multiplicity, is equal to
mn. Moreover, the multiplicity is 1 at a point at which Y and Z intersect transversally.

The definition of the multiplicity will emerge during the proof.

Note. Let f and g be relatively prime homogeneous polynomials. When one replaces Y and Z by their divi-
sors of zeros (I.3.13)), the theorem remains true whether or not they are irreducible. The proof isn’t signifiantly
different from the one we give here, except that it requires setting up some notation. For example, suppose that
f and g are products of linear polynomials, so that Y is the union of m lines and Z is the union of n lines, and
suppose that those lines are distinct. Since distinct lines intersect transversally in a single point, there are mn
intersection points of multiplicity 1. (]
proof of Bézout’s Theorem. We suppress notation for the extension by zero from Y or Z to the plane X,
denoting the direct images of Oy and Oy by the same symbols. Let f and g be the irreducible homogeneous
polynomials whose zero loci are Y and Z. Multiplication by f defines a short exact sequence

0= Ox(—m) L5 Ox = Oy =0

This exact sequence describes Ox (—m) as the ideal Z of regular functions that vanish on Y, and there is a
similar sequence describing the module O x (—n) as the ideal [J of Z. The zero locus of the ideal Z+ .7 is the
intersection Y N Z, which is a finite set of points {py, ..., px }.
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Let O denote the quotient Ox /(Z+7 ). Its support is the finite set Y N Z, and therefore O is isomorphic to
a direct sum @ O;, where each O; is a finite-dimensional algebra whose support is p; ( - The intersection
multiplicity of Y and Z at p; is defined to be the dimension of O;, which is also the dimension of the space
of its global sections. Let’s denote the intersection multiplicity by s;. The dimension of H°(X, O) is the sum
1+ -+ pr, and H9(X,O0) = 0 for all ¢ > 0 (Theorem [7.7.1). The Euler characteristic x(O) is equal to
h%(X, O). We’ll show that x(O) = mmn, and therefore that p1+---+ug = mn. This will prove Bézout’s
Theorem.

We form a sequence, in which O stands for Ox:

(7.8.2) 0= OCm—n) 2 0(Cm)x0(-n) Z¥ 0 =0 50

In order to interpret the maps in this sequence as matrix multiplication, with homomorphisms acting on the
left, a section of O(—m)xO(—n) should be represented as a column vector (u, v), u and v being sections of
O(—m) and O(—n), respectively.

7.8.3. Lemma. The sequence is exact.

proof. We suppose that coordinates have been chosen so that none of the points making up Y N Z lie on the
coordinate axes.

To prove exactness, it suffices to show that the sequence of sections on each of the standard open sets is
exact. We look at the index 0 as usual, denoting U° by U. Let A be the algebra of regular functions on U,
which is the polynomial algebra Cluy, us|, with u; = x;/x9. We identify O(k) with O(kH), H being the
hyperplane at infinity. The restriction of the module O(kH) to U is isomorphic to the restriction Oy of O. Its
sections on U are the elements of A. Let A be the algebra of sections of O on U. Since f and g are relatively
prime, so are their dehomogenizations F' = f(1,u1,us) and G = g(1,u1,us2). The sequence of sections of

(7.82) on U is
05 ACE Axa 9D 4 LA o

and the only place at which exactness of this sequence isn’t obvious is at A x A. Suppose that (u,v)? is in the
kernel of the map (—F, G), i.e., that Fu = Gwv. Since F and G are relatively prime, F' divides v, G divides u,
andv/F = u/G. Letw = v/F = u/G. Then (u,v)t = (G, F)'w. So (u,v)! is the image of w. O

We go back to the proof of Bézout’s Theorem. Proposition|7.7.10|(ii), applied to the exact sequence (7.8.2)),
tells us that the alternating sum

(7.8.4) x(O(=m—=n)) = x(O(=m)) = x(O(=n)) + O = x(O)

is zero. Since cohomology is compatible with products(7.3.5), x(M xN) = x(M) + x(N). Solving for
x(O) and applying Theorem|7.5.5]

A\ . (nhbn—1 m—1 n—1
X(O)_(2)—(2)_(2)+1
The right side of this equation evaluates to mn. This completes the proof. U

We still need to explain the assertion that the multiplicity at a transversal intersection p is equal to 1. The
intersection at p will be transversal if and only if Z+ 7 generates the maximal ideal m of A = Cly, 2] at p
locally. If so, then the component of O supported at p will have dimension 1, and the intersection multiplicity
at p will be 1.

When Y and Z are lines, we may choose affine coordinates so that p is the origin in the plane X = Spec A
and the curves are the coordinate axes {z = 0} and {y = 0}. The variables y, z generate the maximal ideal at
the origin.

Suppose that Y and Z intersect transverally at p, but that they aren’t lines. We choose affine coordinates so
that p is the origin and that the tangent directions of Y and Z at p are the coordinate axes. The affine equations
of Y and Z will have the form y; = 0 and z; = 0, where y; = y + g(y,2) and z; = z + h(y,2), gand h
being polynomials all of whose terms have degree at least 2. Because Y and Z may intersect at points other
than p, the elements y; and z; may fail to generate the maximal ideal m at p. However, they do generate the
maximal ideal locally. To show this, it suffices to show that they generate the maximal ideal M in the local
ring R at p. By Corollary it suffices to show that y; and z; generate M /M?, and this is true because y;
and z; are congruent to y and z modulo M?2. (]
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7.9 Uniqueness of the Coboundary Maps

unique-

In Section we constructed a cohomology { H?} that has the characteristic properties, and we showed that cobound

the functors H? are unique. We didn’t show that the coboundary maps ¢ that appear in the cohomology
sequences are unique. We go back to do this now.

To make it clear that there is something to show, we note that the cohomology sequence remains
exact when a coboundary map 67 is multiplied by —1. Why can’t we define a new collection of coboundary
maps by changing some signs? The reason we can’t do this is that we used the coboundary maps §7 in
and , to identify H9(X, M). Having done that, we aren’t allowed to change 7 for the particular short
exact sequences (7.4.2). We show that the coboundary maps for those sequences determine the coboundary
maps for every short exact sequence of O-modules

(A) 0O-M-—>N—P—=0
The sequences were rewritten as (7.4.10):
(B) 0-M-—Ry — M =0

To show that the coboundaries for the sequence (A) are determined uniquely, we relate it to the sequence
(B), for which the coboundary maps are fixed. We map the sequences (A) and (B) to a third exact sequence

(©) 05> M-5RY — Q-0

where 1) is the composition of the injective maps M — N — R%; and Q is the cokernel of ¢).
First, we inspect the diagram

(A) M N P
H | |

) MRy o)

and its diagram of coboundary maps

(4)  HYX,P) —4 s Hor (X, M)
(€)  HIUX,Q) —¢ s Ho+l(X, M)

This diagram shows that the coboundary map ¢ for the sequence (A) is determined by the coboundary map
& for (C).
Next, we inspect the diagram

(B) M RY, M
(7.9.1) H “l J BtoC
) M2 RY o)

and its diagram of coboundary maps

(B)  HYX,.M') —2y geti(x, M)

l H

(©)  HYX,Q) —f HeHI(X, M)

When ¢ > 0, 6%, and 6, are bijective because the cohomology of R?\/t and 729\/ is zero in positive dimension.
Then 6, is determined by 6%, and so is 0%.
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We have to look more closely to settle the case ¢ = 0. The map labeled u in is injective. The Snake
Lemma shows that v is injective, and that the cokernels of u and v are isomorphic. We denote both of those
cokernels by RY%. When we add the cokernels to the diagram, and pass to cohomology, we obtain a diagram
whose relevant part is

(B)  HYX,R%) —— HOX,M') —5 H'(X, M)

| | H
©)  HAX.RY) —Ls HUX,Q) —C H(X,M)

b l
HY(X,R%) —— H°X,R%)
Its rows and columns are exact. We want to show that the map J2 is determined uniquely by 6%. It is
determined by 0% on the image of v and it is zero on the image of 3. To show that 2 is determined by &%,

it suffices to show that the images of v and 3 together span H°(X, Q). This follows from the fact that = is
surjective (7.4.3). Thus 62 is determined by 6%, and so is 69. O
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7.10 Exercises

7.10.1. Let X be the complement of the point (0,0, 1) in P2. Use the covering of X by the two standard
affine open sets U°, U! to compute the cohomology H?(X, Ox).

710.2. LetO0 — Vp — --- — V,, — 0 be a complex of finite-dimensional vector spaces. Prove that
>oi(=D)idim V; = 35(=1)?C(V*}.

7.10.3. Let0 — My — --- = M} — 0 be an exact sequence of O-modules on a variety X. Prove that if
H9(M;) = 0 for all ¢ > 0 and all 7, the sequence of global sections is exact.

7.10.4. the Cousin Problem. Let X be a projective variety.

(i) Detemine the cohomology of the function field module F (6.5.10).

(ii) Let X be a projective space, and let {V*}, i = 1,..., k be an open covering of X. Suppose that rational
functions f; are given, such that f; — f; is a regular function on V* N V7 for all ¢ and j. The Cousin Problem
asks for a rational function f such that f— fi is a regular function on V* for every i. Analyze this problem
making use of the exact sequence 0 — O — F — Q — 0, where Q is the quotient 7 /O.

(iii) What can one say for other varieties X ?

7.10.5. Prove that if a variety X is covered by two affine open sets, then H?(X, M) = 0 for every O-module
M and every ¢ > 1.

7.10.6. Let C be a plane curve of degree d with § nodes and x cusps, and let C’ be its normalization.
Determine the genus of C”.

7.10.7. Let f(z0,x1,x2) be an irreduible homogeneous polynomial of degree 2d, and let Y be the projective
double plane y? = f(z0, 21, ). Compute the cohomology H4(Y, Oy).

7.10.8. Let A, B be 2x2 variable matrices, let P be the polynomial ring C[a;;, b;;]. and let R be the quotient
of P by the ideal that expresses the condition AB = BA. Show that R has a resolution as P-module of the
form 0 — P2 — P3 - P — R — 0. (Hint: Write the equations in terms of a1 — a2z and by; —bas.)

7.10.9. Prove that a regular function on a projective variety is constant.

7.10.10. an algebraic version of Bézout’s Theorem. Let R = C|x,y, z], and let f and g be homogeneous
polynomials in R, of degrees m and n, respectively. The quotient falgebra A = R/(f, ¢g) inherits a grading by
degree: A= Ay ® A1 @ ---, where A, is the image of the space of homogeneous polynomials of degree n,
together with 0.

(i) Show that the sequence

o t
05R 2D RN p 40

is exact.
(ii) Prove that dim Ay = mn for all sufficiently large k.
(iii) Explain in what way this is an algebraic version of Bézout’s Theorem.

7.10.11. Let pq,p2,ps and q1, g2, g3 be distinct points on a conic C, and let L;; be the line through p; and g¢;.

(i) Let g and h be the homogeneous cubic polynomials whose zero loci are L15UL13U Los and Loy U L3y UL3o,
respectively, and let « be another point on C'. Show that for some scalar ¢, the cubic f = g + ch vanishes at x
as well as at the six given points p; and ¢;. What does Bézout’s Theorem tell us about this cubic f?

(ii) Prove Pascal’s Theorem, which asserts that the three intersection points 71 = Log N L3o, 1o = L3y N L3,
and r3 = Lq5 N Loy lie on a line.

(iii) Let six lines Z1, ..., Zg be given, and suppose that a conic C' is tangent to each of those lines. Let
P12 = Z1 N Zo, pag = Zo N Z3, p3a = Z3 N Zy, pas = Zy N Zs, ps¢ = Z5 N Zg, and pg1 = Zg N Z1.
We think of the six lines as sides of a "hexagon’, whose vertices are p;; = L; N L; for ¢j = 12,23, 34, 45, 56,
and 61. The *main diagonals’ are the lines D; through p15 and p4s, Do through pos and psg, and D3 through
pe1 and ps4. Brianchon’s Theorem asserts that the main diagonals have a common point. Prove this by studying
the dual configuration in P*.

7.10.12. Let X =P?andletY - X be a finite morphism. Prove that Y is a projective variety. Do this by
showing that the global sections of Oy (nH) = Oy ®o, Ox(nH) define a map to projective space whose
image is isomorphic to Y.
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7.10.13. (i) Let R be the polynomial ring C[x, y, 2], let f(x, y, z) and g(z, y, z) be homogeneous polynomials
of degrees m and n, and with no common factor, and let A = R/(f, g). Show that the sequence

O%R(i{)RQ(ﬂtReA—m

is exact.

(ii) Let Y be an affine variety with integrally closed coordinate ring B. Let I be an ideal of B generated by
two elements u, v, and let X be the locus V(I) in Y. Suppose that dim X < dimY — 2. Use the fact that
B = |J Bg where () ranges over prime ideals of codimension 1 to prove that this sequence is exact:

(v,=w)’

08" 2™ g /o

7.10.14. Let Ibe the ideal of Clxg, 1, 22, x3] generated by two homogeneous polynomials f, g, of dimensions
d, e respectively, and assume that the locus X = V(Z) in P? has dimension 1. Let O = Op. Multiplication by
f and g defines a map O(—d) ® O(—e) — O. Let A be the cokernel of this map.

(i) Construct an exact sequence
0—-0(-d—e) = O0(-d)®0O(—e) - O — A—0.

(ii) Show that X is a connected subset of P? in the Zariski topology, i.e., that it is not the union of two proper
disjoint Zariski-closed subsets.

(iii) Determine the genus of X in the case that X is a smooth curve.

7.10.15. A curve in P? that is the zero locus of a homogeneous prime ideal generated by two elements is
a complete intersection. Determine the genus of a smooth complete intersection when the generators have
degrees r and s.

7.10.16. a theorem of Max Noether. (Max Noether was Emmy Noether’s father.) Let f and g be homogeneous
polynomials in x, ..., z, of degrees r and s, respectively, with k > 2. Suppose that the locus X : {f = g =
0} in P* consists of rs distinct points if k = 2, or is a closed subvariety of codimension 2 if k& > 2. A theorem
that is called the AF+BG Theorem, asserts that, if a homogeneous polynomial p of degree n vanishes on X,
there are homogeneous polynomials a and b such that p = af + bg. Prove this theorem.

7.10.17. Let

Uil U2
U= |ua u22
u31r U32

be a 3 x 2 matrix whose entries are homogeneous quadratic polynomials in four variables xg, ..., x3. Let
M = (m1, ma, m3) be the 1 x 3 matrix of minors

mp = U21U32 — U22U31, M2 = —UI1U32 + UI2U31, M3 = U11U22 — U12U21

The matrices U and M give us a sequence

0-0(-62 -5 0(-4)2 2L 050/ -0
where 7 is the ideal generated by the minors.

(i) Suppose that the above sequence is exact, and that the locus of zeros of I in P2 is a curve. Determine the
genus of that curve.

(ii) Prove that, if the locus is a curve, the sequence is exact.

181



182



rrcurves

divtwo

lfree

vringpid

Chapter § THE RIEMANN-ROCH THEOREM FOR CURVES

Divisors

The Riemann-Roch Theorem I

The Birkhoff-Grothendieck Theorem
Differentials

Branched Coverings

Trace of a Differential

The Riemann-Roch Theorem I1
Using Riemann-Roch

HEBEBEEEEEE

Exercises

In this chapter, we investigate a classical problem of algebraic geometry, to determine the rational functions
with given poles on a smooth projective curve. This is often difficult. The rational functions whose poles have
orders at most r; at p;, for ¢« = 1,...,k, form a vector space, and one is happy when one can determine
the dimension of that space. The most important tool for determining the dimension is the Riemann-Roch
Theorem.

8.1 Divisors

Smooth affine curves were discussed in Chapter[5} An affine curve is smooth if its local rings are valuation
rings, or if its coordinate ring is a normal domain. An arbitrary curve is smooth if it has an open covering by
smooth affine curves.

We take a brief look at modules on a smooth curve. Recall that a module M over a domain A is said to be
torsion-free if its only torsion element is zero: If a« € A and m € M are nonzero, then am # 0. This definition
is extended to O-modules by applying it to the affine open subsets.

8.1.1. Lemma. LetY be a smooth curve.
(i) A finite Oy -module M is locally free if and only if it is torsion-free.
(ii) An Oy -module M that isn’t torsion-free has a nonzero global section.

proof. (i) We may assume that Y is affine, Y = Spec B, and that M is the O-module associated to a B-
module M. Let B be the local ring of B at a point ¢, and let M be the localization of M at g. It is isomorphic
to the tensor product M ®p B. If M is a torsion-free B- module, then Misa t0r51on free module over the ring

B which is a valuation ring. It suffices to show that, for every point g of Y, M is a free B-module (2.7.13).
The next sublemma does this.

8.1.2. Sublemma. A finite, torsion-free module M over a valuation ring Bisa free module.

proof. It is easy to prove this directly. Or, one can use the fact that every finite, torsion-free module over
a principal ideal domain is free. A valuation ring is a principal ideal domain because its nonzero ideals are
powers of its maximal ideal, and the maximal ideal is a principal ideal. (]

proof of Lemma (i) If M isn’t torsion-free, then for some affine open subset U, there will be nonzero
elements m in M(U) and a in O(U), such that am = 0. Let Z be the finite set of zeros of a in U, and let
V =Y — Z be the open complement of Z in Y. Then a is invertible on the intersection W = U NV, and
since am = 0, the restriction of m to W is zero.
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The open sets U and V cover Y, and the sheaf property for this covering can be written as an exact sequence
0— M) = MU)xM(V) =% M(W)

(see Lemma|6.4.11])). In this sequence, the section (m, 0) of M (U)xM (V') maps to zero in M (). Therefore
it is the image of a nonzero global section of M. O

8.1.3. Lemma. Let Y be a smooth curve. Every nonzero ideal T of Oy is a product of powers of maximal
ideals: m{' - --mp".

proof. This follows for any smooth curve from the case that the curve is affine, which is Proposition[5.2.9] [J

(8.1.4) divisors
A divisor on a smooth curve Y is a finite combination

D=rqg+- - +rpq

where r; are integers and ¢; are points. The terms whose integer coefficients r; are zero can be omitted or not,
as desired.

The degree of the divisor D is the sum 71 +- - - 47, of the coefficients. Its support the set of points ¢; of Y
such that r; # 0.

The restriction of a divisor D = r1q; + - - - + rrqy to an open subset of Y’ of Y is the divisor obtained
from D by deleting points of the support that aren’t in Y. For example, let D = ¢. The restriction to Y is ¢
if gis in Y, and it is zero if ¢ is not in Y.

Adivisor D = Y r;q; is effective if all of its coefficients r; are non-negative, and D is effective on an open
set Y if its restriction to Y is effective — if ; > 0 for every ¢ such that g; is a point of Y.

Let D = > r;p; and E = ) s;p; be divisors. We my write E > D if s; > r; forall 4, or if E — D is
effctive. With this notation, D > 0 means that D is effective.

(8.1.5) the divisor of a function

The divisor of a nonzero rational function f on a smooth curve Y is

div(f) =Y ve(f)a

qeyY

where, as usual, v, denotes the valuation of K that corresponds to the point g. The divisor of the zero function
is defined to be the zero divisor. The divisor of f is written here as a sum over all points g, but it becomes a
finite sum when we disregard terms with coefficient zero, because f has finitely many zeros and poles. The
coefficients will be zero at all other points.

The map
(8.1.6) K* % (divisors)™

that sends a nonzero rational function to its divisor is a homomorphism from the multiplicative group K* of
nonzero elements of K to the additive group of divisors:

div(fg) = div(f)+div(g)

The divisor of a rational function is called a principal divisor. The image of the map (8.1.6)) is the set of
principal divisors.

As before, if 7 is a positive integer, a nonzero rational function f has a zero of order r at ¢ if v, (f) = r,
and it has a pole of order r at ¢ if v (f) = —r. Thus the divisor of f is the difference of two effective divisors:

div(f) = zeros(f) — poles(f)
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A rational function f is regular on Y if and only if div(f) is effective — if and only if poles(f) = 0.

Every divisor is locally principal: There is an affine covering {Y*} of Y such that the restriction of D is
a principal divisor on each Y. This is true because the maximal ideals of Y are locally principal. If f is a
generator of the maximal ideal at a point g, then div(f) = ¢.

Two divisors D and FE are linearly equivalent if their difference D — E is a principal divisor. For instance,
the divisors zeros(f) and poles(f) of a rational function f are linearly equivalent.

8.1.7. Lemma. Let f be a rational function on a smooth curve Y. For all complex numbers c, the divisors
zeros(f — c), the level sets of f, are linearly equivalent.

proof. The functions f —c have the same poles as f. O

(8.1.8) review of terminology

divisor: a (finite) integer combination of points: D = riq; + - - - + riqk.
divisor of a function: The divisor of the rational function f is the sum >_ . vq(f)g.

effective divisor: The divisor D is effective if r; > 0 for all 7.

linearly equivalent divisors: Two divisors D and F are linearly equivalent if D — FE is a principal divisor.
principal divisor: The divisor of a rational function.

restriction of the divisor D to an open set: The restriction to the open set U is the sum of the terms r;g; such
that g, is a point of U.

support of the divisor D: the points ¢; such that r; # 0.

zeros and poles of a divisor: The zeros of D are the points g; such that r; > 0. The poles are the points g; such
that r; < 0.

(8.1.9) the module O(D)

To analyze functions with given poles on a smooth curve Y, we associate an O-module O(D) to a divisor
D. The module O(D) is a submodule of the function field module F Its nonzero sections on an open
subset V of Y are the nonzero rational functions f such that the the divisor div(f)+ D is effective on V' —
such that its restriction to V" is effective.

(8.1.10) [O(D)](V) = {f] div(f)+D is effectiveon V} U {0}
= {flpoles(f) < D onV}U{0}

When D is effective, the global sections of O(D) are the solutions of the classical problem, to determine
the rational functions whose poles are bounded by D.

Points that aren’t in an open set V' impose no conditions on the sections of O(D) on V. A section on V'
can have arbitrary zeros or poles at points notin V.

Let D be the divisor Y 7;¢;. If ¢; is a point of an open set V' and if r; > 0, a section of O(D) on V may
have a pole of order at most r; at ¢;, and if r; < 0 a section must have a zero of order at least —r; at g;. For
example, the sections of the module O(—¢) on an open set V' that contains ¢ are the regular functions on V'
that are zero at g. So O(—q) is the maximal ideal m,. Similarly, the sections of O(g) on an open set V' that
contains g are the rational functions that have a pole of order at most 1 at ¢ and are regular at every other point
of V. The sections of O(—q) and of O(g) on an open set V' that doesn’t contain p are the regular functions on
V.

The fact that a section of O(D) is allowed to have a pole at ¢; when r; > 0 contrasts with the divisor of
a function. If div(f) = > r;q;, then r; > 0 means that f has a zero at ¢;. If div(f) = D, then f will be a
global section of O(—D).
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8.1.11. Lemma. (i) If D is the principal divisor div(g), then O(D) is the free O-module g~ O of rank 1.

(ii) For any divisor D on a smooth curve, O(D) is a locally free module of rank one.

proof. (i) Let D be the divisor of a rational function g. The sections of O(D) on an open set U are the rational
functions f such that div(f) + D = div(f) + div(g) > 0 on U. These are the functions f such that fgis a
section of O on U, or such that f is a section of g~ O.

(ii) This follows from (i) because every divisor is locally principal, (|

8.1.12. Proposition. Let D and E be divisors on a smooth curve Y .
(i) The map O(D)®0 O(E) — O(D+E) that sends f ®g to the product fg is an isomorphism.
(ii) O(D) C O(FE) ifand only if E > D.

proof. (i) It is enough to verify this locally, so we may assume that Y is affine and that the supports of D and F
contain just one point, say D = rq and £ = sq. We may also assume that the maximal ideal at ¢ is a principal
ideal, generated by an element . Then O(D), O(E), and O(D+ E)) are free modules with bases =", z° and
" +$, respectively. O

8.1.13. Proposition. Let Y be a smooth curve.
(i) The nonzero ideals of Oy are the modules O(—E), where E is an effective divisor.

(ii) The modules O(D) are the finite O-submodules of the function field module F of Y.
(iii) The function field module F is the union of the modules O(D).

proof. (i) Say that E = r1q1 + - - - + rgqk, with r; > 0 for all 4. A rational function f is a section of O(—FE) if
div(f)— E is effective, which happens when poles(f) = 0, and zeros(f) > E. The same condition describes
the elements of the ideal Z = m[" - - - m;*.

(i) First, if D; and D5 are divisors, and if Dy # Do, then O(D1) # O(D3). Let L be a finite O-submodule
of F. The local ring R of Y at a point ¢ is a valuation ring. Since £ is a finite O-module, it will be generated
by one element, a rational function f, in some open neighborhood U of q. . If D is the divisor of f—!
on U, then £ = O(D) on U, and this determines the divisor D uniquely. So when £ = O(D) on U and
L =0(D")onU’, then D and D’ agree on U N U’. Therefore there is a divisor D on the whole curve Y such
that £ = O(D) in a suitable neighbohood U of any point ¢. This implies that £ = O(D). O

8.1.14. Proposition. Let D and E be divisors on a smooth curve Y. Multiplication by a rational func-
tion f such that div(f)+FE—D > 0 defines a homomorphism of O-modules O(D) — O(FE), and every
homomorphism O(D) — O(FE) is multiplication by such a function.

proof. For any O-module M, a homomorphism O — M is multiplication by a global section of M (6.3.7) (b).
So a homomorphism @ — O(E-D) will be multiplication by a rational function f such that div(f HE—D > 0.
If f is such a function, one obtains a homomorphism O(D) — O(E) by tensoring with O(D). O

8.1.15. Corollary. Let D and E be divisors on a smooth curve Y .
(i) The modules O(D) and O(E) are isomorphic if and only if D and E are linearly equivalent divisors.

(ii) Let f be a rational function on'Y, and let D = div(f). Multiplication by f defines an isomorphism
O(D) — 0.

proof. If a rational function f defines an isomorphism, the inverse morphism is defined by f~1. Then div(f)+
E—D >0andalsodiv(f~')+ D —E = —div(f)+ D — E > 0,sodiv(f) = D — E. This proves (i), and
(ii) is the special case that £ = 0. [l

(8.1.16) invertible modules

An invertible O-module is a locally free module of rank one, a module that is isomorphic to the module O
in a neighborhood of any point.
The tensor product £L®» M of invertible modules is invertible. The dual £* of an invertible module L is

invertible. If D is a divisor on a smooth curve Y, then O(D) is an invertible module. Its dual is the module
O(-D,).
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8.1.17. Lemma. Let L be an invertible O-module.

(i) Let L* be the dual module. The canonical map L*®@o L — O defined by yQa — () is an isomorphism.
Thus L* may be thought of as an inverse to L. (This is the reason for the term ’invertible’.)

(ii) The map O — o(L, L) ( = Hom (L, L)) that sends a regular function « to the operation of multiplica-
tion by « is an isomorphism.

(iii) Every nonzero homomorphism L “s Mioa locally free module M is injective.

proof. (i,ii) It is enough to verify these assertions in the case that £ is free, isomorphic to O, in which case
they are clear.

(iii) The problem is local, so we may assume that the variety is affine, say Y = Spec A, and that £ and M are
free. Then ¢ becomes a nonzero homomorphism A — A*, which is injective because A is a domain. (]

Lemma(8.1.11{shows that the only difference between an invertible module £ and a module O(D) is that
O(D) is a submodule of the function field module F, while £ ®» F can be any one-dimensional K -vector
space.

8.1.18. Corollary. Every invertible O-module L on a smooth curve Y is isomorphic to a module of the form
O(D). O

We will use the next lemma in the proof of Theorem [8.6.13| below.

8.1.19. Lemma. Let L C M be an inclusion of invertible modules on a smooth curve Y, let q be a point in
the support of M /L, and let V be an affine open subset of Y that contains q. Suppose that a rational function
f has a simple pole at q and is regular at all other points of V. If o is a section of L on V, then f'a is a
section of M on'V.

proof. Working locally, we may assume that £ = O. Then M = O(D) for some effective divisor D. Since
q is in the support of M /L, the coefficient of ¢ in D is positive. Therefore L = O C O(q) C O(D) = M.
With this notation, o will be a section of O, while £~ is a section of O(q). Then f~'a will be a section of
O(q), and therefore a section of O(D) = M. O

8.2 The Riemann-Roch Theorem I

Let Y be a smooth projective curve, and let M be a finite Oy-module. In Chapter [/} we learned that the
cohomology H%(Y, M) is a finite-dimensional vector space for ¢ = 0,1, and is zero when ¢ > 1. As before,
we denote the dimension of H%(Y, M) by h?M or by h?(Y, M).

The Euler characteristic (7.6.6) of a finite O-module M is

(8.2.1) x(M) =h°M —h'M

In particular,
X(Oy) = hOOY — h10y

The dimension h' Oy is called the arithmetic genus of Y. It is denoted by p,. This is a notation that was used
before, for plane curves. We will see below, in (8.2.9)(iv), that h°Oy = 1. So

(8.2.2) X(0) = 1—-p,

8.2.3. Riemann-Roch Theorem (version 1). Let D = 3 r;p; be a divisor on a smooth projective curve Y.
Then

x(O(D)) = x(0)+deg D ( =deg D+1 —pa)
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proof. To analyze the effect on cohomology when a divisor is changed by adding or subtracting a point, we
inspect the inclusion O(D—p) C O(D). The cokernel € of the inclusion map is a one-dimensional vector
space supported at p. So there is a short exact sequence

(8.2.4) 0= 0D-p) = OD)—e—0
Because m;, = O(—p), this sequence can be obtained by tensoring the sequence
(8.2.5) 0—=-mp, =0 =k, —0

with the invertible module O(D).

Since ¢ is a one-dimensional module supported at p, h® = 1 and h'e = 0. Let’s denote the one-
dimensional vector space H°(Y, €) by [1]. Then the cohomology sequence associated to (8.2.4) is

82.6) 0— H(Y,0(D—p)) = H(Y,0(D)) = [1] - H'(Y,0(D—p)) = H'(Y,0(D)) = 0
In this exact sequence, one of the two maps, ~y or §, must be zero. Either
(1) ~yis zero and § is injective. In this case
h’O(D—p) =h°0O(D) and h'O(D—-p) =h'O(D)+1, or
(2) 4 is zero and 7y is surjective. In this case

h’O(D)—p) =h’0O(D) -1 and h'O(D-p) =h'O(D)

In either case,
(8.2.7) x(O(D)) = x(O(D—p)) +1

The Riemann-Roch theorem follows, because deg D = deg (D — p) + 1, and because we can get from O to
O(D) by a finite number of operations, each of which changes the divisor by adding or subtracting a point. (J

Because h’ > h® — h! = y, this version of the Riemann-Roch Theorem gives reasonably good control
of HY. It is less useful for controlling H'. For that, one wants the full Riemann-Roch Theorem (version 2),
which identifies H!. The full theorem requires some preparation, so we have put it into Section However,
version 1 has important consequences:

8.2.8. Corollary. Let p be a point of a smooth projective curve Y. The dimension h®(Y, O(np)) tends to
infinity with n. Therefore there exist rational functions on'Y that have a pole of sufficiently large order at a
single point p and no other poles.

proof. When we go from O(np) to O((n+1)p), either h” increases or else h! decreases. Since h'(Y, O(np))
is finite, the second possibility can occur only finitely many times, as = tends to co. O
8.2.9. Corollary. Let Y be a smooth projective curve.

(i) The divisor of a rational function on'Y has degree zero: The number of zeros is equal to the number of
poles.

(i) Linearly equivalent divisors on'Y have equal degrees.

(iii) A nonconstant rational function on' Y takes every value, including infinity, the same number of times
(counted with multiplicity).

(iv) A rational function on'Y that is regular at every point of 'Y is a constant: H°(Y,O) = C.

proof. (i) Let f be a nonzero rational function and let D = div(f). Multiplication by f defines an isomorphism
O(D) — O (8.1.13), so x(O(D)) = x(O). On the other hand, by Riemann-Roch, x(O(D)) = x(O) +
deg D. Therefore deg D = 0.

(ii) If D and F are linearly equivalent divisors, say D— E = div(f), then, according to (i), D — E has degree
zero, and deg D = deg E.

(iii) The divisor of zeros of the function f — c is linearly equivalent to the divisor of poles of f.

(iv) According to (iii), a nonconstant function must have a pole. O
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8.2.10. Corollary. Let D be a divisor on Y. If deg D > p,, then h°O(D) > 0. If h°O(D) > 0, then
deg D > 0.

proof. If deg D > p,, then x(O(D)) = deg D+1—p, > 1,and h® > h® —h! = y. If O(D) has a nonzero
global section f, a rational function such that div(f)+D is effective, then deg (div(f) + D) > 0, and because
the degree of div(f) is zero, deg D > 0. O

8.2.11. Theorem. With its classical topology, a smooth projective curve Y is a connected, compact, orientable
two-dimensional manifold.

proof. We prove connectedness here. The other points have been discussed before (see Theorem [I.8.20).

A nonempty topological space is connected if it isn’t the union of two disjoint, nonempty, closed subsets.
Suppose that, in the classical topology, Y is the union of disjoint, nonempty closed subsets Y; and Y. Both
Y; and Y; will be compact, two-dimensional manifolds. Let p be a point of of Y;. Corollary @] shows that
there is a nonconstant rational function f whose only pole is at p. Then f will be a regular function on the
complement of p, and therefore a regular function on the entire compact manifold Y5.

For review: Any point ¢ of the smooth curve Y has a neighborhood V' that is analytically equivalent to
an open subset U of the affine line X. If a function g on V is analytic, the function on U that corresponds to
g is an analytic function of one variable on U. The maximum principle for analytic functions asserts that a
nonconstant analytic function on an open region of the complex plane has no maximal absolute value in the
region. This applies to the open set U and therefore also to the neighborhood V' of ¢q. Since ¢ can be any point
of Y5, a nonconstant function g that is analytic on Y5 cannot have a maximum anywhere on Y5. On the other
hand, since Y5 is compact, a continuous function does have a maximum. So an analytic function g on Y5 must
be a constant.

Going back to the rational function f with a single pole p, the restriction of f to Y5 will be analytic, and
therefore constant. When we subtract that constant from f, we obtain a nonconstant rational function on Y
that is zero on Y5>. But the zero locus of a rational function on a curve is a finite set. This is a contradiction. []

8.3 The Birkhoff-Grothendieck Theorem
This theorem describes finite, torsion-free modules on the projective line X = P!,

8.3.1. Birkhoff-Grothendieck Theorem. A finite, torsion-free O-module on the projective line X is isomor-
phic to a direct sum of twisting modules: M ~ @ O(n;).

(Because X is a smooth curve, an O-module M is locally free if and only if it is torsion-free.)

This theorem was proved by Grothendieck in 1957 using cohomology. It had been proved by Birkhoff in
1909, in the following equivalent form:

Birkhoff Factorization Theorem. Let Ay = C[u], A; = C[u~}], and Ap; = C[u,u"!]. Let P be an invert-
ible Ag;-matrix. There exist an invertible Ag-matrix )y and an invertible A;-matrix (); such that Q; LpQ, is
diagonal, and its diagonal entries are integer powers of u.

proof of the Birkhoff-Grothendieck Theorem. This is Grothendieck’s proof.
According to Theorem|7.5.5} the cohomology of the twisting modules on X is h°0 = 1, h'O = 0, and if
r is a positive integer,
h’O(r) =r+1, h'O(r) =0, h°O(-r)=0, and h'O(-r)=7r-1

8.3.2. Lemma. Let M be a finite, torsion-free O-module on the projective line X. For sufficiently large r,
(i) the only homomorphism O(r) — M is the zero map, and
(i) h(X, M(=7)) = 0.

proof. (i) A nonzero homomorphism O(r) == M from the twisting module O(r) to the locally free module
M will be injective (8.1.17), and the associated map H°(X,O(r)) — H°(X, M) will be injective too, so
h?(X,O(r)) < h%(X, M). Since h°(X, O(r)) = r+1, r is bounded by the integer h®(X, M) — 1.

(

(i) A global section of M (—r) defines a map O — M (—r). Its twist by r will be a map O(r) — M. By (i),
7 is bounded. O
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We go to the proof now.

As Lemma [8.1.1] tells us, M is locally free. We use induction on its rank. We suppose that M has rank
r, that » > 0, and that the theorem has been proved for locally free O-modules of rank less than r. The plan
is to show that M has a twisting module as a direct summand, so that M = W @& O(n) for some . Then
induction on the rank, applied to W, will prove the theorem.

Twisting is compatible with direct sums, so we may replace M by a twist M(n). Instead of showing that
M has a twisting module O(n) as a direct summand, we show that, after we replace M by a suitable twist,
the structure sheaf O will be a direct summand.

The twist M(n) will have a nonzero global section when n is sufficiently large (6.8.20), and it will have
no nonzero global section when n is sufficiently negative (8.3.2) (ii)). Therefore, when we replace M by a
suitable twist, we will have H?(X, M) # 0 but H°(X, M(—1)) = 0. We assume that this is true for M.

We choose a nonzero global section 1 of M and consider the injective multiplication map O — M. Let
W be its cokernel, so that we have a short exact sequence

(8.3.3) 005 M-S W0

8.3.4. Lemma. Let W be the O-module that appears in the sequence .
(i) H°(X,W(-1)) = 0.

(ii) W is torsion-free, and therefore locally free.

(iii) W is a direct sum @:;11 O(n;) of twisting modules on P*, with n; < 0.

proof. (i) This follows from the cohomology sequence associated to the twisted sequence
0—0(-1) > M(-1) > W(-1) =0
because H°(X, M(—1)) =0 and H'(X,O(-1)) = 0.

(i) If the torsion submodule of VW were nonzero, the torsion submodule of WW(—1) would also be nonzero,
and then W(—1) would have a nonzero global section (8.1.1).

(iii) The fact that W is a direct sum of twisting modules follows by induction on the rank: W = & O(n;).
Since H°(X,W(—1)) = 0, we must have H°(X, O(n;—1)) = 0. Therefore n; — 1 < 0, and n; < 0. O

We go back to the proof of Theorem [8.3.1] Because O* = O, the dual of the sequence (8.3.3) is an exact
sequence

m* T

0+— O+ M"+—W'¢+—0

and W* ~ @ O(—n;) with —n; > 0. Therefore h!W* = 0. The map H°(M*) — H°(O) is surjective.
Let o be a global section of M* whose image in © is 1. Multiplication by « defines a map @ —— M* that
splits the sequence: m*« is the identity map on O, and M* is the direct sum im(a) @ ker(m*) = O & W*.
Therefore M ~ W @ O. O

8.4 Differentials

We introduce some terminology, differentials and branched coverings, that will be used in version II of the
Riemann-Roch theorem. Why differentials enter into the Riemann-Roch Theorem is something of a mystery,
but one important fact is the Residue Theorem, which controls the poles of a rational differential. Proofs of
Reimann-Roch are often based on that theorem. We recommend reading about the Residue Theorem, though
we won’t use it. []

Try not to get bogged down in the preliminary disussions. Give the next pages a quick read to learn the
terminology. You can look back as needed. Begin to read more carefully when you get to Section [8.6]

Let A be an algebra and let M be an A-module. A derivation A -, M is a C-linear map that satisfies the
product rule for differentiation, a map that has these properties:

I'See one of the books by Fulton, Miranda, or Mumford in the bibliography, or for a general treatment, Tate, J., Residues of differentials
on curves, Ann Sci ENS 1968.
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(8.4.1) d(ab) =adb+bda, d(a+b)=0da+db, and dc=0

for all a,b in A and all ¢ in C. The fact that § is C-linear, i.e., that it is a homomorphism of vector spaces,
follows: Since dc = 0, §(cb) = ¢db+ bdc = cdb.

< js a derivation C[t] — C[t].

For example, differentiation r

8.4.2. Lemma. (i) Let B be an algebra, let M <5 Nbea homomorphism of B-modules, and let B M
be a derivation. The composition B g—6> N is a derivation.

(i) Ler A -2+ B be an algebra homomorphism, and let B %% M be a derivation. The composition A RLNy Vi
is a derivation.

(iii) Let A =5 Bbea surjective algebra homomorphism, let B s Mbea map to a B-module M, and let
d=hep. If A A Misa derivation, then h is a derivation. O

The module of differentials €4 of an algebra A is an A-module generated by elements denoted by da, one
for each element a of A. The elements of 24 are (finite) combinations > b; da;, with a; and b; in A. The

defining relations among the generators da are the ones that make the map A BNY) 4 that sends a to da a
derivation: For all a,bin A and all ¢in C,

(8.4.3) d(ab) = adb+bda, d(a+b)=da+db, and dc=0

The elements of 24 are called differentials.
8.4.4. Lemma.

(i) When we compose a homomorphism € 4 Jom of O-modules with the derivation A 40 A, we obtain a
derivation A 1% M. Composition with d defines a bijection between module homomorphisms Q4 — M and
derivations A~ M.

(i) Q is a functor: An algebra homomorphism A — B induces a homomorphism Q4 — Qp that is
compatible with the ring homomorphism u, and that makes a diagram

BL)QB

A—1 450,

Recall that, when w is an element of 24 and « is an element of A, compatibility of v with « means that
v(aw) = u(a)v(w).

proof. (i) When Qp is made into an A-module by restriction of scalars, the composed map A — B 40 B
will be a derivation to which (i) applies. (]

8.4.5. Lemma. Let R be the polynomial ring C|x1, ..., x,,]. The module of differentials Qg is a free R-module
with basis dx, ..., dx,,.

proof. The formuladf = %dmi follows from the defining relations. It shows that the elements dz 1, ..., dx,,
generate the R-module Q2. Let V be a free R-module with basis vy, ..., v,. The product rule for differentiation

shows that the map ¢ : R — V defined by §(f) = %vi is a derivation. It induces a module homomorphism

Q4 25 V ssu that sends dx; to v;b li Since dx1, ..., dz,, generate )i and since v1, ..., v, is a basis of
V, ¢ is an isomorphism. ([

8.4.6. Proposition. Let I be an ideal of an algebra R, let A be the quotient algebra R/ I, and let dI denote
the set of differentials df with f in I. The subset N = dI+1Qg of Qg is a submodule, and ) 5 is isomorphic
to the quotient Qg /N.
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The proposition can be interpreted this way: Suppose that the ideal I is generated by elements fi, ..., f, of R.
Then 2 4 is the quotient of Q2 that is obtained by introducing these two rules:

. dfl = 0, and

« multiplication by f; is zero.

8.4.7. Example. Let R be the polynomial ring C[y] in one variable. So Q2 is a free module with basis dy.
Let I be the principal ideal (y?), and let A be the quotient R/I. In this case, dI is an R-module generated by
te element 2y dy, and y%dy generates 12 4. The R-module N is generated by ydy. If 7 denotes the residue of
yin A, Q4 = Qgr/N is generated by an element dy, with the relation y dg = 0. It isn’t the zero module. [

proof of Proposition First, IQx is a submodule of Qr, and dI is an additive subgroup of Q. To show
that N is a submodule, we must show that scalar multiplication by an element of R maps dI to N, i.e., that if
gisin R and f isin I, then g df is in N. By the product rule, gdf = d(fg) — f dg. Since I is an ideal, fg is
inI. Thend(fg)isindl, and f dgisin IQr. So gdf isin N.

The rules displayed above hold in €24 because the generators fi of I are zero in A. Therefore IV is
contained in the kernel of the surjective map Qp — Q4 defined by the homomorphism R — A. Let
denote the quotient module 2 /N. This is an A-module, and because N C ker v, v defines a surjective map
of A-modules @ - Q4. We show that T is bijective. Let r be an element of R, let a be its image in A,
and let dr be its image in Q. The composed map R SANYo) r — Qs a derivation that sends 7 to dr, and T

is in its kernel. It defines a derivation R/ = A 20 that sends a to dr. This derivation corresponds to a
homomorphism of A-modules €24 — € that sends da to dr, and that inverts ©. O

8.4.8. Corollary. If A is a finite-type algebra, then §2 4 is a finite A-module.

This follows from Proposition [8.4.6] because the module of differentials of the polynomial ring C[x1, ..., zy,]
is a finite module. ]

8.4.9. Lemma. Let S be a multiplicative system in a domain A. The module Qg1 4 of differentials of S~ A
is canonically isomorphic to the module of fractions S™'Q 4. In particular, if K is the field of fractions of A,
then KQ@404 ~ Qk.

We have moved the symbol S~ to the left for clarity.

proof of Lemma The composed map A — S~1A SLANY) 5-14 is a derivation. It defines an A-module
homomorphism Q4 — Qg-1 4 which extends to an S~ A-homomorphism S~1Q 4 —>+ Qg-1 4 because scalar
multiplication by the elements of S is invertible in Qg1 4. The relation ds~* = —ks~*~1ds follows from the
definition of a differential, and it shows that ¢ is surjective. The quotient rule

8(s7%a) = —ks " tads + s *da

defines a derivation S~'A —>» S—1Q4, that corresponds to a homomorphism Qg-14 — S~'Q4 and that
inverts ¢. Here, one must show that § is well-defined, that 5(51_ka1) = 5(52_€a2) if sl_eal = sgkag, and that
¢ is a derivation. You will be able to do this. O

Lemma shows that a finite O-module €2y of differentials on a variety Y is defined such that, when
U = Spec A is an affine open subset of Y, Qy (U) = Q4.

8.4.10. Proposition. Let y be a local generator for the maximal ideal at a point q of a smooth curve Y. In a
suitable neighborhood of q, the module Qy of differentials is a free O-module with basis dy. Therefore by is
an invertible module.

proof. We may assume that Y is affine, say Y = Spec B. Let g be a point of Y, and let y be an element
of B with v,(y) = 1. To show that dy generates {2 locally, we may localize, so we may suppose that y
generates the maximal ideal m at g. We must show that after we localize B once more, every differential df
with f in B will be a multiple of dy. Let ¢ = f(q), so that f = ¢ + yg for some g in B, and because dc = 0,
df = gdy + ydg. Here g dy is in B dy and y dy is in m{)g. This shows that

QB:de+mQB
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An element 3 of Qg can be written as 8 = bdy + =y, with b in B and v in mQ g. If W denotes the quotient
module Qp /(B dy), then W = mW. The Nakayama Lemma tells us that there is an element z in m such that
s = 1 — z annihilates W. When we replace B by its localization B, we will have W = 0 and Qp = B dy, as
required.

We must still verify that the generator dy of 25 isn’t a torsion element. Suppose that b dy = 0, with b #~ 0,
then Q2 will be zero except at the finite set of zeros of b in Y. We replace the point g by a point at which Qg
is zero, keeping the rest of the notation unchanged. Let and A = Cl[y]/(y?). As was noted in Example
) 4 isn’t the zero module. Proposition tells us that, at our point g, the algebra B/ mg is isomorphic to A,
and Proposition tells us that 24 1s a quotient of 5. Since 24 isn’t zero, neither is 5. Therefore dy
isn’t a torsion element. (]

8.5 Branched Coverings

By a branched covering, we mean an integral morphism ¥ —— X of smooth curves. Chevalley’s Finiteness
Theorem shows that, when a smooth curve Y is projective, every nonconstant morphism Y — X will be
a branched covering, unless it maps Y to a point.

Let Y — X be a branched covering. The function field K of Y will be a finite extension of the function
field F' of X. The degree [Y : X] of the covering is defined to be the degree [K : F] of that field extension. If
X' = Spec A is an affine open subset of X, its inverse image Y’ will be an affine open subset Y/ = Spec B
of Y, and B will be a locally free A-module whose rank is [Y": X].

To describe the fibre of a branched covering Y — X over a point p of X, we may localize. So we may
assume that X and Y are affine, say X = Spec A and Y = Spec B, and that the maximal ideal m, of A ata
point p is a principal ideal, generated by an element x of A.

If a point ¢ of Y lies over p, the ramification index at q is defined to be v,(x), where v, is the valuation of
the function field K that corresponds to g. We usually denote the ramification index by e. Then, if y is a local
generator for the maximal ideal m, of B at ¢, we will have

T =uy

where u is a local unit — a rational function on Y that is regular and invertible on some open neighborhood
of q.

Points of Y whose ramification indices are greater than one are called branch points. We will also call a
point p of X a branch point of the covering Y if there is a branch point of Y that lies over p.

8.5.1. Lemma. (i) A branched covering Y — X has finitely many branch points.

(ii) Let n denote the degree [Y : X|. If a point p of X isn’t a branch point, the fibre over p consists of n
points with ramification indices equal to 1.

proof. This is very simple. We may delete finite sets of points, so we may suppose that X and Y are affine,
X = SpecA and Y = Spec B. Then B is a finite A-module of rank n. Let F' and K be the fraction
fields of A and B, respectively, and let 3 be an element of B that generates the field extension K /F'. Then
A[B] C B, and since these two rings have the same fraction field, there will be a nonzero element s in A such
that A¢[3] = Bs. We may replace A and B by A, and By, so that B = A[f]. Let g be the monic irreducible
polynomial for 3 over A. The discriminant of g isn’t the zero ideal (I.7.22). So for all but finitely many points
p of X, the discriminant will be nonzero, and there will be n points of Y over p with ramification indices equal
to 1. t

8.5.2. Corollary. A branched coveringY —— X of degree one is an isomorphism.

proof. When [Y : X] = 1, the function fields of Y and X will be equal. Then, because Y — X is an integral
morphism and X is normal, Y = X. O

The next lemma follows from Lemma[8.1.3]and the Chinese Remainder Theorem.

8.5.3. Lemma. LetY — X be a branched covering, with X = Spec A and Y = Spec B. Suppose that
the maximal ideal m,, at p is a principal ideal, generated by an element x. Let qu, ..., g, be the points of Y that
lie over a point p of X and let m; and e; be the maximal ideal and ramification index at q;, respectively.
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(i) The extended ideal m,B = xB is the product ideal m{* - - - m;’“.
(i) Let B; = B/mS'. The quotient B = B/xB is isomorphic to the product By X - - - X B,
(iii) The degree [Y : X| of the covering is the sum e1+- - -+ey, of the ramification indices at the points q;. O

(8.5.4) local analytic structure

The local analytic structure of a branched covering Y —— X in the classical topology is very simple. We
explain it here because it is useful and helpful for intuition.

8.5.5. Proposition. Locally in the classical topology, Y is analytically isomorphic to an e-th root covering
Yy =z

proof. Let g be a point of Y, let p be its image in X, let = and y be local generators for the maximal ideals m,,
of Ox and m, of Oy, respectively. Let e be the ramification index at g. So x = uy®, where u is a local unit at
q. In a neighborhood of ¢ in the classical topology, u will have an analytic e-th root w. The element y; = wy
also generates my locally, and x = y7. We replace y by y;. Then the implicit function theorem tells us that
that 2 and y are local analytic coordinate functions on X and Y (see (I.4.1§)). O

8.5.6. Proposition. Let Y —— X be a branched covering, let {q1, .-, qx } be the fibre over a point p of X,

and let e; be the ramification index at q;. As a point p' of X approaches p, e; points that lie over p’ approach
qi- O

(8.5.7) suppressing notation for the direct image

When considering a branched covering Y —— X of smooth curves, we will often pass between an Oy -
module M and its direct image 7, M, and it will be convenient to work primarily on X. Recall that if X’ is
an open subset X’ of X and Y is its invere image, then

[ MJ(XT) = M(Y)

One can think of the direct image 7. M as working with M, but looking only at the open subsets Y’ of Y’
that are inverse images of open subsets of X. If we look only at such subsets, the only significant difference
between M and its direct image will be that, when X’ is open in X and Y’ = 71X, the Oy (Y”)-module
M(Y") is made into an Ox (X’)-module by restriction of scalars.

To simplify notation, we will often drop the symbol ., and write M instead of 7, M. If X’ is an open
subset of X, M(X’) will stand for M (7~ X"). When denoting the direct image of an Oy -module M by the
same symbol M, we may refer to it as an O x-module. In accordance with this convention, we may also write
Oy for 7,0y, but we must include the subscript Y.

This abbreviated terminology is analogous to the one used for restriction of scalars in a module. When
A — B is an algebra homomorphism and M is a B-module, the B-module g M and the A-module 4 M
obtained from it by restriction of scalars are usually denoted by the same letter M.

8.5.8. Lemma. Let Y " X be a branched covering of smooth curves, of degree n = [Y : X|. With notation
as above,

(i) The direct image of Oy, which we may also denote by Oy, is a locally free O x -module and of rank n.

(ii) A finite Oy -module M is a torsion Oy -module if and only if its direct image (also denoted by M) is a
torsion O x-module.

(iii) A finite Oy -module M is a locally free Oy -module if and only if its direct image is a locally free Ox -
module. If M is a locally free Oy -module of rank v, then its directc image is a locally free Ox-module of
rank nr. (]
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8.6 Trace of a Differential

(8.6.1) trace of a function

Let Y -~ X be a branched covering of smooth curves, and let ' and K be the function fields of X and Y,

respectively. The trace map K 2% F for a field extension of finite degree has been defined before . It
« is an element of K, multiplication by « on the F'-vector space K is a linear operator, and trace(k) is the trace
of that operator. The trace is F-linear: If f; are in F' and «; are in K, then trace(d_ f;a;) = Y fitrace(a;).
Moreover, the trace carries regular functions to regular functions: If X’ = Spec A’ is an affine open subset of
X, with inverse image Y’ = Spec B’, then because A’ is a normal algebra, the trace of an element of B’ will
be in A’ (4.3.7). Using our abbreviated notation Oy for m.Oy (8.5.7), the trace defines a homomorphism of
O x-modules

(8.6.2) Oy % 0x
Analytically, this trace can be described as a sum over the sheets of the covering. Letn = [V : X].

When a point p of X isn’t a branch point, there will be n points q1, ..., ¢, of Y lying over p. If U is a small
neighborhood of p in X in the classical topology, its inverse image V' will consist of disjoint neighborhoods
V; of q;, each of which maps bijectively to U. The ring of analytic functions on V; will be isomorphic to
the ring A of analytic functions on U. So the ring of analytic functions on V' is isomorphic to a direct sum
A1 @ - @ A, of n copies of A. If a rational function g on Y is regular on V/, its restriction to V' can be
written as g = g1 @ - - - O gn, With g; in A;. The matrix of left multiplication by g on A; & - -- & A, is the
diagonal matrix with entries g1, ..., gn, and

(863) trace(g) =g+ +9gn

8.6.4. Lemma. Let Y — X be a branched covering of smooth curves, let p be a point of X, let q1, ..., qi, be
the fibre over p, and let e; be the ramification index at q;. If a rational function g on'Y is regular at the points
q1, ---, Qx, its trace is regular at p. Its value at p is [trace(g)](p) = e1g(q1) + - - + exg(qr)-

proof. The regularity was discussed above. If p isn’t a branch point, we will have £ = n and e; = 1 for all
i. In this case, the lemma follows by evaluating (8.6.3). It follows by continuity for any point p. As a point
p’ approaches p, e; points ¢’ of Y approach ¢; (8.5.6). For each point ¢’ that approaches g;, the limit of g(q’)
will be g(g;). O

(8.6.5) trace of a differential

The structure sheaf is naturally contravariant. A branched covering Y —— X corresponds to a homomor-
phism of Ox-modules Ox — Oy . The trace map for functions is a homomorphism in the opposite direction:
Oy %0

Y X-
Differentials are also naturally contravariant. A morphism Y -5 X induces an @ x-module homomor-

phism Qx — Qy that sends a differential dz on X to a differential on Y that we may also denote by dx
(ii). As is true for functions, there is a trace map for differentials in the opposite direction. It is defined below,

in (8.6.7), and it will be denoted by 7:
Oy — Qx

But first, a lemma about the natural contravariant map Qx — Qy:

8.6.6. Lemma. Let Y — X be a branched covering.

(i) Let p be the image in X of a point q of Y, let x and y be local generators for the maximal ideals of X
and Y at p and q, respectively, and let e be the ramification index at q. As a differential on'Y, dz = vy°~'dy,
where v is a local unit at q.

(ii) The canonical homomorphism Q2 x — Qy is injective.

195



proof. (i) As we have noted before, z = uy®, for some local unit u. Since dy generates {2y locally, there is a
rational function z that is regular at g, such that du = zdy. Let v = yz + eu. Then

de = d(uy®) = yezdy + ey tudy = vy ldy

Since yz is zero at ¢ and ew is a local unit, v is a local unit.

See (8.1.17) (iv) for the proof of part (ii). [l

To define the trace for differentials, we begin with differentials of the functions fields ' and K of X and Y,
respectively. The Oy-module Qy is invertible (8.4.10), and the module 2 of K-differentials is a localization
of Qy. So Qg is a free K-module of rank one. Any nonzero differential will form a K'-basis. We choose as
basis a nonzero F'-differential . Its image in {2, which we denote by « too, will be a K -basis for Q. We
could take o = dx, where x is a local coordinate function on X, for instance.

Since « is a basis, any element 5 of (2 can be written uniquely, as
B = go
where ¢ is an element of K. The trace Qx — Qp is defined by
(8.6.7) 7(8) = trace(g)x

where trace(g) is the trace of the function g. Since the trace for functions is F-linear, 7 is also F-linear.

We need to check that 7 is independent of the choice of .. Let o be another nonzero F'-differential. Then
fa/ = a for some nonzero element f of F, and gfa’ = ga. Since trace is F-linear, trace(gf) = f trace(g).
Then

T(gfa’) = trace(gf)a’ = ftrace(g)a’ = trace(g)fa’ = trace(g)a = 7(ga)

Using o’ in place of « gives the same value for the trace.

A differenial of the function field K is called a rational differential. A rational differential 3 is regular at
a point ¢ of Y if there is an affine open neighborhood Y’ = Spec B of g such that 3 is an element of Qp. If
y is a local generator for the maximal ideal m, and if 8 = g dy, the differential /3 is regular at ¢ if and only if
the rational function g is regular at g.

Let X = Spec Aand Y = Spec B be affine varieties, and let p be a point of X. Suppose that the maximal
ideal at p is a principal ideal, generated by an element = of A, and that the differential dx generates €2 4. Let
q1, ---, qx be the points of Y that lie over p, and let e; be the ramification index at ¢;.

8.6.8. Corollary. With notation as above,
(i) When viewed as a differential on Y, dx has a zero of order e; —1 at q;.

(ii) If a differential B on'Y that is regular at q; is written as 3 = g dx, where g is a rational function on'Y,,
then g has a pole of order at most e; —1 at q;.

This follows from Lemma|[8.6.6| (i).

8.6.9. Main Lemma. Let Y — X be a branched covering, let p be a point of X, let q1, ..., q be the points
of Y that lie over p, and let B be a rational differential on'Y .

() If B is regular at the points q1, ..., qx, its trace 7(0) is regular at p.

(i) If B has a simple pole at q; and is regular at q; for all j # i, then T([3) is not regular at p.

proof. Let x be a local generator for the maximal ideal at p. We write 5 as g dx, where g is a rational function
onY.

(i) Suppose that 3 is regular at the points g;. Corollary [8.6.8]tells us that g has poles of orders at most e; —1 at
the points ¢;. Since x has a zero of order e; at g;, the function zg is regular at ¢;, and its value there is zero.
Then trace(xg) is regular at p, and its value at p is zero . So ! trace(zg) is a regular function at p.
Since trace is F-linear and z isin F', 27! trace(zg) = trace(g). Therefore trace(g) and 7(3) = trace(g)dz
are regular at p.
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(ii) In this case, ¢ has poles of orders at most e; —1 at the points ¢; when j # 4, and it has a pole of order e; at

gi- So xg will be regular at the points g;. It will be zero at g; when j # ¢, and nonzero at g;. The function xg

will be regular at all of the points ¢;. Its value at g; will be zero when j # 4, and not zero when j = ¢. Then
B69)

trace(xg) will be regular at p, but not zero there (8.6.4). Therefore 7(3) = 2~ ! trace(zg)dx won’t be regular
at p. U
8.6.10. Corollary. The trace map defines a homomorphism of Ox-modules Qy — Qx. ]

8.6.11. Example. (i) Let x be a local generator for the maximal ideal m,, at a point p of X. If the degree
[Y: X] of Y over X is n, then when we regard dz as a differential on Y,

(8.6.12) 7(dr) = ndx

(ii) Let Y be the locus y° = x in AZ . Multiplying y by ¢ = e?™/°

trace of an integer power y* is

permutes the sheets of Y over X. The

e—1
(8.6.13) trace(y") = ZCjkyk
=0

The sum } ¢ is zero unless & = 0 modulo e. Then trace(dy) is not regular at z = 0, but dy/y is regular
there. O

Let Y - X be a branched covering. As is true for any Oy -module, Qy is isomorphic to the module of
homomorphisms ¢,.(Oy, Qy). The homomorphism Oy — 2y that corresponds to a section /3 of {0y on an

open set U sends a regular function f on U to f3. We denote that homomorphism by 5 too: Oy LN Qy.

8.6.14. Lemma. Composition with the trace Qy — Qx defines a homomorphism of O x-modules
Qy & 0,(0y,Qy) = 0,(0y,0x)

proof. An Oy -linear map becomes an O x-linear map by restriction of scalars. When we compose an Oy -
linear map (3 with 7, then because 7 is O x-linear, the result will be O x-linear. It will be a homomorphism of
O x-modules. O

8.6.15. Theorem. (i) The map (8.6.14) is bijective.
(i) Let M be a locally free Oy -module. Composition with the trace defines a bijection

(8.6.16) 0y(M,Q0,) == 0(M,Q0,)

This theorem follows from the Main Lemma, when one looks carefully.

Note. The domain and range (8.6.16) are to be interpreted as modules on X. When we put the symbols Hom
and 7, that we have suppressed into the notation, the map (8.6.16)) becomes a bijection

7. (Homy (M, Qy)) - Homy (7. M, Qx)

It suffices to verify the theorem locally, because it concerns modules on X. So we may suppose that X
and Y are affine, say X = Spec A and Y = Spec B. When the theorem is stated in terms of algebras and
modules, it becomes this:

8.6.17. Theorem. LetY — X be a branched covering, with Y = Spec B and X = Spec A.
(i) The trace map Qp = p(B,QB) AN A(B,Q4) is bijective.
(i) For any locally free B-module M, composition with the trace defines a bijection g(M,Qp) — A(M,Q4).

When we write 4(M,Q4) here, we are interpreting the B-module M as an A-module by restriction of
scalars.
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8.6.18. Lemma. Let A C B be rings, let M be a B-module, and let N be an A-module. Then the module
A(M, N) of homomorphisms has the structure of a B-module.

proof. We must define scalar multiplication of a homomorphism M —25 N of A-modules by an element b of
B. The definition is: [by](m) = ¢(bm). One must show that the map by is a homomorphism of A-modules
M — N, and that the axioms for a B-module are true. You will be able to check those things. O

proof of Theorem (i). Since the theorem is local, we are still allowed to localize. We use the algebra
version of the theorem. Both B and )y are torsion-free, and therefore locally free A-modules. Local-
izing as needed, we may assume that they are free A-modules, and that ) 4 is a free module of rank one with
basis of the form dx. Then 4(B,Q4) will be a free A-module too.

Let’s denote 4(B,4) by ©. Lemma tells us that © is a B-module. Because B and 24 are free
A-modules, © is a free A-module and a locally free B-module. Since €2 4 has A-rank 1, the A-rank of O is the
same as the A-rank of B. Then the B-rank of © is 1, the same as the B-rank of B too (see (8.5.8)). Therefore
O is an invertible B-module.

If z is a local coordinate on X, then 7 dz # 0 . The trace map Q5 — O isn’t the zero map. Since
domain and range are invertible B-modules, it is an injective homomorphism. Its image, which is isomorphic
to ), is an invertible submodule of the invertible B-module O.

To show that Qg = O, we will apply Lemma to show that the quotient © = ©/Qp is the zero
module. Suppose not, and let ¢ be a point in the support of ©. Let p be the image of ¢ in X and let q1, ..., g
be the fibre over p, with ¢ = ¢ .

We choose a differential « that is regular at all of the points ¢;. If y is a local generator for the maximal
ideal at q1, then o = g dy, where g is a regular function at ¢;. We assume also that o has been chosen so that
that g(q1) # 0.

Let f be a rational function that is regular on an affine open set V' of Y that contains the points g1, ..., gk,
and such that f(g1) = 0 and f(g;) # 0 when ¢ > 1. Lemmatells us that 3 = f~'a is a section of ©
on V, but the Main Lemma|8.6.9tells us that 7(/3) isn’t regular at p. This contradicion proves the theorem. [J

proof of Theorem (ii). We are to show that if M is a locally free Oy -module, composition with the
trace defines a bijective map o, (M, Qo, ) = 0(M, Qo). Part (i) of the theorem tells us that this is true
in when M = Oy . Therefore it is also true when M is a free module Ogﬁ. And, since (ii) is a statement about
Ox-modules, it suffices to prove it locally on X.

8.6.19. Lemma. Let q1, ..., qx be points of a smooth curve Y, and let M be a locally free Oy -module. There
is an open set V that contains the points qu, ..., qi, such that M is free on V.

We assume the lemma and complete the proof of the theorem. Let {q, ..., ¢ } be the fibre over a point p
of X and let be V' as in the lemma. The complement D = Y — V is a finite set whose image Z in X is also
finite, and Z doesn’t contain p. If U is the complement of Z in X, its inverse image W will be a subset of V'
that contains the points of the fibre, on which M is free. O

proof of the lemma. We may assume that Y is affine, Y = Spec B, and that the O-module M corresponds to
a locally free B-module M.

With terminology as in Lemma let m; be the maximal ideal of B at g;, and let B; = B /mii. The
quotient B = B/x B is isomorphic to the product Bj x - - - x By,. Since M is locally free, M/m; M = M, is a
free B;-module. Its dimension is the rank 7 of the B-module M.

If M has rank r, there will be a set of elements m = (myq,...,m,) in M whose residues form a basis of
M for every i. This follows from the Chinese Remainder Theorem. Therefore m generates M locally at each
of the points. Let M’ be the B-submodule of M generated by m. The cokernel of the map M’ — M is zero
at the points ¢, ..., qx, and therefore it’s support, which is a finite set, is disjoint from those points. When we
localize to delete this finite set from X, the set m becomes a basis for M. O

Note. Theorem is subtle. Unfortunately the proof, though understandable, doesn’t give an intuitive
explanation of the fact that Qp is isomorphic to 4(B,4). To get more insight into that, we would need a
better understanding of differentials. My father Emil Artin said: “One doesn’t really understand differentials,
but one can learn to work with them.”
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8.7 The Riemann-Roch Theorem II
(8.7.1) the Serre dual

Let Y be a smooth projective curve, and let M be a locally free Oy -module. The Serre dual of M, is the
module

(8.7.2) M = y(M,Qy)  (=Home, (M,Qy))

Its sections on an open subset U are the homomorphisms of Oy (U)-modules M(U) — Qy (U), and it can
also be written as M® = M* ®¢ €y, where M* is the ordinary dual y (M, Oy). Since the module Qy- is
invertible, it is locally isomorphic to Oy-. So the Serre dual M* is locally isomorphic to the ordinary dual
M*. Tt is a locally free module of the same rank as M, and the Serre bidual (M*)* is isomorphic to M:

(M5 = (M* @0 Qy)* @0 Qy & M™ @0 O @0 Uy ~ M*™ =~ M
(See (8.1.17) (i).) For example, 05 = Qy and Qf = Oy-.

8.7.3. Riemann-Roch Theorem, version 2. Let M be a locally free Oy -module on a smooth projective
curve Y, and let M?® be its Serre dual. Then h° M = h* M and h* M = h9 M5,

The two assertions are equivalent, because M and (M®)* are isomorphic. The second one follows from the
first when one replaces M by M?®. For example, h'Qy = h%0Oy =1 and h°Qy = h'Oy is the arithmetic

genus pg.
If M is a locally free Oy -module, then

(8.7.4) x(M) = h°M — O Mm*

A more precise statement of the Riemann-Roch Theorem is that (Y, M) and H°(Y, M*) are dual vector
spaces. This becomes important when one wants to apply the theorem to a cohomology sequence, but we omit
the proof. The fact that the dimensions are equal is enough for many applications.

Our plan is to prove Theorem directly for the projective line P'. This will be easy, because the
structure of locally free modules on P! is very simple. We derive it for an arbitrary smooth projective curve Y’
by projection to P!. Projection to projective space is the method that was used by Grothendieck in his proof
of the general Riemann-Roch Theorem.

Let X = P!, let Y be a smooth projective curve, and let Y = X be a branched covering. Let M be a
locally free Oy -module, and let the Serre dual of M, as defined in (8.7.2), be

MF = (M, Qy)

The direct image of M is a locally free O x -module that we are denoting by M too, and we can form the Serre
dual on X. Let

8.7.5. Corollary. The direct image w,M?, which we also denote by M7, is isomorphic to M3.
proof. This is Theorem [8.6.13] O

The corollary allows us to drop the subscripts from M. Because a branched covering Y - X is an
affine morphism, the cohomology of M and of its Serre dual M?® can be computed, either on Y or on X. If
M is alocally free Oy-module, then H(Y, M) ~ H(X, M) and H(Y, M®) ~ HI(X, M%) (7.4.22).

Thus it is enough to prove Riemann-Roch for the projective line.

(8.7.6) Riemann-Roch for the projective line
The Riemann-Roch Theorem for the projective line X = P! is a consequence of the Birkhoff-Grothendieck
Theorem, which tells us that a locally free Ox-module M on X is a direct sum of twisting modules. To prove

Riemann-Roch for the projective line X, it suffices to prove it for the twisting modules Ox (k).
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8.7.7. Lemma. The module of differentials Q0 x on the projective line X is isomorphic to the twisting module
Ox(—2). omegapone

proof. Let U° = Spec C[z], and U' = Spec C[z] be the standard open subsets of P, with 2 = z~!. On
UY, the module of differentials is free, with basis dz, and dr = d(z~!) = —2~2dz describes the differential
dz on U, Since the point p., at infinity is {z = 0}, dx has a pole of order 2 there. It is a global section of
Qx (2po ), and as a section of that module, it isn’t zero anywhere. Multiplication by dx defines an isomorphism
O — Qx(2pso) that sends 1 to dz. Tensoring with O(—2p,) shows that O(—2p) is isomorphic to Qx. O

8.7.8. Lemma. Let M and N be locally free O-modules on the projective line X. Then x(M(r),N) is twisthom
canonically isomorphic to x (M, N (—r)).

proof. When we tensor a homomorphism M(r) —= N with O(—r), we obtain a homomorphism M —
N (—r), and tensoring with O(r) is the inverse operation. O

The Serre dual O(n)? of O(n) is therefore
O(n)® = x(O(n), 0(-2)) = O(-2—n)
To prove Riemann-Roch for X = P!, we must show that
h’0O(n) = h'O(-2-n) and h'O(n) = h°O(-2-n)

This follows from Theorem [7.5.5] which computes the cohomology of the twisting modules. As we’ve noted
before, the two assertions are equivalent, so it suffices to verify the first one. If n < 0, then —2—n > —1. In
this case h°0O(n) and h!O(—2 — n) = 0 are both zero. If n > 0, then —2 — n < —2, and then h°O(n) =
h'!O(-2—n) =n+1.

8.8 Using Riemann-Roch

appl
(8.8.1) genus genussm-
curve
Three closely related numbers associated to a smooth projective curve Y are: the topological genus g, the
arithmetic genus p, = h'Oy, and the degree § of the module of differentials Qy-.
8.8.2. Theorem. The topological genus g and the arithmetic genus p, of a smooth projective curve Y are genus-
equal, and the degree 6 of the module Qy is 2g — 2, which is equal to 2p, — 2. genus
Thus the Riemann-Roch Theorem[8.2.3]can we written as
(8.8.3) x(O(D))=deg D+1—g dplusone-
minusg
We’ll write it this way when the theorem is proved.
###By the way, the fact that the genus is always > 0 has applications. ###
proof. Let Y - X be a branched covering with X = P'. The topological Euler characteristic e(Y"), which is
2—2g, can be computed in terms of the branching data for the covering, as in (1.8.23). Let g, be the ramification
points in Y, and let e; be the ramification index at g;. Then e; sheets of the covering come together at ¢;. (One
might say that e; — 1 points are lacking.) If the degree of Y over X is n, then since e(X) = 2,
(8.8.4) 2-29=e(Y) = ne(X) = (e;i—1) = 2n— > (e;—1) degdelta
We compute the degree § of Qy in two ways. First, the Riemann-Roch Theorem tells us that h°Qy =
h'Oy = p, and h'Qy = h°0Oy = 1. So x(Qy) = —x(Oy) = p, — 1. The Riemann-Roch Theorem also
tells us that x(€2y') = 6 + 1 — p,. Therefore
(8.8.5) 0 =2p, —2 delta
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Next, we compute § by computing the divisor of the differential dz on Y, = being a coordinate on the
projective line X. Let g; be one of the ramification points in Y, and let e; be the ramification index at g;.
Then dx has a zero of order e; —1 at g;. At the point of X at infinity, dx has a pole of order 2. Let’s choose
coordinates so that the point at infinity isn’t a branch point. Then there will be n points of Y at which dx has
a pole of order 2, n being the degree of Y over X. The degree of 2y is therefore

(8.8.6) 0 = zeros — poles = Z(ei—l) —2n

Combining (8.8.6) with (8.8.4), one sees that § = 2g — 2. Since we also have § = 2p, — 2, we conclude that
9 = Pa- |

(8.8.7) canonical divisors

Because the module 2y of differentials on a smooth curve Y is invertible, it is isomorphic to O(K) for
some divisor K that is called a canonical divisor (Proposition [§.1.13). The degree of a canonical divisor is
2g — 2, the same as the degree of Qy. It is often convenient to represent {2y as a module O(K), though the
canonical divisor K isn’t unique. It is determined only up to linear equivalence (8.1.15).

When written in terms of a canonical divisor K, the Serre dual of an invertible module O(D) will be
(8.8.8) O(D)® ~ O(K —D)
(8.1.16), (8.1.12). With this notation, the Riemann-Roch Theorem for O(D) becomes

(8.8.9) h’O(D) = h'O(K—-D) and h'O(D)=h"0O(K-D) O

(8.8.10) curves of genus zero

Let Y be a smooth projective curve Y of genus g = 0, and let p be a point of Y. The exact sequence
0— 0y - Oy(p) > e—0
where € is a one-dimensional module supported at p, gives us an exact cohomology sequence
0 — H°(Y,0y) — H°(Y,0y(p)) — H°(Y,e) = 0

The zero on the right is due to the fact that h'Oy = g = 0. We also have h°®y = 1 and h% = 1, so when
Y has genus zero, h®Oy (p) = 2. We choose a basis (1,z) for H°(Y, Oy (p)), 1 being the constant function
and x being a nonconstant function with a single pole of order 1 at p. This basis defines a point of P! with
values in the function field K of Y, and therefore a morphism Y Z5 P! . Because z has just one pole
of order 1, it takes every value exactly once (8.2.9)(iii). Therefore ¢ is bijective. It is a map of degree 1, and
therefore an isomorphism (8.5.2).

8.8.11. Corollary. A smooth projective curve of genus zero is isomorphic to the projective line PL. O

A rational curve is a curve, smooth or not, whose function field is isomorphic to the field C(t) of rational
functions in one variable. A smooth projective curve of genus zero is a rational curve.

(8.8.12) curves of genus one

A smooth projective curve of genus g = 1 is called an elliptic curve. The Riemann-Roch Theorem tells us that
on an elliptic curve Y,
x(O(D)) = deg D

Since h’Qy = h'Oy =1, Qy has a nonzero global section w. Since 0y has degree zero (8.8.2), w doesn’t
vanish anywhere. Multiplication by w defines an isomorphism O — Qy. So )y is a free module of rank one.
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8.8.13. Lemma. Let D be a divisor of degree r > 0 on an elliptic curve Y. Then h°O(D) = r, and
h'O(D) = 0.

This follows from Riemann-Roch. Since )Y is free, isomorphic to co K = 0 is a canonical divisor, so the
Serre dual of O(D) is O(—D), and h!O(D) = h°O(—D), which is zero when the degree of D is positive. []

Now, since H°(Y, Oy) C HY(Y, Oy (p)), and since both spaces have dimension one, they are equal. So
(1) is a basis for H(Y, Oy (p)). We choose a basis (1, x) for the two-dimensional space H'(Y, Oy (2p)).
Then z isn’t a section of O(p). It has a pole of order precisely 2 at p and no other pole. Next, we choose a
basis (1, z,y) for H1(Y, Oy (3p)). So y has a pole of order 3 at p, and no other pole. The point (1, z, y) of P?
with values in K determines a morphism Y —25 P2,

Let u, v, w be coordinates in P2, The map ¢ sends a point ¢ distinct from p to (u, v, w) = (1,2(q), y(q)).
Since Y has dimension one, ¢ is a finite morphism. Its image Y is closed . It is a plane curve.

To determine the image of the point p, we multiply (1,z,y) by A = y~!, obtaining the equivalent vector
(y~1,zy~1,1). The rational function y~' has a zero of order 3 at p, and zy~! has a simple zero there.
Evaluating at p, we see that the image of p is the point (0,0, 1).

Let £ be a generic line {au-+bv+cw = 0} in P2. The rational function a-+bz+cy on Y has a pole of order
3 at p and no other pole. It takes every value, including zero, three times, and the three points of Y at which
a + bz + cy is zero form the inverse image of £. The only possibilities for the degree of Y” are 1 and 3. Since
1, z, y are independent, they don’t satisfy a homogeneous linear equation. So Y isn’t a line. It is a cubic curve

(see Corollary [T.3.10).

To determine the image, we look for a cubic relation among the functions 1, z,y on Y. The seven mono-
mials 1, z, y, £2, zy, 23, y2 have poles at p, of orders 0,2, 3, 4, 5, 6, 6, respectively, and no other poles. They
are sections of Oy (6p). Riemann-Roch tells us that h°Oy (6p) = 6. So those seven functions are linearly
dependent. The dependency relation gives us a cubic equation among z and y, which we may write in the form

ey’ 4 (a1 4a3)y + (apr®+asr® +asr+ag) =0

There can be no linear relation among functions whose orders of pole at p are distinct. So when we delete
either 23 or y2 from the list of monomials, we obtain an independent set of six functions — a basis for the
six-dimensional space H°(Y, O(6p)). In the cubic relation, the coefficients ¢ and ag aren’t zero. We normalize
c and ag to 1. Next, we eliminate the linear term in y from the relation by substituting y — %(a1x+a3) for y,
and we eliminate the quadratic term in x in the resulting polynomial by substituting x — %ag for x. Bringing
the terms in z to the other side of the equation, we are left with a cubic relation of the form

y2:x3+a4x+a6

The coefficients a4 and ag have been changed, of course.

The cubic curve Y’ defined by the homogenized equation 32z = 23 + aqx2? + agz> is the image of Y.
This curve meets a generic line ax + by + cz = 0 in three points and, as we saw above, its inverse image
in Y consists of three points too. Therefore the morphism Y 5 Y s generically injective, and Y is the
normalization of Y. Let’s denote the direct image . (Oy ) by Oy, and let F be the Oy -module Oy /Oy-.
Since Y is the normalization of Y, F is a torsion module, and H!(F) = 0. We assemble the dimensions of

cohomology into a table:
Oy Oy F
h': 1 1 *

h': 1 1 0
The table shows that h F = 0. So F is torsion module with no global sections. So F = 0,and Y ~ Y.

8.8.14. Corollary. Every elliptic curve is isomorphic to a cubic curve in P2 O

(8.8.15) the group law on an elliptic curve

The points of an elliptic curve Y form an abelian group, once one fixes a point as the identity element. We
choose a point and label it 0. Let p and ¢ be points of Y. We write the law of composition as p & ¢, to make
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a clear distinction between the product in the group, which is a point of Y, and the divisor p 4+ ¢. To define
p ® ¢, we compute the cohomology of Oy (p+g— 0). Lemma shows that h®Oy (p+q—o0) = 1. So
there is a nonzero function f, unique up to scalar factor, with simple poles at p and ¢ and a simple zero at o.
This function has exactly one additional zero. That zero is defined to be the sum p & ¢ in the group. In terms
of linearly equivalent divisors, p @ ¢ is the unique point s such that the divisor p + ¢ is linearly equivalent to
0+ s.

8.8.16. Proposition. With the law of composition ® defined above, an elliptic curve mibecomes an abelian
group.

The proof is left as an exercise. (]

(8.8.17) maps to projective space

Let Y be a smooth projective curve. We have seen that any set ( fo, ..., f,,) of rational functions on Y, not

all zero, defines a morphism Y’ N . As areminder, let ¢ be a point of Y and let g; = f;/f;, where ¢
is an index such that the value v,( f;) is a minimum, for k£ = 0, ..., n. The rational functions g; are regular at ¢
for all j, and the morphism ¢ sends the point ¢ to (go(q), ---, gn(q)). For example, the inverse image ¢~ (U°)
of the standard open set U° is the set of points of Y at which the functions g; = f;/ fo are regular. If g is such

a point, then p(q) = (1, g1(q), ---, 9n(q))-

The degree d of a nonconstant morphism y- _¥, pn from a projective curve Y (smooth or not) to projective
space is defined to be the number of points of the inverse image o~ ! H of a generic hyperplane H in P".

8.8.18. Lemma. Let Y be a smooth projective curve, and let Y —= P™ be the morphism to projective space
defined by a set (fo, ..., fn) of rational functions on'Y'.

(i) If the space spanned by { fo, ..., fn} has dimension at least two, then  isn’t a constant morphism to a point.
@) If fo, ..., fn are linearly independent, the image of Y isn’t contained in a hyperplane. O

(8.8.19) base points

Let D be a divisor on the smooth projective curve Y, and suppose that h’O(D) = k > 1. A basis
(fo, -+, fx) of global sections of O(D) defines a morphism Y — P¥~1. This is a common way to construct a
morphism to projective space, though one could use any set of rational functions that aren’t all zero.

If a global section of O (D) vanishes at a point p of Y, it is also a global section of O(D—p). A base point
of O(D) is a point of Y at which every global section of O(D) vanishes. A base point can be described in
terms of the usual exact sequence (8.2.4)

0= 0D-p) = OD)—=e—0

where € is a one-dimensional module whose support is p. The point p is a base point if h°O(D—p) = h’O(D),
orif h'!O(D—-p) =h'O(D) — 1.

8.8.20. Lemma. Let D be a divisor on a smooth projective curve Y withh®O(D) =n > 1, and let Y —= P"
be the morphism defined by a basis of global sections.

(i) The image of ¢ isn’t contained in any hyperplane.

(ii) If O(D) has no base point, the degree of ¢ is equal to degree of D. If there are base points, the degree is
lower. ([

8.8.21. Proposition. Let K be a canonical divisor on a smooth projective curve Y of genus g > 0.
(i) O(K) has no base point.
(ii) Every point p of Y is a base point of O(K +p).
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proof- (i) Let p be a point of Y. We apply Riemann-Roch to the exact sequence
0—-OK-p)—OK)—e—0

The Serre duals of O(K) and O(K —p) are O(K)® = O and O(K —p)® = O(p), respectively. They form an
exact sequence
0—=0—=0(p) =€ —0

Because Y has positive genus, there is no rational function on Y with just one simple pole. So h°0 =
h°0O(p) = 1. Riemann-Roch tells us that h'O(K —p) = h!O(K) = 1. The cohomology sequence

0— H°(O(K—p)) = H°(O(K)) — [1] - H(O(K —p)) = H' (O(K)) — 0
shows that hO(K —p) = h°O(K) — 1. So p is not a base point.
(ii) Here, the relevant sequence is
0— OK)—= O(K+p) =€ =0

The Serre dual of O(K + p) is O(—p), which has no global section. Therefore h!O(K +p) = 0, while
h'!O(K) = h°0 = 1. The cohomology sequence

0 — h’O(K) — h’O(K +p) — [1] = h'O(K) = h'O(K+p) — 0

shows that H(O(K +p)) = H°(O(K)). So p is a base point of O(K +p). O

(8.8.22) hyperelliptic curves

A hyperelliptic curve Y is a smooth projective curve of genus g > 2 that can be represented as a branched
double covering of the projective line — such that there exists a morphism Y — X = P! of degree two. The
term “hyperelliptic’ comes from the fact that every elliptic curve can be represented (not uniquely) as a double
cover of P!, The global sections of O(2p), where p can be any point of an elliptic curve, define a map to P* of
degree 2.

The topological Euler characteristic of a hyperelliptic curve Y can be computed in terms of the double
covering Y — X, which will be branched at a finite set, say of n points, of Y. Since 7 has degree two, the
ramification index at a branch point will be 2. The Euler characteristic is therefore e(Y) = 2¢(X)—n = 4—n.
Since we know that e(Y') = 2 — 2g, the number of branch points is n = 2g + 2. When g = 3, n = 8.

It would take some experimentation to guess that the next remarkable theorem might be true, and some
time to find a proof.

8.8.23. Theorem. Let Y be a hyperelliptic curve, let Y — X = P! be a branched covering of degree 2.

The morphism'Y Ly po-t defined by the global sections of Qy = O(K) factors through w. There is a
unique morphism X —— P9~ such that 1 is the composed map Y — X — P9—1;

y 5 X

gt ‘|

PI—1 —— P91

proof. Let x be an affine coordinate in X, so that the standard affine open subset U° of X is Spec C[z]. We
suppose that the point of X at infinity isn’t a branch point of the covering . The open set Y0 = 71U will
be described by an equation of the form y? = f(z), where f is a polynomial of degree n = 2g + 2 with
simple roots, and there will be two points of Y above the point of X at infinity, that are interchanged by the
automorphism y — —y. Let’s call those points ¢; and g5.

We start with the differential dz, which we view as a rational differential on Y. Then 2y dy = f'(z)dx.
Since f has simple roots, f’ doesn’t vanish at any of those roots. Solving for dz, we see that it has simple
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zeros on Y above the roots of f, which are the points at which y = 0. We also have a regular function on

Y with simple roots at those points, namely the function y. Therefore the differential w = d?” is regular and

nowhere zero on Y. Because the degree of a differential on Y is 2g — 2, w has a total of 2g — 2 zeros at
infinity. By symmetry, w has zeros of order g — 1 at the points ¢; and g2. Then K = (9—1)¢1 + (g—1)g2 is a
canonical divisor on Y.

Since K has zeros of order g—1 at infinity, the rational functions 1, z, 22, ..., 29!, viewed as functions
on Y, are among the global sections of Oy (K). They are independent, and there are g of them. Since
h0y (K) = g, they form a basis of H(Oy (K)). The map Y — P9~ defined by the global sections of
Oy (K) evaluates these powers of x, so it factors through X. (]

8.8.24. Corollary. A curve of genus g > 2 can be presented as a branched covering of P! of degree 2 in at
most one way. (I

(8.8.25) canonical embedding

Let Y be a smooth projective curve of genus g > 2, and let K be a canonical divisor on Y. Its global
sections define a morphism Y~ — P91, This morphism is called the canonical map. We denote the canonical
map by . Since O(K) has no base point, the degree of v is the degree 2g — 2 of the canonical divisor.
Theorem shows that, when Y is hyperelliptic, the image of the canonical map is isomorphic to P*.

8.8.26. Theorem. Let Y be a smooth projective curve of genus g at least two. If Y isn’t hyperelliptic, the
canonical map embeds Y as a closed subvariety of projective space P9~ ",

proof. We show first that, if the canonical map Y Uy poLisnt injective, then Y is hyperelliptic.

Let p and ¢ be distinct points of Y with the same image: ¥ (p) = ¥(q). We choose an effective canonical
divisor K whose support doesn’t contain p or ¢, and we inspect the global sections of O(K —p—¢q). Since
¥(p) = ¥(q), any global section of O(K) that vanishes at p vanishes at ¢ too. Therefore O(K —p) and
O(K —p—q) have the same global sections, and so ¢ is a base point of O(K —p). We’ve computed the
cohomology of O(K —p) before: h°O(K—p) = g—1 and h'!O(K —p) = 1. Therefore h’O(K —p—q) = g—1
and h'!O(K —p—q) = 2. The Serre dual of O(K —p—q) is O(p + q), so by Riemann-Roch, h’O(p + q) = 2.
For any divisor D of degree one on a curve of positive genus, h®(O(D)) < 1. So O(p + q) has no base point,
and the global sections of O(p+q) define a morphism Y — P! of degree 2. This shows that Y is hyperelliptic.

If Y isn’t hyperelliptic, the canonical map is injective, so Y is mapped bijectively to its image Y’ in P91,

This almost proves the theorem. But: can Y’ have a cusp? We must show that the bijective map Y’ Yy
is an isomorphism. We go over the computation made above for a pair of points p, ¢, this time taking ¢ = p.
The computation is the same. Since Y isn’t hyperelliptic, p isn’t a base point of Oy (K — p). Therefore
h°0y (K —2p) = h°Oy (K —p) — 1. This tells us that there is a global section f of Oy (K) that has a zero of
order exactly 1 at p. When properly interpreted, this fact shows that 1) doesn’t collapse any tangent vector at
p, and that v is an isomorphism. Since we haven’t discussed tangent vectors, we prove this directly.

Since 1 is bijective, the function fields of Y and its image Y are equal, and Y is the normalization of Y.
Moreover, v is an isomorphism except on a finite set. We work locally at a point p’ of Y, and we denote the
unique point of Y that maps to Y’ by p. When we restrict the global section f of Oy (K') found above to the
image Y, we obtain an element of the maximal ideal m, of Oy at p’, that we denote by z. On Y, this element
has a zero of order one at p, and therefore it is a local generator for the maximal ideal m,, of Oy. Let R’ and
R denote the local rings at p. We apply the Local Nakayama Lemma|[5.1.1] regarding R as a finite R’-module.
We substitute V = R and M = m;, into the statement of that lemma. Since « is in m,,, V/MV = R/my R
is the residue field k(p) of R, which is spanned, as R’-module, by the element 1. The Local Nakayama Lemma
tells us that R is spanned, as R’-module, by 1, and this shows that R = R’. O

(8.8.27) some curves of low genus

curves of genus 2
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When Y is a smooth projective curve of genus 2. The canonical map 1) is a map from Y to P!, of degree
2g — 2 = 2. Every smooth projective curve of genus 2 is hyperelliptic.

curves of genus 3

Let Y be a smooth projective curve of genus 3. The canonical map ¢ is a morphism of degree 4 from Y to
P2, If Y isn’t hyperelliptic, its image will be a plane curve of degree 4 that is isomorphic to Y. The genus of a
smooth projective curve of degree 4 is (?2’) = 3 (1.8.25), which checks.

There is another way to arrive at the same result. We go through it because the method can be used for
curves of genus 4 or 5. Let K be a canonical divisor. Riemann-Roch determines the dimension of the space of
global sections of O(dK). Whend > 1,

h'OdK) =h°0O((1-d)K) =0
Then
(8.8.28) hO(dK) = deg(dK)+1—g=d(2g —2) — (g —1) = (2d — 1)(g — 1)
In our case g = 3, so when d > 1, h’O(dK) = 4d — 2.

The number of monomials of degree d in n + 1 variables x, ..., z,, is (";d). When n = 2, that number is

d+2
(57)-
We assemble this information into a table:
d \ 1 2 3 4 5

0
monosdegd | 1 3 6 10 15 21
h°OdK) |1 3 6 10 14 18

Now let (ap, a1, o) be a basis of HYO(K). The products o, - - - a;, of length d of elements of the basis
are global sections of O(dK). It is a fact that they generate the space H°O(dK) of global sections. However,
this isn’t very important here, and the proof isn’t easy. So we omit it. What we see from the table is that there
is at least one nonzero homogeneous polynomial f(xg, ..., x2) of degree 4, such that f(«) = 0. This means
that the curve Y lies in the zero locus of that polynomial, which is a quartic curve. The table also shows that
Y isn’t in the zero locus of any curve of lower degree. So Y is a quartic curve, and f is, up to scalar factor, the
only homogeneous quartic that vanishes on Y. The monomials of degree 4 in o span a space of dimension 14,
and therefore they span H°O(4K). This is one case of the fact that was stated above.

The table also shows that there are (at least) three independent polynomials of degree 5 that vanish on Y.
They are xo f, x1 f, z2 f.

curves of genus 4

When Y is a smooth projective curve of genus 4 that isn’t hyperelliptic, the canonical map embeds Y as a
curve of degree 6 in P2, Let’s leave the analysis of this case as an exercise.

curves of genus 5

With genus 5, things become more complicated.

Let Y be a smooth projective curves of genus 5 that isn’t hyperelliptic. The canonical map embeds Y as
a curve of degree 8 in P*. We make a computation analogous to what was done for genus 3. For d > 1, the
dimension of the space of global sections of O(dK) is

h’O(dK) = (2d —1)(g — 1) = 8d — 4
and the number of monomials of degree d in 5 variables is (df).

We form a table:

d \ 01 2 3
monosdegd | 1 5 15 35
hO(dK) 1 5 12 20
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This table predicts that there are at least three independent homogeneous quadratic polynomials ¢, g2, g3
that vanish on the curve Y. Let @; be the quadric {¢; = 0}. Then Y will be contained in the zero locus

Z=0Q1NQ2NQs.

Bézout’s Theorem has a generalization that applies here. Let Q1, Q2, Q3 be hypersurfaces in P4, of degrees
r1,72,Ts3, Tespectively. Let Z1, ,,, , Zj, be the irreducible components of the zero locus Z : {q1 = g2 = q3 =
0}. If Z has dimension 1, then the sum deg Z; +---+deg Zj is at most equal to the product 717373, and
is equal to that product when counted with a suitable multiplicity. We omit the proof, which is similar to the
proof of the usual Bézout’s Theorem.

When Q); are the quadrics {¢; = 0}, i = 1,2, 3, the intersection Z = @1 N Q2 N Q3 will contain Y. If
Z has dimension one, the generalized Bézout’s Theorem shows that its degree is 8, the same as the degree of
the embedded curve Y. In this case, Y = Z, and Y is called a complete intersection of the three quadrics.
However, it is possible that the intersection Z has dimension 2.

A curve Y that can be represented as a three-sheeted covering of P! is called a trigonal curve (another
peculiar term).

8.8.29. Proposition. A trigonal curve of genus 5 is not isomorphic to an intersection of three quadrics in P4,

proof. A trigonal curve Y has a morphism of degree 3 to the projective line: Y — X = PL. Let’s suppose
that the point at infinity of X isn’t a branch point. Let the fibre over the point at infinity be {p1, p2, p3}-
With coordinates (g, z1) on X, the rational function v = 21 /xo on X has poles D = p;+pa+p3 onY, so
H°(Y,O(D)) contains 1 and u, and therefore h°(O(D) > 2. By Riemann-Roch, yO(D) =3+ 1 —g = —1.
Therefore h!O(D) = h°O(K — D) > 3. There are (at least) three independent global sections of O(K) that
vanish on D. Let them be «y, 1, cvo. We extend this set to a basis («ay, ..., @) of O(K). When Y is embedded
into P* by that basis, the three planes {z; = 0}, i = 0, 1,2 contain the points p;, p2, p3. The intersection of
those planes is a line L that contains the three points.

We go back to the three quadrics @1, (2, @3 that contain Y. Since they contain Y, they contain D. A
quadric @ intersects the line L in at most two points unless it contains L. Therefore each of the quadrics Q);
contains L, and then @1 N Q2 N @3 contains L as well as Y. Suppose that Z = @)1 N Q2 N Q3 has dimension
1. Then, according to Bézout, the sum 1 + 8 of the degrees of L and Y, must be at most 2 - 2 - 2 = 8. Nope:
Z = @1 N Q2 N Q3 cannot have dimension 1. O

In fact, this is the only exceptional case. A curve of genus 5 is either hyperelliptic, or trigonal, or else it is a
complete intersection of three quadrics in P4. But we omit the proof. We have done enough.
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8.9 Exercises

8.9.1. Let D be a divisor on a smooth projective curve Y, and suppose that h°O(D) = k > 1. When Y is
mapped to projective space using a basis for H(Oy- (D)), what is the inverse image in Y of a hyperplane?

8.9.2. (i) Prove that every projective curve of degree 2 is a plane conic.
(ii) Classify projective curves of degree 3.

8.9.3. Let M and NV be O-modules. Prove that o(M, ) = Hom (M, N) is an O-module.

8.9.4. Let D be a divisor of degree d on a smooth projective curve Y, such that h°O(D) = k > 0.
(i) Prove that if p is a generic point of Y, then h°O(D — p) = k — 1.
(ii) Prove that h°0O(D) < d + 1, and that if h°O(D) = d + 1, then X is isomorphic to P*.

8.9.5. Prove that every nonempty open subset of a smooth affine curve is affine.

8.9.6. Let D be a divisor of degree d on a smooth projective curve Y. Show that h®(O(D)) < d + 1, and if
h%(O(D)) = d + 1, then Y is a smooth rational curve, isomorphic to P*.

8.9.7. Prove that a projective curve Y such that h'(Oy) = 0, smooth or not, is isomorphic to the projective
line P!,

8.9.8. Use version 1 of the Riemann-Roch Theorem to compute h?(O(rp)) for a smooth projective curve of
genus 1

8.9.9. Let C be a plane projective curve of degree d, with J nodes and « cusps. Determine the genus of the
normalization C# of C.

8.9.10. LetY be a smooth projective curve of genus 2. Determine the possible dimensions of H4(Y, O(D)),
when D is an effective divisor of degree n.

8.9.11. Let Y be a curve of genus 2, and let p be a point of Y. Suppose that h!O(2p) = 0. Show that there
is a basis of global sections of O(4p) of the form (1, z,y), where = and y have poles of orders 3 and 4 at p.
Prove that this basis defines a morphism Y — P? whose image is a singular curve Y of degree 4.

8.9.12. The projective line X = P! with coordinates x¢, z; is covered by the two standard affine open sets
UY = Spec Ry and U! = Spec Ry, Ry = C[u] with u = 21 /29, and R; = C[v] withv = x¢/2; = u~L.
The intersection U°! is the spectrum of the Laurent polynomial ring Ro; = C[u, v] = C[u, u~}]. The units of
Ry are the monomials cu”, where k can be any integer.

(i) Let A = (CCL Z) be an invertible Ry-matrix. Prove that there is an invertible Ry-matrix (), and there is
an invertible R;-matrix P, such that Q' AP is diagonal.

(ii) Use part (i) to prove the Birkhoff-Grothendieck Theorem for torsion-free O x-modules of rank 2.

8.9.13. On P!, when is O(m) & O(n) isomorphic to O(r) & O(s)?

8.9.14. Let Y be an elliptic curve.

(i) Prove that, with the law of composition & defined in (8.8.15), Y is an abelian group.
(ii) Let p be a point of Y. Describe the sum p & p - - - @ p of k copies of p.

(iii) Determine the number of points of order 2on Y.

(iv) Suppose that Y is a plane curve. Show that, if origin is a flex point, the other the flexes of Y are the points
of order 3, and determine the number of points of Y of order 3.

8.9.15. How many real flex points can a real cubic curve have?

8.9.16. Prove that a finite O-module on a smooth curve is a direct sum of a torsion module and a locally free
module.

8.9.17. Let A be a finite-type domain.

(i) Let B = A[z] be the ring of polynomials in one variable with coefficients in A. Deascribe the module Q5
in terms of €2 4.

(ii) Let s be a nonzero element of A and let A’ be the localization A[z]/(sz — 1). Describe the module 4.
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8.9.18. LetY = Spec B a smooth affine curve, and let y be an element of B. At what points does dy generate
Qy locally?

8.9.19. LetY -~ X be abranched covering of smooth affine curves, X = Spec Aand Y = Spec B, and let

B - A(B, 2 4) be the composition of the derivation B -, Qp with the trace map Qp ~p (B,p) @)A
(B,4). Prove that ¢ is a derivation from B to the B-module 4(B,Q4).

8.9.20. LetY — X be abranched covering, and let p be a point of X whose inverse image in Y consists of one
point q. Prove a local analytic version of the main theorem on the trace map for differentials by computation.

8.9.21. (i) Let Y be plane curve of degree 5 with a node. Show that the projection of the plane to X = P!
with the double point as center of projection represents Y as a trigonal curve of genus 5.

(ii) The canonical embedding of a trigonal genus 5 curve Y will have three colinear points D = p; + ps + ps,
Show that h°O(K — D) = 3 and that O(K — D) has no base point. Show that a basis of H°O(K — D) maps
Y to a curve of degree 5 in P? with a double point.

8.9.22. the basepoint-free trick. Let D be an effective divisor on a smooth projective curve Y, and suppose
that O(D) has no base point, and that h!O(D) = 0. Choose global sections «, 3 of O(D) with no common
zeros. Prove the following:

(i) The sections «, 3 generate the O-module O(D), and there is an exact sequence

0= 0(—p) 25 02 @A o(p) 5 0

(i) The tensor product of this sequence with O(kD) is an exact sequence
0 O((k—1)D) 2 okD)? ““H o((k+1)D) = 0

(i) If H'O((k—1)D) = 0, every global section of O((k+1)D) can be obtained as a combination ccu + Sv
with u,v € H°O(kD)

8.9.23. ?77kill this??? Let C' and D be conics that meet in four distinct points in the projective plane P, and
let D* be the dual conic of tangent lines to D. Let F be the locus of points (p, £*) in PxP* such that £* € D*
and p € /.

(i) Prove that F is a smooth elliptic curve.

(ii) Show that, for most p € C, there will be two tangent lines ¢ to D such that (p, £*) is in F, and that, for
most {* € D*, there will be two points p such that (p, £*) is in E. Identify the exceptional points.

(iii) If (p1, ¢1) is given, let po denote the second intersection of C' with ¢1, and let ¢5 denote the second tangent
to D that contains po. Define a map, where possible, by sending (p1, ;) — (p2,£3). Show that this map
extends to a morphism F —s E on E, and that this morphism is a translation p — p @ a, for some point a of
E.

(iv) It might happen that for some point p of C' and some n, y"(p) = p. Show that if this occurs, the same is
true for every point of C'. For example, if v3(p) = p, the lines ¢1, £, ¢3 will form a triangle whose vertices are
on C, and this will be true for all points p of C. This is Poncelet’s Theorem.

8.9.24. Let x(, x1 and o, y1 be the coordinates in the two factors of the product X = P! x P!.A homogeneous
fraction of bidegree m,n on X is a fraction g/h of bihomogeneous polynomials in x,y such that, if the
bidegree of g is ¢, j an the bidegree of h is k, £, then m = ¢ — k and n = j — {. Rational functions on X can be
represented as bihomogeneous fractions of bidegree 0,0. A curve C in X of bidegree m, n is the zero locus
of a bihomogeneous polynomial f(x,y) of bidegree m,n.

Let Ox(m,n) denote the O-module whose sections on an open subset W of X are the rational functions
f on X such that fz'y{ is a regular function on WW. We say that such a function f has poles of orders < m
on V and < n on H, where H is the "horizontal’ line yo = 0, and V is the ’vertical’ line xg = 0.

(i) Determine the cohomology of Ox (m,n).
(ii) Determine the genus of a smooth curve of bidegree m, n.

209



8.9.25. Let Y be a smooth projective curve Y of genus g, and let d be an integer. Prove that Xgminu-
(i) If d < g — 1, then h!O(D) > 0 for every divisor D of degree d on Y. sone

(i) If d < 2g — 2, there exist divisors D of degree d on Y such that h*O(D) > 0.

(i) If d > g — 1, there exist divisors D of degree d on Y such that h'!O(D) = 0.

(iv) If d > 2g — 2, then h'O(D) = 0 for every divisor D of degree d on Y.

8.9.26. LetY — X be a branched covering of smooth curves. Use the trace from Oy to Ox to prove that xOYdi-
its direct image is isomorphic to the direct sum Ox & M for some locally free O x-module M. rectsum

8.9.27. Let Y be a smooth projective curve of genus g > 1, and let D be an effective divisor of degree g + 1 decom-

on Y, such that h'O(D) = 0 and h°0O(D) = 2. Let Y -5 X be the morphism to the projective line X ~ PoseOY
defined by a basis (1, f) of H°O(D). The O x-module Oy is isomorphic to a direct sum Ox & M, where M
is a locally free O x-module of rank g (Exercise ??).

(i) Let p be the point at infinity of X. Prove that Oy (D) is isomorphic to Oy ®o,, Ox (p).
(ii) Determine the dimensions of cohomology of M and of M (p).

(i) According to the Birkhoff-Grothendieck Theorem, M is isomorphic to a sum of twisting modules >7_; Ox (7).
Determine the twists r;.

8.9.28. (a) Let C be a plane curve of degree d with a node as its only singularity. Determine the genus of its X8-
normalization C#. Do the same for a curve with a cusp. inggenus

(b) Let f(xzg,z1,z2) be a homogeneous polynomial of degree d. Suppose that, when f(z,y, 1) is written as
a sum of its homogeneous parts fo + f1 + fo + -+, fo = f1 = fo = 0, and that f3 has three distinct zeros,
so that the plane curve C' : {f = 0} has an ordinary triple point at p = (0, 0, 1), and suppose that there are no
other singularities. Determine the genus of the normalization C'#.

(¢) A point p of curve C in IP? may be a triple point, in which three smooth points p;, p3, p3 of the normalization
C# lie over p. #itittetcetcHHHHt

8.9.29. Use the results of Exercise[8.9.28|as an aid to factor the polynomial 23y? — 2322 + 3322, xpolirred

2. ## There is an error in the statement of this problem. See web page.##

Let f and g be homogeneous polynomials in C[zg, 1, z2, 23], of degrees d and e respectively, and with
no common factor. Let X be the locus of common zeros of f and g in the projective space P® with coordinates
z, and let 7 be the inclusion X — P.

(a) Construct an exact sequence
0— Op(—d—e) = Op(—d) ® Op(—e) = Op = i,.O0x =0

(b) Prove that X is connected, i.e., that it is not the union of two proper disjoint Zariski-closed subsets of P.

(c) Determine the cohomology of Ox.

1. Let
Y1 Y12
N =y21 yoo
Y31 Y32

be a 3 x 2 matrix whose entries are homogeneous polynomials of degree d in R = C[xg, 21, 23], and let
M = (my, ma, m3) be the 1 x 3 matrix of minors

m1 = Y21Y32 — Y22¥31, M2 = —Y11¥Y32 + Y12¥31, M3 = Y11Y22 — Y12¥y21.
Let I be the ideal of R generated by the minors m1, mo, ms.

(a) Prove that if I is the unit ideal of R, the sequence

0@ <<< R@ < M << R?Q < N << R%2Q <<< 0
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is exact.

(We’ve written the arrows from right to left here so that matrix multiplication by M on R® and N on R?
are defined, when elements of R> and R? are represented as column vectors.)

(b) Let X = P2, and suppose that the locus Y of zeros of I in X has dimension zero. Prove that the sequence
0@ <<< R/I@ <<< RQ@ < M << R*@ < N << R*@ <<< 0

is exact.

(c) The sequence in (b) corresponds to the following sequence, in which the terms R are replaced by twisting
modules:

0@ <<< Oy@ <<< 0x@ < M << Ox(—2d)3@ < N << Ox(—3d)*@ <<< 0

Use this sequence to determine h°(Y, Oy ). Check your work in some example in which y;; are homogeneous
linear polynomials.

2. There are 10 monomials of degree 3 in x¢, z1, 2, so the homogeneous polynomials of degree 3 form a
vector space of dimension 10. Let Z be the corresponding projective space of dimension 9, whose points are
classes of nonzero homogeneous cubic polynomials up to scalar factor. Prove that the subset of Z of classes
of reducible polynomials is (Zariski) closed.

2. With coordinates xg, x1, €2 in the plane P and sg, s1, o in the dual plane P*, let C' be a smooth projective
plane curve f = 0 in P, where f is an irreducible homogeneous polynomial in z. Let I" be the locus of pairs
(z,s) of P x P* such that € C and the line sozo + s121 + s2x2 = 0 is the tangent line to C' at . Prove that
T is a (Zariski) closed subset of the product P x P*.
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GLOSSARY

algebra: a ring that contains the complex numbers ??).

analytic function: A function that can be represented by a convergent power series (I.4.18).

annihilator: The annihilator of an element m of an R-module is the ideal of elements a of R such that am = 0
(6.7).

arithmetic genus: The arithmetic genus of a smooth projective curve is p, = 1 — C*O .

basis for a topology: A basis B for a topology is a set of open subsets such that every open subset if a union

of members of B 2.7.2).

bitangent: a line that is tangent to a curve at two points (I.8.17).

branch point: a point at which the ramification index of a branched covering is greater than 1. (8.5).
branched covering: a finite morphism of curves (I.8.13)), (8.5).

canonical: A mathematical construction is called canonical if it is the natural one in the context.

canonical divisor: a divisor X on a smooth projective curve X such that O(K) is isomorphic to 2 x .
canonical map: the map fom a curve to projective space defined by the regular differentials (8.8.26).
classical topology: the usual topology (1.3.17).

closure: The closure of a subset .S of a topological space is the smallest closed subset that contains S.

coarser topology: A topology 7" on a set X is coarser than another topology 7" if 7" contains fewer closed
subsets than 7.

cohomological functor: A sequence of functors HY, H', H? ... to vector spaces such that a short exact
sequence produces a long cohomology sequence (7.1.4).

cokernel: The cokernel of a homomorphism M — N is the quotient N/ im M (2.1.17).

commutative diagram: A diagram of maps is commutative if all maps from A to B that can be obtaind by
composition of the ones in the diagram are equal (2.1.5).

complement: The complement of a subset .S of a set X is the set of elements of X that are notin S.

complex: A complex of vector spaces is a sequence - - - — V"1 Ay . of vector spaces such that
ker d" C im d"~! (7.2).

constructible set: a finite union of locally closed sets (5.3).

cusp: a certain type of singular point of a curve (I.§).

dimension: The dimension of a variety is the transcendence degree of its field of rational functions, or the
length of a maximal chain of closed subvarieties (#.5).

discriminant: a polynomial in the coefficients of a polynomial f that vanishes if and only if f has a double

root (L.7.13).

divisor: A divisor on a smooth curve is an integer combination a1q; + - - - + aqy of points .

domain: A nonzero ring with no zero divisors.

dual curve: The dual curve of a smooth plane curve is the locus of tangent lines as smooth points (1.6.3).
dual plane: the projective plane whose points correspond to lines in the given plane (1.6.T).

elliptic curve: a smooth projective curve of genus 1 (8.8.12).

Euler characteristic: The Euler characteristic of an O-module is the alternating sum of the dimensions of its

cohomology (7.7.7).

exact sequence: a sequence - - - — V"1 4y Nyl L s exact if ker d, = im d"! .
exterior algebra: the graded algebra generated by the elements of a vector space, with the relations vv = 0
(3.7.2).

Fermat Curve: one of the plane curves z¥ + 2% + 2% = 0.

fibre of a map: The fibre of a map Y —— X over a point z is the number of points in its inverse image.

finer topology: A topology 7" on a set X is finer than another topology 7T if T contains more closed subsets
than 7T'.

finite module: a module that can be generated by finitiely many of its elements (2.1J).
finite-type algebra: an algebra that can be generated, as algbera, by finitely many elements (2.1).
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generic, general position: not in a special “bad” position (I.8.17).

genus: the genus of a compact two-dimensional manifold is the number of its handles (1.8.22).
Grassmanian: a variety that parametrizes subspaces of a given dimension of a vector space (3.7).
Hessian matrix: the matrix of second partial derivatives (I.4.10).

homogeneous parts: the homogeneous part of degree k of a polynomial is the sum of terms of degree k
(1.3.1).

hyperelliptic curve: a curve of genus at least two, that can be represented as a double cover of P! (8.8.22).
hypersurface: a subvariety of projective space that is defined by one equation (2.3.3]).

increasing sequence: a sequence .S, of sets is increasing if S,, C S,,+1 for all n, and it is strictly increasing

if if S,, < Sy,41 for all n @.1.12).
integral morphism: a morphism Y — X such that Oy becomes a finite O x-module (4.2.4)).

invertible module: a locally free module of rank 1 (8.1.16).

irreducible polynomial: a polynomial of positive degree that isn’t the product of two polynomials of positive
degree.

irreducible space: a topological space that isn’t the union of two proper closed subsets (2.2.1T).

isolated point: a point p of topological space such that both p and its complement are closed (1.3.18).

line at infinity: The line at infinity in the projective plane P? is the locus {z¢ = 0} .

local property: a property that is true in an open neighborhood of any point (5.1.3).

localization: the process of adjoining inverses (2.1.23).

locally closed set: the intersection of a closed set and an open set (5.3).

member: When a set is made up of subsets of another set, we call an element of that set a member to avoid

confusion (2.1.12).

module homomorphism: a homomorphism from an R-module M to an R’-module M’ is defined in Section
(6.2).

morphism: one of the allowed maps between varieties (2.6)),(3.3).

nilradical: the radical of the zero ideal (2.5.14).

node: a point at which two branches of a curve met transverslly (L.8).

noetherian space: a space that satisfies the descending chain condition on closed sets (2.2.8).

normal domain: an integrally closed domain (4.3).

Nullstellensatz: the theorem that identifies points with maximal ideals (2.4).

ordinary: a plane curve is ordinary if all flexes and bitangents are ordinary, and there are no accidents
(LI0TT).

Pliicker formulas: the formulas that count flexes, bitangents, nodes and cusps of an ordinary curve (I.TT).
quadric: the locus of an irreducible homogeneous quadratic equation in projective space (3.1.6).
quasicompact: A topological space is quasicompact if every open covering has a finite subcovering.

radical of an ideal: the radical of an ideal I is the set of elements such that some power is in I (2.2.20).
reducible curve: a union of finitely many irreducible curves.

resultant: a polynomial in the coefficients of two polynomials f and g that vanishes if and only if they have a

common root (1.7).

scalar: a complex number.

scaling: adjusting by scalar factors.

Segre embedding. a map that embeds a product of projective varieties into projective space (3.1.9).
Serre dual. The Serre dual M* of a locally free O-module M is the module Hom, (M, Q) .

smooth point, singular point: a point p of a plane curve {f = 0} is a smooth point if at least one partial
derivative is nonzero at p. Otherwise it is a singular point (1.4.4).

Special line: A line L through a singular point of a curve whose intersection multiplicity with C' is greater

than the multiplicity of C. (1.8.4).
spectrum: the spectrum of a finite-tpe domain is the set of its maximal ideals (2.3).

structure sheaf: its sections on an open set are the regular functions on that set (6.1).
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tensor algebra: the graded algebra T such that 7" is the nth tensor power of a vector space V' (3.7.21).
torsion: an element m of am R-module is a torsion element if there is a nonzero element r in R such that
rm = 0 2.1.24).

transcendence basis: a maximal algebraically independent set of elements (I.3)).

transcendence degree: the number of elements in a transcendnce basis (L.5).

transversal intersection: two curves intersect transvesally at a point p if they are smooth at p and their tangent
lines there are distinct (T.9.TT).

trigonal curve: a curve that can be represented as a overing of P! of degree 3 .

twisted cubic: the locus of points (23, z3z1, 2372, 23) in P? (3.1.15).

unit ideal: the unit ideal of a ring R is R.

valuation: a surjective homomorphism from the multiplicative group K * of nonzero elements of a field K to
the additive group Z* of integers .

valuation ring: the set of elements with value greater than zero, together with the identity element.

variety: an irreducible subspace of affine or projective space (2.2.17),(3.0.1),(3.2.11)).

Veronese embedding: the embeding of a projective space using the monomials of given degree (3.1.13).
weight: a variable may be assigned an integer called a weight (4.6.20).

weighted projective space: projective space when the variables have weights (4.6.20).

Zariski topology: the closed sets are the zero sets of families of polynomial equations (2.2).
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INDEX OF NOTATION

A" affine space (L.I).

(affines)  the category of affine open sets, morphism being localizations (6.1).
ann annihilator (6.7).

C*  the dual of the curve C' (1.6.6).

C? the cohomology of a complex (7.2).

Discr(F) the discriminant of f (1.7.14).

A the diagonal, or the branch locus (3.5.19), (4.6.14).

e the Euler characteristic, or the ramification index (1.8:21),(7.7.7),(8:3).
g often, the genus of a curve. (L1.8.19)

H ; the Hessian matrix of second partial derivatives. (T.4.10)

H,, the evaluation of H at the point p.

H? cohomology (7.1).

h? the dimension of HY.

K> the multiplicative group of nonzero elements of the field K.

k(p) the residue field at a point (2.3.1),(2.5).

L*  the point of P* that corresponds to the line L in the plane P (1.6.1).
M an O-module (6.2.1).

m  amaximal ideal (23.1),(2.3).

O the structure sheaf on a variety (6.1.1).

oM, N), x(M,N) abbreviated notations for the O x-module of homomorphisms Hom, (M, N).
(opens)  the category whose objects are open subsets (6.1)).

p* the line in the dual plane P* that corresponds to the point p of the plane P (T.6.1).
pa  the arithmetic genus (8.7.4),(8.8.2).

P,P"  projective space (1.2).

P*  the dual of the plane P (1.6.1).

7 the homomorphism to the residue field k(p) (2.3.1),(2.).

rad I the radical of the ideal I (2.2.20).

Res(f,g) the resultant of f and g .

5 M5 is the Serre dual of M (8.7.1).

Spec A the set of maximal ideals of a finite-type algebra A (2.3).

U  the standard affine open subset {z; # 0} of projective space .
V(f) thelocus of zeros of f (2.2),(3.2.4).

AV the exterior algebra (3.7.2).

V  the gradient vector of partial derivatives (I.4.10]

V), the evaluation of V at the point p.

/~ an isomorphism.

® tensor product (2.1.25).

(| intersection.

< S < T means that the set S is a subset of 7" and is not equal to 7" (2.1.12)).
# A7 denotes the normalization of the algebra A.

[1 square brackets are sometimes used in place of parentheses for clarity.

215



BIBLIOGRAPHY

Two classic works:
Fulton, William, Algebraic Curves, 2008, available on the web www.math.Isa.umich.edu/ wfulton/CurveBook.pdf

Mumford, David Algebraic Geometry I, Complex Projectie Varieties Grundlehren, Springer, 1976.

An introduction based on many specific examples:

Harris, J. Algebraic Geometry, A First Course Grad. Texts in Math. Springer, 1992.

Books for a more formal introduction:
Cutkosky, D. Introduction to Algebraic Geometry Grad. Studies in Math., AMS, 2018.

Hartshorne, Robin Algebraic Geometry Grad. Texts in Math. Springer, 1977.

Books with an analytic point of view:
Griffiths, P., Harris, J Principles of Algebraic Geometry Wiley, 2014.
Miranda, R. Algebraic Curves and Riemann Surfaces Grad. Studies in Math., AMS, 1979.

A computational approach to algebraic geometry:

Cox, D., Little, J., O’Shea, D. Using Algebraic Geometry 2nd ed Grad. Texts in Math., Springer, 2004.

Books for the background on algebra:
Cohn, P. M. Algebra vol, 2 Wiley,, 1977.

Lang, Serge Algebra 3rd ed Grad. Texts in Math., Springer, 2002.

216



Index

Artin, Emil (1898-1962), @

Bézout, Etienne (1730-1783), 37 [176]
Betti, Enrico (1823-1892), @

Birkhoff, George David (1884-1944), @
Borel, Emile (1871-1956), |7_7|

Brianchon, Charles-Julien 1783-1864,[T80]
Cayley, Arthur (1821-1895),[33]
Chevalley, Claude (1909-1984), @
Diirer, Albrecht (1471-1528), ﬂ;fl
Desargues, Girard (1591-1661),[T1]
Fermat, Pierre de (1607-1665),[17]
Grassmann, Hermann (1809-1877), |Z§|
Grothendieck, Alexander (1928-2014),[T89 [T99]
Hausdorff, Felix (1868-1942),

Heine, Eduard (1821-1881), IE

Hensel, Kurt 1861-1941,[33]

Hesse, Otto (1811-1877),[18§]

Hilbert, David (1862-1943), A9
Jacobi, Carl Gustav Jacob 1804-1851, 33
Laurent, Pierre Alphonse (1813-1854), |6_§|
Mobius, August Ferdinand (1790-1868), ﬂ;fl
Nagata, Masayoshi (1927-2008), [60]
Nakayama, Tadashi (1912-1964),[T01]
Noether, Emmy (1882-1935), 9] 57 [104]
Noether, Max (1844-1921), m

Pascal, Blaise 1623-1662,[T80]

Pliicker, Julius (1801-1868), |Z-_T|

Poncelet, Jean-Victor 1788-1867,[209]
Rainich, George Yuri (1886-1968),[61]
Schelter, William (1947-2001), ﬂﬂl

Segre, Corrado (1863-1924), |’7_§|

Serre, Jean-Pierre (1926- ),[T61] [T99]
Veronese, Giuseppe (1854-1917),[79
Zariski, Oscar (1899-1986), 53]

affine cone, [§1]

affine covering, [T04]
affine hypersurface, 59
affine morphism, [T50]
affine open subset, [92]
affine plane, [7]

affine plane curve, [7]
affine space,[7]

affine variety, [58] [OT]

algebaic dimension, [§]

algebra, [20]
algebra generators, 7]

algebraically dependent, independent, [20]

analytic function, [T9]
annihilator, [T32]

arithmetic genus, [T72} [T73]

ascending, descending chain conditions,

Bézout’s Theorem, 37} [176]
basis, 7]

basis for a topology, [68]

bidual, 23} [149]

bihomogeneous polynomial, [83]
bilinear relations, 53|
Birkhoff-Grothendieck Theorem, @
bitangent, [33]

blowup, 29} O]

branch locus,[116]

branch point, [32} [34] 193]

branched covering, 32} [193]
Brianchon’s Theorem, [TS0]

canonical, 48]

canonical divisor, 201]

canonical map, 203

center of projection, 9]

center of projection, [32]
characteristic properties of cohomology, [T63]
Chevalley’s Finiteness Theorem, [T12]
Chinese Remainder Theorem, 49 [153]
classical topology, [13]

closed set, open set, [57]

coarser topology, [56]

coboundary map, [T62]

codimension, [TT1]

cohomological functor,[T62] [163]
cohomology of O-modules, [T6]]
cohomology of a complex, [T62]
cohomology sequence, [T61] [I63]
cokernel, 50]

comaximal ideals ,[49]

combinatorial dimension, [I09]
commutative diagram, @l
commutative ring, 7]

commuting matrices, [62]

compact space,[77]

complement of a subset, [53]
complete intersection, [[81]
complex, [162]

conic, 8] [12]

connected space, [57]

217



constant O-module, [T46]
constructible function, [134]
constructible set, [129]
contracted ideal, [69]
contravariant functor, [138]
coordinate algebra, 59 [62]
Correspondence Theorem, @
covering diagram, [T43]
curve,[126]

cusp, [30]

decomposable element, E]
degree, [79]

degree of a morphism to P"*, 203]
degree of an affine plane curve, [7]
derivation, [T90]

diagonal, [00]

differential, [[91]
dimension, [T09]

direct limit, [T47]

directed set, [147]

discrete valuation, [T24]
discriminant,

divisor, [T84]

divisor of a function, [T84]
divisor of a polynomial, [T4]
domain, 20]

double plane, [IT6|

double point, [30]

dual curve, 2]]

dual module, 5T} [T4§]

dual plane, 2]

effective divisor, [T84]

eigenvector, [T0T]

elliptic curve, [201]
Euler characteristic, 33} [I87]

Euler characteristic of an (@-module, m
exact sequence, [50} [T40]

extended ideal, [69]

extension by zero,[T150]

extension of domains, [102]

extension of scalars, |3_Z|

exterior algebra,[94]

Fermat curve, [T7]

fibre dimension, [134]
fibre of a map, [§]

finer topology, [56]

finite module, 48} [T40]
finite morphism, [T12]
finite-type algebra, 7]
finitely generated ideal, (48]
flex point,

formal power series, [74]
fractions, [69]

free module, [47]

function field, [[37]

function field, [64] [83]
function field module, [T46]

general position, 33|

generators of an O-module, @
generic, 33|

genus, [ 157,200

geometric genus, [[73]

global section, [I38] [139]

good point, [87]

graded algebra, [04]

graph of a morphism, 90|
Grassmanian, 03|

Hausdorff space, [77]
Heine-Borel Theorem, [77]
Hensel’s Lemma, 33]

Hessian deteminant, [T§]
Hessian divisor, 39

Hessian matrix, [T§]

Hilbert Basis Theorem, 49
Hilbert Nullstellensatz,
homogeneous fraction, 86| [153|
homogeneous ideal, 80} [TT3]

homogeneous parts, [T2]
homogeneous polynomial, [I2] [T13]
homogenize, dehomogenize, [I6]
homomorphism, [T40]
homomorphism of modules, @l
hyperelliptic curve, 204]
hypersurface,

ideal, [T40]

ideal generators, [4§]

ideal generators, [53]

increasing, strictly increasing, 49|
induced topology, [56]

integral closure, [103]

integral extension, [T02]

integral morphism, [T03] [T12]
intersection multiplicity, [T4} [T77]
invariant element,

invertible O-module, [186]
irreducible space, [57]

irreducible polynomial, [§]
irregularity, [T73]

irrelevant ideal, [§T]

isolated point, [T3] [129]
isomorphism, [63] [89]

left module, right module, [47]
line, 8] P [561 [78]

line at infinity, [T0]

linear subspace, [78]

linear map, [47]
linearly equivalent divisors, [T83]

218



local domain of dimension one,[123]

local property, [123]

local ring, [123]

local ring at a point, [124} [T23]
local unit, [193]

localization, 52} [68]
locally principal ideal, [124]

locally closed set, [T29]
locally free module, [123]
locus of zeros, [7} 3]

matrix, 51]

maximal ideal, @8] [141]
maximal member, [50]

member, 50]

module, [139]

module generators, [47]
morphism, [38]

morphism of affine varieties, |5;5|
morphism of families, [T43]
multiplicative system, [69]

multiplicity, [13]

nilpotent ideal, [64]
nilradical, [64]

node, 30

Noether Normalization Theorem, [T04]
Noether’s AF+BG Theorem, [T81]

noetherian ring, 49|
noetherian space, [57]

normal domain, normal variety, [T04]

normalization, [104]
Nullstellensatz,

open covering,[77]
order of zero, pole, [124]
ordinary bitangent,
ordinary curve,
ordinary flex, [T7]
orientability, [33]

Pascal’s Theorem, [T80]
Pliicker Formulas, [4T]

plane projective curve, [I4]
point at infinity, 0] [T0]

point with values in a field, [86]
Poncelet’s Theorem, 209
power of an ideal, 48]
presentation of a module, [51]
presentation of an algebra, [60]
prime ideal, [4§]

principal divisor, [T84]

product equations, 33
product ideal, 48]

product topology, [82] [84]

projection, 32} O1]

projective double plane, [TT7]

projective line, plane, 9]
projective space, line, plane, 9]
projective variety, [78]

proper variety, [[33]

pullback, [92]

quadric, [7§]

quasicompact, [57} [77]

radical, 58]
Rainich’s proof, [61]
ramification index, [193]

rank, [{7] [123]

rational curve, 201]

rational function, [T4] [64} [83)]

real projective plane, [T0]

reducible curve, [4]

regular differential, [T96]

regular function, [64] [85] [137]

regular function on an affine variety, [62]
residue field, [59]

residue field module, [T40)]

residue field of a local ring, @
resolution, acyclic resolution, @
restriction, [T39)]

restriction of a divisor to an open set, [I84]
restriction of a module to an open set, |TiT|
restriction of a morphism, @

restriction of scalars, [54]

resultant, 26]

resultant matrix, 26]

Riemann-Roch Theorem, [T87} [199]

scaling, [T2]
section, [138] [139]

sections equal on an open set, fllfl
Segre embedding,
semicontinuous function,[134]
Serre dual, [T99)]

short exact sequence, |3_U|

simple localization, [69]

smooth curve, singular curve, |L7|
smooth point, singular point, [T7] [126]
special line, 29]

special linear group, [59]
spectrum of an algebra, [62]

split exact sequence, [50]
square-free polynomial, [T06]
standard cusp, 30|

standard open set, [10] [85]
standard open subset, [82]

Strong Nullstellensatz, [61]
structure sheaf, [138]

subspace, [56|

support of a divisor, [T84]

support of a module, [T52]

219



tacnode, [31]

tangent line, [T7]

tensor product module, [52]
tensoralgebra, [07]

torsion, torsion-free, [52} [140]
trace of a differential,[T96]
trace of a field extension, m_%l
trace of a function, [T93]
transcendence basis, 20]
transcendental element, 20]
transversal intersection, @
trefoil knot, 31]
triangulation, [33]

trigonal curve, [207]

twist of an O-module, [T33)]
twisted cubic,

twisting module, [T33]

unit ideal, [T4]

valuation, [T24]

valuation ring, [124]
value of a function, [62] [83]

variety, [82)
Veronese Embedding, [79]

weight,
weighted degree, 2]
weighted projective space, [[17]

Zariski closed, Zariski open, 53] [77]
Zariski topology, [78]

zero divisor, 20]

zero of a polynomial, [T3]

220



	PLANE CURVES
	The Affine Plane
	The Projective Plane
	Plane Projective Curves
	Tangent Lines
	Transcendence Degree
	The Dual Curve
	Resultants and Discriminants
	Nodes and Cusps
	Hensel's Lemma
	Bézout's Theorem
	The Plücker Formulas
	Exercises

	AFFINE ALGEBRAIC GEOMETRY
	Rings and Modules
	The Zariski Topology
	Some affine varieties
	Hilbert's Nullstellensatz
	The Spectrum
	Morphisms of Affine Varieties
	Localization
	Finite Group Actions
	Exercises

	PROJECTIVE ALGEBRAIC GEOMETRY
	Projective Varieties
	Homogeneous Ideals
	Product Varieties
	Rational Functions
	Morphisms
	Affine Varieties
	Lines in Three-Space
	Exercises

	INTEGRAL MORPHISMS
	The Nakayama Lemma
	Integral Extensions
	Normalization
	Geometry of Integral Morphisms
	Dimension
	Chevalley's Finiteness Theorem
	Exercises

	STRUCTURE OF VARIETIES IN THE ZARISKI TOPOLOGY
	Local Rings
	Smooth Curves
	Constructible Sets
	Closed Sets
	Projective Varieties are Proper
	Fibre Dimension
	Exercises

	MODULES
	The Structure Sheaf.
	O–Modules
	Some O-Modules
	The Sheaf Property
	Some More Modules
	Direct Image
	Support
	Twisting
	Extending a Module: proof
	Exercises

	COHOMOLOGY
	Cohomology
	Complexes
	Characteristic Properties
	Existence of Cohomology
	Cohomology of the Twisting Modules
	Cohomology of Hypersurfaces
	Three Theorems about Cohomology
	Bézout's Theorem
	Uniqueness of the Coboundary Maps
	Exercises

	THE RIEMANN-ROCH THEOREM FOR CURVES
	Divisors
	The Riemann-Roch Theorem I
	The Birkhoff-Grothendieck Theorem
	Differentials
	Branched Coverings
	Trace of a Differential
	The Riemann-Roch Theorem II
	Using Riemann-Roch
	Exercises


