Massachusetts Institute of Technology

18.721

NOTES FOR A COURSE IN

ALGEBRAIC GEOMETRY

This is a preliminary draft. Please don't reproduce.

TABLE OF CONTENTS

Chapter 1: PLANE CURVES

1.1 The Affine Plane

1.2 The Projective Plane
1.3 Plane Projective Curves
1.4 Tangent Lines
1.5 Transcendence Degree
1.6 The Dual Curve
1.7 Resultants and Discriminants
1.8 Nodes and Cusps
1.9 Hensel's Lemma
1.10 Bézout's Theorem
1.11 The Plücker Formulas
1.12 Exercises

Chapter 2: AFFINE ALGEBRAIC GEOMETRY

2.1 Rings and Modules
2.2 The Zariski Topology
2.3 Some Affine Varieties
2.4 The Nullstellensatz
2.5 The Spectrum
2.7 Localization
2.6 Morphisms of Affine Varieties
2.8 Finite Group Actions
2.9 Exercises

Chapter 3: PROJECTIVE ALGEBRAIC GEOMETRY
3.1 Projective Varieties
3.2 Homogeneous Ideals
3.3 Product Varieties
3.4 Rational Functions
3.5 Morphisms
3.6 Affine Varieties
3.7 Lines in Three-Space
3.8 Exercises

Chapter 4: INTEGRAL MORPHISMS
4.1 The Nakayama Lemma
4.2 Integral Extensions
4.3 Normalization
4.4 Geometry of Integral Morphisms
4.5 Dimension
4.6 Chevalley's Finiteness Theorem
?? Double Planes
4.7 Exercises

Chapter 5: STRUCTURE OF VARIETIES IN THE ZARISKI TOPOLOGY

5.1 Local rings
5.2 Smooth Curves
5.3 Constructible sets
5.4 Closed Sets
5.5 Projective Varieties are Proper
5.6 Fibre Dimension
5.7 Exercises

Chapter 6: MODULES

6.1 The Structure Sheaf
$6.2 \mathcal{O}$-Modules
6.3 Some \mathcal{O}-Modules
6.4 The Sheaf Property
6.5 Some More Modules
6.6 Direct Image
6.7 Support
6.8 Twisting
6.9 Extending a Module: proof
6.10 Exercises

Chapter 7: COHOMOLOGY

7.1 Cohomology of \mathcal{O}-Modules
7.2 Complexes
7.3 Characteristic Properties
7.4 Construction of Cohomology
7.5 Cohomology of the Twisting Modules
7.6 Cohomology of Hypersurfaces
7.7 Three Theorems about Cohomology
7.8 Bézout's Theorem
7.9 Uniqueness of the Coboundary Maps
7.10 Exercises

Chapter 8: THE RIEMANN-ROCH THEOREM FOR CURVES
8.1 Divisors
8.2 The Riemann-Roch Theorem I
8.3 The Birkhoff-Grothendieck Theorem
8.4 Differentials
8.5 Branched Coverings
8.6 Trace of a Differential
8.7 The Riemann-Roch Theorem II
8.8 Using Riemann-Roch
8.9 Exercises

Glossary

Index of Notation

Index

PREFACE

These are notes that have been used for an algebraic geometry course at MIT. I had thought of teaching such a course for quite a while, motivated partly by the fact that MIT didn't have very many courses suitable for students who had taken the standard theoretical math classes. I got around to thinking seriously about this twelve years ago, and have now taught the class seven times. I wanted to get to cohomology of \mathcal{O}-modules (aka quasicoherent sheaves) in one semester without presupposing a knowledge of sheaf theory or of much commutative algebra, so it has been a challenge. Fortunately, MIT has many outstanding students who are interested in mathematics. The students and I have made some progress, but much remains to be done. Ideally, one would like the development to be so natural as to seem obvious. Though I haven't tried to put in anything unusual, this has yet to be achieved. And there are too many pages for my taste. To paraphrase Pascal, we haven't had the time to make it shorter.

To cut the material down, I decided to work exclusively with varieties over the complex numbers, and to use that restriction freely. Schemes are not discussed. Some people will disagree with these decisions, but I feel that absorbing schemes and general ground fields won't be too difficult for someone who is familiar with complex varieties. Also, I don't go out of my way to state and prove things in their most general form.

If one plans to teach such a course in a single semester, it is essential to keep moving. One can't linger over the topics in the first Chapter. To save time, consider replacing some proofs with heuristic reasoning or omitting them. Proposition 1.9 .11 on the order of vanishing of the discriminant is a candidate for some hand-waving, and Lemma 1.10.7 on flex points may be a proof to skip.

Indices can cloud the picture. When that happens, I recommend focussing attention on a low dimensional case. Schelter's neat proof of Chevalley's Finitness Theorem is a good example. Schelter discovered the proof while studying \mathbb{P}^{1}. That case demonstrates the main point, and is a bit easier to follow.

In Chapter 6 on \mathcal{O}-modules, all technical points about sheaves are eliminated when one sticks to affine open sets and localizations. Sections over other open sets are important, mainly because one wants the global sections, but the proof that a module extends to arbitrary open sets can safely be put on a back burner, as is done in the notes.

In Chapter 7, I decided to restrict to \mathcal{O}-modules when defining cohomology, and to characterize the cohomology axiomatically. This was in order to minimize technical points. Simplicial operations are eliminated, though they appear in disguise in the resolution 7.4.13.

The special topics at the ends of Chapters 2,3,4 enrich the subject. I don't recommend skipping them. And, without some of the applications at the end of Chapter 8, the Riemann Roch Theorem would be pointless.

When I last taught the subject in the spring of 2020, MIT semester had 39 class hours. I followed this schedule: Chapter 1, 6 hours, Chapters 2-7, roughly 4 hours each, Chapter 8,7 hours, in-class quizzes, 2 hours. This was a brisk pace. The topics in the notes could be covered comfortably in a one-year course, and there would be time for some extra material.

Great thanks are due to the students who have been in my classes. Many of you contributed to these notes by commenting on the drafts or by creating figures. Though I remember you well, I'm not naming you individually because I'm sure I'd overlook someone important. I hope that you will understand.

A Note for the Student

The prerequisites are standard undergraduate courses in algebra, analysis, and topology, and the definitions of category and functor. I also suppose a familiarity with the implicit function theorem for complex variables. But don't worry too much about the prerequisites. You can look them up as needed, and many points are reviewed briefly in the notes as they come up.

Proofs of some lemmas and propositions are omitted. I have omitted a proof when I consider it simple enough that including it would just clutter up the text or, occasionally, when I feel that it is important for the reader to supply a proof.

As with all mathematics, working exercises and, most importantly, writing up the solutions carefully is, by far, the best way to learn the material well.

Chapter 1 PLANE CURVES

1.1 The Affine Plane

1.2 The Projective Plane
1.3 Plane Projective Curves
1.4 Tangent Lines
1.5 Transcendence Degree
1.6 The Dual Curve
1.7 Resultants and Discriminants
1.8 Nodes and Cusps
1.9 Hensel's Lemma
1.10 Bézout's Theorem
1.11 The Plücker Formulas
1.12 Exercises

We begin with plane curves. They were the first algebraic varieties to be studied, and they provide instructive examples. Chapters 2-7 are about varieties of arbitrary dimension. We will see in Chapter 5 how curves control higher-dimensional varieties, and we come back to curves in Chapter 8

1.1 The Affine Plane

affineplane
affcurve
goober8

The n-dimensional affine space \mathbb{A}^{n} is the space of n-tuples of complex numbers. The two-dimensional affine space \mathbb{A}^{2} is the affine plane.

Let $f\left(x_{1}, x_{2}\right)$ be an irreducible polynomial in two variables, with complex coefficients. The set of points of the affine plane at which f vanishes, the locus of zeros of f, is called a plane affine curve. Let's denote that locus by X. Writing x for the vector $\left(x_{1}, x_{2}\right)$,

$$
\begin{equation*}
X=\{x \mid f(x)=0\} \tag{1.1.1}
\end{equation*}
$$

The degree of the curve X is the degree of its irreducible defining polynomial f.
When it seems unlikely to cause confusion, we may abbreviate the notation for an indexed set, using a single letter, as here, where x stands for $\left(x_{!}, x_{2}\right)$.

1.1.2.

The Cubic Curve $y^{2}=x^{3}-x$ (real locus)

Abstract

About figures. In algebraic geometry, the dimensions are too big to allow realistic figures. Even with an affine plane curve, one is dealing with a locus in the affine plane \mathbb{A}^{2}, whose topological dimension is 4 . In some cases, such as in the figure above, depicting the real locus can be helpful, but in most cases, even the real locus

 is too big, and one must make do without a figure, or with a schematic diagram.We will get an understanding of the geometry of a plane curve as we go along, and we mention just one point here. A plane curve is called a curve because it is defined by one equation in two variables. Its algebraic dimension is 1 . The only proper subsets of a curve X that can be defined by polynomial equations are the finite sets (see Proposition 1.3.12. But because our scalars are complex numbers, the affine plane \mathbb{A}^{2} is a real space of dimension 4 , and X will be a surface in that space. This is analogous to the fact that the affine line \mathbb{A}^{1} is the plane of complex numbers.

One can see that a plane curve X has dimension 2, geometrically, by inspecting its projection to a line. To do this, one writes the defining polynomial as a polynomial in x_{2} :

$$
f\left(x_{1}, x_{2}\right)=c_{0} x_{2}^{d}+c_{1} x_{2}^{d-1}+\cdots+c_{d}
$$

whose coefficients c_{i} are polynomials in x_{1}. Let's suppose that d is positive, i.e., that f isn't a polynomial in x_{1} alone. Let $X \xrightarrow{\pi} \mathbb{A}^{1}$ be the projection from the plane curve X to the affine x_{1}-line \mathbb{A}^{1}.

The fibre of a map $V \rightarrow U$ over a point p of U is the inverse image of p, the set of points of V that map to p. One can describe the fibre of the map π over the point $x_{1}=a$, as the set of points (a, b) in which b is a root of the one-variable polynomial

$$
f\left(a, x_{2}\right)=\bar{c}_{0} x_{2}^{d}+\bar{c}_{1} x_{2}^{d-1}+\cdots+\bar{c}_{d}
$$

with $\bar{c}_{i}=c_{i}(a)$. There will be finitely many points in this fibre, and it won't be empty unless $f\left(a, x_{2}\right)$ is a constant. The plane curve X covers most of the x_{1}-line, a complex plane, finitely often.
1.1.3. Note. In contrast with complex polynomials in one variable, most polynomials in two or more variables are irreducible - they cannot be factored. This can be shown by a method called "counting constants". For instance, quadratic polynomials in x_{1}, x_{2} depend on the six coefficients of the monomials $1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}$ of degree at most two. Linear polynomials $a x_{1}+b x_{2}+c$ depend on three coefficients, but the product of two linear polynomials depends on only five parameters, because a scalar factor can be moved from one of the linear factors to the other. So the quadratic polynomials cannot all be written as products of linear polynomials. This reasoning is fairly convincing. It can be justified formally in terms of dimension, which will be discussed in Chapter 5

(1.1.4) changing coordinates

We allow linear changes of variable and translations in the affine plane \mathbb{A}^{2}. When a point x is written as the column vector $\left(x_{1}, x_{2}\right)^{t}$, the coordinates $x^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}\right)^{t}$ after such a change of variable will be related to x by a formula

$$
\begin{equation*}
x=Q x^{\prime}+a \tag{1.1.5}
\end{equation*}
$$

where Q is an invertible 2×2 matrix with complex coefficients and $a=\left(a_{1}, a_{2}\right)^{t}$ is a complex translation vector. This changes a polynomial equation $f(x)=0$, to $f\left(Q x^{\prime}+a\right)=0$. One may also multiply a polynomial f by a nonzero complex scalar without changing its locus of zeros. Using these operations, all lines, plane curves of degree 1 , become equivalent.

An affine conic is a plane affine curve of degree 2 . Every affine conic is equivalent to one of the two loci

$$
\begin{equation*}
x_{1}^{2}-x_{2}^{2}=1 \quad \text { or } \quad x_{2}=x_{1}^{2} \tag{1.1.6}
\end{equation*}
$$

by a suitable linear change of variable, a translation, and scaling. The proof of this is similar to the one used to classify real conics. These loci might be called a complex 'hyperbola' and 'parabola', respectively. The complex 'ellipse' $x_{1}^{2}+x_{2}^{2}=1$ becomes the 'hyperbola' when one multiplies the coordinate x_{2} by i.

On the other hand, there are infinitely many inequivalent cubic curves. Cubic polynomials in two variables depend on the coefficients of the ten monomials $1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}, x_{1}^{3}, x_{1}^{2} x_{2}, x_{1} x_{2}^{2}, x_{2}^{3}$ of degree at most 3 in x_{1}, x_{2}. Linear changes of variable, translations, and scalar multiplication, give us only seven scalars to work with, leaving three essential parameters.

1.2 The Projective Plane

projplane
equivrel
projline projpl
pline
eqline
linesmeet
standcov

The n-dimensional projective space \mathbb{P}^{n} is the set of equivalence classes of nonzero vectors $x=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$, the equivalence relation being

$$
\begin{equation*}
\left(x_{0}^{\prime}, \ldots, x_{n}^{\prime}\right) \sim\left(x_{0}, \ldots, x_{n}\right) \quad \text { if } \quad\left(x_{0}^{\prime}, \ldots, x_{n}^{\prime}\right)=\left(\lambda x_{0}, \ldots, \lambda x_{n}\right) \quad\left(\text { if } \quad x^{\prime}=\lambda x\right) \tag{1.2.1}
\end{equation*}
$$

for some nonzero complex number λ. The equivalence classes are the points of \mathbb{P}^{n}. One often refers to a point by giving a particular vector in its class.

When x is a nonzero vector, the one-dimensional subspace of \mathbb{C}^{n+1} spanned by x consists of the vectors λx, together with the zero vector. So points of \mathbb{P}^{n} correspond to one-dimensional subspaces of the complex vector space \mathbb{C}^{n+1}.

(1.2.2) the projective line

Points of the projective line \mathbb{P}^{1} are equivalence classes of nonzero vectors $x=\left(x_{0}, x_{1}\right)$.
If the first coordinate x_{0} of a vector $x=\left(x_{0}, x_{1}\right)$ isn't zero, we may multiply by $\lambda=x_{0}^{-1}$ to normalize the first entry to 1 , and write the point that x represents in a unique way as $\left(1, u_{1}\right)$, with $u_{1}=x_{1} / x_{0}$. There is one remaining point, the point represented by the vector $(0,1)$. The projective line \mathbb{P}^{1} can be obtained by adding this point, called the point at infinity, to the affine u_{1}-line, which is a complex plane. As u_{1} tends to infinity in any direction, the point $\left(1, u_{1}\right)$ approaches $(0,1)$. Topologically, \mathbb{P}^{1} is a two-dimensional sphere.

(1.2.3) lines in projective space

Let p and q be vectors that represent distinct points of the projective space \mathbb{P}^{n}. There is a unique line L in \mathbb{P}^{n} that contains those points, the set of points $L=\{r p+s q\}$, with r, s in \mathbb{C} not both zero. Points of L correspond bijectively to points of the projective line \mathbb{P}^{1}, by

$$
\begin{equation*}
r p+s q \quad \longleftrightarrow \quad(r, s) \tag{1.2.4}
\end{equation*}
$$

A line in the projective plane \mathbb{P}^{2} can also be described as the locus of solutions of a homogeneous linear equation

$$
\begin{equation*}
s_{0} x_{0}+s_{1} x_{1}+s_{2} x_{2}=0 \tag{1.2.5}
\end{equation*}
$$

1.2.6. Lemma. In the projective plane, two distinct lines have exactly one point in common, and in a projective space of any dimension, a pair of distinct points is contained in exactly one line.

(1.2.7) the standard covering of the projective plane

The projective plane \mathbb{P}^{2} is the two-dimensional projective space. Its points are equivalence classes of nonzero vectors $\left(x_{0}, x_{1}, x_{2}\right)$.

If the first entry x_{0} of a point $p=\left(x_{0}, x_{1}, x_{2}\right)$ of the plane isn't zero, we may normalize it to 1 without changing the point: $\left(x_{0}, x_{1}, x_{2}\right) \sim\left(1, u_{1}, u_{2}\right)$, where $u_{i}=x_{i} / x_{0}$. We did the analogous thing for \mathbb{P}^{1} above. The representative vector $\left(1, u_{1}, u_{2}\right)$ is uniquely determined by p, so points with $x_{0} \neq 0$ correspond bijectively to points of the affine plane \mathbb{A}^{2} with coordinates $\left(u_{1}, u_{2}\right)$:

$$
\left(x_{0}, x_{1}, x_{2}\right) \sim\left(1, u_{1}, u_{2}\right) \quad \longleftrightarrow \quad\left(u_{1}, u_{2}\right)
$$

We regard the affine u_{1}, u_{2}-plane as a subset of \mathbb{P}^{2} by this correspondence, and we denote that subset by \mathbb{U}^{0}. The points of \mathbb{U}^{0}, those with $x_{0} \neq 0$, are the points at finite distance. The points at infinity of \mathbb{P}^{2} are those of the form $\left(0, x_{1}, x_{2}\right)$. They are on the line at infinity L^{0}, the locus $\left\{x_{0}=0\right\}$ in \mathbb{P}^{2}. The projective plane is the union of the two sets \mathbb{U}^{0} and L^{0}. When a point is given by a coordinate vector, one can assume that the first coordinate is either 1 or 0 .

We may write the point $\left(x_{0}, x_{1}, x_{2}\right)$ that is in \mathbb{U}^{0} as $\left(1, u_{1}, u_{2}\right)$, with $u_{i}=x_{i} / x_{0}$ as above. The notation $u_{i}=x_{i} / x_{0}$ is important when the coordinate vector $\left(x_{0}, x_{1}, x_{2}\right)$ has been given. When no coordinate vector of a point p has been given, one may simply assume that the first coordinate is 1 and write $p=\left(1, x_{1}, x_{2}\right)$.

There is an analogous correspondence between points $\left(x_{0}, 1, x_{2}\right)$ and points of an affine plane \mathbb{A}^{2}, and between points $\left(x_{0}, x_{1}, 1\right)$ and points of an affine plane. We denote the subsets $\left\{x_{1} \neq 0\right\}$ and $\left\{x_{2} \neq 0\right\}$ by \mathbb{U}^{1} and \mathbb{U}^{2}, respectively. The three sets $\mathbb{U}^{0}, \mathbb{U}^{1}, \mathbb{U}^{2}$ form the standard covering of \mathbb{P}^{2} by three standard affine open sets. Since the vector $(0,0,0)$ has been ruled out, every point of \mathbb{P}^{2} lies in at least one of the three standard open sets. Points whose three coordinates are nonzero lie in all of them.
1.2.8. Note. Which points of \mathbb{P}^{2} are at infinity depends on which of the standard open sets is taken to be the one at finite distance. When the coordinates are $\left(x_{0}, x_{1}, x_{2}\right)$, I like to normalize x_{0} to 1 , as above. Then the points at infinity are those of the form $\left(0, x_{1}, x_{2}\right)$. But when coordinates are (x, y, z), I may normalize z to 1 . Then the points at infinity are the points $(x, y, 0)$. I hope this won't cause too much confusion.
digression: the real projective plane
pointatinfinity
realproj-
plane

Points of the real projective plane $\mathbb{R} \mathbb{P}^{2}$ are equivalence classes of nonzero real vectors $x=\left(x_{0}, x_{1}, x_{2}\right)$, the equivalence relation being $x^{\prime} \sim x$ if $x^{\prime}=\lambda x$ for some nonzero real number λ. The real projective plane can also be thought of as the set of one-dimensional subspaces of the real vector space \mathbb{R}^{3}.

Let's denote \mathbb{R}^{3} by V. The plane U in V defined by the equation $x_{0}=1$ is analogous to the standard open subset \mathbb{U}^{0} of the complex projective plane \mathbb{P}^{2}. We can project V from the origin $p_{0}=(0,0,0)$ to U, sending a point $x=\left(x_{0}, x_{1}, x_{2}\right)$ of V to the point $\left(1, u_{1}, u_{2}\right)$, with $u_{i}=x_{i} / x_{0}$. The fibres of this projection are the lines through p_{0} and x, with p_{0} omitted.

The projection to U is undefined at the points $\left(0, x_{1}, x_{2}\right)$, which are orthogonal to the x_{0}-axis. The line connecting such a point to p_{0} doesn't meet U. Those points are the points at infinity of $\mathbb{R} \mathbb{P}^{2}$.

Looking from the origin, U becomes a "picture plane".
durerfig
1.2.10.

This is an illustration from a book on perspective by Albrecht Dürer

The projection from three-space to a picture plane goes back to the the 16th century, the time of Desargues and Dürer. Projective coordinates were introduced 200 years later, by Möbius.

The figure below shows the plane $W: x+y+z=1$ in the real vector space \mathbb{R}^{3}, together with its coordinate lines and a conic. The one-dimensional subspace spanned by a nonzero vector $\left(x_{0}, y_{0}, z_{0}\right)$ in \mathbb{R}^{3} will meet W in a single point unless that vector is on the line $L: x+y+z=0$. So W is a faithful representation of most of $\mathbb{R P}^{2}$. It contains all points except those on L.

1.2.11.

The Real Projective Plane changing coordinates in the projective plane

An invertible 3×3 matrix P determines a linear change of coordinates in \mathbb{P}^{2}. With $x=\left(x_{0}, x_{1}, x_{2}\right)^{t}$ and $x^{\prime}=\left(x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right)^{t}$ represented as column vectors, that coordinate change is given by

$$
\begin{equation*}
x=P x^{\prime} \tag{1.2.13}
\end{equation*}
$$

The next proposition shows that four special points, the points

$$
e_{0}=(1,0,0)^{t}, e_{1}=(0,1,0)^{t}, e_{2}=(0,0,1)^{t} \quad \text { and } \quad \epsilon=(1,1,1)^{t}
$$

determine the coordinates in \mathbb{P}^{2}.
1.2.14. Proposition. Let p_{0}, p_{1}, p_{2}, q be four points of \mathbb{P}^{2}, no three of which lie on a line. There is, up to a scalar factor, a unique linear coordinate change $P x^{\prime}=x$ such that $P p_{i}=e_{i}$ and $P q=\epsilon$.
proof. The hypothesis that the points p_{0}, p_{1}, p_{2} don't lie on a line tells us that the vectors that represent those points are independent. They span \mathbb{C}^{3}. So q will be a combination $q=c_{0} p_{0}+c_{1} p_{1}+c_{2} p_{2}$, and because no three of the four points lie on a line, the coefficients c_{i} will be nonzero. We can scale the vectors p_{i} (multiply them by nonzero scalars) to make $q=p_{0}+p_{1}+p_{2}$ without changing the points. Next, the columns of P can be an arbitrary set of independent vectors. We let them be p_{0}, p_{1}, p_{2}. Then $P e_{i}=p_{i}$, and $P \epsilon=q$. The matrix P is unique up to scalar factor.

(1.2.15) conics

A polynomial $f\left(x_{0}, \ldots, x_{n}\right)$ is homogeneous, of degree d, if all monomials that appear with nonzero coefficient have (total) degree d. For example, $x_{0}^{3}+x_{1}^{3}-x_{0} x_{1} x_{2}$ is a homogeneous cubic polynomial.

A homogeneous quadratic polynomal is a combination of the six monomials

$$
x_{0}^{2}, x_{1}^{2}, x_{2}^{2}, x_{0} x_{1}, x_{1} x_{2}, x_{0} x_{2}
$$

The locus of zeros of an irreducible homogeneous quadratic polynomial is a conic.
1.2.16. Proposition. For any conic C, there is a choice of coordinates so that it becomes the locus

$$
x_{0} x_{1}+x_{0} x_{2}+x_{1} x_{2}=0
$$

proof. A conic will contain three points that aren't colinear. Let's leave the verification of this fact as an exercise. We choose three non-colinear points on the conic C, and adjust coordinates so that they become the points e_{0}, e_{1}, e_{2}. Let f be the homogeneous quadratic polynomial in those coordinates whose zero locus is C. Because e_{0} is a point of $C, f(1,0,0)=0$, and therefore the coefficient of x_{0}^{2} in f is zero. Similarly, the coefficients of x_{1}^{2} and x_{2}^{2} are zero. So f has the form

$$
f=a x_{0} x_{1}+b x_{0} x_{2}+c x_{1} x_{2}
$$

Since f is irreducible, a, b, c aren't zero. By scaling appropriately (adjusting f, x_{0}, x_{1}, x_{2} by scalar factors), we can make $a=b=c=1$. We will be left with the polynomial $x_{0} x_{1}+x_{0} x_{2}+x_{1} x_{2}$.

1.3 Plane Projective Curves

The loci in projective space that are studied in algebraic geometry are the ones that can be defined by systems of homogeneous polynomial equations. The reason that we use homogeneous equations is this:

To say that a polynomial $f\left(x_{0}, \ldots, x_{n}\right)$ vanishes at a point of projective space \mathbb{P}^{n} means that if the vector $a=\left(a_{0}, \ldots, a_{n}\right)$ represents a point p, then $f(a)=0$. Perhaps this is obvious. Now, if a represents p, the other vectors that represent p are the vectors $\lambda a \quad(\lambda \neq 0)$. When f vanishes at $p, f(\lambda a)$ must also be zero. The polynomial $f(x)$ vanishes at p if and only if $f(\lambda a)=0$ for every λ.

We write a polynomial $f\left(x_{0}, \ldots, x_{n}\right)$ as a sum of its homogeneous parts:

$$
\begin{equation*}
f=f_{0}+f_{1}+\cdots+f_{d} \tag{1.3.1}
\end{equation*}
$$

where f_{0} is the constant term, f_{1} is the linear part, etc., and d is the degree of f.
hompartszero
fequalsgh
locipone
fac-torhompoly
factorpolytwo

(1.3.8) intersections with a line

line $i=0, \ldots, d$. zero - unless $f_{i}(a)$ is zero for every i. $\{g=0\}$ and $\{h=0\}$. of the two loci $\{g=0\}$ and $\{h=0\}$.

(1.3.4) loci in the projective line

 two variables. put f into the form It will be a finite set of points with multiplicities.1.3.2. Lemma. Let $f=f_{0}+\cdots+f_{d}$ be a polynomial of degree d in x_{0}, \ldots, x_{n}, and let $a=\left(a_{0}, \ldots, a_{n}\right)$ be a nonzero vector. Then $f(\lambda a)=0$ for every nonzero complex number λ if and only if $f_{i}(a)=0$ for every

This lemma shows that we may as well work with homogeneous equations.
proof of the lemma. We substitute into 1.3.1;: $f(\lambda x)=f_{0}+\lambda f_{1}(x)+\lambda^{2} f_{2}(x)+\cdot+\lambda^{d} f_{d}(x)$. Evaluating at $x=a, f(\lambda a)=f_{0}+\lambda f_{1}(a)+\lambda^{2} f_{2}(a)+\cdot+\lambda^{d} f_{d}(a)$, and $f_{i}(a)$ are scalars (complex numbers). The right side of this equation is a polynomial of degree at most d in λ, with complex coefficients $f_{i}(a)$. Since a nonzero polynomial of degree at most d has at most d roots, $f(\lambda a)$ won't be zero for every λ unless that polynomial is
1.3.3. Lemma. (i) If the product $f=g h$ of two polynomials is homogeneous, then g and h are homogeneous.
(ii) The zero locus in projective space of a product gh of homogeneous polynomials is the union of the two loci
(iii) The zero locus in affine space of a product gh of polynomials, not necessarily homogeneous, is the union

Before going to plane projective curves, we describe the zero locus in \mathbb{P}^{1} of a homogeneous polynomial in
1.3.5. Lemma. A nonzero homogeneous polynomial $f(x, y)=a_{0} x^{d}+a_{1} x^{d-1} y+\cdots+a_{d} y^{d}$ with complex coefficients is a product of homogeneous linear polynomials that are unique up to scalar factor.

To prove this, one uses the fact that the field of complex numbers is algebraically closed. A one-variable complex polynomial factors into linear factors. To factor $f(x, y)$, one can factor the one-variable polynomial $f(1, y)$ into linear factors, substitute y / x for y, and multiply the result by x^{d}. When one adjusts scalar factors, one will obtain the expected factorization of $f(x, y)$. For instance, to factor $f(x, y)=x^{2}-3 x y+2 y^{2}$, we substitute $x=1: 2 y^{2}-3 y+1=2(y-1)\left(y-\frac{1}{2}\right)$. Substituting $y=y / x$ and multiplying by x^{2}, $f(x, y)=2(y-x)\left(y-\frac{1}{2} x\right)$. The scalar 2 can be distributed arbitrarily among the linear factors.

When a homogeneous polynomial f is a product of linear factors, we can adjust the factors by scalars, to

$$
f(x, y)=c\left(v_{1} x-u_{1} y\right)^{r_{1}} \cdots\left(v_{k} x-u_{k} y\right)^{r_{k}}
$$

where no factor $v_{i} x-u_{i} y$ is a constant multiple of another, c is a nonzero scalar, and $r_{1}+\cdots+r_{k}$ is the degree of f. The exponent r_{i} is the multiplicity of the linear factor $v_{i} x-u_{i} y$.

A linear polynomial $v x-u y$ determines the point (u, v) in the projective line \mathbb{P}^{1}, the unique zero of that polynomial, and changing the polynomial by a scalar factor doesn't change its zero. Thus the linear factors of the homogeneous polynomial 1.3 .6 determine points of \mathbb{P}^{1}, the zeros of f. The points $\left(u_{i}, v_{i}\right)$ are zeros of multiplicity r_{i}. The total number of those points, counted with multiplicity, will be the degree of f.
1.3.7. The zero $\left(u_{i}, v_{i}\right)$ of f corresponds to a root $x=u_{i} / v_{i}$ of multiplicity r_{i} of the one-variable polynomial $f(x, 1)$, except when the zero is the point $(1,0)$. This happens when the coefficient a_{0} of f is zero, and y is a factor of f. One could say that $f(x, y)$ has a zero at infinity in that case.

This sums up the information contained in the locus of a homogeneous polynomial in the projective line.

Let Z be the zero locus of a homogeneous polynomial $f\left(x_{0}, \ldots, x_{n}\right)$ of degree d in projective space \mathbb{P}^{n}, and let L be a line in $\mathbb{P}^{n} 1.2 .4$. Say that L is the set of points $r p+s q$, where p and q are points that are
represented by specific vectors $\left(a_{0}, \ldots, a_{n}\right)$ and $\left(b_{0}, \ldots, b_{n}\right)$, respectively. So L corresponds to the projective line \mathbb{P}^{1}, by $r p+s q \leftrightarrow(r, s)$. Let's also assume that L isn't entirely contained in the zero locus Z. The intersection $Z \cap L$ corresponds to the zero locus in \mathbb{P}^{1} of the polynomial \bar{f} in r, s obtained by substituting $r p+s q$ into f. This substitution yields a homogeneous polynomial $\bar{f}(r, s)$ of degree d, and the zeros of \bar{f} in \mathbb{P}^{1} correspond to the points of $Z \cap L$. If f has degree d, there will be d zeros, counted with multiplicity.

For instance, let f be the polynomial $x_{0} x_{1}+x_{0} x_{2}+x_{1} x_{2}$. Then with $p=\left(a_{0}, a_{1}, a_{2}\right)$ and $q=\left(b_{0}, b_{1}, b_{2}\right)$, \bar{f} is the following quadratic polynomial in r, s :

$$
\begin{aligned}
\bar{f}(r, s)=f(r p+s q) & =\left(r a_{0}+s b_{0}\right)\left(r a_{1}+s b_{1}\right)+\left(r a_{0}+s b_{0}\right)\left(r a_{2}+s b_{2}\right)+\left(r a_{1}+s b_{1}\right)\left(r a_{2}+s b_{2}\right) \\
& =\left(a_{0} a_{1}+a_{0} a_{2}+a_{1} a_{2}\right) r^{2}+\left(\sum_{i \neq j} a_{i} b_{j}\right) r s+\left(b_{0} b_{1}+b_{0} b_{2}+b_{1} b_{2}\right) s^{2}
\end{aligned}
$$

1.3.9. Definition. With notation as above, the intersection multiplicity of the zero locus Z and a line L at a point p is the multiplicity of zero of the polynomial \bar{f}.
1.3.10. Corollary. Let Z be the zero locus of a homogeneous polynomial f in projective space \mathbb{P}^{n}, and let L be a line in \mathbb{P}^{n} that isn't contained in Z. The number of intersections of Z and L, counted with multiplicity, is equal to the degree of f.

(1.3.11) loci in the projective plane

The locus of zeros in \mathbb{P}^{2} of a single irreducible homogeneous polynomial $f(x, y, z)$ is called a plane projective curve. The degree of a plane projective curve is the degree of its irreducible defining polynomial.

The next proposition shows that plane projective curves are the most interesting loci in the projective plane.
1.3.12. Proposition. Homogeneous polynomials f_{1}, \ldots, f_{r} in three variables with no common factor have finitely many common zeros in \mathbb{P}^{2} if $r>1$.

The proof of this proposition is below.
1.3.13. Note. Suppose that a homogeneous polynomial $f(x, y, z)$ is reducible, say $f=g_{1} \cdots g_{k}$, that g_{i} are irreducible, and that no two of them are scalar multiples of one another. Then the zero locus C of f is the union of the zero loci V_{i} of the factors g_{i}. In this case, C may be called a reducible curve.

When there are multiple factors, say $f=g_{1}^{e_{1}} \cdots g_{k}^{e_{k}}$ and some e_{i} are greater than 1 , it is still true that the locus $C:\{f=0\}$ is the union of the loci $V_{i}:\left\{g_{i}=0\right\}$, but the connection between the geometry of C and the algebra is weakened. In this situation, the structure of a scheme becomes useful We won't discuss schemes. The only situation in which we may need to keep track of multiple factors is when counting intersections with another curve D. For this purpose, one can use the divisor of f, which is defined to be the integer combination $e_{1} V_{1}+\cdots+e_{k} V_{k}$.

A rational function is a fraction of polynomials. The polynomial ring $\mathbb{C}[x, y]$ embeds into its field of fractions, the field of rational functions in x, y. That field is often denoted by $\mathbb{C}(x, y)$, but let's denote it by F here. The polynomial ring $\mathbb{C}[x, y, z]$ in three variables becomes a subring of the one-variable polynomial ring $F[z]$. When one is presented with a problem about the ring $\mathbb{C}[x, y, z]$, it can be useful to begin by studying it in the ring $F[z]$, which is a principal ideal domain. The polynomial rings $\mathbb{C}[x, y]$ and $\mathbb{C}[x, y, z]$ are unique factorization domains, but not principal ideal domains.
1.3.14. Lemma. Let $F=\mathbb{C}(x, y)$ be the field of rational functions in x, y.
(i) If f_{1}, \ldots, f_{k} are homogeneous polynomials in x, y, z with no common factor, their greatest common divisor in $F[z]$ is 1 , and therefore they generate the unit ideal of $F[z]$. (The unit ideal of a ring R is the ring R itself.) So there is an equation of the form $\sum g_{i}^{\prime} f_{i}=1$, with g_{i}^{\prime} in $F[z]$.
(ii) An irreducible element of $\mathbb{C}[x, y, z]$ that has positive degree in z is also an irreducible element of $F[z]$.
proof. (i) This is a proof by contradiction. Let h^{\prime} be a nonzero element of $F[z]$ that isn't a unit, i.e., isn't an element of F, and suppose that h^{\prime} divides f_{i} in $F[z]$ for every i. Say that $f_{i}=u_{i}^{\prime} h^{\prime}$ with u_{i}^{\prime} in $F[x]$. The coefficients of h^{\prime} and u_{i}^{\prime} are rational functions, whose denominators are polynomials in x, y. We multiply by
a polynomial in x, y to clear the denominators from the coefficients of all of the elements h^{\prime} and u_{i}^{\prime}. This will give us equations of the form $d_{i} f_{i}=u_{i} h$, where d_{i} are polynomials in x, y, and h and u_{i} are polynomials in x, y, z. Since h^{\prime} isn't in F, neither is h. So h will have positive degree in z. Let g be an irreducible factor of h of positive degree in z. Then g divides $d_{i} f_{i}$, but it doesn't divide d_{i}, which has degree zero in z. So g divides f_{i}, and this is true for every i. This contradicts the hypothesis that f_{1}, \ldots, f_{k} have no common factor.
(ii) Say that a polynomial $f(x, y, z)$ factors in $F[z], f=g^{\prime} h^{\prime}$, where g^{\prime} and h^{\prime} are polynomials of positive degree in z with coefficients in F. When we clear denominators from g^{\prime} and h^{\prime}, we obtain an equation of the form $d f=g h$, where g and h are polynomials in x, y, z of positive degree in z and d is a polynomial in x, y. Since neither g nor h divides $d, \quad f$ must be reducible.
proof of Proposition 1.3.12 We are to show that homogeneous polynomials f_{1}, \ldots, f_{r} in x, y, z with no common factor have finitely many common zeros. Lemma 1.3 .14 tells us that we may write $\sum g_{i}^{\prime} f_{i}=1$, with g_{i}^{\prime} in $F[z]$. Clearing denominators from the elements g_{i}^{\prime} gives us an equation of the form

$$
\sum g_{i} f_{i}=d
$$

where g_{i} are polynomials in x, y, z and d is a polynomial in x, y. Taking suitable homogeneous parts of g_{i} and d produces an equation $\sum g_{i} f_{i}=d$ in which all terms are homogeneous.

Lemma 1.3.5 asserts that $d(x, y)$ is a product of linear polynomials, say $d=\ell_{1} \cdots \ell_{r}$. A common zero of f_{1}, \ldots, f_{k} is also a zero of d, and therefore it is a zero of ℓ_{j} for some j. It suffices to show that, for each j, f_{1}, \ldots, f_{r} and ℓ_{j} have finitely many common zeros.

Since f_{1}, \ldots, f_{k} have no common factor, there is at least one f_{i} that isn't divisible by ℓ_{j}. Then Corollary 1.3.10 shows that f_{i} and ℓ_{j} have finitely many common zeros.
1.3.15. Corollary. Every locus in the projective plane \mathbb{P}^{2} that can be defined by a system of homogeneous polynomial equations is a finite union of points and curves.

The next corollary is a special case of the Strong Nullstellensatz, which will be proved in the next chapter.

idealprin-

 cipal1.3.16. Corollary. Let $f(x, y, z)$ be an irreducible homogeneous polynomial that vanishes on an infinite set S of points of \mathbb{P}^{2}. If another homogeneous polynomial $g(x, y, z)$ vanishes on S, then f divides g. Therefore, if an irreducible polynomial vanishes on an infinite set S, that polynomial is unique up to scalar factor.
proof. If the irreducible polynomial f doesn't divide g, then f and g have no common factor, and therefore they have finitely many common zeros.
classicaltopology
isopts
noisolatedpoint

(1.3.17) the classical topology

The usual topology on the affine space \mathbb{A}^{n} will be called the classical topology. A subset U of \mathbb{A}^{n} is open in the classical topology if, whenever U contains a point p, it contains all points sufficiently near to p. We call this the classical topology to distinguish it from another topology, the Zariski topology, which will be discussed in the next chapter.

The projective space \mathbb{P}^{n} also has a classical topology. A subset U of \mathbb{P}^{n} is open if, whenever a point p of U is represented by a vector $\left(x_{0}, \ldots, x_{n}\right)$, all vectors $x^{\prime}=\left(x_{0}^{\prime}, \ldots, x_{n}^{\prime}\right)$ sufficiently near to x represent points of U.

(1.3.18) isolated points

A point p of a topological space X is isolated if the set $\{p\}$ is both open and closed, or if both $\{p\}$ and its complement $X-\{p\}$ are closed. If X is a subset of \mathbb{A}^{n} or \mathbb{P}^{n}, a point p of X is isolated in the classical topology if X doesn't contain points p^{\prime} distinct from p, but arbitrarily close to p.
1.3.19. Proposition Let n be an integer greater than one. In the classical topology, the zero locus of a polynomial in \mathbb{A}^{n}, or of a homogeneous polyomial in \mathbb{P}^{n}, contains no isolated points.
1.3.20. Lemma. Let f be a polynomial of degree d in x_{1}, \ldots, x_{n}. After a suitable coordinate change and scaling, $f(x)$ will become a monic polynomial of degree d in the variable x_{n}.
proof. We write $f=f_{0}+f_{1}+\cdots+f_{d}$, where f_{i} is the homogeneous part of f of degree i. We choose a point p of \mathbb{A}^{n} at which f_{d} isn't zero, and change variables so that p becomes the point $(0, \ldots, 0,1)$. We call the new variables $x_{1}, \ldots, . x_{n}$ and the new polynomial f. Then $f_{d}\left(0, \ldots, 0, x_{n}\right)$ will be equal to $c x_{n}^{d}$ for some nonzero constant c, and f / c will be monic.
proof of Proposition 1.3.19. The proposition is true for loci in affine space and also for loci in projective space. We look at the affine case.

Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial, and let Z be its zero locus. If f is a product, say $f=g h$, then Z will be the union of the zero loci $Z_{1}:\{g=0\}$ and $Z_{2}:\{h=0\}$. A point p of Z will be in one of those two sets, say in Z_{1}. If p is an isolated point of Z, then its complement $U=Z-\{p\}$ in Z is closed. If so, then its complement $Z_{1}-\{p\}$ in Z_{1}, which is the intersection $U \cap Z_{1}$, will be closed in Z_{1}, and therefore p will be an isolated point of Z_{1}. So it suffices to prove the proposition in the case that f is irreducible. Let p be a point of Z. We adjust coordinates and scale, so that p becomes the origin $(0, \ldots, 0)$ and f becomes monic in x_{n}. We relabel x_{n} as y, and write f as a polynomial in y :

$$
\tilde{f}(y)=f\left(x_{1}, \ldots, x_{n-1}, y\right)=y^{d}+c_{d-1}(x) y^{d-1}+\cdots+c_{0}(x)
$$

where c_{i} is a polynomial in x_{1}, \ldots, x_{n-1}. Since f is irreducible, $c_{0}(x) \neq 0$. Since p is the origin and $f(p)=0$, $c_{0}(0)=0$. So $c_{0}(x)$, which is the product of the roots of $\widetilde{f}(y)$, will tend to zero with x. When $c_{0}(x)$ is small, at least one root of \tilde{f} will be small. So there are points of Z distinct from p, but arbitrarily close to p.
1.3.21. Corollary. Let C^{\prime} be the complement of a finite set of points in a plane curve C. In the classical topology, a continuous function g on C that is zero at every point of C^{\prime} is identically zero.

1.4 Tangent Lines

(1.4.1) a notation for working locally

We will often want to inspect a plane projective curve $C:\left\{f\left(x_{0}, x_{1}, x_{2}\right)=0\right\}$ in a neighborhood of a particular point p. To do this we may adjust coordinates so that p becomes the point $(1,0,0)$, and work with points $\left(1, x_{1}, x_{2}\right)$ in the standard open set $\mathbb{U}^{0}:\left\{x_{0} \neq 0\right\}$. When we identify \mathbb{U}^{0} with the affine x_{1}, x_{2}-plane, p becomes the origin $(0,0)$ and C becomes the zero locus of the nonhomogeneous polynomial $f\left(1, x_{1}, x_{2}\right)$. The loci $f\left(x_{0}, x_{1}, x_{2}\right)=0$ and $f\left(1, x_{1}, x_{2}\right)=0$ are the same on the subset \mathbb{U}^{0}.

This will be a standard notation for working locally. Of course, it doesn't matter which variable we set to 1 . If the variables are x, y, z, we may prefer to take for p the point $(0,0,1)$ and work with the polynomial $f(x, y, 1)$.

(1.4.2) homogenizing and dehomogenizing

Let $f\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ be a homogeneous polynomial. The polynomial $f\left(1, x_{1}, \ldots, x_{n}\right)$ is called the dehomogenization of f, with respect to the variable x_{0}. A simple procedure, homogenization, inverts this dehomogenization. Suppose given a nonhomogeneous polynomial $F\left(x_{1}, x_{2}\right)$ of degree d. To homogenize F, we replace the variables $x_{i}, \quad i=1, \ldots, n$, by $u_{i}=x_{i} / x_{0}$. Then since u_{i} have degree zero in x, so does $F\left(u_{1}, \ldots, u_{n}\right)$. When we multiply by x_{0}^{d}, the result will be a homogeneous polynomial of degree d in x_{0}, \ldots, x_{n}, that isn't divisible by x_{0}.

For example, let $F\left(x_{1}, x_{2}\right)=1+x_{1}+x_{2}^{2}$. Then $x_{0}^{2} F\left[u_{1}, u_{2}\right]=x_{0}^{2}+x_{0} x_{1}+x_{2}^{2}$.
1.4.3. Lemma. A homogeneous polynomial $f\left(x_{0}, x_{1}, x_{2}\right)$ that isn't divisible by x_{0} is irreducible if and only if $f\left(1, x_{1}, x_{2}\right)$ is irreducible.

Let C be the plane curve defined by an irreducible homogeneous polynomial $f\left(x_{0}, x_{1}, x_{2}\right)$, and let f_{i} denote the partial derivative $\frac{\partial f}{\partial x_{i}}$, computed by the usual calculus formula. A point of C at which the partial derivatives f_{i} aren't all zero is a smooth point of C. A point at which all partial derivatives are zero is a singular point. A curve is smooth, or nonsingular, if it contains no singular point. Otherwise, it is a singular curve.

The Fermat curve

$$
\begin{equation*}
x_{0}^{d}+x_{1}^{d}+x_{2}^{d}=0 \tag{1.4.5}
\end{equation*}
$$

is smooth because the only common zero of the partial derivatives $d x_{0}^{d-1}, d x_{1}^{d-1}, d x_{2}^{d-1}$, which is $(0,0,0)$, doesn't represent a point of \mathbb{P}^{2}. The cubic curve $x_{0}^{3}+x_{1}^{3}-x_{0} x_{1} x_{2}=0$ is singular at the point $(0,0,1)$.

The Implicit Function Theorem explains the meaning of smoothness. Suppose that $p=(1,0,0)$ is a point of C. We set $x_{0}=1$ and inspect the locus $f\left(1, x_{1}, x_{2}\right)=0$ in the standard open set \mathbb{U}^{0}. If $f_{2}=\frac{\partial f}{\partial x_{2}}$ isn't zero at p, the Implicit Function Theorem tells us that we can solve the equation $f\left(1, x_{1}, x_{2}\right)=0$ for x_{2} locally (for small x_{1}), as an analytic function φ of x_{1}, with $\varphi(0)=0$, and then $f\left(1, x_{1}, \varphi\left(x_{1}\right)\right)$ will be zero. (See 1.4.18) below.) Sending x_{1} to $\left(1, x_{1}, \varphi\left(x_{1}\right)\right)$ inverts the projection from C to the affine x_{1}-line locally. So at a smooth point, C is locally homeomorphic to the affine line.
1.4.6. Euler's Formula. If f is a homogeneous polynomial of degree d in the variables x_{0}, \ldots, x_{n}, then

$$
\sum_{i} x_{i} \frac{\partial f}{\partial x_{i}}=d f
$$

It suffices to check the formula when f is a monomial. You will be able to do this. For instance, if the variables are x, y, z, and $f=x^{2} y^{3} z$, then

$$
x f_{x}+y f_{y}+z f_{z}=x\left(2 x y^{3} z\right)+y\left(3 x^{2} y^{2} z\right)+z\left(x^{2} y^{3}\right)=6 x^{2} y^{3} z=6 f
$$

1.4.7. Corollary. (i) If all partial derivatives of an irreducible homogeneous polynomial $f\left(x_{0}, x_{1}, x_{2}\right)$ are zero at a point p of \mathbb{P}^{2}, then f is zero at p, and therefore p is a point, a singular point, of the curve $\{f=0\}$.
(ii) At a smooth point of the plane curve defined by an irreducible homogeneous polynomial f, at least two partial derivatives of f will be nonzero.
(iii) At a smooth point of the curve $\{f=0\}$, the dehomogenization $f\left(1, u_{1}, u_{2}\right)$ will have a nonvanishing partial derivative.
(iv) The partial derivatives of an irreducible polynomial have no common (nonconstant) factor.
(v) A plane curve has finitely many singular points.

(1.4.8) tangent lines and flex points

Let C be the plane projective curve defined by an irreducible homogeneous polynomial $f\left(x_{0}, x_{1}, x_{2}\right)$. A line L is tangent to C at a smooth point p if the intersection multiplicity of C and L at p is at least 2 . (See 1.3.9.) A smooth point p of C is a flex point if the intersection multiplicity of C and its tangent line at p is at least 3 , and p is an ordinary flex point if that intersection multiplicity is equal to 3 .

Let L be a line through a point p and let q be a point of L distinct from p. We represent p and q by specific vectors $\left(p_{0}, p_{1}, p_{2}\right)$ and $\left(q_{0}, q_{1}, q_{2}\right)$, to write a variable point of L as $p+t q$, and we expand the restriction of f to L in a Taylor's series. The Taylor expansion carries over to complex polynomials because it is an identity. Let $f_{i}=\frac{\partial f}{\partial x_{i}}$ and $f_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$. Taylor's formula is

$$
\begin{equation*}
f(p+t q)=f(p)+\left(\sum_{i} f_{i}(p) q_{i}\right) t+\frac{1}{2}\left(\sum_{i, j} q_{i} f_{i j}(p) q_{j}\right) t^{2}+O(3) \tag{1.4.9}
\end{equation*}
$$

where the symbol $O(3)$ stands for a polynomial in which all terms have degree at least 3 in t. The point q is missing from this parametrization, but this won't be important.

The intersection multiplicity of C and L at a point p was defined in $\mathbf{1 . 3 . 8}$. It is equal to the lowest power of t that has nonzero coefficient in $f(p+t q)$. The point p lies on the curve C if $f(p)=0$. If so, and if p is a smooth point of C, then the line L with the parametrization $p+t q$ will be a tangent line to C at p, provided that the coefficient $\sum_{i} f_{i}(p) q_{i}$ of t is zero. If p is a smooth point and L is a tangent line, then p is a flex point if in addition, $\sum_{i, j} q_{i} f_{i j}(p) q_{j}$ is zero.

One can write the equation (1.4.9) in terms of the gradient vector $\nabla=\left(f_{0}, f_{1}, f_{2}\right)$ and the Hessian matrix H of f. The Hessian is the matrix of second partial derivatives $f_{i j}$:

$$
H=\left(\begin{array}{lll}
f_{00} & f_{01} & f_{02} \tag{1.4.10}\\
f_{10} & f_{11} & f_{12} \\
f_{20} & f_{21} & f_{22}
\end{array}\right)
$$

in which q^{t} is the transpose of the column vector q, a row vector, and where $\nabla_{p} q$ and $q^{t} H_{p} q$ are computed as matrix products.

So p is a smooth point of C if $f(p)=0$ and $\nabla_{p} \neq 0$. If p is a smooth point, then L is tangent to C at p when $\nabla_{p} q$ is zero, and p is a flex point when $\nabla_{p} q$ and $q^{t} H_{p} q$ are both zero.

The equation of the tangent line L at a smooth point p of C is $\nabla_{p} x=0$, or

$$
\begin{equation*}
f_{0}(p) x_{0}+f_{1}(p) x_{1}+f_{2}(p) x_{2}=0 \tag{1.4.12}
\end{equation*}
$$

The point q lies on the tangent line L if the coefficient of t in 1.4.11 is zero. So a line L is a tangent line at a smooth point p if it is orthogonal to the gradient ∇_{p}. There is a unique tangent line at a smooth point.
Note. Taylor's formula shows that the restriction of f to any line through a singular point has a multiple zero. However, we will speak of tangent lines only at smooth points of the curve.
1.4.13. Lemma. $\nabla_{p} p=d f(p)$ and $p^{t} H_{p}=(d-1) \nabla_{p}$.

This lemma is obtained by applying Euler's Formula to the entries of ∇_{p} and H_{p}.
We rewrite Equation 1.4 .9 one more time, using the notation $\langle u, v\rangle$ to represent the symmetric bilinear form $u^{t} H_{p} v$ on the complex 3-dimenional vector space. It makes sense to say that this form vanishes on a pair of points of \mathbb{P}^{2}, because the condition $\langle u, v\rangle=0$ doesn't change when u or v is multiplied by a nonzero scalar λ.
1.4.14. Proposition. With notation as above,
(i) Equation (1.4.9) can be written as

$$
f(p+t q)=\frac{1}{d(d-1)}\langle p, p\rangle+\frac{1}{d-1}\langle p, q\rangle t+\frac{1}{2}\langle q, q\rangle t^{2}+O(3)
$$

(ii) A point p is a smooth point of C if and only if $\langle p, p\rangle=0$ but $\langle p, v\rangle$ is not identically zero.
proof. (i) This is obtained by applying Lemma 1.4.13 to 1.4.11.
(ii) $\langle p, v\rangle=\nabla_{p} v /(d-1)$ is identically zero if and only if $\nabla_{p}=0$.
1.4.15. Corollary. Let p be a smooth point of C, let q be a point of \mathbb{P}^{2} distinct from p, and let L be the line through p and q. Then
(i) L is tangent to C at p if and only if $\langle p, p\rangle=\langle p, q\rangle=0$, and
(ii) p is a flex point of C with tangent line L if and only if $\langle p, p\rangle=\langle p, q\rangle=\langle q, q\rangle=0$.
1.4.16. Theorem. A smooth point p of the curve C is a flex point if and only if the Hessian determinant $\operatorname{det} H_{p}$ at p is zero.
tangentline
proof. Let p be a smooth point of C. If $\operatorname{det} H_{p}=0$, the form $\langle u, v\rangle$ is degenerate, and there is a nonzero null vector q. Then $\langle p, q\rangle=\langle q, q\rangle=0$. But p isn't a null vector, because $\langle p, v\rangle$ isn't identically zero at a smooth point. So q is distinct from p. Therefore p is a flex point.

Conversely, suppose that p is a flex point and let q be a point on the tangent line at p and distinct from p, so that $\langle p, p\rangle=\langle p, q\rangle=\langle q, q\rangle=0$. The restriction of the form to the two-dimensional space spanned by p and q is zero, and this implies that the form is degenerate. If (p, q, v) is a basis of V, the matrix of the form will look like this:

$$
\left(\begin{array}{lll}
0 & 0 & * \\
0 & 0 & * \\
* & * & *
\end{array}\right)
$$

1.4.17. Proposition.

(i) Let $f(x, y, z)$ be an irreducible homogeneous polynomial of degree at least two. The Hessian determinant det H isn't divisible by f. In particular, the Hessian determinant isn't identically zero.
(ii) A plane curve that isn't a line has finitely many flex points.
proof. (i) Let C be the plane curve defined by f. If f divides the Hessian determinant, every smooth point of C will be a flex point. We set $z=1$ and look on the standard open set \mathbb{U}^{2}, choosing coordinates so that the origin p is a smooth point of C, and so that $\frac{\partial f}{\partial y} \neq 0$ at p. The Implicit Function Theorem tells us that we can solve the equation $f(x, y, 1)=0$ for y locally, say $y=\varphi(x)$, where φ is an analytic function. The graph $\Gamma:\{y=\varphi(x)\}$ will be equal to C in a neighborhood of p. (See the review below.) A point of Γ is a flex point if and only if $\frac{d^{2} \varphi}{d x^{2}}$ is zero there. If this is true for all points near to p, then $\frac{d^{2} \varphi}{d x^{2}}$ will be identically zero, which implies that φ is linear, and since $\varphi(0)=0$, that $\varphi(y)$ has the form $a x$. Then $y=a x$ solves $f=0$, and therefore $y-a x$ divides $f(x, y, 1)$. But $f(x, y, z)$ is irreducible, and so is $f(x, y, 1)$. So $f(x, y, 1)$ and $f(x, y, z)$ are linear, contrary to hypothesis.
(ii) This follows from (i) and 1.3 .12 . The irreducible polynomial f and the Hessian determinant $\operatorname{det} H$ have finitely many common zeros.
1.4.18. Review. (about the Implicit Function Theorem)

By analytic function $\varphi\left(x_{1}, \ldots, x_{k}\right)$, in one or more variables, we mean a complex-valued function, defined for small x, which can be represented as a power series that converges when x is small.

If $f(x, y)$ is a polynomial of two variables such that $f(0,0)=0$ and $\frac{d f}{d y}(0,0) \neq 0$, the Implicit Function Theorem asserts that there is a unique analytic function $\varphi(x)$ such that $\varphi(0)=0$ and $f(x, \varphi(x))$ is identically zero.

Let \mathcal{R} be the ring af analytic functions in x. In the ring $\mathcal{R}[y]$ of polynomials with coefficients in \mathcal{R}, the polynomial $y-\varphi(x)$ divides $f(x, y)$. To see this, we do division with remainder of f by the monic polynoial $y-\varphi(x)$ in y :

$$
\begin{equation*}
f(x, y)=(y-\varphi(x)) q(x, y)+r(x) \tag{1.4.19}
\end{equation*}
$$

The quotient q and remainder r are in $\mathcal{R}[y]$, and $r(x)$ has degree zero in y, so it is in \mathcal{R}. Setting $y=\varphi(x)$ in the equation, one sees that $r(x)=0$.

Let Γ be the graph of φ in a suitable neighborhood U of the origin in x, y-space. Since $f(x, y)=$ $(y-\varphi(x)) q(x, y)$, the locus $f(x, y)=0$ in U has the form $\Gamma \cup \Delta$, where Γ is the zero locus of $y-\varphi(x)$ and Δ is the zero locus of $q(x, y)$. Differentiating, we find that $\frac{\partial f}{\partial y}(0,0)=q(0,0)$. So $q(0,0) \neq 0$. Then Δ doesn't contain the origin, while Γ does. This implies that Δ is disjoint from Γ, locally. A sufficiently small neighborhood U of the origin won't contain any points of Δ. In such a neighborhood, the locus of zeros of f will be Γ.

If $\frac{\partial f}{\partial x}(0,0)$ is also nonzero, one can also solve for x as an analytic function $\psi(y)$ of y. Then $\psi(y)$ will be a local inverse function of φ.

1.5 Transcendence Degree

A domain that contains another domain R as a subring will be called an R-algebra. Domains that contain the complex numbers, \mathbb{C}-algebras, will occur frequently, so we refer to them simply as algebras.

If F is a field, we use the customary notation $F\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ or $F[\alpha]$ for the F-algebra generated by a set of elements $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$, and we may denote the field of fractions of $F\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ by $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ or by $F(\alpha)$.

Let $F \subset K$ be a field extension. A set $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ of elements of K is algebraically dependent over F if there is a nonzero polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ with coefficients in F, such that $f(\alpha)=0$. If there is no such polynomial, the set α is algebraically independent over F.

A set $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is algebraically independent over F if and only if the surjective map from the polynomial algebra $F\left[x_{1}, \ldots, x_{n}\right]$ to $F\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ that sends x_{i} to α_{i} is bijective. If so, we may say that $F\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ is a polynomial algebra.

An infinite set is called algebraically independent over F if every finite subset is algebraically independent over F - if there is no polynomial relation among any finite set of its elements.

The set $\left\{\alpha_{1}\right\}$ consisting of a single element of K is algebraically dependent if α_{1} is algebraic over F. Otherwise, it is algebraically independent, and then α_{1} is said to be transcendental over F.

A transcendence basis for K over F is a finite algebraically independent set $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ that isn't contained in a larger algebraically independent set. If there is a transcendence basis, its order is the transcendence degree of the field extension K. Proposition 1.5 .3 below shows that all transcendence bases for K over F have the same order. If there is no (finite) transcendence basis, the transcendence degree of K over F is said to be infinite.

For example, when $K=F\left(x_{1}, \ldots, x_{n}\right)$ is the field of rational functions in n variables, the variables form a transcendence basis of K over F, and the transcendence degree of K over F is n. The elementary symmetric functions $s_{1}=x_{1}+\cdots+x_{n}, \ldots, s_{n}=x_{1} \cdots x_{n}$ also form a transcendence basis.

An element a of a ring R is a zero divisor if there is a nonzero element b of R such that the product $a b$ is zero. A domain is a nonzero ring with no zero divisors.
1.5.1. Proposition. Let F be a field, let A be domain that is an F-algebra, and let K be its field of fractions. If K has transcendence degree n over F, then every algebaically independent set of elements of A is contained in an algebraically independent set of order n.
1.5.2. Proposition. Let K / F be a field extension, let $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a set of elements of K that is algebraically independent over F, and let $F(\alpha)$ be the field of fractions of the F-algebra that is generated by α.
(i) Let β be another element of K. The set $\left\{\alpha_{1}, \ldots, \alpha_{n}, \beta\right\}$ is algebraically dependent if and only if β is algebraic over $F(\alpha)$.
(ii) The algebraically independent set α is a transcendence basis if and only if every element of K is algebraic over $F(\alpha)$.
1.5.3. Proposition. Let K / F be a field extension. If K has a finite transcendence basis, then all algebraically independent subsets of K are finite, and all transcendence bases have the same order.
proof. Let $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ and $\beta=\left\{\beta_{1}, \ldots, \beta_{s}\right\}$ be subsets of K. Assume that K is algebraic over $F(\alpha)$ and that the set β is algebraically independent over F. We show that $s \leq r$. The fact that all transcendence bases have the same order will follow: If both α and β are transcendence bases, then we can interchange α and β, so $r \leq s$.

The proof that $s \leq r$ proceeds by reducing to the trivial case that β is a subset of α. Suppose that some element of β, say β_{s}, isn't in the set α. The set $\beta^{\prime}=\left\{\beta_{1}, \ldots, \beta_{s-1}\right\}$ is algebraically independent, but it isn't a transcendence basis. So K isn't algebraic over $F\left(\beta^{\prime}\right)$. Since K is algebraic over $F(\alpha)$, there is at least one element of α, say α_{r}, that isn't algebraic over $F\left(\beta^{\prime}\right)$. Then $\gamma=\beta^{\prime} \cup\left\{\alpha_{r}\right\}$ will be an algebraically independent set of order s that contains more elements of the set α than β does. Induction shows that $s \leq r$.
1.5.4. Corollary. Let $L \supset K \supset F$ be fields. If the degree $[L: K]$ of the field extension L / K is finite, then L and K have the same transcendence degree over F.

This follows from Proposition 1.5 .2

1.6 The Dual Curve

dualcurve dualplanesect lineequation
dualcurvetwo
ellstarequation phizerogzero
dualcurvethm

(1.6.1) the dual plane

Let \mathbb{P} denote the projective plane with coordinates x_{0}, x_{1}, x_{2}, let s_{0}, s_{1}, s_{2} be scalars, not all zero, and let L be the line in \mathbb{P} with the equation

$$
\begin{equation*}
s_{0} x_{0}+s_{1} x_{1}+s_{2} x_{2}=0 \tag{1.6.2}
\end{equation*}
$$

The solutions $\left(x_{0}, x_{1}, x_{2}\right)$ of this equation, the points of L, are unchanged when we multiply $\left(s_{0}, s_{1}, s_{2}\right)$ by a nonzero scalar λ. They determine the coefficients s_{i} up to a common nonzero factor. So L determines a point $\left(s_{0}, s_{1}, s_{2}\right)$ in another projective plane \mathbb{P}^{*} called the dual plane. We denote the point $\left(s_{0}, s_{1}, s_{2}\right)$ of \mathbb{P}^{*} by L^{*}. Moreover, a point $p=\left(x_{0}, x_{1}, x_{2}\right)$ in \mathbb{P} determines a line in the dual plane, the line with the equation (1.6.2), when s_{i} are regarded as the variables and x_{i} as the scalar coefficients. We denote that line by p^{*}. The equation exhibits a duality between \mathbb{P} and \mathbb{P}^{*}. A point p of \mathbb{P} lies on the line L if and only if the equation is satisfied, and this means that, in \mathbb{P}^{*}, the point L^{*} lies on the line p^{*}.

As this duality shows, the dual $\mathbb{P}^{* *}$ of the dual plane \mathbb{P}^{*} is the plane \mathbb{P}.

(1.6.3) the dual curve

Let C be the plane projective curve defined by an irreducible homogeneous polyomial f of degree at least two, and let U be the set of its smooth points. Corollary 1.4 .7 tells us that U is the complement of a finite set in C. We define a map

$$
U \xrightarrow{t} \mathbb{P}^{*}
$$

as follows: Let p be a point of U and let L be the tangent line to C at p. The definition of the map is $t(p)=L^{*}$, where L^{*} is the point of \mathbb{P}^{*} that corresponds to L. Thus the image $t(U)$ is the locus of the tangent lines at the smooth points of C. We assume that f has degree at least two because, if C were a line, the image $t(U)$ of U would be a point.

Let $\nabla f=\left(f_{0}, f_{1}, f_{2}\right)$ denote the gradient of f, with a $f_{i}=\frac{\partial f}{\partial x_{i}}$ as before. The tangent line L at a smooth point $p=\left(x_{0}, x_{1}, x_{2}\right)$ of C has the equation $f_{0} x_{0}+f_{1} x_{1}+f_{2} x_{2}=0$. Therefore $L^{*}=t(p)$ is the point

$$
\begin{equation*}
\left(s_{0}, s_{1}, s_{2}\right) \sim\left(f_{0}(x), f_{1}(x), f_{2}(x)\right)=\nabla f(x) \tag{1.6.4}
\end{equation*}
$$

1.6.5. Lemma. Let $\varphi\left(s_{0}, s_{1}, s_{2}\right)$ be a homogeneous polynomial of degree r, and let $g\left(x_{0}, x_{1}, x_{2}\right)=$ $\varphi(\nabla f(x))$. Then $\varphi(s)$ is identically zero on the image $t(U)$ of the set U of smooth points if and only if $g(x)$ is identically zero on U, and this is true if and only if f divides g.
proof. The point $s=\left(s_{0}, s_{1}, s_{2}\right)$ is in $t(U)$ if for some x in U and some $\lambda \neq 0, \nabla f(x)=\lambda s$. Then $g(x)=\varphi(\nabla f(x))=\varphi(\lambda s)=\lambda^{r} \varphi(s)$. So $g(x)=0$ if and only if $\varphi(s)=0$.
1.6.6. Theorem. Let C be the plane curve defined by an irreducible homogeneous polynomial f of degree at least two. With notation as above, the image $t(U)$ is contained in a curve C^{*} in the dual plane \mathbb{P}^{*}.

The curve C^{*} referred to in the theorem is the dual curve.
proof of Theorem 1.6.6 If an irreducible homogeneous polynomial $\varphi(s)$ vanishes on $t(U)$, it will be unique up to scalar factor (Corollary 1.3.16). We show first that there is a nonzero polynomial $\varphi(s)$, not necessarily irreducible or homogeneous, that vanishes on $t(U)$. The field $\mathbb{C}\left(x_{0}, x_{1}, x_{2}\right)$ has transcendence degree three over \mathbb{C}. Therefore the four polynomials f_{0}, f_{1}, f_{2}, and f are algebraically dependent. There is a nonzero polynomial $\psi\left(s_{0}, s_{1}, s_{2}, t\right)$ such that $\psi\left(f_{0}(x), f_{1}(x), f_{2}(x), f(x)\right)$ is the zero polynomial. We can cancel factors of t, so we may assume that ψ isn't divisible by t. Let $\varphi(s)=\psi\left(s_{0}, s_{1}, s_{2}, 0\right)$. When t doesn't divide ψ, this isn't the zero polynomial. If a vector $x=\left(x_{1}, x_{2}, x_{3}\right)$ represents a point of U, then $f(x)=0$, and therefore

$$
\psi\left(f_{0}(x), f_{1}(x), f_{2}(x), f(x)\right)=\psi(\nabla f(x), 0)=\varphi(\nabla f(x))
$$

Since the left side of this equation is identically zero, $\varphi(\nabla f(x))=0$ for every x that represents a point of U.

Next, say that f has degree d. Then the partial derivatives f_{i} have degree $d-1$. Therefore $\nabla f(\lambda x)=\lambda^{d-1} \nabla f(x)$ for all λ, and because the vectors x and λx represent the same point of $\left.U, \varphi(\nabla f(\lambda x))=\varphi\left(\lambda^{d-1} \nabla f(x)\right)\right)=0$ for all λ, when x is in U. Writing $\nabla f(x)=s, \varphi\left(\lambda^{d-1} s\right)=0$ for all λ when x is in U. Since λ^{d-1} can be any complex number, Lemma 1.3 .2 tells us that the homogeneous parts of $\varphi(s)$ vanish at s, when $s=\nabla f(x)$ and x is in U. So the homogeneous parts of $\varphi(s)$ vanish on $t(U)$. This shows that there is a nozero, homogeneous polynomial $\varphi(s)$ that vanishes on $t(U)$. We choose such a polynomial $\varphi(s)$. Let its degree be r.

Let $g(x)=\varphi(\nabla f(x))$. If f has degree d, then g will be homogeneous, of degree $r(d-1)$. It will vanish on U, and therefore on C 1.3.21). So f will divide g. If $\varphi(s)$ factors, then $g(x)$ factors accordingly, and because f is irreducible, it will divide one of the factors of g. The corresponding factor of φ will vanish on $t(U)$ 1.6.5. So we may replace the homogeneous polynomial φ by one of its irreducible factors.

In principle, the proof of Theorem 1.6.6gives a method for finding a polynomial that vanishes on the dual curve. That method is to find a polynomial relation among f_{x}, f_{y}, f_{z}, f, and set $f=0$. But it is usually painful to determine the defining polynomial of C^{*} explicitly. Most often, the degrees of C and C^{*} will be different. Moreover, several points of the dual curve C^{*} may correspond to a singular point of C, and vice versa.

We give two examples in which the computation is easy.

1.6.7. Examples.

(i) (the dual of a conic) Let $f=x_{0} x_{1}+x_{0} x_{2}+x_{1} x_{2}$ and let C be the conic $f=0$. Let $\left(s_{0}, s_{1}, s_{2}\right)=$ $\left(f_{0}, f_{1}, f_{2}\right)=\left(x_{1}+x_{2}, x_{0}+x_{2}, x_{0}+x_{1}\right)$. Then

$$
\begin{equation*}
s_{0}^{2}+s_{1}^{2}+s_{2}^{2}-2\left(x_{0}^{2}+x_{1}^{2}+x_{2}^{2}\right)=2 f \quad \text { and } \quad s_{0} s_{1}+s_{1} s_{2}+s_{0} s_{2}-\left(x_{0}^{2}+x_{1}^{2}+x_{2}^{2}\right)=3 f \tag{1.6.8}
\end{equation*}
$$

We eliminate $\left(x_{0}^{2}+x_{1}^{2}+x_{2}^{2}\right)$ from the two equations:

$$
\begin{equation*}
\left(s_{0}^{2}+s_{1}^{2}+s_{2}^{2}\right)-2\left(s_{0} s_{1}+s_{1} s_{2}+s_{0} s_{2}\right)=-4 f \tag{1.6.9}
\end{equation*}
$$

Setting $f=0$ gives us the equation of the dual curve. It is another conic.
(ii) (the dual of a cuspidal cubic) The dual of a smooth cubic is a curve of degree 6. It is too much work to compute that dual here. We compute the dual of a singular cubic instead. The curve C defined by the irreducible polynomial $f=y^{2} z+x^{3}$ has a singularity, a cusp. at the point $(0,0,1)$. The Hessian matrix of f is

$$
H=\left(\begin{array}{ccc}
6 x & 0 & 0 \\
0 & 2 z & 2 y \\
0 & 2 y & 0
\end{array}\right)
$$

and the Hessian determinant $\operatorname{det} H$ is $h=-24 x y^{2}$. The common zeros of f and h are the singular point $(0,0,1)$, and a single flex point $(0,1,0)$.

We scale the partial derivatives of f to simplify notation. Let $u=f_{x} / 3=x^{2}, v=f_{y} / 2=y z$, and $w=f_{z}=y^{2}$. Then

$$
v^{2} w-u^{3}=y^{4} z^{2}-x^{6}=\left(y^{2} z+x^{3}\right)\left(y^{2} z-x^{3}\right)=f\left(y^{2} z-x^{3}\right)
$$

The zero locus of the irreducible polynomial $v^{2} w-u^{3}$ is the dual curve, another singular cubic.

(1.6.10) a local equation for the dual curve

We label the coordinates in \mathbb{P} and \mathbb{P}^{*} as x, y, z and u, v, w, respectively, and we work in a neighborhood of a smooth point p_{0} of the curve C defined by a homogeneous polynomial $f(x, y, z)$. We choose coordinates so that $p_{0}=(0,0,1)$, and that the tangent line L_{0} at p_{0} is the line $\{y=0\}$. The image of p_{0} in the dual curve C^{*} is the point L_{0}^{*} at which $(u, v, w)=(0,1,0)$.

Let $\tilde{f}(x, y)=f(x, y, 1)$. In the affine x, y-plane, the point p_{0} becomes the origin $(0,0)$. So $\widetilde{f}\left(p_{0}\right)=0$, and since the tangent line is $L_{0}, \frac{\partial \widetilde{f}}{\partial x}\left(p_{0}\right)=0$, while $\frac{\partial \widetilde{f}}{\partial y}\left(p_{0}\right) \neq 0$. We can solve the equation $\widetilde{f}=0$ for y as an analytic function $y(x)$, with $y(0)=0$. Let $y^{\prime}(x)$ denote the derivative $\frac{d y}{d x}$. Differentiating the equation $f(x, y(x))=0$ shows that $y^{\prime}(0)=0$.
exampledualone
exampledualtwo
equationdualthree
equa-
tionofcstar

Let $\widetilde{p}_{1}=\left(x_{1}, y_{1}\right)$ be a point of C_{0} near to \widetilde{p}_{0}, so that $y_{1}=y\left(x_{1}\right)$, and let $y_{1}^{\prime}=y^{\prime}\left(x_{1}\right)$. The tangent line L_{1} at \widetilde{p}_{1} has the equation
localtangent
projlocaltangent
bidualone

$$
\begin{equation*}
y-y_{1}=y_{1}^{\prime}\left(x-x_{1}\right) \tag{1.6.11}
\end{equation*}
$$

Putting z back, the homogeneous equation of the tangent line L_{1} at the point $p_{1}=\left(x_{1}, y_{1}, 1\right)$ is

$$
-y_{1}^{\prime} x+y+\left(y_{1}^{\prime} x_{1}-y_{1}\right) z=0
$$

The point L_{1}^{*} of the dual plane that corresponds to L_{1} is

$$
\begin{equation*}
\left(u_{1}, v_{1}, w_{1}\right)=\left(-y_{1}^{\prime}, 1, y_{1}^{\prime} x_{1}-y_{1}\right) \tag{1.6.12}
\end{equation*}
$$

(1.6.13) the bidual

The bidual $C^{* *}$ of C is the dual of the curve C^{*}. It is a curve in the space $\mathbb{P}^{* *}$, which is \mathbb{P}.
1.6.14. Theorem. A plane curve C of degree greater than one is equal to its bidual $C^{* *}$.

We use the following notation for the proof:

- U is the set of smooth points of the curve C, and U^{*} is the set of smooth points of the dual curve C^{*}.
- $U^{*} \xrightarrow{t^{*}} \mathbb{P}^{* *}=\mathbb{P}$ is the map analogous to the map $U \xrightarrow{t} \mathbb{P}^{*}$.
- V is the set of points p of C such that p is a smooth point of C and also $t(p)$ is a smooth point of C^{*}, and V^{*} is the image $t V$.

Then $V \subset U \subset C$ and $V^{*} \subset U^{*} \subset C^{*}$.

1.6.15. Lemma.

(i) V is the complement of a finite set in C.
(ii) Let p_{1} be a point near to a smooth point p of a curve C, let L_{1} and L be the tangent lines to C at p_{1} and p, respectively, and let q be intersection point $L_{1} \cap L$. Then $\lim _{p_{1} \rightarrow p} q=p$.
(iii) If L is the tangent line to C at a point p of V, then p^{*} is the tangent line to C^{*} at the point L^{*}, and $t^{*}\left(L^{*}\right)=p$.
(iv) V^{*} is the complement of a finite set in C^{*}, and the map $V \xrightarrow{t} V^{*}$ is bijective.

The points and lines that appear in (ii) are displayed in the figure below.
proof. (i) Let S and S^{*} denote the finite sets of singular points of C and C^{*}, respectively. The set V is obtained from C by deleting points of S and points in the inverse image of S^{*}. The fibre of the map $U \xrightarrow{t} \mathbb{P}^{*}$ over a point L^{*} of C^{*} is the set of smooth points of C whose tangent line is L. Since L meets C in finitely many points, the fibre is finite. So the inverse image of the finite set S^{*} is finite.
(ii) We work analytically in a neighborhood of p, choosing coordinates so that $p=(0,0,1)$ and that L is the line $\{y=0\}$. Let $\left(x_{q}, y_{q}, 1\right)$ be the coordinates of the point q. Since q is a point of $L, y_{q}=0$. The coordinate x_{q} can be obtained by substituting $x=x_{q}$ and $y=0$ into the local equation 1.6.11 for L_{1} : $x_{q}=x_{1}-y_{1} / y_{1}^{\prime}$.

Now, when a function has an nth order zero at the point $x=0$, i.e, when it has the form $y=x^{n} h(x)$, where $n>0$ and $h(0) \neq 0$, the order of zero of its derivative at that point is $n-1$. This is verified by differentiating $x^{n} h(x)$. Since the function $y(x)$ has a zero of positive order at $p, \lim _{p_{1} \rightarrow p} y_{1} / y_{1}^{\prime}=0$. We also have $\lim _{p_{1} \rightarrow p} x_{1}=0$. Therefore $\lim _{p_{1} \rightarrow p} x_{q}=0$, and $\lim _{p_{1} \rightarrow p} q=\lim _{p_{1} \rightarrow p}\left(x_{q}, y_{q}, 1\right)=(0,0,1)=p$.
(iii) Let p_{1} be a point of C near to p, and let L_{1} be the tangent line to C at p_{1}. The image L_{1}^{*} of p_{1} is the point $\left(f_{0}\left(p_{1}\right), f_{1}\left(p_{1}\right), f_{2}\left(p_{1}\right)\right)$ of C^{*}. Because the partial derivatives f_{i} are continuous,

$$
\lim _{p_{1} \rightarrow p} L_{1}^{*}=\left(f_{0}(p), f_{1}(p), f_{2}(p)\right)=L^{*}
$$

With $q=L \cap L_{1}$ as above, q^{*} is the line through the points L^{*} and L_{1}^{*}. As p_{1} approaches p, L_{1}^{*} approaches L^{*}, and therefore q^{*} approaches the tangent line to C^{*} at L^{*}. On the other hand, it follows from (ii) that q^{*} approaches p^{*}. Therefore the tangent line to C^{*} at L^{*} is p^{*}. By definition, $t^{*}\left(L^{*}\right)$ is the point of C that corresponds to the tangent line p^{*} at L^{*}. So $t^{*}\left(L^{*}\right)=p^{* *}=p$.

1.6.16.

A Curve and its Dual

In this figure, the curve C on the left is the parabola $y=x^{2}$. We used the local equation 1.6.11 to obtain a local equation $u^{2}=4 w$ of the dual curve C^{*}.
proof of theorem 1.6.14. Let p be a point of V, and let L be the tangent line at p. The map t^{*} is defined at L^{*}), and $t^{*}\left(L^{*}\right)=p$. Since $L^{*}=t(p), t^{*} t(p)=p$. It follows that the restriction of t to V is injective, and that it defines a bijective map from V to its image V^{*}, whose inverse function is t^{*}. So V is contained in the bidual $C^{* *}$. Since V is dense in C and since $C^{* *}$ is a closed set, C is contained in $C^{* *}$. Since C and $C^{* *}$ are curves, $C=C^{* *}$.
1.6.17. Corollary. (i) Let U be the set of smooth points of a plane curve C, and let t denote the map from U to the dual curve C^{*}. The image $t(U)$ of U is the complement of a finite subset of C^{*}.
(ii) If C is a smooth curve, the map $C \xrightarrow{t} C^{*}$, is defined at all points of C, and it is a surjective map.
proof. (i) With U, U^{*}, and V as above, $V=t^{*} t(V) \subset t^{*}\left(U^{*}\right) \subset C^{* *}=C$. Since V is the complement of a finite subset of C, so is $t^{*}\left(U^{*}\right)$. The assertion to be proved follows when we interchange C and C^{*}.
(ii) The map t is continuous, so its image $t(C)$ is a compact subset of C^{*}, and by (i), its complement S is a finite set. Therefore S is both open and closed. It consists of isolated points of C^{*}. Since a plane curve has no isolated point, S is empty.
1.6.18. Corollary. Let C be a smooth curve, and suppose that the tangent line L at a point p of C isn't tangent to C at another point, i.e., that L isn't a bitangent. Then the path defined by the local equation (1.6.12) traces out the dual curve C^{*} near to $L^{*}=(0,1,0)$.
proof. Let D be an open neighborhood of p in C in the classical topology, such that the equation 1.6.12 describes the point L_{1}^{*} when p_{1} is in D. The complement of D in C is compact, and so is its image $t Z$. If $L^{*}=t(p)$ isn't in $t Z$, then p has a neighborhood U whose image is disjoint from $t Z$. In that neighborhood, the local equation traces out the dual curve.

The reasoning breaks down when C is singular, because the locus of smooth points won't be compact.

1.7 Resultants and Discriminants

cstarisimage
notbitan-
gent
resultant

$$
\begin{equation*}
F(x)=x^{m}+a_{1} x^{m-1}+\cdots+a_{m} \quad \text { and } \quad G(x)=x^{n}+b_{1} x^{n-1}+\cdots+b_{n} \tag{1.7.1}
\end{equation*}
$$

be monic polynomials. The resultant $\operatorname{Res}(F, G)$ of F and G is a certain polynomial in the undetermined coefficients a_{i}, b_{j}. Its important property is that, when the coefficients are given values in a field, the resultant is zero if and only if F and G have a common factor.

For instance, suppose that $F(x)=x+a_{1}$ and $G(x)=x^{2}+b_{1} x+b_{2}$. The root $-a_{1}$ of F is a root of G if $G\left(a_{1}\right)=a_{1}^{2}-b_{1} a_{1}+b_{2}$ is zero. The resultant of F and G is $a_{1}^{2}-b_{1} a_{1}+b_{2}$.

$$
\begin{equation*}
x^{n-1} f, x^{n-2} y f, \ldots, y^{n-1} f ; x^{m-1} g, x^{m-2} y g, \ldots, y^{m-1} g \tag{1.7.4}
\end{equation*}
$$

of degree r are (linearly) dependent. For example, if f has degree 3 and g has degree 2 , and if f and g have a common zero, then the polynomials

$$
\begin{array}{lc}
x f= & a_{0} x^{4}+a_{1} x^{3} y+a_{2} x^{2} y^{2}+a_{3} x y^{3} \\
y f= & a_{0} x^{3} y+a_{1} x^{2} y^{2}+a_{2} x y^{3}+a_{3} y^{4} \\
x^{2} g= & b_{0} x^{4}+b_{1} x^{3} y+b_{2} x^{2} y^{2}
\end{array}
$$

$$
\begin{array}{cr}
x y g= & b_{0} x^{3} y+b_{1} x^{2} y^{2}+b_{2} x y^{3} \\
y^{2} g= & b x^{2} y^{2}+b_{1} x y^{3}+b_{2} y^{4}
\end{array}
$$

will be dependent. Conversely, if the polynomials 1.7 .4 are dependent, there will be an equation of the form $p f-q g=0$, with p of degree $n-1$ and q of degree $m-1$. Then since g has degree n while p has degree $n-1$, at least one zero of g must be a zero of f.

The polynomials 1.7.4 have degree $r=m+n-1$. We form a square $(m+n) \times(m+n)$ matrix \mathcal{R}, the resultant matrix, whose columns are indexed by the monomials $x^{r}, x^{r-1} y, \ldots, y^{r}$ of degree r, and whose rows list the coefficients of those monomials in the polynomials (1.7.4). The matrix is illustrated below for the cases $m, n=3,2$ and $m, n=1,2$, with dots representing entries that are zero:

$$
\mathcal{R}=\left(\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & a_{3} & \cdot \tag{1.7.5}\\
\cdot & a_{0} & a_{1} & a_{2} & a_{3} \\
b_{0} & b_{1} & b_{2} & \cdot & \cdot \\
\cdot & b_{0} & b_{1} & b_{2} & \cdot \\
\cdot & \cdot & b_{0} & b_{1} & b_{2}
\end{array}\right) \quad \text { or } \quad \mathcal{R}=\left(\begin{array}{ccc}
a_{0} & a_{1} & \cdot \\
\cdot & a_{0} & a_{1} \\
b_{0} & b_{1} & b_{2}
\end{array}\right)
$$

The resultant of f and g is defined to be the determinant of \mathcal{R}.

$$
\begin{equation*}
\operatorname{Res}(f, g)=\operatorname{det} \mathcal{R} \tag{1.7.6}
\end{equation*}
$$

In this definition, the coefficients of f and g can be in any ring.
The resultant $\operatorname{Res}(F, G)$ of the monic, one-variable polynomials $F(x)=x^{m}+a_{1} x^{m-1}+\cdots+a_{m}$ and $G(x)=x^{n}+b_{1} x^{n-1}+\cdots+b_{n}$ is the determinant of the matrix obtained from \mathcal{R} by setting $a_{0}=b_{0}=1$.
1.7.7. Corollary. Let f and g be homogeneous polynomials in two variables, or monic polynomials in one variable, of degrees m and n, respectively, and with coefficients in a field. The resultant $\operatorname{Res}(f, g)$ is zero if and only if f and g have a common factor. If so, there will be polynomials p and q of degrees $n-1$ and $m-1$ respectively, such that $p f=q g$. If the coefficients are complex numbers, the resultant is zero if and only if f and g have a common zero.

When the leading coefficients a_{0} and b_{0} of f and g are both zero, the point $(1,0)$ of \mathbb{P}^{1} will be a zero of f and of g. In that case, one could say that f and g have a common zero at infinity.
1.7.8. Aside. (the entries of the resultant matrix) Define $a_{i}=0$ when i isn't in the range $0, \ldots, m$, and $b_{i}=0$ when i isn't in the range $0, \ldots, n$. The resultant matrix has two parts. For rows 1 to n, the (i, j)-entry $R_{i j}$ of \mathcal{R} is the coefficient of $x^{m+n-j} y^{j-1}$ in the polynomial $x^{n-i} y^{i} f$, which is equal to the coefficient a_{j-i} of $x^{m+i-j} y^{j-i}$ in f. So $R_{i j}=a_{j-i}$. The computation for the bottom part of \mathcal{R} is similar, except that one needs to adjust the indices. For rows $n+1, . ., m+n$, let $k=n-i$. The (i, j)-entry of \mathcal{R} is the coefficient of $x^{m+n-k} y^{k-1}$ in $x^{n-k} y^{k} g$, which is equal to the coefficient b_{j-k} of $x^{m+k-j} y^{j-k} g$. The i, j-entry of \mathcal{R} is

$$
R_{i j}=a_{j-i} \text { when } i=1, \ldots, n, \text { and } R_{i j}=b_{j-k} \text { when } i=n+k \text { and } k=1, \ldots, m
$$

entries with negative subscripts being zero.
weighted degree
resequalsdet

When defining the degree of a polynomial, one may assign an integer called a weight to each variable. If one assigns weight w_{i} to the variable x_{i}, the monomial $x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}$ gets the weighted degree

$$
e_{1} w_{1}+\cdots+e_{n} w_{n}
$$

For instance, one may assign weight k to the coefficient a_{k} of the polynomial $f(x)=x^{n}-a_{1} x^{n-1}+a_{2} x^{n-2}-$ $\cdots \pm a_{n}$. This is natural because, if f factors into linear factors, $f(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$, then a_{k} will be the k th elementary symmetric function in the roots $\alpha_{1}, \ldots, \alpha_{n}$. When a_{k} written as a polynomial in the roots, its degree will be k.
1.7.10. Lemma. Let $f(x, y)$ and $g(x, y)$ be homogeneous polynomials of degrees m and n respectively, with variable coefficients a_{i} and b_{j}, as in $\left(1.7 .3\right.$. When one assigns weight i to a_{i} and to b_{i}, the resultant $\operatorname{Res}(f, g)$ becomes a weighted homogeneous polynomial of degree $m n$ in the variables $\left\{a_{i}, b_{j}\right\}$.

For example, when the degrees of f and g are 1 and 2 , respectively, the resultant $\operatorname{Res}(f, g)$ is the determinant of the 3×3 matrix depicted in 1.7 .5 , which is $a_{0}^{2} b_{2}+a_{1}^{2} b_{0}-a_{0} a_{1} b_{1}$. Its weighted degree is $1 \cdot 2=2$.
1.7.11. Proposition. Let F and G be products of monic linear polynomials, say $F=\prod_{i=1}^{m}\left(x-\alpha_{i}\right)$ and $G=\prod_{j=1}^{n}\left(x-\beta_{j}\right)$. Then

$$
\operatorname{Res}(F, G)=\prod_{i, j}\left(\alpha_{i}-\beta_{j}\right)=\prod_{i} G\left(\alpha_{i}\right)
$$

proof. The equality of the second and third terms is obtained by substituting α_{i} for x into the formula $G=$ $\prod\left(x-\beta_{j}\right)$. We prove the first equality. Let the polynomials F and G have variable roots α_{i} and β_{j}, let R denote the resultant $\operatorname{Res}(F, G)$, and let $\Pi=\prod_{i . j}\left(\alpha_{i}-\beta_{j}\right)$. Lemma 1.7 .10 tells us that, when we write the coefficients of F and G as symmetric functions in the roots, α_{i} and β_{j}, the resultant R will be homogeneous. Its (unweighted) degree in $\left\{\alpha_{i}, \beta_{j}\right\}$ will be $m n$. This is also the degree of Π. To show that $R=\Pi$, we choose i and j. We view R as a polynomial in the variable α_{i}, and divide by $\alpha_{i}-\beta_{j}$, which is monic in α_{i} :

$$
R=\left(\alpha_{i}-\beta_{j}\right) q+r
$$

where r has degree zero in α_{i}. Corollary 1.7.7 tells us that the resultant R vanishes when we make the substitution $\alpha_{i}=\beta_{j}$, because the coefficients of F and G are in the field of rational functions in $\left\{\alpha_{i}, \beta_{j}\right\}$. Looking at the equation above, we see that the remainder r also vanishes when $\alpha_{i}=\beta_{j}$. On the other hand, the remainder is independent of α_{i}. It doesn't change when we make that substitution. Therefore the remainder is zero, and $\alpha_{i}-\beta_{j}$ divides R. This is true for all i and j, so Π divides R, and since these two polynomials have the same degree, $R=c \Pi$ for some scalar c. One can show that $c=1$ by computing R and Π for some particular polynomials. We suggest making the computation with $F=x^{m}$ and $G=x^{n}-1$.
1.7.12. Corollary. Let F, G, and H be monic polynomials and let c be a scalar. Then
(i) $\operatorname{Res}(F, G H)=\operatorname{Res}(F, G) \operatorname{Res}(F, H)$, and
(ii) $\operatorname{Res}(F(x-c), G(x-c))=\operatorname{Res}(F(x), G(x))$.

(1.7.13) the discriminant

The discriminant $\operatorname{Discr}(F)$ of a polynomial $F=a_{0} x^{m}+a_{1} x^{n-1}+\cdots a_{m}$ is the resultant of F and its derivative F^{\prime} :

$$
\begin{equation*}
\operatorname{Discr}(F)=\operatorname{Res}\left(F, F^{\prime}\right) \tag{1.7.14}
\end{equation*}
$$

It is computed using the formula for the resultant of a polynomial of degree m, and it will be a weighted polynomial of degree $m(m-1)$. The definition makes sense when the leading coefficient a_{0} is zero, but the discriminant will be zero in that case.

When F is a polynomial of degree n with complex coefficients, the discriminant is zero if and only if F and F^{\prime} have a common factor, which happens when F has a multiple root.

Note. The formula for the discriminant is often normalized by a scalar factor. We won't make this normalization, so our formula is slightly different from the usual one.

The discriminant of the quadratic polynomial $F(x)=a x^{2}+b x+c$ is

$$
\operatorname{det}\left(\begin{array}{ccc}
a & b & c \tag{1.7.15}\\
2 a & b & \cdot \\
\cdot & 2 a & b
\end{array}\right)=-a\left(b^{2}-4 a c\right)
$$

and the discriminant of a monic cubic $x^{3}+p x+q$ whose quadratic coefficient is zero is

$$
\operatorname{det}\left(\begin{array}{ccccc}
1 & \cdot & p & q & \cdot \tag{1.7.16}\\
\cdot & 1 & \cdot & p & q \\
3 & \cdot & p & \cdot & \cdot \\
\cdot & 3 & \cdot & p & \cdot \\
\cdot & \cdot & 3 & \cdot & p
\end{array}\right)=4 p^{3}+27 q^{2}
$$

As mentioned, these formulas differ from the usual ones by a scalar factor. The usual formula for the discriminant of the quadratic $a x^{2}+b x+c$ is $b^{2}-4 a c$, and the discriminant of the cubic $x^{3}+p x+q$ is usually written as $-4 p^{3}-27 q^{2}$.

Though it conflicts with our definition, we'll follow tradition and continue writing the discriminant of a quadratic as $b^{2}-4 a c$.
1.7.17. Example. Suppose that the coefficients a_{i} of F are polynomials in t, so that $F=F(t, x)$ becomes a polynomial in two variables. Let's suppose that F is an irreducible polynomial. Let C be the curve $F=0$ in the t, x-plane. The discriminant $\operatorname{Discr}_{x}(F)$, computed regarding x as the variable, will be a polynomial in t. At a root t_{0} of the discriminant, $F\left(t_{0}, x\right)$ will have a multiple root. Therefore the vertical line $\left\{t=t_{0}\right\}$ will be tangent to C, or pass though a singular point of C.
1.7.18. Proposition. Let K be a field of characteristic zero. The discriminant of an irreducible polynomial F with coefficients in K isn't zero. Therefore F has no multiple root.
proof. When F is irreducible, it cannot have a factor in common with the derivative F^{\prime}, which has lower degree.

This proposition is false when the characteristic of K isn't zero. In characteristic p, the derivative F^{\prime} might be the zero polynomial.
1.7.19. Proposition. Let $F=\prod\left(x-\alpha_{i}\right)$ be a polynomial that is a product of monic linear polynomials $x-\alpha_{i}$. Then

$$
\operatorname{Discr}(F)=\prod_{i} F^{\prime}\left(\alpha_{i}\right)=\prod_{i \neq j}\left(\alpha_{i}-\alpha_{j}\right)= \pm \prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

proof. The fact that $\operatorname{Discr}(F)=\prod F^{\prime}\left(\alpha_{i}\right)$ follows from 1.7.11. We prove the second equality by showing that $F^{\prime}\left(\alpha_{i}\right)=\prod_{j, j \neq i}\left(\alpha_{i}-\alpha_{j}\right)$. By the product rule for differentiation,

$$
F^{\prime}(x)=\sum_{k}\left(x-\alpha_{1}\right) \cdots\left(\widehat{x-\alpha_{k}}\right) \cdots\left(x-\alpha_{n}\right)
$$

where the hat ${ }^{\wedge}$ indicates that that term is deleted. When we substitute $x=\alpha_{i}$, all terms in this sum, except the one with $k=i$, become zero.
1.7.20. Corollary. $\operatorname{Discr}(F(x))=\operatorname{Discr}(F(x-c))$.translate-
disscrprop

$$
\operatorname{Discr}(F G)= \pm \operatorname{Discr}(F) \operatorname{Discr}(G) \operatorname{Res}(F, G)^{2}
$$

proof. This proposition follows from Propositions 1.7.11 and 1.7.19 for polynomials with complex coefficients. It is true for polynomials with coefficients in any ring because it is an identity. For the same reason, Corollary 1.7 .12 is true when the coefficients of the polynomials F, G, H are in any ring.

When f and g are polynomials in several variables, one of which is $z, \operatorname{Res}_{z}(f, g)$ and $\operatorname{Discr}_{z}(f)$ will denote the resultant and the discriminant, computed regarding f and g as polynomials in z. They will be polynomials in the other variables.
1.7.22. Lemma. Let f be an irreducible polynomial in $\mathbb{C}[x, y, z]$ of positive degree in z, and not divisible by

1.8 Nodes and Cusps

nodes singmult seriesf
multr

(1.8.1) the multiplicity of a singular point

Let C be the projective curve defined by an irreducible homogeneous polynomial $f(x, y, z)$ of degree d, and let p be a point of C. We choose coordinates so that $p=(0,0,1)$, and we set $z=1$. This gives us an affine curve C_{0} in $\mathbb{A}_{x, y}^{2}$, the zero set of the polynomial $\widetilde{f}(x, y)=f(x, y, 1)$, and p becomes the origin. We write

$$
\begin{equation*}
\widetilde{f}(x, y)=f_{0}+f_{1}+f_{2}+\cdots+f_{d} \tag{1.8.2}
\end{equation*}
$$

where f_{i} is the homogeneous part of \tilde{f} of degree i. The homogeneous part f_{i} is also the coefficient of z^{d-i} in $f(x, y, z)$. If the origin p is a point of C_{0}, the constant term f_{0} will be zero, and the linear term f_{1} will define the tangent direction to C_{0} at p, If f_{0} and f_{1} are both zero, p will be a singular point of C. It seems permissible to drop the tilde and the subscript 0 in what follows, denoting $f(x, y, 1)$ by $f(x, y)$, and C_{0} by C.

We use analogous notation for an analytic function $f(x, y)$ 1.4.18, denoting the homogeneous part of degree i of the series f by f_{i} :

$$
\begin{equation*}
f(x, y)=f_{0}+f_{1}+\cdots \tag{1.8.3}
\end{equation*}
$$

Let C denote the locus of zeros of f in a neighborhood of the origin p. To describe the singularity of C at the origin, we look at the part of f of lowest degree. The smallest integer r such that $f_{r}(x, y)$ isn't zero is called the multiplicity of C at p. When the multiplicity is r, f will have the form $f_{r}+f_{r+1}+\cdots$.

Let L be the line $\{v x=u y\}$ through p, and suppose that $u \neq 0$. In analogy with Definition 1.3.9 the intersection multiplicity (1.3.9) of C and L at p is the order of zero of the series in x obtained by substituting $y=v x / u$ into f. The intersection multiplicity will be r unless $f_{r}(u, v)$ is zero. If $f_{r}(u, v)=0$, the intersection multiplicity will be greater than r. A line L through p whose intersection multiplicity with C at p is greater than the multiplicity of C will be called a special line. The special lines correspond to the zeros of f_{r} in \mathbb{P}^{1}. Because f_{r} has degree r, there will be at most r special lines.
1.8.4.

a Singular Point, with its Special Lines (real locus)
\#\#\#please make point a visible dot in this figure\#\#\#

(1.8.5) double points

To analyze a singularity at the origin, one may blow up the plane. The map $W \xrightarrow{\pi} X$ from the (x, w) plane to the (x, y)-plane defined by $\pi(x, w)=(x, x w)$ is called an affine blowup because the fibre over the origin in X is the line $\{x=0\}$ in $W: \pi(0, w)=(0,0)$ for all w. (It might seem more appropriate to call the inverse of π the blowup, but the inverse isn't a map.)

The blowup is bijective at points (x, y) of X at which $x \neq 0$, and points $(x, 0)$ of X with $x \neq 0$ aren't in its image.

Suppose that the origin p is a double point, a point of multiplicity 2 , and let the quadratic part of f be

$$
f_{2}=a x^{2}+b x y+c y^{2}
$$

To blow up the plane, we adjust coordinates so that c isn't zero, and normalize c to 1 . Writing

$$
f(x, y)=a x^{2}+b x y+y^{2}+d x^{3}+\cdots
$$

we make the substitution $y=x w$ and cancel x^{2}. This gives us a polynomial

$$
g(x, w)=f(x, x w) / x^{2}=a+b w+w^{2}+d x+\cdots
$$

in which all of the terms represented by \cdots are divisible by x. Let D be the locus $\{g=0\}$ in W. The blowup map π restricts to a map $D \xrightarrow{\bar{\pi}} C$. Since π is bijective at points at which $x \neq 0$, so is $\bar{\pi}$.

Suppose first that the quadratic polynomial $y^{2}+b y+a$ has distinct roots α, β, so that $a x^{2}+b x y+y^{2}=$ $(y-\alpha x)(y-\beta x)$. Then $g(x, w)=(w-\alpha)(w-\beta)+d x+\cdots$. The fibre of D over the origin $p=(0,0)$ in X is obtained by substituting $x=0$ into g. It consists of the two points $(x, w)=(0, \alpha)$ and $(x, w)=(0, \beta)$. The partial derivative $\frac{\partial g}{\partial w}$ isn't zero at either of those points, so they are smooth points of D. At each of the points, we can solve $g(x, w)=0$ for w as analytic functions of x, say $w=u(x)$ and $w=v(x)$, with $u(0)=\alpha$ and $v(0)=\beta$. So the curve C has two analytic branches $y=x u(x)$ and $y=x v(x)$ through the origin, with distinct tangent directions α and β. This singularity is called a node. A node is the simplest singularity that a curve can have.

1.8.6.

a Map to a Nodal Curve

\#\#\#This figure is ugly. Curves aren't smooth.\#\#\#
When the discriminant $b^{2}-4 a c$ is zero, f_{2} will be a square, and f will have the form

$$
f(x, y)=(y-\alpha x)^{2}+d x^{3}+\cdots
$$

Let's change coordinates, substituting $y+\alpha x$ for y, so that

$$
\begin{equation*}
f(x, y)=y^{2}+d x^{3}+\cdots \tag{1.8.7}
\end{equation*}
$$

The blowup substitution $y=x w$ gives

$$
g(x, w)=w^{2}+d x+\cdots
$$

Here the fibre over $(x, y)=(0,0)$ is the point $(x, w)=(0,0)$, and $g_{w}(0,0)=0$. However, if $d \neq 0$, then $g_{x}(0,0) \neq 0$, and if so, then D will be smooth at $(0,0)$, and the equation of C will have the form $y^{2}+d x^{3}+\cdots$. This singularity is called a cusp.

The standard cusp is the locus $y^{2}=x^{3}$. All cusps are analytically equivalent with the standard cusp.
nodeorcusp
1.8.8. Corollary. A double point pof a curve C is a node or a cusp if and only if the blowup of C is smooth at the points that lie over p.

The simplest example of a double point that isn't a node or cusp is a tacnode, a point at which two smooth branches of a curve intersect with the same tangent direction.

1.8.9.
a Node, a Cusp, and a Tacnode (real locus)

Cusps have an interesting geometry. Let \bar{x} denote the complex conjugate of x. The intersection of the standard cusp $X:\left\{y^{2}=x^{3}\right\}$, with a small 3-sphere $S:\{\bar{x} x+\bar{y} y=\epsilon\}$ in \mathbb{C}^{2} is a trefoil knot, as is illustrated below.

This nice figure was made by Jason Chen and Andrew Lin.
The standard cusp X, the locus $y^{2}=x^{3}$, can be parametrized as $(x, y)=\left(t^{2}, t^{3}\right)$. The trefoil knot is the locus of points $(x, y)=\left(e^{2 i \theta}, e^{3 i \theta}\right)$, the set of points of X of absolute value $\sqrt{2}$. It embeds into the product of a unit x-circle and a unit y-circle in \mathbb{C}^{2}, a torus that we denote by T. The figure depicts T as the usual torus T_{0} in \mathbb{R}^{3}, but the mapping from T to T_{0} distorts the torus. The circumference of T_{0} represents the x-coordinate, and the loop through the hole represents y. As θ runs from 0 to 2π, the point (x, y) goes around the circumference twice, and it loops through the hole three times, as is illustrated.
1.8.11. Proposition. Let $x(t)=t^{2}+\cdots$ and $y(t)=t^{3}+\cdots$ be analytic functions of t, whose orders of vanishing are 2 and 3, as indicated. For small t, the path $(x, y)=(x(t), y(t))$ in the x, y-plane traces out a curve with a cusp at the origin.
proof. We show that there are analytic functions $b(x)=b_{2} x^{2}+\cdots$ and $c(x)=x^{3}+\cdots$ that vanish to orders 2 and 3 at $x=0$, such that $x(t)$ and $y(t)$ solve the equation $y^{2}+b(x) y+c(x)=0$. The locus of such an equation has a cusp at the origin.

We solve for b and c. The function $x=t^{2}+\cdots=t^{2}(1+\cdots)$ has an analytic square root of the form $z=t+\cdots$. This follows from the Implicit Function Theorem, which also tells us that t can be written as an analytic function of z. So the function z is a coordinate equivalent to t, and we may replace t by z. Then we will have $x=t^{2}$, and y will still have a zero of order $3, y=t^{3}+\cdots$, though the series for y is changed.

Let's call the even part of a series $\sum a_{n} t^{n}$ the sum of the terms $a_{n} t^{n}$ with n even, and the odd part the sum of terms with n odd. We write $y(t)=u(t)+v(t)$, where u an v are the even and the odd parts of y,
respectively. The convergent series $y(t)$ is absolutely convergent its radius of convergence. Therefore $u(t)$ and $v(t)$ are convergent series too. Since y has a zero of order $3, v$ has a zero of order 3 and u has a zero of order at least 4.

Now $y^{2}=\left(u^{2}+v^{2}\right)+2 u v, u y=u^{2}+u v$, and $y^{2}-2 u y+\left(u^{2}-v^{2}\right)=0$. The terms $-2 u$ and $u^{2}+v^{2}$ in this last equation are even series. They can be written as convergent series in $x=t^{2}$, say $-2 u=b(x)$ and $u^{2}-v^{2}=c(x)$. Then b will have a zero of order at least $2, c$ will have a zero of order 3 , and $y^{2}+b(x) y+c(x)=$ 0 .

(1.8.12) projection to a line

Let π denote the projection $\mathbb{P}^{2} \longrightarrow \mathbb{P}^{1}$ that drops the last coordinate, sending a point (x, y, z) to (x, y). The projection is defined at all points of \mathbb{P}^{2} except at the center of projection, the point $q=(0,0,1)$.

The fibre of π over a point $\bar{p}=\left(x_{0}, y_{0}\right)$ of \mathbb{P}^{1} is the line through $p=\left(x_{0}, y_{0}, 0\right)$ and $q=(0,0,1)$, with the point q omitted - the set of points $\left(x_{0}, y_{0}, z_{0}\right)$. We denote that line by $L_{p q}$ or $L_{\bar{p}}$.

1.8.13.

Projection from the Plane to a Line

\#\#\#The letters in this figure should be same size as in the text. Also, I'm not happy with the dashed arrows. I'd like more space between the dashes\#\#\#

Let $f(x, y, z)$ be an irreducible homogeneous polynomial whose zero locus C is a plane curve that doesn't contain the center of projection q, and let d be the degree of f. the projection π will be defined at all points of the curve. We write f as a polynomial in z,

$$
\begin{equation*}
f=c_{0} z^{d}+c_{1} z^{d-1}+\cdots+c_{d} \tag{1.8.14}
\end{equation*}
$$

with c_{i} homogeneous, of degree i in x, y. When q isn't in C, the scalar $c_{0}=f(0,0,1)$ won't be zero, and we can normalize c_{0} to 1 , so that f becomes a monic polynomial of degree d in z.

Let's assume that C is a smooth curve. The fibre of C over a point $\bar{p}=\left(x_{0}, y_{0}\right)$ of \mathbb{P}^{1} is the intersection of C with the line $L_{p q}$ described above. Its points are (x_{0}, y_{0}, α), where α is a root of the one-variable polynomial

$$
\begin{equation*}
\widetilde{f}(z)=f\left(x_{0}, y_{0}, z\right) \tag{1.8.15}
\end{equation*}
$$

We call the smooth curve C a branched covering of \mathbb{P}^{1}, of degree d. All but finitely many fibres of C over \mathbb{P}^{1} consist of d points.

The fibres of π with fewer than d points are those above the zeros of the discriminant (see Lemma 1.7.22). Those zeros are the branch points of the covering. We use the same term for points of C, calling a point of C a branch point if its tangent line is $L_{p q}$, in which case its image in \mathbb{P}^{1} will also be a branch point.
1.8.16. Proposition. Let C be a smooth plane curve, let q be a generic point of the plane, and let p be a branch point of C, so that the tangent line L at p contains q. The intersection multiplicity of L and C at p is 2 , and L and C have $d-2$ other intersections of multiplicity 1.

The proof is below, but we explain the word generic first.

(1.8.17) generic and general position

In algebraic geometry, the word generic is used for an object, a point for instance, that has no special 'bad' properties. Typically, the object will be parametrized somehow, and the adjective generic indicates that the parameter representing that particular object avoids a proper closed subset of the parameter space, which may be described explicitly or not. The phrase general position has a similar meaning. It indicates that an object is not in a special 'bad' position. In Proposition 1.8 .16 , what is required of the generic point q is that it shall not lie on a flex tangent line or on a bitangent line - a line that is tangent to C at two or more points. We have seen that a smooth curve C has finitely many flex points 1.4.17, and Lemma 1.8.18 below states that it has finitely many bitangents. So q must avoid a finite set of lines. Most points of the plane will be generic in this sense.
proof of Proposition 1.8.16 The intersection multipicity of the tangent line L with C at p is at least 2 because L is a tangent line. It will be equal to 2 unless p is a flex point. The generic point q won't lie on any of the finitely many flex tangents, so the intersection multiplicity at p is 2 . Next, the intersection multiplicity at another point p^{\prime} of $L \cap C$ will be 1 unless L is tangent to C at p^{\prime} as well as at p, i.e., unless L is a bitangent. The generic point q won't lie on a bitangent.
1.8.18. Lemma. A plane curve has finitely many bitangent lines.
proof. We use the map $U \xrightarrow{t} C^{*}$ from the set U of smooth points of C to the dual curve C^{*}. If L is tangent to C at distinct smooth points p and p^{\prime}, then t will be defined at those points, and $t(p)=t\left(p^{\prime}\right)=L^{*}$. Therefore L^{*} will be a singular point of C^{*}. Since C^{*} has finitely many singular points, C has finitely many bitangents.

(1.8.19) the genus of a plane curve

We describe the topological structure of a smooth plane curve in the classical topology here.
1.8.20. Theorem. A smooth projective plane curve of degree d is a compact, orientable and connected two-dimensional manifold.

The fact that a smooth curve is a two-dimensional manifold follows from the Implicit Function Theorem. (See the discussion (1.4.4).
orientability: A two-dimensional manifold is orientable if one can choose one of its two sides (as in front and back of a sheet of paper) in a continuous, consistent way. A smooth curve C is orientable because its tangent space at a point, the affine line with the equation (1.4.11), is a one-dimensional complex vector space. Multiplication by i orients the tangent space by defining the counterclockwise rotation, and the right-hand rule tells us which side of C is "up".
compactness: A plane projective curve is compact because it is a closed subset of the compact space \mathbb{P}^{2}.
connectedness: The fact that a plane curve is connected is subtle. It mixes topology and algebra. Unfortunately, I don't know a proof that fits into our discussion here. It will be proved later (see Theorem 8.2.11).

The topological Euler characteristic of a compact, orientable two-dimensional manifold M is the alternating sum $b^{0}-b^{1}+b^{2}$ of its Betti numbers. The Betti numbers are the dimensions of the homology groups of M. The Euler characteristic, which we denote by e, can be computed using a topological triangulation, a subdivision of M into topological triangles, called faces, by the formula

$$
\begin{equation*}
e=\mid \text { vertices }|-| \text { edges }|+| \text { faces } \mid \tag{1.8.21}
\end{equation*}
$$

For example, a sphere is homeomorphic to a tetrahedron, which has four vertices, six edges, and four faces. Its Euler characteristic is $4-6+4=2$. Any other topological triangulation of a sphere, such as the one given by the icosahedron, yields the same Euler characteristic.

Every compact, connected, orientable two-dimensional manifold is homeomorphic to a sphere with a finite number of "holes" or "handles". Its genus is the number of handles. A torus has one handle. Its genus is one. The projective line \mathbb{P}^{1}, a two-dimensional sphere, has genus zero.

The Euler characteristic and the genus are related by the formula

$$
\begin{equation*}
e=2-2 g \tag{1.8.22}
\end{equation*}
$$

The Euler characteristic of a torus is zero, and the Euler characteristic of \mathbb{P}^{1} is two.
To compute the Euler characteristic of a smooth curve C of degree d, we analyze a generic projection (a projection from a generic point q of the plane), to represent C as a branched covering of the projective line: $C \xrightarrow{\pi} \mathbb{P}^{1}$ (see 1.8.17). We choose generic coordinates x, y, z in \mathbb{P}^{2} and project from the point $q=(0,0,1)$. When the defining equation of C is written as a monic polynomial in $z: \quad f=z^{d}+c_{1} z^{d-1}+\cdots+c_{d}$ where c_{i} is a homogeneous polynomial of degree i in the variables x, y, the discriminant $\operatorname{Discr}_{z}(f)$ with respect to z will be a homogeneous polynomial of degree $d(d-1)=d^{2}-d$ in x, y.

Let \widetilde{p} be the image in \mathbb{P}^{1} of a point p of C. The covering $C \xrightarrow{\pi} \mathbb{P}^{1}$ will be branched at \widetilde{p} when the tangent line at p is the line $L_{p q}$ through p and q. Proposition 1.8 .16 tells us that if $L_{p q}$ is a tangent line, there will be one intersection of multiplicity 2 and $d-1$ simple intersections. The discriminant will have a simple zero at such a point \widetilde{p}. This is proved in Proposition 1.9.12 below. Let's assume it for now.

Since the discriminant has degree $d^{2}-d$, there will be $d^{2}-d$ points \widetilde{p} of \mathbb{P}^{1} at which the discriminant vanishes, and the fibre over such a point will contain $d-1$ points. Those points \widetilde{p} are the branch points of the covering. All other fibres consist of d points.

We triangulate the sphere \mathbb{P}^{1} in such a way that the branch points are among the vertices, and we use the inverse images of the vertices, edges, and faces to triangulate C. Then C will have d faces and d edges lying over each face and each edge of \mathbb{P}^{1}, respectively. There will also be d vertices of C lying over a vertex of \mathbb{P}^{1}, except when the vertex is one of the branch points. In that case the the fibre will contain only $d-1$ vertices. So the Euler characteristic of C can be obtained by multiplying the Euler characteristic of \mathbb{P}^{1} by d and subtracting the number $d^{2}-d$ of branch points:

$$
\begin{equation*}
e(C)=d e\left(\mathbb{P}^{1}\right)-\left(d^{2}-d\right)=2 d-\left(d^{2}-d\right)=3 d-d^{2} \tag{1.8.23}
\end{equation*}
$$

eulercover
This is the Euler characteristic of any smooth curve of degree d, so we denote it by e_{d} :

$$
\begin{equation*}
e_{d}=3 d-d^{2} \tag{1.8.24}
\end{equation*}
$$

Formula 1.8 .22 shows that the genus g_{d} of a smooth curve of degree d is

$$
\begin{equation*}
g_{d}=\frac{1}{2}\left(d^{2}-3 d+2\right)=\binom{d-1}{2} \tag{1.8.25}
\end{equation*}
$$

Thus smooth curves of degrees $1,2,3,4,5,6, \ldots$ have genus $0,0,1,3,6,10, \ldots$, respectively. A smooth plane curve cannot have genus 2 .

The generic projection to \mathbb{P}^{1} with center q can also be used to compute the degree of the dual curve of a smooth curve C of degree d. The degree of the dual C^{*} is the number of its intersections with the generic line q^{*} in \mathbb{P}^{*}. The intersections of C^{*} and q^{*} are the points L^{*}, where L is a tangent line that contains q. As we saw above, there are $d^{2}-d$ such lines.
1.8.26. Corollary. Let C be a smooth plane projective curve of degree d. The degree d^{*} of the dual curve C^{*} is the number of tangent lines to C that pass through a generic point q of the plane. It is equal to $d^{2}-d$.

When C is a singular curve, the degree of C^{*} will be less than $d^{2}-d$.
When $d=2, C$ will be a conic, and $d^{*}=d$. As we have seen, the dual curve of a conic is also a conic. But when $d>2, \quad d^{*}=d^{2}-d$ will be greater than d. Then the dual curve C^{*} must be singular. If it were smooth, the degree of its dual curve $C^{* *}$ would be $d^{* 2}-d^{*}$, which would be greater than d. This would contradict the fact that $C^{* *}=C$. For instance, when $d=3, d^{*}=3^{2}-3=6$, and $d^{* 2}-d^{*}=30$. The dual curve C^{*} is singular enough to account for the discrepancy between 30 and 3. (See 1.11.2)

1.9 Hensel's Lemma

hensel
multiplypolys
prodeqns prodjacob
jacres
jacobiannotzero
poly-
forhensel

The resultant matrix 1.7 .5 arises in a second context that we explain here.
Suppose given a product $P=F G$ of two polynomials, say

$$
\text { (1.9.1) }\left(c_{0} x^{m+n}+c_{1} x^{m+n-1}+\cdots+c_{m+n}\right)=\left(a_{0} x^{m}+a_{1} x^{m-1}+\cdots+a_{m}\right)\left(b_{0} x^{n}+b_{1} x^{n-1}+\cdots+b_{n}\right)
$$

We call the relations among the coefficients that are implied by this polynomial equation the product equations. The product equations are

$$
c_{i}=a_{i} b_{0}+a_{i-1} b_{1}+\cdots+a_{0} b_{i}=\sum_{j=0}^{i} a_{i-j} b_{j}
$$

for $i=0, \ldots, m+n$. For instance, when $m=3$ and $n=2$, the product equations are
1.9.2.

$$
\begin{aligned}
& c_{0}=a_{0} b_{0} \\
& c_{1}=a_{1} b_{0}+a_{0} b_{1} \\
& c_{2}=a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2} \\
& c_{3}=a_{3} b_{0}+a_{2} b_{1}+a_{1} b_{2} \\
& c_{4}=r \\
& c_{5}=r a_{2} b_{1}+a_{2} b_{2} \\
& c_{3} b_{2}
\end{aligned}
$$

Let J denote the Jacobian matrix of partial derivatives of c_{1}, \ldots, c_{m+n} with respect to the variables b_{1}, \ldots, b_{n} and a_{1}, \ldots, a_{m}, treating a_{0}, b_{0} and c_{0} as constants. Since $\frac{\partial c_{i}}{\partial b_{j}}=a_{i-j}$ and $\frac{\partial c_{i}}{\partial a_{j}}=b_{i-j}$, the i, j-entry of J is

$$
J_{i j}=a_{i-j} \text { when } j=1, \ldots, n \text { and } J_{i j}=b_{i-k} \text { when } j=n+k \text { and } k=1, \ldots, m
$$

entries with negative subscripts being set to 0 .
When $m, n=3,2$,

$$
J=\frac{\partial\left(c_{i}\right)}{\partial\left(b_{j}, a_{k}\right)}=\left(\begin{array}{ccccc}
a_{0} & . & b_{0} & . & . \tag{1.9.3}\\
a_{1} & a_{0} & b_{1} & b_{0} & \cdot \\
a_{2} & a_{1} & b_{2} & b_{1} & b_{0} \\
a_{3} & a_{2} & \cdot & b_{2} & b_{1} \\
\cdot & a_{3} & \cdot & . & b_{2}
\end{array}\right)
$$

1.9.4. Lemma. The Jacobian matrix J is the transpose of the resultant matrix \mathcal{R} 1.7.5.

See 1.7.8. But this seems like an occasion to quote Cayley. While discussing the the Cayley-Hamilton Theorem, he wrote: 'I have not thought it necessary to undertake the labour of a formal proof of the theorem in the general case.'
1.9.5. Corollary. Let F and G be polynomials with complex coefficients. The Jacobian matrix is singular if and only if, either F and G have a common root, or $a_{0}=b_{0}=0$.

This corollary has an application to polynomials with analytic coefficients. Let

$$
\begin{equation*}
P(t, x)=c_{0}(t) x^{d}+c_{1}(t) x^{d-1}+\cdots+c_{d}(t) \tag{1.9.6}
\end{equation*}
$$

be a polynomial in x whose coefficients c_{i} are analytic functions of t, and let $\bar{P}=P(0, x)=\bar{c}_{0} x^{d}+\bar{c}_{1} x^{d-1}+$ $\cdots+\bar{c}_{d}$ be the evaluation of P at $t=0$, so that $\bar{c}_{i}=c_{i}(0)$. Suppose given a factorization $\bar{P}=\bar{F} \bar{G}$, where $\bar{F}=x^{m}+\bar{a}_{1} x^{m-1}+\cdots+\bar{a}_{m}$ and $\bar{G}=\bar{b}_{0} x^{n}+\bar{b}_{1} x^{n-1}+\cdots+\bar{b}_{n}$ are polynomials with complex coefficients, and \bar{F} is monic. Are there polynomials $F(t, x)=x^{m}+a_{1} x^{m-1}+\cdots+a_{m}$ and $G(t, x)=b_{0} x^{n}+b_{1} x^{n-1}+\cdots+b_{n}$, with F monic, whose coefficients a_{i} and b_{j} are analytic functions of t, such that $F(0, x)=\bar{F}, G(0, x)=\bar{G}$, and $P=F G$?
1.9.7. Hensel's Lemma. With notation as above, suppose that \bar{F} and \bar{G} have no common root. Then P factors: $P=F G$, where F and G are polynomials in x, whose coefficients are analytic functions of t, and F is monic.
proof. We look at the product equations. Since F is supposed to be monic, we set $a_{0}(t)=1$. The first product equation tells us that $b_{0}(t)=c_{0}(t)$. Corollary 1.9 .5 tells us that the Jacobian matrix for the remaining product equations is nonsingular at $t=0$, so according to the Implicit Function Theorem, the product equations have a unique solution in analytic functions $a_{i}(t), b_{j}(t)$.

Note that P isn't assumed to be monic. If $\bar{c}_{0}=0$, the degree of \bar{P} will be less than the degree of P. In that case, \bar{G} will have lower degree than G.
1.9.8. Example. Let $P=c_{0}(t) x^{2}+c_{1}(t) x+c_{2}(t)$. The product equations $P=F G$ with $F=x+a_{1}$ monic and $G=b_{0} x+b_{1}$, are

$$
\begin{equation*}
c_{0}=b_{0}, \quad c_{1}=a_{1} b_{0}+b_{1}, \quad c_{2}=a_{1} b_{1} \tag{1.9.9}
\end{equation*}
$$

and the Jacobian matrix is

$$
\frac{\partial\left(c_{1}, c_{2}\right)}{\partial\left(b_{1}, a_{1}\right)}=\left(\begin{array}{cc}
1 & b_{0} \\
a_{1} & b_{1}
\end{array}\right)
$$

Suppose that $\bar{P}=P(0, x)$ factors: $\bar{c}_{0} x^{2}+\bar{c}_{1} x+\bar{c}_{2}=\left(x+\bar{a}_{1}\right)\left(\bar{b}_{0} x+\bar{b}_{1}\right)=\bar{F} \bar{G}$. The determinant of the Jacobian matrix at $t=0$ is $\bar{b}_{1}-\bar{a}_{1} \bar{b}_{0}$. It is nonzero if and only if the factors \bar{F} and \bar{G} are relatively prime, in which case P factors too.

On the other hand, the one-variable Jacobian criterion allows us to solve the equation $P(t, x)=0$ for x as function of t with $x(0)=-\bar{a}_{1}$, provided that $\frac{\partial P}{\partial x}=2 c_{0} x+c_{1}$ isn't zero at the point $(t, x)=\left(0,-\bar{a}_{1}\right)$. If \bar{P} factors as above, then when we substitute 1.9 .9 into \bar{P}, we find that $\frac{\partial P}{\partial x}\left(0,-\bar{a}_{1}\right)=-2 \bar{c}_{0} \bar{a}_{1}+\bar{c}_{1}=\bar{b}_{1}-\bar{a}_{1} \bar{b}_{0}$. Not surprisingly, $\frac{\partial P}{\partial x}\left(0,-\bar{a}_{1}\right)$ is equal to the determinant of the Jacobian matrix at $t=0$.

(1.9.10) order of vanishing of the discriminant

We introduce some terminology for use in the next proposition. Let X be the affine x-line, let Y be the affine x, y-plane and let p be the origin in Y. Two curves are said to intersect transversally at a point p if they are smooth at p and if their tangent lines there are distinct.

Let C be the plane affine curve defined by a polynomial $f(x, y)$ with no multiple factors, and suppose that C contains the origin p. Let L be the y-axis $\{x=0\}$ in Y. Suppose that all intersections of C with L are transversal, except for the point p. This will be true when the coordinates x, y are generic.

1.9.11. Proposition.

(i) a) Let p be a smooth point of C with tangent line L. If p isn't a flex point of C, the discriminant $\operatorname{Discr}_{y}(f)$ has a simple zero at the origin.
b) If p is a node of C and L is not a special line at $p, \operatorname{Discr}_{y}(f)$ has a double zero at the origin.
c) If p is a cusp of C and L is not its special line at $p, \operatorname{Discr}_{y}(f)$ has a triple zero at the origin.
(ii) If p is an ordinary flex point of C and L is its tangent line, then $\operatorname{Discr}_{y}(f)$ has a double zero at the origin.
\#\#\# make figure ??\#\#\#
proof. (i) Let $\bar{f}(y)=f(0, \underline{y})$. In each of the three cases, $\bar{f}(y)$ will have a double zero at $y=0$. We will have $\bar{f}(y)=y^{2} \bar{h}(y)$, with $\bar{h}(0) \neq 0$. So y^{2} and $\bar{h}(y)$ have no common root. We apply Hensel's Lemma: $f(x, y)=g(x, y) h(x, y)$, where g and h are polynomials in y whose coefficients are analytic functions of x, g is monic, $g(0, y)=y^{2}$, and $h(0, y)=\bar{h}$. $\operatorname{Then}^{\operatorname{Discr}_{y}}(f)= \pm \operatorname{Discr}_{y}(g) \operatorname{Discr}_{y}(h) \operatorname{Res}_{y}(g, h)^{2}$ 1.7.21. .

Since C is tranversal to L except at q, \bar{h} has simple zeros 1.8.16. Then $\operatorname{Discr}_{y}(h)$ doesn't vanish at $y=0$. Neither does $\operatorname{Res}_{y}(g, h)$. So the orders of vanishing of $\operatorname{Discr}_{y}(f)$ and $\operatorname{Discr}_{y}(g)$ at p are equal.

We replace f by g, so that f becomes a monic quadratic polynomial in y, of the form

$$
f(x, y)=y^{2}+b(x) y+c(x)
$$

discrimvanishing
genericcond
where the coefficients b and c are now analytic functions of x, and $f(0, y)=y^{2}$. The discriminant $\operatorname{Discr}_{y}(f)=$ $b^{2}-4 c$ is unchanged when we complete the square by the substitution of $y-\frac{1}{2} b$ for y, and if p is a smooth point, a node or a cusp, that property isn't affected by this operation. So we may assume that f has the form $y^{2}+c(x)$. The discriminant is then $D=4 c(x)$.

We write $c(x)$ as a series:

$$
c(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots
$$

Since C contains p, the constant coefficient c_{0} is zero. If $c_{1} \neq 0, p$ is a smooth point with tangent line \widetilde{L}, and D has a simple zero. If p is a node, $c_{0}=c_{1}=0$ and $c_{2} \neq 0$. Then D has a double zero. If p is a cusp, $c_{0}=c_{1}=c_{2}=0$, and $c_{3} \neq 0$. Then D has a triple zero at p.
(ii) In this case, the polynomial $\widetilde{f}(y)=f(0, y)$ will have a triple zero at $y=0$. Proceding as above, we may factor: $f=g h$ where g and h are polynomials in y whose coefficients are analytic funcicton so x, $g(x, y)=y^{3}+a(x) y^{2}+b(x) y+c(x)$, and $g(0, y)=y^{3}$. We eliminate the quadratic coefficient a by substituting $y-\frac{1}{3 a}$ for y. With $g=y^{3}+b y+c$ in the new coordinates, the discriminant $\operatorname{Discr}_{y}(g)$ is $4 b^{3}+27 c^{2}$ 1.7.16. We write $c(x)=c_{0}+c_{1} x+\cdots$ and $b(x)=b_{0}+b_{1} x+\cdots$. Since p is a point of C with tangent line $\{y=0\}, c_{0}=0$ and $c_{1} \neq 0$. Since the intersection multiplicity of C with the line $\{y=0\}$ at p is three, $b_{0}=0$. The discriminant $4 b^{3}+27 c^{2}$ has a zero of order two.

Now let $f(x, y, z)$ be a homogeneous polynomial with no multiple factors, and let C be the (possibly reducible) plane curve $\{f=0\}$. We project to $X=\mathbb{P}^{1}$ from a point q that is not on C. Let $L_{p q}$ denote the line through a point $p=\left(x_{0}, y_{0}, 0\right)$ and q, the set of points $\left(x_{0}, y_{0}, z_{0}\right)$, and let $\widetilde{p}=\left(x_{0}, y_{0}\right)$. Suppose that all intersections of C with $L_{p q}$ except at q are transversal.
1.9.12. Corollary. (i) With notation as above:
a) If p is a smooth point of C with tangent line $L_{p q}$, the discriminant $\operatorname{Discr}_{z}(f)$ has a simple zero at \widetilde{p}.
b) If p is a node of $C, \operatorname{Discr}_{z}(f)$ has a double zero at \widetilde{p}.
c) If p is a cusp, $\operatorname{Discr}_{z}(f)$ has a double zero at \widetilde{p}.
(ii) If p is an ordinary flex point of $C, \operatorname{Discr}_{z}(f)$ has a double zero at $z=0$.

In cases (ia,b,c), the hypotheses are satisfied when the center of projection q is in general position. To be precise about what is required of the generic point q in those cases, we ask that q not lie on any of these lines:
flex tangent lines and bitangent lines,
lines that contain more than one singular point,
special lines through singular points,
tangent lines that contain a singular point.
This is a list of finitely many lines that q must avoid.
1.9.14. Corollary. Let $C:\{g=0\}$ and $D:\{h=0\}$ be plane curves that intersect transversally at a point $p=\left(z_{0}, y_{0}, z_{0}\right)$. With coordinates in general position, $\operatorname{Res}_{z}(g, h)$ has a simple zero at $\left(x_{0}, y_{0}\right)$.
proof. Proposition $1.9 .12(\mathbf{i} \mathbf{b})$ applies to the product $g h$, whose zero locus is the union $C \cup D$. It shows that the discriminant $\operatorname{Discr}_{z}(g h)$ has a double zero at p. We also have the formula

$$
\operatorname{Discr}_{z}(g h)=\operatorname{Discr}_{z}(g) \operatorname{Discr}_{z}(h) \operatorname{Res}(g, h)^{2}
$$

1.7.21) with $f=g h$. When coordinates are in general position, $\operatorname{Discr}_{z}(g)$ and $\operatorname{Discr}_{z}(h)$ will not be zero at p. Then $\operatorname{Res}_{z}(g, h)$ has a simple zero at p.

1.10 Bézout's Theorem

Bézout's Theorem counts intersections of plane curves. We state it here in a form that is ambiguous because it contains a term "multiplicity" that hasn't yet been defined.
1.10.1. Bézout's Theorem. Let C and D be distinct curves of degrees m and n, respectively. When intersections are counted with an appropriate multiplicity, the number of intersections is $m n$. Moreover, the multiplicity at a transversal intersection is 1 .

As before, C and D intersect transversally at p if they are smooth at p and their tangent lines there are distinct.

1.10.2. Proposition. Bézout's Theorem is true when one of the curves is a line.

See Corollary 1.3.10 The multiplicity of intersection of a curve and a line is the one that was defined there.
The proof in the general case requires some algebra that we would rather defer. It will be given later (Theorem 7.8.1], but we will use the theorem in the rest of this chapter.

It is possible to determine the intersections by counting the zeros of the resultant with respect to one of the variables. To do this, one chooses coordinates x, y, z, so that neither C nor D contains the point $(0,0,1)$. One writes their defining polynomials f and g as polynomials in z with coefficients in $\mathbb{C}[x, y]$. The resultant R with respect to z will be a homogeneous polynomial in x, y, of degree $m n$. It will have $m n$ zeros in $\mathbb{P}_{x, y}^{1}$, counted with multiplicity. Let $\widetilde{p}=\left(x_{0}, y_{0}\right)$ be a zero of R. Then $f\left(x_{0}, y_{0}, z\right)$ and $g\left(x_{0}, y_{0}, z\right)$, which are polynomials in z, have a common root $z=z_{0}$, and then $p=\left(x_{0}, y_{0}, z_{0}\right)$ will be a point of $C \cap D$. It is a fact that the multiplicity of the zero of the resultant R at the image \widetilde{p} is the (as yet undefined) intersection multiplicity of C and D at p. Unfortunately, this won't be obvious, even when the multiplicity is defined. However, one can prove the next proposition using this approach.
1.10.3. Proposition. Let C and D be distinct plane curves of degrees m and n, respectively.
(i) C and D have at least one intersection, and the number of intersections is at most mn.
(ii) If all intersections are transversal, the number of intersections is precisely $m n$.

It isn't obvious that two curves in the projective plane intersect. If two curves in the affine plane have no intersection, If they are parallel lines, for example, their closures in the projective plane meet on the line at infinity.
1.10.4. Lemma. Let f and g be homogeneous polynomials in x, y, z of degrees m and n, respectively, and suppose that the point $(0,0,1)$ isn't a zero of f or g. If the resultant $\operatorname{Res}_{z}(f, g)$ with respect to z is identically zero, then f and g have a common factor.
proof. Let F denote the field of rational functions $\mathbb{C}(x, y)$. If the resultant is zero, f and g have a common factor in $F[z]$. There will be polynomials p and q in $F[z]$, of degrees at most $n-1$ and $m-1$ in z, respectively, such that $p f=q g$ 1.7.3. We may clear denominators, so we may assume that the coefficients of p and q are in $\mathbb{C}[x, y]$. This doesn't change their degree in z. Then $p f=q g$ is an equation in $\mathbb{C}[x, y, z]$, and p isn't divisible by g. Since $\mathbb{C}[x, y, z]$ is a unique factorization domain, f and g have a common factor.
proof of Proposition 1.10 .3 . (i) Let C and D be distinct curves, defined by irreducible homogeneous polynomials f and g. Proposition 1.3 .12 shows that there are finitely many intersections. We project to \mathbb{P}^{1} from a point q that doesn't lie on any of the finitely many lines through pairs of intersection points. Then a line through q passes through at most one intersection, and the zeros of the resultant $\operatorname{Res}_{z}(f, g)$ that correspond to the intersection points will be distinct. The resultant has degree $m n$ 1.7.10. It has at least one zero, and at most $m n$ of them. Therefore C and D have at least one and at most $m n$ intersections.
(ii) Every zero of the resultant will be the image of an intersection of C and D. To show that there are $m n$ intersections if all intersections are transversal, it suffices to show that the resultant has simple zeros. This is Corollary 1.9.14
1.10.5. Corollary. If the zero locus X of a homogeneous polynomial $f(x, y, z)$ is smooth, then f is irreducible, and therefore X is a smooth curve.
proof. Suppose that $f=g h$, and let p be a point of intersection of the loci $\{g=0\}$ and $\{h=0\}$. Proposition 1.10 .3 shows that such a point exists. All partial derivatives of f vanish at p, so p is a singular point of the locus $f=0$ 1.4.7.
1.10.6. Proposition. (i) Let d be an integer ≥ 3. A smooth plane curve of degree d has at least one flex point, and the number of flex points is at most $3 d(d-2)$.
(ii) If all flex points are ordinary, the number of flex points is $3 d(d-2)$.

Thus smooth curves of degrees $2,3,4,5, \ldots$ have at most $0,9,24,45, \ldots$ flex points, respectively.
proof. (i) Let C be the smooth curve defind by a homogeneous polynomial f of degree d. Let H be the Hessian matrix of f, let $\operatorname{det} H=h_{1}^{e_{1}} \cdots h_{k}^{e_{k}}$ be the factorization of the determinant into irreducible polynomials h_{i}, and let Z_{i} be the locus of zeros of h_{i}. The Hessian divisor is defined to be the combination $D=e_{1} Z_{1}+\cdots+e_{k} Z_{k}$.

The flex points of C are its intersections with its Hessian divisor D 1.4.16. The entries of the 3×3 Hessian matrix H, the second partial derivatives $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$, are homogeneous polynomials of degree $d-2$. So the Hessian determinant is homogeneous, of degree $3(d-2)$. Propositions 1.4 .17 and 1.10 .3 tell us that there are at most $3 d(d-2)$ intersections.
(ii) A flex point is ordinary if the multiplicity of intersection of the curve and its tangent line is 3 1.4.8. Bézout's Theorem asserts that the number of flex points is $3 d(d-2)$ if the intersections of C with its Hessian divisor D are transversal, and therefore have multiplicity 1 . So the next lemma completes the proof.
1.10.7. Lemma. A curve $C:\{f=0\}$ intersects its Hessian divisor D transversally at a point p if and only p is an ordinary flex point of C.
proof. We prove the lemma by computation. I don't know a conceptual proof.
Let D be the Hessian divisor $\{\operatorname{det} H=0\}$. The Hessian determinant $\operatorname{det} H$ vanishes at a smooth point p of C if and only if p is a flex point 1.4.16.

Assume that p is a flex point, let L be the tangent line to C at p, and let \bar{h} denote the restriction of the determinant det H to L. The Hessian divisor D will be transversal to C at p if and only if it is transversal to L there, which will be true if and only if \bar{h} has a zero of order 1 .

We adjust coordinates x, y, z so that p is the point $(0,0,1)$ and L is the line $\{y=0\}$, and we set $z=1$ to work in the affine space $\mathbb{A}_{x, y}^{2}$. Because p is a flex point, the coefficients of the monomials $1, x$ and x^{2} in the polynomial $f(x, y, 1)$ are zero. So

$$
f(x, y, 1)=a y+b x y+c y^{2}+d x^{3}+e x^{2} y+\cdots
$$

To restrict to L, we set $y=0$, keeping $z=1: ~ f(x, 0,1)=d x^{3}+O(4)$, where $O(k)$ stands for a polynomial all of whose terms have degree $\geq k$.

To compute the determinant det H, we put the variable z back. If f has degree n, then

$$
f(x, y, z)=a y z^{n-1}+b x y z^{n-2}+c y^{2} z^{n-2}+d x^{3} z^{n-3}+e x^{2} y z^{n-3}+\cdots
$$

We set $y=0$ and $z=1$ in the second order partial derivatives. With $v=6 d x$ and $w=(n-1) a+(n-2) b x$,

$$
\begin{aligned}
& f_{x x}(x, 0,1)=6 d x+O(2)=v+O(2) \\
& f_{x z}(x, 0,1)=0+O(2) \\
& f_{y z}(x, 0,1)=(n-1) a+(n-2) b x+O(2)=w+O(2), \\
& f_{z z}(x, 0,1)=0+O(2)
\end{aligned}
$$

We won't need $f_{x y}$ or $f_{y y}$. The Hessian matrix at $y=0, z=1$ has the form

$$
H(x, 0,1)=\left(\begin{array}{ccc}
v & * & 0 \tag{1.10.8}\\
* & * & w \\
0 & w & 0
\end{array}\right)+O(2)
$$

Because of the zeros, the entries marked with $*$ don't affect the determinant of $H(x, 0,1)$. It is

$$
\bar{h}=-v w^{2}+O(2)=-6 d(n-1)^{2} a^{2} x+O(2)
$$

and it has a zero of order 1 at $x=0$ if and only if a and d aren't zero there. Since C is smooth at p and since the coefficient of x in f is zero, the coefficient of y, which is a, can't be zero. Thus the curve C and its Hessian divisor D intersect transversally, if and only if d isn't zero. This is true if and only if p is an ordinary flex point.
nineflexes 1.10.9. Corollary. A smooth cubic curve contains exactly 9 flex points.
proof. Let C be a smooth cubic curve. The Hessian divisor D of C also has degree 3, so Bézout's Theorem predicts at most 9 intersections of D with C. To derive the corollary, we show that D intersects C transversally,
and to do this, we show that D intersects the tangent line L to C at p transversally. According to Lemma 1.10.7, a nontransversal intersection of D and L would correspond to a point at which C has a flex that isn't ordinary, and at such a point, the intersection multiplicity of C and L would be greater than 3 . This is impossible when the curve is a cubic.

(1.10.10) singularities of the dual curve

Let C be a plane curve. As before, an ordinary flex point is a smooth point p such that the intersection multiplicity of the curve and its tangent line L at p is equal to 3 . A bitangent, a line L that is tangent to C at distinct points p and p^{\prime}, is an ordinary bitangent if neither p nor p^{\prime} is a flex point. A tangent line L at a smooth point p of C is an ordinary tangent if p isn't a flex point and L isn't a bitangent.

The tangent line L at a point p will have other intersections with C. Most often, those other intersections will be transversal unless L is a bitangent, in which case it will be tangent to C at another point. However, it may also happen that one of the other intersections of L with C is a singular point of C. Or, L may be a tritangent, tangent to C at three points. Let's call such occurences accidents.
1.10.11. Definition. A plane curve C is ordinary if it is smooth, all of its bitangents and flex points are ordinary, and if there are no accidents.

1.10.12. Lemma. A generic curve C is ordinary.

We verify this by counting constants (see 1.1.3). The reasoning is fairly convincing, though not completely precise.

There are three ways in which a curve C might fail to be ordinary:

- C may be singular.
- C may have a flex point that isn't ordinary.
- A bitangent to C may be a flex tangent or a tritangent.

The curve will be ordinary if none of these occurs.
Let the coordinates in the plane be x, y, z. The homogeneous polynomials of degree d form a vector space whose dimension is equal to the number N of monomials $x^{i} y^{j} z^{k}$ of degree $i+j+k=d$. Let f be a homogeneous polynomial of degree d, and let $f=\prod f_{i}^{e_{i}}$ be its factorization into irreducible polynomials. If Z_{i} denotes the zero locus of f_{i}, the divisor associated to f is $\sum e_{i} Z_{i}$. The divisors of degree d are parametrized by points of a projective space of dimension $n=N-1$, and curves correspond to points in a subset of that space.
singular points. We look at the point $p_{0}=(0,0,1)$, and we set $z=1$. If p_{0} is a singular point of a curve C defined by a polynomial f, the coefficients of $1, x, y$ in the polynomial $f(x, y, 1)$ will be zero. This is three conditions. So the curves that are singular at p_{0} are parametrized by a linear subspace of dimension $n-3$ in the projective space of dimension n, and the same will be true when p_{0} is replaced by any other point of \mathbb{P}^{2}. The points of \mathbb{P}^{2} depend on only 2 parameters. Therefore, in the space of divisors, the singular curves form a subset of dimension at most $n-1$. Most curves are smooth.
flex points. Let's look at curves that have a four-fold tangency with the line $L:\{y=0\}$ at p_{0}. Setting $z=1$ as before, we see that the coefficients of $1, y, y^{2}, y^{3}$ in f must be zero. This is four conditions. The lines through p_{0} depend on one parameter, and the points of \mathbb{P}^{2} depend on two parameters, giving us three parameters to vary. We can't get all curves this way. Most curves have no four-fold tangencies, and therefore they have only ordinary flexes.
bitangents. To be tangent to the line $L:\{y=0\}$ at the point p_{0}, the coefficients of 1 and y in f must be zero. This is two conditions. Then to be tangent to L at three given points p_{0}, p_{1}, p_{2} imposes 6 conditions. A set of three points of L depends on three parameters, and a line depends on two parameters, giving us 5 parameters in all. Most curves don't have a tritangent. Similar reasoning takes care of bitangents in which one tangency is a flex.
1.10.13. Proposition. Let p be a point of an ordinary curve C, and let L be the tangent line at p.

If L is an ordinary tangent at p, then L^{*} is a smooth point of C^{*}.
If L is a bitangent, then L^{*} is a node of C^{*}.
If p is a flex, then L^{*} is a cusp of C^{*}.
proof. We refer to the map $C \xrightarrow{t} C^{*}$ from C to the dual curve 1.6 .3 . Because C is smooth, t is defined s at all points of C.

We dehomogenize the defining polynomial f by setting $z=1$, and choose affine coordinates, so that p is the point $(x, y, z)=(0,0,1)$, the tangent line L at p is the line $\{y=0\}$. Then L^{*} is the point $(u, v, w)=$ $(0,1,0)$. Let $\widetilde{f}(x, y)=f(x, y, 1)$. We solve $\widetilde{f}=0$ for $y=y(x)$ as an analytic function of x, as before. The tangent line L_{1} to C at a nearby point $p_{1}=\left(x_{1}, y_{1}\right)$ has the equation 1.6.11, and L_{1}^{*} is the point $(u, v, w)=\left(-y_{1}^{\prime}, 1, y_{1}^{\prime} x_{1}-y_{1}\right)$ of \mathbb{P}^{*} 1.6.12). Since there are no accidents, this path traces out all points of C^{*} near to L^{*} (Corollary 1.6.18).

If L is an ordinary tangent line, $y(x)$ will have a zero of order 2 at $x=0$. Then $u=-y^{\prime}$ will have a simple zero. So the path $\left(-y^{\prime}, 1, y^{\prime} x-y\right)$ is smooth at $x=0$, and therefore C^{*} is smooth at the origin.

If L is an ordinary bitangent, tangent to C at two points p and p^{\prime}, the reasoning given for an ordinary tangent shows that the images in C^{*} of small neighborhoods of p and p^{\prime} in C will be smooth at L^{*}. Their tangent lines p^{*} and $p^{\prime *}$ will be distinct, so p is a node.

Suppose that p is an ordinary flex point. Then, in the power series $y(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots$, the coefficients c_{0}, c_{1}, c_{2} are zero and since the flex is ordinary, $c_{3} \neq 0$. We may assume that $c_{3}=1$ and that $y(x)=x^{3}+\cdots$. Then, in the local equation $(u, v, w)=\left(-y^{\prime}, 1, y^{\prime} x-y\right)$ for the dual curve, $u=-3 x^{2}+\cdots$ and $w=2 x^{3}+\cdots$. Proposition 1.8 .11 tells us that the singularity at the origin is a cusp.

1.11 The Plücker Formulas

plucker
plform
some-pluckerformulas

The Plücker formulas compute the number of flexes and bitangents of an ordinary plane curve. The fact that there is a sfle formula for bitangents is particularly interesting. The bitangents aren't very easy to count directly.
1.11.1. Theorem: Plücker Formulas. Let C be an ordinary curve of degree d at least two, and let C^{*} be its dual curve. Let f and b denote the numbers of flex points and bitangents of C, and let d^{*}, δ^{*} and κ^{*} denote the degree, the numbers of nodes, and the number of cusps of C^{*}, respectively. Then:
(i) The dual curve C^{*} has no flexes or bitangents. Its singularities are nodes or cusps.
(ii) $d^{*}=d^{2}-d, \quad f=\kappa^{*}=3 d(d-2), \quad$ and $\quad b=\delta^{*}=\frac{1}{2} d(d-2)\left(d^{2}-9\right)$.
proof. (i) A bitangent or a flex on C^{*} would produce a singularity on the bidual $C^{* *}$, which is the smooth curve C.
(ii) The degree d^{*} was computed in Corollary 1.8.26 Bézout's Theorem counts the flex points: $f=3 d(d-$ 2) 1.10.6. The facts that $\kappa^{*}=f$ and $\delta^{*}=b$ are in Proposition 1.10.13. Thus $\kappa^{*}=3 d(d-2)$.

When we project C^{*} to \mathbb{P}^{1} from a generic point s of \mathbb{P}^{*}. The number of branch points that correspond to tangent lines through s at smooth points of C^{*} is the degree d of the bidual C 1.8.26.

Next, let $F(u, v, w)$ be the defining polynomial for C^{*}. The discriminant $\operatorname{Discr}_{w}(F)$ has degree $d^{* 2}-d^{*}$. Corollary 1.9 .12 describes the order of vanishing of the discriminant at the images of the d tangent lines through s, the δ nodes of C^{*}, and the κ cusps of C^{*}. It tells us that $d^{* 2}-d^{*}=d+2 \delta^{*}+3 \kappa^{*}$. Substituting the known values $d^{*}=d^{2}-d$, and $\kappa^{*}=3 d(d-2)$ into this formula gives us $\left(d^{2}-d\right)^{2}-\left(d^{2}-d\right)=$ $d+2 \delta^{*}+9 d(d-2)$, or

$$
2 \delta^{*}=d^{4}-2 d^{3}-9 d^{2}+18 d=d(d-2)\left(d^{2}-9\right)
$$

1.11.2. Examples.

(i) All curves of degree 2 and all smooth curves of degree 3 are ordinary.
(ii) A curve of degree 2 has no flexes and no bitangents. Its dual curve has degree 2 .
(iii) A smooth curve of degree 3 has 9 flexes and no bitangents. Its dual curve has degree 6 .
(iv) An ordinary curve C of degree 4 has 24 flexes and 28 bitangents. Its dual curve has degree 12 .

We will make use of the fact that a quartic curve has 28 bitangents in Chapter 4 (see 4.6.31)). The Plücker Formulas are rarely used for curves of larger degree, but the fact that there is such a formula is interesting.

1.11.3.

A Quartic Curve whose 28 Bitangents are Real (real locus)

To obtain this quartic, we added a small constant ϵ to the product of the quadratic equations of the two ellipses that are shown. The equation of the quartic is $\left(2 x^{2}+y^{2}-1\right)\left(x^{2}+2 y^{2}-1\right)+\epsilon=0$.

1.12 Exercises

chapporex
$x \sin$
xtwovarirred
xstaysirreducible
xcoordtriangle
xaffconictwo
xdiagform
xlociequal
xcubicsing
xtanconic
xeqforcu-
bic
xhessian
xhes-
sianZero
xsymmfnin-

dep

 xelementtranscxtdadds
1.12.1. Prove that a plane curve contains infinitely many points.
1.12.2. Prove that the path $x(t)=t, y(t)=\sin t$ doesn't lie on any plane algebraic curve in \mathbb{A}^{2}.
1.12.3. Using counting constants, prove that most (nonhomogeneous) polynomials in two or more variables are irreducible.
1.12.4. Let $f(x, y, z)$ be a homogeneous polynomial not divisible by z. Prove that f is irreducible if and only if $f(x, y, 1)$ is irreducible.
1.12.5. (i) Describe the points that lie in the interior of the coordinate triangle in Figure 1.2 .11
(ii) What can be deduced about the equation of the conic that is depicted in the figure?
1.12.6. Prove that all affine conics can be put into one of the forms 1.1 .6 by linear changes of variable, translations, and scalar multiplication.
1.12.7. (i) Classify conics in \mathbb{P}^{2} by writing an irreducible quadratic polynomial in three variables in the form $X^{t} A X$ where A is symmetric, and diagonalizing this quadratic form.
(ii) Quadrics in projective space \mathbb{P}^{n} are zero sets of irreducible homogeneous quadratic polynomials in x_{0}, \ldots, x_{n}. Classify quadrics in \mathbb{P}^{3}.
1.12.8. Let f and g be irreducible homogeneous polynomials in x, y, z. Prove that if the loci $\{f=0\}$ and $\{g=0\}$ are equal, then $g=c f$.
1.12.9. Without using Bézout's Theorem, prove that a plane cubic curve can have at most one singular point.
1.12.10. Let C be the plane projective curve defined by the equation $x_{0} x_{1}+x_{1} x_{2}+x_{2} x_{0}=0$, and let p be the point $(-1,2,2)$. What is the equation of the tangent line to C at p ?
1.12.11. Let C be a smooth cubic curve in \mathbb{P}^{2}, and let p be a flex point of C. Choose coordinates so that p is the point $(0,1,0)$ and the tangent line to C at p is the line $\{z=0\}$.
(i) Show that the coefficients of $x^{2} y, x y^{2}$, and y^{3} in the defining polynomial f of C are zero.
(ii) Show that with a suitable choice of coordinates, one can reduce the defining polynomial to the form $y^{2} z+x^{3}+a x z^{2}+b z^{3}$, and that $x^{3}+a x+b$ will be a polynomial with distinct roots.
(iii) Show that one of the coefficients a or b can be eliminated, and therefore that smooth cubic curves in \mathbb{P}^{2} depend on just one parameter.
1.12.12. Using Euler's formula together with row and column operations, show that the Hessian determinant is equal to $a \operatorname{det} H^{\prime}$, where

$$
H^{\prime}=\left(\begin{array}{ccc}
c f & f_{1} & f_{2} \\
f_{1} & f_{11} & f_{12} \\
f_{2} & f_{21} & f_{22}
\end{array}\right), \quad a=\left(\frac{d-1}{x_{0}}\right)^{2}, \quad \text { and } \quad c=\frac{d}{d-1}
$$

1.12.13. (i) Verify that the vanishing of the Hessian determinant isn't affected by a change of coordinates.
(ii) Prove that a smooth point of a curve is a flex point if and only if the Hessian determinant is zero, in this way: Given a smooth point p of X, choose coordinates so that $p=(0,0,1)$ and the tangent line ℓ is the line $\left\{x_{1}=0\right\}$. Then compute the Hessian.
1.12.14. Prove that the elementary symmetric functions $s_{1}=x_{1}+\cdots+x_{n}, \ldots, s_{n}=x_{1} \cdots x_{n}$ are algebaically independent.
1.12.15. Let K be a field extension of a field F, and let α be an element of K that is transcendental over F. Prove that every element of the field $F(\alpha)$ that isn't in F is transcendental over F.
1.12.16. Let $t d(K / F)$ denote the transcendence degree of a field extension K / F. Prove that, if $L \supset K \supset F$ are fields, then $t d(L / F)=t d(L / K)+t d(L / F)$.
1.12.17. Let $f\left(x_{0}, x_{1}, x_{2}\right)$ be a homogeneous polynomial of degree d, let $f_{i}=\frac{\partial f}{\partial x_{i}}$, and let C be the plane curve $\{f=0\}$. Use the following method to prove that the image in the dual plane of the set of smooth points of C is contained in a curve C^{*} : Let $N_{r}(k)$ be the dimension of the space of polynomials of degree $\leq k$ in r variables. Determine $N_{r}(k)$ for $r=3$ and $r=4$. Show that $N_{4}(k)>N_{3}(k d)$ if k is sufficiently large. Conclude that there is a nonzero polynomial $G\left(x_{0}, x_{1}, x_{2}\right)$ such that $G\left(f_{0}, f_{1}, f_{2}\right)=0$.
(This method doesn't give a good bound for the degree of C^{*}. One reason may be that f and its derivatives are related by Euler's Formula. It is tempting try using Euler's Formula to help compute the equation of C^{*}, but I haven't succeeded in getting anywhere that way.)
1.12.18. Let C be a smooth cubic curve in the plane \mathbb{P}^{2}, and let q be a generic point of \mathbb{P}^{2}. How many lines through q are tangent lines to C ?
1.12.19. Let X and Y be the surfaces in $\mathbb{A}_{x, y, z}^{3}$ defined by the equations $z^{3}=x^{2}$ and $y z^{2}+z+y=0$, respectively. The intersection $C=X \cap Y$ is a curve. Determine the equation of its projection to the x, y plane.
1.12.20. Complete the proof of Proposition 1.7 .11 by computing the resultant of the polynomials x^{m} and $x^{n}-1$.
1.12.21. Let f, g, and h be polynomials. Prove that
(i) $\operatorname{Res}(f, g h)=\operatorname{Res}(f, g) \operatorname{Res}(f, h)$.
(ii) If the degree of $g h$ is less than or equal to the degree of f, then $\operatorname{Res}(f, g)=\operatorname{Res}(f+g h, g)$.
1.12.22. With notation as in 1.7 .3 suppose that a_{0} and b_{0} are not zero, and let α_{i} and β_{j} be the roots of $f(x, 1)$ and $g(x, 1)$, respectively. Show that $\operatorname{Res}(f, g)=a_{0}^{n} b_{0}^{m} \Pi\left(\alpha_{i}-\beta_{j}\right)$.
1.12.23. Prove that a generic line meets a plane projective curve of degree d in d distinct points.
1.12.24. Let $f=x^{2}+x z+y z$ and $g=x^{2}+y^{2}$. Compute the resultant $\operatorname{Res}_{x}(f, g)$ with respect to the variable x.
1.12.25. Compute $\prod_{i \neq j}\left(\zeta^{i}-\zeta^{j}\right)$ when $\zeta=e^{2 \pi i / n}$.
1.12.26. If $F(x)=\Pi\left(x-\alpha_{i}\right)$, then $\operatorname{Discr}(F)= \pm \prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}$. Determine the sign.
1.12.27. Let $f=a_{0} x^{m}+a_{1} x^{m-1}+\cdots a_{m}$ and $g=b_{0} x^{n}+b_{1} x^{n-1}+\cdots b_{n}$, and let $R=\operatorname{Res}(f, g)$ be the resultant of these polynomials. Prove that
(i) R is a polynomial that is homogeneous in each of the sets of variables a and b, and determine its degree.
(ii) If one assigns weighted degree i to the coefficients a_{i} and b_{i}, then R is homogeneous, of weighted degree $m n$.
1.12.28. Let coordinates in \mathbb{A}^{4} be x, y, z, w, let Y be the variety defined by $z^{2}=x^{2}-y^{2}$ and $w(z-x)=1$, and let π denote projection from Y to (x, y)-space. Describe the fibres and the image of π.
1.12.29. Let p be a cusp of the curve C defined by a homogeneous polynomial f. Prove that there is just one line L through p such that the restriction of f to L has as zero of order >2 at p, and that the order of zero for that line is precisely 3 .
1.12.30. Describe the intersection of the node $x y=0$ at the origin with the unit 3 -sphere in \mathbb{A}^{2}.
1.12.31. Prove that the Fermat curve $C:\left\{x^{d}+y^{d}+z^{d}=0\right\}$ is connected by studying its projection to \mathbb{P}^{1} from the point $(0,0,1)$.
1.12.32. Let $p(t, x)=x^{3}+x^{2}+t$. Then $p(0, x)=x^{2}(x+1)$. Since x^{2} and $x+1$ are relatively prime, Hensel's Lemma predicts that p factors: $p=f g$, where g and g are polynomials in x whose coefficients are analytic functions in t, and f is monic, $f(0, x)=x^{2}$, and $g(0, x)=x+1$. Determine this factorization up to degree 3 in t. Do the same for the polynomial $t x^{4}+x^{3}+x^{2}+t$.
1.12.33. Let $f(t, y)=t y^{2}-4 y+t$.
(i) Solve $f=0$ for y by the quadratic formula, and sketch the real locus $f=0$ in the t, y plane.
(ii) What does Hensel's Lemma tell us about f ?
(iii) Factor f, modulo t^{4}.
1.12.34. Factor $f(t, x)=x^{3}+2 t x^{2}+t^{2} x+x+t$, modulo t^{2}.
xxhensellemxthreatpts
1.12.35. (i) Show that there is a conic C that passes through any five points of \mathbb{P}^{2}.
(ii) Use (i) to prove that a plane curve X of degree 4 can have at most three singular points.
xintconic 1.12.36. By parametrizing a conic C, show that C meets a plane curve X of degree d and distinct from C in $2 d$ points, when counted with multiplicity.
cus- 1.12.37. Using a generic projection to \mathbb{P}^{1}, determine the degree of the dual C^{*} of
pcurved-
(i) a plane cubic curve C with a cusp.
(ii) a plane curve C of degree 4 with three nodes.
xdualnode \quad 1.12.38. Let C be a cubic curve with a node. Determine the degree of the dual curve C^{*}, and the numbes of flexes, bitangents, nodes, and cusps of C and of C^{*}.
xcuspstan- 1.12.39. Prove that every cusp 1.8 .7 is analytically equivalent with the standard cusp.
dard
1.12.40. Prove that a plane curve is connected.
xdefsing 1.12.41. This is about the order of vanishing of the discriminant. With notation as in $\mathbf{1 . 9 . 1 0}$: If one perturbs the equation of C, the line L that meets C at p will be replaced by a finite set of nearby tangent lines. Choose particular examples for C in parts (i b,ce),(ii) of 1.9 .11) and compare the number of nearby tangents with the order of vanishing of the discriminant.
xsing-
sofcurve xthreecusps
1.12.42. Analyze the singularities of the plane curve $x^{3} y^{2}-x^{3} z^{2}+y^{3} z^{2}=0$.
1.12.43. Exhibit an irreducible homogeneous polynomial $f(x, y, z)$ of degree 4 whose locus of zeros is a curve with three cusps.
notonline
1.12.44. Let $f(x, y, z)$ be an irreducible homogeneous polynomial of degree >1. Prove that the locus $f=0$ in \mathbb{P}^{2} contains three points that do not lie on a line.

Chapter 2 AFFINE ALGEBRAIC GEOMETRY

affine

2.1	Rings and Modules
2.2	The Zariski Topology
2.3	Some Affine Varieties
2.4	The Nullstellensatz
2.5	The Spectrum
2.7	Localization
2.6	Morphisms of Affine Varieties
2.8	Finite Group Actions
2.9	Exercises

The next chapters are about varieties of arbitrary dimension. We will use some of the terminology, such as discriminant and transcendence degree, that was introduced in Chapter 1 , but many of the results in Chapter 1 won't be used again until we come back to curves in Chapter 8 .

We begin with a review of some basic facts about rings and modules, omitting proofs. Give the next section a quick read, but don't spend too much time on it. You can refer back as needed, and look up information on the concepts that aren't familiar.

2.1 Rings and Modules

By the word 'ring', we mean commutative ring: $a b=b a$, unless the contrary is stated explicitly. A commutative ring has two associative and commutative operations, addition and multiplication, that are related by the distributive law. It contains additive and multiplicative identity elements denoted by 0 and 1 , respectively and it is a group with the operation of addition,

As before, a domain is a ring that has no zero divisors and isn't the zero ring. An algebra is a ring that contains the field \mathbb{C} of complex numbers as a subring.

A set of elements $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ generates an algebra A if every element of A can be expressed, usually not uniquely, as a polynomial in $\alpha_{1}, \ldots, \alpha_{n}$, with complex coefficients. Another way to state this is that the set α generates A if the homomorphism $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \xrightarrow{\tau} A$ that evaluates a polynomial at $x=\alpha$ is surjective. If α generates A, then A will be isomorphic to the quotient $\mathbb{C}[x] / I$ of the polynomial algebra $\mathbb{C}[x]$, where I is the kernel of τ. A finite-type algebra is an algebra that can be generated by a finite set of elements.

We usually regard an R-module M as a left module, writing the scalar product of an element m of M by an element a of R as $a m$. However, it is sometimes convenient to view M as a right module, writing ma instead of $a m$. So we define $m a=a m$. This is permissible when the ring is commutative.

A homomorphism of modules $M \rightarrow N$ over a ring R may also be called an R-linear map. When we say that a map is linear without mentioning a ring, we mean a \mathbb{C}-linear map, a homomorphism of vector spaces.

The term 'generate' is used in a second way, for modules and ideals. A set $\left(m_{1}, \ldots, m_{k}\right)$ of elements of an R-module M generates M if every element of M can be obtained as a combination $r_{1} m_{1}+\cdots+r_{k} m_{k}$ with coefficients r_{i} in R, or that the homomorphism from the free R-module R^{k} to M that sends a vector $\left(r_{1}, \ldots, r_{k}\right)$ to the combination $r_{1} m_{1}+\cdots+r_{k} m_{k}$ is surjective. A set $\left(m_{1}, \ldots, m_{k}\right)$ that generates M is an R-basis if every element of M is a combination in a unique way, or if $r_{1} m_{1}+\cdots+r_{k} m_{k}=0$ only when $r_{1}=\cdots=r_{k}=0$. A module M that has a basis of order k is a free R-module, of rank k.

A set of elements $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ generates an ideal I of a ring R it generates I as s R-module, if every element of I can be written as a combination $r_{1} \alpha_{1}+\cdots+r_{k} \alpha_{k}$, with r_{i} in R.

A finite module M is one that is spanned, or generated, by some finite set of elements. A ideal I of a ring R is finitely generated if it is a finite R-module.

It is important not to confuse the concept of a finite module with that of a finite-type algebra. An R-module M is a finite module if every element of M can be written as a (linear) combination $r_{1} m_{1}+\cdots+r_{k} m_{k}$ of some finite set $\left\{m_{1}, \ldots, m_{k}\right\}$ of elements of M, with coefficients in the ring R. A finite-type algebra A is an algebra in which every element can be written as a polynomial $f\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ in some finite set $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ of elements of A, with complex coefficients.

If I and J are ideals of a ring R, the product ideal, which is denoted by $I J$, is the ideal whose elements are finite sums of products $\sum a_{i} b_{i}$, with $a_{i} \in I$ and $b_{i} \in J$. The product ideal is usually different from the product set whose elements are products $a b$. The product set may not be an ideal.

The power I^{k} of I is the product of k copies of I - the ideal generated by products of k elements of I. The intersection $I \cap J$ of two ideals is an ideal, and

$$
\begin{equation*}
(I \cap J)^{2} \subset I J \subset I \cap J \tag{2.1.1}
\end{equation*}
$$

An ideal M of a ring R is a maximal ideal if M isn't the unit ideal, $M<R$, and if there is no ideal I with $M<I<R$. An ideal M is a maximal ideal if and only if the quotient ring R / M is a field.

An ideal P of a R is a prime ideal if the quotient R / P is a domain. A maximal ideal is a prime ideal.
2.1.2. Lemma. Let P be an ideal of a ring R, not the unit ideal. The following conditions are equivalent.
(i) P is a prime ideal.
(ii) If a and b are elements of R, and if the product $a b$ is in P, then $a \in P$ or $b \in P$.
(iii) If A and B are ideals of R, and if the product ideal $A B$ is contained in P, then $A \subset P$ or $B \subset P$.

The following equivalent version of (iii) is sometimes convenient:
(iii') If A and B are ideals that contain P, and if the product ideal $A B$ is contained in P, then $A=P$ or $B=P$.
2.1.3. Lemma. Let $A \xrightarrow{\varphi} B$ be a ring homomorphism. The inverse image of a prime ideal of B is a prime ideal of A.

2.1.4. the Mapping Property of quotients.

(i) Let K be an ideal of a ring R, let $R \xrightarrow{\tau} \bar{R}$ denote the canonical map from R to the quotient ring $\bar{R}=R / K$, and let S be another ring. Ring homomorphisms $\bar{R} \xrightarrow{\bar{\varphi}} S$ correspond bijectively to ring homomorphisms $R \xrightarrow{\varphi} S$ whose kernels contain K, the correspondence being $\varphi=\bar{\varphi} \circ \tau$:

If $\operatorname{ker} \varphi=I$, then $\operatorname{ker} \bar{\varphi}=I / K$.
(ii) Let M and N be modules over a ring R, let L be a submodule of M, and let $M \xrightarrow{\tau} \bar{M}$ denote the canonical map from M to the quotient module $\bar{M}=M / L$. Homomorphisms of modules $\bar{M} \xrightarrow{\bar{\varphi}} N$ correspond bijectively to homomorphisms $M \xrightarrow{\varphi} N$ whose kernels contain L, the correspondence being $\varphi=\bar{\varphi} \circ \tau$. If $\operatorname{ker} \varphi=L$, then $\operatorname{ker} \bar{\varphi}=L / L$.

The word canonical that appears here is used often, to mean a construction that is the natural one in the given context. Exactly what this means is usually left unspecified.
corrthm
comax
quotofprod

noethr

basisthm
ascchcond

In the diagram displayed above, the maps $\bar{\varphi} \tau$ and φ from R to S are equal. This is referred to by saying that the diagram is commutative. A commutative diagram is one in which every map that can be obtained by composing its arrows depends only on the domain and range of that map. In these notes, almost all diagrams of maps are commutative. We won't mention commutativity most of the time.
2.1.11. Corollary. Every finite-type algebra is noetherian.

(2.1.12) the ascending chain condition

The condition that a ring R be noetherian can be rewritten in several ways that we review here.
Our convention is that, if X^{\prime} and X are sets, the notation $X^{\prime} \subset X$ means that X^{\prime} is a subset of X, while $X^{\prime}<X$ means that X^{\prime} is a subset that is distinct from X. A proper subset X^{\prime} of a set X is a nonempty subset distict from X, a set such that $\emptyset<X^{\prime}<X$.

A sequence X_{1}, X_{2}, \ldots, finite or infinite, of subsets of a set Z forms an increasing chain if $X_{n} \subset X_{n+1}$ for all n, equality $X_{n}=X_{n+1}$ being permitted. If $X_{n}<X_{n+1}$ for all n, the chain is strictly increasing.

When \mathcal{S} is a set whose elements are subsets of a set Z, we may refer to an element of \mathcal{S} as a member of \mathcal{S} to avoid confusion with the elements of Z. A member of \mathcal{S} is a subset of Z. So the words 'member' and 'element' are synonymous.

A member M of \mathcal{S} is a maximal member if it isn't properly contained in another member - if there is no member M^{\prime} of \mathcal{S} such that such that $M<M^{\prime}$. For example, the set of proper subsets of a set of five elements contains five maximal members, the subsets of order four. The set of finite subsets of the set of integers contains no maximal member.

A maximal ideal of a ring R is a maximal member of the set of ideals of R that are different from the unit ideal.
2.1.13. Proposition. The following conditions on a ring R are equivalent:
(i) Every ideal of R is finitely generated.
(ii) The ascending chain condition: Every strictly increasing chain $I_{1}<I_{2}<\cdots$ of ideals of R is finite.
(iii) Every nonempty set of ideals of R contains a maximal member.

It is customary, though ungrammatical, to say that a ring has the ascending chain condition if it has no infinite, strictly increasing sequence of ideals.

The next corollaries follow from the ascending chain condition, though the conclusions are true whether or not R is noetherian.
2.1.14. Corollary. Let R be a noetherian ring.
(i) Every ideal of R except the unit ideal is contained in a maximal ideal.
(ii) A nonzero ring R contains at least one maximal ideal.
(iii) An element of R that isn't in any maximal ideal is a unit - an invertible element of R.
2.1.15. Corollary. Let s_{1}, \ldots, s_{k} be elements that generate the unit ideal of a ring R. For any positive integer n, the powers $s_{1}^{n}, \ldots, s_{k}^{n}$ generate the unit ideal.
2.1.16. Proposition. Let R be a noetherian ring, and let M be a finite R-module.
(i) Every submodule of M is a finite module.
(ii) The set of submodules of M satisfies the ascending chain condition.
(iii) Every nonempty set of submodules of M contains a maximal member.

(2.1.17) exact sequences

noether-
conds
idealinmaximal
powersgenerate noetherianmodule
where K and C are the kernel and cokernel of d, respectively.
A module homomorphism $V^{\prime} \xrightarrow{f} M$ with cokernel C induces a homomorphism $C \rightarrow M$ if and only if the composed homomorphism $f d$ is zero. This follows from the mapping property Corollary 2.1.4(ii).

Let V be a finite-dimensional \mathbb{C}-module V (a vector space). The dual module V^{*} is the module of linear maps (homomorphisms of \mathbb{C}-modules) $V \rightarrow \mathbb{C}$. When $V \xrightarrow{d} V^{\prime}$ is a homomorphism of \mathbb{C}-modules, there is a canonical dual homomorphism $V^{*} \stackrel{d^{*}}{\leftrightarrows} V^{* *}$. The dual of the sequence 2.1 .19 is an exact sequence

$$
0 \leftarrow K^{*} \leftarrow V^{*} \stackrel{d^{*}}{\leftarrow} V^{\prime *} \leftarrow C^{*} \leftarrow 0
$$

So the dual of the kernel K is the cokernel of d^{*}, which is K^{*}, and the dual of the cokernel C is the kernel C^{*} of d^{*}. This is the reason for the term "cokernel".
snake
presentmodule
2.1.20. Proposition. (functorial property of the kernel and cokernel) Suppose given a diagram of R-modules

whose rows are exact sequences. Let $K, K^{\prime}, K^{\prime \prime}$ and $C, C^{\prime}, C^{\prime \prime}$ denote the kernels and cokernels of f, f^{\prime}, and $f^{\prime \prime}$, respectively.
(i) (kernel is left exact) The kernels form an exact sequence $K \rightarrow K^{\prime} \rightarrow K^{\prime \prime}$. If u is injective, the sequence $0 \rightarrow K \rightarrow K^{\prime} \rightarrow K^{\prime \prime}$ is exact.
(ii) (cokernel is right exact) The cokernels form an exact sequence $C \rightarrow C^{\prime} \rightarrow C^{\prime \prime}$. If v is surjective, the sequence $C \rightarrow C^{\prime} \rightarrow C^{\prime \prime} \rightarrow 0$ is exact.
(iii) (Snake Lemma) There is a canonical homomorphism $K^{\prime \prime} \xrightarrow{d} C$ that combines with the sequences above to form an exact sequence

$$
K \rightarrow K^{\prime} \rightarrow K^{\prime \prime} \xrightarrow{d} C \rightarrow C^{\prime} \rightarrow C^{\prime \prime}
$$

If u is injective and/or v is surjective, the sequence remains exact with zeros at the appropriate ends.

(2.1.21) presenting a module

Let R be a ring. A presentation of an R-module M is an exact sequence of modules of the form

$$
R^{\ell} \rightarrow R^{k} \rightarrow M \rightarrow 0
$$

The map $R^{\ell} \rightarrow R^{k}$ will be given by an $\ell \times k \quad R$-matrix, a matrix with entries in R, and that matrix determines the module M up to isomorphism as the kernel of that map.

Every finite module over a noetherian ring R has a presentation. To obtain a presentation, one chooses a finite set $m=\left(m_{1}, \ldots, m_{k}\right)$ of generators for the finite module M, so that multiplication by m defines a surjective map $R^{k} \rightarrow M$. Let N be the kernel of that map. Because R is noetherian, N is a finite module. Next, one chooses a finits set of generators of N, which gives us a surjective map $R^{\ell} \rightarrow N$. Composition of that map with the inclusion $N \subset R^{\ell}$ produces an exact sequence $R^{\ell} \rightarrow R^{k} \rightarrow M \rightarrow 0$.

(2.1.22) direct sum and direct product

Let M and N be modules over a ring R. The product module $M \times N$ is the product set, whose elements are pairs (m, n), with m in M and n in N. The laws of composition are the same as the laws for vectors: $\left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)=\left(m_{1}+m_{2}, n_{1}+n_{2}\right)$ and $r(m, n)=(r m, r n)$. There are homomorphisms $M \xrightarrow{i_{1}}$ $M \times N$ and $M \times N \xrightarrow{\pi_{1}} M$, defined by $i_{1}(m)=(m, 0)$ and $\pi_{1}(m, n)=m$, and similarly, homomorphisms $N \xrightarrow{i_{2}} M \times N$ and $M \times N \xrightarrow{\pi_{2}} N$. So i_{1} and i_{2} are inclusions, and π_{1} and π_{2} are projections.

The product module is characterized by this mapping property:

- Let T be an R-module. Homomorphisms $T \xrightarrow{\varphi} M \times N$ correspond bijectively to pairs of homomorphisms $T \xrightarrow{\alpha} M$ and $T \xrightarrow{\beta} N$. The homomorphism φ that corresponds to the pair α, β is $\varphi(m, n)=(\alpha m, \beta n)$, and when φ is given, the homomorphisms to M are $\alpha=\pi_{1} \varphi$ and $\beta=\pi_{2} \varphi$.

There is another product, the tensor product module $M \otimes_{R} N$ which is defined below.
The product module $M \times N$ is isomorphic to the direct sum $M \oplus N$. Elements of $M \oplus N$ can be written either as $m+n$, or with product notation, as (m, n).

The direct sum $M \oplus N$ is characterized by this mapping property:

- Let S be an R-module. Homomorphisms $M \oplus N \xrightarrow{\psi} S$ correspond bijectively to pairs u, v of homomorphisms $M \xrightarrow{u} S$ and $N \xrightarrow{v} S$. The homomorphism ψ that corresponds to the pair u, v is $\psi(m, n)=$ $u m+v n$, and when ψ is given, $u=\psi i_{1}$ and $v=\psi i_{2}$.

We use the direct product and direct sum notations interchangeably, but we note that the direct sum of an infinite set of modules isn't the same as the product.
localization

This is a preliminary dicsussion of an important construction. We will come back to it in Section 2.7
Let s be a nonzero element of a domain A. The ring $A\left[s^{-1}\right]$, obtained by adjoining an inverse of s to A is called a localization of A. If $A[z]$ denotes the ring of polynomials in one variable z, with coefficients in A, the localization is isomorphic to the quotient $A[z] /(s z-1)$ of $A[z]$ modulo the principal ideal generated by $s z-1$. The residue of z becomes the inverse of s. We will often denote this localization by A_{s}. If A is a finite-type domain, so is A_{s}.

(2.1.24)

localizing a module

Let A be a domain, and let M be an A-module. Let's regard M as a right module here. A torsion element of M is an element that is annihilated by some nonzero element s of $A: m s=0$. A nonzero element m such that $m s=0$ is an s-torsion element.

The set of all torsion elements of M is the torsion submodule of M, and a module whose torsion submodule is zero is torsion-free.

Let s be a nonzero element of a domain A. The localization M_{s} of an A-module M is defined in the natural way, as the A_{s}-module whose elements are equivalence classes of fractions $m / s^{r}=m s^{-r}$, with m in M and $r \geq 0$. An alternate notation for the localization M_{s} is $M\left[s^{-1}\right]$.

The only complication comes from the fact that M may contain s-torsion elements. If $m s=0$, then m must map to zero in M_{s}, because in M_{s}, we will have $m s s^{-1}=m$. To define M_{s}, one must to modify the equivalence relation, as follows: Two fractions $m_{1} s^{-r_{1}}$ and $m_{2} s^{-r_{2}}$ are defined to be equivalent if $m_{1} s^{r_{2}+n}=$ $m_{2} s^{r_{1}+n}$ when n is sufficiently large. This takes care of torsion, and M_{s} becomes an A_{s}-module. There is a homomorphism $M \rightarrow M_{s}$ that sends an element m to the fraction $m / 1$. If M is an s-torsion module, then $M_{s}=0$.

In this definition of localization, it isn't necessary to assume that $s \neq 0$. But if $s=0$, then $M_{s}=0$ for every module M.

(2.1.25)

tensor products

Let U and V be modules over a ring R. The tensor product $U \otimes_{R} V$ is an R-module that is generated by elements $u \otimes v$ called tensors, one for each u in U and each v in V. The elements of the tensor product are combinations $\sum_{1}^{k} r_{i}\left(u_{i} \otimes v_{i}\right)$ of tensors with coefficients in R.

The defining relations among the tensors are the bilinear relations:
bilinrels
colxrow
bilin
tensorbilin
and

$$
\begin{gather*}
\left(u_{1}+u_{2}\right) \otimes v=u_{1} \otimes v+u_{2} \otimes v, \quad u \otimes\left(v_{1}+v_{2}\right)=u \otimes v_{1}+u \otimes v_{2} \tag{2.1.26}\\
r(u \otimes v)=(r u) \otimes v=u \otimes(r v)
\end{gather*}
$$

for all u in U, v in V, and r in R. The symbol \otimes is used as a reminder that tensors are to be manipulated using these relations.

One can absorb a coefficient from R into either one of the factors of a tensor, so every element of $U \otimes_{R} V$ can be written as a finite sum $\sum u_{i} \otimes v_{i}$ with u_{i} in U and v_{i} in V.
2.1.27. Examples. (i) If U is the space of m dimensional (complex) column vectors, and V is the space of n-dimensional row vectors, then $U \otimes_{\mathbb{C}} V$ identifies naturally with the space of $m \times n$-matrices.
(ii) If U and V are free R-modules of ranks m and n, with bases $\left\{u_{1}, \ldots, u_{m}\right\}$ and $\left\{v_{1}, \ldots, v_{n}\right\}$, respectively, the tensor product $U \otimes_{R} V$ is a free R-module of rank $m n$, with basis $\left\{u_{i} \otimes v_{j}\right\}$. In contrast, the product module $U \times V$ is a free module of rank $m+n$, with basis $\left\{\left(u_{i}, 0\right)\right\} \cup\left\{\left(0, v_{j}\right)\right\}$.

There is an obvious map of sets

$$
\begin{equation*}
U \times V \xrightarrow{\beta} U \otimes_{R} V \tag{2.1.28}
\end{equation*}
$$

from the product set to the tensor product, that sends a pair (u, v) to the tensor $u \otimes v$. This map isn't a homomorphism of R-modules. The defining relations 2.1.26) show that β is R-bilinear, not R-linear.

The next corollary follows from the defining relations of the tensor product.
2.1.29. Corollary. Let U, V, and W be R-modules. Homomorphisms of R-modules $U \otimes_{R} V \rightarrow W$ correspond bijectively to R-bilinear maps $U \times V \rightarrow W$.

Thus the map $U \times V \xrightarrow{\beta} U \otimes_{R} V$ is a universal bilinear map. Any R-bilinear map $U \times V \xrightarrow{f} W$ to a module W can be obtained from a module homomorphism $U \otimes_{R} V \xrightarrow{\widetilde{f}} W$ by composition with the bilinear $\operatorname{map} \beta: \quad U \times V \xrightarrow{\beta} U \otimes_{R} V \xrightarrow{\widetilde{f}} W$.
2.1.30. Proposition. There are canonical isomorphisms

- $U \otimes_{R} R \approx U$, defined by $u \otimes r \leftrightarrow u r$
- $\left(U \oplus U^{\prime}\right) \otimes_{R} V \approx\left(U \otimes_{R} V\right) \oplus\left(U^{\prime} \otimes_{R} V\right)$, defined by $\left(u_{1}+u_{2}\right) \otimes v \leadsto u_{1} \otimes v+u_{2} \otimes v$
- $U \otimes_{R} V \approx V \otimes_{R} U$, defined by $u \otimes v \leftrightarrow \rightsquigarrow \otimes u$
- $\left(U \otimes_{R} V\right) \otimes_{R} W \approx U \otimes_{R}\left(V \otimes_{R} W\right)$, defined by $(u \otimes v) \otimes w$ ぃ $u \otimes(v \otimes w)$
2.1.31. Proposition. tensor product is right exact Let $U \xrightarrow{f} U^{\prime} \xrightarrow{g} U^{\prime \prime} \rightarrow 0$ be an exact sequence of R-modules. For any R-module V, the sequence

$$
U \otimes_{R} V \xrightarrow{f \otimes 1} U^{\prime} \otimes_{R} V \xrightarrow{g \otimes 1} U^{\prime \prime} \otimes_{R} V \rightarrow 0
$$

in which $[f \otimes 1](u \otimes v)=f(u) \otimes v$, is exact.
Tensor product isn't left exact. For example, if $R=\mathbb{C}[x]$, then $R / x R \approx \mathbb{C}$. There is an exact sequence $0 \rightarrow R \xrightarrow{x} R \rightarrow \mathbb{C} \rightarrow 0$. When we tensor with \mathbb{C} we get a sequence $0 \rightarrow \mathbb{C} \rightarrow \mathbb{C} \rightarrow \mathbb{C} \rightarrow 0$, in which the first map $\mathbb{C} \rightarrow \mathbb{C}$ is the zero map.
proof of Proposition 2.1.31. We suppose that an exact sequence of R-modules $U \xrightarrow{f} U^{\prime} \xrightarrow{g} U^{\prime \prime} \rightarrow 0$ and another R-module V are given. We are to prove that the sequence $U \otimes_{R} V \xrightarrow{f \otimes 1} U^{\prime} \otimes_{R} V \xrightarrow{g \otimes 1} U^{\prime \prime} \otimes_{R} V \rightarrow 0$ is exact. It is evident that the composition $(g \otimes 1)(f \otimes 1)$ is zero, and that $g \otimes 1$ is surjective. We must prove that $U^{\prime \prime} \otimes_{R} V$ is isomorphic to the cokernel of $f \otimes 1$.

Let C be the cokernel of $f \otimes 1$. The mapping property 2.1.4(ii) gives us a canonical map $C \xrightarrow{\varphi} U^{\prime \prime} \otimes_{R} V$ that we want to show is an isomorphism. To show this, we construct the inverse of φ. We choose an element
v of V, and form a diagram of R-modules

in which $U \times v$ denotes the module of pairs (u, v) with $u \in U$. It is isomorphic to U.
The rows in the diagram are exact sequences of modules. The vertical arrows β_{v} and β_{v}^{\prime} are obtained by restriction from the canonical bilinear maps 2.1.28. They are R-linear because v is held constant. The map γ_{v} is determined by the definition of the cokernel, because the composition of the maps in the top row of the diagram is zero. Putting the maps γ_{v} together for all v in V gives us a bilinear map $U \times V \rightarrow C$. That bilinear map induces a linear map $U \otimes_{R} V \rightarrow C$, the inverse of φ.
2.1.32. Corollary. Let U and V be modules over a domain R and let s be a nonzero element of R. Let R_{s} be the localization of $R V$.
(i) The localization U_{s} is isomorphic to $U \otimes_{R}\left(R_{s}\right)$.
(ii) Tensor product is compatible with localization: $U_{s} \otimes_{R_{s}} V_{s} \approx\left(U \otimes_{R} V\right)_{s}$
proof. (ii) The composition of the canonical maps $U \times V \rightarrow U_{s} \times V_{s} \rightarrow U_{s} \otimes_{R_{s}} V_{s}$ is R-bilinear. It defines an R-linear map $U \otimes_{R} V \rightarrow U_{s} \otimes_{R_{s}} V_{s}$. Since s is inverible in $U_{s} \otimes_{R_{s}} V_{s}$, this map extends to an R_{s}-linear map $\left(U \otimes_{R} V\right)_{s} \rightarrow U_{s} \otimes_{R_{s}} V_{s}$. Next, we define an R_{s}-bilinear map $U_{s} \times V_{s} \rightarrow\left(U \otimes_{R} V\right)_{s}$ by mapping a pair $\left(u s^{-m}, v s^{-n}\right)$ to $(u \otimes v) s^{-m+n}$. This bilinear map induces the inverse map $U_{s} \otimes_{R_{s}} V_{s} \rightarrow\left(U \otimes_{R} V\right)_{s}$.

(2.1.33) extension of scalars

Let $A \xrightarrow{\rho} B$ be a ring homomorphism. Extension of scalars is an operation that constructs an B-module from an A-module.

Let's write scalar multiplication on the right. So M will be a right A-module. Then $M \otimes_{A} B$ becomes a right B-module, scalar multiplication by $b \in B$ being defined by $\left(m \otimes b^{\prime}\right) b=m \otimes\left(b^{\prime} b\right)$. This gives the functor

$$
A \text {-modules } \xrightarrow{\otimes B} B \text {-modules }
$$

called the extension of scalars from A to B.

(2.1.34) restriction of scalars

If $A \xrightarrow{\rho} B$ is a ring homomorphism, a (left) B-module M can be made into an A-module by restriction of scalars. Scalar multiplication by an element a of A is defined by the formula

$$
\begin{equation*}
a m=\rho(a) m \tag{2.1.35}
\end{equation*}
$$

It is customary to denote a module and the one obtained by restriction of scalars by the same symbol. But when it seems advisable, one can denote a B-module M and the A-module obtained from M by restriction of scalars by ${ }_{B} M$ and ${ }_{A} M$, respectively. The additive groups of ${ }_{B} M$ and ${ }_{A} M$ are the same.

For example, a module over the prime field \mathbb{F}_{p} beomes a \mathbb{Z}-module by restriction of scalars. If \bar{a} denotes the residue of an integer a in \mathbb{F}_{p} and V is an \mathbb{F}_{p}-module, scalar multiplication in $\mathbb{Z}_{\mathbb{Z}} V$ is defined in the obvious way, by $a v=\bar{a} v$.

2.1.36. Lemma. (extension and restriction of scalars are adjoint operators)

Let $A \xrightarrow{\rho} B$ be a ring homomorphism, let M be an A-module, and let N be an B-module. Homomorphisms $M \xrightarrow{\varphi}{ }_{A} N$ of A-modules correspond bijectively to homomorphisms of B-modules $M \otimes_{A} B \xrightarrow{\psi}{ }_{B} N$.

This concludes our review of rings and modules.

2.2 The Zariski Topology

Affine algebraic geometry is a study of subsets of affine space that can be defined by systems of polynomial equations. Those subsets are the closed sets in the Zariski topology on \mathbb{A}^{n}, the Zariski closed sets. A Zariski open set is a set whose complement, the set of points not in U, is Zariski closed.

Let f_{1}, \ldots, f_{k} be polynomials in x_{1}, \ldots, x_{n}. The set of points of \mathbb{A}^{n} that solve the system of equations

$$
\begin{equation*}
f_{1}=0, \ldots, f_{k}=0 \tag{2.2.1}
\end{equation*}
$$

the locus of zeros of f, may be denoted by $V\left(f_{1}, \ldots, f_{k}\right)$ or by $V(f)$. Thus $V(f)$ is a Zariski closed set.
We use analogous notation for infinite sets. If \mathcal{F} is any set of polynomials, $V(\mathcal{F})$ denotes the set of points of affine space at which all elements of \mathcal{F} are zero. In particular, if I is an ideal of the polynomial ring, $V(I)$ denotes the set of points at which all elements of I vanish.

As before, the ideal I of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ generated by polynomials f_{1}, \ldots, f_{k} is the set of combinations $r_{1} f_{1}+\cdots+r_{k} f_{k}$ with polynomial coefficients r_{i}. Some notations for this ideal are $\left(f_{1}, \ldots, f_{k}\right)$ and (f). All elements of I vanish on the zero set $V(f)$, so $V(f)=V(I)$. The Zariski closed subsets of \mathbb{A}^{n} can also be described as the sets $V(I)$, where I is an ideal.

An ideal isn't determined by its zero locus. For one thing, all powers f^{k} of a polynomial f have the same zeros as f.
2.2.2. Lemma. Let I and J be ideals of the polynomial ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.
(i) If $I \subset J$, then $V(I) \supset V(J)$.
(ii) $V\left(I^{k}\right)=V(I)$.
(iii) $V(I \cap J)=V(I J)=V(I) \cup V(J)$.
(iv) If I_{ν} are ideals, then $V\left(\sum I_{\nu}\right)$ is the intersection $\bigcap V\left(I_{\nu}\right)$.
proof. (iii) Recall that $(I \cap J)^{2} \subset I J \subset I \cap J$. Then (i) and (ii) show that $V(I \cap J)=V(I J)$. Because I and J contain $I J, V(I J) \supset V(I) \cup V(J)$. To prove that $V(I J) \subset V(I) \cup V(J)$, we note that $V(I J)$ is the locus of common zeros of the products $f g$ with f in I and g in J. Suppose that a point p is a common zero: $f(p) g(p)=0$ for all f in I and all g in J. If there is an element f in I such that $f(p) \neq 0$, we must have $g(p)=0$ for every g in J, and then p is a point of $V(J)$. If $f(p)=0$ for all f in I, then p is a point of $V(I)$. In either case, p is a point of $V(I) \cup V(J)$.
2.2.3. To verify that the Zariski closed sets are the closed sets of a topology, one must show that

- the empty set and the whole space are Zariski closed,
- the intersection $\bigcap C_{\nu}$ of an arbitrary family of Zariski closed sets is Zariski closed, and
- the union $C \cup D$ of two Zariski closed sets is Zariski closed.

The empty set and the whole space are the zero sets of the elements 1 and 0 , respectively. The other conditions follow from Lemma2.2.2
2.2.4. Example. The proper Zariski closed subsets of the affine line, or of a plane affine curve, are the curves. We omit the proofs of these facts. The corresponding facts for loci in the projective line and the projective plane have been noted before. (See 1.3.4 and 1.3.15.)

2.2.5.

A Zariski closed subset of the affine plane (real locus)

A subset of a topological space X becomes a topological space with its induced topology. The closed (or open) subsets of a subset S in the induced topology are intersections $S \cap Y$, where Y is closed (or open) in X. When we speak of a subset S as a subspace of X, we mean that S is given the induced topology.

The topology induced on a subset S from the Zariski topology on \mathbb{A}^{n} will be called the Zariski topology on S too. A subset of S is closed in its Zariski topology if it has the form $S \cap Z$ for some Zariski closed subset Z of \mathbb{A}^{n}. If S is a Zariski closed subset of \mathbb{A}^{n}, a closed subset of S can also be described as a closed subset of \mathbb{A}^{n} that is contained in S.
2.2.6. Lemma. Let $\left\{X^{i}\right\}$ be a covering of a topological space X by open sets. A subset V of X is open if and only if $V \cap X^{i}$ is open in X^{i} for every i, and V is closed if and only if $V \cap X^{i}$ is closed in X^{i} for every i. In particular, if $\left\{\mathbb{U}^{i}\right\}$ is the standard open covering of \mathbb{P}^{n}, a subset V of \mathbb{P}^{n} is open (or closed) if and only if $V \cap \mathbb{U}^{i}$ is open (or closed) in \mathbb{U}^{i} for every i.

When two topologies T and T^{\prime} on a set X are given, T^{\prime} is said to be coarser than T if every closed set in T^{\prime} is closed in T i.e., if T^{\prime} contains fewer closed sets (or fewer open sets) than T, and T^{\prime} is finer than T if it contains more closed sets (or more open sets) than T. The Zariski topology is coarser than the classical topology, and the next proposition shows that it is much coarser.
2.2.7. Proposition. Every nonempty Zariski open subset of \mathbb{A}^{n} is dense and path connected in the classical topology.
proof. The (complex) line L through distinct points p and q of \mathbb{A}^{n} is a Zariski closed subset of \mathbb{A}^{n}, whose points can be written as $p+t(q-p)$, with t in \mathbb{C}. It corresponds bijectively to the affine t-line \mathbb{A}^{1}, and the Zariski closed subsets of L correspond to Zariski closed subsets of \mathbb{A}^{1}. They are the finite subsets, and L itself.

Let U be a nonempty Zariski open subset of \mathbb{A}^{n}, and let C be the Zariski closed complement of U. To show that U is dense in the classical topology, we choose distinct points p and q of \mathbb{A}^{n}, with p in U. If L is the line through p and $q, C \cap L$ will be a Zariski closed subset of L, a finite set that doesn't contain p. The complement of this finite set in L is $U \cap L$. In the classical topology, the closure of $U \cap L$ will be the whole line L. The closure of U contains the closure of $U \cap L$, which is L. So it contains q, and since q was arbitrary, the closure of U is \mathbb{A}^{n}.

Next, let L be the line through two points p and q of U. As before, $C \cap L$ will be a finite set of points. In the classical topology, L is a complex plane. The points p and q can be joined by a path in that plane that avoids a finite set.

Thus the Zariski topology is very different from the classical topology (1.3.17, but it is very useful in algebraic geometry. We will use the classical topology from time to time, but the Zariski topology will appear
more often. Because of this, we refer to a Zariski closed subset simply as a closed set. Similarly, by an open set we mean a Zariski open set. We will mention the adjective "Zariski" only for emphasis.
irrclosed
noethqcomp deschain
defirrspace
irredspacetwo

(2.2.8) irreducible closed sets

The fact that the polynomial algebra is a noetherian ring has an important consequence for the Zariski topology that we discuss here.

A topological space X has the descending chain condition on closed subsets there is no infinite, strictly descending chain $C_{1}>C_{2}>\cdots$ of closed subsets of X. (See 2.1.13).) The descending chain condition on closed subsets is equivalent with the ascending chain condition on open sets.

A noetherian space is a topological space that has the descending chain condition on closed sets. In a noetherian space, every nonempty family \mathcal{S} of closed subsets has a minimal member, one that doesn't contain any other member of \mathcal{S}, and every nonempty family of open sets has a maximal member. (See 2.1.12 .)
2.2.9. Lemma. A noetherian topological space is quasicompact: Every open covering has a finite subcovering.
2.2.10. Proposition. With its Zariski topology, \mathbb{A}^{n} is a noetherian space.
proof. Suppose that a strictly descending chain $C_{1}>C_{2}>\cdots$ of closed subsets of \mathbb{A}^{n} is given. Let I_{j} be the ideal of elements of the polynomial ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ that are identically zero on C_{j}. Then $C_{j}=V\left(I_{j}\right)$. The fact that $C_{j}>C_{j+1}$ implies that $I_{j}<I_{j+1}$. The ideals I_{j} form a strictly increasing chain. Since $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is noetherian, that chain is finite. Therefore the chain C_{j} is finite.
2.2.11. Definition. A topological space X is irreducible if it isn't the union of two proper closed subsets.

Another way to say that a topological space X is irreducible is this:
2.2.12. If C and D are closed subsets of an irreducible toplogical space X, and if $X=C \cup D$, then $X=C$ or $X=D$.

The concept of irreducibility is useful primarily for noetherian spaces. The only irreducible subsets of a Hausdorff space are its points. So, in the classical topology, the only irreducible subsets of affine space are points.

Irreducibility may seem analogous to connectedness. A topological space is connected if it isn't the union $C \cup D$ of two proper disjoint closed subsets. However, the condition that a space be irreducible is much more restrictive because, in Definition 2.2.11, the closed sets C and D aren't required to be disjoint. In the Zariski topology on the affine plane, lines are irreducible closed sets. The union of two intersecting lines is connected, but not irreducible.
2.2.13. Lemma. The following conditions on a topological space X are equivalent.

- X is irreducible.
- The intersection $U \cap V$ of nonempty open subsets is nonempty.
- Every nonempty open subset U of X is dense - its closure is X.

The closure of a subset U of a topological space X, is the smallest closed subset of X that contains U. The closure exists because it is the intersection of all closed subsets that contain S.
2.2.14. Lemma. Let Y be a subspace of a topological space X, let S be a subset of Y, and let C be the closure of S in X. The closure of S in Y is $C \cap Y$.
proof. Let \bar{S} be the closure of S in Y. It is is the intersection of the closed subsets of Y that contain S. A subset W is closed in Y if and only if $W=V \cap Y$ for some closed subset V of X, and if W contains S, so does V. The intersection of those subsets V is C. Then $\bar{S}=\bigcap W=\bigcap(V \cap Y)=(\bigcap V) \cap Y=C \cap Y$.
2.2.15. Lemma. (i) The closure \bar{Z} of a subspace Z of a topological space X is irreducible if and only if Z is irreducible.
(ii) A nonempty open subspace W of an irreducible space X is irreducible.
(iii) Let $Y \rightarrow X$ be a continuous map of topological spaces. The image of an irreducible subset D of Y is an irreducible subset of X.
proof. (i) Let Z be an irreducible subset of X, and suppose that its closure \bar{Z} is the union $\bar{C} \cup \bar{D}$ of two closed sets \bar{C} and \bar{D}. Then Z is the union of the sets $C=\bar{C} \cap Z$ and $D=\bar{D} \cap Z$, and they are closed in Z. Therefore Z is one of those two sets, say $Z=C$. Then $Z \subset \bar{C}$, and since \bar{C} is closed, $\bar{Z} \subset \bar{C}$. Because $\bar{C} \subset \bar{Z}$ as well, $\bar{C}=\bar{Z}$. Conversely, suppose that the closure \bar{Z} of a subset Z of X is irreducible, and that Z is a union $C \cup D$ of closed subsets. Then $\bar{Z}=\bar{C} \cup \bar{D}$, and therefore $\bar{Z}=\bar{C}$ or $\bar{Z}=\bar{D}$. If $\bar{Z}=\bar{C}$, then $Z=\bar{C} \cap Z=C$ (2.2.14). So Z is irreducible.
(ii) See (2.2.13). The closure of W is the irreducible space X.
(iii) Let D be an irreducible subspace of Y, and suppose that its image C is the union $C_{1} \cup C_{2}$ of closed subsets of C. The inverse image D_{i} of C_{i} is closed in D, and $D=D_{1} \cup D_{2}$. Therefore either $D_{1}=D$ or $D_{2}=D$. Say that $D_{1}=D$. Then the map $D \rightarrow C$ is surjective, and so is the map $D_{1} \rightarrow C_{1}$. Therefore $C_{1}=C$.
2.2.16. Theorem. In a noetherian topological space, every closed subset is the union of finitely many irreducible closed sets.
proof. If a closed subset C_{0} of a topological space X isn't a union of finitely many irreducible closed sets, then it isn't irreducible, so it is a union $C_{1} \cup D_{1}$, where C_{1} and D_{1} are proper closed subsets of C_{0}, and therefore closed subsets of X. Since C_{0} isn't a finite union of irreducible closed sets, C_{1} and D_{1} cannot both be finite unions of irreducible closed sets. Say that C_{1} isn't such a union. We have the beginning $C_{0}>C_{1}$ of a chain of closed subsets. We repeat the argument, replacing C_{0} by C_{1}, and we continue in this way, to construct an infinite, strictly descending chain $C_{0}>C_{1}>C_{2}>\cdots$. So X isn't a noetherian space.
2.2.17. Definition. An affine variety is an irreducible closed subset of affine space \mathbb{A}^{n}.

Theorem 2.2.16 tells us that every closed subset of \mathbb{A}^{n} is a finite union of affine varieties. Since an affine variety is irreducible, it is connected in the Zariski topology. An affine variety is also connected in the classical topology, but this isn't easy to prove. We may not get to the proof.

(2.2.18) noetherian induction

In a noetherian space Z one can use noetherian induction in proofs. Suppose that a statement Σ is to be proved for every closed subvariety X of Z. It suffices to prove Σ for X under the assumption that it is true for every closed subvariety that is a proper subset of X. Or, to prove a statement Σ for every closed subset X of Z, it suffices to prove it for X under the assumption that Σ is true for every proper closed subset of X.

The justification of noetherian induction is similar to the justification of complete induction. Let \mathcal{S} be the family of closed subvarieties for which Σ is false. If \mathcal{S} isn't empty, it will contain a minimal member X. Then Σ will be true for every proper closed subvariety of X, etc.

(2.2.19) the coordinate algebra of a variety

Let I be an ideal of R. The radical of I of is the set of elements α of R such that some power α^{r} is in I. It is an ideal that contains I. The radical will be denoted by $\operatorname{rad} I$:

$$
\begin{equation*}
\operatorname{rad} I=\left\{\alpha \in R \mid \alpha^{r} \in I \text { for some } r>0\right\} \tag{2.2.20}
\end{equation*}
$$

An ideal that is equal to its radical is a radical ideal. A prime ideal is a radical ideal.
2.2.21. Lemma. (i) An ideal I of a noetherian ring R contains a power of its radical.
(ii) If I is an ideal of the polynomial ring $\mathbb{C}[x]$, then $V(I)=V(\operatorname{rad} I)$.
proof. (i) Since R is noetherian, $\operatorname{rad} I$ is generated by a finite set of elements $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$, and for large r, α_{i}^{r} is in I. We can use the same large integer r for every i. A monomial $\beta=\alpha_{1}^{e_{1}} \cdots \alpha_{k}^{e_{k}}$ of sufficiently large degree n in α will be divisible α_{i}^{r} for at least one i, and therefore it will be in I. The monomials of degree n generate $(\operatorname{rad} I)^{n}$, so $(\operatorname{rad} I)^{n} \subset I$.
defcoordalg
somevarieties ptvar

Consequently, if I and J are ideals and if $\operatorname{rad} I=\operatorname{rad} J$, then $V(I)=V(J)$. The converse of this statement is also true: If $V(I)=V(J)$, then $\operatorname{rad} I=\operatorname{rad} J$. This is a consequence of the Strong Nullstellensatz that is proved below (see 2.4.9).

Because $(I \cap J)^{2} \subset I J \subset I \cap J$,

$$
\begin{equation*}
\operatorname{rad}(I J)=\operatorname{rad}(I \cap J) \tag{2.2.22}
\end{equation*}
$$

Also, $\operatorname{rad}(I \cap J)=(\operatorname{rad} I) \cap(\operatorname{rad} J)$. Therefore $V(\operatorname{rad}(I \cap J))=V(I) \cup V(J)$.
Recall that $V(P)$ denotes the set of points of affine space at which all elements of P vanish.
2.2.23. Proposition. The affine varieties in \mathbb{A}^{n} are the sets $V(P)$, where P is a prime ideal of the polynomial algebra $\mathbb{C}[x]=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. If P is a radical ideal of $\mathbb{C}[x]$, then $V(P)$ is an affine variety if and only if P is a prime ideal.

We will use Proposition 2.2 .23 in the next section, where we give a few examples of varieties, but we defer the proof to Section 2.5, where the proposition will be proved in a more general form. (See Proposition 2.5.13).) $V(P)$ in \mathbb{A}^{n}. The coordinate algebra of V is the quotient algebra $A=\mathbb{C}[x] / P$.

Geometric properties of the variety are reflected in algebraic properties of its coordinate algebra and vice versa. In a primitive sense, one can regard the geometry of an affine variety V as given by closed subsets and incidence relations - the inclusion of one closed set into another, as when a point lies on a line. A finer study of the geometry takes into account other things, tangency, for instance, but it is reasonable to begin by studying incidences $C^{\prime} \subset C$ among closed subvarieties. Such incidences translate into inclusions $P^{\prime} \supset P$ in the opposite direction among prime ideals.

2.3 Some affine varieties

This section contains a few simple examples of varieties.
2.3.1. A point $p=\left(a_{1}, \ldots, a_{n}\right)$ of affine space \mathbb{A}^{n} is irreducible, so it is a variety. It is the set of solutions of the n equations $x_{i}-a_{i}=0, i=1, \ldots, n$. The polynomials $x_{i}-a_{i}$ generate a maximal ideal in the polynomial algebra $\mathbb{C}[x]$, and a maximal ideal is a prime ideal. We will denote the maximal ideal that corresponds to the point p by \mathfrak{m}_{p}. It is the kernel of the substitution homomorphism $\pi_{p}: \mathbb{C}[x] \rightarrow \mathbb{C}$ that evaluates a polynomial $g\left(x_{1}, \ldots, x_{n}\right)$ at $p: \quad \pi_{p}(g)=g\left(a_{1}, \ldots, a_{n}\right)=g(p)$.

The coordinate algebra of the point p is the quotient $\mathbb{C}[x] / \mathfrak{m}_{p}$. It is called the residue field at p, and it will be denoted by $k(p)$. The residue field $k(p)$ is isomorphic to the image of π_{p}, the field of complex numbers, but it is a particular quotient of the polynomial ring.
2.3.2. The varieties in the affine line \mathbb{A}^{1} are its points and the whole line \mathbb{A}^{1}. The varieties in the affine plane \mathbb{A}^{2} are points, plane affine curves, and the whole plane.

This is true because the varieties correspond to the prime ideals of the polynomial ring. The prime ideals of $\mathbb{C}\left[x_{1}, x_{2}\right]$ are the maximal ideals, the principal ideals generated by irreducible polynomials, and the zero ideal. The proof is an exercise.
2.3.3. The set X of solutions of a single irreducible polynomial equation $f_{1}\left(x_{1}, \ldots, x_{n}\right)=0$ in \mathbb{A}^{n} is a variety called an affine hypersurface.

A hypersurface in the affine plane \mathbb{A}^{2} is a plane affine curve. The special linear group $S L_{2}$, the group of complex 2×2 matrices with determinant 1 , is a hypersurface in \mathbb{A}^{4}. It is the locus of zeros of the irreducible polynomial $x_{11} x_{22}-x_{12} x_{21}-1$.

The reason that an affine hypersurface is a variety is that an irreducible element of a unique factorization domain is a prime element, and a prime element generates a prime ideal. The polynomial ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is a unique factorization domain.
2.3.4. A line in the plane, the locus of a linear equation $a x+b y=c$, is a plane affine curve. Its coordinate algebra, which is $\mathbb{C}[x, y] /(a x+b y-c)$, is isomorphic to a polynomial ring in one variable. Every line is isomorphic to the affine line \mathbb{A}^{1}.
2.3.5. Let $p=\left(a_{1}, \ldots, a_{n}\right)$ and $q=\left(b_{1}, \ldots, b_{n}\right)$ be distinct points of \mathbb{A}^{n}. The point pair (p, q) isn't irreducible, so it isn't a variety. It is the closed set defined by the system of n^{2} equations $\left(x_{i}-a_{i}\right)\left(x_{j}-b_{j}\right)=0$, $1 \leq i, j \leq n$, and the ideal I generated by the polynomials $\left(x_{i}-a_{i}\right)\left(x_{j}-b_{j}\right)$ isn't a prime ideal. The next corollary, which follows from the Chinese Remainder Theorem 2.1.7. describes that ideal:
2.3.6. Corollary. The ideal I of polynomials that vanish on a point pair p, q is the product $\mathfrak{m}_{p} \mathfrak{m}_{q}$ of the maximal ideals at those points, and the quotient algebra $\mathbb{C}[x] / I$ is isomorphic to the product algebra $\mathbb{C} \times \mathbb{C}$.

2.4 Hilbert's Nullstellensatz

The Hilbert Nullstellesatz establishes the fundamental relation between affine algebraic geometry and algebra. It identifies the points of an affine variety with maximal ideals.
2.4.1. Nullstellensatz (version 1). Let $\mathbb{C}[x]$ be the polynomial algebra in the variables x_{1}, \ldots, x_{n}. There are bijective correspondences between the following sets:

- points p of the affine space \mathbb{A}^{n},
- algebra homomorphisms $\pi_{p}: \mathbb{C}[x] \rightarrow \mathbb{C}$,
- maximal ideals \mathfrak{m}_{p} of $\mathbb{C}[x]$.

The homomorphism π_{p} evaluates a polynomial at a point p of \mathbb{A}^{n}. If $p=\left(a_{1}, \ldots, a_{n}\right)$, then $\pi_{p}(g)=g(p)=$ $g\left(a_{1}, \ldots ., a_{n}\right)$. The maximal ideal \mathfrak{m}_{p} is the kernel of π_{p}. It is the ideal generated by the linear polynomials $x_{1}-a_{1}, \ldots, x_{n}-a_{n}$.

It is obvious that every algebra homomorphism $\mathbb{C}[x] \rightarrow \mathbb{C}$ is surjective, so its kernel is a maximal ideal. It isn't obvious that every maximal ideal of $\mathbb{C}[x]$ is the kernel of such a homomorphism. The proof can be found manywhere ${ }^{1}$

The Nullstellensatz gives a way to describe the set $V(I)$ of zeros of an ideal I in affine space in terms of maximal ideals. The points of $V(I)$ are those at which all elements of I vanish - the points p such that I is contained in \mathfrak{m}_{p}.

$$
\begin{equation*}
V(I)=\left\{p \in \mathbb{A}^{n} \mid I \subset \mathfrak{m}_{p}\right\} \tag{2.4.2}
\end{equation*}
$$

2.4.3. Proposition. Let I be an ideal of the polynomial ring $\mathbb{C}[x]$. If the zero locus $V(I)$ is empty, then I is the unit ideal.
proof. Every ideal I except the unit ideal is contained in a maximal ideal.
2.4.4. Nullstellensatz (version 2). Let A be a finite-type algebra. There are bijective correspondences between the following sets:

- algebra homomorphisms $\bar{\pi}: A \rightarrow \mathbb{C}$,
- maximal ideals $\overline{\mathfrak{m}}$ of A.

The maximal ideal $\overline{\mathfrak{m}}$ that corresponds to a homomorphism $\bar{\pi}$ is the kernel $o, \bar{\pi}$.
If A is presented as a quotient of a polynomial ring, say $A \approx \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I$, then these sets also correspond bijectively to points of the set $V(I)$ of zeros of I in \mathbb{A}^{n}.

The symbol \approx stands for an isomorphism.
As before, a finite-type algebra is an algebra that can be generated by a finite set of elements. A presentation of a finite-type algebra A is an isomorphism of A with a quotient $\left.\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\right] / I$ of a polynomial ring. (This isn't the same as a presentation of a module (2.1.21.)
proof of version 2 of the Nullstellensatz. We choose a presentation of A as a quotient of a polynomial ring, to identify A with a quotient $\mathbb{C}[x] / I$. The Correspondence Theorem tells us that maximal ideals of A correspond to maximal ideals of $\mathbb{C}[x]$ that contain I. Those maximal ideals correspond to points of $V(I)$.

[^0]Let τ denote the canonical homomorphism $\mathbb{C}[x] \rightarrow A$.
polyringtoA

The Mapping Property 2.1.4, applied to τ, tells us that homomorphisms $A \xrightarrow{\bar{\pi}} \mathbb{C}$ correspond to homomorphisms $\mathbb{C}[x] \xrightarrow{\pi} \mathbb{C}$ whose kernels contain I. Those homomorphisms also correspond to points of $V(I)$.
2.4.6. Strong Nullstellensatz. Let I be an ideal of the polynomial algebra $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, and let V denote its locus of zeros in affine space: $V=V(I)$. If a polynomial $g(x)$ vanishes at every point of V, then I contains a power of g.
proof. This is Rainich's beautiful proof. Let $g(x)$ be a polynomial that is identically zero on V. We are to show that I contains a power of g. The zero polynomial is in I, so we may assume that g isn't zero.

The Hilbert Basis Theorem tells us that I is a finitely generated ideal. Let $f=\left(f_{1}, \ldots, f_{k}\right)$ be a set of generators. We introduce a new variable y. In the $n+1$-dimensional affine space with coordinates $\left(x_{1}, \ldots, x_{n}, y\right)$, let W be the locus of solutions of the $k+1$ equations

$$
\begin{equation*}
f_{1}(x)=0, \ldots, f_{k}(x)=0 \quad \text { and } \quad g(x) y-1=0 \tag{2.4.7}
\end{equation*}
$$

Suppose that we have a solution of the equations $f(x)=0$, say $\left(x_{1}, \ldots, x_{n}\right)=\left(a_{1}, \ldots, a_{n}\right)$. Then a is a point of V, and our hypothesis tells us that $g(a)=0$ too. There can be no b such that $g(a) b=1$. So there is no point $\left(a_{1}, \ldots, a_{n}, b\right)$ that solves the equations 2.4.7): The locus W is empty. Proposition 2.4.3 tells us that the polynomials $f_{1}, \ldots, f_{k}, g y-1$ generate the unit ideal of $\mathbb{C}\left[x_{1}, \ldots, x_{n}, y\right]$. There are polynomials $p_{1}(x, y), \ldots, p_{k}(x, y)$ and $q(x, y)$ such that

$$
\begin{equation*}
p_{1} f_{1}+\cdots+p_{k} f_{k}+q(g y-1)=1 \tag{2.4.8}
\end{equation*}
$$

The ring $R=\mathbb{C}[x, y] /(g y-1)$ can be described as the one obtained by adjoining an inverse of g to the polynomial ring $\mathbb{C}[x]$. The residue of y becomes the inverse. Since g isn't zero, $\mathbb{C}[x]$ is a subring of R. In $R, g y-1=0$, and the equation $(2.4 .8)$ becomes $p_{1} f_{1}+\cdots+p_{k} f_{k}=1$. When we multiply both sides of this equation by a large power g^{N} of g, we can use the equation $g y=1$, which is true in R, to eliminate all occurences of y in the polynomials $p_{i}(x, y)$. Let $h_{i}(x)$ denote the polynomial in x that is obtained by eliminating y from $g^{N} p_{i}$. Then

$$
h_{1}(x) f_{1}(x)+\cdots+h_{k}(x) f_{k}(x)=g^{N}(x)
$$

is a polynomial equation that is true in R and in its subring $\mathbb{C}[x]$. Since f_{1}, \ldots, f_{k} are in I, this equation shows that g^{N} is in I.
2.4.9. Corollary. Let $\mathbb{C}[x]$ denote the polynomial ring in the variables x_{1}, \ldots, x_{n}.
(i) Let P be a prime ideal of $\mathbb{C}[x]$, and let $V=V(P)$ be the variety of zeros of P in \mathbb{A}^{n}. If a polynomial g vanishes at every point of V, then g is an element of P.
(ii) Let f be an irreducible polynomial in $\mathbb{C}[x]$. If a polynomial g vanishes at every point of $V(f)$, then f divides g.
(iii) Let I and J be ideals of $\mathbb{C}[x]$. Then $V(I) \supset V(J)$ if and only if $\operatorname{rad} I \subset \operatorname{rad} J$, and $V(I)>V(J)$ if and only if $\operatorname{rad} I>\operatorname{rad} J$ (see (2.2.20)).

2.4.10. Examples.

(i) Let I be the ideal of the polynomial algebra $\mathbb{C}[x, y]$ generated by y^{5} and $y^{2}-x^{3}$. In the affine plane, the origin $(0,0)$, is the only common zero of these polynomials, and the polynomial x also vanishes at the origin. The Strong Nullstellensatz predicts that I contains a power of x. This is verified by the following equation:

$$
y y^{5}-\left(y^{4}+y^{2} x^{3}+x^{6}\right)\left(y^{2}-x^{3}\right)=x^{9}
$$

(ii) We may regard pairs A, B of $n \times n$ matrices as points of an affine space \mathbb{A} of dimension $2 n^{2}$, with coordinates $a_{i j}, b_{i j}, 1 \leq i, j \leq n$. The pairs of commuting matrices $(A B=B A)$ form a closed subset of \mathbb{A}, the locus of common zeros of the n^{2} polynomials $c_{i j}$ that compute the entries of the matrix $A B-B A$:

$$
\begin{equation*}
c_{i j}(a, b)=\sum_{\nu} a_{i \nu} b_{\nu j}-b_{i \nu} a_{\nu j} \tag{2.4.11}
\end{equation*}
$$

If I is the ideal of the polynomial algebra $\mathbb{C}[a, b]$ generated by the set of polynomials $\left\{c_{i j}\right\}$, then $V(I)$ is the set of pairs of commuting complex matrices. The Strong Nullstellensatz asserts that, if a polynomial $g(a, b)$ vanishes on every pair of commuting matrices, some power of g is in I. Is g itself in I ? It is a famous conjecture that I is a prime ideal. If so, g would be in I. Proving the conjecture would establish your reputation as a mathematician, but I don't recommend spending very much time on it right now.

2.5 The Spectrum

When a finite-type domain A is presented as a quotient of a polynomial ring $\mathbb{C}[x] / P$, where P is a prime ideal, A becomes the coordinate algebra of the variety $V(P)$ in affine space. The points of $V(P)$ correspond to maximal ideals of A and also to homomorphisms $A \rightarrow \mathbb{C}$.

The Nullstellensatz allows us to associate a set of points to a finite-type domain A without reference to a presentation. We can do this because the maximal ideals of A and the homomorphisms $A \rightarrow \mathbb{C}$ don't depend on a presentation. We replace the variety $V(P)$ by an abstract set of points, the spectrum of A, that we denote by $\operatorname{Spec} A$ and call an affine variety. We put one point p into the spectrum for every maximal ideal of A, and then we turn around and denote the maximal ideal that corresponds to a point p by $\overline{\mathfrak{m}}_{p}$. The Nullstellensatz tells us that p also corresponds to a homomorphism $A \rightarrow \mathbb{C}$ whose kernel is $\overline{\mathfrak{m}}_{p}$. We denote that homomorphism by $\bar{\pi}_{p}$. In analogy with $2.2 .24, A$ is called the coordinate algebra of the affine variety $\operatorname{Spec} A$. To work with Spec A, we may interpret its points as maximal ideals or as homomorphisms to \mathbb{C}, whichever is convenient.

When defined in this way, the variety $\operatorname{Spec} A$ isn't embedded into any affine space, but because A is a finite-type domain, it can be presented as a quotient $\mathbb{C}[x] / P$, where P is a prime ideal. When this is done, points of $\operatorname{Spec} A$ correspond to points of the subset $V(P)$ in \mathbb{A}^{n}.

Even when the coordinate ring A of an affine variety X is presented as $\mathbb{C}[x] / P$, we will often denote X by Spec A rather than by $V(P)$.
2.5.1. Note. In modern terminology, the word "spectrum" is usually used to denote the set of prime ideals of a ring. This becomes important when one studies rings that aren't finite-type algebras. When working with finite-type domains, there are enough maximal ideals. The other prime ideals aren't needed to fill out $\operatorname{Spec} A$, so we don't include them.

Let $X=\operatorname{Spec} A$. An element α of A defines a (complex-valued) function on X that we denote by the same letter α. The definition of the function α is as follows: A point p of X corresponds to a homomorphism $A \xrightarrow{\bar{\pi}_{p}} \mathbb{C}$. By definition The value $\alpha(p)$ of the function α at p is $\bar{\pi}_{p}(\alpha)$:

$$
\begin{equation*}
\alpha(p) \stackrel{\text { def }}{=} \bar{\pi}_{p}(\alpha) \tag{2.5.2}
\end{equation*}
$$

Thus the kernel of $\bar{\pi}_{p}$, which is $\overline{\mathfrak{m}}_{p}$, is the set of elements α of the coordinate algebra A at which the value of α is 0 :

$$
\overline{\mathfrak{m}}_{p}=\{\alpha \in A \mid \alpha(p)=0\}
$$

The functions defined in this way by the elements of A are called the regular functions on X. (See Proposition 2.6.2 below.)

When A is a polynomial algebra $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, the function defined by a polynomal $g(x)$ is simply the usual polynomial function, because π_{p} is defined by evaluating a polynomial at $p: g(p)=\pi_{p}(g)$ 2.3.1.
gpequalsalphap redefinefn regfndetelt ztoponvar
locusin-
spec zerolocusin X
empty
nobar
inter-
sprimes
2.5.3. Lemma. Let A be a quotient $\mathbb{C}[x] / P$ of the polynomial ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, modulo a prime ideal P, so that $\operatorname{Spec} A$ identifies with the closed subset $V(P)$ of \mathbb{A}^{n}. Then a point p of $\operatorname{Spec} A$ becomes a point of \mathbb{A}^{n} : $p=\left(a_{1}, \ldots, a_{n}\right)$. When an element α of A is represented by a polynomial $g(x)$, the value of α at p can be obtained by evaluating $g: \quad \alpha(p)=g(p)=g\left(a_{1}, \ldots, a_{n}\right)$.

So the value $\alpha(p)$ at a point p of $\operatorname{Spec} A$ can be obtained by evaluating a suitable polynomial g. However, unless P is the zero ideal, that polynomial won't be unique.
proof of Lemma 2.5.3. The point p of $\operatorname{Spec} A$ gives us a diagram 2.4.5, with $\pi=\pi_{p}$ and $\bar{\pi}=\bar{\pi}_{p}$, and where τ is the canonical map $\mathbb{C}[x] \rightarrow A$. Then $\alpha=\tau(g)$, and

$$
\begin{equation*}
g(p) \stackrel{\text { def }}{=} \pi_{p}(g)=\bar{\pi}_{p} \tau(g)=\bar{\pi}_{p}(\alpha) \stackrel{\text { def }}{=} \alpha(p) . \tag{2.5.4}
\end{equation*}
$$

2.5.5. Lemma. The regular functions determined by distinct elements α and β of A are distinct. In particular, the only element α of A that is zero at all points of $\operatorname{Spec} A$ is the zero element.
proof. We replace α by $\alpha-\beta$. Then what is to be shown is that, if the function determined by an element α is the zero function, then α is the zero element.

We present A as $\mathbb{C}[x] / P, x=x_{1}, \ldots, x_{n}$, where P is a prime ideal. Let X be the locus of zeros of P in \mathbb{A}^{n}. Corollary $2.4 .9(i)$ tells us that P is the ideal of all elements that are zero on X. Let $g(x)$ be a polynomial that represents α. If p is a point of X, and if $\alpha(p)=0$, then $g(p)=0$. So if α is the zero function, then g is in P, and therefore $\alpha=0$.

(2.5.6) the Zariski topology on an affine variety

Let $X=\operatorname{Spec} A$ be an affine variety with coordinate algebra A. An ideal \bar{J} of A defines a locus in X, a closed subset, that we denote by $V(\bar{J})$, using the same notation as for loci in affine space. The points of $V(\bar{J})$ are the points of X at which all elements of \bar{J} vanish. This is analogous to 2.4.2;:

$$
\begin{equation*}
V(\bar{J})=\left\{p \in \operatorname{Spec} A \mid \bar{J} \subset \overline{\mathfrak{m}}_{p}\right\} \tag{2.5.7}
\end{equation*}
$$

2.5.8. Lemma. Let A be a finite-type domain that is presented as $A=\mathbb{C}[x] / P$. An ideal \bar{J} of A corresponds to an ideal J of $\mathbb{C}[x]$ that contains P, and $\bar{J}=J / P$. Let $V(J)$ denote the zero locus of J in \mathbb{A}^{n}. When we regard Spec A as a subvariety of \mathbb{A}^{n}, the loci $V(\bar{J})$ in $\operatorname{Spec} A$ and $V(J)$ in \mathbb{A}^{n} will be equal.
2.5.9. Proposition. Let \bar{J} be an ideal of a finite-type domain A. The zero set $V(\bar{J})$ in $X=\operatorname{Spec} A$ is empty if and only if \bar{J} is the unit ideal of A. If X is empty, then A is the zero ring.
proof. The only ideal that isn't contained in a maximal ideal is the unit ideal.
2.5.10. Note. We have put bars on the symbols $\overline{\mathfrak{m}}, \bar{\pi}$, and \bar{J} in this section up to now, in order to distinguish ideals of A from ideals of $\mathbb{C}[x]$ and homomorphisms $A \rightarrow \mathbb{C}$ from homomorphisms $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{C}$. From now on we will put bars over the letters only when there is a danger of confusion. Most of the time, we will drop the bars, and write \mathfrak{m}, π, and J instead of $\overline{\mathfrak{m}}, \bar{\pi}$, and \bar{J}.
2.5.11. Proposition. Let I be an ideal of noetherian ring R. The radical of I is the intersection of the prime ideals of R that contain I.
proof. Let x be an element of $\operatorname{rad} I$. Some power x^{k} is in I. If P is a prime ideal that contains I, then $x^{k} \in P$, and since P is a prime ideal, $x \in P$. So $\operatorname{rad} I \subset P$. Conversely, let x be an element not in $\operatorname{rad} I$. So no power of x is in I. We show that there is a prime ideal that contains I but not x. Let \mathcal{S} be the set of ideals that contain I, but don't contain any power of x. The ideal I is one such ideal, so \mathcal{S} isn't empty. Since R is noetherian, \mathcal{S} contains a maximal member $P(\mathbf{2 . 1 . 1 2}$. We show that P is a prime ideal by showing that, if two ideals A and B are strictly larger than P, their product $A B$ isn't contained in $P(2.1 .2)($ iii' $)$. Since P is a maximal member of \mathcal{S}, A and B aren't in \mathcal{S}. They contain I and they contain powers of x, say $x^{k} \in A$ and $x^{\ell} \in B$. Then $x^{k+\ell}$ is in $A B$ but not in P. Therefore $A B \not \subset P$.

The properties of closed sets in affine space that are given in Lemmas 2.2.2 and 2.2.21 are true for closed subsets of an affine variety. In particular, $V(J)=V(\operatorname{rad} J)$, and $V(I J)=V(I \cap J)=V(I) \cup V(J)$.
2.5.12. Corollary. Let I and J be ideals of a finite-type domain A, and let $X=\operatorname{Spec} A$. Then $V(I) \supset V(J)$ if and only if $\operatorname{rad} I \subset \operatorname{rad} J$.

This follows from the case of a polynomial ring, Corollary 2.4.9 (iii), and Lemma 2.5.8.
The next proposition includes Proposition 2.2 .23 as a special case.
2.5.13. Proposition. Let A be a finite-type domain, let $X=\operatorname{Spec} A$, and let P be a radical ideal of A. The closed set $V(P)$ of zeros of P is irreducible if and only if P is a prime ideal.
proof. Let $Y=V(P)$, and let C and D be closed subsets of X such that $Y=C \cup D$. Say $C=V(I)$ and $D=V(J)$. We may suppose that I and J are radical ideals. Then the inclusion $C \subset Y$ implies that $I \supset P$, and similarly, $J \supset P$ 2.5.12). Because $Y=C \cup D$, we also have $V(P)=V(I) \cup V(J)=V(I J)$. Therefore $\operatorname{rad}(I J)=P$. If P is a prime ideal, then $P=I$ or $P=J$, and therefore $C=Y$ or $D=Y$. Then Y is irreducible. Conversely, suppose that P isn't a prime ideal. So there are ideals I, J strictly larger than the radical ideal P, such that $I J \subset P$. In this case, Y will be the union of the two proper closed subsets $V(I)$ and $V(J)$ 2.5.12), so Y isn't irreducible.

(2.5.14) the nilradical

The nilradical of a ring is the set of its nilpotent elements. It is the radical of the zero ideal. If a ring R is noetherian, its nilradical N will be nilpotent: some power of N will be the zero ideal (Lemma 2.2.21). The nilradical of a domain is the zero ideal.

The next corollary follows from Proposition 2.5.11
2.5.15. Corollary. The nilradical of a noetherian ring R is the intersection of the prime ideals of R.

Note. The conclusion of this corollary is true whether or not R is noetherian.

2.5.16. Corollary.

(i) Let A be a finite-type algebra. An element of A that is in every maximal ideal of A is nilpotent.
(ii) Let A be a finite-type domain. The intersection of the maximal ideals of A is the zero ideal.
proof. (i) Say that A is presented as $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I$. Maximal ideals of A correspond to the maximal ideals of $\mathbb{C}[x]$ that contain I, and to points of the closed subset $V(I)$ of \mathbb{A}^{n}. Let α be the element of A that is represented by a polynomial $g(x)$ in $\mathbb{C}[x]$. Then α is in every maximal ideal of A if and only if $g=0$ at all points of $V(I)$. If so, the Strong Nullstellensatz asserts that some power g^{N} is in I. Then $\alpha^{N}=0$.
2.5.17. Corollary. An element α of a finite-type domain A is determined by the function that α defines on $\operatorname{Spec} A$.
proof. It is enough to show that an element α that defines the zero function is the zero element. Such an element α is in every maximal ideal 2.5 .9 , so it is nilpotent, and since A is a domain, $\alpha=0$.

2.6 Morphisms of Affine Varieties

Morphisms are the maps between varieties that are allowed. Morphisms between affine varieties, as will be defined in this section, correspond to algebra homomorphisms in the opposite direction between their coordinate algebras. Morphisms of projective varieties will be defined in the next chapter.

regular functions

The function field K of an affine variety $X=\operatorname{Spec} A$ is the field of fractions of A. A rational function on X is a nonzero element of the function field. A rational function f is regular at a point p of X if it can be
written as a fraction $f=a / s$ with $s(p) \neq 0$, and f is regular on a subset U of X if it is regular at every point of U.

In 2.5.2, we have seen that an element of the coordinate algebra A defines a function on X. The value $a(p)$ of a function a at a point p is $\pi_{p}(a)$, where π_{p} is the homomorphism $A \rightarrow \mathbb{C}$ that corresponds to p. A rational function $f=a / s$ is an element of A_{s}. It defines a function on the open subset X_{s} of X, with $f(p)=a(p) / s(p)$.

deloca

So $p=u q$ means that $\pi_{q} \varphi=\pi_{p}$.
2.6.6. Lemma. Let $X=\operatorname{Spec} A$ and $Y=\operatorname{Spec} B$, and let $Y \xrightarrow{u} X$ be the morphism defined by a homomorphism $A \xrightarrow{\varphi} B$. Also, let q be a point of Y, and let $p=$ uq be its image in X.
(i) If α is an element of A and $\beta=\varphi(\alpha)$, then $\beta(q)=\alpha(p)$.
(ii) Let \mathfrak{m}_{p} and \mathfrak{m}_{q} be the maximal ideals of A and B at p and q, respectively. Then $\mathfrak{m}_{p}=\varphi^{-1} \mathfrak{m}_{q}$.
proof. (i) $\beta(q)=\pi_{q}(\beta)=\pi_{q}(\varphi \alpha)=\pi_{p}(\alpha)=\alpha(p)$.
(ii) $\alpha(p)=0$ if and only if $[\varphi \alpha](q)=0$.

Thus the homomorphism φ is determined by the morphism u, and vice-versa. But just as a map $A \rightarrow B$ needn't be a homomorphism, a map $Y \rightarrow X$ needn't be a morphism.
brackets Notation. Parentheses tend to accumulate, and this can make expressions hard to read. When we want to denote the value of a complicated function such as $\varphi(\alpha)$ on an object q we may, for clarity, drop some parentheses and enclose the functor in square brackets, writing $[\varphi \alpha](q)$ instead of $(\varphi(\alpha))(q)$. When a square bracket is used this way, there is no logical difference between it and a parenthesis.

A morphism $Y \xrightarrow{u} X$ is an isomorphism if and only if it is bijective, and its inverse function is a morphism. This will be true if and only if $A \xrightarrow{\varphi} B$ is an isomorphism of algebras.
2.6.7. Proposition. (i) The morphism $Y \xrightarrow{u} X$ defined by a homomorphism $A \xrightarrow{\varphi} B$ is an isomorphism if and only if φ is an isomorphism.
uisomphiisom
(ii) The morphism $X \xrightarrow{u} X$ defined by a homomorphism $A \xrightarrow{\varphi} A$ is the identity if and only if φ is the identity.

The definition of a morphism can be confusing because the direction of the arrow is reversed. It will become clearer as we expand the discussion, but the reversal of arrows will remain a potential source of confusion.
morphisms to affine space.
A morphism $Y \xrightarrow{u} \mathbb{A}^{1}$ from a variety $Y=\operatorname{Spec} B$ to the affine line $\operatorname{Spec} \mathbb{C}[x]$ is defined by an algebra homomorphism $\mathbb{C}[x] \xrightarrow{\varphi} B$, and such a homomorphism substitutes an element β of B for x. The corresponding morphism u sends a point q of Y to the point $x=\beta(q)$ of the x-line.

For example, let Y be the space of 2×2 matrices, $Y=\operatorname{Spec} \mathbb{C}\left[y_{i j}\right]$, where $y_{i j}$ are variable matrix entries, $1 \leq i, j \leq 2$. The determinant defines a morphism $Y \rightarrow \mathbb{A}^{1}$ that sends a matrix to its determinant. The corresponding algebra homomorphism $\mathbb{C}[x] \xrightarrow{\varphi} \mathbb{C}\left[y_{i j}\right]$ substitutes $y_{11} y_{22}-y_{12} y_{21}$ for x. It sends a polynomial $f(x)$ to $f\left(y_{11} y_{22}-y_{12} y_{21}\right)$.

A morphism in the other direction, from the affine line \mathbb{A}^{1} to a variety Y may be called a (complex) polynomial path in Y. When Y is the space of matrices, a morphism $\mathbb{A}^{1} \rightarrow Y$ corresponds to a homomorphism $\mathbb{C}\left[y_{i j}\right] \rightarrow \mathbb{C}[x]$. It substitutes a polynomial in x for each variable $y_{i j}$.

A morphism from an affine variety $Y=\operatorname{Spec} B$ to affine space \mathbb{A}^{n} is defined by a homomorphism $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \xrightarrow{\Phi} B$, which substitutes elements β_{i} of B for $x_{i}: \Phi(f(x))=f(\beta)$. (We use an upper case Φ here, keeping φ in reserve.) The corresponding morphism $Y \xrightarrow{u} \mathbb{A}^{n}$ sends a point q of Y to the point $\left(\beta_{1}(q), \ldots, \beta_{n}(q)\right)$ of \mathbb{A}^{n}.

morphisms to affine varieties.

Let $X=\operatorname{Spec} A$ and $Y=\operatorname{Spec} B$ be affine varieties. Say that we have chosen a presentation $A=$ $\mathbb{C}\left[x_{1}, \ldots, x_{m}\right] /\left(f_{1}, \ldots, f_{k}\right)$ of A, so that X becomes the closed subvariety $V(f)$ of affine space \mathbb{A}^{m}. There is no need to choose a presentation of B. A natural way to define a morphism from a variety Y to X is as a morphism $Y \xrightarrow{u} \mathbb{A}^{m}$ to affine space, whose image is contained in X. We check that this agrees with Definition 2.6.4

A morphism $Y \xrightarrow{u} \mathbb{A}^{m}$ corresponds to a homomorphism $\mathbb{C}\left[x_{1}, \ldots, x_{m}\right] \xrightarrow{\Phi} B$, determined by a set $\left(\beta_{1}, \ldots, \beta_{m}\right)$ of elements of B, with the rule that $\Phi\left(x_{i}\right)=\beta_{i}$. Since X is the locus of zeros of the polynomials f, the image of Y will be contained in X if and only if $f_{i}\left(\beta_{1}(q), \ldots, \beta_{m}(q)\right)=0$ for every point q of Y and every i, i.e., if and only if $f_{i}(\beta)$ is in every maximal ideal of B, in which case $f_{i}(\beta)=0$ 2.5.16(ii). A better way to say this is: The image of Y is contained in X if and only if $\beta=\left(\beta_{1}, \ldots, \beta_{m}\right)$ solves the equations $f(x)=0$. And, if β is a solution, the homomorphism Φ defines a homomorphism $A \xrightarrow{\varphi} B$.

This is an elementary, but important, principle:

- Homomorphisms from the algebra $A=\mathbb{C}[x] /(f)$ to an algebra B correspond to solutions of the equations $f=0$ in B.
2.6.8. Corollary. Let $X=\operatorname{Spec} A$ and let $Y=\operatorname{Spec} B$ be affine varieties, and suppose that $A=$ $\mathbb{C}\left[x_{1}, \ldots, x_{m}\right] /\left(f_{1}, \ldots, f_{k}\right)$. There are bijective correspondences between the following sets:
- algebra homomorphisms $A \rightarrow B$,
mor-phandhomom
- morphisms $Y \rightarrow X$,
- morphisms $Y \rightarrow \mathbb{A}^{m}$ whose images are contained in X,
- solutions of the equations $f_{i}(x)=0$ in $B, i=1, \ldots, k$.

The second and third sets refer to an embedding of the variety X into affine space, but the first one does not. It shows that a morphism depends only on the varieties X and Y, not on their embeddings.
2.6.9. Example. Let $B=\mathbb{C}[x]$ be the polynomial ring in one variable, and let A be the coordinate algebra $\mathbb{C}[u, v] /\left(v^{2}-u^{3}\right)$ of a cubic curve with a cusp. A homomorphism $A \rightarrow B$ is determined by a solution of the equation $v^{2}=u^{3}$ in $\mathbb{C}[x]$. The solutions have the form $u=g^{2}, v=g^{3}$ with g in $\mathbb{C}[x]$. For instance, $u=x^{2}$ and $v=x^{3}$ is a solution.

We note a few more facts about morphisms here. Their geometry will be analyzed further in Chapters 4 and 5
2.6.10. Proposition. Let $Y \xrightarrow{u} X$ be the morphism of affine varieties that corresponds to a homomorphism of finite-type domains $A \xrightarrow{\varphi} B$.
(i) Suppose that $B=A / P$, where P is a prime ideal of A, and that φ is the canonical homomorphism $A \rightarrow A / P$. Then u is the inclusion of the variety of zeros $Y=V(P)$ of P into X.
(ii) The homomorphism φ is surjective if and only if u maps Y isomorphically to a closed subvariety of X.
(iii) Let $Z \xrightarrow{v} Y$ be another morphism, that corresponds to a homomorphism $B \xrightarrow{\psi} R$ of finite-type domains, the composed map $Z \xrightarrow{u v} X$ corresponds to the composed homomorphism $A \xrightarrow{\psi \varphi} R$.

It can be useful to phrase the definition of the morphism $Y \xrightarrow{u} X$ that corresponds to a homomorphism $A \xrightarrow{\varphi} B$ in terms of maximal ideals. Let \mathfrak{m}_{q} be the maximal ideal of B at a point q of Y. The inverse image of \mathfrak{m}_{q} in A is the kernel of the composed homomorphism $A \xrightarrow{\varphi} B \xrightarrow{\pi_{q}} \mathbb{C}$, so it is a maximal ideal of A : $\varphi^{-1} \mathfrak{m}_{q}=\mathfrak{m}_{p}$, for some p in X. That point p is the image of q : If $p=u q$, then $\mathfrak{m}_{p}=\varphi^{-1} \mathfrak{m}_{q}$.

The fibre over a point p of the morphism $Y \xrightarrow{u} X$ defined by a homomorphism $A \xrightarrow{\varphi} B$ is described as follows: let \mathfrak{m}_{p} be the maximal ideal at a point p of X, and let J be the extended ideal $\mathfrak{m}_{p} B$, the ideal generated by the image of \mathfrak{m}_{p} in B. Its elements are finite sums $\sum \varphi\left(z_{i}\right) b_{i}$ with z_{i} in \mathfrak{m}_{p} and b_{i} in B. (See 2.7.5 below.) If q is is a point of Y, then $u q=p$ if and only if $\mathfrak{m}_{p}=\varphi^{-1} \mathfrak{m}_{q}$. This will be true if and only $\bar{J} \subset \mathfrak{m}_{q}$.

2.6.11. Example. (blowing up the plane)

Let W and X be planes with coordinates (x, w) and (x, y), respectively. The affine blowup morphism $W \xrightarrow{\pi} X$ was described before $\mathbf{1 . 8 . 5}$. It is defined by the substitution $\pi(x, w)=(x, x w)$, and if corresponds to the algebra homomorphism $\mathbb{C}[x, y] \xrightarrow{\varphi} \mathbb{C}[x, w]$ defined by $\varphi(x)=x$ and $\varphi(y)=x w$. To be specific, the image of a point $q:(x, w)=(a, c)$ of W is the point $p:(x, y)=(a, a c)$ of X.

As was explained in $\mathbf{1 . 8 . 5}$, the blowup π is bijective at points (x, y) at which $x \neq 0$. The fibre of Z over a point of Y of the form $(0, y)$ is empty unless $y=0$, and the fibre over the origin $(0,0)$ in Y is the w-axis, the line $x=0$ in the plane W.
2.6.12. Proposition. A morphism $Y \xrightarrow{u} X$ of affine varieties is a continuous map in the Zariski topology and also in the classical topology.
proof. the Zariski topology: Let $X=\operatorname{Spec} A$ and $Y=\operatorname{Spec} B$, so that u corresponds to an algebra homomorphism $A \xrightarrow{\varphi} B$. A closed subset C of X will be the zero locus of a set $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ of elements of A. Let $\beta_{i}=\varphi \alpha_{i}$. The inverse image $u^{-1} C$ is the set of points q such that $p=u q$ is in C, i.e., such that $\alpha_{i}(u q)=\beta_{i}(q)=0$ 2.6.6. So $u^{-1} C$ is the zero locus in Y of the elements $\beta_{i}=\varphi\left(\alpha_{i}\right)$. It is a closed set.
the classical topology: We use the fact that polynomials are continuous functions. First, a morphism of affine spaces $\mathbb{A}_{y}^{n} \xrightarrow{U} \mathbb{A}_{x}^{m}$ is defined by an algebra homomorphism $\mathbb{C}\left[x_{1}, \ldots, x_{m}\right] \xrightarrow{\Phi} \mathbb{C}\left[y_{1}, \ldots, y_{n}\right]$, and that homomorphism is determined by the polynomials $h_{1}(y), \ldots, h_{m}(y)$ that are the images of the variables x_{1}, \ldots, x_{m}. The morphism U sends the point $\left(y_{1}, \ldots, y_{n}\right)$ of \mathbb{A}^{n} to the point $\left(h_{1}(y), \ldots, h_{m}(y)\right)$ of \mathbb{A}^{m}. It is continuous because polynomials are continuous functions.

Next, say that a morphism $Y \xrightarrow{u} X$ is defined by a homomorphism $A \xrightarrow{\varphi} B$ of algebras that are presented as $A=\mathbb{C}[x] / I$ and $B=\mathbb{C}[y] / J$. We form a diagram of homomorphisms and the associated
diagram of morphisms:

Here the map α sends x_{1}, \ldots, x_{n} to $\alpha_{1}, \ldots, \alpha_{n}$, and β sends y_{i} to $\beta_{i}=\varphi\left(\alpha_{i}\right)$. Then Φ is obtained by choosing elements h_{i} of $\mathbb{C}[y]$, such that $\beta\left(h_{i}\right)=\beta_{i}$.

In the diagram on the right, U is a continuous map, and the vertical arrows are the embeddings of X and Y into their affine spaces. Since the topologies on X and Y are induced from their embeddings into affine spaces, u is continuous.

Thus every morphism of affine varieties can be obtained by restriction from a morphism of affine spaces. However, in the diagram above, the morphism U depends on the choice of the polynomials h_{i} and on the presentations of A and B. It isn't unique.

2.7 Localization

In these notes, the word "localization" refers to the process of adjoining inverses to an algebra, and to the effect of that process on the spectrum.

Let s be a nonzero element of a domain A. As before 2.1.23, the ring $A_{s}=A\left[s^{-1}\right]$ obtained by adjoining an inverse of s to A is called a localization of A. If X denotes the variety $\operatorname{Spec} A, X_{s}$ will denote the variety Spec A_{s}. It will be called a localization of X too.
2.7.1. Proposition. The localization $X_{s}=\operatorname{Spec} A_{s}$ is homeomorphic to the open subspace of X of points at which the function defined by s isn't zero.
proof. Let p be a point of X, let $A \xrightarrow{\pi_{p}} \mathbb{C}$ be the corresponding homomorphism. If s isn't zero at p, say $s(p)=c \neq 0$, then π_{p} extends uniquely to a homomorphism $A_{s} \rightarrow \mathbb{C}$ that sends s^{-1} to c^{-1}. This gives us a unique point of X_{s} that corresponds to p. If $c=0$, then π_{p} doesn't extend to A_{s}.

A closed subset C of X will be the set of zeros of the elements a_{1}, \ldots, a_{k} of A. Then $C \cap X_{s}$ will be the set of zeros of those same elements in X_{s}. It will be closed in X_{s}. Conversely, let D be a closed subset of X_{s}, say the zero set in X_{s} of some elements $\beta_{1}, \ldots, \beta_{k}$, where $\beta_{i}=b_{i} s^{-n_{i}}$ with b_{i} in A. Since s^{-1} doesn't vanish on X_{s}, the elements b_{i} and β_{i} have the same zeros in X_{s}. If C is the zero set of b_{1}, \ldots, b_{k} in X, then $C \cap X_{s}=D$.

Thus we may identify a localization X_{s} with the open subset of X of points at which the value of s isn't zero. Then the effect of adjoining the inverse is to throw out the points of X at which s vanishes. For example, the spectrum of the Laurent polynomial ring $\mathbb{C}\left[t, t^{-1}\right]$ becomes the complement of the origin in the affine line $\mathbb{A}^{1}=\operatorname{Spec} \mathbb{C}[t]$.

Most varieties contain open sets that aren't localizations. The complement X^{\prime} of the origin in the affine plane $X=\operatorname{Spec} \mathbb{C}\left[x_{1}, x_{2}\right]$ is a simple example. Every polynomial that vanishes at the origin vanishes on an affine curve, which has points distinct from the origin. Its inverse doesn't define a function on X^{\prime}. So X^{\prime} isn't a localization of X. This is rather obvious, but in other situations, it is often hard to tell whether or not a given open set is a localization.

Localizations are important for two reasons:

2.7.2.

- The relation between an algebra A and a localization A_{s} is easy to understand.
- The localizations X_{s} of an affine variety X form a basis for the Zariski topology on X.

A basis for the topology on a topological space X is a family \mathcal{B} of open sets with this property: Every open subset of X is a union of open sets that are members of \mathcal{B}.

To show that the localizations X_{s} of an affine variety X form a basis for the topology on X, we must show that every open subset U of $X=\operatorname{Spec} A$ can be covered by sets of the form X_{s}. Let C be the complement
coverbylocs
locloc
extcontr
xtcontr-
prop
multsys
inverseexamples
extendidealtoloc
$X-U$ of U in X. Then C is closed, so it is the set of common zeros of some nonzero elements s_{1}, \ldots, s_{k} of A. The zero set $V\left(s_{i}\right)$ of s_{i} is the complement of the locus $X_{s_{i}}$ in X, C is the intersection of the sets $V\left(s_{i}\right)$, and U is the union of the sets $X_{s_{i}}$.
2.7.3. Corollary. Let $X=\operatorname{Spec} A$ be an affine variety.
(i) Let s_{1}, \ldots, s_{k} be elements of A. If the localizations $X_{s_{1}}, \ldots, X_{s_{k}}$ cover X, then s_{1}, \ldots, s_{k} generate the unit ideal of A.
(ii) If $\left\{U_{\nu}\right\}$ is an open covering of X, a covering by open sets, there are elements s_{1}, \ldots, s_{k} of A such that each $X_{s_{i}}$ is contained in one of the open sets U_{ν}, and the localizations $X_{s_{1}}, \ldots, X_{s_{k}}$ cover X.
2.7.4. Lemma. Let $X=\operatorname{Spec} A$ be an affine variety.
(i) If if A_{s} and A_{t} are localizations of A, and if $A_{s} \supset A_{t}$, then A_{s} is a localization of A_{t}. Or, if X_{s} and X_{t} are localizations of X, and if $X_{s} \subset X_{t}$, then X_{s} is a localization of X_{t}.
(ii) If u is an element of a localization A_{s} of A, then $\left(A_{s}\right)_{u}$ is also a localization of A.

(2.7.5) extension and contraction of ideals

Let $A \subset B$ be the inclusion of a ring A as a subring of a ring B. The extension of an ideal I of A is the ideal $I B$ of B generated by I. Its elements are finite sums $\sum_{i} z_{i} b_{i}$ with z_{i} in I and b_{i} in B. The contraction of an ideal J of B is the intersection $J \cap A$. It is an ideal of A.

When A_{s} is a localization of A and I is an ideal of A, the elements of the extended ideal $I A_{s}$ are fractions of the form $z s^{-k}$, with z in I. We denote this extended ideal by I_{s}.
2.7.6. Lemma. Let s be a nonzero element of a domain A.
(i) Let J be an ideal of the localization A_{s} and let $I=J \cap A$. Then $J=I_{s}$. Every ideal of A_{s} is the extension of an ideal of A.
(ii) Let P be a prime ideal of A. If s isn't in P, the extended ideal P_{s} is a prime ideal of A_{s}. If I is any ideal of A that contains I, the extended ideal I_{s} is the unit ideal.

(2.7.7) multiplicative systems

To work with the inverses of finitely many nonzero elements, one may simply adjoin the inverse of their product. For working with an infinite set of inverses, the concept of a multiplicative system is useful. A multiplicative system S in a domain A is a subset of A that consists of nonzero elements, is closed under multiplication, and contains 1 . If S is a multiplicative system, the ring of S-fractions $A S^{-1}$ is the ring obtained by adjoining inverses of all elements of S. Its elements are equivalence classes of fractions $a s^{-1}$ with a in A and s in S, the equivalence relation and the laws of composition being the usual ones for fractions. The ring $A S^{-1}$ will be called a localization too. When necessary to avoid confusion, the ring obtained by inverting a single nonzero element s may be called a simple localization.
2.7.8. Examples. (i) The set consisting of the powers of a nonzero element s of a domain A is a multiplicative system. Its ring of fractions is the simple localization A_{s}.
(ii) The set S of all nonzero elements of a domain A is a multiplicative system. Its ring of fractions is the field of fractions of A.
(iii) An ideal P of a domain A is a prime ideal if and only if its complement, the set of elements of A not in P, is a multiplicative system.
2.7.9. Proposition. Let S be a multiplicative system in a domain A, and let A^{\prime} be the localization $A S^{-1}$.
(i) Let I be an ideal of A. The extended ideal $I A^{\prime}$ is the set $I S^{-1}$ whose elements are classes of fractions $x s^{-1}$, with x in I and s in S. The extended ideal is the unit ideal if and only if I contains an element of S.
(ii) Let J be an ideal of the localization A^{\prime} and let $I=J \cap A$. Then $I A^{\prime}=J$.
(iii) If P is a prime ideal of A and if $P \cap S$ is empty, the extended ideal $P^{\prime}=P A^{\prime}$ is a prime ideal of A^{\prime}, and the contraction $P^{\prime} \cap A$ is equal to P. If $P \cap S$ isn't empty, the extended ideal is the unit ideal. Thus prime ideals of $A S^{-1}$ correspond bijectively to prime ideals of A that don't meet S.
2.7.10. Corollary. Every localization $A S^{-1}$ of a noetherian domain A is a noetherian domain.
2.7.11. When S is a multiplicative system in a domain A, the localization $M S^{-1}$ of an A-module M is defined in a way analogous to the one used for simple localizations: It is the $A S^{-1}$-module whose elements are equivalence classes of fractions $m s^{-1}$ with m in M and s in S. To take care of torsion, two fractions $m_{1} s_{1}^{-1}$ and $m_{2} s_{2}^{-1}$ are defined to be equivalent if there is a nonzero element s in S such that $m_{1} s_{2} s=m_{2} s_{1} s$. Then $m s_{1}^{-1}=0$ if and only if $m s=0$ for some nonzero s in S. As with simple localizations, there will be a homomorphism $M \rightarrow M S^{-1}$ that sends an element m to the fraction $m / 1$.
2.7.12. Proposition. Let S be a multiplicative system in a domain A.
(i) Localization is an exact functor: A homomorphism $M \xrightarrow{\varphi} N$ of A-modules induces a homomorphism $M S^{-1} \xrightarrow{\varphi^{\prime}} N S^{-1}$ of $A S^{-1}$-modules. If $M \xrightarrow{\varphi} N \xrightarrow{\psi} P$ is an exact sequence of A-modules, the localized sequence $M S^{-1} \xrightarrow{\varphi^{\prime}} N S^{-1} \xrightarrow{\psi^{\prime}} P S^{-1}$ is exact.
(ii) Let M be an A-module and let N be an $A S^{-1}$-module. When N is made into an A-module by restriction of scalars, homomorphisms of A-modules $M \rightarrow_{A} N$ correspond bijectively to homomorphisms of $A S^{-1}$ modules $M S^{-1} \rightarrow N$.
(iii) If multiplication by s is an injective map $M \rightarrow M$ for every s in S, then $M \subset M S^{-1}$. If multiplication by every s is a bijective map $M \rightarrow M$, then $M \approx M S^{-1}$.

(2.7.13) a general principle

An elementary principle for working with fractions is that any finite sequence of computations in a localization $A S^{-1}$ will involve finitely many denominators, and can therefore be done in a simple localization A_{s}, where s is a common denominator for the fractions that occur.

2.8 Finite Group Actions

Let G be a finite group of automorphisms of a finite-type domain B. An invariant element β of B is an element such that $\sigma \beta=\beta$ for every element σ of G. For example, for all b in B, the product and the sum

$$
\begin{equation*}
\prod_{\sigma \in G} \sigma b \quad, \quad \sum_{\sigma \in G} \sigma b \tag{2.8.1}
\end{equation*}
$$

are invariant elements. The invariant elements form a subalgebra of B that is often denoted by B^{G}. Theorem 2.8.5 below asserts that B^{G} is a finite-type domain, and that points of the variety Spec B^{G} correspond bijectively to G-orbits in the variety $\operatorname{Spec} B$.

2.8.2. Examples.

(i) The symmetric group $G=S_{n}$ operates on the polynomial algebra $R=\mathbb{C}\left[y_{1}, \ldots, y_{n}\right]$ by permuting the variables. The Symmetric Functions Theorem asserts that the elementary symmetric functions

$$
s_{1}(y)=\sum_{i} y_{i}, \quad s_{2}(y)=\sum_{i<j} y_{i} y_{j}, \ldots, \quad s_{n}(y)=y_{1} y_{2} \cdots y_{n}
$$

generate the algebra R^{G} of invariant polynomials. Moreover, s_{1}, \ldots, s_{n} are algebraically independent, so R^{G} is the polynomial algebra $\mathbb{C}\left[s_{1}, \ldots, s_{n}\right]$. The inclusion of R^{G} into R gives us a morphism $Y \rightarrow S$, from affine y-space $Y=\mathbb{A}_{y}^{n}$ to affine s-space $S=\mathbb{A}_{s}^{n}$. The operation of G on R defines an operation on Y. We use the same symbol s_{j} to denote the symmetric function $s_{j}(y)$ and the coordinate variable in the affine space S. If c_{1}, \ldots, c_{n} are scalars, one can evaluate the variables s_{1}, \ldots, s_{n} at $y=c$, to obtain a point $c=\left(c_{1}, \ldots, c_{n}\right)$ of S. The points $a=\left(a_{1}, \ldots, a_{n}\right)$ of Y with image c in S are those such that $s_{j}(a)=c_{j}$, and a_{1}, \ldots, a_{n} are the roots of the polynomial $y^{n}-c_{1} y^{n-1}+\cdots \pm c_{n}$. The roots form a G-orbit, so the set of G-orbits in Y maps bijectively to S.
(ii) Let σ be the automorphism of the polynomial ring $B=\mathbb{C}\left[y_{1}, y_{2}\right]$ defined by $\sigma y_{1}=\zeta y_{1}$ and $\sigma y_{2}=\zeta^{-1} y_{2}$, where $\zeta=e^{2 \pi i / n}$. Let G be the cyclic group of order n generated by σ, and let A denote the algebra B^{G}
of invariant elements. A monomial $m=y_{1}^{i} y_{2}^{j}$ is invariant if and only if n divides $i-j$, and an invariant polynomial is a linear combination of invariant monomials. You will be able to show that the three monomials

$$
\begin{equation*}
u_{1}=y_{1}^{n}, u_{2}=y_{2}^{n}, \text { and } w=y_{1} y_{2} \tag{2.8.3}
\end{equation*}
$$

generate the algebra A of invariants. Let's use the same symbols u_{1}, u_{2}, w to denote variables in a polynomial ring $\mathbb{C}\left[u_{1}, u_{2}, w\right]$. Let J be the kernel of the canonical homomorphism $\mathbb{C}\left[u_{1}, u_{2}, w\right] \xrightarrow{\tau} A$ that sends u_{1}, u_{2} and w to y_{1}^{n}, y_{2}^{n} and $y_{1} y_{2}$, respectively.
2.8.4. Lemma. With notation as above, the kernel of τ is the principal ideal of $\mathbb{C}\left[u_{1}, u_{2}, w\right]$, generated by the polynomial $f=w^{n}-u_{1} u_{2}$. Thus $A \approx \mathbb{C}\left[u_{1}, u_{2}, w\right] /\left(w^{n}-u_{1} u_{2}\right)$.
proof. First, f is in J. Let $g\left(u_{1}, u_{2}, w\right)$ be any element of J. So $g\left(y_{1}^{n}, y_{2}^{n}, y_{1} y_{2}\right)=0$. We divide g by f, considered as a monic polynomial in w, say $g=f q+r$, where the remainder $r\left(u_{1}, u_{2}, w\right)$ has degree $<n$ in w. The remainder will be in J too: $r\left(y_{1}^{n}, y_{2}^{n}, y_{1} y_{2}\right)=0$. We write r as a polynomial in $w: \quad r=$ $r_{0}\left(u_{1}, u_{2}\right)+r_{1}\left(u_{1}, u_{2}\right) w+\cdots+r_{n-1}\left(u_{1}, u_{2}\right) w^{n-1}$. When we substitute $y_{1}^{n}, y_{2}^{n}, y_{1} y_{2}$, the term $r_{i}\left(u_{1}, u_{2}\right) w^{i}$ becomes $r_{i}\left(y_{1}^{n}, y_{2}^{n}\right)\left(y_{1} y_{2}\right)^{i}$. The degree in y_{1} of every monomial that appears there will be congruent to i modulo n, and the same is true for the degree in y_{2}. Since $r\left(y_{1}^{n}, y_{2}^{n}, y_{1} y_{2}\right)=0$, and since the indices i are distinct, $r_{i}\left(y_{1}^{n}, y_{2}^{n}\right)$ must be zero for every i. This implies that $r_{i}\left(u_{1}, u_{2}\right)=0$ for every i. So $r=0$, which means that f divides g.

We go back to the operation of the cyclic group G on $B=\mathbb{C}\left[y_{1}, y_{2}\right]$ and the algebra of invariants A. Let Y denote the affine plane $\operatorname{Spec} B$, and let $X=\operatorname{Spec} A$. The group G operates on Y, and except for the origin, which is a fixed point, the orbit of a point $\left(y_{1}, y_{2}\right)$ consists of the n points $\left(\zeta^{i} y_{1}, \zeta^{-i} y_{2}\right), i=0, \ldots, n-1$. To show that G-orbits in Y correspond bijectively to points of X, we fix complex numbers u_{1}, u_{2}, w with $w^{n}=u_{1} u_{2}$, and look for solutions of the equations 2.8.3. When $u_{1} \neq 0$, the equation $u_{1}=y_{1}^{n}$ has n solutions for y_{1}, and when a soluion is given, y_{2} is determined by the equation $y_{1} y_{2}=w$. So the fibre has order n. Similarly, there are n points in the fibre if $u_{2} \neq 0$. If $u_{1}=u_{2}=0$, then $y_{1}=y_{2}=w=0$, and the fibre contains just one point. In all cases, the fibres are the G-orbits.
2.8.5. Theorem. Let G be a finite group of automorphisms of a finite-type domain B, and let A denote the algebra B^{G} of invariant elements. Let $Y=\operatorname{Spec} B$ and $X=\operatorname{Spec} A$.
(i) A is a finite-type domain and B is a finite A-module.
(ii) G operates by automorphisms on Y.
(iii) The morphism $Y \rightarrow X$ defined by the inclusion $A \subset B$ is surjective. Its fibres are the G-orbits of points of Y.

When a group G operates on a set Y, one often denotes the set of G-orbits of Y by Y / G, which is read as ' Y $\bmod G^{\prime}$. With that notation, part (iii) of the theorem asserts that there is a bijective map

$$
Y / G \rightarrow X
$$

proof of 2.8 .5 (i): The invariant algebra $A=B^{G}$ is a finite-type algebra, and B is a finite A-module.
This is an interesting indirect proof. To show that A is a finite-type algebra, one constructs a finite-type subalgebra R of A such that B is a submodule of a finite R-module.

Let $\left\{z_{1}, \ldots, z_{k}\right\}$ be the G-orbit of an element z_{1} of B. The orbit is the set of roots of the polynomial

$$
f(t)=\left(t-z_{1}\right) \cdots\left(t-z_{k}\right)=t^{k}-s_{1} t^{k-1}+\cdots \pm s_{k}
$$

Its coefficients $s_{i}(z)$ are the elementary symmetric functions in $\left\{z_{1}, \ldots, z_{k}\right\}$. Let R_{1} denote the algebra generated by those symmetric functions. Because the symmetric functions are invariant, $R_{1} \subset A$. Using the equation $f\left(z_{1}\right)=0$, we can write any power of z_{1} as a polynomial in z_{1} of degree less than k, with coefficients in R_{1}.

We choose a finite set of generators $\left\{y_{1}, \ldots, y_{r}\right\}$ for the algebra B. If the order of the orbit of y_{j} is k_{j}, then y_{j} will be the root of a monic polynomial f_{j} of degree k_{j} with coefficients in A. Let R denote the finite-type
algebra generated by all of the coefficients of all of the polynomials f_{1}, \ldots, f_{r}. For every $j=1, \ldots, r$, we can write any power of y_{j} as a polynomial in y_{j} with coefficients in R, and of degree less than k_{j}. Using such expressions, we can write every monomial in y_{1}, \ldots, y_{r} as a polynomial with coefficients in R, whose degree in the variable y_{j} is less than k_{j}. Since y_{1}, \ldots, y_{r} generate B, we can write every element of B as such a polynomial. Then the finite set of monomials $y_{1}^{e_{1}} \cdots y_{r}^{e_{r}}$ with $e_{j}<k_{j}$ spans B as an R-module. Therefore B is a finite R-module.

The algebra A of invariants is a subalgebra of B that contains R. Since R is a finite-type algebra, it is noetherian. When regarded as an R-module, A is a submodule of the finite R-module B. Therefore A is also a finite R-module. When we put a finite set of algebra generators for R together with a finite set of R-module generators for A, we obtain a finite set of algebra generators for A, so A is a finite-type algebra. And, since B is a finite R-module, it is also a finite module over the larger ring A.
proof of 2.8 .5 (ii): The group G operates on Y.
A group element σ is a homomorphism $B \stackrel{\sigma}{\longrightarrow} B$. It defines a morphism $Y \stackrel{u_{\sigma}}{\longleftarrow} Y$, as in Definition 2.6.4. Since σ is an invertible homomorphism, i.e., an automorphism of B, u_{σ} is an automorphism of Y. Thus G operates on Y. However, there is a point that should be mentioned.

We write the operation of G on B on the left as usual, so that a group element σ maps an element β of B to σb. Then if σ and τ are two group elements, the product $\sigma \tau$ acts as first do τ, then σ : $\quad(\sigma \tau) \beta=\sigma(\tau \beta)$.

$$
\begin{equation*}
B \xrightarrow{\tau} B \xrightarrow{\sigma} B \tag{2.8.6}
\end{equation*}
$$

We substitute $u=u_{\sigma}$ into Definition 2.6.4 If q is a point of Y, the morphism $Y \stackrel{u_{\sigma}}{\leftarrow} Y$ sends q to the point p such that $\pi_{p}=\pi_{q} \sigma$. It seems permissible to drop the symbol u, and to write the morphism simply as $Y \stackrel{\sigma}{\longleftarrow} Y$. But since arrows are reversed when going from homomorphisms of algebras to morphisms of their spectra (2.6.5, the maps displayed in 2.8.6 above, give us morphisms

$$
\begin{equation*}
Y \stackrel{\tau}{\longleftarrow} Y \stackrel{\sigma}{\leftarrow} Y \tag{2.8.7}
\end{equation*}
$$

On $Y=\operatorname{Spec} B$, the product $\sigma \tau$ acts as first do σ, then τ. This is a problem, but we can get around it by putting the symbol σ on the right when it operates on Y, so that σ sends a point q to $q \sigma$. Then if q is a point of Y, we will have $q(\sigma \tau)=(q \sigma) \tau$, as required of the operation.

- If G operates on the left on B, then it operates on the right on $\operatorname{Spec} B$.

This is important only when one wants to compose morphisms. In Definition 2.6.4, we followed custom and wrote the morphism u that corresponds to an algebra homomorphism φ on the left. We will continue to write morphisms on the left where possible, but not here.

Let β be an element of B and let q be a point of Y. The value of the function $\sigma \beta$ at a point q is the same as the value of β at the point $q \sigma$ (2.6.6):

$$
\begin{equation*}
[\sigma \beta](q)=\beta(q \sigma) \tag{2.8.8}
\end{equation*}
$$

proof of 2.8 .5 (iii): The fibres of the morphism $Y \rightarrow X$ are the G-orbits in Y.
We go back to the subalgebra $A=B^{G}$. For σ in G, we have a diagram of algebra homomorphisms and the corresponding diagram of morphisms of varieties

The diagram of morphisms shows that points of Y that are in a G-orbit have the same image in X, and therefore that the set of G-orbits in Y, which we may denote by Y / G, maps to X. We show that the map $Y / G \rightarrow X$ is bijective.
2.8.10. Lemma. (i) Let p_{1}, \ldots, p_{k} be distinct points of affine space \mathbb{A}^{n}, and let c_{1}, \ldots, c_{k} be complex numbers. There is a polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ such that $f\left(p_{i}\right)=c_{i}$ for $i=1, \ldots, n$.
(ii) Let B be a finite-type algebra, let q_{1}, \ldots, q_{k} be distinct points of $\operatorname{Spec} B$, and let c_{1}, \ldots, c_{k} be distinct complex numbers. There is an element β in B such that $\beta\left(q_{i}\right)=c_{i}$ for $i=1, \ldots, k$.
injectivity of the map $Y / G \rightarrow X$: Let O_{1} and O_{2} be distinct G-orbits in Y. Lemma 2.8 .10 tells us that there is an element β in B whose value is 0 at every point of O_{1}, and 1 at every point of O_{2}. Since G permutes the orbits, $\sigma \beta$ will also be 0 at points of O_{1} and 1 at points of O_{2}. Then the product $\gamma=\prod_{\sigma} \sigma \beta$ will be 0 at points of O_{1} and 1 at points of O_{2}, and the product γ is invariant. If p_{i} denotes the image in X of the orbit O_{i}, the maximal ideal $\mathfrak{m}_{p_{i}}$ of A is the intersection $A \cap \mathfrak{m}_{q}$, where q is any point in the orbit O_{i}. Therefore γ is in the maximal ideal $\mathfrak{m}_{p_{1}}$, but not in $\mathfrak{m}_{p_{2}}$. The images of the two orbits are distinct.
surjectivity of the map $Y / G \rightarrow X$: It suffices to show that the map $Y \rightarrow X$ is surjective.
2.8.11. Lemma. If I is an ideal of the invariant algebra A, and if the extended ideal $I B$ is the unit ideal of B, then I is the unit ideal of A.

As before, the extended ideal $I B$ is the ideal of B generated by I.
Let's assume the lemma for the moment, and use it to prove surjectivity of the map $Y \rightarrow X$. Let p be a point of X. The lemma tells us that the extended ideal $\mathfrak{m}_{p} B$ isn't the unit ideal. So it is contained in a maximal ideal \mathfrak{m}_{q} of B, where q is a point of Y. Then $\mathfrak{m}_{p} \subset\left(\mathfrak{m}_{p} B\right) \cap A \subset \mathfrak{m}_{q} \cap A$. The contraction $\mathfrak{m}_{q} \cap A$ is an ideal of A, and it isn't the unit ideal because it doesn't contain 1 , which isn't in \mathfrak{m}_{q}. Since \mathfrak{m}_{p} is contained in $\mathfrak{m}_{q} \cap A$ and \mathfrak{m}_{p} is a maximal ideal, $\mathfrak{m}_{p}=\mathfrak{m}_{q} \cap A$. This means that q maps to p in X.
proof of the lemma. If $I B=B$, there will be an equation $\sum_{i} z_{i} b_{i}=1$, with z_{i} in I and b_{i} in B. The sums $\alpha_{i}=\sum_{\sigma} \sigma b_{i}$ are invariant, so they are elements of A, and the elements z_{i} are invariant because they are in A. Therefore $\sum_{\sigma} \sigma\left(z_{i} b_{i}\right)=z_{i} \sum_{\sigma} \sigma b_{i}=z_{i} \alpha_{i}$ is in I. Then

$$
\sum_{\sigma} 1=\sum_{\sigma} \sigma(1)=\sum_{\sigma, i} \sigma\left(z_{i} b_{i}\right)=\sum_{i} z_{i} \alpha_{i}
$$

The right side is in I, and the left side is the order of the group which, because A contains the complex numbers, is an invertible element of A. So I is the unit ideal.

2.9 Exercises

2.9.1. Prove that relatively prime polynomials in F, G two variables x, y, not necessarily homogeneous, have finitely many common zeros in \mathbb{A}^{2}.
2.9.2. Prove that if A, B are finite-type domains, defining $\left(a_{1} \otimes b_{1}\right)\left(a_{2} \otimes b_{2}\right)=\left(a_{1} a_{2} \otimes b_{1} b_{2}\right)$ makes the tensor product $A \otimes B$ into a finite-type domain.
2.9.3. Prove that if a noetherian ring contains just one prime ideal, then that ideal is nilpotent.
2.9.4. Prove that an algebra A that is a complex vector space of dimension d contains at most d maximal ideals.
2.9.5. Let T denote the ring $\mathbb{C}[\epsilon]$, with $\epsilon^{2}=0$. If A is the coordinate ring of an affine variety X, an (infinitesimal) tangent vector to X is, by definition, given by an algebra homomorphism $\varphi: A \rightarrow T$.
(i) Show that such a homomorphism can be written in the form $\varphi(a)=f(a)+d(a) \epsilon$, where f and d are functions $A \rightarrow \mathbb{C}$. Show that f is an algebra homomorphism, and that d is an f-derivation, a linear map that satisfies the identity $d(a b)=f(a) d(b)+d(a) f(b)$.
(ii) Let $A=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{r}\right)$. Show that the tangent vectors to $X=\operatorname{Spec} A$ are defined by the equations $\nabla f_{i}(p) x=0$. In other words, the tangent vectos are the vectors that are the vectors that are orthogonal to the gradients.
2.9.6. Let $i=\left(i_{1}, \ldots, i_{n}\right)$ be a set of non-negative integers, and let $x^{(i)}$ denote the monomial $x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$. A formal power series is a sum $\sum a_{(i)} x^{(i)}$, where $a_{(i)}$ are arbitrary complex numbers. There is no condition of convergence. Prove that the set of formal power series forms a ring $\mathbb{C}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$, and that an element whose constant term is nonzero is invertible.
2.9.7. Prove that that the varieties in the affine plane \mathbb{A}^{2} are points, curves, and the affine plane \mathbb{A}^{2} itself.
2.9.8. Classify algebras that are complex vector spaces of dimensions two or three.
2.9.9. Derive version 1 of the Nullstellensatz from the Strong Nulletellensatz.
2.9.10. Find generators for the ideal of $\mathbb{C}[x, y]$ of polynomials that vanish at the three points $(0,0),(0,1),(1,0)$.
2.9.11. Let A be a noetherian ring. Prove that a radical ideal I of A is the intersection of finitely many prime ideals.
2.9.12. Let C and D be closed subsets of an affine variety $X=\operatorname{Spec} A$. Suppose that no component of D is contained in C. Prove that there is a regular function f that vanishes on C and isn't identically zero on any component of D.
2.9.13. A minimal prime ideal is an ideal that doesn't properly contain any other prime ideal. Prove that a nonzero, finite-type algebra A (not necessarily a domain) contains at least one and only finitely many minimal prime ideals. Try to find a proof that doesn't require much work.
2.9.14. Let K be a field and let R be the polynomial ring $K\left[x_{1}, \ldots, x_{n}\right]$, with $n>0$. Prove that the field of fractions of R is not a finitely generated K-algebra.
2.9.15. Prove that the algebra $A=\mathbb{C}[x, y] /\left(x^{2}+y^{2}+1\right)$ is isomorphic to the Laurent Polynomial Ring $\mathbb{C}\left[t, t^{-1}\right]$, but that $\mathbb{R}[x, y] /\left(x^{2}+y^{2}+1\right)$ is not isomorphic to $\mathbb{R}\left[t, t^{-1}\right]$.
2.9.16. Let B be a finite type domain, and let p and q be points of the affine variety $Y=\operatorname{Spec} B$. Let A be the set of elements $f \in B$ such that $f(p)=f(q)$. Prove
(i) A is a finite type domain.
(ii) B is a finite A-module.
(iii) Let $\varphi: \operatorname{Spec} B \rightarrow \operatorname{Spec} A$ be the morphism obtained from the inclusion $A \subset B$. Show that $\varphi(p)=\varphi(q)$, and that φ is bijective everywhere else.
2.9.17. The equation $y^{2}=x^{3}$ defines a plane curve X with a cusp at the origin, the spectrum of the algebra $A=\mathbb{C}[x, y] /\left(y^{2}-x^{3}\right)$. There is a homomorphism $A \xrightarrow{\varphi} \mathbb{C}[t]$, such that $\varphi(x)=t^{2}$ and $\varphi(y)=t^{3}$, and the associated morphism $\mathbb{A}_{t}^{1} \xrightarrow{u} X$ sends a point t of \mathbb{A}^{1} to the point $(x, y)=\left(t^{2}, t^{3}\right)$ of X. Prove that u is a homeomorphism in the Zariski topology and in the classical topology.
xspellout-
morph
xadjoin-
frac
xparamcurve
grawtwo
remainirrd
xzetaxy
2.9.18. Explain what a morphism $\operatorname{Spec} B \rightarrow \operatorname{Spec} A$ means in terms of polynomials, when $A=\mathbb{C}\left[x_{1}, \ldots, x_{m}\right] /\left(f_{1}, \ldots, f_{r}\right)$ and $B=\mathbb{C}\left[y_{1}, \ldots, y_{n}\right] /\left(g_{1}, \ldots, g_{k}\right)$.
2.9.19. Let $A=\mathbb{C}\left[x_{1}, \ldots, x_{2}\right]$, and let $B=A[\alpha]$, where α is an element of the fraction field $\mathbb{C}(x)$ of A. Describe the fibres of the morphism $Y=\operatorname{Spec} B \rightarrow \operatorname{Spec} A=X$.
2.9.20. Let X be the plane curve $y^{2}=x(x-1)^{2}$, let $A=\mathbb{C}[x, y] /\left(y^{2}-x(x-1)^{2}\right)$ be its coordinate algebra, and let x, y denote the residues of those elements in A too.
(i) Points of the curve can be parametrized by a variable t. Use the lines $y=t(x-1)$ to determine such a parametrization.
(ii) Let $B=\mathbb{C}[t]$ and let T be the affine line $\operatorname{Spec} \mathbb{C}[t]$. The parametrization gives us an injective homomorphism $A \rightarrow B$. Describe the corresponding morphism $T \rightarrow X$.
2.9.21. Let X be the affine line $\operatorname{Spec} \mathbb{C}[x]$. When we view $\operatorname{Spec} \mathbb{C}\left[x_{1}, x_{2}\right]$ as the product $X \times X$, a homomorphism $\mathbb{C}[x] \rightarrow \mathbb{C}\left[x_{1}, x_{2}\right]$ defines a law of composition on X, a morphism $X \times X \rightarrow X$. Determine the homomorphisms that are group laws on X with the point $x=0$ as the identity.
2.9.22. The cyclic group $G=\langle\sigma\rangle$ of order n operates on the polynomial algebra $A=\mathbb{C}[x, y]$ by $\sigma(x)=\zeta x$ and $\sigma(y)=\zeta y$, where $\zeta=e^{2 \pi i / n}$.
(i) Describe the invariant ring A^{G} by exhibiting generators and defining relations.
(ii) Prove that the there is a $2 \times n$ matrix whose 2×2-minors are defining relations for A^{G}.
(iii) Prove that the morphism $\operatorname{Spec} A=\mathbb{A}^{2} \rightarrow \operatorname{Spec} B$ defined by the inclusion $B \subset A$ is surjective, and that its fibres are the G-orbits. Don't use Theorem 2.8.5
2.9.23. Let A be a finite-type domain, and let f be an irreducible element of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ of positive degree. Prove that f is an irreducible element of $A\left[x_{1}, \ldots, x_{n}\right]$.
2.9.24. try to make exercise: missing points in C^{*} are L^{*}, where L is a special line.

Chapter 3 PROJECTIVE ALGEBRAIC GEOMETRY

projgeom
3.0.2. Lemma. Let $Y \xrightarrow{f} X$ be a continuous map. Suppose that Y is compact and that X is a Hausdorff compact space - that it has the Hausdorff property. Then the image $f(Y)$ is a closed, compact subset of X.

3.1 Projective Varieties

pvariety
A subset of \mathbb{P}^{n} is Zariski closed if it is the set of common zeros of a family of homogeneous polynomials f_{1}, \ldots, f_{k} in the coordinate variables x_{0}, \ldots, x_{n}, or if it is the set of zeros of the ideal \mathcal{I} generated by such a family. As was explained in 1.3.1, $f(\lambda x)=0$ for all λ if and only if all of the homogeneous parts of f vanish at x.

The Zariski closed sets are the closed sets in the Zariski topology on \mathbb{P}^{n}. We usually refer to Zariski closed sets simply as closed sets.

Because the polynomial ring $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ is noetherian, projective space \mathbb{P}^{n} is a noetherian space: Every strictly increasing family of ideals of $\mathbb{C}[x]$ is finite, and every strictly decreasing family of closed subsets of \mathbb{P}^{n} is finite. Therefore every closed subset of \mathbb{P}^{n} is a finite union of irreducible closed sets 2.2.16.
3.1.1. Definition. A projective variety is an irreducible closed subset of a projective space \mathbb{P}^{n}.

We will want to know when two projective varieties are isomorphic. This will be explained in Section 3.5 , when morphisms are defined.

The Zariski topology on a projective variety X is induced from the topology on the projective space that contains it (??). Since a projective variety X is closed in \mathbb{P}^{n}, a subset of X is closed in X if and only if it is closed in \mathbb{P}^{n}.

3.1.2. Lemma. The one-point sets in projective space are closed.

proof. Let p be the point $\left(a_{0}, \ldots, a_{n}\right)$. The first guess might be that the one-point set $\{p\}$ is defined by the equations $x_{i}=a_{i}$, but the polynomials $x_{i}-a_{i}$ aren't homogeneous in x. This is reflected in the fact that, for any $\lambda \neq 0$, the vector $\left(\lambda a_{0}, \ldots, \lambda a_{n}\right)$ represents the same point, but it doesn't satisfy those equations. The equations that define the set $\{p\}$ are

$$
\begin{equation*}
a_{i} x_{j}=a_{j} x_{i}, \tag{3.1.3}
\end{equation*}
$$

for $i, j=0, \ldots, n$, which imply that the ratios a_{i} / a_{j} and x_{i} / x_{j} are equal.
3.1.4. Lemma. The proper closed subsets of the projective line are its nonempty finite subsets, and the proper closed subsets of the projective plane are finite unions of points and curves.

The rest of this section contains a few examples of projective varieties.

(3.1.5) linear subspaces

If W is a subspace of dimension $r+1$ of the vector space \mathbb{C}^{n+1}, the points of \mathbb{P}^{n} that are represented by the nonzero vectors in W form a linear subspace L of \mathbb{P}^{n}, of dimension r. If $\left(w_{0}, \ldots, w_{r}\right)$ is a basis of W, the linear subspace L corresponds bijectively to a projective space of dimension r, by

$$
c_{0} w_{0}+\cdots+c_{r} w_{r} \longleftrightarrow\left(c_{0}, \ldots, c_{r}\right)
$$

For example, the set of points $\left(x_{0}, \ldots, x_{r}, 0, \ldots, 0\right)$ is a linear subspace of dimension r. A line is a linear subspace of dimension 1.

(3.1.6) a quadric surface

A quadric in projective three-space \mathbb{P}^{3} is the locus of zeros of an irreducible homogeneous quadratic polynomial in four variables.

We describe a bijective map from the product $\mathbb{P}^{1} \times \mathbb{P}^{1}$ of projective lines to a quadric in \mathbb{P}^{3}. Let coordinates in the two copies of \mathbb{P}^{1} be $\left(x_{0}, x_{1}\right)$ and $\left(y_{0}, y_{1}\right)$, respectively, and let the four coordinates in \mathbb{P}^{3} be $z_{i j}$, with $0 \leq i, j \leq 1$. The map is defined by $z_{i j}=x_{i} y_{j}$. Its image is the quadric Q whose equation is

$$
\begin{equation*}
z_{00} z_{11}=z_{01} z_{10} \tag{3.1.7}
\end{equation*}
$$

To check that the map $\mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow Q$ defined by the euation $z_{i j}=x_{i} y_{j}$ is bijective, we choose a point w of Q. One of its coordinates, say z_{00}, will be nonzero. Then if (x, y) is a point of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ whose image is w, so that $z_{i j}=x_{i} y_{j}$, the coordinates x_{0} and y_{0} must be nonzero too. When we normalize z_{00}, x_{0}, and y_{0} to 1 , the equation of the quadric becomes $z_{11}=z_{01} z_{10}$. This equation has a unique solution for x_{1} and y_{1} such that $z_{i j}=x_{i} y_{j}$, namely $x_{1}=z_{10}$ and $y_{1}=z_{01}$.

The quadric whose equation is 3.1.7. contains two families of lines, the images of the subsets $x \times \mathbb{P}^{1}$ and $\mathbb{P}^{1} \times y$ of $\mathbb{P} \times \mathbb{P}$.

The equation (3.1.7) can be diagonalized by substituting $z_{00}=s+t, z_{11}=s-t, z_{01}=u+v, z_{10}=u-v$. This changes the equation 3.1.7) to $s^{2}-t^{2}=u^{2}-v^{2}$. When we look at the affine open set $\{u=1\}$, the equation becomes $s^{2}+v^{2}-t^{2}=1$. The real locus of this equation is a one-sheeted hyerboloid in \mathbb{R}^{3}, and the two families of complex lines in the quadric correspond to the familiar rulings of that hyperboloid by real lines.

\#\#\#insert figure\#\#\#

hsurftwo
segreemb
segrecoords
segreeq
segreequations
veroneseemb
veroneq

(3.1.8) hypersurfaces

A hypersurface in projective space \mathbb{P}^{n} is the locus of zeros of an irreducible homogeneous polynomial $f\left(x_{0}, \ldots, x_{n}\right)$. Its degree is the degree of the polynomial f. Plane projective curves and quadric surfaces are hypersurfaces.

(3.1.9) the Segre embedding of a product

The product $\mathbb{P}_{x}^{m} \times \mathbb{P}_{y}^{n}$ of projective spaces can be embedded by its Segre embedding into a projective space \mathbb{P}_{z}^{N} that has coordinates $z_{i j}$, with $i=0, \ldots, m$ and $j=0, \ldots, n$. So $N=(m+1)(n+1)-1$. The Segre embedding is defined by

$$
\begin{equation*}
z_{i j}=x_{i} y_{j} \tag{3.1.10}
\end{equation*}
$$

We call the coordinates $z_{i j}$ the Segre variables. The map from $\mathbb{P}^{1} \times \mathbb{P}^{1}$ to \mathbb{P}^{3} that was described in 3.1.6 is the simplest case of a Segre embedding.
3.1.11. Proposition. The Segre embedding maps the product $\mathbb{P}^{m} \times \mathbb{P}^{n}$ bijectively to the locus S of the Segre equations

$$
\begin{equation*}
z_{i j} z_{k \ell}-z_{i \ell} z_{k j}=0 \tag{3.1.12}
\end{equation*}
$$

The proof is analogous to the one given in 3.1.6.
The Segre embedding is important because it makes the product of projective spaces into a projective variety, the closed subvariety of \mathbb{P}^{N} defined by the Segre equations. However, to show that the product is a variety, we need to show that the locus of the Segre equations is irreducible, and this isn't obvious. We defer the proof to Section 3.3 below. (See Proposition 3.3.4)

(3.1.13) the Veronese embedding of projective space

Let the coordinates in \mathbb{P}^{n} be x_{i}, and let those in \mathbb{P}^{N} be $v_{i j}$, with $0 \leq i \leq j \leq n$. So $N=\binom{n+2}{2}-1$. The Veronese embedding is the map $\mathbb{P}^{n} \xrightarrow{f} \mathbb{P}^{N}$ defined by $v_{i j}=x_{i} x_{j}$. The Veronese embedding resembles the Segre embedding, but in the Segre embedding, there are distinct sets of coordinates x and y, and $i \leq j$ isn't required.

The proof of the next proposition is similar to the proof of 3.1.11), once one has untangled the inequalities.
3.1.14. Proposition. The Veronese embedding f maps \mathbb{P}^{n} bijectively to the locus X in \mathbb{P}^{N} of the equations

$$
v_{i j} v_{k \ell}=v_{i \ell} v_{k j} \quad \text { for } \quad 0 \leq i \leq k \leq j \leq \ell \leq n
$$

For example, the Veronese embedding maps \mathbb{P}^{1} bijectively to the conic $v_{00} v_{11}=v_{01}^{2}$ in \mathbb{P}^{2}.

(3.1.15) the twisted cubic

There are higher order Veronese embeddings. They are defined by evaluating the monomials of some degree $d>2$. The first example is the embedding of \mathbb{P}^{1} by the cubic monomials in two variables, which maps \mathbb{P}^{1} to \mathbb{P}^{3}. Let the coordinates in \mathbb{P}^{3} be v_{0}, \ldots, v_{3}. The cubic Veronese embedding is defined by

$$
v_{0}=x_{0}^{3}, \quad v_{1}=x_{0}^{2} x_{1}, \quad v_{2}=x_{0} x_{1}^{2}, \quad v_{3}=x_{1}^{3}
$$

Its image, the locus $\left(v_{0}, v_{1}, v_{2}, v_{3}\right)=\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{0} x_{1}^{2}, x_{1}^{3}\right)$, is called a twisted cubic in \mathbb{P}^{3}. It is the set of common zeros of three polynomials:

$$
\begin{equation*}
v_{0} v_{2}-v_{1}^{2}, \quad v_{1} v_{2}-v_{0} v_{3}, \quad v_{1} v_{3}-v_{2}^{2} \tag{3.1.16}
\end{equation*}
$$

the 2×2 minors of the 2×3 matrix

$$
\left(\begin{array}{lll}
v_{0} & v_{1} & v_{2} \tag{3.1.17}\\
v_{1} & v_{2} & v_{3}
\end{array}\right)
$$

A 2×3 matrix has rank ≤ 1 if and only if its 2×2 minors are zero. So a point $\left(v_{0}, v_{1}, v_{2}, v_{3}\right)$ lies on the twisted cubic if 3.1.17) has rank one, which means that the vectors $\left(v_{0}, v_{1}, v_{2}\right)$ and $\left(v_{1}, v_{2}, v_{3}\right)$, if both are nonzero, represent the same point of \mathbb{P}^{2}.

Setting $x_{0}=1$ and $x_{1}=t$, the twisted cubic becomes the locus of points $\left(1, t, t^{2}, t^{3}\right)$. There is one point on the twisted cubic at which $x_{0}=0$, the point $(0,0,0,1)$.

3.2 Homogeneous Ideals

Let R denote the polynomial algebra $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$.
3.2.1. Lemma. Let \mathcal{I} be an ideal of R. The following conditions are equivalent.
(i) \mathcal{I} can be generated by homogeneous polynomials.
(ii) A polynomial is in \mathcal{I} if and only if its homogeneous parts are in \mathcal{I}.

An ideal \mathcal{I} that satisfies these conditions is a homogeneous ideal.
3.2.2. Corollary. Let S be a subset of projective space \mathbb{P}^{n}. The set of elements of R that vanish at all points of S is a homogeneous ideal.

This follows from Lemma 1.3.2,

3.2.3. Lemma. The radical of a homogeneous ideal is homogeneous.

proof. Let \mathcal{I} be a homogeneous ideal, and let f be an element of its radical $\operatorname{rad} \mathcal{I}$. So for some r, f^{r} is in \mathcal{I}. When f is written as the sum $f_{0}+\cdots+f_{d}$ of its homogeneous parts, the highest degree part of f^{r} is $\left(f_{d}\right)^{r}$. Since \mathcal{I} is homogeneous, $\left(f_{d}\right)^{r}$ is in \mathcal{I} and f_{d} is in $\operatorname{rad} \mathcal{I}$. Then $f_{0}+\cdots+f_{d-1}$ is also in $\operatorname{rad} \mathcal{I}$. By induction on d, all of the homogeneous parts f_{0}, \ldots, f_{d} are in $\operatorname{rad} \mathcal{I}$.
3.2.4. The locus of zeros of a set f of homogeneous polynomials in \mathbb{P}^{n} may be denoted by $V(f)$, and the locus of zeros of a homogeneous ideal \mathcal{I} may be denoted by $V(\mathcal{I})$. We use the same notation as for closed subsets of affine space.

The complement of the origin in the affine space \mathbb{A}^{n+1} is mapped to the projective space \mathbb{P}^{n} by sending a vector $\left(x_{0}, \ldots, x_{n}\right)$ to the point of \mathbb{P}^{n} defined by that vector. A homogeneous ideal \mathcal{I} has a zero locus W in affine space and V in projective space. Unless \mathcal{I} is the unit ideal, the origin $x=0$ will be a point of W. The complement of the origin in W will map surjectively to V.

If W contains a point x other than the origin, then every point of the one-dimensional subspace of \mathbb{A}^{n+1} spanned by x is in W, because a homogeneous polynomial f vanishes at x if and only if it vanishes at λx. An
affine variety that is the union of lines through the origin is called an affine cone. If the locus W contains a point x other than the origin, it is an affine cone.

The loci $\left\{x_{0}^{2}+x_{1}^{2}-x_{2}^{2}=0\right\}$ and $\left\{x_{0} x_{1}^{3}+x_{1}^{2} x_{2}^{2}+x_{0}^{3} x_{2}=0\right\}$ are affine cones in \mathbb{A}^{3}.
Note. The real locus $x_{0}^{2}+x_{1}^{2}-x_{2}^{2}=0$ in \mathbb{R}^{3} decomposes into two parts when the origin is removed. Because of this, it is sometimes called a "double cone". However, the complex locus doesn't decompose.

(3.2.5) the irrelevant ideal

In the polynomial algebra $R=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$, the maximal ideal $\mathcal{M}=\left(x_{0}, \ldots, x_{n}\right)$ generated by the variables is called the irrelevant ideal because its zero locus in projective space is empty.
3.2.6. Proposition. The zero locus $V(\mathcal{I})$ in \mathbb{P}^{n} of a homogeneous ideal \mathcal{I} of R is empty if and only if \mathcal{I} contains a power of the irrelevant ideal \mathcal{M}.

Another way to say this is: The zero locus of a homogeneous ideal \mathcal{I} is empty if and only if either \mathcal{I} is the unit ideal R, or its radical is the irrelevant ideal.
proof of Proposition 3.2.6. Let V be the zero locus of \mathcal{I} in \mathbb{P}^{n}. If \mathcal{I} contains a power of \mathcal{M}, it contains a power of each variable. Powers of the variables have no common zeros in projective space, so V is empty.

Suppose that V is empty, and let W be the locus of zeros of \mathcal{I} in the affine space \mathbb{A}^{n+1} with coordinates x_{0}, \ldots, x_{n}. Since the complement of the origin in W maps to the empty locus V, it is empty. The origin is the only point that might be in W. If W is the one point space consisting of the origin, then $\operatorname{rad} \mathcal{I}=\mathcal{M}$. If W is empty, \mathcal{I} is the unit ideal.
3.2.7. Strong Nullstellensatz, projective version. Let g be a nonconstant homogeneous polynomial in x_{0}, \ldots, x_{n}, and let \mathcal{I} be a homogeneous ideal of $\mathbb{C}[x]$, not the unit ideal. If g vanishes at every point of the zero locus $V(\mathcal{I})$ in \mathbb{P}^{n}, then \mathcal{I} contains a power of g.
proof. Let W be the locus of zeros of \mathcal{I} in the affine space with coordinates x_{0}, \ldots, x_{n}. A homogeneous polynomial g that vanishes on $V(\mathcal{I})$ vanishes at every point of W different from the origin, and if g isn't a constant, it vanishes at the origin too. So the affine Strong Nullstellensatz 2.4.6 applies. If a nonconstant homogeneous polynomial g vanishes on W, then \mathcal{I} contains a power of g.
3.2.8. Corollary. (i) Let f and g be homogeneous polynomials. If f is irreducible and if $V(f) \subset V(g)$, then f divides g.
(ii) Let \mathcal{I} and \mathcal{J} be homogeneous radical ideals, neither of which is the unit ideal. If $V(\mathcal{I})=V(\mathcal{J})$, then $\mathcal{I}=\mathcal{J}$.
proof. (ii) Suppose that $V(f)=V(g)$. Let g be a homogeneous element of \mathcal{J} that vanishes on $V(\mathcal{J})$ and therefore on $V(\mathcal{I})$. Since \mathcal{I} is a radical ideal, the Strong Nullstellensatz tells us that \mathcal{I} contains g. This shows that $\mathcal{J} \subset \mathcal{I}$. Similarly, $\mathcal{I} \subset \mathcal{J}$.
homprime 3.2.9. Lemma. Let \mathcal{P} be a homogeneous ideal in the polynomial algebra $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$, not the unit ideal. The following conditions are equivalent:
(i) \mathcal{P} is a prime ideal.
(ii) If f and g are homogeneous polynomials, and if $f g \in \mathcal{P}$, then $f \in \mathcal{P}$ or $g \in \mathcal{P}$.
(iii) If \mathcal{A} and \mathcal{B} are homogeneous ideals, and if $\mathcal{A B} \subset \mathcal{P}$, then $\mathcal{A} \subset \mathcal{P}$ or $\mathcal{B} \subset \mathcal{P}$. Or, if \mathcal{A} and \mathcal{B} are homogeneous ideals that contain \mathcal{P}, and if $\mathcal{A B} \subset \mathcal{P}$, then $\mathcal{A}=\mathcal{P}$ or $\mathcal{B}=\mathcal{P}$.

In other words, a homogeneous ideal is a prime ideal if the usual conditions for a prime ideal are satisfied when the polynomials or ideals are homogeneous.
proof of the lemma. When the word homogeneous is omitted, (ii) and (iii) become the definition of a prime ideal. So (i) implies (ii) and (iii). The fact that (iii) \Rightarrow (ii) is proved by considering the principal ideals generated by f and g.
(ii) \Rightarrow (i) Suppose that a homogeneous ideal \mathcal{P} satisfies condition (ii), and that the product $f g$ of two polynomials, not necessarily homogeneous, is in \mathcal{P}. If f has degree d and g has degree e, the highest degree part of $f g$ is the product of the homogeneous parts f_{d} and g_{e}. Since \mathcal{P} is a homogeneous ideal that contains $f g$, it contains $f_{d} g_{e}$. Therefore one of the factors, say f_{d}, is in \mathcal{P}. Let $h=f-f_{d}$. Then $h g=f g-f_{d} g$ is in \mathcal{P}, and it has lower degree than $f g$. By induction on the degree of $f g, h$ or g is in \mathcal{P}, and if h is in \mathcal{P}, so is f.
3.2.10. Proposition. Let V be the zero locus in \mathbb{P}^{n} of a homogeneous radical ideal \mathcal{I} that isn't the irrelevant ideal or the unit ideal. Then V is a projective variety (an irreducible closed subset of \mathbb{P}^{n}) if and only if \mathcal{I} is a prime ideal. Thus a subset V of \mathbb{P}^{n} is a projective variety if and only if it is the zero locus of a homogeneous prime ideal other than the irrelevant ideal.
proof. The closed set V isn't empty, so the locus W of zeros of the radical ideal \mathcal{I} in the affine space \mathbb{A}^{n+1} contains points other than the origin. Let W^{\prime} be the complement of the origin in W. Then W^{\prime} maps surjectively to V. If V is irreducible, then W^{\prime} is irreducible and therefore W is irreducible 2.2.15) (ii). Proposition 2.2 .23 tells us that \mathcal{I} is a prime ideal.

Conversely, suppose that \mathcal{I} isn't a prime ideal. Then there are homogeneous ideals $\mathcal{A}>\mathcal{I}$ and $\mathcal{B}>\mathcal{I}$, such that $\mathcal{A B} \subset \mathcal{I}$. Since \mathcal{I} is a radical ideal, $\operatorname{rad}(\mathcal{A B}) \subset \mathcal{I}$, and since $\operatorname{rad} \mathcal{A} \operatorname{rad} \mathcal{B} \subset \operatorname{rad}(\mathcal{A B}), \operatorname{rad} \mathcal{A} \operatorname{rad} \mathcal{B} \subset \mathcal{I}$. Therefore we may suppose that \mathcal{A} and \mathcal{B} are radical ideals. If α is an element of \mathcal{A} that isn't in \mathcal{I}, the Strong Nullstellensatz asserts that α doesn't vanish on $V(\mathcal{I})$. So $V(\mathcal{A})<V(\mathcal{I})$ and similarly, $V(\mathcal{B})<V(\mathcal{I})$. But $V(\mathcal{A}) \cup V(\mathcal{B})=V(\mathcal{A B}) \supset V(\mathcal{I})$. Then $V(\mathcal{I})$ isn't an irreducible space.

(3.2.11) quasiprojective varieties

We may somwtimes want to study a nonempty open subset of a projective variety in addition to the projective variety itself. We call such an open subset a variety too. The topology on a variety is induced from the topology on projective space. It will be an irreducible topological space (Lemma 2.2.15). However, most of the the varieties we encounter will be either affine or projective.

For example, the complement of a point in a projective variety is a variety.
We denote the open subspace $\left\{x_{i} \neq 0\right\}$ of \mathbb{P}^{n} by \mathbb{U}^{i}, as we did for subsets of \mathbb{P}^{2}. The points of \mathbb{U}^{0} can be written as $\left(1, u_{1}, \ldots, u_{n}\right)$, with $u_{i}=x_{i} / x_{0}$. This subspace is an affine space of dimension n that we refer to as a standard open subset of projective space.

An affine variety $X=$ Spec A may be embedded as a closed subvariety into the standard open set \mathbb{U}^{0}. It becomes an open subset of its closure in \mathbb{P}^{n}, which is a projective variety (Lemma 2.2.15. So it is a variety. And of course, a projective variety is a variety.

Elsewhere, what we call a variety is called a quasiprojective variety. We drop the adjective 'quasiprojective'. There are abstract varieties that aren't quasiprojective, varieties that cannot be embedded into any projective space. But such varieties aren't very important and we won't study them. In fact, it is hard enough to find examples that we won't try to give one here. So for us, the adjective 'quasiprojective' is superfluous as well as ugly.
3.2.12. Lemma. The topology on the affine open subset \mathbb{U}^{0} of \mathbb{P}^{n} induced from the Zariski topology on \mathbb{P}^{n} is same as the Zariski topology that is obtained by viewing \mathbb{U}^{0} as the affine space $\operatorname{Spec} \mathbb{C}\left[u_{1}, \ldots, u_{n}\right]$, $u_{i}=x_{i} / x_{0}$.

This follows from the fact that a homogeneous polynomial $f\left(x_{0}, \ldots, x_{n}\right)$ and its dehomogeniztion $F\left(u_{1}, \ldots, u_{n}\right)=$ $f\left(1, u_{1}, \ldots, u_{n}\right)$ have the same zeros on \mathbb{U}^{0}.

3.3 Product Varieties

The properties of products of varieties are intuitively plausible, but one must be careful because the Zariski topology on a product isn't the product topology.

The product topology on the product $X \times Y$ of topological spaces is the coarsest topology such that the projection maps $X \times Y \rightarrow X$ and $X \times Y \rightarrow Y$ are continuous. If C and D are closed subsets of X and Y respectively, then $C \times D$ is a closed subset of $X \times Y$ in the product topology, and every closed set in the product topology is a finite union of such subsets. The product topology is much coarser than the Zariski topology. For
example, the proper Zariski closed subsets of \mathbb{P}^{1} are the nonempty finite subsets. In the product topology, the proper closed subsets of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ are finite unions of sets of the form $p \times \mathbb{P}^{1}, \mathbb{P}^{1} \times q$, and $p \times q$ ('vertical' lines, 'horizontal' lines, and points). Most Zariski closed subsets of $\mathbb{P}^{1} \times \mathbb{P}^{1}$, the diagonal $\Delta=\left\{(p, p) \mid p \in \mathbb{P}^{1}\right\}$ for instance, aren't of this form.

(3.3.1) the Zariski topology on $\mathbb{P}^{m} \times \mathbb{P}^{n}$

As has been mentioned, the product of projective spaces $\mathbb{P}^{m} \times \mathbb{P}^{n}$ can be embedded into a projective space \mathbb{P}^{N} by the Segre map, which identifies the product as a closed subset of \mathbb{P}^{N}, with $N=m n+m+n$. It is the locus of the Segre equations $z_{i j} z_{k \ell}=z_{i \ell} z_{k j}$, Since $\mathbb{P}^{m} \times \mathbb{P}^{n}$, with its Segre embedding, becomes a closed subset of \mathbb{P}^{N}, we don't really need a separate definition of its Zariski topology. Its closed subsets are the zero sets of families of homogeneous polynomials in the Segre variables $z_{i j}$, families that include the Segre equations. However, it is important to know that the Segre embedding maps the product $\mathbb{P}^{m} \times \mathbb{P}^{n}$ to an irreducible closed subset of \mathbb{P}^{N}, so that the product becomes a projective variety. This will be proved below, in Corollary 3.3.5

One can describe the closed subsets of $\mathbb{P}^{m} \times \mathbb{P}^{n}$ directly, in terms of bihomogeneous polynomials. A polynomial $f(x, y)$ in $x=\left(x_{0}, \ldots, x_{m}\right)$ and $y=\left(y_{0}, \ldots, y_{n}\right)$ is bihomogeneous if it is homogeneous in the variables x and homogeneous in the variables y. For example, $x_{0}^{2} y_{0}+x_{0} x_{1} y_{1}$ is a bihomogeneous polynomial, of degree 2 in x and degree 1 in y.

The bihomogeneous part of bidegree i, j of a polynomial $f(x, y)$ is the sum of terms whose degrees in x and y are i and j, respectively. Because (x, y) and $(\lambda x, \mu y)$ represent the same point of $\mathbb{P}^{m} \times \mathbb{P}^{n}$ for all nonzero scalars λ and μ, we want to know that $f(x, y)=0$ if and only if $f(\lambda x, \mu y)=0$ for all nonzero λ and μ. This will be true if and only if all of the bihomogeneous parts of f are zero. (See 1.3.2.)
3.3.2. Proposition. (i) Let Z be a subset of $\mathbb{P}^{m} \times \mathbb{P}^{n}$. The Segre image of Z is closed if and only if Z is the locus of zeros of a family of bihomogeneous polynomials.
(ii) If X and Y are closed subsets of \mathbb{P}^{m} and \mathbb{P}^{n}, respectively, then $X \times Y$ is a closed subset of $\mathbb{P}^{m} \times \mathbb{P}^{n}$.
(iii) The projection maps $\mathbb{P}^{m} \times \mathbb{P}^{n} \xrightarrow{\pi_{1}} \mathbb{P}^{m}$ and $\mathbb{P}^{m} \times \mathbb{P}^{n} \xrightarrow{\pi_{2}} \mathbb{P}^{n}$ are continuous.
(iv) For all x in \mathbb{P}^{m} the fibre $x \times \mathbb{P}^{n}$ is homeomorphic to \mathbb{P}^{n}, and for all y in \mathbb{P}^{n}, the fibre $\mathbb{P}^{m} \times y$ is homeomorphic to \mathbb{P}^{m}.
proof. (i) Let Π denote the Segre image of $\mathbb{P}^{m} \times \mathbb{P}^{n}$, and let $f(z)$ be a homogeneous polynomial in the Segre variables $z_{i j}$. When we substitute $z_{i j}=x_{i} y_{j}$ into f, we obtain a bihomogeneous polynomial $\widetilde{f}(x, y)$ whose degree in x and in y is the same as the degree of f. The inverse image of the zero set of f in Π is the zero set of \widetilde{f} in $\mathbb{P}^{m} \times \mathbb{P}^{n}$. Therefore the inverse image of a closed subset of Π is the zero set of a family of bihomogeneous polynomials in $\mathbb{P}^{m} \times \mathbb{P}^{n}$.

Conversely, let $\widetilde{g}(x, y)$ be a bihomogeneous polynomial, say of degrees r in x and degree s in y. If $r=s$, we may collect variables that appear in \widetilde{g} in pairs $x_{i} y_{j}$ and replace each pair $x_{i} y_{j}$ by $z_{i j}$. We will obtain a homogeneous polynomial g in z such that $g(z)=\widetilde{g}(x, y)$ when $z_{i j}=x_{i} y_{j}$. The zero set of g in Π is the image of the zero set of \widetilde{g} in $\mathbb{P}^{m} \times \mathbb{P}^{n}$.

Suppose that $r \geq s$, and let $k=r-s$. Because the variables y cannot all be zero at any point of \mathbb{P}^{n}, the equation $g=0$ on $\mathbb{P}^{m} \times \mathbb{P}^{n}$ is equivalent with the system of equations $g y_{0}^{k}=g y_{1}^{k}=\cdots=g y_{n}^{k}=0$. The polynomials $g y_{i}^{k}$ are bihomogeneous, of same degree in x as in y. This puts us back in the first case.
(ii) A homogeneous polynomial $f(x)$ is a bihomogeneous polynomial of degree zero in y, and a homogeneous polynomial $g(y)$ as a bihomogeneous polynomial of degree zero in x. So $X \times Y$, which is a locus of the form $f(x)=g(y)=0$ in $\mathbb{P}^{m} \times \mathbb{P}^{n}$, is closed in $\mathbb{P}^{m} \times \mathbb{P}^{n}$.
(iii) For the projection π_{1}, we must show that if X is a closed subset of \mathbb{P}^{m}, its inverse image $X \times \mathbb{P}^{n}$ is closed. This is a special case $Y=\mathbb{P}^{n}$ of (ii).
(iv) It will be best to denote the chosen point of \mathbb{P}^{m} by a symbol other than x here. We'll denote it by \underline{x}. Part (i) tells us that the bijective map $\underline{x} \times \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ is continuous. To show that the inverse map is continuous, we must show that a closed subset Z of $\underline{x} \times \mathbb{P}^{n}$ is the inverse image of a closed subset of \mathbb{P}^{n}. Say that Z is the zero locus of a set of bihomogeneous polynomials $f(x, y)$. The polynomials $\bar{f}(y)=f(\underline{x}, y)$ are homogeneous in y, and the inverse image of their zero locus is Z.
3.3.3. Corollary. Let X and Y be projective varieties, and let Π denote the product $X \times Y$, regarded as a closed subspace of $\mathbb{P}^{m} \times \mathbb{P}^{n}$.

- The projections $\Pi \rightarrow X$ and $\Pi \rightarrow Y$ are continuous.
- For all x in X and all y in Y, the fibres $x \times Y$ and $X \times y$ are homeomorphic to Y and X, respectively.
3.3.4. Proposition. Suppose that a topology is given on the product $X \times Y=\Pi$ of irreducible topological spaces X and Y, and that it has these properties:
- The projections $\Pi \xrightarrow{\pi_{1}} X$ and $\Pi \xrightarrow{\pi_{2}} Y$ are continuous.
- For all x in X and all y in Y, the fibres $x \times Y$ and $X \times y$ are homeomorphic to Y and X, respectively.

Then Π is an irreducible topological space.
The first condition tells us that the topology on $X \times Y$ is at least as fine as the product topology, and the second one tells us that the topology isn't too fine. (We don't want to give Π the discrete topology.)

Some notation for use in the proof of the proposition: Let x be a point of X. If W is a subset of $X \times Y$, we denote the intersection $W \cap(x \times Y)$ by ${ }_{x} W$. Similarly, if y is a point of Y, we denote $W \cap(X \times y)$ by W_{y}. By analogy with the x, y-plane, we call ${ }_{x} W$ and W_{y} a vertical slice and a horizontal slice, of W, respectively.
proof of Proposition 3.3.4. We prove irreducibility by showing that the intersection of two nonempty open subsets W and W^{\prime} of $X \times Y$ isn't empty 2.2.13.

We show first that the image $U=\pi_{2} W$ of an open subset W of $X \times Y$ via projection to Y is an open subset of Y. We are given that, for every x, the fibre $x \times Y$ is homeomorphic to Y. Since W is open in $X \times Y$, the vertical slice ${ }_{x} W$ is open in $x \times Y$. Its image $\pi_{2}\left({ }_{x} W\right)$ is open in the homeomorphic space Y. Since W is the union of the sets ${ }_{x} W, U$ is the union of the open sets $\pi_{2}\left({ }_{x} W\right)$. So U is open.

Now let W and W^{\prime} be nonempty open subsets of $X \times Y$, and let U and U^{\prime} be their images via projection to Y. So U and U^{\prime} are nonempty open subsets of Y. Since Y is irreducible, $U \cap U^{\prime}$ isn't empty. Let y be a point of $U \cap U^{\prime}$. Since $U=\pi_{2} W$ and y is a point of U, the horizontal slice W_{y}, which is an open subset of the fibre $X \times y$, isn't empty. Similarly, W_{y}^{\prime} isn't empty. Since $X \times y$ is homeomorphic to the irreducible space X, it is irreducible. So $W_{y} \cap W_{y}^{\prime}$ isn't empty. Therefore $W \cap W^{\prime}$ isn't empty, as was to be shown.
3.3.5. Corollary. The product $X \times Y$ of projective varieties X and Y is a projective variety.
(3.3.6) products of affine varieties

Let $X=\operatorname{Spec} A$ and $Y=\operatorname{Spec} B$ be affine varieties. Say that X is embedded as a closed subvariety of \mathbb{A}^{m}, so that $A=\mathbb{C}\left[x_{1}, \ldots, x_{m}\right] / P$ for some prime ideal P, and that Y is embedded similarly into \mathbb{A}^{n}, $B=\mathbb{C}\left[y_{1}, \ldots, y_{n}\right] / Q$ for some prime ideal Q. Then in affine x, y-space $\mathbb{A}^{m+n}, X \times Y$ is the locus of the equations $f(x)=0$ and $g(y)=0$, with f in P and g in Q. Proposition 3.3.4 shows that $X \times Y$ is irreducible, so it is a variety. Let P^{\prime} be the ideal of $\mathbb{C}[x, y]$ generated by the elements of P. It consists of sums of products of elements of P with polynomials in x, y. Let Q^{\prime} be defined in the analogous way.
3.3.7. Proposition. The elements of the ideal $I=P^{\prime}+Q^{\prime}$ are the polynomials that vanish on the variety $X \times Y$. Therefore I is a prime ideal.

The fact that $X \times Y$ is a variety tells us only that the radical of I is a prime ideal.
proof of Proposition 3.3.7. Let $R=\mathbb{C}[x, y] / I$. The projection $X \times Y \rightarrow X$ is surjective. Therefore the map $A \rightarrow R$ is injective, and similarly, $B \rightarrow R$ is injective. We identify A and B with their images in R.

Any polynomial $f(x, y)$ can the written, in many ways, as a sum, each of whose terms is a product of a polynomial in x with a polynomial in $y: \quad f(x, y)=\sum a_{i}(x) b_{i}(y)$. Therefore any element ρ of R can be written as a finite sum of products

$$
\begin{equation*}
\rho=\sum_{i=1}^{k} a_{i} b_{i} \tag{3.3.8}
\end{equation*}
$$

with a_{i} in A and b_{i} in B. To show that 0 is the only element of R that vanishes identically on $X \times Y$, we show that a sum ρ of k products $a_{i} b_{i}$ that vanishes on $X \times Y$ can also be written as a sum of $k-1$ products.

Say that $\rho=\sum_{1}^{k} a_{i} b_{i}$. If $a_{k}=0$, then ρ is the sum $\sum_{i=1}^{k-1} a_{i} b_{i}$ of $k-1$ products. If $a_{k} \neq 0$, the function on X defined by a_{k} isn't identically zero. We choose a point \underline{x} of X such that $a_{k}(\underline{x}) \neq 0$. Let $\bar{a}_{i}=a_{i}(\underline{x})$ and $\bar{\rho}(y)=\rho(\underline{x}, y)$. Then $\bar{\rho}(y)=\sum_{i=1}^{k} \bar{a}_{i} b_{i}$ is an element of B. Since ρ vanishes on $X \times Y, \bar{\rho}$ vanishes on $Y=\operatorname{Spec} B$. Therefore $\bar{\rho}=0$. Let $c_{i}=\bar{a}_{i} / \bar{a}_{k}$. Then $b_{k}=-\sum_{i=1}^{k-1} c_{i} b_{i}$. Substituting for b_{k} into ρ and collecting coefficients of b_{1}, \ldots, b_{k-1} gives us an expression for ρ as a sum of $k-1$ terms. When $k=1, b_{1}=0$, and therefore $\rho=0$.

3.4 Rational Functions

ratfnsec fnfld

enufaff

deffnfld

(3.4.1) the function field

Let X be a projective variety, say a closed subvariety of \mathbb{P}^{n}, and let $\mathbb{U}^{i}:\left\{x_{i} \neq 0\right\}$ be one of the standard open subsets of \mathbb{P}^{n}. The intersection $X^{i}=X \cap \mathbb{U}^{i}$, if it isn't empty, will be a closed subvariety of the affine space \mathbb{U}^{i} and a dense open subset of X. It will be an affine variety, and its localizations will also be affine varieties. (The intersection $X \cap \mathbb{U}^{i}$ is empty when X is contained in the hyperplane $\left\{x_{i}=0\right\}$.) Let's call the nonempty sets $X^{i}=X \cap \mathbb{U}^{i}$ the standard open subsets of X.
3.4.2. Lemma. The localizations of the standard open sets sets $X^{i}=X \cap \mathbb{U}^{i}$ are affine varieties, and they form a basis for the topology on X.

This follows from (2.7.2).
There are affine open sets that aren't localizations of these standard open sets, but we don't yet have a definition of affine varieties. Rather than defining affine open sets here, we postpone discussion to Section 3.6.

Let X be a closed subvariety of \mathbb{P}^{n}, and let x_{0}, \ldots, x_{n} be coordinates in \mathbb{P}^{n}. For each $i=0, \ldots, n$, let $X^{i}=X \cap \mathbb{U}^{i}$. We omit the indices for which X^{i} is empty. Then X^{i} will be affine, and the intersection $X^{i j}=X^{i} \cap X^{j}$ will be a localization, both of X^{i} and of X^{j}. The coordinate algebra A_{i} of X^{i} is generated by the images of the elements $u_{i j}=x_{j} / x_{i}$ in A_{i}, and if we denote those images by $u_{i j}$ too, then $X^{i j}=\operatorname{Spec} A_{i j}$, where $A_{i j}=A_{i}\left[u_{i j}^{-1}\right]=A_{j}\left[u_{j i}^{-1}\right]$.
3.4.3. Definition. The function field K of a projective variety X is the function field of any one of the standard open subsets X^{i} 3.4.1, and the function field of an open subvariety X^{\prime} of a projective variety X is the function field of X. All open subvarieties of variety have the same function field.

For example, let x_{0}, x_{1}, x_{2} be coordinates in \mathbb{P}^{2}. To describe the function field of \mathbb{P}^{2}, we can use the standard open set \mathbb{U}^{0}, which is an affine plane $\operatorname{Spec} \mathbb{C}\left[u_{1}, u_{2}\right]$ with $u_{i}=x_{i} / x_{0}$. The function field of \mathbb{P}^{2} is the field of rational functions: $K=\mathbb{C}\left(u_{1}, u_{2}\right)$. We must use u_{1}, u_{2} as coordinates here. It wouldn't be good to normalize x_{0} to 1 and use coordinates x_{1}, x_{2}, because we may want to change to another standard open set such as \mathbb{U}^{1}. The coordinates in \mathbb{U}^{1} are $v_{0}=x_{0} / x_{1}$ and $v_{2}=x_{2} / x_{1}$, and the function field K is also the field of rational functions $\mathbb{C}\left(v_{0}, v_{2}\right)$. The two fields $\mathbb{C}\left(u_{1}, u_{2}\right)$ and $\mathbb{C}\left(v_{0}, v_{2}\right)$ are the same.

A rational function on a variety X is an element of its function field. If a point p of X lies in a standard open set $X^{i}=\operatorname{Spec} A_{i}$, a rational function α is regular at p if it can be written as a fraction a / s of elements of A_{i} with $s(p) \neq 0$. If so, its value at p is $\alpha(p)=a(p) / s(p)$. If X^{\prime} is an open subvariety of a projective variety X, a rational function on X^{\prime} is regular at a point p of X^{\prime} if it is a regular function on X at p.

When we regard an affine variety $X=\operatorname{Spec} A$ as a closed subvariety of \mathbb{U}^{0}, its function field will be the field of fractions of A, and Proposition 2.6 .2 shows that the regular functions on the affine variety $\operatorname{Spec} A$ are the elements of A.

Thus a rational function on a projective variety X will define a function on a nonempty open subset of X. It can be evaluated at some points of X, not at all points.
3.4.4. Lemma. (i) Let p be a point of a projective variety X. The regularity of a rational function at p doesn't depend on the choice of a standard open set that contains p.
(ii) A rational function that is regular on a nonempty open subset X^{\prime} is determined by the function it defines on X^{\prime}.

Part (ii) follows from Corollary 2.5.17

(3.4.5) points with values in a field

ptvlfld

Let K be a field that contains the complex numbers. A point of projective space \mathbb{P}^{n} with values in K is an equivalence class of nonzero vectors $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right)$ with α_{i} in K, the equivalence relation being analogous to the one for ordinary points: $\alpha \sim \alpha^{\prime}$ if $\alpha^{\prime}=\lambda \alpha$ for some λ in K. If X is the subvariety of \mathbb{P}^{n} defined by a homogeneous prime ideal \mathcal{P} of $\mathbb{C}[x]$, a point α of X with values in K is a point of \mathbb{P}^{n} with values in K such that $f(\alpha)=0$ for all f in \mathcal{P}.

Let K be the function field of a projective variety X. If X is embedded into \mathbb{P}^{n}, the embedding defines a point of X with values in K. To get this point, we choose a standard affine open set \mathbb{U}^{i} of \mathbb{P}^{m} such that $X^{i}=X \cap \mathbb{U}^{i}$ isn't empty, say $i=0$. Then X^{0} will be affine, $X^{0}=\operatorname{Spec} A_{0}$. The embedding of X^{0} into the affine space \mathbb{U}^{0} is defined by a homomorphism $\mathbb{C}\left[u_{1}, \ldots, u_{n}\right] \rightarrow A_{0}$, with $u_{i}=x_{i} / x_{0}$. If α_{i} denotes the image of u_{i} in A_{0}, for $i=1, \ldots, n$ and $\alpha_{0}=1$, then $\left(\alpha_{0}, \ldots, \alpha_{n}\right)$ is the point of \mathbb{P}^{n} with values in K defined by the projective embedding of X.
3.4.6. Note. (the function field of a product) The function field of the product $X \times Y$ of varieties isn't generated by the function fields K_{X} and K_{Y} of X and Y. For example, let $X=\operatorname{Spec} \mathbb{C}[x]$ and $Y=\operatorname{Spec} \mathbb{C}[y]$ (one x and one y). Then $X \times Y=\operatorname{Spec} \mathbb{C}[x, y]$. The function field of $X \times Y$ is the field of rational functions $\mathbb{C}(x, y)$ in two variables. The algebra generated by the fraction fields $\mathbb{C}(x)$ and $\mathbb{C}(y)$ consists of the rational functions $p(x, y) / q(x, y)$ in which $q(x, y)$ is a product of a polynomial in x and a polynomial in y. Most rational functions, $1 /(x+y)$ for instance, aren't of that type.

(3.4.7) interlude: rational functions on projective space

Let R denote the polynomial ring $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$. A homogeneous fraction is a fraction of homogeneous polynomials in x_{0}, \ldots, x_{n}. The degree of a homogeneous fraction is the difference of degrees: deg $g / h=$ $\operatorname{deg} g-\operatorname{deg} h$.

A homogeneous fraction f is regular at a point p of \mathbb{P}^{n} if, when it is written as a fraction g / h of relatively prime homogeneous polynomials, the denominator h isn't zero at p, and f is regular on a subset U if it is regular at every point of U.

A homogeneous fraction f of degree $d \neq 0$ won't define a function anywhere on projective space, beause $f(\lambda x)=\lambda^{d} f(x)$. In particular, a nonconstant homogeneous polynomial g of won't define a function, though it makes sense to say that such a polynomial vanishes at a point of \mathbb{P}^{n}.

On the other hand, a homogeneous fraction $f=g / h$ of degree zero, so that g and h have the same degree r, then f does define a function wherever h isn't zero, because $g(\lambda x) / h(\lambda x)=\lambda^{r} g(x) / \lambda^{r} h(x)=g(x) / h(x)$.
3.4.8. Lemma. (i) Let h be a homogeneous polynomial of positive degree d, and let V be the open subset of \mathbb{P}^{n} of points at which h isn't zero. The rational functions that are regular on V are those of the form g / h^{k}, where $k \geq 0$ and g is a homogeneous polynomial of degree $d k$.
ffprod
ratfnspspace
ho-
mogfractsfn-
fld
(ii) The only rational functions that are regular at every point of \mathbb{P}^{n} are the constant functions.

For example, the homogeneous polynomials that don't vanish at any point of the standard open set \mathbb{U}^{0} are the scalar multiples of powers of x_{0}. So the rational functions that are regular on \mathbb{U}^{0} are those of the form g / x_{0}^{k}, with g homogeneous of degree k. This agrees with the fact that the coordinate algebra of \mathbb{U}^{0} is the polynomial ring $\mathbb{C}\left[u_{1}, \ldots, u_{n}\right], \quad u_{i}=x_{i} / x_{0}$, because $g\left(x_{0}, \ldots, x_{m}\right) / x_{0}^{k}=g\left(u_{1}, \ldots, u_{n}\right)$.
proof of Lemma 3.4.8 (i) Let α be a regular function on the open set V, say $\alpha=g_{1} / h_{1}$, where g_{1} and h_{1} are relatively prime homogeneous polynomials. Then h_{1} doesn't vanish on V, so its zero locus in \mathbb{P}^{n} is contained in the zero locus of h. According to the Strong Nullstellensatz, h_{1} divides a power of h. Say that $h^{k}=f h_{1}$. Then $g_{1} / h_{1}=f g_{1} / f h_{1}=f g_{1} / h^{k}$.
(ii) If a rational function f is regular at every point of \mathbb{P}^{n}, then it is regular on \mathbb{U}^{0}. It will have the form g / x_{0}^{k}, where g is a homogeneous polynomial of degree k not divisible by x_{0}. Since f is also regular on \mathbb{U}^{1}, it will
have the form h / x_{1}^{ℓ}, where h is homogeneous and not divisible by x_{1}. Then $g x_{1}^{\ell}=h x_{0}^{k}$. Since x_{0} doesn't divide $g, \quad k=0$. Therefore g is a constant.

It is also true that the only rational functions that are regular at every point of a projective variety are the constants. The proof of this will be given later (Corollary 8.2.9). When studying projective varieties, the constant functions are useless, so one has to look at at regular functions on open subsets. Affine varieties appear in projective algebraic geometry, as open subsets on which there are enough regular functions.

3.5 Morphisms

As with affine varieties, morphisms are the allowed maps between varieties. Some morphisms, such as the projection from a product $X \times Y$ to X, are sufficiently obvious that they don't require much discussion, but many morphisms aren't obvious.

Let X and Y be subvarieties of the projective spaces \mathbb{P}^{m} and \mathbb{P}^{n}, respectively. A morphism $Y \rightarrow X$, as defined below, will be determined by a morphism from Y to \mathbb{P}^{m} whose image is contained in X. However, in most cases, such a morphism won't be the restriction of a morphism from \mathbb{P}^{n} to \mathbb{P}^{m}. This is an important point: It is usually impossible to define f using polynomials in the coordinate variables of \mathbb{P}^{n}.
3.5.1. Example. Let the coordinates in \mathbb{P}^{2} be y_{0}, y_{1}, y_{2}. The Veronese map from the projective line \mathbb{P}^{1} to \mathbb{P}^{2}, defined by $\left(x_{0}, x_{1}\right) \rightsquigarrow\left(x_{0}^{2}, x_{0} x_{1}, x_{1}^{2}\right)$, is an obvious morphism. Its image is the conic C in \mathbb{P}^{2} defined by the polynomial $\left\{y_{0} y_{2}-y_{1}^{2}\right\}$. The Veronese map defines a bijective morphism $\mathbb{P}^{1} \xrightarrow{f} C$, whose inverse function π sends a point $\left(y_{0}, y_{1}, y_{2}\right)$ of C with $y_{0} \neq 0$ to the point $\left(x_{0}, x_{1}\right)=\left(y_{1}, y_{2}\right)$, and it sends the remaining point, which is $(0,0,1)$, to $(0,1)$. Though π is a morphism $C \rightarrow \mathbb{P}^{1}$, there is no way to extend it to a morphism $\mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$. In fact, the only morphisms from \mathbb{P}^{2} to \mathbb{P}^{1} are the constant morphisms, whose images are points.

It is convenient, though somewhat artificial, to use points with values in a field to define morphisms.

(3.5.2) morphisms to projective space

In this section, it will be helpful to have a separate notation for the point with values in a field K determined by a nonzero vector $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right)$, with entries in K. We'll denote that point by $\underline{\alpha}$. So if α and α^{\prime} are points with values in K, then $\underline{\alpha}=\underline{\alpha}^{\prime}$ if $\alpha^{\prime}=\lambda \alpha$ for some nonzero λ in K. We'll drop this notation later.

Let Y be a variety with function field K. A morphism from Y to projective space \mathbb{P}^{n} will be defined by a point of \mathbb{P}^{n} with values in K. The fact that points of projective space are equivalence classes of vectors, not the vectors themselves, will be useful.

Let $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right)$ be a vector with entries in the function field K of a variety Y. We try to use the point $\underline{\alpha}$ to define a morphism from Y to projective space \mathbb{P}^{n}. To define the image $\underline{\alpha}(q)$ of a point q of Y (an ordinary point), we look for a vector $\alpha^{\prime}=\left(\alpha_{0}^{\prime}, \ldots, \alpha_{n}^{\prime}\right)$, such that $\underline{\alpha}^{\prime}=\underline{\alpha}$, i.e., $\alpha^{\prime}=\bar{\lambda} \alpha$, with $\lambda \in K$, and such that the rational functions α_{i}^{\prime} are regular at q and not all zero there. Such a vector may exist or not. If α^{\prime} exists, we define

$$
\begin{equation*}
\underline{\alpha}(q)=\left(\alpha_{0}^{\prime}(q), \ldots, \alpha_{n}^{\prime}(q)\right) \quad\left(=\underline{\alpha}^{\prime}(q)\right) \tag{3.5.3}
\end{equation*}
$$

We call $\underline{\alpha}$ a good point if such a vector α^{\prime} exists for every point q of Y.
3.5.4. Lemma. A point $\underline{\alpha}$ of \mathbb{P}^{n} with values in the function field K of a variety Y is a good point if either one of the two following conditions holds for every point q of Y :

- There is an element λ of K such that the rational functions $\alpha_{i}^{\prime}=\lambda \alpha_{i}, i=0, \ldots, n$, are regular and not all zero at q, for $i=0, \ldots, n$.
- There is an index j such that $\alpha_{j} \neq 0$, and the rational functions α_{i} / α_{j} are regular at q, for $i=0, \ldots, n$.
proof. The first condition simply restates the definition. We show that it is equivalent with the second one. Suppose that α_{i} / α_{j} is regular at q for every i. Let $\lambda=\alpha_{j}^{-1}$, and let $\alpha_{i}^{\prime}=\lambda \alpha_{i}=\alpha_{i} / \alpha_{j}$. The rational functions α_{i}^{\prime} are regular at q, and they aren't all zero there because $\alpha_{j}^{\prime}=1$. Conversely, suppose that for some nonzero λ in $K, \alpha_{i}^{\prime}=\lambda \alpha_{i}$ are all regular at q and that α_{j}^{\prime} isn't zero there. Then $\alpha_{j}^{\prime-1}$ is a regular function at q, so the rational functions $\alpha_{i}^{\prime} / \alpha_{j}^{\prime}$, which are equal to α_{i} / α_{j}, are regular at q for all i.
3.5.5. Lemma. Let $\underline{\alpha}$ be a good point with values in the function field K of a variety Y. The image $\underline{\alpha}(q)$ in \mathbb{P}^{n} of a point q of Y is independent of the choice of the vector that represents $\underline{\alpha}$.

This follows from Lemma 3.5.4 because the second condition doesn't involve λ.
3.5.6. Definition. Let Y be a variety with function field K. A morphism from Y to projective space \mathbb{P}^{n} is a map that can be defined, as in (3.5.3), by a good point $\underline{\alpha}$ with values in K.

We may denote the morphism defined by a good point $\underline{\alpha}$ by the same symbol $\underline{\alpha}$.
3.5.7. Proposition. Let α be a vector with values in the function field K of a variety Y, and suppose that $\underline{\alpha}$ is a good point, that defines a morphism $Y \rightarrow \mathbb{P}^{n}$. Suppose that the inverse image of the standard open set \mathbb{U}^{0} in \mathbb{P}^{n} is nonempty. Then $\alpha_{0} \neq 0$, and the inverse image of \mathbb{U}^{0} the set of points $q \in Y$ at which the functions α_{i} / α_{0} are regular, for $j=1, \ldots, n$.
proof. If α_{0} were zero, $\underline{\alpha}$ would map Y to the hyperplane $\left\{x_{0}=0\right\}$. So $\alpha_{0} \neq 0$. Let q be a point of Y. Since α is a good point, there is a λ such that $\alpha_{i}^{\prime}=\lambda \alpha_{i}$ are all regular at q and not all zero, and then $\underline{\alpha}(q)=\left(\alpha_{0}^{\prime}(q), \ldots, \alpha_{n}^{\prime}(q)\right)$. The image will be in \mathbb{U}^{0} if $\alpha_{0}^{\prime}(q) \neq 0$. If so, we let $\alpha^{\prime \prime}=\alpha_{0}^{\prime-1} \alpha^{\prime}=\alpha_{0}^{-1} \alpha$. Then $\alpha_{i}^{\prime \prime}$ are all regular at q and $\alpha_{0}^{\prime \prime}(q)=1$.

3.5.8. Examples.

(i) The identity map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$. Let $X=\mathbb{P}^{1}$, and let $\left(x_{0}, x_{1}\right)$ be coordinates in X. The function field of X is the field $K=\mathbb{C}(t)$ of rational functions in the variable $t=x_{1} / x_{0}$. The identity map $X \rightarrow X$ is defined by the point $\alpha=(1, t)$ with values in K. For every point p of X except the point $(0,1), \underline{\alpha}(p)=\alpha(p)=(1, t(p))$. For the point $q=(0,1)$, we let $\alpha^{\prime}=t^{-1} \alpha=\left(t^{-1}, 1\right)$. Then $\underline{\alpha}(q)=\alpha^{\prime}(q)=\left(x_{0}(q) / x_{1}(q), 1\right)=(0,1)$. So $\underline{\alpha}$ is a good point.
(ii) We go back to Example 3.5.1 in which C is the conic $y_{0} y_{2}=y_{1}^{2}$ and f is the morphism $\mathbb{P}^{1} \rightarrow C$ defined by $f\left(x_{0}, x_{1}\right)=\left(x_{0}^{2}, x_{0} x_{1}, x_{1}^{2}\right)$. The inverse morphism π can be described as the projection from C to the line $L_{0}:\left\{y_{0}=0\right\}, \pi\left(y_{0}, y_{1}, y_{2}\right)=\left(y_{1}, y_{2}\right)$. This formula for π is undefined at the point $q=(1,0,0)$, though the map extends to the whole conic C. Let's write this projection using a point with values in the function field K of C. The standard affine open set $\left\{y_{0} \neq 0\right\}$ of \mathbb{P}^{2} is the polynomial algebra $\mathbb{C}\left[u_{1}, u_{2}\right]$, with $u_{1}=y_{1} / y_{0}$ and $u_{2}=y_{2} / y_{0}$. Denoting the restriction of the function u_{i} to $C^{0}=C \cap \mathbb{U}^{0}$ by u_{i} too, the restricted functions are related by the equation $u_{2}=u_{1}^{2}$ that is obtained by dehomogenizing f. The function field K is $\mathbb{C}\left(u_{1}\right)$.

The projection π is defined by the point $\alpha=\left(u_{1}, u_{1}^{2}\right)$ with values in $K: \pi\left(y_{0}, y_{1}, y_{2}\right)=\pi\left(1, u_{1}, u_{2}\right)=$ $\left(u_{1}, u_{1}^{2}\right)$. Lemma 3.5 .4 tells us that α is a good point if and only if one of the two vectors $\alpha^{\prime}=\left(1, u_{1}\right)$ or $\alpha^{\prime \prime}=\left(u_{1}^{-1}, 1\right)$ is regular at every (ordinary) point p of C. Since $u_{1}=y_{1} / y_{0}, \alpha^{\prime}$ is regular at all points at which $y_{0} \neq 0$. This leaves just one point $p=(0,0,1)$ to consider. Noting that $u_{1}^{-1}=y_{0} / y_{1}=y_{1} / y_{2}$, we see that $\alpha^{\prime \prime}$ is regular there. So α is a good point.

morphisms to projective varieties

3.5.10. Definition. Let Y be a variety, and let X be a subvariety of a projective space \mathbb{P}^{m}. A morphism of varieties $Y \xrightarrow{\underline{\alpha}} X$ is the restriction of a morphism $Y \xrightarrow{\underline{\alpha}} \mathbb{P}^{m}$ whose image is contained in X.
3.5.11. Lemma. Let X be a projective variety that is the locus of zeros of a family f of homogeneous polynomials. A morphism $Y \xrightarrow{\alpha} \mathbb{P}^{m}$ defines a morphism $Y \rightarrow X$ if and only if $f(\alpha)=0$.
proof. Let $f\left(x_{0}, \ldots, x_{m}\right)$ be a homogeneous polynomial of degree d, with zero locus X in \mathbb{P}^{m}. We show that the image of a morphism $Y \xrightarrow{\underline{\alpha}} \mathbb{P}^{m}$ is contained in X if and only if $f(\alpha)=0$. Whether or not X is a variety is irrelevant. Suppose that $f(\alpha)=0$, and let q be a point of Y. Since $\underline{\alpha}$ is a good point, the ratios $\alpha_{j}^{\prime}=\alpha_{j} / \alpha_{i}$ are regular at q for some i, and $\underline{\alpha}(q)=\underline{\alpha}^{\prime}(q)$. Then $f\left(\alpha^{\prime}\right)=\alpha_{i}^{-d} f(\alpha)=0$. Therefore q is a point of X.

Conversely, suppose that $f(\alpha) \neq 0$. Let Y^{\prime} be the open subset of Y of points at which all nonzero α_{i} are invertible regular functions. Then $f\left(\alpha^{\prime}\right)=\alpha_{i}^{d} f(\alpha)$ will be a nonzero rational function on Y^{\prime}. It will be nonzero at some points q.

We remark that a morphism $Y \xrightarrow{\underline{\alpha}} X$ won't restrict to a map of function fields $K_{X} \rightarrow K_{Y}$ unless the image of Y is dense in X.
doesntde-
pend
defmor-
phtoP
maptoui
identmap
morphtoV
defmorphtoX
ptfvalKfzero
3.5.12. Proposition. A morphism of varieties $Y \xrightarrow{\underline{\alpha}} X$ is a continuous map in the Zariski topology, and a continuous map in the classical topology.
proof. Since the topologies on a projective variety X are induced from those on projective space \mathbb{P}^{m}, we may suppose that $X=\mathbb{P}^{m}$. Let \mathbb{U}^{i} be a standard open subset of X whose inverse image in Y isn't empty, and let Y^{\prime} be a localization of a standard open subset of that inverse image. The restriction $Y^{\prime} \rightarrow \mathbb{U}^{i}$ of the morphism $\underline{\alpha}$ is continuous in either topology because it is a morphism of affine varieties 3.5.7). Since Y is covered by open sets such as $Y^{\prime}, \underline{\alpha}$ is continuous.

3.5.13. Lemma.

(i) The inclusion of an open or a closed subvariety Y into a variety X is a morphism.
(ii) Let $Y \xrightarrow{f} X$ be a map whose image lies in an open or a closed subvariety Z of X. Then f is a morphism if and only if its restriction $Y \rightarrow Z$ is a morphism.
(iii) A composition of morhisms $Z \xrightarrow{\underline{\beta}} Y \xrightarrow{\underline{\alpha}} X$ is a morphism.
(i) Let $\left\{Y^{i}\right\}$ be an open covering of a variety Y, and let $Y^{i} \xrightarrow{f^{i}} X$ be morphisms. If the restrictions of f^{i} and f^{j} to the intersections $Y^{i} \cap Y^{j}$ are equal for all i, j, there is a unique morphism f whose restriction to Y^{i} is f^{i}.

We omit the proofs of (i) - (iii). Part (iv) is true because the points with values in K that define the morphisms f^{i} will be equal.

(3.5.14) the mapping property of a product

The product $X \times Y$ of sets X and Y can be characterized by this property: Maps from a set T to the product $X \times Y$ correspond bijectively to pairs of maps $T \xrightarrow{f} X$ and $T \xrightarrow{g} Y$. The map $T \xrightarrow{h} X \times Y$ that corresponds to a pair of maps f, g sends a point t to the point pair $(f(t), g(t))$. So $h=(f, g)$. If $T \xrightarrow{h} X \times Y$ is a map to the product, the corresponding maps to X and Y are the compositions with the projections $X \times Y \xrightarrow{\pi_{1}} X$ and $X \times Y \xrightarrow{\pi_{2}} Y: f=\pi_{1} h$ and $g=\pi_{2} h$.

The analogous statements are true for morphisms of varieties:
3.5.15. Proposition. Let X and Y be varieties, and let $X \times Y$ be the product variety.
(i) The projections $X \times Y \xrightarrow{\pi_{1}} X$ and $X \times Y \xrightarrow{\pi_{2}} Y$ are morphisms.
(ii) Morphisms from a variety T to the product variety $X \times Y$ correspond bijectively to pairs of morphisms $T \rightarrow X$ and $T \rightarrow Y$, the correspondence being the same as for maps of sets.
(iii) If $X \xrightarrow{f} U$ and $Y \xrightarrow{g} V$ are morphisms of varieties, the product map $X \times Y \xrightarrow{f \times g} U \times V$, which is defined by $[f \times g](x, y)=(f(x), g(y))$, is a morphism.
proof. Perhaps it suffices to exhibit the points with values in the function fields that define the morphisms.
(i) The function field of $X \times Y$ contains the function field K_{X} of X. The point with values in K that defines the projection π_{1} is the point with values in K_{X} defined by the embedding of X into projective space.
(ii) Let $z_{i j}=x_{i} y_{j}$ be the Segre coordinates for $X \times Y$, and let $x=\alpha$ and $y=\beta$ be the points with values in the function field K_{T} of T that define the morphisms $T \rightarrow X$ and $T \rightarrow Y$. The point with values in K_{T} the defines the map $T \rightarrow X \times Y$ is $z_{i j}=\alpha_{i} \beta_{j}$.
(iii) Let the coordinates in U, V, and $U \times V$ be u_{i} and v_{j} and $w_{i j}=u_{i} v_{j}$, respectively. Say that the morphism f is defined by the point α with values in K_{X}, and that g is defined by the point β with values in K_{Y}. The function field $K_{X \times Y}$ contains K_{X} and K_{Y}. Then $w_{i j}=\alpha_{i} \beta_{j}$ defines the product morphism $X \times Y \rightarrow U \times V$.

(3.5.16) isomorphisms

An isomorphism of varieties is a bijective morphism $Y \xrightarrow{u} X$ whose inverse function is also a morphism. Isomorphisms are important because they allow us to identify different incarnations of what might be called the "same" variety.
3.5.17. Example. The projective line \mathbb{P}^{1}, a conic in \mathbb{P}^{2}, and a twisted cubic in \mathbb{P}^{3} are isomorphic. Let Y denote the projective line with coordinates y_{0}, y_{1}. The function field K of Y is the field of rational functions in $t=y_{1} / y_{0}$. The degree 3 Veronese map $Y \longrightarrow \mathbb{P}^{3}$ 3.1.15 defines an isomorphism from Y to its image X, a twisted cubic. It is defined by the vector $\alpha=\left(1, t, t^{2}, t^{3}\right)$ of \mathbb{P}^{3} with values in K, and $\alpha^{\prime}=\left(t^{-3}, t^{-2}, t^{-1}, 1\right)$ defines the same point.

The twisted cubic X is the locus of zeros of the equations $v_{0} v_{2}=v_{1}^{2}, v_{2} v_{1}=v_{0} v_{3}, v_{1} v_{3}=v_{2}^{2}$. To identify the function field of X, we put $v_{0}=1$, obtaining relations $v_{2}=v_{1}^{2}, v_{3}=v_{1}^{3}$. The function field is the field $F=\mathbb{C}\left(v_{1}\right)$. The point of $Y=\mathbb{P}^{1}$ with values in F that defines the inverse $X \rightarrow Y$ of the morphism $\underline{\alpha}$ is defined by the point $\beta=\left(1, v_{1}\right)$.
3.5.18. Lemma. Let $Y \xrightarrow{f} X$ be a morphism of varieties, let $\left\{X^{i}\right\}$ and $\left\{Y^{i}\right\}$ be open coverings of X and Y, respectively, such that the image of Y^{i} in X is contained in X^{i}. If the restrictions $Y^{i} \xrightarrow{f^{i}} X^{i}$ of f are isomorphisms, then f is an isomorphism.
proof. Let g^{i} denote the inverse of the morphism f^{i}. Then $g^{i}=g^{j}$ on $X^{i} \cap X^{j}$, because $f^{i}=f^{j}$ on $Y^{i} \cap Y^{j}$. By (3.5.13) (iv), there is a unique morphism $X \xrightarrow{g} Y$ whose restriction to Y^{i} is g^{i}. That morphism is the inverse of f.

the diagonal

Let X be a variety. The diagonal X_{Δ} is the set of points (p, p) in the product variety $X \times X$. It is a subset of the product that is closed in the Zariski topology, but not in the product topology.
3.5.20. Proposition. Let X be a variety. The diagonal X_{Δ} is a closed subvariety of the product $X \times X$, and it is isomorphic to X.
proof. Let \mathbb{P} denote the projective space \mathbb{P}^{n} that contains X, and let x_{0}, \ldots, x_{n} and y_{0}, \ldots, y_{n} be coordinates in the two factors of $\mathbb{P} \times \mathbb{P}$. The diagonal \mathbb{P}_{Δ} in $\mathbb{P} \times \mathbb{P}$ is the closed subvariety defined by the bilinear equations $x_{i} y_{j}=x_{j} y_{i}$, or in the Segre variables, by the equations $z_{i j}=z_{j i}$, which show that the ratios x_{i} / x_{j} and y_{i} / y_{j} are equal.

Next, let X be the closed subvariety of \mathbb{P} defined by a system of homogeneous equations $f(x)=0$. The diagonal X_{Δ} can be identified as the intersection of the product $X \times X$ with the diagonal \mathbb{P}_{Δ} in $\mathbb{P} \times \mathbb{P}$, so it is a closed subvariety of $X \times X$. As a closed subvariety of $\mathbb{P} \times \mathbb{P}$, the diagonal X_{Δ} is defined by the equations

$$
\begin{equation*}
x_{i} y_{j}=x_{j} y_{i} \quad \text { and } \quad f(x)=0 \tag{3.5.21}
\end{equation*}
$$

The morphisms $X \xrightarrow{(i d, i d)} X_{\Delta} \xrightarrow{\pi_{1}} X$ show that X_{Δ} is isomorphic to X.
It is interesting to compare Proposition 3.5 .20 with the Hausdorff condition for a topological space. The proof of the next lemma is often assigned as an exercise in topology.
3.5.22. Lemma. A topological space X is a Hausdorff space if and only if, when $X \times X$ is given the product topology, the diagonal X_{Δ} becomes a closed subset of $X \times X$.

Though a variety X, with its Zariski topology, isn't a Hausdorff space unless it is a point, Lemma 3.5.22 doesn't contradict Proposition 3.5.20 because the Zariski topology on $X \times X$ is finer than the product topology.

the graph of a morphism

Let $Y \xrightarrow{f} X$ be a morphism of varieties. The graph Γ_{f} of f is the subset of $Y \times X$ of pairs (q, p) such that $f(q)=p$.
3.5.24. Proposition. The graph Γ_{f} of a morphism $Y \xrightarrow{f} X$ is a closed subvariety of $Y \times X$, isomorphic to Y.
proof. We form a diagram of morphisms
graphdiagram
defprojection
projec-
tiontwo

where v sends a point (q, p) of Γ_{f} to the point $(f(q), p)=(p, p)$ of the diagonal X_{Δ}. The graph is the inverse image of X_{Δ} in $Y \times X$. Since X_{Δ} is closed in $X \times X, \Gamma_{f}$ is closed in $Y \times X$.

Let π_{1} denote the projection from $Y \times X$ to Y. The composition of the morphisms $Y \xrightarrow{(i d, f)} Y \times X \xrightarrow{\pi_{1}} Y$ is the identity map on Y, and the image of the map $(i d, f)$ is the graph Γ_{f}. The two maps $Y \rightarrow \Gamma_{f}$ and $\Gamma_{f} \rightarrow Y$ are inverses, so Γ_{f} is isomorphic to Y.

The map

$$
\begin{equation*}
\mathbb{P}^{n} \xrightarrow{\pi} \mathbb{P}^{n-1} \tag{3.5.27}
\end{equation*}
$$

that drops the last coordinate of a point: $\pi\left(x_{0}, \ldots, x_{n}\right)=\left(x_{0}, \ldots, x_{n-1}\right)$ is called a projection. It is defined at all points of \mathbb{P}^{n} except at the center of projection, the point $q=(0, \ldots, 0,1)$, So π is a morphism from the complement $U=\mathbb{P}^{n}-\{q\}$ to \mathbb{P}^{n-1} :

$$
U \xrightarrow{\pi} \mathbb{P}^{n}
$$

The points of U are the ones that can be written in the form $\left(x_{0}, \ldots, x_{n-1}, 1\right)$
Let the coordinates in \mathbb{P}^{n} and \mathbb{P}^{n-1} be $x=x_{0}, \ldots, x_{n}$ and $y=y_{0}, \ldots, y_{n-1}$, respectively. The fibre $\pi^{-1}(y)$ over a point $\left(y_{0}, \ldots, y_{n-1}\right)$ is the set of points $\left(x_{0}, \ldots, x_{n}\right)$ such that $\left(x_{0}, \ldots, x_{n-1}\right)=\lambda\left(y_{0}, \ldots, y_{n-1}\right)$, while x_{n} is arbitrary. It is the line in \mathbb{P}^{n} through the points $\left(y_{1}, \ldots, y_{n-1}, 0\right)$ and $q=(0, \ldots, 0,1)$, with the center of projection q omitted.

In Segre coordinates, the graph of π in $U \times \mathbb{P}_{y}^{n-1}$ is the locus Γ of solutions of the equations $z_{i j}=z_{j i}$ for $0 \leq i, j \leq n-1$, which imply that the vectors $\left(x_{0}, \ldots, x_{n-1}\right)$ and $\left(y_{0}, \ldots, y_{n-1}\right)$ are proportional.
3.5.28. Proposition. In $\mathbb{P}_{x}^{n} \times \mathbb{P}_{y}^{n-1}$, the locus W of the equations $x_{i} y_{j}=x_{j} y_{i}$, or $z_{i j}=z_{j i}$, with $0 \leq i, j \leq$ $n-1$ is the closure of the graph Γ of π.
proof. At points x distinct from q, the solutions of these equations are the points of Γ, and all remaining points of $\mathbb{P}^{n} \times \mathbb{P}^{n-1}$, points of the form (q, y) are also solutions. So the locus W, a closed set, is contained in the union $\Gamma \cup\left(q \times \mathbb{P}^{n-1}\right)$. To show that W is equal to that union, we show that a homogeneous polynomial $g(w)$ that vanishes on Γ, vanishes at all points of $q \times \mathbb{P}^{n-1}$. Given $\left(y_{0}, \ldots, y_{n-1}\right)$ in \mathbb{P}^{n-1}, let $x_{t}=\left(t y_{0}, \ldots, t y_{n-1}, 1\right)$. For all $t \neq 0$, the point $\left(x_{t}, y\right)$ is in Γ and therefore $g\left(x_{t}, y\right)=0$. Since g is a continuous function, $g\left(x_{t}, y\right)$ approaches $g(q, y)$ as $t \rightarrow 0$. So $g(q, y)=0$.

We denote the closure W of Γ by $\bar{\Gamma}$ now. The projection $\bar{\Gamma} \rightarrow \mathbb{P}_{x}^{n}$ that sends a point (x, y) to x is bijective except when $x=q$, and the fibre over q, which is $q \times \mathbb{P}^{n-1}$, is a projective space of dimension $n-1$. Because the point q of \mathbb{P}^{n} is replaced by a projective space in $\bar{\Gamma}$, the map $\bar{\Gamma} \rightarrow \mathbb{P}_{x}^{n}$ is called a blowup of the point q. This is a projective blowup.

3.6 Affine Varieties

We have used the term 'affine variety' in several contexts: An irreducible closed subset of affine space \mathbb{A}_{x}^{n} is an affine variety. The spectrum Spec A of a finite type domain A is an affine variety. A closed subvariety in \mathbb{A}^{n} becomes a variety in \mathbb{P}^{n} when the ambient affine space \mathbb{A}^{n} is identified with the standard open subset \mathbb{U}^{0}. We combine these definitions now, in a rather obvious way: An affine variety X is a variety that is isomorphic to a variety of the form $\operatorname{Spec} A$.

If X is an affine variety with coordinate algebra A, the function field K of X will be the field of fractions of A, and as Proposition 2.6.2 shows, the regular functions on X are the elements of A. So A and $\operatorname{Spec} A$ are
determined uniquely by X. The isomorphism $\operatorname{Spec} A \rightarrow X$ is also determined uniquely. It seems permissible to identify X with $\operatorname{Spec} A$, when A is the coordinate algebra of an affine variety X.

(3.6.1) affine open sets

Now that we have a definition of an affine variety, we can make the next definition. Though obvious, it is important: An affine open subset of a variety X is an open subvariety that is an affine variety. From now on, this will be the definition. A nonempty open subset V of X is an affine open subset if and only if
(a) the algebra R of regular functions on V is a finite-type domain, so that $\operatorname{Spec} R$ is defined, and
(b) V is isomorphic to $\operatorname{Spec} R$.

Since the localizations of the standard open sets are affine, the affine open subsets form a basis for the topology on X.
3.6.2. Lemma. Let U and V be affine open subsets of an affine variety X.
(i) If U is a localization of X and V is a localization of U, then V is a localization of X.
(ii) If $V \subset U$ and V is a localization of X, then V is a localization of U.
(iii) Let p be a point of $U \cap V$. There is an open set Z containing p that is a localization of U and also a localization of V.
3.6.3. Lemma. Let $X=\operatorname{Spec} A$ be an affine variety, and let R be the algebra of regular functions on an arbitrary variety Y. An algebra homomorphism $A \rightarrow R$ defines a morphism $Y \xrightarrow{f} X$.
proof. (i) The point here is that Y isn't assumed to be affine. The algebra R consists of the regular functions on Y. Other than that, we don't know much about R.

Let $\left\{Y^{i}\right\}$ be a covering of Y by affine open sets, and let R_{i} be the coordinate algebra of Y^{i}. A rational function that is regular on Y is regular on Y^{i}, so $R \subset R_{i}$. The composition of the homomorphism $A \rightarrow R \subset$ R_{i} define morphisms $Y^{i}=\operatorname{Spec} R_{i} \xrightarrow{f^{i}} \operatorname{Spec} A$ for each i, and it is true that $f^{i}=f^{j}$ on the affine variety $Y^{i} \cap Y^{j}$. Lemma 3.5.13(iv) shows that there is a unique morphism $Y \xrightarrow{f} \operatorname{Spec} A$ that restricts to f^{i} on Y^{i}.
3.6.4. Corollary. Let $Y \xrightarrow{f} X$ be a morphism of varieties, let q be a point of X, and let $p=f(q)$. If a rational function g on X is regular at p, its pullback $g \circ f$ is a regular function on Y at q.
proof. We choose an affine open neighborhood U of p in X on which g is a regular function and an affine open neighborhood V of q in Y that is contained in the inverse image $f^{-1} U$. The morphism f restricts to a morphism $V \rightarrow U$ that we denote by the same letter f. Let A and B be the coordinate algebras of U and V, respectively. The morphism $V \xrightarrow{f} U$ corresponds to an algebra homomorphism $A \xrightarrow{\varphi} B$. On U, the function g is an element of A, and $g \circ f=\varphi(g)$.

3.6.5. Proposition. The complement of a hypersurface is an affine open subvariety of \mathbb{P}^{n}.

proof. Let H be the hypersurface defined by an irreducible homogeneous polynomial f of degree d, and let Y be the complement of H in \mathbb{P}^{n}. Let R be the algebra of regular functions on Y. The elements of R are the homogeneous fractions of degree zero, of the form $g / f^{k} 3$ 3.4.7. The fractions m / f, where m are the monomials of degree d, generate R. Since there are finitely many monomials of degree d, R is a finite-type domain. Lemma 3.6.3 gives us a morphism $Y \xrightarrow{u} X=\operatorname{Spec} R$. We show that u is an isomorphism.

Let A be the algebra of regular functions on the standard affine open set \mathbb{U}^{0} of \mathbb{P}^{n}. The intersection $Y^{0}=Y \cap \mathbb{U}^{0}$ is a localization of \mathbb{U}^{0}, the spectrum of $A\left[s^{-1}\right]$, where $s=f / x_{0}^{d}$. Let $t=s^{-1}=x_{0}^{d} / f$. This is an element of R.
3.6.6. Lemma. The localizations $A\left[s^{-1}\right]$ and $R\left[t^{-1}\right]$ are equal.
proof of the lemma. The generators m / f of R, m a monomial of degree d, can be written as products $s^{-1}\left(m / x_{0}^{d}\right)$. Since m / x_{0}^{d} is in A, the generators are in A_{s}. So $R \subset A_{s}$, and since $t^{-1}=s$ is in A,
mover-
fzero
intersectaffine
$R_{t} \subset A_{s}$. Next, the fractions x_{i} / x_{0} generate A, and x_{i} / x_{0} can be written as $t^{-1}(m / f)$, with $m=x_{i} x_{0}^{d-1}$, so they are in R_{t}. Then $A \subset R_{t}$ and since $s^{-1}=t$ is in $R, A_{s} \subset R_{t}$.

We go back to the proof of the Proposition 3.6.5. According Lemma 3.6.6, the morphism $Y \xrightarrow{u} X$ restricts to an isomorphism $Y^{0} \rightarrow X^{0}=\operatorname{Spec} \overline{A\left[s^{-1}\right]}$, and the index 0 can be replaced by any $i=0, \ldots, n$. The next lemma, together with Lemma 3.5.18 shows that u is an isomorphism.

3.6.7. Lemma. The open sets X^{i} cover X.

proof. Suppose that a point p of X isn't contained in any of the subsets X^{i}. Let $s_{i}=f / x_{i}^{d}$ and let $t_{i}=s_{i}^{-1}$. Then $t_{i}(p)=0$ for all i. If m is any monomial of degree d, m^{d} will divisible by x_{i}^{d} for some i and then $(m / f)^{d}$ will be divisible by t_{i}. So if $t_{i}(p)=0$, then $[m / f](p)=0$ for every monomial of degree d, and therefore $[f / f](p)=0$. Since $f / f=1$, this is a contradiction.
3.6.8. Theorem. Let U and V be affine open subvarieties of a variety X. The intersection $U \cap V$ is an affine open subvariety. If, say $U \approx \operatorname{Spec} A$ and $V \approx \operatorname{Spec} B$, the coordinate algebra of $U \cap V$ is generated by the two algebras A and B.
proof. Let $[A, B]$ denote the subalgebra generated by two subalgebras A and B of the function field K of X. The elements of $[A, B]$ are finite sums of products $\sum a_{i} b_{i}$ with a_{i} in A and b_{i} in B. If $A=\mathbb{C}\left[a_{1}, \ldots, a_{r}\right]$, and $B=\mathbb{C}\left[b_{1}, \ldots, b_{s}\right]$, the algebra $[A, B]$ is generated by the set $\left\{a_{i}\right\} \cup\left\{b_{j}\right\}$. It is a finite-type algebra.

The algebras A and B that appear in the statement of the theorem are subalgebras of the function field K of X. Let $R=[A, B]$ and let $W=\operatorname{Spec} R$. To prove the theorem, we show that W is isomorphic to $U \cap V$. The varieties U, V, W, and X have the same function field K, and the inclusions of coordinate algebras $A \rightarrow R$ and $B \rightarrow R$ give us morphisms $W \rightarrow U$ and $W \rightarrow V$. We also have inclusions $U \subset X$ and $V \subset X$, and X is a subvariety of a projective space \mathbb{P}^{n}. Restricting the projective embedding of X gives us embeddings of U and V and it gives us a morphism from W to \mathbb{P}^{n}. All of these morphisms to \mathbb{P}^{n} will be defined by the same good point α with values in K, the point that defines the projective embedding of X. Let's denote the morphisms to \mathbb{P}^{n} by $\underline{\alpha}_{X}, \underline{\alpha}_{U}, \underline{\alpha}_{V}$ and $\underline{\alpha}_{W}$. The morphism $\underline{\alpha}_{W}$ can be obtained as the composition of the morphisms $W \rightarrow U \subset X \subset \mathbb{P}^{n}$, and also as the analogous composition, in which V replaces U. Therefore the image of W in \mathbb{P}^{n} is contained in $U \cap V$. Thus $\underline{\alpha}_{W}$ restricts to a morphism $W \xrightarrow{\epsilon} U \cap V$. We show that ϵ is an isomorphism.

Let p be a point of $U \cap V$. We choose an affine open subset U_{s} of $U \cap V$ that is a localization of U and that contains p 3.6.2. The coordinate algebra of U_{s} will be A_{s}, with s in A, and B will be a subalgebra of A_{s}. Then

$$
R_{s}=[A, B]_{s}=\left[A_{s}, B\right]=A_{s}
$$

So ϵ maps the localization $W_{s}=\operatorname{Spec} R_{s}$ of W isomorphically to the open subset $U_{s}=\operatorname{Spec} A_{s}$ of $U \cap V$. Since we can cover $U \cap V$ by open sets such as U_{s}, Lemma 3.5.13 (ii) shows that ϵ is an isomorphism.

3.7 Lines in Three-Space

The Grassmanian $\mathbf{G}(m, n)$ is a variety whose points correspond to subspaces of dimension m of the vector space \mathbb{C}^{n}, or to linear subspaces of dimension $m-1$ of \mathbb{P}^{n-1}. One says that $\mathbf{G}(m, n)$ parametrizes those subspaces. For example, the Grassmanian $\mathbf{G}(1, n+1)$ is the projective space \mathbb{P}^{n}. The points of \mathbb{P}^{n} parametrize one-dimensional subspaces of \mathbb{C}^{n+1}.

The Grassmanian $\mathbf{G}(2,4)$ parametrizes two-dimensional subspaces of \mathbb{C}^{4}, or lines in \mathbb{P}^{3}. We denote that Grassmanian by \mathbb{G}, and we describe it in this section. The point of \mathbb{G} that corresponds to a line ℓ in \mathbb{P}^{3} will be denoted by $[\ell]$.

One can get some insight into the structure of \mathbb{G} using row reduction. Let $V=\mathbb{C}^{4}$, let u_{1}, u_{2} be a basis of a two-dimensional subspace U of V, and let M be the 2×4 matrix whose rows are u_{1}, u_{2}. The rows of the matrix M^{\prime} obtained from M by row reduction span the same space U, and the row-reduced matrix M^{\prime} is uniquely determined by U. Provided that the left hand 2×2 submatrix of M is invertible, M^{\prime} will have the form

$$
M^{\prime}=\left(\begin{array}{llll}
1 & 0 & * & * \tag{3.7.1}\\
0 & 1 & * & *
\end{array}\right)
$$

The Grassmanian \mathbb{G} contains, as an open subset, a four-dimensional affine space whose coordinates are the variable entries of M^{\prime}.

In any 2×4 matrix M with independent rows, some pair of columns will be independent, and the corresponding 2×2 submatrix will be invertible.. That pair of columns can be used in place of the first two in a row reduction. So \mathbb{G} is covered by six four-dimensional affine spaces that we denote by $\mathbb{W}^{i j}, 1 \leq i<j \leq 4, \mathbb{W}^{i j}$ being the space of 2×4 matrices such that column i is $(1,0)^{t}$ and column j is $(0,1)^{t}$.

The fact that \mathbb{P}^{4} and \mathbb{G} are both covered by affine spaces of dimension four might lead one to guess that they are similar. They are quite different.

(3.7.2) the exterior algebra

Let V be a complex vector space. The exterior algebra $\bigwedge V$ ('wedge V ') is a noncommutative algebra an algebra whose multiplication law isn't commutative. It is generated by the elements of V, with the relations

$$
\begin{equation*}
v w=-w v \quad \text { for all } v, w \text { in } V . \tag{3.7.3}
\end{equation*}
$$

3.7.4. Lemma. The condition 3.7 .3 is equivalent with: $v v=0$ for all v in V.
proof. To get $v v=0$ from (3.7.3), one sets $w=v$. Suppose that $v v=0$ for all v in V. Then $v v, w w$, and $(v+w)(v+w)$ are all zero. Since $(v+w)(v+w)=v v+v w+w v+w w$, it follows that $v w+w v=0$.

To familiarize yourself with computation in ΛV, verify that $v_{3} v_{2} v_{1}=-v_{1} v_{2} v_{3}$ and that $v_{4} v_{3} v_{2} v_{1}=$ $v_{1} v_{2} v_{3} v_{4}$.

Let $\bigwedge^{r} V$ denote the subspace of $\bigwedge V$ spanned by products of length r of elements of V. The exterior algebra ΛV is the direct sum of the subspaces $\bigwedge^{r} V$. An algebra A that is a direct sum of subspaces A^{i}, and such that multiplication maps $A^{i} \times A^{j}$ to A^{i+j}, is called a graded algebra. The exterior algebra is a noncommutative graded algebra.
3.7.5. Proposition. If $\left(v_{1}, \ldots, v_{n}\right)$ is a basis for V, the products $v_{i_{1}} \cdots v_{i_{r}}$ of length r, with increasing indices $i_{1}<i_{2}<\cdots<i_{r}$, form a basis for $\bigwedge^{r} V$.

The proof of this proposition is at the end of the section.
3.7.6. Corollary. Let v_{1}, \ldots, v_{r} be elements of V. In $\bigwedge^{r} V$, the product $v_{1} \cdots v_{r}$ is zero if and only if the elements are dependent.

For the rest of the section, we let V be a vector space of dimension four, with basis $\left(v_{1}, \ldots, v_{4}\right)$. Proposition 3.7.5 tells us that
$\bigwedge^{0} V=\mathbb{C}$ is a space of dimension 1 , with basis $\{1\}$
$\bigwedge^{1} V=V$ is a space of dimension 4 , with basis $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$
$\bigwedge^{2} V$ is a space of dimension 6 , with basis $\left\{v_{i} v_{j} \mid i<j\right\}=\left\{v_{1} v_{2}, v_{1} v_{3}, v_{1} v_{4}, v_{2} v_{3}, v_{2} v_{4}, v_{3} v_{4}\right\}$
$\bigwedge^{3} V$ is a space of dimension 4 , with basis $\left\{v_{i} v_{j} v_{k} \mid i<j<k\right\}=\left\{v_{1} v_{2} v_{3}, v_{1} v_{2} v_{4}, v_{1} v_{3} v_{4}, v_{2} v_{3} v_{4}\right\}$
$\bigwedge^{4} V$ is a space of dimension 1 , with basis $\left\{v_{1} v_{2} v_{3} v_{4}\right\}$
$\bigwedge^{q} V=0$ when $q>4$.
The elements of $\bigwedge^{2} V$ are combinations

$$
\begin{equation*}
w=\sum_{i<j} a_{i j} v_{i} v_{j} \tag{3.7.8}
\end{equation*}
$$

We regard $\bigwedge^{2} V$ as an affine space of dimension 6 , identifying the combination w with the vector $\left(a_{12}, a_{13}, a_{14}, a_{23}, a_{24}, a_{34}\right)$, and we use the same symbol w to denote the corresponding element of the projective space \mathbb{P}^{5}.
defdecomp $d e$ -scribedecomp eqgrass
3.7.9. Definition. An element of $\bigwedge^{2} V$ is decomposable if it is the product of two elements of V.
3.7.10. Proposition. The decomposable elements w of $\bigwedge^{2} V$ are those such that $w w=0$, and the relation $w w=0$ is equivalent with the following equation in its coefficients $a_{i j}$:

$$
\begin{equation*}
a_{12} a_{34}-a_{13} a_{24}+a_{14} a_{23}=0 \tag{3.7.11}
\end{equation*}
$$

proof. If w is decomposable, say $w=u_{1} u_{2}$ with u_{i} in V, then $w^{2}=u_{1} u_{2} u_{1} u_{2}=-u_{1}^{2} u_{2}^{2}$ is zero because $u_{1}^{2}=0$. For the converse, we compute w^{2} with $w=\sum_{i<j} a_{i j} v_{i} v_{j}$. The result is

$$
w w=2\left(a_{12} a_{34}-a_{13} a_{24}+a_{14} a_{23}\right) v_{1} v_{2} v_{3} v_{4}
$$

To show that w is decomposable if $w^{2}=0$, it seems simplest to factor w explictly. Since the assertion is trivial when $w=0$, we may suppose that some coefficient of w is nonzero. Say that $a_{12} \neq 0$. Then if $w^{2}=0$,

$$
\begin{equation*}
w=\frac{1}{a_{12}}\left(a_{12} v_{2}+a_{13} v_{3}+a_{14} v_{4}\right)\left(-a_{12} v_{1}+a_{23} v_{3}+a_{24} v_{4}\right) \tag{3.7.12}
\end{equation*}
$$

The computation for another pair of indices is similar.
3.7.13. Corollary. (i) Let w be a nonzero decomposable element of $\bigwedge^{2} V$, say $w=u_{1} u_{2}$, with u_{i} in V. Then $\left(u_{1}, u_{2}\right)$ is a basis for a two-dimensional subspace of V.
(ii) Let $\left(u_{1}, u_{2}\right)$ and $\left(u_{1}^{\prime}, u_{2}^{\prime}\right)$ be bases for two subspaces U and U^{\prime} of V, and let $w=u_{1} u_{2}$ and $w^{\prime}=u_{1}^{\prime} u_{2}^{\prime}$. Then $U=U^{\prime}$, if and only if w and w^{\prime} differ by a scalar factor - if and only if they represent the same point of \mathbb{P}^{5}.
(iii) The Grassmanian \mathbb{G} corresponds bijectively to the quadric Q in \mathbb{P}^{5} whose equation is 3.7.11. If U is a two-dimensional subspace of V with basis $\left(u_{1}, u_{2}\right)$, the point of \mathbb{G} that represents U is sent to the point $w=u_{1} u_{2}$ of Q.

Thus the Grassmanian \mathbb{G} can be represented as the quadric 3.7.11 in \mathbb{P}^{5}.
proof. (i) If an element w of $\bigwedge^{2} V$ is decomposable, say $w=u_{1} u_{2}$, and if w isn't zero, then u_{1} and u_{2} must be independent 3.7.6. They span a two-dimensional subspace.
(ii) Suppose that $U^{\prime}=U$. Then, when we write the second basis in terms of the first one, say $\left(u_{1}^{\prime}, u_{2}^{\prime}\right)=$ $\left(a u_{1}+b u_{2}, c u_{1}+d u_{2}\right)$, the product w^{\prime} becomes the scalar multiple $(a d-b c) w$ of w, and $a d-b c \neq 0$.

If $U^{\prime} \neq U$, then at least three of the vectors $u_{1}, u_{2}, u_{1}^{\prime}, u_{2}^{\prime}$ will be independent. Say that $u_{1}, u_{2}, u_{1}^{\prime}$ are independent. Then, according to Corollary 3.7.6 the product $u_{1} u_{2} u_{1}^{\prime}$ isn't zero. Since $u_{1}^{\prime} u_{2}^{\prime} u_{1}^{\prime}=0, u_{1}^{\prime} u_{2}^{\prime}$ cannot be a scalar multiple of $u_{1} u_{2}$.
(iii) This follows from (i) and (ii).

For the rest of this section, we will use the concept of the algebraic dimension of a variety X. This dimension can be defined as the length d of the longest chain $C_{0}>C_{1}>\cdots>C_{d}$ of closed subvarieties of X. We refer to the algebraic dimension simply as the dimension, and we use some of its properties informally here, deferring proofs to the discussion of dimension in the next chapter.

The topological dimension of X, its dimension in the classical topology, is always twice the algebraic dimension. Because the Grassmanian \mathbb{G} is covered by affine spaces of dimension 4 , its algebraic dimension is 4 and its topological dimension is 8 .
3.7.14. Proposition. Let \mathbb{P}^{3} be the projective space associated to a four dimensional vector space V. In the product $\mathbb{P}^{3} \times \mathbb{G}$, the locus Γ of pairs $p,[\ell]$ such that p lies on ℓ is a closed subset of dimension 5 .
proof. Let ℓ be the line in \mathbb{P}^{3} that corresponds to a subspace U with basis $\left(u_{1}, u_{2}\right)$, let $w=u_{1} u_{2}$, and let p be the point represented by a vector x in V. Then $p \in \ell$ means $x \in U$, which is true if and only if $\left(x, u_{1}, u_{2}\right)$ is a dependent set - if and only if $x w=0 \sqrt{3.7 .5}$. An element w of $\bigwedge^{2} V$ is decomposable when $w^{2}=0$. So Γ is the closed subset of points (x, w) of $\mathbb{P}_{x}^{3} \times \mathbb{P}_{w}^{5}$ defined by the bihomogeneous equations $x w=0$ and $w^{2}=0$.

When we project Γ to \mathbb{G}, the fibre over a point $[\ell]$ of \mathbb{G} is the set of pairs $p,[\ell]$ such that $p \in \ell$. The projection maps that fibre bijectively to the line ℓ. Thus Γ can be viewed as a family of lines, parametrized by \mathbb{G}. Its dimension is $\operatorname{dim} \ell+\operatorname{dim} \mathbb{G}=1+4=5$.

(3.7.15) lines on a surface

When one is given a surface S in \mathbb{P}^{3}, one may ask: Does S contain a line? One surface that contains lines is the quadric Q in \mathbb{P}^{3} whose equation is $z_{01} z_{10}=z_{00} z_{11}$, the image of the Segre embedding $\mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}_{w}^{3}$ 3.1.6. It contains two families of lines, the lines that correspond to the two "rulings" $p \times \mathbb{P}^{1}$ and $\mathbb{P}^{1} \times q$ of $\mathbb{P}^{1} \times \mathbb{P}^{1}$. There are surfaces of arbitrary degree that contain lines, but a generic surface of degree four or more won't contain any line.

We use coordinates x_{i} with $i=1,2,3,4$ for \mathbb{P}^{3} here. There are $N=\binom{d+3}{3}$ monomials of degree d in four variables, so homogeneous polynomials of degree d are parametrized by an affine space of dimension N, and surfaces of degree d in \mathbb{P}^{3} by a projective space of dimension $n=N-1$. Let \mathbb{S} denote that projective space, let $[S]$ denote the point of \mathbb{S} that corresponds to a surface S, and let f be the irreducible polynomial whose zero locus is S. The coordinates of $[S]$ are the coefficients of f. Speaking infomally, we say that a point of \mathbb{S} is a surface of degree d in \mathbb{P}^{3}. (When f is reducible, its zero locus isn't a variety. Let's not worry about this.)

Consider the line ℓ_{0} defined by $x_{3}=x_{4}=0$. Its points are those of the form $\left(x_{1}, x_{2}, 0,0\right)$, and a surface $S:\{f=0\}$ will contain ℓ_{0} if and only if $f\left(x_{1}, x_{2}, 0,0\right)=0$ for all x_{1}, x_{2}. Substituting $x_{3}=x_{4}=0$ into f leaves us with a polynomial in two variables:

$$
\begin{equation*}
f\left(x_{1}, x_{2}, 0,0\right)=c_{0} x_{1}^{d}+c_{1} x_{1}^{d-1} x_{2}+\cdots+c_{d} x_{2}^{d} \tag{3.7.16}
\end{equation*}
$$

where c_{i} are some of the coefficients of the polynomial f. If $f\left(x_{1}, x_{2}, 0,0\right)$ is identically zero, all of those coefficients will be zero. So the surfaces that contain ℓ_{0} correspond to the points of the linear subspace \mathbb{L}_{0} of \mathbb{S} defined by the equations $c_{0}=\cdots=c_{d}=0$. Its dimension is $n-d-1$. This is a satisfactory answer to the question of which surfaces contain ℓ_{0}, and we can use it to make a guess about lines in a generic surface of degree d.
3.7.17. Lemma. In the product variety $\mathbb{G} \times \mathbb{S}$, the set Σ of pairs $[\ell],[S]$ such that ℓ is a line, S is a surface of degree d, and $\ell \subset S$, is a closed set.
proof. Let $\mathbb{W}^{i j}, 1 \leq i<j \leq 4$ denote the six affine spaces that cover the Grassmanian, as at the beginning of this section. It suffices to show that the intersection $\Sigma^{i j}=\Sigma \cap\left(\mathbb{W}^{i j} \times \mathbb{S}\right)$ is closed in $\mathbb{W}^{i j} \times \mathbb{S}$ for all i, j 2.2.6. We inspect the case $i, j=1,2$.

A line ℓ such that $[\ell]$ is in \mathbb{W}^{12} corresponds to a subspace of \mathbb{C}^{2} with basis $\left(u_{1}, u_{2}\right)$ of the form $u_{1}=$ $\left(1,0, a_{2}, a_{3}\right), u_{2}=\left(0,1, b_{2}, b_{3}\right)$, and the coordinates of the points of ℓ are combinations $r u_{1}+s u_{2}$ of u_{1}, u_{2}. Let $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ be the polynomial that defines a surface S of degree d. The line ℓ is contained in S if and only if $f\left(r, s, r a_{2}+s b_{2}, r a_{3}+s b_{3}\right)=\widetilde{f}(r, s)$ is zero for all r and s, and $\widetilde{f}(r, s)$ is a homogeneous polynomial of degree d in r, s. If we write $\widetilde{f}(r, s)=z_{0} r^{d}+z_{1} r^{d-1} s+\cdots+z_{d} s^{d}$, the coefficients z_{ν} will be polynomials in a_{i}, b_{i} and in the coefficients of f. The locus $z_{0}=\cdots=z_{d}=0$ is the closed subset Σ^{12} of $\mathbb{W}^{12} \times \mathbb{S}$ that represents surfaces containing a line.

The set of surfaces that contain our special line ℓ_{0} corresponds to the linear space \mathbb{L}_{0} of \mathbb{S} of dimension $n-d-1$, and ℓ_{0} can be carried to any other line ℓ by a linear map $\mathbb{P}^{3} \rightarrow \mathbb{P}^{3}$. So the sufaces that contain another line ℓ also form a linear subspace of \mathbb{S} of dimension $n-d-1$. Those subspaces are the fibres of Σ over \mathbb{G}. The dimension of the Grassmanian \mathbb{G} is 4 . Therefore the dimension of Σ is

$$
\operatorname{dim} \Sigma=\operatorname{dim} \mathbb{L}_{0}+\operatorname{dim} \mathbb{G}=(n-d-1)+4
$$

Since \mathbb{S} has dimension n,

$$
\begin{equation*}
\operatorname{dim} \Sigma=\operatorname{dim} \mathbb{S}-d+3 \tag{3.7.18}
\end{equation*}
$$

When we project the product $\mathbb{G} \times \mathbb{S}$ and its subvariety Σ to \mathbb{S}, the fibre of Σ over a point $[S]$ is the set of pairs $[\ell],[S]$ such that ℓ is contained in S - the set of lines in S.
dimspacelines
linesinasurface
lineslowdeg
3.7.19. When the degree d of the surfaces we are studying is $1, \operatorname{dim} \Sigma=\operatorname{dim} \mathbb{S}+2$. Every fibre of Σ over \mathbb{S} will have dimension at least 2 . In fact, every fibre has dimension equal to 2 . Surfaces of degree 1 are planes, and the lines in a plane form a two-dimensional family.

When $d=2, \operatorname{dim} \Sigma=\operatorname{dim} \mathbb{S}+1$. We can expect that most fibres of Σ over \mathbb{S} will have dimension 1 . This is true: A smooth quadric contains two one-dimensional families of lines. (All smooth quadrics are equivalent with the quadric (3.1.7).) But if a quadratic polynomial $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is the product of linear polynomials, its locus of zeros will be a union of planes. It will contain two-dimensional families of lines. Some fibres have dimension 2 .

When $d \geq 4, \operatorname{dim} \Sigma<\operatorname{dim} \mathbb{S}$. The projection $\Sigma \rightarrow \mathbb{S}$ cannot be surjective. Most surfaces of degree 4 or more contain no lines.

The most interesting case is that the degree d is 3 . In this case, $\operatorname{dim} \Sigma=\operatorname{dim} \mathbb{S}$. Most fibres will have dimension zero. They will be finite sets. In fact, a generic cubic surface contains 27 lines. We have to wait to see why the number is precisely 27 (see Theorem 4.6.27).

Our conclusions are intuitively plausible, but to be sure about them, we need to study dimension carefully. We do this in the next chapters.
(3.7.20) proofofProposition 3.7 .5

Let $v=\left(v_{1}, \ldots, v_{n}\right)$ be a basis of a vector space V. The proposition asserts that the products $v_{i_{1}} \cdots v_{i_{r}}$ of length r with increasing indices $i_{1}<i_{2}<\cdots<i_{r}$ form a basis for $\bigwedge^{r} V$. To prove this, we need to be more precise about the definition of the exterior algebra $\wedge V$.
3.7.21. We start with the algebra $T(V)$ of noncommutative polynomials in the basis v, which is also called the tensor algebra on V. The part $T^{r}(V)$ of $T(V)$ of degree r has, as basis, the n^{r} noncommutative monomials of degree r, the products $v_{i_{1}} \cdots v_{i_{r}}$ of length r of elements of the basis. Its dimension is n^{r}. For example, when $n=2$, the eight-dimensional space $T^{3}(V)$ has basis $\left(x_{1}^{3}, x_{1}^{2} x_{2}, x_{1} x_{2} x_{1}, x_{2} x_{1}^{2}, x_{1} x_{2}^{2}, x_{2} x_{1} x_{2}, x_{2}^{2} x_{1}, x_{2}^{3}\right)$.

The exterior algebra $\bigwedge V$ is the quotient of $T(V)$ obtained by forcing the relations $v w+w v=0$ 3.7.3.). Using the distributive law, one sees that the relations $v_{i} v_{j}+v_{j} v_{i}=0,1 \leq i, j \leq n$, are sufficient to define this quotient.

We can multiply the relations $v_{i} v_{j}+v_{j} v_{i}$ on left and right by noncommutative monomials $p(v)$ and $q(v)$ in v_{1}, \ldots, v_{n}. When we do this with all pairs p, q of monomials whose degrees sum to $r-2$, the noncommutative polynomials

$$
\begin{equation*}
p(v)\left(v_{i} v_{j}+v_{j} v_{i}\right) q(v) \tag{3.7.22}
\end{equation*}
$$

span the kernel of the linear map $T^{r}(V) \rightarrow \bigwedge^{r} V$. So in $\bigwedge^{r} V, p(v)\left(v_{i} v_{j}\right) q(v)=-p(v)\left(v_{j} v_{i}\right) q(v)$. Using these relations, any product $v_{i_{1}} \cdots v_{i_{r}}$ in $\bigwedge^{r} V$ is, up to sign, equal to a product in which the indices i_{ν} are in increasing order. Thus the products with indices in increasing order span $\bigwedge^{r} V$, and because $v_{i} v_{i}=0$, such a product will be zero unless the indices are strictly increasing.

We go to the proof now. Let $v=\left(v_{1}, \ldots, v_{n}\right)$ be a basis for V. We show first that the product $w=v_{1} \cdots v_{n}$ of the basis elements in increasing order is a basis of the space $\bigwedge^{n} V$. We have shown that w spans $\bigwedge^{n} V$, and it remains to show that $w \neq 0$, or that $\bigwedge^{n} V \neq 0$.

Let's use multi-index notation, writing $(i)=\left(i_{1}, \ldots, i_{r}\right)$, and $v_{(i)}=v_{i_{1}} \cdots v_{i_{r}}$. We define a surjective linear map $T^{n}(V) \xrightarrow{\varphi} \mathbb{C}$. The products $v_{(i)}=\left(v_{i_{1}} \cdots v_{i_{n}}\right)$ of length n form a basis of $T^{n}(V)$. If there is no repetition among the indices i_{1}, \ldots, i_{n}, then (i) will be a permutation of the indices $1, \ldots, n$. In that case, we set $\varphi\left(v_{(i)}\right)=\varphi\left(v_{i_{1}} \cdots v_{i_{n}}\right)=\operatorname{sign}(i)$. If there is a repetition, we set $\varphi\left(v_{(i)}\right)=0$.

Let p and q be noncommutative monomials whose degrees sum to $n-2$. If the product $p\left(v_{i} v_{j}\right) q$ has no repeated index, the indices in $p\left(v_{i} v_{j}\right) q$ and in $p\left(v_{j} v_{i}\right) q$ will be permutations of $1, \ldots, n$, and those permutations will have opposite signs. So $p\left(v_{i} v_{j}+v_{j} v_{i}\right) q$ will be in the kernel of φ. Since these elements span the space of relations that define $\Lambda^{n} V$ as a quotient of $T^{n}(V)$, the surjective map $T^{n}(V) \xrightarrow{\varphi} \mathbb{C}$ defines a surjective map $\bigwedge^{n} V \rightarrow \mathbb{C}$. Therefore $\bigwedge^{n} V \neq 0$.

To prove (3.7.5), we must show that for $r \leq n$, the products $v_{i_{1}} \cdots v_{i_{r}}$ with $i_{1}<i_{2}<\cdots<i_{r}$ form a basis for $\bigwedge^{r} V$, and we have seen that those products span $\bigwedge^{r} V$. We must show that they are independent. Suppose that a combination $z=\sum c_{(i)} v_{(i)}$ is zero, the sum being over the sets $\left\{i_{1}, \ldots, i_{r}\right\}$ of strictly increasing indices. We choose a particular set $\left(j_{1}, \ldots, j_{r}\right)$ of n strictly increasing indices, and we let $(k)=\left(k_{1}, \ldots, k_{n-r}\right)$ be the set of indices that don't occur in (j), listed in arbitrary order. Then all terms in the sum $z v_{(k)}=\sum c_{(i)} v_{(i)} v_{(k)}$ will be zero except the term with $(i)=(j)$. On the other hand, since $z=0, \quad z v_{(k)}=0$. Therefore $c_{(j)} v_{(j)} v_{(k)}=0$, and since $v_{(j)} v_{(k)}$ differs by sign from $v_{1} \cdots v_{n}$, it isn't zero. It follows that $c_{(j)}=0$. This is true for all (j), so $z=0$.
closuq管解
threeex
xcubiceq
xtendtoinf
xf-
zoneirred
homog-primecon-
verse xcondpt
xidealinAxP xlocusinPxP
xfnbounded xmapcusp
xdoesntextend xverifymorph
zautPone

3.8 Exercises

3.8.1. Let X be the affine surface in \mathbb{A}^{3} defined by the equation $x_{1}^{3}+x_{1} x_{2} x_{3}+x_{1} x_{3}+x_{2}^{2}+x_{3}=0$, and let \bar{X} be its closure in \mathbb{P}^{3}. Describe the intersection of \bar{X} with the plane at infinity in \mathbb{P}^{3}.
3.8.2. Let C be a cubic curve, the locus of a homogeneous cubic polynomial $f(x, y, z)$ in \mathbb{P}^{2}. Suppose that $(0,0,1)$ and $(0,1,0)$ are flex points of C, that the tangent line to C at $(0,0,1)$ is the line $\{y=0\}$, and the tangent line at $(0,1,0)$ is the line $\{z=0\}$. What are the possible polynomials f ? Disregard the question of whether f is irreducible.
3.8.3. Let Y and Z be the zero sets in \mathbb{P} of relatively prime homogeneous polynomials g and h of the same degree r. Prove that the rational function $\alpha=g / h$ will tend to infinity as one approaches a point of Z that isn't also a point of Y and that, at intersections of Y and Z, α is indeterminate in the sense that the limit depends on the path.
3.8.4. Let f be a homogeneous polynomial in x, y, z, not divisible by z. Prove that f is irreducible if and only if $f(x, y, 1)$ is irreducible.
3.8.5. Let \mathcal{P} be a homogeneous ideal in $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$, and suppose that its dehomogenization P is a prime ideal. Is \mathcal{P} a prime ideal?
3.8.6. Let U be the open complement of a closed subset Z in a projective variety X in \mathbb{P}^{n}. Say that X is the set of solutions of the homogeneous polynomial equations $f=0$ and that Z is the set of solutions of some equations $g=0$. What conditions must a point p of \mathbb{P}^{n} satisfy in order to be a point of U ?
3.8.7. Describe the ideals that define closed subsets of $\mathbb{A}^{m} \times \mathbb{P}^{n}$.
3.8.8. With coordinates x_{0}, x_{1}, x_{2} in the plane \mathbb{P} and s_{0}, s_{1}, s_{2} in the dual plane \mathbb{P}^{*}, let C be a smooth projective plane curve $f=0$ in \mathbb{P}, where f is an irreducible homogeneous polynomial in x. Let Γ be the locus of pairs (x, s) of $\mathbb{P} \times \mathbb{P}^{*}$ such that the line $s_{0} x_{0}+s_{1} x_{1}+s_{2} x_{2}=0$ is the tangent line to C at x. Prove that Γ is a Zariski closed subset of the product $\mathbb{P} \times \mathbb{P}^{*}$.
3.8.9. Let U be a nonempty open subset of \mathbb{P}^{n}. Prove that if a rational function is bounded on U, it is a constant.
3.8.10. Let Y be the cusp curve $\operatorname{Spec} B$, where $B=\mathbb{C}[x, y] /\left(y^{2}-x^{3}\right)$. This algebra embeds as subring into $\mathbb{C}[t]$, by $x=t^{2} . \quad y=t^{3}$. Show that the two vectors $v_{0}=(x-1, y-1)$ and $v_{1}=\left(t+1, t^{2}+t+1\right)$ define the same point of \mathbb{P}^{1} with values in the fraction field K of B, and that they define morphisms from Y to \mathbb{P}^{1} wherever the entries are regular functions on Y. Prove that the two morphisms they define piece together to give a morphism $Y \rightarrow \mathbb{P}^{1}$.
3.8.11. Let C be a conic in \mathbb{P}^{2}, and let π be the projection to \mathbb{P}^{1} from a point q of C. Prove that there is no way to extend this map to a morphism from \mathbb{P}^{2} to \mathbb{P}^{1}.
3.8.12. Verify that the following maps are morphisms of projective varieties:
(i) the projection from a product variety $X \times Y$ to X,
(ii) the inclusion of X into the product $X \times Y$ as the set $X \times y$ for a point y of Y,
(iii) the morphism of products $X \times Y \rightarrow X^{\prime} \times Y$ when a morphism $X \rightarrow X^{\prime}$ is given.
3.8.13. A pair f_{0}, f_{1} of homogeneous polynomials in x_{0}, x_{1} of the same degree d can be used to define a morphism $\mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$. At a point q of \mathbb{P}^{1}, the morphism evaluates $\left(1, f_{1} / f_{0}\right)$ or $\left(f_{0} / f_{1}, 1\right)$ at q.
(i) The degree of such a morphism is the number of points in a generic fibre. Determine the degree.
(ii) Describe the group of automorphisms of \mathbb{P}^{1}.
3. A pair $\left(f_{0}, f_{1}\right)$ of relatively prime, homogeneous polynomials in x_{0}, x_{1} of the same degree d defines a morphism $u: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ that maps a point q to $\left(1, f_{1}(q) / f_{0}(q)\right)$ if $f_{0}(q) \neq 0$ and to $\left(f_{0}(q) / f_{1}(q), 1\right)$ if $f_{1}(q) \neq 0$. By inspecting the inverse images of a few points, determine the maps that are injective, and use your result to describe the group of automorphisms of \mathbb{P}^{1}.
3.8.14. (i) What are the conditions that a triple of $f=\left(f_{0}, f_{1}, f_{2}\right)$ homogeneous polynomials in x_{0}, x_{1}, x_{2} of the same degree d must satisfy in order to define a morphism $\mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$?
(ii) If f does define a morphism, what is its degree?
3.8.15. Let C be the plane projective curve $x^{3}-y^{2} z=0$.
(i) Show that the function field K of C is the field $\mathbb{C}(t)$ of rational functions in $t=y / x$.
(ii) Show that the point $\left(t^{2}-1, t^{3}-1\right)$ of \mathbb{P}^{1} with values in K defines a morphism $C \rightarrow \mathbb{P}^{1}$.
3.8.16. Describe all morphisms $\mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$.
3.8.17. blowing up a point in \mathbb{P}^{2}. Consider the Veronese embedding of $\mathbb{P}_{x y z}^{2} \rightarrow \mathbb{P}_{u}^{5}$ by monomials of degree 2 defined by $\left(u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right)=\left(z^{2}, y^{2}, x^{2}, y z, x z, x y\right)$. If we drop the coordinate u_{0}, we obtain a map $\mathbb{P}^{2} \xrightarrow{\varphi} \mathbb{P}^{4}: \varphi(x, y, z)=\left(y^{2}, x^{2}, y z, x z, x y\right)$ that is defined at all points except the point $q=(0,0,1)$. Find defining equations for the closure of the image X. Prove that the inverse map $X \xrightarrow{\varphi^{-1}} \mathbb{P}^{2}$ is everywhere defined, that the fibre of φ^{-1} over q is a projective line, and that f is bijective everywhere else.
3.8.18. Show that the conic C in \mathbb{P}^{2} defined by the polynomial $y_{0}^{2}+y_{1}^{2}+y_{2}^{2}=0$ and the twisted cubic V in \mathbb{P}^{3}, the zero locus of the polynomials $v_{0} v_{2}-v_{1}^{2}, v_{0} v_{3}-v_{1} v_{2}, v_{1} v_{3}-v_{2}^{2}$ are isomorphic by exhibiting inverse morphisms between them.
3.8.19. Let X be the affine plane with coordinates (x, y). Given a pair of polynomials $u(x, y), v(x, y)$ in x, y, one may try to define a morphism $f: X \rightarrow \mathbb{P}^{1}$ by $f(x, y)=(u, v)$. Under what circumstances is f a morphism?
3.8.20. Let x_{0}, x_{1}, x_{2} be the coordinate variables in the projective plane X, and for $i=1,2$, let $u_{i}=x_{i} / x_{0}$. The function field K of X is the field of rational functions in the variables u_{i}. Let $f\left(u_{1}, u_{2}\right)$ and $g\left(u_{1}, u_{2}\right)$ be polynomials. Under what circumstances does the point $(1, f, g)$ with values in K define a morphism $X \rightarrow \mathbb{P}^{2}$?
3.8.21. Prove that every finite subset S of a projective variety X is contained in an affine open subset.
3.8.22. Describe the affine open subsets of the projective plane \mathbb{P}^{2}.
3.8.23. What is the dimension of the Grassmanian $\mathbf{G}(m, n)$?
3.8.24. According to 3.7 .19 , a generic quartic surface in \mathbb{P}^{3} won't contain any lines. Will a generic quartic surface contain a plane conic?
3.8.25. Let V be a vector space of dimension 5 , and let \mathbb{G} denote the Grassmanian $\mathbf{G}(2,5)$ of lines in $\mathbb{P}(V)=\mathbb{P}^{4}$. So \mathbb{G} is a subvariety of the projective space $\mathbb{P}(W), W=\bigwedge^{2} V$, which has dimension 10 . let D denote the subset of decomposable vectors in $\mathbb{P}(W)$. Prove that there is a bijective correspondence between two-dimensional subspaces of V and points of D, and that a vector w in $\bigwedge^{2} V$ is decomposable if and only if $w w=0$. Exhibit defining equations for \mathbb{G} in the space $\mathbb{P}(W)$.
3.8.26. a flag variety. Let $\mathbb{P}=\mathbb{P}^{3}$. The space of planes in \mathbb{P} is the dual projective space \mathbb{P}^{*}. The variety F that parametrizes triples (p, ℓ, H) consisting of a point p, a line ℓ, and a plane H in \mathbb{P}, with $p \in \ell \subset H$, is called a flag variety. Exhibit defining equations for F in $\mathbb{P}^{3} \times \mathbb{P}^{5} \times \mathbb{P}^{3 *}$. The equations should be homogeneous in each of 3 sets of variables.
3.8.27. Let Y be an affine variety. Prove that morphisms $Y \rightarrow \mathbb{P}^{n}$ whose images are in \mathbb{U}^{0} correspond bijectively to morphisms of affine varieties $Y \rightarrow \mathbb{U}^{0}$, as defined in 2.6.4.
3.8.28. Determine all morphisms $\mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$.
xmorphPtwo
cuspto-
pone
xPtwo-
Pone xblowup
xconiccubic
xmapplanetoPone
xmap-
toPthree
easyk-
leiman
xaffinopen-
plamgrass
xconicin-
quartic
xlinesp-
five
xflag
xmorphaff
xtwotoone

Chapter 4 INTEGRAL MORPHISMS

4.1 The Nakayama Lemma
4.2 Integral Extensions
4.3 Normalization
4.4 Geometry of Integral Morphisms
4.5 Dimension
4.6 Chevalley's Finiteness Theorem
?? Double Planes
4.7 Exercises

The concept of an algebraic integer was one of the essential ideas in the development of algebraic number theory in the 19th century. Then, largely through the work of Noether and Zariski, an analog was seen to be essential in algebraic geometry. We study that analog here.

4.1 The Nakayama Lemma

nakayama
eigen
eigenval
nakayamalem

(4.1.1) eigenvectors

It won't be a surprise that eigenvectors are important, but the way that they are used to study modules may be less familiar.

Let P be an $n \times n$ matrix with entries in a ring A. The concept of an eigenvector for P makes sense when the entries of a vector are in an A-module. A column vector $v=\left(v_{1}, \ldots, v_{n}\right)^{t}$ with entries in an A-module M is an eigenvector of P with eigenvalue λ in A if $P v=\lambda v$.

When the entries of a vector are in a module, it becomes hard to adapt the usual requirement that an eigenvector must be nonzero. So we drop it, though the zero vector tells us nothing.
4.1.2. Lemma. Let P be a square matrix with entries in a ring A and let $p(t)$ be the characteristic polynomial $\operatorname{det}(t I-P)$ of P. If v is an eigenvector of P with eigenvalue λ, then $p(\lambda) v=0$.

The usual proof, in which one multiplies the equation $(\lambda I-P) v=0$ by the cofactor matrix of $(\lambda I-P)$, carries over.

The next lemma is a cornerstone of the theory of modules. In it, $J M$ denotes the set of (finite) sums $\sum_{i} a_{i} m_{i}$ with a_{i} in J and m_{i} in M.
4.1.3. Nakayama Lemma. Let M be a finite module over a ring A, and let J be an ideal of A such that $M=J M$. There is an element z in J such that $m=z m$ for all m in M, i.e., such that $(1-z) M=0$.

Since it is always true that $M \supset J M$, the hypothesis $M=J M$ could be replaced by $M \subset J M$.
proof of the Nakayama Lemma. Let v_{1}, \ldots, v_{n} be generators for the finite A-module M. The equation $M=$ $J M$ tells us that there are elements $p_{i j}$ in J such that $v_{i}=\sum p_{i j} v_{j}$. We write this equation in matrix notation,
as $v=P v$, where v is the column vector $\left(v_{1}, \ldots, v_{n}\right)^{t}$ and P is the matrix $P=\left(p_{i j}\right)$. Then v is an eigenvector of P with eigenvalue 1 , and if $p(t)$ is the characteristic polynomial of P, then $p(1) v=0$. Since the entries of P are in the ideal J, inspection of the determinant of $I-P$ shows that $p(1)$ has the form $1-z$, with z in J. Then $(1-z) v_{i}=0$ for all i. Since v_{1}, \ldots, v_{n} generate $M,(1-z) M=0$.

With notation as in the Nakayama Lemma, let $s=1-z$, so that $s M=0$. The localized module M_{s} is the zero module.
4.1.4. Corollary. Let I and J be ideals of a noetherian domain A.
(i) If $I=J I$, then either I is the zero ideal or J is the unit ideal.
(ii) Let B be a domain that contains A, and that is a finite A-module. If the extended ideal $J B$ is the unit ideal of B, then J is the unit ideal of A.
proof. (i) Since A is noetherian, I is a finite A-module. If $I=J I$, the Nakayama Lemma tells us that there is an element z of J such that $z x=x$ for all x in I. Suppose that I isn't the zero ideal. We choose a nonzero element x of I. Because A is a domain, we can cancel x from the equation $z x=x$, obtaining $z=1$. Then 1 is in J, and J is the unit ideal.
(ii) The elements of the extended ideal $J B$ are sums $\sum u_{i} b_{i}$ with u_{i} in J and b_{i} in B. Suppose that $B=J B$. Then there is an element z of J such that $b=z b$ for all b in B. Setting $b=1$ shows that $z=1$. So J is the unit ideal.
4.1.5. Corollary. Let x be an element of a noetherian domain A, not a unit, and let J be the principal ideal $x A$.
(i) The intersection $\bigcap J^{n}$ is the zero ideal.
(ii) If y is a nonzero element of A, the integers k such that x^{k} divides y in A are bounded.
(iii) For every $k>0, J^{k}>J^{k+1}$.
proof. Let $I=\bigcap J^{n}$ and let y be an element of I. Since $J^{n}=x^{n} A$, the elements of I are divisible by x^{n} for every n. So for every n, there is an element a_{n} in A such that $y=a_{n} x^{n}$. Then $y / x=a_{n} x^{n-1}$, which is an element of J^{n-1}. Since this is true for every $n, y / x$ is in I, and y is in $J I$. Here y can be any element of I, so $I=J I$. Since x isn't a unit, J isn't the unit ideal. Corollary 4.1.4(i) tells us that $I=0$. This proves (i), and (ii) follows. For (iii), we note that if $J^{k}=J^{k+1}$, then, multiplying by J^{n-k}, we see that $J^{n}=J^{n+1}$ for every $n \geq k$. Therefore $J^{k}=\bigcap J^{n}=0$. But since A is a domain and $x \neq 0, J^{k}=x^{k} A \neq 0$.

4.2 Integral Extensions

An extension of a domain A is a domain B that contains A as a subring.
Let B be an extension of a domain A. An element β of B is integral over A if it is a root of a monic polynomial with coefficients in A. An extension B of A is an integral extension if all elements of B are integral over A.
4.2.1. Lemma. Let $A \subset B$ be an extension of noetherian domains.
(i) An element b of B is integral over A if and only if the subring $A[b]$ of B generated by b is a finite A-module.
(ii) The set of elements of B that are integral over A is a subring of B.
(iii) If B is generated as A-algebra by finitely many integral elements, then B is a finite A-module.
(iv) Let $R \subset A \subset B$ be domains, and suppose that A is an integral extension of R. An element of B is integral over A if and only if it is integral over R. Therefore, if A is an integral extension of R and B is an integral extension of A, then B is an integral extension of R.
4.2.2. Corollary. An extension $A \subset B$ of finite-type domains is an integral extension if and only if B is a finite A-module.

Thus, if $f(x)$ is a monic irreducible polynomial with cofficients in A, and if $B=A[x] /(f)$, then every element of B will be integral over A.
4.2.3. Lemma. Let $A \subset B$ be an extension of domains, with A noetherian, let I be a nonzero ideal of A, and let b be an element of B. If $b I \subset I$, then b is integral over A.
int
aboutintegral
integraliffinite
betaintegral
proof. Because A is noetherian, I is finitely generated. Let $v=\left(v_{1}, \ldots, v_{n}\right)^{t}$ be a vector whose entries generate I. The hypothesis $b I \subset I$ allows us to write $b v_{i}=\sum p_{i j} v_{j}$ with $p_{i j}$ in A, or in matrix notation, $b v=P v$. So v is an eigenvector of P with eigenvalue b, and if $p(t)$ is the characteristic polynomial of P, then $p(b) v=0$. Since I isn't zero, at least one v_{i} is nonzero, but $p(b) v_{i}=0$. Since A is a domain, $p(b)=0$. The characteristic polynomial is a monic polynomial with coefficients in A, so b is integral over A.
4.2.4. Definition. Let $Y=\operatorname{Spec} B$ and $X=\operatorname{Spec} A$ be affine varieties. The morphism $Y \xrightarrow{u} X$ defined by an integral extension $A \subset B$ will be called an integral morphism of affine varieties.

Thus an integral morphism of affine varieties $Y \rightarrow X$ is a morphism whose associated algebra homomorphism $A \xrightarrow{\varphi} B$ is injective, and such that B is a finite A-module. The inclusion u of a proper closed subvariety Y into X isn't an integral morphism, though B is a finite A-module.

4.2.5. Proposition. An integral morphism $Y \xrightarrow{u} X$ of affine varieties is a surjective map.

proof. Let \mathfrak{m}_{x} be the maximal ideal at point x of X. Corollary 4.1.4(ii) shows that the extended ideal $\mathfrak{m}_{x} B$ isn't the unit ideal of B, so $\mathfrak{m}_{x} B$ is contained in a maximal ideal \mathfrak{m}_{y} of B, where y is a point of Y. Then $\mathfrak{m}_{y} \cap A$ contains \mathfrak{m}_{x} and it isn't the unit ideal because it doesn't contain 1 . So $\mathfrak{m}_{y} \cap A=\mathfrak{m}_{x}$, and x is the image $u y$. Therefore u is surjective.
4.2.6. Example. Let G be a finite group of automorphisms of a normal, finite-type domain B, let A be the algebra B^{G} of invariant elements of B. According to Theorem 2.8.5, A is a finite-type domain, B is a finite integral extension of A, and points of $X=\operatorname{Spec} A$ correspond to G-orbits of points of $Y=\operatorname{Spec} B$.

The next example is helpful for an intuitive understanding of the geometric meaning of integrality.
4.2.7. Example. Let f be an irreducible polynomial in $\mathbb{C}[x, y]$ (one x and one y), let $A=\mathbb{C}[x]$, and let $B=\mathbb{C}[x, y] /(f)$. So $X=\operatorname{Spec} A$ is an affine line and $Y=\operatorname{Spec} B$ is a plane affine curve. The canonical map $A \rightarrow B$ defines the morphism $Y \rightarrow X$ that is obtained by restricting the projection $\mathbb{A}_{x, y}^{2} \rightarrow \mathbb{A}_{x}^{1}$ to Y.

We write f as a polynomial in y, whose coefficients are polynomials in x, say

$$
\begin{equation*}
f(x, y)=a_{0} y^{n}+a_{1} y^{n-1}+\cdots+a_{n} \tag{4.2.8}
\end{equation*}
$$

with $a_{i}=a_{i}(x)$. Let x_{0} be a point of X. The fibre of the map $Y \rightarrow X$ over x_{0} consists of the points $\left(x_{0}, y_{0}\right)$ such that y_{0} is a root of the one-variable polynomial $f\left(x_{0}, y\right)$.

Let $\delta(x)$ be the discriminant of $f(x, y)$, viewed as a polynomial in y. This discriminant isn't identically zero because f is irreducible 1.7.22. For all but finitely many values x_{0} of x, both a_{0} and δ will be nonzero. Then $f\left(x_{0}, y\right)$ will have n distinct roots, and the fibre of Y over x_{0} will have order n.

When $f(x, y)$ is a monic polynomial in y, the morphism $Y \rightarrow X$ will be an integral morphism. If so, the leading term y^{n} of f will be the dominant term, when y is large. For x_{1} near to a point x_{0} of X, there will be a positive real number N such that

$$
\left|y^{n}\right|>\left|a_{1}\left(x_{1}\right) y^{n-1}+\cdots+a_{n}\left(x_{1}\right)\right|
$$

when $|y|>N$, and therefore $f\left(x_{1}, y\right) \neq 0$. So the roots y of $f\left(x_{1}, y\right)$ are bounded by N for all x_{1} near to x_{0}.
On the other hand, when the leading coefficient $a_{0}(x)$ isn't a constant, B won't be integral over A. If x_{0} is a root of $a_{0}(x), f\left(x_{0}, y\right)$ will have degree less than n. What happens there is that, for points x_{1} near to x_{0}, some roots of $f\left(x_{1}, y\right)$ are unbounded. In calculus, one says that the locus $f(x, y)=0$ has a vertical asymptote at x_{0}.

To see this, we divide f by its leading coefficient. Let $g(x, y)=f(x, y) / a_{0}=y^{n}+c_{1} y^{n-1}+\cdots+c_{n}$ with $c_{i}(x)=a_{i}(x) / a_{0}(x)$. For any x at which $a_{0}(x)$ isn't zero, the roots of g are the same as those of f. However, let x_{0} be a root of a_{0}. Because f is irreducible. At least one coefficient $a_{j}(x)$ doesn't have x_{0} as a root. Then $c_{j}(x)$ is unbounded near x_{0}, and because the coefficient c_{j} is a symmetric function in the roots, the roots are not all bounded.

This is the general picture: The roots of a polynomial remain bounded near points at which the leading coefficient isn't zero, but some roots are unbounded near to a point at which the leading coefficient is zero.
4.2.9. Noether Normalization Theorem. Let A be a finite-type domain over an infinite field k. There exist elements y_{1}, \ldots, y_{n} in A that are algebraically independent over k, such that A is a finite module over the polynomial subalgebra $R=k\left[y_{1}, \ldots, y_{n}\right]$, i.e., such that A is an integral extension of R.

When $k=\mathbb{C}$, the theorem can be stated by saying that every affine variety X admits an integral morphism to an affine space. (It is trivial that an affine variety admits a finite morphism to affine space, because its embedding into affine space is a finite morphism.)

The Noether Normalization Theorem remains true when A is a finite-type algebra over a finite field, though the proof given below needs to be modified.
4.2.10. Lemma. Let k be an infinite field, and let $f(x)$ be a nonzero polynomial of degree d in x_{1}, \ldots, x_{n}, with coefficients in k. After a suitable linear change of variable and scaling, f will be a monic polynomial in x_{n}.
proof. Let f_{d} be the homogeneous part of f of maximal degree d. We regard f_{d} as a function $k^{n} \rightarrow k$. Since k is infinite, that function isn't identically zero. We choose coordinates x_{1}, \ldots, x_{n} so that the point $q=(0, \ldots, 0,1)$ isn't a zero of f_{d}. Then $f_{d}\left(0, \ldots, 0, x_{n}\right)=c x_{n}^{d}$, and the coefficient c, which is $f_{d}(0, \ldots, 0,1)$, will be nonzero. We can multiply by c^{-1} to make f monic.
proof of the Noether Normalization Theorem. Say that the finite-type domain A is generated by elements x_{1}, \ldots, x_{n}. If those elements are algebraically independent over k, A will be isomorphic to the polynomial algebra $\mathbb{C}[x]$. In that case we let $R=A$. If x_{1}, \ldots, x_{n} aren't algebraically independent, they satisfy a polynomial relation $f(x)=0$ of some positive degree d, with coefficients in k. The lemma tells us that, after a suitable change of variable and scaling, the coefficient of x_{n}^{d} in f will be 1 . Then f will be a monic polynomial in x_{n} with coefficients in the subalgebra B of A generated by x_{1}, \ldots, x_{n-1}. So x_{n} will be integral over B, and A will be a finite B-module. By induction on n, we may assume that B is a finite module over a polynomial subalgebra R. Then A will be a finite module over R too.

The next corollary is an example of the general principle, as has been noted before, that in any localization, a construction involving finitely many denominators can be done in a simple localization.
4.2.11. Corollary. Let $A \subset B$ be finite-type domains. There is a nonzero element s in A such that B_{s} is a finite module over a polynomial subring $A_{s}\left[y_{1}, \ldots, y_{r}\right]$.
proof. Let S be the multiplicative system of nonzero elements of A, so that $K=A S^{-1}$ is the fraction field of A, and let $B_{K}=B S^{-1}$ be the ring obtained from B by adjoining inverses of all elements of S. Also, let $\beta=\left(\beta_{1}, \ldots, \beta_{k}\right)$ be a set of algebra generators for the finite-type algebra B. Then as K-algebra, B_{K} is generated by β. It is a finite-type K-algebra. The Noether Normalization Theorem tells us that B_{K} is a finite module over a polynomial subring $R_{K}=K\left[y_{1}, \ldots, y_{r}\right]$. So B_{K} is an integral extension of R_{K}. An element of B will be in B_{K}. Therefore it will be the root of a monic polynomial, say

$$
f(x)=x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0}=0
$$

where the coefficients $c_{j}(y)$ are elements of R_{K}. Each coefficient c_{j} is a combination of finitely many monomials in y, with coefficients in K. If $d \in A$ is a common denominator of those coefficients, $c_{j}(x)$ will have coefficients in $A_{d}[y]$. Since the generators $\beta_{1}, \ldots, \beta_{k}$ of B are integral over R_{K}, we may choose a single denominator s so that they are all integral over $A_{s}[y]$. The algebra B_{s} is generated over A_{s} by β, so B_{s} will be an integral extension of $A_{s}[y]$.

4.3 Normalization

Let A be a domain with fraction field K. The normalization $A^{\#}$ of A is the set of elements of K that are integral over A. The normalization is a domain that contains A (4.2.1) (ii).

A domain A is normal if it is equal to its normalization, and a normal variety X is a variety that has an affine covering $\left\{X^{i}=\operatorname{Spec} A_{i}\right\}$, a covering by affine open sets, in which the algebras A_{i} are normal domains.

To justify the definition of normal variety, we need to show that if an affine variety $X=\operatorname{Spec} A$ has an affine covering $\left\{X^{i}=\operatorname{Spec} A_{i}\right\}$, in which A_{i} are normal domains, then A is a normal domain. This follows from Lemma 4.3.4 (iii) below.

Our goal here is the next theorem, whose proof is at the end of the section.
noethernormal

$$
\begin{equation*}
\beta^{n}+a_{1} \beta^{n-1}+\cdots+a_{n-1} \beta+a_{n}=0 \tag{4.3.5}
\end{equation*}
$$

with a_{i} in A. We write $\beta=r / s$, where r and s are relatively prime elements of A. Multiplying by s^{n} gives us the equation

$$
r^{n}=-s\left(a_{1} r^{n-1}+\cdots+a_{n} s^{n-1}\right)
$$

This equation shows that if a prime element of A divides s, it also divides r. Since r and s are relatively prime, there is no such prime element. So s is a unit, and β is in A.
(ii) Let β be an element of the fraction field of A that is integral over A_{s}. There will be a polynomial relation of the form 4.3 .5 , where the coefficients a_{i} are elements of A_{s}. The element $\gamma=s^{k} \beta$ is a root of the polynomial

$$
\gamma^{n}+\left(s^{k} a_{1}\right) \gamma^{n-1}+\left(s^{2 k} a_{2}\right) \gamma^{n-2}+\cdots++\left(s^{n k} a_{n}\right)=0
$$

Since a_{i} are in A_{s}, all coefficients in this polynomial will be in A when k is sufficiently large, and then γ will be integral over A. Since A is normal, γ will be in A, and $\beta=s^{-k} \gamma$ will be in A_{s}.
(iii) This proof follows a common pattern. Suppose that $A_{s_{i}}$ is normal for every i. If an element β of K is integral over A, it will be in $A_{s_{i}}$ for all i, and $s_{i}^{n} \beta$ will be an element of A, when n is large. We can use the same exponent n for all i. Since s_{1}, \ldots, s_{k} generate the unit ideal, so do their powers $s_{i}^{n}, \ldots, s_{k}^{n}$. Say that $\sum r_{i} s_{i}^{n}=1$, with r_{i} in A. Then $\beta=\sum r_{i} s_{i}^{n} \beta$ is in A.

We prove Theorem 4.3.1 in a slightly more general form. Let A be a finite type domain with fraction field K, and let L be a finite field extension of K. The integral closure of A in L is the set of all elements of L that are integral over A.
intclo 4.3.6. Theorem. Let A be a finite type domain with fraction field K of characteristic zero, and let L be a finite field extension of K. The integral closure of A in L is a finite A-module.

The proof that we give at the end of the section makes use of the characteristic zero hypothesis, though the theorem is true for a finite-type algebra over any field k.
4.3.7. Lemma. Let A be a normal noetherian domain with fraction field K of characteristic zero, and let L be an algebraic field extension of K. An element β of L is integral over A if and only if the monic irreducible polynomial f for β over K has coefficients in A.
proof. If the monic polynomial f has coefficients in A, then β is integral over A. Suppose that β is integral over A. We may replace L by any field extension that contains β. So we may replace L by $K[\beta]$. Then L becomes a finite extension of K, which embeds into a Galois extension. So we may replace L by a Galois extension. Let G be its Galois group, and let $\left\{\beta_{1}, \ldots, \beta_{r}\right\}$ be the G-orbit of β, with $\beta=\beta_{1}$. Then the irreducible polynomial for β over K is

$$
\begin{equation*}
f(x)=\left(x-\beta_{1}\right) \cdots\left(x-\beta_{r}\right) \tag{4.3.8}
\end{equation*}
$$

If β is integral over A, all elements of the orbit are integral over A. Therefore the coefficients of f, which are elemetary symmetric functions in the orbit, are integral over A, and since A is normal, they are in A. So f has coefficients in A.
4.3.9. Example. A nonconstant polynomial $f(x, y)$ in the polynomial ring $A=\mathbb{C}[x, y]$ is said to be squarefree if it has no nonconstant square factors.

Let f be an irreducible, square-free polynomial, and let B denote the integral extension $\mathbb{C}[x, y, w] /\left(w^{2}-f\right)$ of A. Let K and L be the fraction fields of A and B, respectively. Then L is a Galois extension of K. Its Galois group is generated by the automorphism σ of order 2 that is defined by $\sigma(w)=-w$. The elements of L have the form $\beta=a+b w$ with a, b in K, and $\sigma(\beta)=\beta^{\prime}=a-b w$.

We show that B is the integral closure of A in L. Suppose that $\beta=a+b w$ is integral over A, with a, b in K. If $b=0$, then $\beta=a$. This is an element of A and therefore it is in B. If $b \neq 0$, the irreducible polynomial for β will be

$$
(x-\beta)\left(x-\beta^{\prime}\right)=x^{2}-2 a x+\left(a^{2}-b^{2} f\right)
$$

Because β is integral over $A, 2 a$ and $a^{2}-b^{2} f$ will be in A, and because the characteristic isn't 2 , this is true if and only if a and $b^{2} f$ are in A. We write $b=u / v$, with u, v relatively prime elements of A, so $b^{2} f=u^{2} f / v^{2}$. If v weren't a constant, then since u and v are relatively prime and f is square-free, v^{2} couldn't be canceled from $u^{2} f$. So $b^{2} f$ wouldn't be in A. From $b^{2} f$ in A we can conclude that v is a constant and that b is in A. Summing up, β is integral if and only if a and b are in A, which means that β is in B.

(4.3.10) trace

Let L be a finite field extension of a field K and let β be an element of K. When L is viewed as a K-vector space, multiplication by β becomes a K-linear operator $L \rightarrow L$. The trace of that operator will be denoted by $\operatorname{trace}(\beta)$. The trace is a K-linear map $L \rightarrow K$.
4.3.11. Lemma. Let L / K be a field extension of degree n, let $K^{\prime}=K[\beta]$ be the extension of K generated by an element β of L, and let $f(x)=x^{r}+a_{1} x^{r-1}+\cdots+a_{r}$ be the irreducible polynomial of β over K. Say that $\left[L: K^{\prime}\right]=d$, so that $n=r d$. Then $\operatorname{trace}(\beta)=-d a_{1}$. If β is an element of K, then $\operatorname{trace}(\beta)=n \beta$.
proof. The set $\left(1, \beta, \ldots, \beta^{r-1}\right)$ is a K-basis for K^{\prime}. On this basis, the matrix of multiplication by β has the form illustrated below for the case $r=3$. Its trace is $-a_{1}$.

$$
M=\left(\begin{array}{ccc}
0 & 0 & -a_{3} \\
1 & 0 & -a_{2} \\
0 & 1 & -a_{1}
\end{array}\right)
$$

Next, if $\left(u_{1}, \ldots, u_{d}\right)$ is a basis for L over K^{\prime}, the set $\left\{\beta^{i} u_{j}\right\}$, with $i=0, \ldots, r-1$ and $j=1, \ldots, d$, will be a basis for L over K. When this basis is listed in the order

$$
\left(u_{1}, u_{1} \beta, \ldots, u_{1} \beta^{n-1} ; u_{2}, u_{2} \beta, \ldots u_{2} \beta^{n-1} ; \ldots ; u_{d}, u_{d} \beta, \ldots, u_{d} \beta^{n-1}\right)
$$

the matrix of multiplication by β will be made up of d blocks of the matrix M.
4.3.12. Corollary. Let A be a normal domain with fraction field K and let L be a finite field extension of K. If an element β of L is integral over A, its trace is in A.

This follows from Lemmas 4.3.7 and 4.3.11
4.3.13. Lemma. Let A be a normal noetherian domain with fraction field K of characteristic zero, and let L be a finite field extension of K. The form $L \times L \rightarrow K$ defined by $\langle\alpha, \beta\rangle=\operatorname{trace}(\alpha \beta)$ is K-bilinear, symmetric, and nondegenerate. If α and β are integral over A, then $\langle\alpha, \beta\rangle$ is an element of A.
proof. The form is obviously symmetric, and it is K-bilinear because multiplication is K-bilinear and trace is K-linear. A form is nondegenerate if its nullspace is zero, which means that when α is a nonzero element, there is an element β such that $\langle\alpha, \beta\rangle \neq 0$. Given $\alpha \neq 0$, let $\beta=\alpha^{-1}$. Then $\langle\alpha, \beta\rangle=\operatorname{trace}(1)$, which, according to (4.3.11), is the degree $[L: K]$ of the field extension. It is here that the hypothesis on the characteristic of K enters: The degree is a nonzero element of K.

If α and β are integral over A, so is their product $\alpha \beta$ 4.2.1 (ii). Corollary 4.3.12 shows that $\langle\alpha, \beta\rangle$ is an element of A.
4.3.14. Lemma. Let A be a domain with fraction field K, let L be a field extension of K, and let β be an element of L that is algebraic over K. If β is a root of a polynomial $f=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ with a_{i} in A, then $\gamma=a_{n} \beta$ is integral over A.
proof. One finds a monic polynomial with root γ by substituting $x=y / a_{n}$ into f and multiplying by a_{n}^{n-1}.
(4.3.15) proof of Theorem 4.3.1

Let A be a finite-type domain with fraction field K of characteristic zero, and let L be a finite field extension of K. We are to show that the integral closure of A in L is a finite A-module.

Step 1. We may assume that A is normal.

We use the Noether Normalization Theorem to write A as a finite module over a polynomial subalgebra $R=\mathbb{C}\left[y_{1}, \ldots, y_{d}\right]$. Let F be the fraction field of R. Then K and L are finite extensions of F. An element of L will be integral over A if and only if it is integral over $R 4.2 .1$ (iv). So the integral closure of A in L is the same as the integral closure of R in L. We replace A by the normal algebra R and K by F.

Step 2. Bounding the integral extension.

We assume that A is normal. Let $\left(v_{1}, \ldots, v_{n}\right)$ be a K-basis for L whose elements are integral over A. Such a basis exists because we can multiply any element of L by a nonzero element of K to make it integral (Lemma 4.3.14). Let

$$
\begin{equation*}
T: L \rightarrow K^{n} \tag{4.3.16}
\end{equation*}
$$

be the map defined by $T(\beta)=\left(\left\langle v_{1}, \beta\right\rangle, \ldots,\left\langle v_{n}, \beta\right\rangle\right)$, where \langle,$\rangle is the bilinear form defined in Lemma$ 4.3.13 This map is K-linear. If $\left\langle v_{i}, \beta\right\rangle=0$ for all i, then because $\left(v_{1}, \ldots, v_{n}\right)$ is a basis for $L,\langle\gamma, \beta\rangle=0$ for every γ in L, and since the form is nondegenerate, $\beta=0$. Therefore T is injective.

Let B be the integral closure of A in L. We are to show that B is a finite A-moule. The basis elements v_{i} are in B, and if β is in B, then $v_{i} \beta$ will be in B too. Then $\left\langle v_{i}, \beta\right\rangle=\operatorname{trace}\left(v_{i} b\right)$ will be in A, and $T(\beta)$ will be in A^{n} 4.3.13. When we restrict T to B, we obtain an injective map $B \rightarrow A^{n}$ that we denote by T_{0}. Since T is K-linear, T_{0} is A-linear. It is an injective homomorphism of A-modules that maps B isomorphically to its image, a submodule of A^{n}. Since A is noetherian, every submodule of the finite A-module A^{n} is a finite module. Therefore the image of T_{0} is a finite A-module, and so is the isomorphic module B.

4.4 Geometry of Integral Morphisms

The main geometric properties of an integral morphism of affine varieties are summarized by the theorems in this section, which show that the geometry is as nice as could be expected.

Let $Y \rightarrow X$ be an integral morphism of affine varieties. We say that a closed subvariety D of Y lies over a closed subvariety C of X if C is the image of D.

Similarly, if $A \rightarrow B$ is an integral extension of finite-type domains, we say that a prime ideal Q of B lies over a prime ideal P of A if P is the contraction $Q \cap A$. For example, if $Y \rightarrow X$ is the morphism of affine varieties that corresponds to a homomorphism $A \rightarrow B$, and if a point y of Y has image x in X, then y lies over x, and the maximal ideal \mathfrak{m}_{y} lies over the maximal ideal \mathfrak{m}_{x}.
4.4.1. Lemma. Let $A \subset B$ be an integral extension of finite-type domains, and let J be an ideal of B. If J isn't the zero ideal of B, then its contraction $J \cap A$ isn't the zero ideal of A.
proof. An element β of J will be a root of a monic polynomial with coefficients in A, say $\beta^{k}+a_{k-1} \beta^{k-1}+$ $\cdots+a_{0}$. If $a_{0}=0$, then since B is a domain, we can cancel β from this polynomial. So we may assume that $a_{0} \neq 0$. The equation shows that a_{0} is in J as well as in A.
4.4.2. Proposition. Let $A \rightarrow B$ be an integral extension of finite-type domains, and let $X=\operatorname{Spec} A$ and $Y=\operatorname{Spec} B$.
(i) Let P and Q be prime ideals of A and B, respectively, let C be the locus of zeros of P in X, and let D be the locus of zeros of Q in Y. Then Q lies over P if and only if D lies over C.
(ii) Let Q and Q^{\prime} be prime ideals of B that lie over the same prime ideal P of A. If $Q \subset Q^{\prime}$, then $Q=Q^{\prime}$. Therefore, if D^{\prime} and D are closed subvarieties of Y that lie over the same subvariety C of X and if $D^{\prime} \subset D$, then $D^{\prime}=D$.
proof. (i) Let $\bar{A}=A / P$ and $\bar{B}=B / Q$. Then $D=\operatorname{Spec} \bar{B}$ and $C=\operatorname{Spec} \bar{A}$. Suppose that Q lies over P. So $P=Q \cap A$. Then the canonical map $\bar{A} \rightarrow \bar{B}$ will be injective, and \bar{B} will be generated as \bar{A}-module by the residues of a set of generators of the finite A-module B. So \bar{B} is an integral extension of \bar{A}, and the map from D to C is surjective (Proposition 4.2.5), which means that D lies over C. Conversely, if D lies over C, the morphism $D \rightarrow C$ is surjective. Then the canonical map $\bar{A} \rightarrow \bar{B}$ is injective, and this implies that $Q \cap A=P$.
(ii) Suppose that Q and Q^{\prime} lie over P and that $Q \subset Q^{\prime}$. With $\bar{A}=A / P$ and $\bar{B}=B / Q$ as before, let $\bar{Q}^{\prime}=Q^{\prime} / Q$. Because B is an integral extension of A, \bar{B} is an integral extension of \bar{A}, and \bar{Q}^{\prime} is an ideal of \bar{B}. Since Q and Q^{\prime} lie over $P, Q \cap A=Q^{\prime} \cap A=P$. We show that $\bar{Q}^{\prime} \cap \bar{A}=0$. Let \underline{x} be an element of $\bar{Q}^{\prime} \cap \bar{A}$, and let $x \in Q^{\prime}$ and $z \in A$ be elements whose residues in \bar{Q}^{\prime} are equal to \underline{x}. Then the residue of $x-z$ is zero, so $x-z$ is in Q and in Q^{\prime}. Therefore z is in $Q^{\prime} \cap A=P$, and $\underline{x}=0$. So $\bar{Q}^{\prime} \cap \bar{A}=0$. Lemma 4.4.1 tells us that $\bar{Q}^{\prime}=0$. Therefore $Q^{\prime}=Q$.
4.4.3. Theorem. Let $Y \xrightarrow{u} X$ be an integral morphism of affine varieties.
(i) The fibres of u have bounded cardinality.
(ii) The image of a closed subset of Y is a closed subset of X, and the image of a closed subvariety of Y is a closed subvariety of X.
(iii) The set of closed subvarieties of Y that lie over a closed subvariety C of X is finite and nonempty.
proof. Let $Y=\operatorname{Spec} B$ and $X=\operatorname{Spec} A$, and let $A \subset B$ be the extension that corresponds to the integral morphism u.
(i) (bounding the fibres) Let y_{1}, \ldots, y_{r} be points of Y in the fibre over a point x of X. For each i, the contraction of the maximal ideal $\mathfrak{m}_{y_{i}}$ of B at y_{i} is the maximal ideal \mathfrak{m}_{x} of A at x. To bound the number r, we use the Chinese Remainder Theorem to show that B cannot be spanned as A-module by fewer than r elements.

Let k_{i} and k denote the residue fields $B / \mathfrak{m}_{y_{i}}$, and A / \mathfrak{m}_{x}, respectively, all of these fields being isomorphic to \mathbb{C}. Let $\bar{B}=k_{1} \times \cdots \times k_{r}$. We form a diagram of algebra homomorphisms

which we interpret as a diagram of A-modules. The minimal number of generators of the A-module \bar{B} is equal to its dimension as k-module, which is r. The Chinese Remainder Theorem asserts that φ is surjective, so B cannot be spanned by fewer than r elements.
(ii) (the image of a closed set is closed) The image of an irreducible set via a continuous map is irreducible 2.2.15)(iii), so it suffices to show that the image of a closed subvariety is closed. Let D be the closed subvariety of Y that corresponds to a prime ideal Q of B, and let $P=Q \cap A$ be its contraction, which is a prime ideal of A. Let C be the variety of zeros of P in X. The coordinate algebras of the affine varieties D and C are $\bar{B}=B / Q$ and $\bar{A}=A / P$, respectively, and \bar{B} is an integral extension of \bar{A} because B is an integral extension of A 4.2.5). The map $D \rightarrow C$ is surjective. Therefore C is the image of D.
(iii) (subvarieties that lie over a closed subvariety) Let C be a closed subvariety of X. Its inverse image $Z=u^{-1} C$ is closed in Y. It is the union of finitely many irreducible closed sets, say $Z=D_{1}^{\prime} \cup \cdots \cup D_{k}^{\prime}$. Part (i) tells us that the image C_{i}^{\prime} of D_{i}^{\prime} is a closed subvariety of X. Since u is surjective, $C=\bigcup C_{i}^{\prime}$, and since C is irreducible, $C_{i}^{\prime}=C$ for at least one i. For such an i, D_{i}^{\prime} lies over C. Next, any subvariety D that lies over C will be contained in the inverse image Z, and therefore contained in D_{i}^{\prime} for some i. Proposition 4.4.2 (ii) shows that $D=D_{i}^{\prime}$. Therefore the varieties that lie over C are among the varieties D_{i}^{\prime}.

4.5 Dimension

Every variety has a dimension, and as is true for the dimension of a vector space, the dimension is important, though it is a very coarse measure. We give two definitions of dimension of a variety X here. However, the proof that they are equivalent requires work.

The first definition is that the dimension of a variety X is the transcendence degree of its function field. For now, we'll refer to this as the t-dimension of X.
4.5.1. Corollary. Let $Y \rightarrow X$ be an integral morphism of affine varieties. The t-dimensions of X and Y are equal.

The second definition of dimension is the combinatorial dimension, which is defined as follows: A chain of closed subvarieties of a variety X is a strictly decreasing sequence

$$
\begin{equation*}
C_{0}>C_{1}>C_{2}>\cdots>C_{k} \tag{4.5.2}
\end{equation*}
$$

of closed subvarieties. The length of this chain is defined to be k. The chain is maximal if it cannot be lengthened by inserting another closed subvariety, which means that $C_{0}=X$, that there is no closed subvariety \widetilde{C} with $C_{i}>\widetilde{C}>C_{i+1}$ for $i<k$, and that C_{k} is a point.

For example, $\mathbb{P}^{n}>\mathbb{P}^{n-1}>\cdots>\mathbb{P}^{0}$, where \mathbb{P}^{i} is the linear subspace of points $\left(x_{0}, \ldots, x_{i}, 0, \ldots, 0\right)$, is a maximal chain in projective space $X=\mathbb{P}^{n}$, and its length is n.

Theorem 4.5.6 below shows that all maximal chains of closed subvarieties have the same length. The combinatorial dimension of X is the length of a maximal chain. We'll refer to it as the c-dimenson. Theorem 4.5.6 also shows that the t -dimension and the c-dimension of a variety are equal. When we have proved that theorem, we will refer to the t-dimension and to the c-dimension simply as the dimension, and we will use the two definitions interchangeably.

In an affine variety $\operatorname{Spec} A$, a strictly decreasing chain 4.5.2 of closed subvarieties corresponds to a strictly increasing chain

$$
\begin{equation*}
P_{0}<P_{1}<P_{2}<\cdots<P_{k} \tag{4.5.3}
\end{equation*}
$$

of prime ideals of A of length k, a prime chain. This prime chain is maximal if it cannot be lengthened by inserting another prime ideal, which means that P_{0} is the zero ideal, that there is no prime ideal \widetilde{P} with $P_{i}<\widetilde{P}<P_{i+1}$ for $i<k$, and that P_{k} is a maximal ideal. The c-dimension of a finite-type domain A is the length k of a maximal chain 4.5.3 of prime ideals. If $X=\operatorname{Spec} A$, then the c-dimensions of X and of A are equal.

The next theorem is the basic tool for studying dimension. Though the statement is intuitively plausible, its proof isn't easy. It is a subtle theorem. We have put the proof at the end of this section.
krullthm 4.5.4. Krull's Principal Ideal Theorem. Let $X=\operatorname{Spec} A$ be an affine variety of t-dimension d, and let V be the zero locus in X of a nonzero element α of A. Every irreducible component of V has t-dimension $d-1$.
4.5.5. Corollary. Let $X=\operatorname{Spec} A$ be an affine variety of t-dimension d, and let C be a component of the zero locus of a nonzero element α of A. Then among proper closed subvarieties, C maximal. There is no closed subvariety D such that $C<D<X$.
proof. Let $C<D<X$ be closed subvarieties of $X=\operatorname{Spec} A$. Some nonzero element β of A will vanish on D. Then D will be a subvariety of the zero locus of β, so by Krull's Theorem, its t -dimension will be at most $d-1$. Similarly, if $D=\operatorname{Spec} B$, some nonzero element of B will vanish on C, so the t-dimension of C will be at most $d-2$, and C isn't the zero locus of a nonzero element of A.
4.5.6. Theorem. Let X be a variety of t-dimension d. All chains of closed subvarieties of X have length at most d, and all maximal chains have length d. Therefore the c-dimension and the t-dimension of X are equal.
proof. We do the case that X is affine. Induction allows us to assume that the theorem is true for an affine variety whose t-dimension is less than d. Let $X=\operatorname{Spec} A$ be an affine variety of t -dimension d, and let $C_{0}>C_{1}>\cdots>C_{k}$ be a chain of closed subvarieties of X. We must show that $k \leq d$ and that $k=d$ if the chain is maximal. We may insert closed subvarieties into the chain where possible, so we may assume that $C_{0}=X$. Next, C_{1}, being a proper closed subset of X, is contained in the zero locus Z of a nonzero element α of A, and it will be contained in an irreducible component \widetilde{C} of Z. If $\widetilde{C}>C_{1}$, we insert \widetilde{C} into the chain, to reduce ourselves to the case that C_{1} is a component of the zero locus of α. By Krull's Theorem, C_{1} has t-dimension $d-1$. By Corollary 4.5.5 C_{1} is a maximal proper closed subvariety, and induction applies to the chain $C_{1}>\cdots>C_{k}$ of closed subvarieties of C_{1}. The length of that chain, which is $k-1$ is less than $d-1$, and it is equal to $d-1$ if the chain is maximal. Therefore the chain $\left\{C_{i}\right\}$ has length at most n, and it has length n if it is a maximal chain.

Theorem 4.5.6 for an arbitrary variety follows from the next lemma.
4.5.7. Lemma. Let X^{\prime} be an open subvariety of a variety X. There is a bijective correspondence between chains $C_{0}>\cdots>C_{k}$ of closed subvarieties of X such that $C_{k} \cap X^{\prime} \neq \emptyset$ and chains $C_{0}^{\prime}>\cdots>C_{k}^{\prime}$ of closed subvarieties of X^{\prime}. Given the chain $\left\{C_{i}\right\}$ in X, the chain $\left\{C_{i}^{\prime}\right\}$ in X^{\prime} is defined by $C_{i}^{\prime}=C_{i} \cap X^{\prime}$. Given a chain C_{i}^{\prime} in X^{\prime}, the corresponding chain in X consists of the closures C_{i} in X of the varieties C_{i}^{\prime}.
proof. Suppose given a chain C_{i} and that $C_{k} \cap X^{\prime} \neq \emptyset$. Then for every i, the intersection $C_{i}^{\prime}=C_{i} \cap X^{\prime}$ is a dense open subset of the irreducible closed set C_{i} 2.2.13. So the closure of C_{i}^{\prime} is C_{i}, and since $C_{i}>C_{i+1}$, it is also true that $C_{i}^{\prime}>C_{i+1}^{\prime}$. Therefore $C_{0}^{\prime}>\cdots>C_{k}^{\prime}$ is a chain of closed subsets of X^{\prime}. Conversely, if $C_{0}^{\prime}>\cdots>C_{k}^{\prime}$ is a chain in X^{\prime}, the closures in X form a chain in X. (See 2.2.14.)

From now on, we use the word dimension to denote either the t -dimension or the c-dimension, and we denote the dimension of a variety by $\operatorname{dim} X$.
4.5.8. Examples. (i) The polynomial algebra $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ in $n+1$ variables has dimension $n+1$. The chain of prime ideals

$$
\begin{equation*}
0<\left(x_{0}\right)<\left(x_{0}, x_{1}\right)<\cdots<\left(x_{0}, \ldots, x_{n}\right) \tag{4.5.9}
\end{equation*}
$$

is a maximal prime chain. When the irrelevant ideal $\left(x_{0}, \ldots, x_{n}\right)$ is removed from this chain, it corresponds to a maximal chain

$$
\mathbb{P}^{n}>\mathbb{P}^{n-1}>\cdots>\mathbb{P}^{0}
$$

of closed subvarieties of projective space \mathbb{P}^{n}, which has dimension n.
(ii) The maximal chains of closed subvarieties of \mathbb{P}^{2} have the form $\mathbb{P}^{2}>C>p$, where C is a plane curve and p is a point.

If (4.5.2) is a maximal chain in X, then

$$
\begin{equation*}
C_{1}>C_{2}>\cdots>C_{k} \tag{4.5.10}
\end{equation*}
$$

will be a maximal chain in the variety C_{1}. So when X has dimension k, the dimension of C_{1} will be $k-1$. Similarly, let $P_{0}<P_{1}<\cdots<P_{k}$ be a maximal chain of prime ideals in a finite-type domain A, let $\bar{A}=A / P_{1}$ and let \bar{P}_{j} denote the image P_{j} / P_{1} of P_{j} in \bar{A}, for $j \geq 1$. Then

$$
\overline{0}=\bar{P}_{1}<\bar{P}_{2}<\cdots<\bar{P}_{k}
$$

will be a maximal prime chain in \bar{A}, and therefore the dimension of the domain \bar{A} will be $k-1$.
inte-graldimequal
4.5.11. Corollary. Let X be a variety.
(i) If X^{\prime} is an open subvariety of a X, then $\operatorname{dim} X^{\prime}=\operatorname{dim} X$.
(ii) If $Y \rightarrow X$ is an integral morphism of varieties, then $\operatorname{dim} Y=\operatorname{dim} X$.
(iii) If Y is a proper closed subvariety of X, then $\operatorname{dim} Y<\operatorname{dim} X$.

One more term: A closed subvariety C of a variety X has codimension 1 if $C<X$ and if $\operatorname{dim} C=$ $\operatorname{dim} X-1$. If so, there is no closed set \widetilde{C} with $C<\widetilde{C}<X$. A prime ideal P of a noetherian domain has codimension 1 if it isn't the zero ideal, and if there is no prime ideal \widetilde{P} with (0) $<\widetilde{P}<P$.

In the polynomial algebra $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, the prime ideals of codimension 1 are the principal ideals generated by irreducible polynomials.
4.5.13. Lemma. Krull's Theorem is true when X is an affine space.
proof. Here A is the polynomial ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Let $\alpha_{1} \cdots \alpha_{k}$ be the factorization of the polynomial α into irreducible polynomials, and let V_{i} be the zero locus of α_{i}. The irreducible factors generate prime ideals of A, so V_{i} are irreducible, and V is their union. We replace α by the irreducible factor α_{1} whose zero locus is V_{1}, and we relabel that factor as $f(x)$. Then V becomes the zero locus $V(f)$, and the coordinate algebra of V is $\bar{A}=A / A f$. We may assume that f is monic in $x_{d} 1.3 .20$. Then \bar{A} is an integral extension of $\mathbb{C}\left[x_{1}, \ldots, x_{d-1}\right]$. Its t-dimension is $d-1$.
4.5.14. Lemma. To prove Krull's Theorem, it suffices to prove it when the coordinate ring A is normal and the zero locus of α is irreducible.
proof. We are given an affine variety $X=\operatorname{Spec} A$ of t-dimension d, a nonzero element α of A, and an irreducible component C of the zero locus of α. We are to show that the t-dimension of C is $d-1$.

Let $A^{\#}$ be the normalization of A and let $X^{\#}=\operatorname{Spec} A^{\#}$. There is an integral morphism $X^{\#} \rightarrow X$. The t-dimensions of $X^{\#}$ and X are the same. Let V^{\prime} and V be the zero loci of α in $X^{\#}$ and in X, respectively. Then V^{\prime} is the inverse image of V in $X^{\#}$. The map $V^{\prime} \rightarrow V$ is surjective because the integral morphism $X^{\#} \rightarrow X$ is surjective.

Let D_{1}, \cdots, D_{k} be the irreducible components of V^{\prime}, and let C_{i} be the image of D_{i} in X. The closed sets C_{i} are irreducible 4.4.3 (ii), and their union is V. So at least one C_{i} is equal to the chosen component C. Let D be a component of V^{\prime} whose image is C. The map $D \rightarrow C$ is also an integral morphism, so the t -dimensions of D and C are equal. We may therefore replace X and C by $X^{\#}$ and D, respectively. Hence we may assume that A is normal.

Next, suppose that the zero locus of α has the form $C \cup \Delta$, where C is the chosen irreducible component, and Δ is the union of the other components. We choose an element s of A that is identically zero on Δ but not identically zero on C. Inverting s eliminates all points of Δ, but $X_{s} \cap C=C_{s}$ won't be empty. If X is normal, so is X_{s} 4.3.4 (ii). Since localization doesn't change t-dimension, we may replace X and C by X_{s} and C_{s}, respectively.

We go to the proof of Krull's Theorem now. According to Lemma 4.5.14, we may assume that $X=\operatorname{Spec} A$ is a normal affine variety of dimension d, and that the zero locus of α is an irreducible closed set C. We are to prove that the t -dimension of C is $d-1$.

We apply the Noether Normalization Theorem. Let $X \rightarrow S$ be an integral morphism to an affine space $S=\operatorname{Spec} R$ of dimension d, where R is a polynomial ring $\mathbb{C}\left[u_{1}, \ldots, u_{d}\right]$.

Let K and F be the function fields of X and S, respectively, and let $f(t)$ be the monic irreducible polynomial for α over F. The coefficients of f are in R. Let $\alpha_{1}, \ldots, \alpha_{r}$ be the roots of f in a splitting field L of f over K, with $\alpha_{1}=\alpha$, let B be the integral closure of A in L, and let $Y=\operatorname{Spec} B$. Then Y is an integral extension of X and of S. We have morphisms

$$
Y \xrightarrow{u} X \xrightarrow{v} S
$$

Let w denote the composed morphism $Y \xrightarrow{v u} S$. The Galois group G of L / F operates on B and on Y. and S is the space Y / G of G-orbits.

The coefficients of $f(t)=\left(t-\alpha_{1}\right) \cdots\left(t-\alpha_{r}\right)$ are G-invariant. They are elements of R, and the constant term is the product $\alpha_{1} \cdots \alpha_{r}$. Let's denote that product by β.
4.5.15. Lemma. Let Z be the zero locus of β in S. The morphism $X \xrightarrow{v} S$ maps C surjectively to Z.

Assuming the lemma, Z will be irreducible because C is irreducible. Lemma 4.5 .13 shows that the $\mathrm{t}-$ dimension of Z is $d-1$. Therefore the t -dimension of C is at least $d-1$, and since it is a closed subset of X, it is less than d. So the t -dimension of C is equal to $d-1$.
proof of Lemma 4.5.15 The element β of R defines functions on S, X, and Y, the functions on X and Y being obtained from the function on S by composition with the maps v and w, respectively. We denote all of those functions by β. If y is a point of $Y, x=u y$ and $s=w y$, then $\beta(y)=\beta(x)=\beta(s)$. Similarly, α defines functions on X and on Y that we denote by α : $\alpha(y)=\alpha(x)$.

Let x be a point of C. So $\alpha(x)=0$. Since α divides $\beta, \beta(x)=0$. If s is the image of x in S, then $\beta(s)=\beta(x)$, so $\beta(s)=0$. This shows that s is a point of Z. Therefore Z contains the image of C.

For the other inclusion, let z be a point of Z. Then $\beta(z)=0$. Let y be a point of Y such that $w y=z$. So $\beta(y)=0$. The fibre of Y over z is the G-orbit of y, and since β is a function on S, it vanishes at every point of that orbit. Since $\beta=\alpha_{1} \cdots \alpha_{k}, \quad \alpha_{i}(y)=0$ for some i. Let σ be an element of G such that $\alpha_{i}=\sigma \alpha$. We recall that $[\sigma \alpha](y)=\alpha(y \sigma)$. So $\alpha(y \sigma)=0$. We replace y by $y \sigma$. Then $\alpha(y)=0$, and it is still true that $w y=z$. Let $x=u y$. Because $\alpha(y)=0$, it is also true that $\alpha(x)=0$. So x is a point of C. The image of x in S is $v x=w y=z$. Since z can be any point of Z, the map $C \rightarrow Z$ is surjective.

4.6 Chevalley's Finiteness Theorem

(4.6.1) finite morphisms

The concept of an integral morphism of affine varieties was defined in Section 4.2 A morphism $Y \xrightarrow{u} X$ of affine varieties $X=\operatorname{Spec} A$ and $Y=\operatorname{Spec} B$ is a finite morphism if the homomorphism $A \xrightarrow{\varphi} B$ that corresponds to u makes B into a finite A-module. We extend these definitions to varieties that aren't necessarily affine here.

As has been noted, the difference between a finite morphism and an integral morphism of affine varieties is that for a finite morphism, the homomorphism φ needn't be injective. If u is a finite morphism and φ is injective, B will be an integral extension of A, and u will be an integral morphism.

By the restriction of a morphism $Y \xrightarrow{u} X$ to an open subset X^{\prime} of X, we mean the induced morphism $Y^{\prime} \rightarrow X^{\prime}$, where Y^{\prime} is the inverse image of X^{\prime}.
4.6.2. Definition. A morphism of varieties $Y \xrightarrow{u} X$ is a finite morphism if X can be covered by affine open subsets X^{i} such that the restriction of u to each X^{i} is a finite morphism of affine varieties, as defined in 4.2.4. Similarly, a morphism u is an integral morphism if X can be covered by affine open sets X^{i} to which the restriction of u is an integral morphism of affine varieties.
4.6.3. Corollary. An integral morphism is a finite morphism. The composition of finite morphisms is a finite morphism. The inclusion of a closed subvariety into a variety is a finite morphism.

When X is affine, Definitions 4.2.4 and 4.6.2 both apply. Proposition 4.6.5, which is below, shows that the two definitions are equivalent. Unfortunately, the proof is rather long. Such verifications are a cost of doing business with affine open sets.
4.6.4. Lemma. (i) Let $A \xrightarrow{\varphi} B$ be a homomorphism of finite-type domains that makes B into a finite A module, and let s be a nonzero element of A. Then B_{s} is a finite A_{s}-module.
deffinmorph
(ii) Using Definition 4.6.2, the restriction of a finite (or an integral) morphism $Y \xrightarrow{u} X$ to an open subset of a variety X is a finite (or an integral) morphism.
onecov-
proof. (i) Here B_{s} denotes the localization of B as an A-module. This localization can also be obtained by localizing the algebra B with respect to the image $s^{\prime}=\varphi(s)$, provided that s^{\prime} isn't zero. If s^{\prime} is zero, then s annihilates B, so $B_{s}=0$. In either case, a set of elements that spans B as A-module will span B_{s} as A_{s}-module, so B_{s} is a finite A_{s}-module.
(ii) Say that X is covered by affine open sets to which the restriction of u is a finite morphism. The localizations of these open sets form a basis for the Zariski topology on X, so X^{\prime} can be covered by such localizations. Part (i) shows that the restriction of u to X^{\prime} is a finite morphism.
4.6.5. Proposition. Let $Y \xrightarrow{u} X$ be a finite (or an integral) morphism, as defined in $\sqrt{4.6 .2}$, and let X_{1} be an affine open subset of X. The restriction of u to X_{1} is a finite (or an integral) morphism of affine varieties, as defined in (4.2.4).

The proof isn't difficult proof, but there are several things to check. We've put it at the end of the section.
Let \mathbb{P} denote the projective space \mathbb{P}^{n} with coordinates y_{0}, \ldots, y_{n}, and let X be a variety. For next theorem, we abbreviate the notation for a product of a variety V with X, writing

$$
\tilde{V}=V \times X
$$

4.6.6. Chevalley's Finiteness Theorem. Let X be a variety, let Y be a closed subvariety of the product $\widetilde{\mathbb{P}}=\mathbb{P} \times X$, and let π denote the projection $Y \rightarrow X$, respectively. If all fibres of π are finite sets, then πi is a finite morphism.

4.6.7. Example. Let $A=\mathbb{C}[t]$, and let $X=\operatorname{Spec} A$. The zero locus of the polynomial $y_{0}^{3}+y_{1}^{3}+y_{2}^{3}+$ $t y_{0} y_{1} y_{2}=0$ in $\mathbb{P}^{2} \times X$ can be regarded as a family of plane cubic curves, parametrized by X.
4.6.8. Corollary. Let Y be a projective variety, and let $Y \xrightarrow{\pi} X$ be a morphism. If the fibres of π are finite sets, then π is a finite morphism. If Y is a projective curve, every nonconstant morphism $Y \xrightarrow{\pi} X$ is a finite morphism.
proof. This follows from the theorem when one replaces Y by the graph of π in $\tilde{Y}=Y \times X$. The graph is isomorphic to Y. If Y is a closed subvariety of \mathbb{P}, the graph will be a closed subvariety of $\widetilde{\mathbb{P}}$ (Proposition 3.5.24. When Y is a curve, the fibres of any nonconstant morphism $Y \rightarrow X$ will be finite sets.

We need two lemmas for the proof of Chevalley's Theorem.
Let y_{0}, \ldots, y_{n} be coordinates in $\mathbb{P}=\mathbb{P}^{n}$, and let $A\left[y_{0}, \ldots, y_{n}\right]$ be the algebra of polynomials in y with coefficients in A. In analogy for terminology used with complex polynomials, we say that a polynomial with coefficients in A is homogeneous if it is homogeneous as a polynomial in y, and that an ideal of $A[y]$ that can be generated by homogeneous polynomials is a homogeneous ideal.
4.6.9. Lemma. (i) Let $X=\operatorname{Spec} A$ be an affine variety, and let Y be a nonempty subset of $\widetilde{\mathbb{P}}=\mathbb{P} \times X$. The ideal \mathcal{I} of elements of $A[y]$ that vanish at every point of Y is a homogeneous radical ideal. If Y is a closed subvariety of $\widetilde{\mathbb{P}}$, then \mathcal{I} is a prime ideal.
(ii) If the zero locus of a homogeneous ideal \mathcal{I} of $A[y]$ is empty, then \mathcal{I} contains a power of the irrelevant ideal $\mathcal{M}=\left(y_{0}, \ldots, y_{n}\right)$ of $A[y]$.
proof. This is similar to Proposition 3.2 .6 and 2.5 .13 , Let y_{0}, \ldots, y_{n} be coordinates in \mathbb{P}, let \mathbb{A} be the affine space of dimension $n+1$ with those coordinates, and let o bethe origin in \mathbb{A}. Let Z be the inverse image of Y in $\widetilde{\mathbb{A}}=\mathbb{A} \times X$, and let Z^{\prime} be the complement of $\widetilde{o}=o \times X$ in Z. Because Y isn't empty, \mathcal{I} is the ideal of all polynomials that vanish on Z^{\prime}, and also the ideal of all polynomials that vanish on Z. Proposition 2.5 .13 shows that \mathcal{I} is a prime ideal.

If the zero locus of \mathcal{I} in $\mathbb{P} \times X$ is empty, the zero locus in $\widetilde{\mathbb{A}}$ will be contained in \widetilde{o}. The radical of \mathcal{I} will contain the ideal of \widetilde{o} in $A[y]$, which is the irrelevant ideal.
4.6.10. Lemma. Let A be a finite type domain, let I be an ideal of the polynomial algebra $A\left[u_{1}, \ldots, u_{n}\right]$, and let k be a positive integer. Suppose that, for each $i=1, \ldots, n$, there is a polynomial $g_{i}\left(u_{1}, \ldots, u_{n}\right)$ of degree at most $k-1$, with coefficients in A, such that $u_{i}^{k}-g_{i}(u)$ is in I. Then $B=A[u] / I$ is a finite A-module.
proof. Let's denote the residue of u_{i} in B by the same symbol u_{i}. In B, we will have $u_{i}^{k}=g_{i}(u)$. Any monomial m of degree at least $n k$ in u_{1}, \ldots, u_{n} will be divisible by u_{i}^{k} for at least one i. Then in B, m is equal to a polynomial in u_{1}, \ldots, u_{n} of degree less than d, with coefficients in A. It follows by induction that the monomials in u_{1}, \ldots, u_{n} of degree at most $n k-1$ span B as an A-module.
proof of Chevelley's Finiteness Theorem. This is Schelter's proof.
We are given a closed subvariety Y of $\widetilde{\mathbb{P}}=\mathbb{P} \times X$, with $\mathbb{P}=\mathbb{P}^{n}$, and the fibres of Y over X are finite sets. We are to prove that the projection $Y \rightarrow X$ is a finite morphism. By induction, we may assume that the theorem is true when \mathbb{P} is a projective space of dimension $n-1$.

We may suppose that X is affine, say $X=\operatorname{Spec} A$ (see Definition4.6.2).
Case 1. There is a hyperplane H in \mathbb{P} such that Y is disjoint from $\widetilde{H}=H \times X$ in $\widetilde{\mathbb{P}}$.
This is the main case. We adjust coordinates y_{0}, \ldots, y_{n} in \mathbb{P} so that H is the hyperplane at infinity $\left\{y_{0}=0\right\}$. Because Y is disjoint from \widetilde{H}, it is a subset of the affine variety $\widetilde{\mathbb{U}}^{0}=\mathbb{U}^{0} \times X, \quad \mathbb{U}^{0}$ being the standard open set $\left\{y_{0} \neq 0\right\}$ in \mathbb{P}. Since Y is irreducible and closed in $\widetilde{\mathbb{P}}$, it is a closed subvariety of the affine variety $\widetilde{\mathbb{U}}^{0}$. So Y is affine.

Let \mathcal{P} be the homogeneous prime ideal of $A[y]$ whose zero set in $\widetilde{\mathbb{P}}$ is Y. The ideal \mathcal{Q} whose zero set is \widetilde{H} is the principal ideal of $A[y]$ generated by y_{0}. Let $\mathcal{I}=\mathcal{P}+\mathcal{Q}$. A homogeneous polynomial of degree k in \mathcal{I} has the form $f(y)+y_{0} g(y)$, where f is a homogeneous polynomial in \mathcal{P} of degree k, and g is a homogeneous polynomial of degree $k-1$ in $A[y]$.

By hypothesis, $Y \cap \widetilde{H}$ is empty. Therefore the $\operatorname{sum} \mathcal{I}=\mathcal{P}+\mathcal{Q}$ contains a power of the irrelevant ideal $\mathcal{M}=\left(y_{0}, \ldots, y_{n}\right)$ of $A[y]$. Say that $\mathcal{M}^{k} \subset \mathcal{I}$. Then y_{i}^{k} is in \mathcal{I}, for $i=0, \ldots, n$. So there are polynomial equations

$$
\begin{equation*}
y_{i}^{k}=f_{i}(y)+y_{0} g_{i}(y) \tag{4.6.11}
\end{equation*}
$$

with f_{i} in \mathcal{P} homogeneous, of degree k and g_{i} in $A[y]$ homogeneous, of degree $k-1$.
Recall that Y is a closed subset of $\widetilde{\mathbb{U}}^{0}$. Its (nonhomogenous) ideal P in $A[u]$ can be obtained by dehomogenizing the ideal \mathcal{P}. We dehomogenize the equations 4.6.11). With $u_{i}=y_{i} / y_{0}$, let $F_{i}=f_{i}\left(1, u_{1}, \ldots, u_{n}\right)$ and $G_{i}=g_{i}\left(1, u_{1}, \ldots, u_{n}\right)$. Then $F_{i}=u_{i}^{k}-G_{i}$. The important points are that F_{i} is in the ideal P, and that the degree of G_{i} is at most $k-1$. Lemma 4.6 .10 shows that $Y \rightarrow X$ is a finite morphism. This completes the proof of Case 1 .

Case 2. the general case.

We have taken care of the case in which there exists a hyperplane H such that Y is disjoint from \widetilde{H}. The next lemma shows that we can cover the given variety X by open subsets to which this special case applies. Then Lemma 4.6.4 and Proposition 4.6.5 apply, to complete the proof.
4.6.12. Lemma. Let Y be a closed subvariety of $\mathbb{P}^{n} \times X$, and suppose that the projection $Y \xrightarrow{\pi} X$ has finite fibres. Suppose also that Chevalley's Theorem has been proved for closed subvarieties of $\mathbb{P}^{n-1} \times X$. For every point p of X, there is an open neighborhood X^{\prime} of p in X, and there is a hyperplane H in \mathbb{P} such that $Y^{\prime}=\pi^{-1} X^{\prime}$ is disjoint from \widetilde{H}.
proof. Let p be a point of X, and let $\widetilde{q}=\left(\widetilde{q}_{1}, \ldots, \widetilde{q}_{r}\right)$ be the finite set of points of Y making up the fibre over p. We project \widetilde{q} from $\mathbb{P} \times X$ to \mathbb{P}, obtaining a finite set $q=\left(q_{1}, \ldots, q_{r}\right)$ of points of \mathbb{P}, and we choose a hyperplane H in \mathbb{P} that avoids this finite set. Then \widetilde{H} avoids the fibre \widetilde{q}. Let Z denote the closed set $Y \cap \widetilde{H}$. Because the fibres of Y over X are finite, so are the fibres of Z over X. By hypothesis, Chevalley's Theorem is true for subvarieties of $\mathbb{P}^{n-1} \times X$, and \widetilde{H} is isomorphic to $\mathbb{P}^{n-1} \times X$. It follows that, for every component Z^{\prime} of Z, the morphism $Z^{\prime} \rightarrow X$ is a finite morphism, and therefore its image is closed in X (Theorem4.4.3). Thus the image of Z is a closed subset of X that doesn't contain p. Its complement is the required neighborhood of p.

We'll do the case of an integral morphism. The case of a finite morphism is similar.

Step 1. Preliminaries.

We are given a morphism $Y \xrightarrow{u} X$, and we are given an affine covering $\left\{X^{i}\right\}$ of X, such that, for every i, the restriction u^{i} of u to X^{i} is an integral morphism of affine varieties. We are to show that the restriction of u to any affine open subset X_{1} of X is an integral morphism of affine varieties.

The affine open set X_{1} is covered by the affine open sets $X_{1}^{i}=X_{1} \cap X^{i}$. For every i, the restriction u_{1}^{i} of u to X_{1}^{i} can also be obtained by restricting u^{i}. So u_{1}^{i} are integral morphisms 4.6.4 (ii). We may replace X by X_{1}. Since the localizations of an affine variety form a basis for its Zariski topology, we see that what is to be proved is this:

A morphism $Y \xrightarrow{u} X$ is given in which $X=\operatorname{Spec} A$ is affine. There are elements s_{1}, \ldots, s_{k} that generate the unit ideal of A such that, for every i, the inverse image Y^{i} of $X^{i}=X_{s_{i}}$ is affine, and its coordinate algebra B_{i} is an integral extension of the localized algebra $A_{i}=A_{s_{i}}$. We must show that Y is affine, and that its coordinate algebra B is an integral A-module.

Step 2. The algebra of regular functions on Y.

We assume that X is affine, $X=\operatorname{Spec} A$. Let B be the algebra of regular functions on Y. If Y is affine, B will be its coordinate algebra, and Y will be its spectrum. Here Y isn't assumed to be affine. By hypothesis, the inverse image Y^{i} of X^{i} is the spectrum of an integral A_{i}-algebra B_{i}. Then B and B_{i} are subalgebras of the function field of Y. Since the localizations X^{i} cover X, the affine varieties Y^{i} cover Y. A function is regular on Y if and only if it is regular on each Y^{i}, and therefore

$$
B=\bigcap B_{i}
$$

Step 3. The coordinate algebra B_{j} of Y^{j} is a localization of B.
Denoting the images in B of the elements s_{i} by the same symbols, we show that B_{j} is the localization $B\left[s_{j}^{-1}\right]$. The localization X^{i} is the set of points of X at which $s_{i} \neq 0$. The inverse image Y^{i} of X^{i} is the set of points of Y at which $s_{i} \neq 0$, and the affine variety $Y^{j} \cap Y^{i}$ is the set of points of Y^{j} at which $s_{i} \neq 0$. So the coordinate algebra of $Y^{j} \cap Y^{i}$ is the localization $B_{j}\left[s_{i}^{-1}\right]$. Then

$$
B\left[s_{j}^{-1}\right] \stackrel{(1)}{=} \bigcap_{i}\left(B_{i}\left[s_{j}^{-1}\right]\right) \stackrel{(2)}{=} \bigcap_{i} B_{j}\left[s_{i}^{-1}\right] \stackrel{(3)}{=} B_{j}\left[s_{j}^{-1}\right] \stackrel{(4)}{=} B_{j}
$$

The explanation of the numbered equalities is as follows:
(1) A rational function β is in $B_{i}\left[s_{j}^{-1}\right]$ if $s_{j}^{n} \beta$ is in B_{i} for large n, and we can use the same exponent n for all $i=1, \ldots, r$. Then β is in $\bigcap_{i}\left(B_{i}\left[s_{j}^{-1}\right]\right)$ if and only if $s_{j}^{n} \beta$ is in $\bigcap_{i} B_{i}=B$. So β is in $\bigcap_{i}\left(B_{i}\left[s_{j}^{-1}\right]\right)$ if and only if it is in $B\left[s_{j}^{-1}\right]$.
(2) $B_{i}\left[s_{j}^{-1}\right]=B_{j}\left[s_{i}^{-1}\right]$ because $Y^{j} \cap Y^{i}=Y^{i} \cap Y^{j}$.
(3),(4) Since s_{j} is one of the elements $s_{i}, \bigcap_{i} B_{j}\left[s_{i}^{-1}\right] \subset B_{j}\left[s_{j}^{-1}\right]$. For all $i, B_{j} \subset B_{j}\left[s_{i}^{-1}\right]$. Moreover, s_{j} doesn't vanish on Y^{j}. It is a unit in B_{j}, and therefore $B_{j}\left[s_{j}^{-1}\right]=B_{j}$. Then $B_{j} \subset \bigcap_{i} B_{j}\left[s_{i}^{-1}\right] \subset B_{j}\left[s_{j}^{-1}\right]=$ B_{j}.

Step 4. B is an integral extension of A.
With $A_{i}=A_{s_{i}}$ as before, we choose a finite set $\left(b_{1}, \ldots, b_{n}\right)$ of elements of B that generates the $A_{i^{-}}$ module B_{i} for every i. We can do this because we can span the finite A_{i}-module $B_{i}=B\left[s_{i}^{-1}\right]$ by finitely many elements of B, and there are finitely many algebras B_{i}. We show that the set $\left(b_{1}, \ldots, b_{n}\right)$ generates the A-module B.

Let x be an element of B. Then x is in B_{i}, so it is a combination of $\left(b_{1}, \ldots, b_{n}\right)$ with coefficients in A_{i}. For large $k, s_{i}^{k} x$ will be a combination of those elements with coefficients in A, say

$$
s_{i}^{k} x=\sum_{\nu} a_{i, \nu} b_{\nu}
$$

with $a_{i, \nu}$ in A. We can use the same exponent k for all i. The powers s_{i}^{k} generate the unit ideal. With $\sum r_{i} s_{i}^{k}=1$,

$$
x=\sum_{i} r_{i} s_{i}^{k} x=\sum_{i} r_{i} \sum_{\nu} a_{i, \nu} b_{\nu}
$$

The right side is a combination of b_{1}, \ldots, b_{n} with coefficients in A.

Step 5. Y is affine.

The algebra B of regular functions on Y is a finite-type domain because it is a finite module over the finitetype domain A. Let $\widetilde{Y}=\operatorname{Spec} B$. The fact that B is the algebra of regular functions on Y gives us a morphism $Y \xrightarrow{\epsilon} \widetilde{Y}$ (Corollary 3.6.3). Restricting to the open subset X^{j} of X gives us a morphism $Y^{j} \xrightarrow{\epsilon^{j}} \widetilde{Y}^{j}$ in which, since $B_{j}=B\left[s_{j}^{-1}\right], Y^{j}$ and \widetilde{Y}^{j} are both equal to Spec B_{j}. Therefore ϵ^{j} is an isomorphism. Corollary 3.5.13 (ii) shows that ϵ is an isomorphism. So Y is affine, and by Step 4, its coordinate algebra B is an integral A-module.

(4.6.14) affine double planes

Let A be the polynomial algebra $\mathbb{C}[x, y]$ and let X be the affine plane Spec A. An affine double plane is a locus of the form $w^{2}=f(x, y)$ in the affine 3 -space with coordinates w, x, y, where f is a square-free polynomial in x, y (see Example 4.3.9). The affine double plane is $Y=\operatorname{Spec} B$, where $B=\mathbb{C}[w, x, y] /\left(w^{2}-f\right)$, and the inclusion $A \subset B$ gives us an integral morphism $Y \rightarrow X$.

Let w, x, y denote the variables and also their residues in B. As in Example 4.3.9, B is a normal domain of dimension two, and a free A-module with basis $(1, w)$. It has an automorphism σ of order 2 , defined by $\sigma(a+b w)=a-b w$.

The fibres of Y over X are the σ-orbits in Y. If $f\left(x_{0}, y_{0}\right) \neq 0$, the fibre over the point x_{0} of X consists of two points, and if $f\left(x_{0}, y_{0}\right)=0$, it consists of one point. The reason that Y is called a double plane is that most points of the plane X are covered by two points of Y. The branch locus of the covering, which will be denoted by Δ, is the (possibly reducible) curve $\{f=0\}$ in X. The fibres over the branch points, the points of Δ, are single points.

If a closed subvariety D of Y lies over a curve C in X, then $D^{\prime}=D \sigma$ lies over C too. The curves D and D^{\prime} may be equal or not. They will have dimension one, and we call them curves too. Let g be the polynomial whose zero locus in X is C. Krull's Theorem tells us that the components of the zero locus of g in Y have dimension one. If a point q of Y lies over a point p of C, then q and $q \sigma$ are the only points of Y lying over p. One of them will be in D, the other in D^{\prime}. So the inverse image of C is $D \cup D^{\prime}$. There are no isolated points in the inverse image, and there is no room for another curve.

Thus if $D=D^{\prime}$, then D is the only curve lying over C. Otherwise, there will be two curves D and D^{\prime} that lie over C. In that case, we say that C splits in Y.

A curve C in the plane X will be the zero set of a principal prime ideal P of the polynomial algebra A, and if D lies over C, it will be the zero set of a prime ideal Q of B that lies over P 4.4.2 (i).
4.6.15. Example. Let $f(x, y)=x^{2}+y^{2}-1$. The double plane $Y:\left\{w^{2}=x^{2}+y^{2}-1\right\}$ is an affine quadric in \mathbb{A}^{3}. Its branch locus Δ in the affine plane X is the curve $\left\{x^{2}+y^{2}=1\right\}$.

The line $C_{1}:\{y=0\}$ in X meets the branch locus Δ transversally at the points $(x, y)=(\pm 1,0)$, and when we set $y=0$ in the equation for Y, we obtain $w^{2}=x^{2}-1$. The polynomial $w^{2}-x^{2}+1$ is irreducible, so y generates a prime ideal of B. On the other hand, the line $C_{2}:\{y=1\}$ is tangent to Δ at the point $(0,1)$, and it splits. When we set $y=1$ in the equation for Y, we obtain $w^{2}=x^{2}$. The locus $\left\{w^{2}=x^{2}\right\}$ is the union of the two lines $\{w=x\}$ and $\{w=-x\}$ that lie over C_{1}. The prime ideals of B that correspond to these lines aren't principal ideals.

This example illustrates a general fact: A curve that intersects the branch locus transversally doesn't split. We explain this now.

splitnot-

 transverSuppose that a plane curve $C:\{g=0\}$ and the branch locus $\Delta:\{f=0\}$ of a double plane $w^{2}=f$ meet at a point p. We adjust coordinates so that p becomes the origin $(0,0)$, and we write

$$
f(x, y)=\sum a_{i j} x^{i} y^{j}=a_{10} x+a_{01} y+a_{20} x^{2}+\cdots
$$

Since p is a point of Δ, the constant coefficient of f is zero. If the two linear coefficients aren't both zero, p will be a smooth point of Δ, and the tangent line to Δ at p will be the line $\left\{a_{10} x+a_{01} y=0\right\}$. Similarly, writing $g(x, y)=\sum b_{i j} x^{i} y^{j}$, the tangent line to C, if p is a smooth point, is the line $\left\{b_{10} x+b_{01} y=0\right\}$.

Let's suppose that the two tangent lines are defined and distinct, i.e., that Δ and C intersect transversally at p. We change coordinates once more, to make the tangent lines the coordinate axes. After adjusting by scalar factors, the polynomials f and g will have the form

$$
f(x, y)=x+u(x, y) \quad \text { and } \quad g(x, y)=y+v(x, y)
$$

where u and v are polynomials all of whose terms have degree at least 2 .
Let $X_{1}=\operatorname{Spec} \mathbb{C}\left[x_{1}, y_{1}\right]$ be another affine plane. The map $X_{1} \rightarrow X$ defined by the substitution $x_{1}=$ $x+u(x, y), y_{1}=y+v(x, y)$ is invertible analytically near the origin, because the Jacobian matrix

$$
\begin{equation*}
\left(\frac{\partial\left(x_{1}, y_{1}\right)}{\partial(x, y)}\right)_{(0,0)} \tag{4.6.17}
\end{equation*}
$$

at the origin p is the identity matrix. When we make that substitution, Δ becomes the locus $\left\{x_{1}=0\right\}$ and C becomes the locus $\left\{y_{1}=0\right\}$. In this local analytic coordinate system, the equation $w^{2}=f$ that defines the double plane becomes $w^{2}=x_{1}$. When we restrict it to C by setting $y_{1}=0, x_{1}$ becomes a local coordinate function on C. The restriction of the equation remains $w^{2}=x_{1}$. So the inverse image Z of C can't be split analytically. Therefore it doesn't split algebraically either.
4.6.18. Corollary. A curve that intersects the branch locus transversally at some point doesn't split.

This isn't a complete analysis. When a curve C and the branch locus Δ are tangent at every point of intersection, C may split or not, and which possibility occurs cannot be decided locally in most cases. However, one case in which a local analysis suffices to decide splitting is that C is a line. Let t be a coordinate in a line L, so that $L \approx \operatorname{Spec} \mathbb{C}[t]$. The restriction of the polynomial f to L will give us a polynomial $\bar{f}(t)$ in t. A root of \bar{f} corresponds to an intersection of L with Δ, and a multiple root corresponds to an intersection at which L and Δ are tangent, or at which Δ is singular. The line L will split if and only if the polynomial $w^{2}-\bar{f}$ factors, i.e., if and only if \bar{f} is a square in $\mathbb{C}[t]$. This will be true if and only if every root of \bar{f} has even multiplicity if and only if the intersection multiplicity of L and Δ at every intersection point is even.

(4.6.19) projective double planes

Let X be the projective plane \mathbb{P}^{2}, with coordinates x_{0}, x_{1}, x_{2}. A projective double plane is a locus of the form

$$
\begin{equation*}
y^{2}=f\left(x_{0}, x_{1}, x_{2}\right) \tag{4.6.20}
\end{equation*}
$$

where f is a square-free, homogeneous polynomial of even degree $2 d$. To regard 4.6 .20 as a homogeneous equation, we must assign weight d to the variable y (see 1.7.9. Then, since we have weighted variables, we must work in a weighted projective space $\mathbb{W P}$ with coordinates x_{0}, x_{1}, x_{2}, y, where x_{i} have weight 1 and y has weight d. A point of this weighted space is represented by a nonzero vector $\left(x_{0}, x_{1}, x_{2}, y\right)$, with the equivalence relation that, for all nonzero $\lambda,\left(x_{0}, x_{1}, x_{2}, y\right) \sim\left(\lambda x_{0}, \lambda x_{1}, \lambda x_{2}, \lambda^{d} y\right)$. The points of the projective double plane Y are the points of $\mathbb{W P}$ that solve the equation 4.6.20).

The projection $\mathbb{W} \mathbb{P} \rightarrow X$ that sends $\left(x_{0}, x_{1}, x_{2}, y\right)$ to $\left(x_{0}, x_{1}, x_{2}\right)$ is defined at all points except at $(0,0,0,1)$. If (x, y) solves 4.6 .20 and if $x=0$, then $y=0$ too. So $(0,0,0,1)$ isn't a point of Y. The projection is defined at all points of Y. The fibre of the morphism $Y \rightarrow X$ over a point x consists of points (x, y) and $(x,-y)$, which will be equal if and only if x lies on the branch locus of the double plane, the (possibly reducible) plane curve $\Delta:\{f=0\}$ in X. The map $\sigma:(x, y) \rightsquigarrow(x,-y)$ is an automorphism of Y, and points of X correspond bijectively to σ-orbits in Y.

Since the double plane Y is embedded into a weighted projective space, it isn't presented to us as a projective variety in the usual sense. However, it can be embedded into a projective space in the following way: The projective plane X can be embedded by a Veronese embedding of higher order, using as coordinates the monomials $m=\left(m_{1}, m_{2}, \ldots\right)$ of degree d in the variables x. This embeds X into a projective space \mathbb{P}^{N} where $N=\binom{d+2}{2}-1$. When we add a coordinate y of weight d, we obtain an embedding of the weighted projective space $\mathbb{W} \mathbb{P}$ into \mathbb{P}^{N+1}, that sends the point (x, y) to (m, y). The double plane can be realized as a projective variety by this embedding.

When $Y \rightarrow X$ is a projective double plane, then, as with affine double planes, a curve C in X may split in Y or not. If C has a transversal intersection with the branch locus Δ, it will not split. On the other hand, if L is a line all of whose intersections with the branch locus Δ have even multiplicity, it will split.
4.6.21. Corollary. Let Y be a generic quartic double plane - a double plane whose branch locus Δ is a generic quartic curve. The lines that split in Y are the bitangent lines to Δ.

(4.6.22) homogenizing an affine double plane

To construct a projective double plane from an affine double plane, we write the affine double plane as

$$
\begin{equation*}
w^{2}=F\left(u_{1}, u_{2}\right) \tag{4.6.23}
\end{equation*}
$$

for some nonhomogeneous polynomial F. We suppose that F has even degree $2 d$, and we homogenize F, setting $u_{i}=x_{i} / x_{0}$. We multiply both sides of this equation by $x_{0}^{2 d}$ and set $y=x_{0}^{d} w$. This produces an equation of the form 4.6.20, where y has weight d and f is the homogenization of F.

If F has odd degree $2 d-1$, one needs to multiply F by x_{0} in order to make the substitution $y=x_{0}^{d} w$ permissible. When one does this, the line at infinity $\left\{x_{0}=0\right\}$ becomes a part of the branch locus.

(4.6.24) cubic surfaces and quartic double planes

Let \mathbb{P}^{3} be the ordinary projective 3 -space with coordinates x_{0}, x_{1}, x_{2}, z of weight one, and let X be be the projective plane \mathbb{P}^{2} with coordinates x_{0}, x_{1}, x_{2}. We consider the projection $\mathbb{P}^{3} \xrightarrow{\pi} X$ that sends (x, z) to x. It is defined at all points except at the center of projection $q=(0,0,0,1)$, and its fibres are the lines through q, with q omitted.

Let S be a cubic surface in \mathbb{P}^{3}, the locus of zeros of an irreducible homogeneous cubic polynomial $g(x, z)$, and suppose that q is a point of S. Then the coefficient of z^{3} in g will be zero, so g will be quadratic in z : $g(x, z)=a z^{2}+b z+c$, where a, b, c are homogeneous polynomials in x, of degrees $1,2,3$, respectively. The defining equation g for S becomes

$$
\begin{equation*}
a z^{2}+b z+c=0 \tag{4.6.25}
\end{equation*}
$$

The discriminant $f(x)=b^{2}-4 a c$ of g with respect to z is a homogeneous polynomial of degree 4 in x. Let Y be the projective double plane

$$
\begin{equation*}
y^{2}=b^{2}-4 a c \tag{4.6.26}
\end{equation*}
$$

in which the variable y is given weight 2 .
The quadratic formula solves for z in terms of the chosen square root y of the disriminant, wherever $a \neq 0$:

$$
\begin{equation*}
z=\frac{-b+y}{2 a} \quad \text { or } \quad y=2 a z+b \tag{4.6.27}
\end{equation*}
$$

The formula $y=2 a z+b$ remains correct when $a=0$, and it defines a map $S \rightarrow Y$. The inverse map $Y \rightarrow Z$ given by the quadratic formula 4.6.27) is defined wherever $a \neq 0$. So the cubic surface and the quartic double plane are isomorphic except above the line $\{a=0\}$ in X.
4.6.28. Lemma. The discriminants of the cubic polynomials $a z^{2}+b z+c$ include every homogeneous quartic polynomial $f(x)$ whose divisor of zeros $\Delta:\{f=0\}$ has at least one bitangent line. Therefore the discriminants of those polynomials form a dense subset of the space of quartic polynomials.
proof. Let f be a quartic polynomial whose zero locus has a bitangent line ℓ_{0}. Then ℓ_{0} splits in the double plane $y^{2}=f$. Say that ℓ_{0} is the zero set of a homogeneous linear polynomial $a(x)$. Then f is congruent to a square, modulo a. There is a homogeneous quadratic polynomial $b(x)$ such that $f \equiv b^{2}$, modulo a. Then $f=b^{2}-4 a c$ for some homogeneous cubic polynomial $c(x)$. The cubic polynomial $g(x, z)=a z^{2}+b z+c$ has discriminant f.

Conversely, let $g(x, z)=a z^{2}+b z+c$ be given. The intersections of the line $\ell_{0}:\{a=0\}$ with the discriminant divisor $\Delta:\left\{b^{2}-4 a c=0\right\}$ are the solutions of the equations $a=0$ and $b=0$. Since the quadratic polynomial b appears as a square in the discriminant, the intersections of ℓ_{0} and Δ have even multiplicity. So ℓ_{0} will be a bitangent, provided that the locus $b=0$ meets ℓ_{0} two distinct points, and this will be true when g is generic.

From now on, we suppose that S is a generic cubic surface. With a suitable change of coordinates any point of a generic surface can become the point q, so we may suppose that both S and q are generic. Then S contains only finitely many lines, and those lines won't contain q (3.7.19).

Let ℓ be a line in the plane X, say the locus of zeros of the linear equation $r_{0} x_{0}+r_{1} x_{1}+r_{2} x_{2}=0$. The same equation defines a plane H in $\mathbb{P}_{x, y}^{3}$ that contains q, and the intersection $S \cap H$ is a cubic curve C in the plane H. The curve C is the inverse image of ℓ in S.
4.6.29. Lemma. Let S be a generic cubic surface. The lines L contained in S correspond bijectively to lines ℓ in X whose inverse images C are reducible cubic curves. If C is reducible, it will be the union $L \cup Q$ of a line and a conic.
proof. A line L in S won't contain q. So its image in X will be a line, call it ℓ, and L will be a component of its inverse image. Therefore C will be reducible.

Let ℓ be a line in X. At least one irreducible component of its inverse image C will contain q, and there are no lines through q. So if the cubic C is reducible, it will be the union of a conic and a line L, and q will be a point of the conic. Then L will be one of the lines in S.

Let ℓ_{0} be the line $\{a=0\}$. The points of Y that lie above ℓ_{0} are the points (x, y) such that $a=0$ and $y= \pm b$. Also, let H_{0} denote the inverse image of ℓ_{0} in \mathbb{P}^{3}, the plane $\{a=0\}$, and let C_{0} be the cubic curve $S \cap H_{0}$. The points of C_{0} are the solutions in \mathbb{P}^{3} of the equations $a=0$ and $b z+c=0$.
4.6.30. Lemma. The curve C_{0} is irreducible.
proof. We may adjust coordinates so that a becomes the linear polynomial x_{0}. When we restrict to H_{0} by setting $x_{0}=0$ in the polynomial $b z+c$, we obtain a polynomial $\bar{b} z+\bar{c}$, where \bar{b} and \bar{c} are generic homogeneous polynomials in x_{1}, x_{2} of degrees 2 and 3 , respectively. Such a polynomial is irreducible, and C_{0} is the locus $\bar{b} z+\bar{c}=0$.
4.6.31. Theorem. A generic cubic surface S in \mathbb{P}^{3} contains precisely 27 lines.

This theorem follows from next lemma, which relates the 27 lines in the generic cubic surface S to the 28 bitangents of its generic quartic discriminant curve Δ.
4.6.32. Lemma. Let S be a generic cubic surface $a z^{2}+b z+c=0$, and suppose that coordinates are chosen so that $q=(0,0,0,1)$ is a generic point of S. Let $\Delta:\left\{b^{2}-4 a c=0\right\}$ be the quartic discriminant curve, and let Y be the double plane $y^{2}=b^{2}-4 a c$.
(i) If a line L is contained in S, its image in X will be a bitangent to the quartic curve Δ. Distinct lines in S have distinct images in X.
(ii) The line $\ell_{0}:\{a=0\}$ is a bitangent. It isn't the image of a line in S.
(iii) Every bitangent ℓ except ℓ_{0} is the image of a line in S.
proof. Let L be a line in S, let ℓ be its image in X, and let C be the inverse image of ℓ in S. Lemma 4.6.29tells us that C is the union of the line L and a conic. So L is the only line in S that has ℓ as its image. The quadratic
formula 4.6.27) shows that, because the inverse image C of ℓ is reducible, ℓ splits in the double plane Y too, and therefore ℓ is a bitangent to δ. This proves (i). Moreover, Lemma 4.6 .30 shows that ℓ cannot be the line ℓ_{0}. This proves (ii). If a bitangent ℓ is distinct from ℓ_{0}, the map $Y \rightarrow Z$ given by the quadratic formula is defined except at the finite set $\ell \cap \ell_{0}$. Since ℓ splits in Y, its inverse image C in S will be reducible, and one component of C is a line in S. This proves (iii).

4.7 Exercises

chaec fourex
xfinmodfld
xaltnull
xinverseintegral
xopeni-
som
xAsint-
closed
4.7.1. A ring A is said to have the descending chain condition (dcc) if every strictly decreasing chain of ideals $I_{1}>I_{2}>\cdots$ is finite. Let A be a finite type \mathbb{C}-algebra. Prove
(i) A has dcc if and only if it is a finite dimensional complex vector space.
(ii) If A has dcc, then it has finitely many maximal ideals, and every prime ideal is maximal
(iii) If a finite-type algebra A has finitely many maximal ideals, then it has dcc.
(iv) Suppose that A has dcc, let M be an arbitrary A-module, and let I denote the intersection of the maximal ideals of A. If $I M=M$, then $M=0$. (This might be called the Stong Nakayama Lemma. The usual Nakayama Lemma requires that M be finitely generated.)
4.7.2. Let $A \subset B$ be noetherian domains and suppose that B is a finite A-module. Prove that A is a field if and only if B is a field.
4.7.3. Prove this alternate form of the Nullstellensatz: Let k be a field, and let B be a domain that is a finitely generated k-algebra. If B is a field, then $[B: k]<\infty$.
4.7.4. Let α be an element of a domain A, and let $\beta=\alpha^{-1}$. Prove that if β is integral over A, then it is an element of A.
4.7.5. Let X and Y be varieties with the same function field K. Show that there are nonempty open subsets X^{\prime} of X and and Y^{\prime} of Y that are isomorphic.
4.7.6. Let $A \subset B$ be finite type domains with fraction fields $K \subset L$ of characteristic zero, and let $Y \rightarrow X$ be the corresponding morphism of affine varieties. Prove the following:
(i) There is a nonzero element s in A such that A_{s} is integrally closed.
(ii) There is a nonzero element s in A such that B_{s} is a finite module over a polynomial ring $A_{s}\left[y_{1}, \ldots, y_{d}\right]$.
(iii) Suppose that L is a finite extension of K of degree d. There is a nonzero element $s \in A$ such that all fibres of the morphism $Y \rightarrow X$ consist of d points.
chainmax-
4.7.7. Verify directly that the prime chain 4.5 .9 is maximal.
4.7.8. Prove that $\mathbb{P}^{n}>\mathbb{P}^{n-1}>\cdots>\mathbb{P}^{0}$ is a maximal chain of closed subsets of \mathbb{P}^{n}.
4.7.9. Let G be a finite group of automorphisms of a normal, finite-type domain B, let A be the algebra of invariant elements of B, and let $Y \xrightarrow{u} X$ be the integral morphism of varieties corresponding to the inclusion $A \subset B$. Prove that there is a bijective correspondence between G-orbits of closed subvarieties of Y and closed subvarieties of X.
4.7.10. Let $A \subset B$ be an extension of finite-type domains such that B is a finite A-module, and let P be a prime ideal of A. Prove that the number of prime ideals of B that lie over P is at most equal to the degree [$L: K$] of the field extension.
xnotidzero 4.7.11. Let $Y=\operatorname{Spec} B$ be an affine variety, let D_{1}, \ldots, D_{n} be distinct closed subvarieties of Y and let V be a closed subset of Y. Assume that V doesn't contain any of the sets D_{j}. Prove that there is an element β of B that vanishes on V, but isn't identically zero on any D_{j}.
dimdim
xchevthmdimone
4.7.12. Let $Y \xrightarrow{u} X$ be a surjective morphism of affine varieties, and let K and L be the function fields of X and Y, respectively. Show that if $\operatorname{dim} Y=\operatorname{dim} X$, there is a nonempty open subset X^{\prime} of X such that all fibres over points of X^{\prime} have the same order n, and that $n=[L: K]$.
4.7.13. Work out the proof of Chevalley's Theorem in the case that Y is a closed subset of $\mathbb{P}^{1} \times X$ that doesn't meet the locus at infinity $\widetilde{H}=H \times X$. (In \mathbb{P}^{1}, H will be the point at infinity.) Do this in the following way: Say that $X=\operatorname{Spec} A$. Let $B_{0}=A[u], B_{1}=A[v]$, and $B_{01}=A[u, v]$, where $u=y_{1} / y_{0}$ and $v=u^{-1}=y_{0} / y_{1}$. Then $\widetilde{U}^{0}=U^{0} \times X=\operatorname{Spec} B_{0}, \quad \widetilde{U}^{1}=\operatorname{Spec} B_{1}$, and $\widetilde{U}^{01}=\operatorname{Spec} B_{01}$. Let P_{1} be the ideal of B_{1} that defines $Y \cap \widetilde{U}^{1}$, and let P_{0} be the analogous ideal of B_{0}. In B_{1}, the ideal of \widetilde{H} is the principal ideal $v B_{1}$. Since $Y \cap \widetilde{H}=\emptyset, P_{1}+v B_{1}$ is the unit ideal of B_{1}. Write out what this means. Then go over to the open set $\widetilde{U^{0}}$, and show that the residue of u in the coordinate algebra B_{0} / P_{0} of Y is the root of a monic polynomial.
4.7.14. Prove that a nonconstant morphism from a curve Y to \mathbb{P}^{1} is a finite morphism without appealing to xmapcurvefin Chevalley's Theorem.
4.7.15. Let A be a finite type domain, $R=\mathbb{C}[t], X=\operatorname{Spec} A$, and $Y=\operatorname{Spec} R$. Let $\varphi: A \rightarrow R$ be a homomorphism whose image is not \mathbb{C}, and let $\pi: Y \rightarrow X$ be the corresponding morphism.
(i) Show that R is a finite A-module.
(ii) Show that the image of π is a closed subset of X.
4.7.16. Prove that every nonconstant morphism $\mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ is a finite morphism.
4.7.17. Let $Y \xrightarrow{u} X$ be a finite morphism of curves, and let K and L be the function fields of X and Y, respectively, and suppose $[L: K]=n$. Prove that all fibres have order at most n, and all but finitely many fibres of Y over X have order equal to n.
4.7.18. Prove that a variety of any dimension contains no isolated point.
4.7.19. Let X be the subset obtained by deleting the origin from \mathbb{A}^{2}. Prove that there is no injective morphism from an affine variety Y to \mathbb{A}^{2} whose image is X.
4.7.20. With reference to Example 4.6 .15 show that the prime ideal that corresponds to the line $w=x$ is not a principal ideal.
4.7.21. Identify the double plane $y^{2}=f(x)$ defined as in 4.6.19 by a quadratic polynomial f.
4.7.22. A double line is a locus $y^{2}=f\left(x_{0}, x_{1}\right)$ analogous to a double plane 4.6 .20 , where f is a homogeneous polynomial of even degree $2 d$ with distinct roots. Determine the genus of a double line.
4.7.23. Let $Y \rightarrow X$ be an affine double plane, and let D be a curve in Y whose image in X is a plane curve C. Say that C has degree d. Define deg D to be d if C splits and $2 d$ if C remains prime or ramifies. Most curves C in X will intersect the branch locus transversally. Therefore they won't split. On the other hand, most curves D in Y will not be symmetric with respect to the automorphism σ of Y over X. Then there will be two curves $D, D \sigma$ lying over C, so C will split. Try to explain this curious point.
4.7.24. Let Y be a closed subvariety of projective space \mathbb{P}^{n} with coordinates $y=\left(y_{0}, \ldots, y_{n}\right)$, let d be a positive integer, and let $w=\left(w_{0}, \ldots, w_{k}\right)$ be homogeneous polynomials in y of degree d with no common zeros on Y. Prove that sending a point q of Y to $\left(w_{0}(q), \ldots, w_{k}(q)\right)$ defines a finite morphism $Y \xrightarrow{u} \mathbb{P}^{k}$. Consider the case that w_{i} are linear polynomials first.
4.7.25. Let M be a module over a finite-type domain A, and let α be an element of A. Prove that for all but finitely many complex numbers c, scalar multiplication by $s=\alpha-c$ is an injective map $M \xrightarrow{s} M$.
4.7.26. Prove that every nonconstant morphism $\mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ is a finite morphism. Do this by showing that the fibres cannot have positive dimension.
xPtwoPt-
wofinite countfib
xnoisolpt
xmiss-
point
xnotprinc
xquadrd-
plane xdblcurve

Chapter 5 STRUCTURE OF VARIETIES IN THE ZARISKI TOPOLOGY

5.1 Local Rings
5.2 Smooth Curves
5.3 Constructible sets
5.4 Closed Sets
5.5 Projective Varieties are Proper
5.6 Fibre Dimension
5.7 Exercises

In this chapter, we will see how algebraic curves control the geometry of higher dimensional varieties.

5.1 Local Rings

A local ring is a noetherian ring that contains just one maximal ideal. We make a few comments about local rings here though we will be interested mainly in some special ones, the discrete valuation rings that are discussed below.

Let R be a local ring with maximal ideal M. An element of R that isn't in M isn't in any maximal ideal, so it is a unit. The quotient R / M is a field called the residue field of R. For us, the residue field will often be the field of complex numbers.

The Nakayama Lemma 4.1.3 has a useful version for local rings:
5.1.1. Local Nakayama Lemma. Let R be a local ring with maximal ideal M and residue field $k=R / M$. Let V be a finite R-module, and let $\bar{V}=V / M V$. If $\bar{V}=0$, then $V=0$.
proof. If $\bar{V}=0$, then $V=M V$. The usual Nakayama Lemma tells us that M contains an element z such that $1-z$ annihilates V. Then $1-z$ isn't in M, so it is a unit. A unit annihilates V, and therefore $V=0$.
5.1.2. Corollary. Let R be a local ring. A set z_{1}, \ldots, z_{k} of elements generates M if the set of its residues generates M / M^{2}.

A local domain R with maximal ideal M has dimension one if it contains only two prime ideals, (0) and M, and they are distinct. We describe the normal local domains of dimension one in this section. They are the discrete valuation rings that are defined below.

5.1.3. A note about the overused word local.

A property is true locally on a topological space X if every point p of X has an open neighborhood U such that the property is true on U.

In these notes, the words localize and localization refer to the process of adjoining inverses. The (simple) localizations of an affine variety $X=\operatorname{Spec} A$ form a basis for the topology on X. If some property is true locally on X, one can cover X by localizations on which the property is true. There will be elements s_{1}, \ldots, s_{k} of A that generate the unit ideal, such that the property is true on each of the localizations $X_{s_{i}}$.

Let A be a noetherian domain. An A-module M is locally free if there are elements s_{1}, \ldots, s_{k} that generate the unit ideal of A, such that $M_{s_{i}}$ is a free $A_{s_{i}}$-module for each i. The free modules $M_{s_{i}}$ will have equal rank 2.1.27. That rank is the rank of the locally free A-module M.

An ideal I of a domain A is locally principal if A contains elements s_{i} that generate the unit ideal, such that $I_{s_{i}}$ is a principal ideal of $A_{s_{i}}$ for every i. A locally principal ideal is a locally free module of rank one.

(5.1.4) Valuations

dvr

Let K be a field. A discrete valuation v on K is a surjective homomorphism

$$
\begin{equation*}
K^{\times} \xrightarrow{\mathrm{v}} \mathbb{Z}^{+} \quad, \quad \mathrm{v}(a b)=\mathrm{v}(a)+\mathrm{v}(b) \tag{5.1.5}
\end{equation*}
$$

from the multiplicative group K^{\times}of nonzero elements of K to the additive group \mathbb{Z}^{+}of integers, such that, if a, b are elements of K, and if a, b and $a+b$ aren't zero, then

$$
\mathrm{v}(a+b) \geq \min \{\mathrm{v}(a), \mathrm{v}(b)\}
$$

The word "discrete" refers to the fact that \mathbb{Z}^{+}is given the discrete topology. Other valuations exist. They are interesting, but less important, and we won't use them. To simplify terminology, we refer to a discrete valuation simply as a valuation.

Let r be a positive integer. If v is a valuation and if $\mathrm{v}(a)=r$, then r is the order of zero of a, and if $\mathrm{v}(a)=-r$, then r is the order of pole of a, with respect to the valuation.

The valuation ring R associated to a valuation v on a field K is the subring of K of elements with nonnegative value, together with zero:

$$
\begin{equation*}
R=\left\{a \in K^{\times} \mid \mathrm{v}(a) \geq 0\right\} \cup\{0\} \tag{5.1.6}
\end{equation*}
$$

Valuation rings are usually called "discrete valuation rings", but we are dropping the word discrete.
5.1.7. Proposition. Valuations of the field $\mathbb{C}(t)$ of rational functions in one variable correspond bijectively to points of the projective line. The valuation ring that corresponds to a point $p \neq \infty$ is the ring of rational functions that are regular at p..
beginning of the proof. Let a be a complex number. To define the valuation v that corresponds to the point $p:\{t=a\}$ of \mathbb{P}^{1}, we write a nonzero polynomial f as $(t-a)^{k} h$, where $t-a$ doesn't divide h, and we define, $\mathrm{v}(f)=k$. Then we define $\mathrm{v}(f / g)=\mathrm{v}(f)-\mathrm{v}(g)$. You will be able to check that, with this definition, v becomes a valuation whose valuation ring is the algebra of functions that are regular at $p \mathbf{2 . 6 . 1}$. This valuation ring is called the local ring of \mathbb{P}^{1} at p (see $\mathbf{5 . 1 . 1 0}$ below). Its elements are rational functions in t whose denominators aren't divisible by $t-a$. The valuation that corresponds to the point of \mathbb{P}^{1} at infinity is obtained by working with t^{-1} in place of t.

The proof that these are all of the valuations of $\mathbb{C}(t)$ will be given at the end of the section.
5.1.8. Proposition. Let v be a valuation on a field K, and let x be a nonzero element of K with value $\mathrm{v}(x)=1$.
(i) The valuation ring R of v is a normal local domain of dimension one. Its maximal ideal M is the principal ideal $x R$. The elements of M are the elements of K with positive value, together with zero:

$$
M=\left\{a \in K^{\times} \mid \mathrm{v}(a)>0\right\} \cup\{0\}
$$

(ii) The units of R are the elements of K^{\times}with value zero. Every nonzero element z of K has the form $z=x^{k} u$, where u is a unit and k, is an integer, not necessarily positive.
(iii) The proper R-submodules of K are the sets $x^{k} R$, where k is an integer. The set $x^{k} R$ consists of zero and the elements of K^{\times}with value $\geq k$. The sets $x^{k} R$ with $k \geq 0$ are the nonzero ideals of R. They are the powers of the maximal ideal, and they are principal ideals.
(iv) There is no ring properly between R and K : If R^{\prime} is a ring and if $R \subset R^{\prime} \subset K$, then either $R=R^{\prime}$ or $R^{\prime}=K$. izedvr
proof. We prove (i) last.
(ii) Since v is a homomorphism, $\mathrm{v}\left(u^{-1}\right)=-\mathrm{v}(u)$ for any nonzero u in K. Then u and u^{-1} are both in R, i.e., u is a unit of R, if and only if $\mathrm{v}(u)$ is zero. If z is a nonzero element of K with $\mathrm{v}(z)=k$, then $u=x^{-k} z$ has value zero, so u is a unit, and $z=x^{k} u$.
(iii) It follows from (ii) that $x^{k} R$ consists of the elements of K of value at least k. Suppose that a nonzero R-submodule J of K contains an element z with value k. Then $z=u x^{k}$ and u is a unit, so J contains x^{k}. Therefore J contains $x^{k} R$. If $x^{k} R<J$, then J contains an element with value $<k$. So if k is the smallest integer such J contains an element with value k, then $J=x^{k} R$. If there is no minimum value among the elements of J, then J contains $x^{k} R$ for every k, and $J=K$.
(iv) This follows from (iii). The ring R^{\prime} will be a nonzero R-submodule of K. If $R^{\prime}<K$, then $R^{\prime}=x^{k} R$ for some k, and if $R \subset R^{\prime}$, then $k \leq 0$. But $x^{k} R$ isn't closed under multiplication when $k<0$. So the only possibility is that $k=0$ and $R=R^{\prime}$.
(i) Part (iii) tells us that R is a principal ideal domain, so it is noetherian. Its maximal ideal is $M=x R$. It also follows from (iii) that M and $\{0\}$ are the only prime ideals of R. So R is a local ring of dimension 1 . If the normalization of R were larger than R, then according to (iv), it would be equal to K, and x^{-1} would be integral over R. There would be a polynomial relation $x^{-r}+a_{1} x^{-(r-1)}+\cdots+a_{r}=0$ with a_{i} in R. When one multiplies this relation by x^{r}, one sees that 1 would be a multiple of x. Then x would be a unit, which it is not, because its value is 1 .

5.1.9. Theorem.

(i) A local domain whose maximal ideal is a nonzero principal ideal is a valuation ring.
(ii) A normal local domain of dimension 1 is a valuation ring.
proof. (i) Let R be a local domain whose maximal ideal M is a nonzero principal ideal, say $M=x R$, with $x \neq 0$, and let y be a nonzero element of R. The integers k such that x^{k} divides y are bounded 4.1.5. Let x^{k} be the largest power that divides y. Then $y=u x^{k}$, where $k \geq 0$ and u is in R but not in M. So u is a unit. Every nonzero element z of the fraction field K of R will have the form $z=u x^{r}$ where u is a unit and r is an integer, possibly negative. This is shown by writing the numerator and denominator of a fraction in such a form.

The valuation whose valuation ring is R is defined by $\mathrm{v}(z)=r$ when $z=u x^{r}$ with u a unit, as above. Suppose that $z_{i}=u_{i} x^{r_{i}}$ for $i=1,2$, where u_{i} are units and $0 \leq r_{1} \leq r_{2}$, then $z_{1}+z_{2}=\alpha x^{r_{1}}$ and $\alpha=u_{1}+u_{2} x^{r_{2}-r_{1}}$ is an element of R. Therefore $\mathrm{v}\left(z_{1}+z_{2}\right) \geq r_{1}=\min \left\{\mathrm{v}\left(z_{1}\right), \mathrm{v}\left(z_{2}\right)\right\}$. We also have $\mathrm{v}\left(z_{1} z_{2}\right)=\mathrm{v}\left(z_{1}\right)+\mathrm{v}\left(z_{2}\right)$. Thus v is a surjective homomorphism. The requirements for a valuation are satisfied.
(ii) The fact that a valuation ring is a normal, one-dimensional local ring is Proposition 5.1 .8 (i). We show that a normal local domain R of dimension 1 is a valuation ring by showing that its maximal ideal M is a principal ideal. The proof is tricky.

Let z be a nonzero element of M. Because R is a local ring of dimension $1, M$ is the only prime ideal that contains z, so M is the radical of the principal ideal $z R$, and $M^{r} \subset z R$ if r is large (Proposition 2.5.11). Let r be the smallest integer such that $M^{r} \subset z R$. Then there is an element y in M^{r-1} but not in $z R$, such that $y M \subset z R$. We restate this by saying that $w=y / z$ isn't in R, but $w M \subset R$. Since M is an ideal, multiplication by an element of R carries $w M$ to $w M$. So $w M$ is an ideal. Since M is the maximal ideal of the local ring R, either $w M \subset M$, or $w M=R$. If $w M \subset M$, Corollary 4.1.4(iii) shows that w is integral over R. This can't happen because R is normal and w isn't in R. Therefore $w M=R$ and $M=w^{-1} R$. This implies that w^{-1} is in R and that M is a principal ideal.
localringatp

(5.1.10) the local ring at a point

Let \mathfrak{m} be the maximal ideal at a point p of an affine variety $X=\operatorname{Spec} A$, and let S be the complement of \mathfrak{m} in A, a multiplicative system 2.7 .7 . The prime ideals P of the localization $A S^{-1}$ are the extensions of the prime ideals Q of A that are contained in \mathfrak{m} : $\quad P=Q S^{-1} 2.7 .9$. Since \mathfrak{m} is a maximal ideal of $A, \mathfrak{m} S^{-1}$ is the unique maximal ideal of $A S^{-1}$, and $A S^{-1}$ is a local ring. This ring is called the local ring of A at p. It is often denoted by A_{p}. Lemma 4.3.4 shows that, if A is a normal domain, then A_{p} is normal.

For example, let $X=\operatorname{Spec} A$ be the affine line, $A=\mathbb{C}[t]$, and let p be the point $t=0$. The local ring A_{p} is the ring whose elements are fractions of polynomials $f(t) / g(t)$ with $g(0) \neq 0$.

The local ring at a point p of any variety, not necessarily affine, is the the local ring at p of an affine open neighborhood of p.
5.1.11. Corollary. Let $X=\operatorname{Spec} A$ be an affine variety.
(i) The coordinate algebra A is the intersection of the local rings A_{p} at the points of X.

$$
A=\bigcap_{p \in X} A_{p}
$$

(ii) The coordinate algebra A is normal if and only if all of its local rings A_{p} are normal.
5.1.12. Proposition. Let M be a finite module over a finite-type domain A, and let p be a point of $\operatorname{Spec} A$. If the localized module $M_{p}(2.7 .11)$ is a free A_{p}-module, then there is an element s, not in \mathfrak{m}_{p}, such that M_{s} is a free A_{s}-module.

This is an example of the general principle 2.7.13.
5.1.13. Note. The notations A_{s} and A_{p} are traditional, though inconsistent. In the localization A_{s}, the element s is the one that is inverted, while in the local ring A_{p}, the elements of the maximal ideal \mathfrak{m}_{p} are the ones that are not inverted.

Completion of the proof of Proposition 5.1.7. We show that every valuation v of the function field $\mathbb{C}(t)$ of \mathbb{P}^{1} corresponds to a point of \mathbb{P}^{1}.

Let R be the valuation ring of v . If $\mathrm{v}(t)<0$, we replace t by t^{-1}, so that $\mathrm{v}(t) \geq 0$. Then t is an element of R, and therefore $\mathbb{C}[t] \subset R$. The maximal ideal M of R isn't zero. It contains a nonzero fraction g / h of polynomials in t. The denominator h is in R, so M also contains the numerator g. Since M is a prime ideal, it contains a monic irreducible factor of g of the form $t-a$ for some complex number a. The local ring R_{0} of $\mathbb{C}[t]$ at the point $t=a$ is a valuation ring that is obtained by inverting $t-c$ for all $c \neq a$. When $c \neq a$, the scalar $c-a$ isn't in M, so $t-c$ won't be in M. Since R is a local ring, $t-c$ will be a unit of R for all $c \neq a$. So R_{0} is contained in R 5.1.7). There is no ring properly containing R_{0} except K (5.1.8), so $R_{0}=R$.

5.2 Smooth Curves

A curve is a variety of dimension 1 . The proper closed subsets of a curve are finite subsets.
A point p of a curve X is a smooth point if the local ring at p is a valuation ring. Otherwise, it is a singular point. A curve X is smooth if all of its points are smooth. If $X=\operatorname{Spec} A$ is a smooth affine curve, the prime ideals different from the zero ideal are maximal.

If v_{p} is the valuation associated to a smooth point p of a curve X and r is a positive integer, a rational function α on X has a zero of order $r>0$ at p if $\mathrm{v}_{p}(\alpha)=r$, and it has a pole of order r at p if $\mathrm{v}_{p}(\alpha)=-r$.
5.2.1. Note. Suppose that an affine curve X is the spectrum of an algebra $A=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / P$, and that f_{1}, \ldots, f_{k} generate the prime ideal P. A better definition of a smooth point p is that the rank of the Jacobian matrix $J=\frac{\partial f_{i}}{\partial x_{j}}$, evaluated at p, is $n-1$. However, we will use the Jacobian matrix just once, at the end of this section. For us, the definition given above is more convenient.
5.2.2. Lemma. (i) An affine curve X is smooth if and only if its coordinate algebra is a normal domain.
(ii) A curve has finitely many singular points.
(iii) The normalization $X^{\#}$ of a curve X is a smooth curve, and the finite morphism $X^{\#} \rightarrow X$ becomes an isomorphism when singular points of X and their inverse images are deleted.
proof. (i) This follows from Theorem 5.1.9 and Proposition 4.3.4
(ii) The statement that a morphism is an isomorphism can be verified locally, so we may replace X by an affine open subset $\operatorname{Spec} A$. Let $A^{\#}$ be the normalization of A. There is a nonzero element s in A such that $s A^{\#} \subset A$ (Corollary 4.3.2. Then $A_{s}=A_{s}^{\#}$. So $\operatorname{Spec} A_{s}$, which is the complement of a finite set in $\operatorname{Spec} A$, is smooth.
(iii) This is rather obvious. defines a morphism $X \rightarrow \mathbb{P}^{n}$.
proof. A point $\left(\alpha_{0}, \ldots, \alpha_{n}\right)$ of \mathbb{P}^{n} with values in K determines a morphism $X \rightarrow \mathbb{P}^{n}$ if it is a good point, which means that, for every (ordinary) point p of X, there is an index j such that the functions α_{i} / α_{j} are regular at p for $i=0, \ldots, n \sqrt{3.5 .6}$. This will be true when j is chosen so that the order of zero of α_{j} at p is the minimal integer among the orders of zero of α_{i} of the elements α_{i} that aren't zero.

The next example shows that this proposition doesn't extend to varieties X of dimension greater than one.
nomaptop 5.2.5. Example. Let X^{\prime} be the complement of the origin in the affine plane $X=\operatorname{Spec} \mathbb{C}[x, y]$, and let $K=\mathbb{C}(x, y)$ be the function field of X. The vector (x, y) defines a good point of X^{\prime} with values in K, and therefore a morphism $X^{\prime} \rightarrow \mathbb{P}^{1}$. If (x, y) were a good point of X then, according to Proposition 3.5.4, at least one of the two rational functions x / y or y / x would be regular at the origin $q=(0,0)$. This isn't the case, so (x, y) isn't a good point of X. The morphism $X^{\prime} \rightarrow \mathbb{P}^{1}$ doesn't extend to X.
ptsvals 5.2.6. Proposition. Let $X=\operatorname{Spec} A$ be a smooth affine curve with function field K.
(i) The local rings of X are the valuation rings of K that contain A.
(ii) The maximal ideals of A are locally principal.

In fact, it follows from Proposition 5.2.9 below that every ideal of A is locally principal.
proof of the proposition. Since A is a normal domain of dimension one, its local rings are valuation rings that contain A (see Theorem 5.1.9 and Corollary 5.1.11). Let R be a valuation ring of K that contains A, let ve the associated valuation, and let M be the maximal ideal of R. The intersection $M \cap A$ is a prime ideal of A. Since A has dimension 1 , the zero ideal is the only prime ideal of A that isn't a maximal ideal. We can multiply by an element of R to clear the denominator of an element of M, obtaining an element of A while staying in M. So $M \cap A$ isn't the zero ideal. It is the maximal ideal \mathfrak{m}_{p} of A at a point p of X. The elements of A that aren't in \mathfrak{m}_{p} aren't in M either. They are invertible in R. So the local ring A_{p} at p, which is a valuation ring, is contained in R, and is therefore equal to R 5.1.8 (iii). Since M is a principal ideal, so is the maximal ideal of A_{p}, and \mathfrak{m}_{p} is locally principal.
5.2.7. Proposition. Let X^{\prime} and X be smooth curves with the same function field K.
(i) A morphism $X^{\prime} \xrightarrow{f} X$ that is compatible with the identity map on the function field K maps X^{\prime} isomorphically to an open subvariety of X.
(ii) If X is projective, X^{\prime} is isomorphic to an open subvariety of X.
(iii) If X^{\prime} and X are both projective, they are isomorphic.
(iv) If X is projective, every valuation ring of K is the local ring at a point of X.
proof. (i) Let p be the image in X of a point p^{\prime} of X^{\prime}, let U be an affine open neighborhood of p in X, and let V be an affine open neighborhood of p^{\prime} in X^{\prime} that is contained in the inverse image of U. Say $U=\operatorname{Spec} A$ and $V=\operatorname{Spec} B$. The morphism f gives us an injective homomorphism $A \rightarrow B$, and since p^{\prime} maps to p, this homomorphism extends to an inclusion of local rings $A_{p} \subset B_{p^{\prime}}$. These local rings are valuation rings with the same field of fractions, so they are equal. Since B is a finite-type algebra, there is an element s in A, with $s\left(p^{\prime}\right) \neq 0$, such that $A_{s}=B_{s}$. Then the open subsets Spec A_{s} of X and Spec B_{s} of X^{\prime} are equal. Since p^{\prime} is arbitrary, X^{\prime} is a union of open subvarieties of X. So X^{\prime} is an open subvariety of X.
(ii) The projective embedding $X \subset \mathbb{P}^{n}$ is defined by a point $\left(\alpha_{0}, \ldots, \alpha_{n}\right)$ with values in K. That point also defines a morphism $X^{\prime} \rightarrow \mathbb{P}^{n}$. If $f\left(x_{0}, \ldots, x_{n}\right)=0$ is a set of defining equations of X in \mathbb{P}^{n}, then $f(\alpha)=0$
in K. Therefore f vanishes on X^{\prime} too. So the image of X^{\prime} is contained in the zero locus of f, which is X. Then (i) shows that X^{\prime} is an open subvariety of X.
(iii) This follows from (ii).
(iv) The local rings of X are normal and they have dimension one. They are valuation rings of K. Let R be any valuation ring of K, let v be the corresponding valuation, and let $\beta=\left(\beta_{0}, \ldots, \beta_{n}\right)$ be the point with values in K that defines the projective embedding of X. When we order the coordinates so that $\mathrm{v}\left(\beta_{0}\right)$ is minimal, the ratios $\gamma_{j}=\beta_{j} / \beta_{0}$ will be in R. The coordinate algebra A_{0} of the affine variety $X^{0}=X \cap \mathbb{U}^{0}$ is generated by the coordinate functions $\gamma_{1}, \ldots, \gamma_{n}$, so $A_{0} \subset R$. Prposition 5.2.6 tells us that R is the local ring of X^{0} at some point.
5.2.8. Proposition. Let p be a smooth point of an affine curve $X=\operatorname{Spec} A$, and let \mathfrak{m} and v be the maximal ideal and valuation, respectively, at p. The valuation ring R of v is the local ring of A at p.
(i) The power \mathfrak{m}^{k} consists of the elements of A whose values are at least k. If I is an ideal of A whose radical is \mathfrak{m}, then $I=\mathfrak{m}^{k}$ for some $k>0$.
(ii) For every $n \geq 0$, the algebras A / \mathfrak{m}^{n} and R / M^{n} are isomorphic to the truncated polynomial ring $\mathbb{C}[t] /\left(t^{n}\right)$.
proof. (i) Proposition 5.1 .8 tells us that the nonzero ideals of R are powers of its maximal ideal M, and that M^{k} is the set of elements of R with value $\geq k$. Let I be an ideal of A whose radical is \mathfrak{m}, and let k be the minimal value $\mathrm{v}(x)$ of the nonzero elements x of I. We will show that I is the set of all elements of A with value $\geq k$, i.e., that $I=M^{k} \cap A$. Since we can apply the same reasoning to \mathfrak{m}^{k}, it will follow that $I=\mathfrak{m}^{k}$.

We must show that if an element y of A has value $\mathrm{v}(y) \geq k$, then it is in I. We choose an element x of I with value k. Then x divides y in R, say $y / x=w$, with w in R. The element w will be a fraction a / s with s and a in A and s not in $\mathfrak{m}: s y=a x$. The element s will vanish at a finite set of points q_{1}, \ldots, q_{r}, but not at p. We choose an element z of A that vanishes at p but not at any of the points q_{1}, \ldots, q_{r}. Then z is in \mathfrak{m}, and since the radical of I is \mathfrak{m}, some power of z is in I. We replace z by such a power, so that z is in I. By our choice, z and s have no common zeros in X. They generate the unit ideal of A, say $1=c s+d z$ with c and d in A. Then $y=c s y+d z y=c a x+d z y$. Since x and z are in I, so is y.
(ii) Since p is a smooth point, the local ring of A at p is the valuation ring R. Let s be an element of A that isn't in \mathfrak{m}. Then A / \mathfrak{m}^{k} will be isomorphic to $A_{s} / \mathfrak{m}_{s}^{k}$. We may localize A by inverting s. Doing so suitably, we may suppose that \mathfrak{m} is a principal ideal, say $t A$. Then $\mathfrak{m}^{k}=t^{k} A$. Let B be the subring $\mathbb{C}[t]$ of A, and let $\bar{B}_{k}=B / t^{k} B, \quad \bar{A}_{k}=A / \mathfrak{m}^{k}=A / t^{k} A$, and $\bar{R}_{k}=R / M^{k}=R / t^{k} R$. The quotients $t^{k-1} B / t^{k} B, \mathfrak{m}^{k-1} / \mathfrak{m}^{k}$, and M^{k-1} / M^{k} are one-dimensional vector spaces. So the map labelled g_{k-1} in the diagram below is bijective.

By induction on k, we may assume that the map f_{k-1} is bijective, and then f_{k} is bijective too. So \bar{B}_{k} and \bar{A}_{k} are isomorphic. Analogous reasoning shows that \bar{B}_{k} and \bar{R}_{k} are isomorphic.
5.2.9. Proposition. Let $X=\operatorname{Spec} A$ be a smooth affine curve. Every nonzero ideal I of A is a product of powers of maximal ideals: $I=\mathfrak{m}_{1}^{e_{1}} \cdots \mathfrak{m}_{k}^{e_{k}}$.
proof. Let I be a nonzero ideal of A. Because X has dimension one, the locus of zeros of I is a finite set $\left\{p_{1}, \ldots, p_{k}\right\}$. Therefore the radical of I is the intersection $\mathfrak{m}_{1} \cap \cdots \cap \mathfrak{m}_{k}$ of the maximal ideals \mathfrak{m}_{j} at p_{j}, which, by the Chinese Remainder Theorem, is the product ideal $\mathfrak{m}_{1} \cdots \mathfrak{m}_{k}$, Moreover, I contains a power of that product, say $I \supset \mathfrak{m}_{1}^{N} \cdots \mathfrak{m}_{k}^{N}$. Let $J=\mathfrak{m}_{1}^{N} \cdots \mathfrak{m}_{k}^{N}$. The quotient algebra A / J is the product $B_{1} \times \cdots \times B_{k}$, with $B_{j}=A / \mathfrak{m}_{j}^{N}$, and A / I is a quotient of A / J. Proposition 2.1 .8 tells us that A / I is a product $\bar{A}_{1} \times \cdots \times \bar{A}_{k}$, where \bar{A}_{j} is a quotient of B_{j}. By Proposition 5.2 .8 (ii), each B_{j} is a truncated polynomial ring, so the quotient \bar{A}_{j} is also a truncated polynomial ring. The kernel of the map $A \rightarrow A_{j}$ is a power of \mathfrak{m}_{j}. The kernel I of the map $A \rightarrow \bar{A}_{1} \times \cdots \times \bar{A}_{k}$ is a product of powers of $\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{k}$.

Recall that a point q of a topological space Y is an isolated point if the one-point set $\{q\}$ is open in Y.
noisolatedpt

isolptofy

5.2.12. Lemma.

(i) Let Y^{\prime} be an open subvariety of a variety Y. A point q of Y^{\prime} is an isolated point of Y if and only if it is an isolated point of Y^{\prime}.
(ii) Let $Y^{\prime} \xrightarrow{u^{\prime}} Y$ be a nonconstant morphism of curves, let q^{\prime} be a point of Y^{\prime}, and let q be its image in Y. If q is an isolated point of Y, then q^{\prime} is an isolated point of Y^{\prime}.
proof. (ii) Because Y^{\prime} has dimension one, the fibre over q will be a finite set. Say that the fibre is $\left\{q^{\prime}\right\} \cup S$, where S is a finite set of points distinct form q. Let $Y^{\prime \prime}$ denote the open complement $Y^{\prime}-S$ of S in Y^{\prime}, and let $u^{\prime \prime}$ be the restriction of u^{\prime} to $Y^{\prime \prime}$. The fibre of $Y^{\prime \prime}$ over q is the point q^{\prime}. If $\{q\}$ is open in Y, then because $u^{\prime \prime}$ is continuous, $\left\{q^{\prime}\right\}$ will be open in $Y^{\prime \prime}$. By (i), $\left\{q^{\prime}\right\}$ is open in Y^{\prime}.
proof of Proposition 5.2.11 Let q be a point of a curve Y. Part (i) of Lemma 5.2.12 allows us to replace Y by an affine neighborhood of q. Let $Y^{\#}$ be the normalization of Y. Part (ii) of that lemma allows us to replace Y by $Y^{\#}$. So we may assume that Y is a smooth affine curve, say $Y=\operatorname{Spec} B$. We can still replace Y by an open neighborhood of q, so we may assume that the maximal ideal \mathfrak{m}_{q} of B is a principal ideal (5.2.6. Say open neighborhood of q, so we may assume that the maximal ideal \mathfrak{m}_{q} of B is a principal ideal (5.2.6). Say
that $B=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{k}\right)$, and that q is the origin in \mathbb{A}^{n}. Let f_{0} be a polynomial whose residue in B generates \mathfrak{m}_{q}. Then $f_{0}, f_{1}, \ldots, f_{k}$ generate the maximal ideal of the polynomial ring $\mathbb{C}[x]$ at q.

Let f and x be the column vectors $\left(f_{0}, \ldots, f_{k}\right)^{t}$ and $\left(x_{1}, \ldots, x_{n}\right)^{t}$, respectively. Since f generates the maximal ideal at q, there is an $n \times(k+1)$ polynomial matrix P such that $P f=x$. Let J be the $(k+1) \times n$ Jacobian matrix $\partial f_{i} / \partial x_{j}$, and let \bar{J} and \bar{P} denote the constant terms of J and P, respectively. Then $f=$ $\bar{J} x+O(2)$, where $O(2)$ stands for a polynomial in x, all of whose terms have degree at least 2 . Since $P f=x, x=\overline{P J} x+O(2)$, and therefore $x=\overline{P J} x$. This shows that $\overline{P J}$ is the identity matrix, and that the $(k+1) \times n$ matrix \bar{J} has rank n. Adjusting coordinates, we may assume that the submatrix Q of J with the indices $1 \leq i, j \leq n-1$ is invertible at q. The Implicit Function Theorem tells us that the equations $f_{1}=\cdots=f_{n-1}=0$ can be solved for x_{1}, \ldots, x_{n-1} as analytic functions of x_{n}. It follows that the locus of zeros Z of f_{1}, \ldots, f_{n-1} is locally homeomorphic to the affine x_{n}-line 1.4 .18 , and it contains Y. Since Y has
dimension 1 , the component of Z that contains q is equal to Y. So Y is locally homeomorphic to \mathbb{A}^{1}, which zeros Z of f_{1}, \ldots, f_{n-1} is locally homeomorphic to the affine x_{n}-line 1.4.18), and it contains Y. Since Y has
dimension 1 , the component of Z that contains q is equal to Y. So Y is locally homeomorphic to \mathbb{A}^{1}, which has no isolated point. Therefore q isn't an isolated point of Y.

5.3 Constructible Sets

5.2.11. Proposition. In the classical topology, a curve, smooth or not, contains no isolated point.

This was proved for plane curves in Chapter 1 (Proposition 1.3.19).

In this section, X will denote a noetherian topological space. Every closed subset of X is a finite union of irreducible closed sets 2.2.16.

The intersection $L=Z \cap U$ of a closed set Z and an open set U is a locally closed set. Open sets and closed sets are locally closed. The following conditions on a subset L of X are equivalent.

- L is locally closed.
- L is a closed subset of an open subset U of X.
- L is an open subset of a closed subset Z of X.

A constructible set is a subset that is the union of finitely many locally closed sets.

5.3.1. Examples.

(i) A subset S of a curve X is constructible if and only if it is either a finite set or the complement of a finite set. Thus S is constructible if and only if it is either closed or open.
(ii) In the affine plane $X=\operatorname{Spec} \mathbb{C}[x, y]$, let U be the complement of the line $\{y=0\}$, and let p be the origin. The union $U \cup\{p\}$ is constructible, but not locally closed.

We use the following notation: Z will denote a closed set, U will denote an open set. and L will denote a locally closed set, such as $Z \cap U$.
5.3.2. Theorem. The set \mathbb{S} of constructible subsets of a noetherian topological space X is the smallest family of subsets that contains the open sets and is closed under the three operations of finite union, finite intersection, and complementation.

By closure under complementation, we mean that if S is in \mathbb{S}, then its complement $S^{c}=X-S$ is in \mathbb{S} too. proof. Let \mathbb{S}_{1} denote the family of subsets obtained from the open sets by the three operations mentioned in the statement. Open sets are constructible, and using those three operations, one can make any constructible set from the open sets. So $\mathbb{S} \subset \mathbb{S}_{1}$. To show that $\mathbb{S}=\mathbb{S}_{1}$, we show that the family of constructible sets is closed under the three operations.

It is obvious that a finite union of constructible sets is constructible. The intersection of two locally closed sets $L_{1}=Z_{1} \cap U_{1}$ and $L_{2}=Z_{2} \cap U_{2}$ is locally closed because $L_{1} \cap L_{2}=\left(Z_{1} \cap Z_{2}\right) \cap\left(U_{1} \cap U_{2}\right)$. If $S=L_{1} \cup \cdots \cup L_{k}$ and $S^{\prime}=L_{1}^{\prime} \cup \cdots \cup L_{r}^{\prime}$ are constructible sets, the intersection $S \cap S^{\prime}$ is the union of the locally closed intersections $L_{i} \cap L_{j}^{\prime}$, so it is constructible.

Let S be the constructible set $L_{1} \cup \cdots \cup L_{k}$. Its complement S^{c} is the intersection of the complements L_{i}^{c} of L_{i} : $S^{c}=L_{1}^{c} \cap \cdots \cap L_{k}^{c}$. We have shown that intersections of constructible sets are constructible. So to show that S^{c} is constructible, it suffices to show that the complement of any locally closed set is constructible. Let L be the locally closed set $Z \cap U$, and let Z^{c} and U^{c} be the complements of Z and U, respectively. Then Z^{c} is open and U^{c} is closed. The complement L^{c} of L is the union $Z^{c} \cup U^{c}$ of two constructible sets, so it is constructible.
5.3.3. Proposition. In a noetherian topological space X, every constructible set is a finite union of locally closed sets, $L_{i}=Z_{i} \cap U_{i}$, in which the irreducible sets Z_{i} are irreducible and distinct.
proof. Let $L=Z \cap U$ be a locally closed set, and let $Z=Z_{1} \cup \cdots \cup Z_{r}$ be the decomposition of Z into irreducible components. Then $L=\left(Z_{1} \cap U\right) \cup \cdots \cup\left(Z_{r} \cap U\right)$, which is constructible. So every constructible set S is a union of locally closed sets $L_{i}=Z_{i} \cap U_{i}$ in which Z_{i} are irreducible. Next, suppose that two of the irreducible closed sets are equal, say $Z_{1}=Z_{2}$. Then $L_{1} \cup L_{2}=\left(Z_{1} \cap U_{1}\right) \cup\left(Z_{1} \cap U_{2}\right)=Z_{1} \cap\left(U_{1} \cup U_{2}\right)$ is locally closed. So we can find an expression in which the irreducible closed sets are distinct.

5.3.4. Lemma.

(i) Let X_{1} be a closed subset of a variety X, and let X_{2} be its open complement. A subset S of X is constructible if and only if $S \cap X_{1}$ and $S \cap X_{2}$ are constructible.
(ii) Let X^{\prime} be an open or a closed subvariety of a variety X.
a) If S is a constructible subset of X, then $S \cap X^{\prime}$ is a constructible subset of X^{\prime}.
b) A subset S^{\prime} of X^{\prime} is a constructible subset of X^{\prime} if and only if it is a constructible subset of X.
proof. (i) This follows from Theorem 5.3.2.
(iia) It suffices to prove that, if L is a locally closed subset of X, the intersection $L^{\prime}=L \cap X^{\prime}$ is a locally closed subset of X^{\prime}. If $L=Z \cap U$, then $Z^{\prime}=Z \cap X^{\prime}$ is closed in X^{\prime}, and $U^{\prime}=U \cap X^{\prime}$ is open in X^{\prime}. So $L^{\prime}=Z^{\prime} \cap U^{\prime}$ is locally closed.
(iib) It follows from a) that if a subset S^{\prime} of X^{\prime} is constructible in X, then it is constructible in X^{\prime}. To show that a constructible subset of X^{\prime} is contructible in X, it suffices to show that a locally closed subset $L^{\prime}=Z^{\prime} \cap U^{\prime}$ of X^{\prime} is locally closed in X. If X^{\prime} is a closed subset of X, then Z^{\prime} is a closed subset of X, and $U^{\prime}=X \cap U$ for some open subset U of X. Since $Z^{\prime} \subset X^{\prime}, L^{\prime}=Z^{\prime} \cap U^{\prime}=Z^{\prime} \cap X^{\prime} \cap U=Z^{\prime} \cap U$, which is locally closed in X. If X^{\prime} is open in X, then U^{\prime} is open in X. Let Z be the closure of Z^{\prime} in X. Then $L^{\prime}=Z \cap U^{\prime}=Z \cap X^{\prime} \cap U^{\prime}=Z^{\prime} \cap U^{\prime}$. Again, L^{\prime} is locally closed in X.

The next theorem illustrates a general fact, that many of the sets that arise in algebraic geometry are constructible.
5.3.5. Theorem. Let $Y \xrightarrow{f} X$ be a morphism of varieties. The inverse image of a constructible subset of X is a constructible subset of Y. The image of a constructible subset of Y is a constructible subset of X.
deflocclosed
proof. The fact that a morphism is continuous implies that the inverse image of a constructible set is constructible. It is less obvious that the image of a constructible set is constructible. To prove that, we keep pecking away until there is nothing left to do. There may be a shorter proof.

Let S be a constructible subset of Y. Lemma 5.3 .4 and Noetherian induction allow us to assume that the theorem is true when S is contained in a proper closed subset of Y, and also when its image $f(S)$ is contained in a proper closed subvariety of X.

Suppose that Y is the union of a proper closed subset Y_{1} and its open complement Y_{2}. The sets $S_{i}=S \cap Y_{i}$ are constructible subsets of Y_{i}. It suffices to show that their images $f\left(S_{i}\right)$ are constructible, and Noetherian induction applies to Y_{1}. So we may replace Y by the open subvariety Y_{2}, which can be arbitrary.

Next, suppose that X is the union of a proper closed subset X_{1} and its open complement X_{2}. Let Y_{1} and Y_{2} denote the inverse images of X_{1} and X_{2}, respectively, and let $S_{i}=S \cap Y_{i}$. As before, it suffices to show that the images $f\left(S_{i}\right)$ are constructible. Here $f\left(S_{i}\right)$ is contained in X_{i}, and induction applies to X_{1}. So we may replace X by the arbitrary open subvariety X_{2}.

Summing up, we may replace X by any nonempty open subset X^{\prime}, and Y by any nonempty open subset of its inverse image Y^{\prime}. We can do this finitely often.

Since a constructible set S is a finite union of locally closed sets, it suffices to show that the image of a locally closed subset S of Y is constructible. Moreover, we may suppose that S has the form $Z \cap U$, where U is open and Z is closed and irreducible. Then Y is the union of the closed set $Z=Y_{1}$ and its complement $Y_{2}=(Y-Z)$, and $S \cap Y_{2}=\emptyset$. We may replace Y by $Y_{1}=Z$. Then $S=U$, and we may replace Y by U. We are thus reduced to the case that $S=Y$.

We may again replace X and Y by nonempty open subsets, so we may assume that they are affine, say $Y=\operatorname{Spec} B$ and $X=\operatorname{Spec} A$, so that the morphism $Y \rightarrow X$ corresponds to an algebra homomorphism $A \xrightarrow{\varphi} B$. If the kernel P of φ were nonzero, the image of Y would be contained in the proper closed subset Spec A / P of X, to which induction would apply. So we may assume that φ is injective.

Corollary 4.2.11 tells us that, for suitable nonzero element s in A, the localization B_{s} will be a finite module over a polynomial subring $A_{s}\left[y_{1}, \ldots, y_{k}\right]$. We may replace Y and X by the open subsets $Y_{s}=\operatorname{Spec} B_{s}$ and $X_{s}=\operatorname{Spec} A_{s}$. Then the maps $Y \rightarrow \operatorname{Spec} A[y]$ and $\operatorname{Spec} A[y] \rightarrow X$ are both surjective, so $Y=S$ maps surjectively to X.

5.4 Closed Sets

usingcurves

Cwithpoint

Limits of sequences are often used to analyze subsets of a topological space. In the classical topology, a subset Y of \mathbb{C}^{n} is closed if, whenever a sequence of points in Y has a limit in \mathbb{C}^{n}, the limit is in Y. In algebraic geometry, curves can be used as substitutes for sequences.

We use the following notation:
5.4.1. C is a smooth affine curve, q is a point of C, and C^{\prime} is the complement of q in C.

The closure of C^{\prime} will be C, and we think of q as a limit point. In fact, the closure will be C in the classical topology as well as in the Zariski topology, because C has no isolated point (5.2.11). Theorem 5.4.3, which is below, characterizes constructible subset of a variety in terms of such limit points.

The next theorem tells us that there are enough curves to do the job.
5.4.2. Theorem. (enough curves) Let Y be a constructible subset of a variety X, and let p be a point of its
closure \bar{Y}. There exists a morphism $C \xrightarrow{f} X$ from a smooth affine curve to X and a point q of C, such that $f(q)=p$. and that the image of $C^{\prime}=C-\{q\}$ is contained in Y.
proof. If $X=p$, then $Y=p$. In this case, we may take for f the constant morphism from any curve C to p. So we may assume that X has dimension at least one. Next, we may replace X by an affine open subset X^{\prime} that contains p, and Y by $Y^{\prime}=Y \cap X^{\prime}$. If \bar{Y} denotes the losure of Y in X, the closure of Y^{\prime} in X^{\prime} will be $\bar{Y} \cap X^{\prime}$, and it will contain p. So we may assume that X is affine, say $X=\operatorname{Spec} A$.

Since Y is constructible, it is a union $L_{1} \cup \cdots \cup L_{k}$ of locally closed sets, say $L_{i}=Z_{i} \cap U_{i}$ where Z_{i} are irreducible closed sets and U_{i} are open. The closure of Y is the union $Z_{1} \cup \cdots \cup Z_{k}$, and p will be in at least one of the closed sets, say $p \in Z_{1}$. We replace X by Z_{1} and Y by U_{1}. This reduces us to the case that Y is a nonempty open subset of X.

We use Krull's Theorem to slice X down to dimension one. Suppose that the dimension n of X is at least two. Let $D=X-Y$ be the closed complement of the open set Y. The components of D have dimension at most $n-1$. We choose an element α of the coordinate algebra A of X that is zero at p and isn't identically zero
on any component of D, except at p itself, if p happens to be a component. Krull's Theorem tells us that every component of the zero locus of α has dimension $n-1$, and at least one of those components, call it V, contains p. If V were contained in D, it would be a component of D because $\operatorname{dim} V=n-1$ and $\operatorname{dim} D \leq n-1$. By our choice of α, this isn't the case. So $V \not \subset D$, and therefore $V \cap Y \neq \emptyset$. Let $W=V \cap Y$. Because V is irreducible and Y is open, W is a dense open subset of V, its closure is V, and p is a point of V. We replace X by V and Y by W. The dimension of X is thereby reduced to $n-1$.

Thus it suffices to treat the case that X has dimension one. Then X will be a curve that contains p, and Y will be a nonempty open subset of X. The normalization of X will be a smooth curve $X^{\#}$ that comes with an integral, and therefore surjective, morphism to X. Finitely many points of $X^{\#}$ will map to p. We choose for C an affine open subvariety of $X^{\#}$ that contains just one of those points, and we call that point q.
5.4.3. Theorem (curve criterion for a closed set) Let Y be a constructible subset of a variety X. The following conditions are equivalent:
(a) Y is closed.
(b) For any morphism $C \xrightarrow{f} X$ from a smooth affine curve to X, the inverse image $f^{-1} Y$ is closed in C.
(c) Let q be a point of a smooth affine curve C, let $C^{\prime}=C-\{q\}$, and let $C \xrightarrow{f} X$ be a morphism. If $f\left(C^{\prime}\right) \subset Y$, then $f(C) \subset Y$.

The hypothesis that Y be constructible is necessary. For example, in the affine line X, the set W of points with integer coordinates isn't constructible, but it satisfies condition (b). Any morphism $C^{\prime} \rightarrow X$ whose image is in W will map C^{\prime} to a single point, and therefore it will extend to C.
proof of Theorem 5.4.3. The implications $\mathbf{(a)} \Rightarrow \mathbf{(b)} \Rightarrow$ (c) are obvious. We prove the contrapositive of the implication $(\mathbf{c}) \Rightarrow(\mathbf{a})$. Suppose that Y isn't closed. We choose a point p of the closure \bar{Y} that isn't in Y, and we apply Theorem 5.4.2 There exists a morphism $C \xrightarrow{f} X$ from a smooth curve to X and a point q of C such that $f(q)=p$ and $f\left(C^{\prime}\right) \subset Y$. Since $q \notin Y$, this morphism shows that (c) doesn't hold either.
5.4.4. Theorem. A constructible subset Y of a variety X is closed in the Zariski topology if and only if it is closed in the classical topology.
proof. A Zariski closed set is closed in the classical topology because the classical topology is finer than the Zariski topology. Suppose that a constructible subset Y of X is closed in the classical topology. To show that Y is closed in the Zariski topology, we choose a point p of the Zariski closure \bar{Y} of Y, and we show that p is a point of Y.

We use the notation 5.4.1. Theorem 5.4.2 tells us that there is a map $C \xrightarrow{f} X$ from a smooth curve C to X and a point q of C such that $f(q)=p$ and $f\left(C^{\prime}\right) \subset Y$. Let C_{1} denote the inverse image $f^{-1}(Y)$ of Y. Because C_{1} contains C^{\prime}, either $C_{1}=C^{\prime}$ or $C_{1}=C$. In the classical topology, a morphism is continuous. Since Y is closed, its inverse image C_{1} is closed in C. If C_{1} were C^{\prime}, then C^{\prime} would closed as well as open. Its complement $\{q\}$ would be an isolated point of C. Because a curve contains no isolated point, the inverse image of Y is C, which means that $f(C) \subset Y$. In particular, p is in Y. Therefore Y is closed in the Zariski topology.

5.5 Projective Varieties are Proper

As has been noted before, an important property of projective space is that, in the classical topology, it is compact. A variety isn't compact in the Zariski topology unless it is a single point. However, in the Zariski topology, projective varieties have a property closely related to compactness: They are proper.

Before defining the concept of a proper variety, we explain an analogous property of compact spaces.
5.5.1. Proposition. Let X be a compact space, let Z be a Hausdorff space, and let V be a closed subset of $Z \times X$. The image of V via the projection $Z \times X \rightarrow Z$ is closed in Z.
proof. Let W be the image of V in Z. We show that if a sequence of points z_{i} of the image W has a limit \underline{z} in Z, then that limit is in W. For each i, we choose a point p_{i} of V that lies over z_{i}. So p_{i} is a pair $\left(z_{i}, x_{i}\right)$, x_{i} being a point of X. Since X is compact, there is a subsequence of the sequence x_{i} that has a limit \underline{x} in X. Passing to a subsequence of $\left\{p_{i}\right\}$, we may suppose that x_{i} has limit \underline{x}. Then p_{i} has limit $\underline{p}=(\underline{z}, \underline{x})$. Since V is closed, \underline{p} is in V. Therefore \underline{z} is in its image W.
5.5.2. Definition. A variety X is proper if it has the following property: Let $Z \times X$ be the product of X with another variety Z, let π_{Z} denote the projection $Z \times X \longrightarrow Z$, and let V be a closed subvariety of $Z \times X$. The image W of V is a closed subvariety of Z.

If X is proper, then because every closed set is a finite union of closed subvarieties, the image of a closed subset of $Z \times X$ will be a closed subset of Z.
5.5.4. Corollary. Let X be a proper variety, let V be a closed subvariety of X, and let $X \xrightarrow{f} Y$ be a morphism. The image $f(V)$ of V is a closed subvariety of Y.
proof. In $X \times Y$, the graph Γ_{f} of f is a closed set isomorphic to X, and V corresponds to a subset V^{\prime} of Γ_{f} that is closed in Γ_{f} and in $X \times Y$. The points of V^{\prime} are pairs (x, y) such that $x \in V$ and $y=f(x)$. The image of V^{\prime} via the projection to $X \times Y \rightarrow Y$ is the same as the image of V. Since X is proper, the image of V^{\prime} is closed.

The next theorem is the most important application of the use of curves to characterize closed sets.

5.5.5. Theorem.

(i) Projective varieties are proper.
(ii) If X is a projective variety and $X \rightarrow Y$ is a morphism, the image in Y of a closed subvariety of X is a closed subvariety of X.
proof. Part (ii) follows from (i) and Corollary 5.5.4 Let X be a projective variety. Suppose we are given a closed subvariety V of the product $Z \times X$. We must show that its image W in Z is a closed subvariety of Z (see Diagram 5.5.3. Since V is irreducible, its image is irreducible, so it suffices to show that W is closed. Theorem 5.3 .5 tells us that W is a constructible set, and since X is closed in projective space, it is compact in the classical topology. Proposition 5.5.1 tells us that W is closed in the classical topology, and 5.4.4 tells us that W is closed in the Zariski topology too.
5.5.6. Note. Since Theorem 5.5 .5 is about algebra, an algebraic proof would be preferable. To make an algebraic proof, one could attempt to replace the limit argument used in the proof of Proposition 5.5.1 by the curve criterion, proceeding as follows: Given a closed subset V of $Z \times X$ with image W and a point p in the closure of W, one chooses a map $C \xrightarrow{f} Z$ from an affine curve C to Z such that $f(q)=p$ and $f\left(C^{\prime}\right) \subset W$, C^{\prime} being the complement of q in C. Then one tries to lift this map by finding a morphism $C \xrightarrow{g} Z \times X$ such that $g\left(C^{\prime}\right) \subset V$ and $f=\pi \circ g$. Since V is closed, it would contain $g(q)$, and therefore $f(q)=\pi g(q)$ would be in $\pi(V)=W$. However, to find the lifting g, it may be necessary to replace C by a suitable covering. It isn't difficult to make this method work, but it takes longer. That is why we resorted to the classical topology.

The next examples show how Theorem 5.5 .5 can be used.
5.5.7. Example. (singular curves) We parametrize the plane projective curves of a given degree d. The number of monomials $x_{0}^{i} x_{1}^{j} x_{2}^{k}$ of degree $d=i+j+k$ is the binomial coefficient $\binom{d+2}{2}$. We label those monomials as m_{0}, \ldots, m_{r}, ordered arbitrarily, with $r=\binom{d+2}{2}-1$. A homogeneous polynomial of degree d will be a combination $\sum z_{i} m_{i}$ with complex coefficients z_{i}, so the homogeneous polynomials f of degree d in x, taken up to scalar factors, are parametrized by the projective space of dimension r with coordinates z. Let's denote that projective space by Z. Points of Z correspond bijectively to divisors of degree d in the projective plane, as defined in 1.3.13.

The product variety $Z \times \mathbb{P}^{2}$ represents pairs (D, p), where D is a divisor of degree d and p is a point of \mathbb{P}^{2}. A variable homogeneous polynomial of degree d in x can be written as a bihomogeneous polynomial $f(z, x)$ of degree 1 in z and degree d in x. For example, in degree $2, f$ would be

$$
z_{0} x_{0}^{2}+z_{1} x_{1}^{2}+z_{2} x_{2}^{2}+z_{3} x_{0} x_{1}+z_{4} x_{0} x_{2}+z_{5} x_{1} x_{2}
$$

The locus $\Gamma:\{f(z, x)=0\}$ in $Z \times \mathbb{P}^{2}$ is closed. A point $z=c, x=a$ of Γ is a pair (D, p) such that D is the divisor $f(c, x)=0$ and p is the point (c, a) of D.

The set Σ of pairs (D, p) such that p is a singular point of D is also a closed set, because it is defined by the system of equations $f_{0}(z, x)=f_{1}(z, x)=f_{2}(z, x)=0$, where f_{i} are the partial derivatives $\frac{\partial f}{\partial x_{i}}$. (Euler's Formula shows that $f(x, z)=0$ follows from those equalities.) The partial derivatives f_{i} are bihomogeneous, of degree 1 in z and degree $d-1$ in x.

The next proposition isn't especially easy to verify directly, but the proof becomes easy when one uses the fact that projective space is proper.
5.5.8. Proposition The singular divisors of degree d, those that contain at least one singular point, form a closed subset S of the projective space Z of all divisors of degree d.
proof. The subset S is the projection of the closed subset Σ of $Z \times \mathbb{P}^{2}$. Since \mathbb{P}^{2} is proper, the image of the closed set Σ is closed.
5.5.9. Example. (surfaces that contain a line) We go back to the discussion $\mathbf{3 . 7 . 1 5}$ of lines in a surface. Let \mathbb{S} denote the projective space that parametrizes surfaces of degree d in \mathbb{P}^{3}.
5.5.10. Proposition In \mathbb{P}^{3}, the surfaces of degree d that contain a line form a closed subset of the space \mathbb{S}.

The Grssmanian $\mathbb{G}=G(2,4)$ of lines in \mathbb{P}^{3} is a projective variety (Corollary 3.7.13). Let Ξ be the subset of $\mathbb{G} \times \mathbb{S}$ of pairs of pairs $[\ell],[S]$ such that $\ell \subset S$. Lemma 3.7 .17 tells us that Ξ is a closed subset of $\mathbb{G} \times \mathbb{S}$. Therefore its image in \mathbb{S} is closed.

5.6 Fibre Dimension

A function $Y \xrightarrow{\delta} \mathbb{Z}$ from a variety to the integers is a constructible function if, for every integer n, the set of points of Y such that $\delta(p)=n$ is constructible, and δ is an upper semicontinuous functiion if for every n, the set of points such that $\delta(p) \geq n$ is closed. For brevity, we refer to an upper semicontinuous function as semicontinuous, though the term is ambiguous. A function might be lower semicontinuous.

A function δ on a curve Y is semicontinuous if and only if there exists an integer n and a nonempty open subset Y^{\prime} of Y such that $\delta(p)=n$ for all points p of Y^{\prime} and $\delta(p) \geq n$ for all points of Y not in Y^{\prime}.

The next curve criterion for semicontinuous functions follows from the criterion for closed sets.
5.6.1. Proposition. (curve criterion for semicontinuity) Let Y be a variety. A function $Y \xrightarrow{\delta} \mathbb{Z}$ is semicontinuous if and only if it is a constructible function, and for every morphism $C \xrightarrow{f} Y$ from a smooth curve C to Y, the composition $\delta \circ f$ is a semicontinuous function on C.

Let $Y \xrightarrow{f} X$ be a morphism of varieties, let q be a point of Y, and let Y_{p} be the fibre of f over $p=f(q)$. The fibre dimension $\delta(q)$ of f at q is the maximum among the dimensions of the components of the fibre that contain q.
5.6.2. Theorem. (semicontinuity of fibre dimension) Let $Y \xrightarrow{u} X$ be a morphism of varieties, and let $\delta(q)$ denote the fibre dimension at a point q of Y.
(i) Suppose that X is a smooth curve, that Y has dimension n, and that u does not map Y to a single point. Then δ is constant - the nonempty fibres have constant dimension: $\delta(q)=n-1$ for all $q \in Y$.
(ii) Suppose that the image of Y is dense in X. Then it contains a nonempty open subset of X. Let the dimensions of X and Y be m and n, respectively. There is a nonempty open subset X^{\prime} of X such that $\delta(q)=n-m$ for every point q in the inverse image of X^{\prime}.
(iii) δ is a semicontinuous function on Y.

The proof of this theorem is left as a long exercise. When you have done it, you will have understood the chapter.

5.7 Exercises

xfinno xblowupsing
fseries
xlocvalring
exupper
singular-
closed cantlift
5.7.1. Prove that, if v is a (discrete) valuation on a field K that contains the complex numbers, every nonzero complex number c has value zero.
5.7.2. Prove that a closed subset of dimension zero of a variety X is a finite set.
5.7.3. Let $X=\operatorname{Spec} A$ be an affine curve, with $A=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right] / P$, and let x_{i} also denote the residues of the variables in A. Let p be a point of X. We adjust coordinates so that p is the origin $(0, \ldots, 0)$, and are otherwise generic. Let $z_{i}=x_{i} / x_{0}, \quad i=1, \ldots, n$, let $B=\mathbb{C}\left[x_{0}, z_{1}, z_{2}, \ldots, z_{n}\right]$, and let $Y=\operatorname{Spec} B$. The inclusion $A \subset B$ defines a morphism $Y \rightarrow X$ called the blowup of p in X. There will be finitely many points of Y in the fibre over p, and there will be at least one such point. We choose a point p_{1} of the fibre, we replace X by Y and p by p_{1} and repeat. Prove that this blowing up process yields a curve that is smooth above p in finitely many steps.
5.7.4. Prove that the ring $k[[x, y]]$ of formal power series with coefficients in a field k is a local ring and a unique factorization domain.
5.7.5. Let A be a normal finite-type domain. Prove that the localization A_{P} of A at a prime ideal P of codimension 1 is a valuation ring.
5.7.6. Let $X=\operatorname{Spec} A$, where $A=\mathbb{C}[x, y, z] /\left(y^{2}-x z^{2}\right)$. Identify the normalization of X.
5.7.7. Let A be the polynomial ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, and let P be the principal ideal generated by an irreducible polynomial $f\left(x_{1}, \ldots, x_{n}\right)$. The local ring A_{P} consists of fractions g / h of polynomials in which g is arbitrary, and h can be any polynomial not divisible by f. Describe valuation v associated to this local ring.
5.7.8. In the space $\mathbb{A}^{n \times n}$ of $n \times n$ matrices, let X be the locus of idempotent matrices: $P^{2}=P$. The general linear group $G L_{n}$ operates on X by conjugation.
(i) Decompose X into orbits for the operation of $G L_{n}$, and prove that the orbits are closed subsets of $\mathbb{A}^{n \times n}$.
(ii) Determine the dimensions of the orbits.
5.7.9. Prove that, when a variety X is covered by countably many constructible sets, a finite number of those sets will cover X.
5.7.10. Let $f(x, y)$ and $d(x, y)$ be polynomials. Show that if d divides the partial derivatives f_{x} and f_{y}, then f is constant on the locus $d=0$.
5.7.11. Let S be a multiplicative system in a finite-type domain R, and let A and B be finite-type domains that contain R as subring. Let $R^{\prime}, A^{\prime}, B^{\prime}$ be the rings of S-fractions of R, A, B, respectively. Prove:
(i) If a set of elements $\alpha_{1}, \ldots, \alpha_{k}$ generates A as R-algebra, it also generates A^{\prime} as R^{\prime}-algebra.
(ii) Let $A^{\prime} \xrightarrow{\varphi^{\prime}} B^{\prime}$ be a homomorphism. For suitable s in S, there is a homomorphism $A_{s} \xrightarrow{\varphi_{s}} B_{s}$ whose localization is φ^{\prime}. If φ^{\prime} is injective, so is φ_{s}. If φ^{\prime} is surjective or bijective, there will be an s such that φ_{s} is surjective or bijective, respectively.
(iii) If $A^{\prime} \subset B^{\prime}$ and if B^{\prime} is a finite A^{\prime}-module, then for suitable s in $S, A_{s} \subset B_{s}$, and B_{s} is a finite A_{s}-module.
5.7.12. Let G denote the Grassmanian $G(2,4)$ of lines in \mathbb{P}^{3}, and let $[\ell]$ denote the point of G that corresponds to the line ℓ. In the product variety $G \times G$ of pairs of lines, let Z denote the set of pairs $\left[\ell_{1}\right],\left[\ell_{2}\right]$ whose intersection isn't empty. Prove that Z is a closed subset of $G \times G$.
5.7.13. Is the constructibility hypothesis in 5.6.1 necessary?
5.7.14. Prove Theorem 5.5 .8 directly, without appealing to Theorem 5.5 .5 ,
5.7.15. With reference to Note 5.5.6. let $X=\mathbb{P}^{1}$ and $Z=\mathbb{A}^{1}=\operatorname{Spec} \mathbb{C}[t]$. Find a closed subset V of $Z \times X$ whose image is Z, such that the identity map $Z \rightarrow Z$ can't be lifted to a map $Z \rightarrow V$.
5.7.16. Let $f: Y \rightarrow X$ be a morphism of varieties. Suppose we know that the fibre dimension is a constructible function. Use the curve criterion to show that fibre dimension is semicontinuous. (This is a part of Theorem 5.6.2]
5.7.17. Let $Y \xrightarrow{f} X$ be a morphism with finite fibres, and for p in X, let $N(p)$ be the number of points in
xnum-
berof-
points
xsemicont
5.7.18. Prove that fibre dimension is a semicontinuous function. I recommend this outline:
(i) We may assume that Y ane X are affine, $Y=\operatorname{Spec} B$ and $X=\operatorname{Spec} A$.
(ii) The theorem is true when $A \subset B$ and B is an integral extension of a polynomial subring $A\left[y_{1}, \ldots, y_{d}\right]$.
(iii) The fibre dimension is a constructible function.
(iv) The theorem is true when X is a smooth curve.
(v) The theorem is true for all X.
5.7.19. ??? twisted cubic specializes to plane nodal cubic???
5.7.20. Prove that a (quasiprojective) variety X that is proper is projective.
xtwistcu-
bic
xpropproj

Chapter 6 MODULES

6.1 The Structure Sheaf
$6.2 \mathcal{O}$-Modules
6.3 Some \mathcal{O}-Modules
6.4 The Sheaf Property
6.5 Some More Modules
6.6 Direct Image
6.7 Support
6.8 Twisting
6.9 Extending a Module: proof
6.10 Exercises

A brief review:

localization.

If s is a nonzero element of a domain A, the symbol A_{s} stands for the simple localization $A\left[s^{-1}\right]$, and if $X=\operatorname{Spec} A$, then $X_{s}=\operatorname{Spec} A_{s}$. This is what we will mean by the word 'localization'.

- Let s be a nonzero element of a domain A and let M be an A-module. The localized module M_{s} is the A_{s}-module whose elements are equivalence classes of fractions $m s^{-k}$, with m in M. The localized module M_{s} becomes an A-module by restriction of scalars. A homomorphism of A-modules $N \rightarrow M_{s}$ extends in a natural way to a homomorphism of A_{s}-modules $N_{s} \rightarrow M_{s}$.
- Let $X=\operatorname{Spec} A$ be an affine variety. The intersection of two localizations $X_{s}=\operatorname{Spec} A_{s}$ and $X_{t}=$ $\operatorname{Spec} A_{t}$ is the localization $X_{s t}=\operatorname{Spec} A_{s t}$.
- Let $W \subset V \subset U$ be affine open subsets of a variety X. If V is a localization of U and W is a localization of V, then W is a localization of U.
- The affine open subsets form a basis for the topology on a variety X, and the localizations of an affine variety form a basis for its topology.
- If U and V are affine open subsets of X, the open sets W that are localizations of U as well as localizations of V, form a basis for the topology on $U \cap V$.

regular functions.

The function field of a variety X is the field of fractions of the coordinate algebra of any one of its affine open subsets, and a rational function on X is an element of its function field. A rational function f is regular on an affine open set $U=\operatorname{Spec} A$ if it is an element of A, and f is regular on any open set U that can be covered by affine open sets on which it is regular. Thus the function field contains the regular functions on every nonempty open subset, and the regular functions on an open subset are governed by the regular functions on its affine open subsets.

See Chapters 2 and 3 for these assertions. We will use them without further comment. We will also need the concepts of category and functor. If you aren't familiar with these concepts, please read about them. You won't need to know much. Learn the definitions and look at a few examples.

6.1 The Structure Sheaf.

We associate two categories to a variety X. The first is the category (opens). Its objects are the open subsets of X, and its morphisms are inclusions. If U and V are open sets and if $V \subset U$, there is a unique morphism $V \rightarrow U$ in (opens). If $V \not \subset U$ there is no morphism $V \rightarrow U$.

The other category, (affines), is a subcategory of the category (opens), and it is the more important category. Its objects are the affine open subsets of X, and its morphisms are localizations. A morphism $V \rightarrow U$ in (opens) is a morphism in (affines) if U and V are affine and V is a localization of U - a subset of the form U_{s}, where s is a nonzero element of the coordinate algebra of U.

The structure sheaf \mathcal{O}_{X} on a variety X is the functor

$$
\begin{equation*}
\text { (affines) }^{\circ} \xrightarrow{\mathcal{O}_{X}} \text { (algebras) } \tag{6.1.1}
\end{equation*}
$$

from affine open sets to algebras, that sends an affine open set $U=\operatorname{Spec} A$ to its coordinate algebra A. When speaking of the structure sheaf, the coordinate algebra of U will be denoted by $\mathcal{O}_{X}(U)$. If it is clear which variety is being studied, we may write \mathcal{O} for \mathcal{O}_{X}.

Let $V \subset U$ be affine open subsets of a variety X, say $U=\operatorname{Spec} A$ and $V=\operatorname{Spec} B$. Then $A \subset B$. If V is the localization U_{s}, then $B=A\left[s^{-1}\right]$. But if B isn't a localization of A, it won't be clear how to construct B from A., and The exact relationship between A and B will remain obscure.

A variety that isn't affine won't be determined by its regular functions. For instance, the only rational functions that are regular at all points of the projective line are the constants, which are useless. Nevertheless, the structure sheaf extends with little difficulty to all open sets (see Poposition 6.1 .2 below). We will be interested in regular functions on non-affine open sets, especially in regular functions on the whole variety, but one should work with affine open sets and localizations, because the relation between the coordinate algebras of an affine variety and a localization is easy to understand.
6.1.2. Proposition. Let X be a variety. Defining $\mathcal{O}_{X}(U)$ to be the algebra of regular functions on the open subset U extends the structure sheaf \mathcal{O}_{X} to a functor

$$
\text { (opens) })^{\circ} \xrightarrow{\mathcal{O}_{X}} \text { (algebras) }
$$

The regular functions on U, the elements of $\mathcal{O}_{X}(U)$, are the sections of the structure sheaf \mathcal{O}_{X} on U. The elements of $\mathcal{O}_{X}(X)$, the rational functions that are regular everywhere, are the global sections.

Thus, if U is a nonempty open subset of a variety $X, \mathcal{O}_{X}(U)$ will be a subring of the function field of X, and when $V \rightarrow U$ is a morphism in (opens), $\mathcal{O}_{X}(U)$ will be contained in $\mathcal{O}_{X}(V)$. This gives us the homomorphism, an inclusion,

$$
\mathcal{O}_{X}(U) \rightarrow \mathcal{O}_{X}(V)
$$

that makes \mathcal{O}_{X} into a functor. Note that arrows are reversed by \mathcal{O}_{X}. If $V \rightarrow U$, then $\mathcal{O}_{X}(U) \rightarrow \mathcal{O}_{X}(V)$. A functor that reverses arrows is a contravariant functor. The superscript ${ }^{\circ}$ in 6.1.1) and 6.1.2 is a customary notation to indicate that a functor is contravariant.

$$
\text { If } V \subset U \subset X \text {, then } \mathcal{O}_{X}(V)=\mathcal{O}_{U}(V)=\mathcal{O}_{V}(V)
$$

6.1.3. Proposition The extended structure sheaf has the following sheaf property:

- Let Y be an open subset of X, and let $U^{i}=\operatorname{Spec} A_{i}$ be affine open subsets that cover Y. Then

$$
\mathcal{O}_{X}(Y)=\bigcap \mathcal{O}_{X}\left(U^{i}\right) \quad\left(=\bigcap A_{i}\right)
$$

The fact that regular functions are elements of the function field makes the statement of the sheaf property especially simple here.

By definition, f is a regular function on X if there is an affine covering U^{i}, a covering by affine open sets, such that f is in $\mathcal{O}_{X}\left(U^{i}\right)$ for every i. Therefore the next lemma proves the proposition.
6.1.4. Lemma. Let Y be an open subset of a variety X. The intersection $\bigcap \mathcal{O}_{X}\left(U^{i}\right)$ is the same for every affine covering $\left\{U^{i}\right\}$ of Y.

We prove the lemma first in the case of a covering of an affine open set by localizations.
sheafforloc
6.1.5. Sublemma. Let $U=\operatorname{Spec} A$ be an affine variety, and let $\left\{U^{i}\right\}$ be a covering of U by localizations, say $U^{i}=\operatorname{Spec} A_{i}$, where A_{i} is a localization $A_{s_{i}}$ of A. Then $A=\bigcap A_{i}$, i.e., $\mathcal{O}(U)=\bigcap \mathcal{O}\left(U^{i}\right)$.
proof. It is clear that $A \subset \bigcap A_{s_{i}}$. We prove the opposite inclusion. A finite subset of the set $\left\{U^{i}\right\}$ will cover U, so we may assume that the index set is finite. Let α be an element of $\bigcap A_{s_{i}}$. So for every $i, \alpha=s_{i}^{-r} a_{i}$, or $s_{i}^{r} \alpha=a_{i}$ with a_{i} in A and r an integer. We can use the same r for every i. Because $\left\{U^{i}\right\}$ covers U, the elements s_{i} generate the unit ideal in A, and so do their powers s_{i}^{r}. There are elements b_{i} in A such that $\sum b_{i} s_{i}^{r}=1$. Then $\alpha=\sum b_{i} s_{i}^{r} \alpha=\sum b_{i} a_{i}$ is an element of A.
proof of Lemma 6.1.4. Say that Y is covered by affine open sets $\left\{U^{i}\right\}$ and also by affine open sets $\left\{V^{j}\right\}$. We cover the intersections $U^{i} \cap V^{j}$ by open sets $W^{i j \nu}$ that are localizations of U^{i} and also localizations of V^{j}. Fixing i and letting j and ν vary, the set $\left\{W^{i j \nu}\right\}_{j, \nu}$ will be a covering of U^{i} by localizations, and the sublemma shows that $\mathcal{O}\left(U^{i}\right)=\bigcap_{j, \nu} \mathcal{O}\left(W^{i j \nu}\right)$. Then $\bigcap_{i} \mathcal{O}\left(U^{i}\right)=\bigcap_{i, j, \nu} \mathcal{O}\left(W^{i j \nu}\right)$. Similarly, $\bigcap_{j} \mathcal{O}\left(V^{j}\right)=$ $\bigcap_{i, j, \nu} \mathcal{O}\left(W^{i j \nu}\right)$.

6.2 \mathcal{O}-Modules

On an affine variety $\operatorname{Spec} A$, one can work with A-modules. There is no need to do anything else. However, one can't do this when a variety X isn't affine. The best one can do is to work with modules on affine open subsets. An \mathcal{O}_{X}-module associates a module to every affine open subset.

To define an \mathcal{O}-module, we need notation for working when both the module and the ring are allowed to vary. Let R and R^{\prime} be rings. A homomorphism from an R module M to an R^{\prime}-module M^{\prime} consists of a ring homomorphism $R \xrightarrow{f} R^{\prime}$ and a homomorphism of abelian groups $M \xrightarrow{\varphi} M^{\prime}$ that is compatible with f, in the sense that, if $m^{\prime}=\varphi(m)$ and $r^{\prime}=f(r)$, then $\varphi(r m)=r^{\prime} m^{\prime}$.

We use the symbol (modules) for the category whose objects are modules over rings, and whose morphisms are homomorphisms of modules, as defined above. Because the ring homomorphisms are usually clear from context, we suppress notation for them, denoting a module M over R and a homomorphism φ to a module M^{\prime} over a ring R^{\prime} by the symbols M and $M \xrightarrow{\varphi} M^{\prime}$.
6.2.1. Definition. An \mathcal{O}-module \mathcal{M} on a variety X is a (contravariant) functor

$$
\text { (affines) }^{\circ} \xrightarrow{\mathcal{M}} \text { (modules) }
$$

such that, for every affine open set $U, \mathcal{M}(U)$ is an $\mathcal{O}(U)$-module, and when s is a nonzero element of $\mathcal{O}(U)$, the module $\mathcal{M}\left(U_{s}\right)$ is the localization $\mathcal{M}(U)_{s}$ of $\mathcal{M}(U)$. The map $\mathcal{M}(U) \rightarrow \mathcal{M}\left(U_{s}\right)$ that makes \mathcal{M} into a functor is the canonical map from a module to a localization.

Thus if U is an affine open set, $\mathcal{M}(U)$ stands for a module over the ring $\mathcal{O}(U)$ of regular functions on U, and if $U^{\prime} \rightarrow U$, the map $\mathcal{M}(U) \rightarrow \mathcal{M}\left(U^{\prime}\right)$ is compatible with the map $\mathcal{O}(U) \rightarrow \mathcal{O}\left(U^{\prime}\right)$. As was explained above, the compatibility means that, if $a \in \mathcal{O}(U)$ has image a^{\prime} in $\mathcal{O}\left(U^{\prime}\right)$ and $m \in \mathcal{M}(U)$ has image m^{\prime} in $\mathcal{M}\left(U^{\prime}\right)$, then the image of $a m$ in $\mathcal{O}\left(U^{\prime}\right)$ is $a^{\prime} m^{\prime}$.
6.2.2. Note. To say that $\mathcal{M}\left(U_{s}\right)$ is the localization of $\mathcal{M}(U)$, isn't completely correct. One should say that $\mathcal{M}\left(U_{s}\right)$ and $\mathcal{M}(U)_{s}$ are canonically isomorphic. The map $\mathcal{M}(U) \rightarrow \mathcal{M}\left(U_{s}\right)$ induces a map from the localization $\mathcal{M}(U)_{s}$ to $\mathcal{M}\left(U_{s}\right)$, and that map should be an isomorphism. But let's not worry about this point.

Though the definition of an \mathcal{O}-module will seem complicated at first, perhaps too complicated for comfort, there is no need to worry. When a module has a natural definition, the data involved are taken care of automatically. This will become clear as we go along.

Some terminology:

- A section of an \mathcal{O}-module \mathcal{M} on an affine open set U is an element of $\mathcal{M}(U)$, and an element of $\mathcal{M}(X)$ is a global section. The module of sections on U is $\mathcal{M}(U)$.
- When U_{s} is a localization of U, the image of a section m on U via the map $\mathcal{M}(U) \rightarrow \mathcal{M}\left(U_{s}\right)$ is the restriction of m to U_{s}.
- An \mathcal{O}-module \mathcal{M} is a finite \mathcal{O}-module if $\mathcal{M}(U)$ is a finite $\mathcal{O}(U)$-module for every affine open set U.
- A homomorphism $\mathcal{M} \xrightarrow{\varphi} \mathcal{N}$ of \mathcal{O}-modules consists of homomorphisms of $\mathcal{O}(U)$-modules

$$
\mathcal{M}(U) \xrightarrow{\varphi(U)} \mathcal{N}(U)
$$

for each affine open subset U, such that, when s is a nonzero element of $\mathcal{O}(U)$, the homomorphism $\varphi\left(U_{s}\right)$ is the localization of the homomorphism $\varphi(U)$.

- A sequence of homomorphisms

$$
\begin{equation*}
\mathcal{M} \rightarrow \mathcal{N} \rightarrow \mathcal{P} \tag{6.2.3}
\end{equation*}
$$

exseqsheaves
homomisloc
merdulesx-
amples
kerim
sheafonpoint
refldmod

Let p be a point of a variety X. The residue field module κ_{p} is defined as follows: If an affine open subset U of X contains p, then $\mathcal{O}(U)$ has a residue field $k(p)$ at p, and $\kappa_{p}(U)=k(p)$. If U doesn't contain p, then $\kappa_{p}(U)=0$.

For example, let p be the point at infinity of $X=\mathbb{P}^{1}$ and let \mathbb{U}^{0} and \mathbb{U}^{1} be the standard affine open sets. Then $\kappa_{p}\left(\mathbb{U}^{0}\right)=0$ and $\kappa_{p}\left(\mathbb{U}^{1}\right)=\mathbb{C}$.

6.3.5. torsion modules.

An \mathcal{O}-module \mathcal{M} is a torsion module if $\mathcal{M}(U)$ is a torsion $\mathcal{O}(U)$-module for every affine open set U (see (2.1.24).

6.3.6. ideals.

A submodule \mathcal{N} of an \mathcal{O}-module \mathcal{M} is an \mathcal{O}-module such that $\mathcal{N}(U)$ is a submodule of $\mathcal{M}(U)$ for every affine open set U. An ideal \mathcal{I} of the structure sheaf is an \mathcal{O}-submodule of \mathcal{O}. If Y is a closed subvariety of a variety X, the ideal of Y is the submodule of \mathcal{O} whose sections on an affine open subset U of X are the rational functions on X that are regular on U and that vanish on $Y \cap U$.

Let p be a point of a variety X. The maximal ideal at p, which we denote by \mathfrak{m}_{p}, is an ideal. If an affine open subset U contains p, its coordinate algebra $\mathcal{O}(U)$ will have a maximal ideal whose elements are the regular functions that vanish at p. That maximal ideal is the module of sections $\mathfrak{m}_{p}(U)$ on U. If U doesn't contain p, then $\mathfrak{m}_{p}(U)=\mathcal{O}(U)$.

We use the notation $V(\mathcal{I})$ for the zero set in a variety X of an ideal \mathcal{I} in the structure sheaf \mathcal{O}_{X}. A point p of X is in $V(\mathcal{I})$ if, whenever U is an affine open subset of X that contains p, all elements of $\mathcal{I}(U)$ vanish at p. When \mathcal{I} is the ideal of functions that vanish on a closed subvariety $Y, V(\mathcal{I})=Y$.
defker
nonaffinesections
defsect
extendO-
mod

6.3.7. some homomorphisms

- Let κ_{p} be the residue field module at a point p of X. There is a homomorphism of \mathcal{O}-modules $\mathcal{O} \rightarrow \kappa_{p}$ whose kernel is the maximal ideal \mathfrak{m}_{p}.
- Homomorphisms $\mathcal{O}^{n} \rightarrow \mathcal{O}^{m}$ of free \mathcal{O}-modules correspond to $m \times n$-matrices of global sections of \mathcal{O}.
- Multiplication by a global section f of \mathcal{O} defines a homomorphism $\mathcal{M} \xrightarrow{f} \mathcal{M}$.
- Let \mathcal{M} be an \mathcal{O}-module. Homomorphisms of \mathcal{O}-modules $\mathcal{O} \xrightarrow{\varphi} \mathcal{M}$ correspond bijectively to global sections of \mathcal{M}.

This last example is analogous to the fact that, when M is a module over a ring A, homomorphisms $A \rightarrow M$ correspond to elements of M. If m is a global section of \mathcal{M}, the homomorphism $\mathcal{O}(U) \xrightarrow{\varphi(U)} \mathcal{M}(U)$ is multiplication by the restriction of m to U. If we denote that restriction by the same letter m, then $\varphi(f)=f m$. Similarly, (c) is analogoues to the fact that multipliexation by an element a of R defines a homomorphism $M \rightarrow M$.

6.4 The Sheaf Property

In this section, we extend an \mathcal{O}-module \mathcal{M} on a variety X to a functor (opens) ${ }^{\circ} \xrightarrow{\widetilde{\mathcal{M}}}$ (modules) on all open subsets of X with these properties:

- $\widetilde{\mathcal{M}}(Y)$ is an $\mathcal{O}(Y)$-module for every open subset Y.
- When U is an affine open set, $\widetilde{\mathcal{M}}(U)=\mathcal{M}(U)$.
- $\widetilde{\mathcal{M}}$ has the sheaf property that is described below.

The tilde \sim is used for clarity. When we have finished with the discussion, we will use the same notation for the functor on (affines) and for its extension to (opens).
6.4.1. Let (opens) ${ }^{\circ} \xrightarrow{\widetilde{\mathcal{M}}}$ (modules) be a functor. If U is an open subset of X, an element of $\widetilde{\mathcal{M}}(U)$ is a section of $\widetilde{\mathcal{M}}$ on U. If $V \xrightarrow{j} U$ is an inclusion of open subsets, the associated homomorphism $\widetilde{\mathcal{M}}(U) \rightarrow \widetilde{\mathcal{M}}(V)$ is the restriction from U to V.

When $V \xrightarrow{j} U$ is an inclusion of open sets, the restriction to V of a section m on U may be denoted by $j^{\circ} m$. However, the restriction operation occurs very often. Because of this, we usually abbreviate, using the same symbol m for a section and for its restriction. If an open set V is contained in two open sets U and U^{\prime}, and if m and m^{\prime} are sections of $\widetilde{\mathcal{M}}$ on U and U^{\prime}, respectively, we may say that m and m^{\prime} are equal on V if their restrictions to V are equal. For example, if the restriction of a setcion m to V is zero, we may say $m=0$ on V.
6.4.2. Theorem. An \mathcal{O}-module \mathcal{M} extends uniquely to a functor
(opens) ${ }^{\circ} \xrightarrow{\widetilde{\mathcal{M}}}$ (modules)
that has the sheaf property 6.4.4 below. Moreover, for every open set $U, \widetilde{\mathcal{M}}(U)$ is an $\mathcal{O}(U)$-module, and for every inclusion $V \rightarrow U$ of nonempty open sets, the map $\widetilde{\mathcal{M}}(U) \rightarrow \widetilde{\mathcal{M}}(V)$ is compatible with the map $\mathcal{O}(U) \rightarrow \mathcal{O}(V)$.

The proof of this theorem isn't especially difficult, but it is lengthy because there are several things to check. In order not to break up the discussion, we have put the proof into Section 6.9 at the end of the chapter.

Though the theorem describes the sections of an \mathcal{O}-module on every affine open set, one always works with the affine open sets. Sometimes, we will want to look at sections of an \mathcal{O}-module on a non-affine open set, but most of the time, the non-affine open sets are just along for the ride.

The sheaf property is the key requirement that determines the extension of an \mathcal{O}-module \mathcal{M} to a functor $\widetilde{\mathcal{M}}$ on (opens).

Let Y be an open subset of X, and let $\left\{U^{i}\right\}$ be an affine covering of Y. The intersections $U^{i j}=U^{i} \cap U^{j}$ are also affine open sets, so $\mathcal{M}\left(U^{i}\right)$ and $\mathcal{M}\left(U^{i j}\right)$ are defined. The sheaf property asserts that an element m of $\widetilde{\mathcal{M}}(Y)$ corresponds to a set of elements m_{i} in $\mathcal{M}\left(U^{i}\right)$ such that the restrictions of m_{j} and m_{i} to $U^{i j}$ are equal.

If the affine open subsets U^{i} are indexed by $i=1, \ldots, n$, the sheaf property asserts that an element of $\widetilde{\mathcal{M}}(Y)$ is determined by a vector $\left(m_{1}, \ldots, m_{n}\right)$ with m_{i} in $\mathcal{M}\left(U^{i}\right)$, such that the restrictions of m_{i} and m_{j} to $U^{i j}$ are equal. This means that $\widetilde{\mathcal{M}}(Y)$ is the kernel of the difference map β :

$$
\begin{equation*}
\prod_{i} \mathcal{M}\left(U^{i}\right) \xrightarrow{\beta} \prod_{i, j} \mathcal{M}\left(U^{i j}\right) \tag{6.4.4}
\end{equation*}
$$

that sends the vector $\left(m_{1}, \ldots, m_{n}\right)$ to the $n \times n$ matrix $\left(z_{i j}\right)$, where $z_{i j}$ is the difference $m_{j}-m_{i}$ of restrictions of the sections m_{j} and m_{i} to $U^{i j}$. The analogous description is true when the index set is infinite.

In short, the sheaf property tells us that sections of $\widetilde{\mathcal{M}}$ are determined locally: A section on an open set Y is determined by its restrictions to the open subsets U^{i} of any affine covering of Y.

Note. With notation as above, there is a morphism $U^{i j} \rightarrow U^{i}$ in (opens) because $U^{i j}$ is contained in U^{i}. However, this morphism needn't be a localization, and if it isn't a localization, it won't be a morphism in (affines). Then the restriction maps $\mathcal{M}\left(U^{i}\right) \rightarrow \mathcal{M}\left(U^{i j}\right)$ won't be a part of the structure of an \mathcal{O}-module. We need a definition of the restriction map for an arbitrary inclusion $V \rightarrow U$ of affine open subsets. This point will be taken care of in the proof of Theorem6.4.2. (See Step 2 in Section 6.9) So we don't need to worry about it here.

We drop the tilde now, and denote the extension of an \mathcal{O}-module \mathcal{M} to all open sets by the same symbol \mathcal{M}. The sheaf property for \mathcal{M} is the statement that, when $\left\{U^{i}\right\}$ is an affine covering of an open set U, the sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{M}(U) \xrightarrow{\alpha} \prod_{i} \mathcal{M}\left(U^{i}\right) \xrightarrow{\beta} \prod_{i, j} \mathcal{M}\left(U^{i j}\right) \tag{6.4.5}
\end{equation*}
$$

is exact, where α is the product of the restriction maps, and β is the difference map described in 6.4.4. So $\mathcal{M}(U)$ is mapped isomorphically to the kernel of β. Elements of $\mathcal{M}(U)$ correspond bijectively to vectors $\left(m_{1}, \ldots, m_{n}\right)$, with m_{i} in $\mathcal{M}\left(U^{i}\right)$, such that the restrictions of m_{i} and m_{j} to $\mathcal{M}\left(U^{i j}\right)$ are equal.

The next corollary follows from Theorem 6.4.2
6.4.6. Corollary. Let $\left\{U^{i}\right\}$ be an affine covering of a variety X.
(i) An \mathcal{O}-module \mathcal{M} is the zero module if and only if $\mathcal{M}\left(U^{i}\right)=0$ for every i.
(ii) A homomorphism $\mathcal{M} \xrightarrow{\varphi} \mathcal{N}$ of \mathcal{O}-modules is injective, surjective, or bijective if and only if the maps $\mathcal{M}\left(U^{i}\right) \xrightarrow{\varphi\left(U^{i}\right)} \mathcal{N}\left(U^{i}\right)$ are injective, surjective, or bijective, respectively, for every i.
proof. (i) Let V be an open subset of X. We cover each intersection $V \cap U^{i}$ by affine open sets $V^{i \nu}$ that are localizations of U^{i}. These sets, taken together, cover V. If $\mathcal{M}\left(U^{i}\right)=0$, then the localizations $\mathcal{M}\left(V^{i \nu}\right)$ are zero too. The sheaf property shows that the map $\mathcal{M}(V) \rightarrow \prod \mathcal{M}\left(V^{i \nu}\right)$ is injective, and therefore that $\mathcal{M}(V)=0$.
(ii) This follows from (i) because a homomorphism φ is injective or surjective if and only if its kernel or its cokernel is zero.
sectionsonfamily covdiagr defbeta
twoopensets
6.4.11. Note. Let $\left\{U^{i}\right\}$ be an affine covering of Y. Then, with $U^{i j}=U^{i} \cap U^{j}$, we will have $U^{i i}=U^{i}$ and $U^{i j}=U^{j i}$. These coincidences lead to redundancy in the statement 6.4.10 of the sheaf property. If the indices are $i=1, \ldots, k$, we only need to look at intersections $U^{i j}$ with $i<j$. The product $\mathcal{M}\left(\mathbf{U}_{1}\right)=$ $\prod_{i, j} \mathcal{M}\left(U^{i j}\right)$ that appears in the sheaf property can be replaced by the product with increasing pairs of indices $\prod_{i<j} \mathcal{M}\left(U^{i j}\right)$. For instance, if an open set Y is covered by two affine open sets U and V, the sheaf property for this covering is an exact sequence

$$
0 \rightarrow \mathcal{M}(Y) \xrightarrow{\alpha}[\mathcal{M}(U) \times \mathcal{M}(V)] \xrightarrow{\beta}[\mathcal{M}(U \cap U) \times \mathcal{M}(U \cap V) \times \mathcal{M}(V \cap U) \times \mathcal{M}(V \cap V)]
$$

The exact sequence

$$
\begin{equation*}
\mathcal{M}(\mathbf{U})=\prod \mathcal{M}\left(U^{i}\right) \tag{6.4.8}
\end{equation*}
$$

Then a morphism of families $\mathbf{U} \xrightarrow{f} \mathbf{V}$ defines a map $\mathcal{M}(\mathbf{V}) \stackrel{f^{\circ}}{\leftarrow} \mathcal{M}(\mathbf{U})$ in a way that is fairly obvious, though our notation for it is clumsy. Say that $\mathbf{V}=\left\{V^{\nu}\right\}$, that $\mathbf{U}=\left\{U^{i}\right\}$, and that f is given by a map $\nu \rightsquigarrow i_{\nu}$ of index sets, such that $V^{\nu} \rightarrow U^{i_{\nu}}$. A section of \mathcal{M} on \mathbf{U}, an element of $\mathcal{M}(\mathbf{U})$, can be thought of as a vector $u=\left(u_{i}\right)$ with $u_{i} \in \mathcal{M}\left(U^{i}\right)$, and a section of $\mathcal{M}(\mathbf{V})$ as a vector $v=\left(v_{\nu}\right)$ with $v_{\nu} \in \mathcal{M}\left(V^{\nu}\right)$. If v_{ν} denotes the restriction of $u_{i_{\nu}}$ to V^{ν}, the restriction $f^{\circ}(u)$ of $u=\left\{u_{i}\right\}$ to \mathbf{V} is $v=\left\{v_{\nu}\right\}$.

We write the sheaf property in terms of families of open sets: Let $\mathbf{U}_{0}=\left\{U^{i}\right\}$ be an affine covering of an open set Y, and let \mathbf{U}_{1} denote the family $\left\{U^{i j}\right\}$ of intersections: $U^{i j}=U^{i} \cap U^{j}$. The intersections are also affine, and there are two sets of inclusions

$$
U^{i j} \subset U^{i} \quad \text { and } \quad U^{i j} \subset U^{j}
$$

They give us two morphisms of families $\mathbf{U}_{1} \xrightarrow{d_{0}, d_{1}} \mathbf{U}_{0}$ of affine open sets: $U^{i j} \xrightarrow{d_{0}} U^{j}$ and $U^{i j} \xrightarrow{d_{1}} U^{i}$. We also have a morphism $\mathbf{U}_{0} \rightarrow Y$, and the composed morphisms $\mathbf{U}_{1} \xrightarrow{d_{i}} \mathbf{U}_{0} \rightarrow Y$ are equal. These maps form what we all a covering diagram

$$
\begin{equation*}
Y \longleftarrow \mathbf{U}_{0} \leftleftarrows \mathbf{U}_{1} \tag{6.4.9}
\end{equation*}
$$

When we apply a functor (opens) $\xrightarrow{\mathcal{M}}$ (modules) to this diagram, we obtain a sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{M}(Y) \xrightarrow{\alpha_{\mathrm{U}}} \mathcal{M}\left(\mathbf{U}_{0}\right) \xrightarrow{\beta_{\mathrm{U}}} \mathcal{M}\left(\mathbf{U}_{1}\right) \tag{6.4.10}
\end{equation*}
$$

where $\alpha_{\mathbf{U}}$ is the restriction map and $\beta_{\mathbf{U}}$ is the difference $d_{0}-d_{1}$ of the maps induced by the two morphisms $\mathbf{U}_{1} \rightrightarrows \mathbf{U}_{0}$. The sheaf property for the covering \mathbf{U}_{0} of $Y 6.4 .5$ is the assertion that this sequence is exact, which means that $\alpha_{\mathbf{U}}$ is injective, and that its image is the kernel of $\beta_{\mathbf{U}}$.
-

$$
\begin{equation*}
0 \rightarrow \mathcal{M}(Y) \rightarrow[\mathcal{M}(U) \times \mathcal{M}(V)] \xrightarrow{-.+} \mathcal{M}(U \cap V) \tag{6.4.12}
\end{equation*}
$$

It is convenient to have a more compact notation for the sheaf property (6.4.5), and for this, one can introduce symbols to represent families of open sets. Say that \mathbf{U} and \mathbf{V} represent families of open sets $\left\{U^{i}\right\}$ and $\left\{V^{\nu}\right\}$, respectively. A morphism of families $\mathbf{V} \rightarrow \mathbf{U}$ consists of a morphism from each V^{ν} to one of the subsets U^{i}. Such a morphism will be given by a map of index sets sending $\nu \rightsquigarrow i_{\nu}$, such that $V^{\nu} \subset U^{i_{\nu}}$.

There may be more than one morphism $\mathbf{V} \rightarrow \mathbf{U}$, because a subset V^{ν} may be contained in more than one of the subsets U^{i}. To define a morphism, one must make a choice among those subsets. For example, let $\mathbf{U}=\left\{U^{i}\right\}$ be a family of open sets, and let V be another open set. For each i such that $V \subset U^{i}$, there is a morphism $V \rightarrow \mathbf{U}$ that sends V to U^{i}. In the other direction, there is a unique morphism $\mathbf{U} \rightarrow V$ provided that $U^{i} \subset V$ for all i.

We extend a functor (opens) ${ }^{\circ} \xrightarrow{\mathcal{M}}$ (modules) to families $\mathbf{U}=\left\{U^{i}\right\}$, defining
is equivalent.

6.4.13. Example.

Let A denote the polynomial ring $\mathbb{C}[x, y]$, and let V be the complement of a point p in the affine space $X=$ $\operatorname{Spec} A$. This is an open set, but it isn't affine. We cover V by two localizations of $X: \quad X_{x}=\operatorname{Spec} A\left[x^{-1}\right]$ and $X_{y}=\operatorname{Spec} A\left[y^{-1}\right]$. The sheaf property 6.4.12 for \mathcal{O}_{X} and for this covering is equivalent to an exact sequence

$$
0 \rightarrow \mathcal{O}_{X}(V) \rightarrow A\left[x^{-1}\right] \times A\left[y^{-1}\right] \rightarrow A\left[(x y)^{-1}\right]
$$

It shows that a regular function on V is in the intersection $A\left[x^{-1}\right] \cap A\left[y^{-1}\right]$, which is equal to A. Therefore the sections of the structure sheaf \mathcal{O}_{X} on V are the elements of A. They are the same as the sections on X.

We have been working (tacitly) with nonempty open sets. This isn't much of a problem, but when a module \mathcal{M} on (affines) is extended to a module on all open sets, the empty set should be included. The next lemma takes care of the empty set.
6.4.14. Lemma. The only section of an \mathcal{O}-module \mathcal{M} on the empty set is the zero section: $\mathcal{M}(\emptyset)=\{0\}$. In particular, $\mathcal{O}(\emptyset)$ is the zero ring.
proof. This follows from the sheaf property. The empty set \emptyset is covered by the empty covering, the covering indexed by the empty set. Therefore $\mathcal{M}(\emptyset)$ is contained in an empty product. We want the empty product to be a module, and we have no choice but to define it to be zero. Then $\mathcal{M}(\emptyset)$ is zero too.

If you find this reasoning pedantic, you can take $\mathcal{M}(\emptyset)=\{0\}$ as an axiom.

6.5 Some More Modules

6.5.1. kernel

As we have noted, many operations that one makes on modules over a ring are compatible with localization, and therefore can be made on \mathcal{O}-modules. However, for sections over a non-affine open set one must use the sheaf property. The sections over a non-affine open set are almost never determined by an operation. The kernel of a homomorphism is among the few exceptions.
6.5.2. Proposition. Let X be a variety, and let \mathcal{K} be the kernel of a homomorphism of \mathcal{O}-modules $\mathcal{M} \rightarrow \mathcal{N}$, so that the there is an exact sequence $0 \rightarrow \mathcal{K} \rightarrow \mathcal{M} \rightarrow \mathcal{N}$. For every open subset Y of X, the sequence of sections

$$
\begin{equation*}
0 \rightarrow \mathcal{K}(Y) \rightarrow \mathcal{M}(Y) \rightarrow \mathcal{N}(Y) \tag{6.5.3}
\end{equation*}
$$

is exact.
proof. We choose a covering diagram $Y \longleftarrow \mathbf{U}_{0} \leftleftarrows \mathbf{U}_{1}$, and inspect the diagram

where the vertical maps are the difference maps $\beta_{\mathbf{U}}$ described in 6.4.10. The rows are exact because \mathbf{U}_{0} and \mathbf{U}_{1} are families of affines, and the sheaf property asserts that the kernels of the vertical maps form the sequence (6.5.3). The sequence of kernels is exact because taking kernels is a left exact operation 2.1.20.

The section functor isn't right exact. When $\mathcal{M} \rightarrow \mathcal{N}$ is a surjective homomorphism of \mathcal{O}-modules and Y is a non-affine open set, the map $\mathcal{M}(Y) \rightarrow \mathcal{N}(Y)$ often fails to be surjective. There is an example below. Cohomology, which will be discussed in the next chapter, is a substitute for right exactness.

6.5.4. modules on the projective line

The projective line \mathbb{P}^{1} is covered by the standard open sets \mathbb{U}^{0} and \mathbb{U}^{1}, and the intersection $\mathbb{U}^{01}=\mathbb{U}^{0} \cap \mathbb{U}^{1}$ is a localization of \mathbb{U}^{0} and of \mathbb{U}^{1}. The coordinate algebras of these affine open sets are $\mathcal{O}\left(\mathbb{U}^{0}\right)=A_{0}=\mathbb{C}[u]$, $\mathcal{O}\left(\mathbb{U}^{1}\right)=A_{1}=\mathbb{C}\left[u^{-1}\right]$, and $\mathcal{O}\left(\mathbb{U}^{01}\right)=A_{01}=\mathbb{C}\left[u, u^{-1}\right]$. The form 6.4.12 of the sheaf property asserts
modonpone
tensprodmodule
tensprodmap
that a global section of \mathcal{O} is determined by polynomials $f(x)$ and $g(x)$ such that $f(u)=g\left(u^{-1}\right)$ in A_{01}. The only such polynomials are the constants. So the constants are the only rational functions that are regular everywhere on \mathbb{P}^{1}. I think we knew this.

If \mathcal{M} is an \mathcal{O}-module, then $M_{0}=\mathcal{M}\left(\mathbb{U}^{0}\right)$ and $M_{1}=\mathcal{M}\left(\mathbb{U}^{1}\right)$ will be modules over the algebras A_{0} and A_{1}, respectively. The A_{01}-module $\mathcal{M}\left(\mathbb{U}^{01}\right)=M_{01}$ will be obtained by localizing M_{0} and also by localizing M_{1}. Let $v=u^{-1}$. Then

$$
M_{0}\left[u^{-1}\right] \approx M_{01} \approx M_{1}\left[v^{-1}\right]
$$

As 6.4.12 tells us, a global section of \mathcal{M} is determined by a pair of elements m_{1} and m_{2} in M_{1} and M_{2}, respectively, that become equal in the common localization M_{01}. The next lemma shows that this data determines the module \mathcal{M}.
6.5.5. Lemma. With notation as above, let M_{0}, M_{1}, and M_{01} be modules over the algebras A_{0}, A_{1}, and A_{01}, respectively, and let $M_{0}\left[u^{-1}\right] \xrightarrow{\varphi_{0}} M_{01}$ and $M_{1}\left[v^{-1}\right] \xrightarrow{\varphi_{1}} M_{01}$ be A_{01}-isomorphisms. There is an \mathcal{O}_{X}-module \mathcal{M}, unique up to isomorphism, such that $\mathcal{M}\left(\mathbb{U}^{0}\right)$ and $\mathcal{M}\left(\mathbb{U}^{1}\right)$ are isomorphic to M_{0} and M_{1}, respectively, and such that the diagram below commutes.

The proof is at the end of this section.
Suppose that M_{0} and M_{1} are free modules over A_{0} and A_{1}. The common localization M_{01} will be a free A_{01}-module. A basis \mathbf{B}_{0} of the free A_{0}-module M_{0} will also be a basis of the A_{01}-module M_{01}, and a basis \mathbf{B}_{1} of M_{1} will be a basis of M_{01}. When regarded as bases of M_{01}, \mathbf{B}_{0} and \mathbf{B}_{1} will be related by an invertible A_{01}-matrix P, and as Lemma 6.5 .5 tells us, that matrix determines \mathcal{M} up to isomorphism. When M_{i} have rank one, P will be an invertible 1×1 matrix in the Laurent polynomial ring $A_{01}=\mathbb{C}\left[u, u^{-1}\right]$, a unit of that ring. The units in A_{01} are scalar multiples of powers of u. Since the scalar can be absorbed into one of the bases, an \mathcal{O}-module of rank 1 is determined, up to isomorphism, by a power of u. It is one of the twisting modules that will be described below, in Section 6.8

The Birkhoff-Grothendieck Theorem, which will be proved in Chapter 8 describes the \mathcal{O}-modules on the projective line whose sections on \mathbb{U}^{0} and on \mathbb{U}^{1} are free, as direct sums of free \mathcal{O}-modules of rank one. This means that by changing the bases \mathbf{B}_{0} and \mathbf{B}_{1}, one can diagonalize the matrix P. The changes of basis will be given by an invertible A_{0}-matrix Q_{0} and an invertible A_{1}-matrix Q_{1}, respectively. In down-to-Earth terms, the Birkhoff-Grothendieck Theorem asserts that, for any invertible A_{01}-matrix P, there exist an invertible A_{0-} matrix Q_{0} and an invertible A_{1}-matrix Q_{1}, such that $Q_{0}^{-1} P Q_{1}$ is diagonal, and its diagonal entries are powers of u.

6.5.6. tensor products

Tensor products are compatible with localization. If M and N are modules over a domain A and s is a nonzero element of A, the canonical map $\left(M \otimes_{A} N\right)_{s} \rightarrow M_{s} \otimes_{A_{s}} N_{s}$ is an isomorphism (Corollary 2.1.32). Therefore the tensor product $\mathcal{M} \otimes_{\mathcal{O}} \mathcal{N}$ of \mathcal{O}-modules \mathcal{M} and \mathcal{N} is defined. On an affine open set $U,\left[\mathcal{M} \otimes_{\mathcal{O}}\right.$ $\mathcal{N}](U)$ is the tensor product $\mathcal{M}(U) \otimes_{\mathcal{O}(U)} \mathcal{N}(U)$.

Let \mathcal{M} and \mathcal{N} be \mathcal{O}-modules, let $\mathcal{M} \otimes_{\mathcal{O}} \mathcal{N}$ be the tensor product module, and let V be an arbitrary open subset of X. There is a canonical map

$$
\begin{equation*}
\mathcal{M}(V) \otimes_{\mathcal{O}(V)} \mathcal{N}(V) \rightarrow\left[\mathcal{M} \otimes_{\mathcal{O}} \mathcal{N}\right](V) \tag{6.5.7}
\end{equation*}
$$

By definition of the tensor product module, this map is an equality when V is affine. To describe the map for arbitrary V, we cover V by a family \mathbf{U}_{0} of affine open sets and form a diagram

The family \mathbf{U}_{1} of intersections consists of affine open sets, as does \mathbf{U}_{0}, so the vertical maps b and c are equalities. The bottom row is exact, and the composition $g f$ is zero. So f maps $\mathcal{M}(V) \otimes_{\mathcal{O}(V)} \mathcal{N}(V)$ to the kernel of g, which is equal to $\left[\mathcal{M} \otimes_{\mathcal{O}} \mathcal{N}\right](V)$. The map a is 6.5.7. When V isn't affine, this map needn't be either injective or surjective.
6.5.8. Examples. These examples illustrate the failure of bijectivity of 6.5.7.
(i) Let p and q be distinct points of the projective line X, and let κ_{p} and κ_{q} be the residue field modules on X. Then $\kappa_{p}(X)=\kappa_{q}(X)=\mathbb{C}$, so $\kappa_{p}(X) \otimes_{\mathcal{O}(X)} \kappa_{q}(X)=\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}=\mathbb{C}$. But $\kappa_{p} \otimes_{\mathcal{O}} \kappa_{q}=0$. The map 6.5.7p with $V=X$,

$$
\kappa_{p}(X) \otimes_{\mathcal{O}(X)} \kappa_{q}(X) \rightarrow\left[\kappa_{p} \otimes_{\mathcal{O}} \kappa_{q}\right](X)
$$

is the zero map. It isn't injective.
(ii) Let p a point of a variety X, and let \mathfrak{m}_{p} and κ_{p} be the maximal ideal and residue field modules at p. There is an exact sequence of \mathcal{O}-modules

$$
\begin{equation*}
0 \rightarrow \mathfrak{m}_{p} \rightarrow \mathcal{O} \xrightarrow{\pi_{p}} \kappa_{p} \rightarrow 0 \tag{6.5.9}
\end{equation*}
$$

In this case, the sequence of global sections is exact.
(iii) Let p and q be the points $(1,0)$ and $(0,1)$ of the projective line \mathbb{P}^{1}. We form a homomorphism

$$
\mathfrak{m}_{p} \times \mathfrak{m}_{q} \xrightarrow{\varphi} \mathcal{O}
$$

φ being the map $(a, b) \rightarrow b-a$. On the open set $\mathbb{U}^{0}, \mathfrak{m}_{q} \rightarrow \mathcal{O}$ is bijective and therefore surjective. Similarly, $\mathfrak{m}_{p} \rightarrow \mathcal{O}$ is surjective on \mathbb{U}^{1}. Since \mathbb{U}^{0} and \mathbb{U}^{1} cover \mathbb{P}^{1}, φ is surjective 6.4 .6 (ii). The only global section of $\mathfrak{m}_{p} \times \mathfrak{m}_{q}$ is zero, while \mathcal{O} has the nonzero global section 1 . The map on global sections determined by φ isn't surjective.

6.5.10. the function field module

Let F be the function field of a variety X. The function field module \mathcal{F} is defined as follows: The module of sections $\mathcal{F}(U)$ on any nonempty open set U is the field F. It is called a constant \mathcal{O}-module because $\mathcal{F}(U)$ is the same for every nonempty U. It won't be a finite module unless X is a point.

Tensoring with the function field module: Let \mathcal{M} be an \mathcal{O}-module on a variety X, and let \mathcal{F} be the function field module. We describe the tensor product module $\mathcal{M} \otimes_{\mathcal{O}} \mathcal{F}$.

If $U=\operatorname{Spec} A$ is an affine open set and $M=\mathcal{M}(U)$, the module of sections of on U is the F-vector space $M \otimes_{A} F$. If S is the multipicative system of nonzero elements of A, then $M \otimes_{A} F$ is the localization $M S^{-1}$. On a simple localization U_{s}, the module of sections will be $M_{s} \otimes_{A_{s}} F$, which is the same as $M \otimes_{A} F$, because s is invertible in F. The vector space $M \otimes_{A} F$ is independent of the affine open set U. So $\mathcal{M} \otimes_{\mathcal{O}} \mathcal{F}$ is a constant \mathcal{O}-module. If \mathcal{M} is a torsion module, the tensor product $\mathcal{M} \otimes_{\mathcal{O}} \mathcal{F}$ will be zero.

(6.5.11) \mathcal{O}-modules on affine varieties

The next proposition shows that, on an affine variety $\operatorname{Spec} A, \mathcal{O}$-modules correspond to A-modules .
6.5.12. Proposition. Let $X=\operatorname{Spec} A$ be an affine variety. Sending an \mathcal{O}-module \mathcal{M} to the A-module $\mathcal{M}(X)$ of its global sections defines a bijective correspondence between \mathcal{O}-modules and A-modules.
proof. We must invert the functor \mathcal{O}-(modules) $\rightarrow A$-(modules) that sends \mathcal{M} to $\mathcal{M}(X)$. Given an A-module M, the corresponding \mathcal{O}-module \mathcal{M} is defined as follows: Let $U=\operatorname{Spec} B$ be an affine open subset of X. The inclusion $U \subset X$ corresponds to an algebra homomorphism $A \rightarrow B$. We define $\mathcal{M}(U)$ to be the B module $B \otimes_{A} M$. If s is a nonzero element of B, then $B_{s} \otimes_{A} M$ is canonically isomorphic to the localization $\left(B \otimes_{A} M\right)_{s}$ of $B \otimes_{A} M$. Therefore \mathcal{M} is an \mathcal{O}-module, and $\mathcal{M}(X)=M$.

Conversely, let \mathcal{M} be an \mathcal{O}-module such that $\mathcal{M}(X)=M$. Then, with notation as above, the map $M=$ $\mathcal{M}(X) \rightarrow \mathcal{M}(U)$ induces a homomorphism of B-modules $M \otimes_{A} B \rightarrow \mathcal{M}(U)$. When U is a localization X_{s} of X, so that $B=A_{s}$, both $M \otimes_{A} A_{s}$ and $\mathcal{M}\left(X_{s}\right)$ are localizations of M, so they are isomorphic. Therefore the module \mathcal{M} is determined up to isomorphism.
residue-fieldmodule
idealsheafatp

ffldmod

modaff
moduleonaffines
deletepoint
omodlim
limexample
limits
jstarlimit
module-
Hom
homismodule

6.5.13. Example.

This example shows that, when an open set isn't affine, defining $\mathcal{M}(V)=B \otimes_{A} M$, as in the proof of Proposition 6.5.12, may be wrong. Let X be the affine plane $\operatorname{Spec} A, \quad A=\mathbb{C}[x, y]$, let V be the complement of the origin in X, and let M be the A-module $A / y A$. This module can be identified with $\mathbb{C}[x]$, which becomes an A-module when scalar multiplication by y is defined to be zero. Here $\mathcal{O}(V)=\mathcal{O}(X)=A$ 6.4.13). If we followed the method used for affine open sets, we would set $\mathcal{M}(V)=A \otimes_{A} M=\mathbb{C}[x]$. To identify $\mathcal{M}(V)$ correctly, we cover V by the two affine open sets $X_{x}=\operatorname{Spec} A\left[x^{-1}\right]$ and $X_{y}=\operatorname{Spec} A\left[y^{-1}\right]$. Then $\mathcal{M}\left(X_{x}\right)=M\left[x^{-1}\right]=\mathbb{C}\left[x, x^{-1}\right]$, while $\mathcal{M}\left(X_{y}\right)=0$. The sheaf property of \mathcal{M} shows that $\mathcal{M}(V) \approx$ $\mathcal{M}\left(X_{x}\right)=\mathbb{C}\left[x, x^{-1}\right]$.

(6.5.14) limits of \mathcal{O}-modules

A directed set M_{\bullet} of modules over a ring R is a sequence of homomorphisms $M_{0} \rightarrow M_{1} \rightarrow M_{2} \rightarrow \cdots$. Its limit $\underset{\longrightarrow}{\lim } M_{\bullet}$ is the R-module whose elements are equivalence classes on the elements of the union $\bigcup M_{k}$, the equivalence relation being that elements m in M_{i} and m^{\prime} in M_{j} are equivalent if they have the same image in M_{n} when n is sufficiently large. An element of $\underset{\longrightarrow}{\lim } M_{\bullet}$ will be represented by an element of M_{i} for some i.
6.5.15. Example. Let $R=\mathbb{C}[x]$ and let \mathfrak{m} be the maximal ideal $x R$. Repeated multiplication by x defines a directed set

$$
R \xrightarrow{x} R \xrightarrow{x} R \xrightarrow{x} R \longrightarrow \cdots
$$

Its limit is isomorphic to the Laurent polynomial ring $R\left[x^{-1}\right]=\mathbb{C}\left[x, x^{-1}\right]$.
6.5.16. A directed set of \mathcal{O}-modules on a variety X is an infinite sequence $\mathcal{M}_{\bullet}=\left\{\mathcal{M}_{0} \rightarrow \mathcal{M}_{1} \rightarrow \mathcal{M}_{2} \rightarrow\right.$ $\cdots\}$ of homomorphisms of \mathcal{O}-modules. For every affine open set U, the $\mathcal{O}(U)$-modules $\mathcal{M}_{n}(U)$ will form a directed set, as defined above. The direct limit $\underset{\longrightarrow}{\lim } \mathcal{M}_{\bullet}$ is defined simply, by taking the limit for each affine open set: $\left[\underset{\longrightarrow}{\lim } \mathcal{M}_{\bullet}\right](U)=\underset{\longrightarrow}{\lim }\left[\mathcal{M}_{\bullet}(U)\right]$. This limit operation is compatible with localization, so $\underset{\longrightarrow}{\lim } \mathcal{M}_{\bullet}$ is an \mathcal{O}-module. In fact, the equality $\left[\underset{\longrightarrow}{\lim } \mathcal{M}_{\bullet}\right](U)=\underset{\longrightarrow}{\lim }\left[\mathcal{M}_{\bullet}(U)\right]$ will be true for every open set, not only for affine open sets.

A map of directed sets of \mathcal{O}-modules $\mathcal{M}_{\bullet} \rightarrow \mathcal{N}_{\bullet}$ is a diagram

A sequence $\mathcal{M}_{\bullet} \rightarrow \mathcal{N}_{\bullet} \rightarrow \mathcal{P}_{\bullet}$ of maps of directed sets is exact if the sequences $\mathcal{M}_{i} \rightarrow \mathcal{N}_{i} \rightarrow \mathcal{P}_{i}$ are exact for every i.
6.5.17. Lemma. (i) The limit operation is exact. If $\mathcal{M}_{\bullet} \rightarrow \mathcal{N}_{\bullet} \rightarrow \mathcal{P}_{\bullet}$ is an exact sequence of directed sets of \mathcal{O}-modules, the limits form an exact sequence.
(ii) Tensor products are compatible with limits: If \mathcal{N}_{\bullet} is a directed set of \mathcal{O}-modules and \mathcal{M} is another \mathcal{O}-module, then $\underset{\longrightarrow}{\lim }\left[\mathcal{M} \otimes_{\mathcal{O}} \mathcal{N}_{\bullet}\right] \approx \mathcal{M} \otimes_{\mathcal{O}}\left[\lim _{\longrightarrow} \mathcal{N}_{\bullet}\right]$.

(6.5.18) the module of homomorphisms

Let M and N be modules over a ring A. The set of homomorphisms $M \rightarrow N$, which is often denoted by $\operatorname{Hom}_{A}(M, N)$, becomes an A-module with some fairly obvious laws of composition: If φ and ψ are homomorphisms and a is an element of A, then $\varphi+\psi$ and $a \varphi$ are defined by

$$
\begin{equation*}
[\varphi+\psi](m)=\varphi(m)+\psi(m) \quad \text { and } \quad[a \varphi](m)=a \varphi(m) \tag{6.5.19}
\end{equation*}
$$

Because φ is a module homomorphism, it is also true that $\varphi\left(m_{1}+m_{2}\right)=\varphi\left(m_{1}\right)+\varphi\left(m_{2}\right)$, and that $a \varphi(m)=\varphi(a m)$.
6.5.20. Lemma. (i) An A-module N is canonically isomorphic to the module $\operatorname{Hom}_{A}(A, N)$. The homomorphism $A \xrightarrow{\varphi} N$ that corresponds to an element v of N is multiplication by $v: \varphi(a)=a v$. The element of N that corresponds to a homomorphism $A \xrightarrow{\varphi} N$ is $v=\varphi(1)$.
(ii) $\operatorname{Hom}_{A}\left(A^{k}, N\right)$ is isomorphic to N^{k}, and $\operatorname{Hom}_{A}\left(A^{k}, A^{\ell}\right)$ is isomorphic to the module $A^{\ell \times k}$ of $k \times \ell$ A-matrices.
6.5.21. Lemma. As a functor in two variables, Hom_{A} is left exact and contravariant in the first variable: For any A-module N, an exact sequence $M_{1} \xrightarrow{a} M_{2} \xrightarrow{b} M_{3} \rightarrow 0$ of A-modules induces an exact sequence

$$
0 \rightarrow \operatorname{Hom}_{A}\left(M_{3}, N\right) \xrightarrow{\circ b} \operatorname{Hom}_{A}\left(M_{2}, N\right) \xrightarrow{\circ a} \operatorname{Hom}_{A}\left(M_{1}, N\right)
$$

Hom_{A} is left exact and covariant in the second variable.
6.5.22. Corollary. If M and N are finite A-modules over a notherian ring A, then $\operatorname{Hom}_{A}(M, N)$ is a finite A-module.
proof. Because M is finitely generated, there is a surjective map $A^{k} \rightarrow M$, which gives us an injective map $\operatorname{Hom}_{A}(M, N) \rightarrow \operatorname{Hom}_{A}\left(A^{k}, N\right)=N^{k}$. So $\operatorname{Hom}_{A}(M, N)$ is isomorphic to a submodule of the finite module N^{k}. Therefore it is a finite module.
6.5.23. Lemma. Let M and N be modules over a noetherian domain A, and suppose that M is a finite module. Let s be a nonzero element of A. The localization $\left(\operatorname{Hom}_{A}(M, N)\right)_{s}$ is canonically isomorphic to $\operatorname{Hom}_{A_{s}}\left(M_{s}, N_{s}\right)$. The analogous statement is true for localization by a multiplicative system S.
proof. Since $\operatorname{Hom}_{A}(A, M) \approx M$, it is true that $\left(\operatorname{Hom}_{A}(A, M)\right)_{s} \approx M_{s} \approx \operatorname{Hom}_{A_{s}}\left(A_{s}, M_{s}\right)$ and that $\left(\operatorname{Hom}_{A}\left(A^{k}, M\right)\right)_{s} \approx M_{s}^{k} \approx \operatorname{Hom}_{A_{s}}\left(A_{s}^{k}, M_{s}\right)$.

We choose a presentation $A^{\ell} \rightarrow A^{k} \rightarrow M \rightarrow 0$ of the A-module M 2.1.21. Its localization $A_{s}^{\ell} \rightarrow A_{s}^{k} \rightarrow$ $M_{s} \rightarrow 0$, is a presentation of the A_{s}-module M_{s}. The sequence

$$
0 \rightarrow \operatorname{Hom}_{A}(M, N) \rightarrow \operatorname{Hom}_{A}\left(A^{k}, N\right) \rightarrow \operatorname{Hom}_{A}\left(A^{\ell}, N\right)
$$

is exact, and so is its localization. So the lemma follows from the case that $M=A^{k}$.
This lemma shows that, when \mathcal{M} and \mathcal{N} are finite \mathcal{O}-modules on a variety X, an \mathcal{O}-module of homomorphisms $\mathcal{M} \rightarrow \mathcal{N}$ is defined. This \mathcal{O}-module may be denoted by $\underline{\operatorname{Hom}}_{\mathcal{O}}(\mathcal{M}, \mathcal{N})$. When $U=\operatorname{Spec} A$ is an affine open set, $M=\mathcal{M}(U)$, and $N=\mathcal{N}(U)$, the module of sections of $\operatorname{Hom}_{\mathcal{O}}(\mathcal{M}, \mathcal{N})$ on U is the A-module $\operatorname{Hom}_{A}(M, N)$.

The analogues of Lemma 6.5.20 and lemma 6.5.21 are true for Hom:
6.5.24. Corollary. (i) An \mathcal{O}-module \mathcal{M} on a smooth curve Y is isomorphic to $\underline{\operatorname{Hom}}_{\mathcal{O}}(\mathcal{O}, \mathcal{M})$.
(ii) The functor Hom is left exact and contravariant in the first variable, and it is left exact and covariant in the second variable.
6.5.25. Note. The notations Hom and Hom are cumbersome as well as confusing. It seems permissible to drop the symbol Hom, and to write $A_{A}(M, N)$ for $\operatorname{Hom}_{A}(M, N)$. Similarly, if \mathcal{M} and \mathcal{M} are \mathcal{O}-modules on a variety X, we may write $\mathcal{O}(\mathcal{M}, \mathcal{N})$ or $x_{X}(\mathcal{M}, \mathcal{N})$ for $\underline{\operatorname{Hom}}_{\mathcal{O}}(\mathcal{M}, \mathcal{N})$.

(6.5.26) the dual module

Let \mathcal{M} be a locally free \mathcal{O}-modules on a variety X. The dual module \mathcal{M}^{*} is the \mathcal{O}-module of homomorphisms $\mathcal{M} \rightarrow \mathcal{O}: \quad \mathcal{M}^{*}=\mathcal{O}(\mathcal{M}, \mathcal{O})$. A section of \mathcal{M}^{*} on an affine open set U is an $\mathcal{O}(U)$-module homomorphism $\mathcal{M}(U) \rightarrow \mathcal{O}(U)$. The dualizing operation is contravariant. A homomorphism $\mathcal{M} \rightarrow \mathcal{N}$ of locally free \mathcal{O}-modules induces a homomorphism $\mathcal{M}^{*} \leftarrow \mathcal{N}^{*}$.

The dual \mathcal{O}^{*} of the structure sheaf \mathcal{O} is \mathcal{O}. If \mathcal{M} is a free module with basis v_{1}, \ldots, v_{k}, then \mathcal{M}^{*} is also free, with the dual basis $v_{1}^{*}, \ldots, v_{k}^{*}$, defined by

$$
v_{i}^{*}\left(v_{i}\right)=1 \quad \text { and } \quad v_{i}^{*}\left(v_{j}\right)=0 \text { if } i \neq j
$$

When \mathcal{M} is locally free, \mathcal{M}^{*} is also locally free.
bidualm
6.5.28. Proposition. Let X be a variety.
(i) Let $\mathcal{P} \xrightarrow{f} \mathcal{N} \xrightarrow{g} \mathcal{P}$ be homomorphisms of \mathcal{O}-modules such that the composition $g f$ is the identity map $\mathcal{P} \rightarrow \mathcal{P}$. So f is injective and g is surjective. Then \mathcal{N} is the direct sum of the image of f, which is isomorphic to \mathcal{P}, and the kernel \mathcal{K} of $g: \mathcal{N} \approx \mathcal{P} \oplus \mathcal{K}$.
(ii) Let $0 \rightarrow \mathcal{M} \rightarrow \mathcal{N} \rightarrow \mathcal{P} \rightarrow 0$ be an exact sequence of \mathcal{O}-modules. If \mathcal{P} is locally free, the dual modules form an exact sequence $0 \rightarrow \mathcal{P}^{*} \rightarrow \mathcal{N}^{*} \rightarrow \mathcal{M}^{*} \rightarrow 0$.
proof. (i) This follows from the analogous statement about modules over a ring.
(ii) The sequence $0 \rightarrow \mathcal{P}^{*} \rightarrow \mathcal{N}^{*} \rightarrow \mathcal{M}^{*}$ is exact whether or not the modules are locally free (6.5.21) (ii). The zero on the right comes from the fact that, when \mathcal{P} is locally free, there is an affine covering on which it is free. When \mathcal{P} is free, the given sequence splits: \mathcal{N} is isomorphic to $\mathcal{M} \oplus \mathcal{P} \mathbf{2 . 1 . 2 2}$. Therefore the map $\mathcal{N}^{*} \rightarrow \mathcal{M}^{*}$ is locally surjective.

6.5.29. proof of Proposition 6.5.5.

With notation as in the statement of the proposition, we suppose given modules M_{0}, M_{1} and an isomorphism $M_{0}\left[u^{-1}\right] \rightarrow M_{1}\left[v^{-1}\right]$. We are to show that this data comes from an \mathcal{O}-module \mathcal{M}. Proposition 6.5.12 shows that M_{i} defines \mathcal{O}-modules \mathcal{M}_{i} on \mathbb{U}^{i} for $i=0,1$, and the restrictions of \mathcal{M}_{0} and \mathcal{M}_{1} to \mathbb{U}^{01} are isomorphic. Let's denote all of these modules by \mathcal{M}. Then \mathcal{M} is defined on any open set that is contained in \mathbb{U}^{0} or in \mathbb{U}^{1}.

Let V be an arbitrary open set V, and let $V^{i}=V \cap \mathbb{U}^{i}$, for $i=0,1,01$. We define $\mathcal{M}(V)$ to be the kernel of the map $\left[\mathcal{M}\left(V^{0}\right) \times \mathcal{M}\left(V^{1}\right)\right] \rightarrow \mathcal{M}\left(V^{01}\right)$. With this definition, \mathcal{M} becomes a functor. We must verify the sheaf property, and the notation gets confusing. We suppose given an affine covering $\left\{W^{\nu}\right\}$ of V. We denote this covering by \mathbf{W}_{0}, and we denote $\left\{W^{\nu} \cap W^{\mu}\right\}$ by \mathbf{W}_{1}, so that the corresponding covering diagram is $V \leftarrow \mathbf{W}_{0} \leftleftarrows \mathbf{W}_{1}$.

For $i=0,1,01$, let $\mathbf{W}_{0}^{i}=\mathbf{W}_{0} \cap \mathbb{U}^{i}$ and $\mathbf{W}_{1}^{i}=\mathbf{W}_{1} \cap \mathbb{U}^{i}$. We form a diagram

The columns are exact by our definition of \mathcal{M}, and the second and third rows are exact because the open sets involved are contained in \mathbb{U}^{0} or \mathbb{U}^{1}. Since kernel is a left exact operation, the top row is exact too. This is the sheaf property.

6.6 Direct Image

6.6.2. Definition. An affine morphism is a morphism $Y \xrightarrow{f} X$ of varieties with the property that the inverse image $f^{-1}(U)$ of every affine open subset U of X is an affine open subset of Y.

The following are examples of affine morphisms:

- the inclusion of an affine open subset Y into X,
- the inclusion of a closed subvariety Y into X,
- a finite morphism, an integral morphism.

However, if Y is the complement of a point of the projective plane X, the inclusion of Y into X isn't an affine morphism.
As one sees from these examples, affine morphisms form a rather miscellaneous collection. However, the concept is convenient.
6.6.3. Definition. Let $Y \xrightarrow{u} X$ be an affine morphism and let \mathcal{N} be an \mathcal{O}_{Y}-module. The direct image $f_{*} \mathcal{N}$ of \mathcal{N} is the \mathcal{O}_{X}-module such that if U is an affine open subset of X and V is its inverse image in Y, then $\left[f_{*} \mathcal{N}\right](U)=\mathcal{N}(V)$, or, $\left[f_{*} \mathcal{N}\right](U)=\mathcal{N}\left(f^{-1} U\right)$, i.e., $\left[f_{*} \mathcal{N}\right](U)=\mathcal{N}\left(f^{-1} U\right)$.

The direct image generalizes restriction of scalars in modules over rings. Recall that, if $A \xrightarrow{\varphi} B$ is an algebra homomorphism and ${ }_{B} N$ is a B-module, one can restrict scalars to make N into an A-module. Scalar multiplication by an element a of A on the restricted module ${ }_{A} N$ is defined to be scalar multiplication by the image $\varphi(a)$ of a.
6.6.4. Lemma. Let $Y \xrightarrow{f} X$, with $X=\operatorname{Spec} A$ and $Y=\operatorname{Spec} B$, be the morphism defined by an algebra homomorphism $A \xrightarrow{\varphi} B$. If \mathcal{N} is the \mathcal{O}_{Y}-module determined by the B-module ${ }_{B} N$, its direct image $f_{*} \mathcal{N}$ is the \mathcal{O}_{X}-module determined by the A-module ${ }_{A} N$.
6.6.5. Lemma. Let $Y \xrightarrow{f} X$ be an affine morphism of varieties, and let \mathcal{N} be an \mathcal{O}_{Y}-module. The direct image $f_{*} \mathcal{N}$ is an \mathcal{O}_{X}-module.
proof. Let $U^{\prime} \rightarrow U$ be an inclusion of affine open subsets of X, and let $V=f^{-1} U$ and $V^{\prime}=f^{-1} U^{\prime}$. These inverse images are affine open subsets of Y. The inclusion $V^{\prime} \rightarrow V$ gives us a homomorphism $\mathcal{N}(V) \rightarrow$ $\mathcal{N}\left(V^{\prime}\right)$, and therefore a homomorphism $f_{*} \mathcal{N}(U) \rightarrow f_{*} \mathcal{N}\left(U^{\prime}\right)$. Composition with f defines a homomorphism $\mathcal{O}_{X}(U) \rightarrow \mathcal{O}_{Y}(V)$, and $\mathcal{N}(V)$ is an $\mathcal{O}_{Y}(V)$-module. Restriction of scalars to $\mathcal{O}_{X}(U)$ makes $\left[f_{*} \mathcal{N}\right](U)=$ $\mathcal{N}(V)$ into an $\mathcal{O}_{X}(U)$-module.

To verify that $f_{*} \mathcal{N}$ is an \mathcal{O}_{X}-module, one must show that if U is an affine open subset of X and s is a nonzero element of $\mathcal{O}_{X}(U)$, then $\left[f_{*} \mathcal{N}\right]\left(U_{s}\right)$ is obtained by localizing $\left[f_{*} \mathcal{N}\right](U)$. Let V be the inverse image of U and let s^{\prime} be the image of s in $\mathcal{O}_{Y}(V)$. Then $\left[f_{*} \mathcal{N}\right]\left(U_{s}\right)=\mathcal{N}\left(V_{s^{\prime}}\right)=\mathcal{N}(V)_{s^{\prime}}$, provided that $s^{\prime} \neq 0$. If $s^{\prime}=0$, then both $\left.f_{*} \mathcal{N}\right]\left(U_{s}\right)$ and $\mathcal{N}\left(V_{s^{\prime}}\right)$ will be zero.

It isn't difficult to extend the definition of direct image to an arbitrary morphism of varieties, but since we will use direct images only for affine morphisms, we leave the extension as an exercise.
6.6.6. Lemma. Let $Y \xrightarrow{f} X$ be an affine morphism and let $\mathcal{N} \rightarrow \mathcal{N}^{\prime} \rightarrow \mathcal{N}^{\prime \prime}$ be an exact sequence of \mathcal{O}_{Y}-modules. The direct images form an exact sequence of \mathcal{O}_{X}-modules $f_{*} \mathcal{N} \rightarrow f_{*} \mathcal{N}^{\prime} \rightarrow f_{*} \mathcal{N}^{\prime \prime}$.
6.6.7. Lemma. Direct images are compatible with limits: If \mathcal{M}_{\bullet} is a directed set of \mathcal{O}-modules, then $\underset{\longrightarrow}{\lim }\left(f_{*} \mathcal{M}_{\bullet}\right) \approx f_{*}\left(\underset{\longrightarrow}{\lim } \mathcal{M}_{\bullet}\right)$.

Two important cases of direct image will be that f is the inclusion of a closed subvariety or an affine open subvariety. We discuss those special cases now.

(6.6.8) extension by zero - the inclusion of a closed subset

When $Y \xrightarrow{i} X$ is the inclusion of a closed subvariety into a variety X and \mathcal{N} is an \mathcal{O}_{Y}-module, the direct image $i_{*} \mathcal{N}$ is also called the extension of \mathcal{N} by zero. If U is an affine open subset of X then, because i is an inclusion map, $i^{-1} U=U \cap Y$. Therefore

$$
\left[i_{*} \mathcal{N}\right](U)=\mathcal{N}(U \cap Y)
$$

The term "extension by zero" refers to the fact that, when an affine open set U of X doesn't meet Y, the intersection $U \cap Y$ is empty, and the module of sections of $\left[i_{*} \mathcal{N}\right](U)$ is zero. So $i_{*} \mathcal{N}$ is zero on the complement of Y.
extfrom-
point
izero
in-

6.6.9. Examples.

(i) Let $p \xrightarrow{i} X$ be the inclusion of a point into a variety. When we view the residue field $k(p)$ as a module on the point p, its extension by zero is the residue field module κ_{p}.
(ii) Let $Y \xrightarrow{i} X$ be the inclusion of a closed subvariety, and let \mathcal{I} be the ideal of Y in \mathcal{O}_{Y}. The extension by zero of the structure sheaf on Y fits into an exact sequence of \mathcal{O}_{X}-modules

$$
0 \rightarrow \mathcal{I} \rightarrow \mathcal{O}_{X} \rightarrow i_{*} \mathcal{O}_{Y} \rightarrow 0
$$

So $i_{*} \mathcal{O}_{Y}$ is isomorphic to the quotient module $\mathcal{O}_{X} / \mathcal{I}$.
6.6.10. Proposition. Let $Y \xrightarrow{i} X$ be the inclusion of a closed subvariety Y into a variety X, and let \mathcal{I} be the ideal of Y. Let \mathscr{M} denote the subcategory of the category of \mathcal{O}_{X}-modules sthat are annihilated by \mathcal{I}. Extension by zero defines an equivalence of categories

$$
\mathcal{O}_{Y}-\text { modules } \xrightarrow{i_{*}} \mathscr{M}
$$

proof. Let U be an affine open subset of X. The intersection $U \cap Y=V$ is a closed subvariety of U. Let α be a section of $i_{*} \mathcal{N}(U)(=\mathcal{N}(V))$. Scalar multiplication on $i_{*} \mathcal{N}$ is defined by restriction of scalars from \mathcal{O}_{X} to it quotient \mathcal{O}_{Y}. If f is a section of \mathcal{O}_{X} on U and \bar{f} is its restriction to V, then $f \alpha=\bar{f} \alpha$. If f is in $\mathcal{I}(U)$, then $\bar{f}=0$ and therefore $f \alpha=\bar{f} \alpha=0$. So the extension by zero of an \mathcal{O}_{Y}-module is annihilated by \mathcal{I}. The direct image $i_{*} \mathcal{N}$ is an object of \mathscr{M}.

To complete the proof, we construct an inverse to the direct image. Starting with an \mathcal{O}_{X}-module \mathcal{M} that is annihilated by \mathcal{I}, we construct an \mathcal{O}_{Y}-module \mathcal{N} such that $i_{*} \mathcal{N}$ is isomorphic to \mathcal{M}.

Let V be an open subset of Y. The topology on Y is induced from the topology on X, so $V=X_{1} \cap Y$ for some open subset X_{1} of X. We try to set $\mathcal{N}(V)=\mathcal{M}\left(X_{1}\right)$. To show that this is well-defined, we show that if X_{2} is another open subset of X and if $V=X_{2} \cap Y$, then $\mathcal{M}\left(X_{2}\right)$ is isomorphic to $\mathcal{M}\left(X_{1}\right)$. Let $X_{3}=X_{1} \cap X_{2}$. Then it is also true that $V=X_{3} \cap Y$. Since $X_{3} \subset X_{1}$, we have a map $\mathcal{M}\left(X_{1}\right) \rightarrow \mathcal{M}\left(X_{3}\right)$. It suffices to show that this map is an isomorphism, because the same reasoning will give us an isomorphism $\mathcal{M}\left(X_{2}\right) \rightarrow \mathcal{M}\left(X_{3}\right)$.

The complement $U=X_{1}-V$ of V in X_{1} is an open subset of X_{1} and of X, and $U \cap Y=\emptyset$. We cover U by a set $\left\{U^{i}\right\}$ of affine open sets. Then X_{1} is covered by the open sets $\left\{U^{i}\right\}$ together with X_{3}. The restriction of \mathcal{I} to each of the sets U^{i} is the unit ideal, and since \mathcal{I} annihilates $\mathcal{M}, \mathcal{M}\left(U^{i}\right)=0$. The sheaf property shows that $\mathcal{M}\left(X_{1}\right)$ is isomorphic to $\mathcal{M}\left(X_{3}\right)$.

The rest of the proof, checking localization and verifying that \mathcal{N} is determined up to isomorphism, is boring.

(6.6.11) inclusion of an affine open subset

Let $Y \xrightarrow{j} X$ be the inclusion of an affine open subvariety Y into a variety X.
Before going to the direct image, we mention a rather trivial operation, the restriction of an \mathcal{O}_{X} - module from X to Y. By definition, the sections of the restricted module on a subset U of Y are simply the elements of $\mathcal{M}(U)$. This makes sense because open subsets of Y are open subsets of X too. We can use subscript notation for restriction, writing \mathcal{M}_{Y} for the restriction of an \mathcal{O}_{X}-module \mathcal{M} to Y, and denoting the given module \mathcal{M} by \mathcal{M}_{X} when that seems advisable for clarity. If U is an open subset of Y,

$$
\begin{equation*}
\mathcal{M}_{Y}(U)=\mathcal{M}_{X}(U) \tag{6.6.12}
\end{equation*}
$$

This subscript notation is permissible becuse the restriction of the structure sheaf \mathcal{O}_{X} to the open set Y is the structure sheaf \mathcal{O}_{Y} on Y.

Now the direct image: Let $Y \xrightarrow{j} X$ be the inclusion of an affine open subvariety Y, and let \mathcal{N} be an \mathcal{O}_{Y}-module. The inverse image of an open subset U of X is the intersection $Y \cap U$, which is affine. So by definition, the direct image $j_{*} \mathcal{N}$ s defined by

$$
\left[j_{*} \mathcal{N}\right](U)=\mathcal{N}(Y \cap U)
$$

For example, $\left[j_{*} \mathcal{O}_{Y}\right](U)$ is the algebra of rational functions on X that are regular on $Y \cap U$.
6.6.13. Example. Let $X_{s} \xrightarrow{j} X$ be the inclusion of a localization X_{s} into an affine variety $X=\operatorname{Spec} A$. Modules on X correspond to their global sections, which are A-modules. Similarly, modules on X_{s} correspond to A_{s}-modules. When we restrict the \mathcal{O}_{X}-module \mathcal{M}_{X} that corresponds to an A-module M to the open set X_{s}, we obtain the $\mathcal{O}_{X_{s}}$-module $\mathcal{M}_{X_{s}}$ that corresponds to the A_{s}-module M_{s}. The module M_{s} is also the module of global sections of $j_{*} \mathcal{M}_{X_{s}}$ on X :

$$
\left[j_{*} \mathcal{M}_{X_{s}}\right](X) \stackrel{\text { def }}{=} \mathcal{M}_{X_{s}}\left(X_{s}\right)=M_{s}
$$

The localization M_{s} is made into an A-module by restriction of scalars.
6.6.14. Proposition. Let $Y \xrightarrow{j} X$ be the inclusion of an affine open subvariety Y into a variety X.
(i) The restriction \mathcal{O}_{X}-modules $\rightarrow \mathcal{O}_{Y}$-modules is an exact operation.
(ii) The direct image functor j_{*} is exact.
(iii) Let $\mathcal{M}=\mathcal{M}_{X}$ be an \mathcal{O}_{X}-module. There is a canonical homomorphism from \mathcal{M}_{X} to the direct image of its restriction: $\mathcal{M}_{X} \rightarrow j_{*}\left[\mathcal{M}_{Y}\right]$.
(iv) Let \mathcal{N} be an \mathcal{O}_{Y}-module. The restriction of the direct image $j_{*} \mathcal{N}$ to Y is equal to $\mathcal{N}:\left[j_{*} \mathcal{N}\right]_{Y}=\mathcal{N}$.
proof. (ii) Let U be an affine open subset of X, and let $\mathcal{M} \rightarrow \mathcal{N} \rightarrow \mathcal{P}$ be an exact sequence of \mathcal{O}_{Y}-modules. The sequence $j_{*} \mathcal{M}(U) \rightarrow j_{*} \mathcal{N}(U) \rightarrow j_{*} \mathcal{P}(U)$ is the same as the sequence $\mathcal{M}(U \cap Y) \rightarrow \mathcal{N}(U \cap Y) \rightarrow$ $\mathcal{P}(U \cap Y)$, though the scalars have changed. Since U and Y are affine, $U \cap Y$ is affine. By definition of exactness, this sequence is exact.
(iii) Let U be open in X. Then $j_{*} \mathcal{M}_{Y}(U)=\mathcal{M}(U \cap Y)$. Since $U \cap Y \subset U, \mathcal{M}(U)$ maps to $\mathcal{M}(U \cap Y)$.
(iv) An open subset V of Y is also open in X, and $\left[j_{*} \mathcal{N}\right]_{Y}(V)=\left[j_{*} \mathcal{N}\right](V)=\mathcal{N}(V \cap Y)=\mathcal{N}(V)$.
6.6.15. Example. Let $X=\mathbb{P}^{n}$, and let j denote the inclusion of the standard affine open subset \mathbb{U}^{0} into X. The direct image $j_{*} \mathcal{O}_{\mathbb{U}^{0}}$ is the algebra of rational functions that are allowed to have poles on the hyperplane at infinity. The inverse image of an open subset W of X is its intersection with $\mathbb{U}^{0}: j^{-1} W=W \cap \mathbb{U}^{0}$, and the sections of the direct image $j_{*} \mathcal{O}_{\mathbb{U}^{0}}$ on an open subset W of X are the regular functions on $W \cap \mathbb{U}^{0}$:

$$
\left[j_{*} \mathcal{O}_{\mathbb{U}^{0}}\right](W)=\mathcal{O}_{\mathbb{U}^{0}}\left(W \cap \mathbb{U}^{0}\right)=\mathcal{O}_{X}\left(W \cap \mathbb{U}^{0}\right)
$$

Say that we write a rational function α on X as a fraction g / h of relatively prime polynomials. Then α is a section of \mathcal{O}_{X} on W if h doesn't vanish at any point of W, and α is a section of $\left[j_{*} \mathcal{O}_{\mathbb{U}^{0}}\right]$ on W if h doesn't vanish on $W \cap \mathbb{U}^{0}$. Arbitrary powers of x_{0} can appear in the denominator of a section of $j_{*} \mathcal{O}_{\mathbb{U}^{0}}$.

6.7 Support

Annihilators. Let M be a module over a ring A. The annihilator I of an element m of M is the set of elements α of A such that $\alpha m=0$. It is an ideal of A that is often denoted by $\operatorname{ann}(m)$. The annihilator of an A-module M is the set of elements of A such that $a M=0$. It is an ideal too.

Support. Let A be a finite-type domain and let $X=\operatorname{Spec} A$. The support of a finite A-module M is the locus $C=V(I)$ of zeros in X of its annihilator I, the set of points p of X such that $p \in C$, or $I \subset \mathfrak{m}_{p} 2.4 .2$. The support of a finite module is a closed subset of X.

The next lemma allows us to extend the concepts of annihilator and support to finite \mathcal{O}-modules on a variety X.
localize-
support
supportdimzero suppfinite
twistingmodules

Odismod-

ule
6.7.1. Lemma. Let $X=\operatorname{Spec} A$ be an affine variety, let I be the annihilator of an element m of an A-module M, and let s be a nonzero element of A. The annihilator of m in the localized module M_{s} is the localized ideal I_{s}. If M is a finite module with support C, the support of M_{s} is the intersection $C \cap X_{s}$ of C with X_{s}.

If \mathcal{I} is the annihilator of a finite \mathcal{O}-module \mathcal{M} on a variety X, the support of \mathcal{M} is defined to be the closed subset $V(\mathcal{I})$ of zeros of the ideal. For example, the support of the residue field module κ_{p} is the point p. The support of the maximal ideal \mathfrak{m}_{p} at p is the whole variety X.

(6.7.2) \mathcal{O}-modules with support of dimension zero

6.7.3. Proposition. Let X be a variety.
(i) Suppose that the support of a finite \mathcal{O}-module \mathcal{M} is a single point p, let $M=\mathcal{M}(X)$, and let U be an affine open subset of X. If U contains p, then $\mathcal{M}(U)=M$, and if U doesn't contain p, then $\mathcal{M}(U)=0$.
(ii) (Chinese Remainder Theorem) If the support of a finite \mathcal{O}-module \mathcal{M} is a finite set $\left\{p_{1}, \ldots, p_{k}\right\}$, then \mathcal{M} is the direct sum $\mathcal{M}_{1} \oplus \cdots \oplus \mathcal{M}_{k}$ of \mathcal{O}-modules supported at the points p_{i}.
proof. (i) Let \mathcal{I} be the annihilator of an \mathcal{O}-module \mathcal{M} with support p. The locus $V(\mathcal{I})$ is the support p. If p isn't contained in U, then when we restrict \mathcal{M} to U, we obtain an \mathcal{O}_{U}-module whose support is empty. So $\mathcal{I}(U)$ is the unit ideal, and the restriction of \mathcal{M} to U is the zero module.

Next, suppose that p is contained in U, and let V denote the complement of p in X. We cover X by a finite set $\left\{U^{i}\right\}$ of affine open sets such that $U=U^{1}$, and such that $U^{i} \subset V$ if $i>1$. By what has been shown, $\mathcal{M}\left(U^{i}\right)=0$ if $i>0$. The sheaf axiom for this covering shows that $\mathcal{M}(X) \approx \mathcal{M}(U)$.

Note. If i denotes the inclusion of a point p into a variety X, it is natural to suppose that an \mathcal{O}-module \mathcal{M} supported at p will be the extension by zero of a module on the point p (a vector space). However, this won't be true unless \mathcal{M} is annihilated by the maximal ideal \mathfrak{m}_{p}.

6.8 Twisting

The twisting modules that we define here are among the most important modules on projective space.
As before, a homogeneous fraction of degree n in x_{0}, \ldots, x_{n} is a fraction g / h of homogeneous polynomials, such that $\operatorname{deg} g-\operatorname{deg} h=n$. When g and h are relatively prime, the fraction g / h is regular on an open subset V of \mathbb{P}_{x}^{n} if and only if h isn't zero at any point of V.

The definition of the twisting module $\mathcal{O}(n)$ is this: The sections of $\mathcal{O}(n)$ on an open subset V of \mathbb{P}^{n} are the homogeneous fractions of degree n that are regular on V. In particular, $\mathcal{O}(0)=\mathcal{O}$.

6.8.1. Proposition.

(i) Let V be an affine open subset of \mathbb{P}^{n} that is contained in the standard affine open set \mathbb{U}^{0}. The sections of the twisting module $\mathcal{O}(n)$ on V form a free module of rank one with basis x_{0}^{n}, over the coordinate algebra $\mathcal{O}(V)$.
(ii) The twisting module $\mathcal{O}(n)$ is an \mathcal{O}-module.
proof. (i) Let V be an open set contained in \mathbb{U}^{0}, and let $\alpha=g / h$ be a section of $\mathcal{O}(n)$ on V, with g, h relatively prime. Then $f=\alpha x_{0}^{-n}$ has degree zero. It is a rational function. Since $V \subset \mathbb{U}^{0}, x_{0}$ doesn't vanish at any point of V. Since α is regular on V, f is a regular function on V, and $\alpha=f x_{0}^{n}$.
(ii) It is clear that $\mathcal{O}(n)$ is a contravariant functor. We verify compatibility with localization. Let $V=\operatorname{Spec} A$ be an affine open subset of X and let s be a nonzero element of A. We must show that $[\mathcal{O}(n)]\left(V_{s}\right)$ is the localization of $[\mathcal{O}(n)](V)$. We must show that, if β is a section of $\mathcal{O}(n)$ on V_{s}, then $s^{k} \beta$ is a section on V when k is sufficiently large.

We cover V by the affine open sets $V^{i}=V \cap \mathbb{U}^{i}$. It suffices to show that $s^{k} \beta$ is a section on V^{i} for every i. For the case $i=0$, we apply (i). Since V_{s}^{0} is contained in \mathbb{U}^{0}, β can be written uniquely in the form $f x_{0}^{n}$, where f is a regular function on V_{s}^{0} and n is an integer. Then $s^{k} f$ is a regular function on V^{0} when k is large, and then $s^{k} \alpha=s^{k} f x_{0}^{n}$ is a section of $\mathcal{O}(n)$ on V^{0}. The analogous statement is true for every index i.

As part (i) of the proposition shows, $\mathcal{O}(n)$ is quite similar to the structure sheaf. However, $\mathcal{O}(n)$ is only locally free.
6.8.2. Proposition. When $d \geq 0$, the global sections of the twisting module $\mathcal{O}(n)$ on \mathbb{P}^{n} are the homogeneous polynomials of degree n. When $n<0$, the only global section of $\mathcal{O}(n)$ is the zero section.
proof. A nonzero global section u of $\mathcal{O}(n)$ will restrict to a section on the standard affine open set \mathbb{U}^{0}. Since elements of $\mathcal{O}\left(\mathbb{U}^{0}\right)$ are homogeneous fractions of degree zero whose denominators are powers of x_{0}, and since $[\mathcal{O}(n)]\left(\mathbb{U}^{0}\right)$ is a free module over $\mathcal{O}\left(\mathbb{U}^{0}\right)$ with basis x_{0}^{d}, we will have $u=g / x_{0}^{k}$ for some some homogeneous polynomial g_{0} not divisible by x_{0} and some k. Similarly, restriction to \mathbb{U}^{1} shows that u has the form g_{1} / x_{1}^{ℓ}. It follows that $k=\ell=0$ and that $u=g_{0}$. Since u has degree n, so does g_{0}.

6.8.3. Examples.

(i) The product $u v$ of homogeneous fractions of degrees r and s is a homogeneous fraction of degree $r+s$, and if u and v are regular on an open set V, so is their product $u v$. Multiplication defines a homomorphism of \mathcal{O}-modules

$$
\begin{equation*}
\mathcal{O}(r) \oplus \mathcal{O}(s) \rightarrow \mathcal{O}(r+s) \tag{6.8.4}
\end{equation*}
$$

oros
multby-
fone

OnOnH
jstarOH

Let V be an open subset of one of the other standard affine open sets, say of \mathbb{U}^{1}. The ideal of $H \cap \mathbb{U}^{1}$ in \mathbb{U}^{1} is the principal ideal generated by $v_{0}=x_{0} / x_{1}$, and the element v_{0} generates the ideal of $H \cap V$ in V too. If f is a rational function, then because x_{1} doesn't vanish on \mathbb{U}^{1}, the function $f v_{0}^{n}$ will be regular on V if and only if the homogeneous fraction $f x_{0}^{n}$ is regular there, i.e., if an only if f is a section of $\mathcal{O}(n H)$ on V. We say that such a function f has a pole of order at most n on H because v_{0} generates the ideal of H in V.

The isomorphic \mathcal{O}-modules $\mathcal{O}(n)$ and $\mathcal{O}(n H)$ are interchangeable. The twisting module $\mathcal{O}(n)$ is often better because its definition is independent of coordinates. On the other hand, $\mathcal{O}(n H)$ can be convenient because its restriction to \mathbb{U}^{0} is the structure sheaf.
6.8.8. Proposition. Let Y be a hypersurface of degree n in \mathbb{P}^{n}, the zero locus of an irreducible homogeneous polynomial f of degree n. Let \mathcal{I} be the ideal of Y, and let $\mathcal{O}(-n)$ be the twisting module. Multiplication by f defines an isomorphism $\mathcal{O}(-n) \xrightarrow{f} \mathcal{I}$.
proof. We choose coordinates so that f isn't isn't divisible by any of the coordinate variables x_{i}.
If α is a section of $\mathcal{O}(-n)$ on an open set V, then $f \alpha$ will be a regular function on V that vanishes on $Y \cap V$. Therefore the image of the multiplication map $\mathcal{O}(-n) \xrightarrow{f} \mathcal{O}$ is contained in the ideal \mathcal{I}. The multiplication map is injective because $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ is a domain. To show that it is an isomorphism, it suffices to show that its restrictions to the standard affine open sets \mathbb{U}^{i} are surjective 6.4.6. We work with \mathbb{U}^{0}, as usual.

Because x_{0} desn't divide $f, Y \cap \mathbb{U}^{0}$ will be a nonempty, and therefore dense, open subset of Y. The sections of \mathcal{O} on \mathbb{U}^{0} are the homogeneous fractions g / x_{0}^{k} of degree zero. Such a fraction is a section of \mathcal{I} on \mathbb{U}^{0} if and only if g vanishes on $Y \cap \mathbb{U}^{0}$. If so, then since $Y \cap \mathbb{U}^{0}$ is dense in Y and since the zero set of g is closed, g will vanish on Y, and therefore it will be divisible by $f: g=f q$. The sections of \mathcal{I} on \mathbb{U}^{0} have the form $f q / x_{0}^{k}$. They are in the image of the map $\mathcal{O}(-n) \xrightarrow{f} \mathcal{I}$.

The proposition has an interesting corollary:
idealsisom
twistmod-
ule deftwistm
6.8.9. Corollary. When regarded as \mathcal{O}-modules, the ideals of all hypersurfaces of degree n are isomorphic.
(6.8.10) twisting a module
6.8.11. Definition Let \mathcal{M} be an \mathcal{O}-module on projective space \mathbb{P}^{d}, and let $\mathcal{O}(n)$ be the twisting module. The (n th) twist of \mathcal{M} is defined to be the tensor product $\mathcal{M}(n)=\mathcal{M} \otimes_{\mathcal{O}} \mathcal{O}(n)$. Similarly, $\mathcal{M}(n H)=$ $\mathcal{M} \otimes_{\mathcal{O}} \mathcal{O}(n H)$. If X is a closed subvariety of \mathbb{P}^{d} and \mathcal{M} is an \mathcal{O}_{X}-module, $\mathcal{M}(n)$ and $\mathcal{M}(n H)$ are obtained by twisting the extension of \mathcal{M} by zero. (See the equivalence of categories 6.6.10).)

Since x_{0}^{n} is a basis of $\mathcal{O}(n)$ on \mathbb{U}^{0}, a section of $\mathcal{M}(n)$ on an open subset V of \mathbb{U}^{0} can be written in the form $\alpha=m \otimes g x_{0}^{n}$, where g is a regular function on V and m is a section of \mathcal{M} on V 6.8.1). The function g can be moved over to m, so α can also be written in the form $\alpha=m \otimes x_{0}^{n}$. This expression for α is unique because the operation of tensoring with x_{0}^{n} is injective.

The modules $\mathcal{O}(n)$ and $\mathcal{O}(n H)$ form directed sets that are related by a diagram

In this diagram, the vertical arrows are bijections and the horizontal arrows are injections. The limit of the upper directed set is the module whose sections on an open set V are rational functions that can have arbitrary poles on $H \cap V$, and are otherwise regular. This is also the module $j_{*} \mathcal{O}_{\mathbb{U}^{0}}$, where j denotes the inclusion of the standard affine open set \mathbb{U}^{0} into X (see 6.6.14) (iii)):

$$
\begin{equation*}
\lim _{n} \mathcal{O}(n H)=j_{*} \mathcal{O}_{\mathbb{U}^{0}} \tag{6.8.13}
\end{equation*}
$$

Tensoring 6.8.12 with \mathcal{M} give us the diagram

The vertical maps here are bijective, but because \mathcal{M} may have torsion, the horizontal maps needn't be injective.
Let $\mathbb{U}=\mathbb{U}^{0}$. Since tensor products are compatible with limits,

$$
\begin{equation*}
\lim _{\rightarrow} \mathcal{M}(n H) \stackrel{(1)}{\approx} \mathcal{M} \otimes_{\mathcal{O}}\left(\lim _{\underset{\longrightarrow}{ }} \mathcal{O}(n H)\right) \approx \mathcal{M} \otimes_{\mathcal{O}} j_{*} \mathcal{O}_{\mathbb{U}} \stackrel{(2)}{\approx} j_{*} \mathcal{M}_{\mathbb{U}} \tag{6.8.15}
\end{equation*}
$$

The isomorphism (1) comes from the fact that tensor produts are compatible with limits, and (2) is part (ii) of the next lemma.
6.8.16. Lemma. Let \mathcal{M} be an \mathcal{O}-module on \mathbb{P}^{n}, and let j be the inclusion of $\mathbb{U}=\mathbb{U}^{0}$.
(i) For every k, the restriction of $\mathcal{M}(k H)$ to \mathbb{U} is the same as the restriction of \mathcal{M}, which is $\mathcal{M}_{\mathbb{U}}$, and the restriction of $j_{*} \mathcal{M}_{\mathbb{U}}$ to \mathbb{U} is also $\mathcal{M}_{\mathbb{U}}$. The restriction of the map $\mathcal{M}(k H) \rightarrow j_{*}\left(\mathcal{M}_{\mathbb{U}}\right)$ to \mathbb{U} is the identity map.
(ii) The direct image $j_{*} \mathcal{M}_{\mathbb{U}}$ is isomorphic to $\mathcal{M} \otimes_{\mathcal{O}} j_{*} \mathcal{O}_{\mathbb{U}}$.
proof. (i) Because $H \cap \mathbb{U}$ is empty, the restrictions of $\mathcal{M}(k H)$ and \mathcal{M} to \mathbb{U} are equal. The fact that the restriction of $j_{*} \mathcal{M}_{\mathbb{U}}$ is also equal to $\mathcal{M}_{\mathbb{U}}$ is Proposition 6.6.14 (iv).
(ii) Suppose given a section of $\mathcal{M} \otimes_{\mathcal{O}} j_{*} \mathcal{O}_{\mathbb{U}}$ of the form $\alpha \otimes f$ on an open set V, where α is a section of \mathcal{M} on V and and f is a section of $j_{*} \mathcal{O}_{\mathbb{U}}$ on V, a regular function on $V \cap \mathbb{U}$. We denote the restriction of α to $V \cap \mathbb{U}$ by the same symbol α. Then αf will be a section of \mathcal{M} on $V \cap \mathbb{U}$ and therefore a section of $j_{*} \mathcal{M}_{\mathbb{U}}$ on V. The map $(\alpha, f) \rightarrow \alpha f$ is \mathcal{O}-bilinear, so it corresponds to a homomorphism $\mathcal{M} \otimes_{\mathcal{O}} j_{*} \mathcal{O}_{\mathbb{U}} \rightarrow j_{*} \mathcal{M}_{\mathbb{U}}$. To show that this homomorphism is an isomorphism, it suffices to verify that it restricts to an isomorphism on each of the standard affine open sets \mathbb{U}^{i}. The restrictions of $\mathcal{M} \otimes_{\mathcal{O}} j_{*} \mathcal{O}_{\mathbb{U}}$ and $j_{*} \mathcal{M}_{\mathbb{U}}$ to \mathbb{U}^{0} are both equal to $\mathcal{M}_{\mathbb{U}}$. So that case is trivial. We look at \mathbb{U}^{1}. On that open set, $\left[j_{*} \mathcal{M}_{\mathbb{U}}\right]\left(\mathbb{U}^{1}\right)=\mathcal{M}\left(\mathbb{U}^{01}\right)$, and with $v_{0}=$ $x_{0} / x_{1}, \quad\left[j_{*} \mathcal{O}_{\mathbb{U}}\right]\left(\mathbb{U}^{1}\right)=\mathcal{O}\left(\mathbb{U}^{01}\right)=\mathcal{O}\left(\mathbb{U}^{1}\right)\left[v_{0}^{-1}\right]$. By definition of the tensor product, $\left[\mathcal{M} \otimes \mathcal{O} j_{*} \mathcal{O}_{\mathbb{U}^{0}}\right]\left(\mathbb{U}^{1}\right)=$ $\mathcal{M}\left(\mathbb{U}^{1}\right) \otimes_{\mathcal{O}\left(\mathbb{U}^{1}\right)} \mathcal{O}\left(\mathbb{U}^{01}\right)$ and

$$
\mathcal{M}\left(\mathbb{U}^{1}\right) \otimes_{\mathcal{O}\left(\mathbb{U}^{1}\right)} \mathcal{O}\left(\mathbb{U}^{01}\right)=\mathcal{M}\left(\mathbb{U}^{1}\right)\left[v_{0}^{-1}\right]=\mathcal{M}\left(\mathbb{U}^{01}\right)=\left[j_{*} \mathcal{M}_{\mathbb{U}}\right]\left(\mathbb{U}^{1}\right)
$$

(6.8.17) generating an \mathcal{O}-module

A set of global sections $m=\left(m_{1}, \ldots, m_{k}\right)$ of an \mathcal{O}-module on a variety X defines a map

$$
\begin{equation*}
\mathcal{O}^{k} \xrightarrow{m} \mathcal{M} \tag{6.8.18}
\end{equation*}
$$

that sends a section $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ of \mathcal{O}^{k} on an open set to the combination $\sum \alpha_{i} m_{i}$. The global sections m_{1}, \ldots, m_{k} are said to generate \mathcal{M} if this map is surjective. If the sections generate \mathcal{M}, then they (or to be precise, their restrictions), generate the $\mathcal{O}(U)$-module $\mathcal{M}(U)$ for every affine open set U. When U isn't affine, they may fail to generate $\mathcal{M}(U)$.
6.8.19. Example. Let $X=\mathbb{P}^{1}$. For $n \geq 0$, the global sections of the twisting module $\mathcal{O}(n)$ are the polynomials of degree n in the coordinate variables x_{0}, x_{1} 6.8.2. Consider the map $\mathcal{O} \oplus \mathcal{O} \xrightarrow{\left(x_{0}^{n}, x_{1}^{n}\right)} \mathcal{O}(n)$. On \mathbb{U}^{0}, $\mathcal{O}(n)$ has basis x_{0}^{n}. Therefore the map is surjective on \mathbb{U}^{0}. Similarly, it is surjective on \mathbb{U}^{1}. So it is a surjective map on all of X 6.4.6). The global sections x_{0}^{n}, x_{1}^{n} generate $\mathcal{O}(n)$. However, the global sections of $\mathcal{O}(n)$ are the homogeneous polynomials of degree n. When $n>1$, the two sections x_{0}^{n}, x_{1}^{n} don't span the space of global sections.

The next theorem explains the importance of the twisting operation.
6.8.20. Theorem. Let \mathcal{M} be a finite \mathcal{O}-module on a projective variety X. For sufficiently large k, the twist $\mathcal{M}(k)$ is generated by global sections.
proof. We may assume that X is the projective space \mathbb{P}^{n}. We are to show that if \mathcal{M} is a finite \mathcal{O}-module, and k is sufficiently large, $\mathcal{M}(k)$ is generated by its global sections. It suffices to show that for each $i=0, \ldots, n$, the restrictions of the global sections generate the $\mathcal{O}\left(\mathbb{U}^{i}\right)$-module $[\mathcal{M}(k)]\left(\mathbb{U}^{i}\right)$ 6.4.6. We work with the index $i=0$.

We replace $\mathcal{M}(k)$ by the isomorphic module $\mathcal{M}(k H)$. Recall that the maps $\lim _{k} \mathcal{M}(k H)=j_{*} \mathcal{M}_{\mathbb{U}^{0}}$ 6.8.15 and that the $\mathcal{M}(k H) \rightarrow j_{*} \mathcal{M}_{\mathbb{U}^{0}}$ restrict to bijections on \mathbb{U}^{0} for every k 6.8.16(i)).

We have maps $\mathcal{M} \xrightarrow{1 \otimes x_{0}^{k}} \mathcal{M}(k H) \rightarrow j_{*} \mathcal{M}_{\mathbb{U}^{0}}$, that are isomorphisms on \mathbb{U}^{0}. Let $A_{0}=\mathcal{O}\left(\mathbb{U}^{0}\right)$ and $M_{0}=\mathcal{M}\left(\mathbb{U}^{0}\right)$. Then M_{0} is a finite A_{0}-module because \mathcal{M} is a finite \mathcal{O}-module. We choose a finite set of generators m_{1}, \ldots, m_{r} for the A_{0}-module M_{0}. The elements of M_{0}, and in particular, the chosen generators, are global sections of $j_{*} \mathcal{M}_{\mathbb{U}^{0}}$. Since $\underline{l i m}_{k} \mathcal{M}(k H)=j_{*} \mathcal{M}_{\mathbb{U}^{0}}$, they are represented by global sections $m_{1}^{\prime}, \ldots, m_{r}^{\prime}$ of $\mathcal{M}(k H)$ when k is large. The restrictions of $\mathcal{M}(k H)$ and \mathcal{M} to \mathbb{U}_{0} are equal 6.8.16, and the restrictions of m_{i}^{\prime} to \mathbb{U}^{0} is equal to the restriction of m_{i}. So the restrictions of $m_{1}^{\prime}, \ldots, m_{r}^{\prime}$ generate M_{0} too. Therefore M_{0} is generated by global sections of $\mathcal{M}(k H)$, as was to be shown.

6.9 Extending a Module: proof

proveextension

We prove Theorem6.4.2 here.
The statement to be proved is that an \mathcal{O}-module \mathcal{M} on a variety X has a unique extension to a functor

$$
\text { (opens) } \xrightarrow{\widetilde{\mathcal{M}}} \text { (modules) }
$$

with the sheaf property 6.4.5, and that a homomorphism of \mathcal{O}-modules $\mathcal{M} \rightarrow \mathcal{N}$ has a unique extension to a homomorphism $\widetilde{\mathcal{M}} \rightarrow \mathcal{N}$.

The proof has the following steps:

1. Verification of the sheaf property for a covering of an affine open set by localizations.
2. Extension of the functor \mathcal{M} to all morphisms between affine open sets.
3. Definition of $\widetilde{\mathcal{M}}$.

Step 1. the sheaf property for a covering of an affine open set by localizations
Suppose that an affine open subset $Y=\operatorname{Spec} A$ of X is covered by a family of localizations $\mathbf{U}_{0}=$ $\left\{U_{s_{i}}\right\}$, and let \mathcal{M} be an \mathcal{O}-module. Let M, M_{i}, and $M_{i j}$ denote the modules of sections $\mathcal{M}(Y), \mathcal{M}\left(U_{s_{i}}\right)$, and $\mathcal{M}\left(U_{s_{i} s_{j}}\right)$, respectively. The exact sequence that expresses the sheaf property for the covering diagram $Y \longleftarrow \mathbf{U}_{0} \leftleftarrows \mathbf{U}_{1}$ becomes

$$
\begin{equation*}
0 \rightarrow M \xrightarrow{\alpha} \prod M_{i} \xrightarrow{\beta} \prod M_{i j} \tag{6.9.1}
\end{equation*}
$$

where α sends an element m of M to the vector (m, \ldots, m) of its images in $\prod_{i} M_{i}$, and the difference map β sends a vector $\left(m_{1}, \ldots, m_{k}\right)$ in $\prod_{i} M_{i}$ to the matrix $\left(z_{i j}\right)$, with $z_{i j}=m_{j}-m_{i}$ in $M_{i j}$ 6.4.5). We must show that the sequence 6.9.1 is exact.
exactness at M : Since the open sets U^{i} cover Y, the elements s_{1}, \ldots, s_{k} generate the unit ideal. Let m be an element of M that maps to zero in every M_{i}. Then there exists an n such that $s_{i}^{n} m=0$, and we can use the same exponent n for all i. The elements s_{i}^{n} generate the unit ideal. Writing $\sum a_{i} s_{i}^{n}=1$, we have $m=\sum a_{i} s_{i}^{n} m=\sum a_{i} 0=0$.
exactness at $\prod M_{i}$: Let m_{i} be elements of M_{i} such that $m_{j}=m_{i}$ in $M_{i j}$ for all i, j. We must find an element w in M that maps to m_{j} in M_{j} for every j.

We write m_{i} as a fraction: $m_{i}=s_{i}^{-n} x_{i}$, or $x_{i}=s_{i}^{n} m_{i}$, with x_{i} in M, using the same integer n for all i. The equation $m_{j}=m_{i}$ in $M_{i j}$ tells us that $s_{i}^{n} x_{j}=s_{j}^{n} x_{i}$ in $M_{i j}$. Since $M_{i j}$ is the localization $M\left[\left(s_{i} s_{j}\right)^{-1}\right]$ $\left(s_{i} s_{j}\right)^{r} s_{i}^{n} x_{j}=\left(s_{i} s_{j}\right)^{r} s_{j}^{n} x_{i}$ will be true in M, if r is large.

The exponents here confuse the argument, so we adjust the notation. Let $\widetilde{x}_{i}=s_{i}^{r} x_{i}$, and $\widetilde{s}_{i}=s_{i}^{r+n}$. Then in $M, \widetilde{x}_{i}=\widetilde{s}_{i} m_{i}$ and $\widetilde{s}_{j} \widetilde{x}_{i}=\widetilde{s}_{i} \widetilde{x}_{j}$. The elements \widetilde{s}_{i} generate the unit ideal. So there is an equation in A, of the form $\sum a_{i} \widetilde{s}_{i}=1$.

Let $w=\sum a_{i} \widetilde{x}_{i}$. This is an element of M, and

$$
\widetilde{x}_{j}=\left(\sum_{i} a_{i} \widetilde{s}_{i}\right) \widetilde{x}_{j}=\sum_{i} a_{i} \widetilde{s}_{j} \widetilde{x}_{i}=\widetilde{s}_{j} w
$$

So $\widetilde{x}_{j}=\widetilde{s}_{j} w$ and also $\widetilde{x}_{j}=\widetilde{s}_{j} m_{j}$. Since \widetilde{s}_{j} is invertible on $\mathbb{U}^{j}, \quad w=\widetilde{s}_{j}^{-1} \widetilde{x}_{j}=m_{j}$, in M_{j}. Since j is arbitrary, w is the required element of M.

Step 2. extending an \mathcal{O}-module to all morphisms between affine open sets

The \mathcal{O}-module \mathcal{M} comes with localization maps $\mathcal{M}(U) \rightarrow \mathcal{M}\left(U_{s}\right)$. It doesn't come with homomorphisms $\mathcal{M}(U) \rightarrow \mathcal{M}(V)$ when $V \rightarrow U$ is an arbitrary inclusion of affine open sets. We define those maps here.

Let \mathcal{M} be an \mathcal{O}-module and let $V \rightarrow U$ be an inclusion of affine open sets. To describe the homomorphism $\mathcal{M}(U) \rightarrow \mathcal{M}(V)$, we cover V by a family $\mathbf{V}_{0}=\left\{V^{1}, \ldots, V^{r}\right\}$ of open sets that are localizations of U and therefore also localizations of V. Then $V^{i j}$ are localizations of V^{i} and of V^{j}. So we have a covering diagram $\mathbf{V}_{1} \rightrightarrows \mathbf{V}_{0} \rightarrow V$. Composing with the map $V \rightarrow U$ gives us a map $\mathbf{V}_{0} \rightarrow U$ such that the two maps
$\mathbf{V}_{1} \rightarrow U$ obtained by composition are equal. Therefore image of the map $\mathcal{M}(U) \rightarrow \mathbf{V}_{0}(U)$ is contained in the kernel of the difference map $\mathcal{M}\left(\mathbf{V}_{0}\right) \xrightarrow{\beta} \mathcal{M}\left(\mathbf{V}_{1}\right)$, and by Step 1, that kernel is $\mathcal{M}(V)$. This defines the map $\mathcal{M}(U) \rightarrow \mathcal{M}(V)$. We must show that it is independent of the choice of the covering \mathbf{V}_{0}.

One can go from one affine covering to another in a finite number of steps, each of which adds or deletes a single affine open set. So to prove independence of the map $\mathcal{M}(U) \rightarrow \mathcal{M}(V)$ defined above, it suffices to relate \mathbf{V}_{0} to the family $\mathbf{W}_{0}=\left\{V^{1}, \ldots, V^{r}, W\right\}$ obtained by adding one localization W of U to the covering \mathbf{V}. Let \mathbf{W}_{1} be the family of intersections of pairs of elements of \mathbf{W}_{0}. The inclusion $\mathbf{V}_{0} \subset \mathbf{W}_{0}$ defines a map $\mathcal{M}\left(\mathbf{V}_{0}\right) \rightarrow \mathcal{M}\left(\mathbf{W}_{0}\right)$, and similarly, we have a map $\mathcal{M}\left(\mathbf{V}_{1}\right) \rightarrow \mathcal{M}\left(\mathbf{W}_{1}\right)$. This gives us a diagram

comparecovtwo
in which $\mathcal{M}(U)$ is mapped to the kernels of $\beta_{\mathbf{V}}$ and $\beta_{\mathbf{W}}$, both of which are equal to $\mathcal{M}(V)$. Looking at the diagram, one sees that the maps $\mathcal{M}(U) \rightarrow \mathcal{M}(V)$ defined using the two coverings \mathbf{V}_{0} and \mathbf{W}_{0} are the same.

To show that this extended functor has the sheaf property for an arbitrary affine covering $\mathbf{V}_{0}=\left\{V^{i}\right\}$ of an affine variety U, we let \mathbf{W}_{0} be the affine covering of U that is obtained by covering each V^{i} by localizations of U. We substitute the covrings \mathbf{V}_{i} and \mathbf{W}_{i} into the diagram (??), and add zeros on the left to each row of the diagram. The sheaf property to be verified is that the top row of this diagram is exact. Since \mathbf{W}_{0} is an affine covering of the affine variety U, the bottom row is exact. Because \mathbf{W}_{0} covers $\mathbf{V}_{0}, \mathbf{W}_{1}$ covers \mathbf{V}_{1} as well. So the maps a and b are injective. It follows that the top row is exact.

Step 3. definition of $\widetilde{\mathcal{M}}$

We introduce some temporary notation: Suppose that a covering diagram $U \leftarrow \mathbf{U}_{0} \leftleftarrows \mathbf{U}_{1}$ and an \mathcal{O} module \mathcal{M} are given, and let $\mathcal{M}\left(\mathbf{U}_{0}\right) \xrightarrow{\beta_{\mathrm{U}}} \mathcal{M}\left(\mathbf{U}_{1}\right)$ be the difference map 6.4.10. We denote the kernel of $\beta_{\mathbf{U}}$ by $\mathbf{K}_{\mathbf{U}}$.

Let Y be an open subset of X. We define $\widetilde{\mathcal{M}}(Y)$ in a fairly obvious way: We choose an affine covering $\mathbf{V}_{0}=\left\{V^{1}, \ldots V^{r}\right\}$ of Y, and we define $\widetilde{\mathcal{M}}(Y)=\mathbf{K}_{\mathbf{V}}$. When we show that $\mathbf{K}_{\mathbf{V}}$ doesn't depend on the covering \mathbf{V}_{0}, it will follow that $\widetilde{\mathcal{M}}$ is well-defined, and that it has the sheaf property.

As explained in Step 2, it suffices to relate the covering \mathbf{V} to a covering $\mathbf{W}_{0}=\left\{V^{1}, \ldots, V^{r}, W\right\}$ that is obtained by adding one affine open subset W of Y to \mathbf{V}_{0}. The inclusion $\mathbf{V}_{0} \subset \mathbf{W}_{0}$ defines a map $\mathcal{M}\left(\mathbf{V}_{0}\right) \rightarrow$ $\mathcal{M}\left(\mathbf{W}_{0}\right)$, and a map $\mathcal{M}\left(\mathbf{V}_{1}\right) \rightarrow \mathcal{M}\left(\mathbf{W}_{1}\right)$. It gives us a map $\mathbf{K}_{\mathbf{W}} \rightarrow \mathbf{K}_{\mathbf{V}}$. We will show that, for any element $\left(v_{1}, \ldots, v_{r}\right)$ in the kernel $\mathbf{K}_{\mathbf{V}}$, there is a unique element w in $\mathcal{M}(W)$ such that $\left(v_{1}, \ldots, v_{r}, w\right)$ is in the kernel $\mathbf{K}_{\mathbf{W}}$. This will show that $\mathbf{K}_{\mathbf{W}}$ and $\mathbf{K}_{\mathbf{V}}$ are isomorphic.

Let $W^{i}=V^{i} \cap W, \quad i=1, \ldots, r$. Since \mathbf{V}_{0} is an affine covering of $Y, \mathbf{W}_{0}=\left\{W^{i}\right\}$ is an affine covering of W. Let w_{i} denote the restriction of the section v_{i} to W^{i}. Since $\left(v_{1}, \ldots, v_{r}\right)$ is in the kernel of $\beta_{\mathbf{V}}$, i.e., $v_{i}=v_{j}$ on $V^{i j}$. Then it is also true that $w_{i}=w_{j}$ on the smaller open set $W^{i j}$. So $\left(w_{1}, \ldots, w_{r}\right)$ is in the kernel $\mathbf{K}_{\mathbf{W}}$, and since \mathbf{W}_{0} is an affine covering of the affine variety W, Step 2 tells us that $\mathbf{K}_{\mathbf{W}}=\mathcal{M}(W)$. So there is a unique element w in $\mathcal{M}(W)$ that restricts to w_{i} on W^{i} for each i. We show that, with this element w, $\left(v_{1}, \ldots, v_{r}, w\right)$ is in the kernel of $\beta_{\mathbf{W}}$.

When the subsets in the family \mathbf{W}_{1} are listed in the order

$$
\mathbf{W}_{1}=\left\{V^{i} \cap V^{j}\right\}_{i j},\left\{W \cap V^{j}\right\}_{j},\left\{V^{i} \cap W\right\}_{i},\{W \cap W\}
$$

the difference map $\beta_{\mathbf{W}}$ sends $\left(v_{1}, \ldots, v_{r}, w\right)$ to $\left[\left(v_{j}-v_{i}\right),\left(v_{j}-w\right),\left(w-v_{i}\right), 0\right]$, the sections being restricted appropriately. Here $v_{i}=v_{j}$ on $V^{i} \cap V^{j}$ because $\left(v_{1}, \ldots, v_{r}\right)$ is in the kernel $\mathbf{K}_{\mathbf{V}}$. By definition, $v_{j}=w_{j}=w$ on $V^{j} \cap W=W^{j}$.

It remains to prove that $\widetilde{\mathcal{M}}$ is a functor. This proof has no interesting features, and we won't use the functorality, so we omit it.

6.10 Exercises

chapsiexex snotfin
xsimplemod xcohpropsheaf
xcomplvin
xMistensor
xinterscoh xlimM
xgenrel
xascchcd
notfree
xsectOn
xtwistsi-
som
xmultf
sectwist
xmultinject
coherprop
gendirim
6.10.1. Let U be the complement of the origin in the affine plane $X=\operatorname{Spec} A, \quad A=\mathbb{C}[x, y]$.
(i) Let \mathcal{M} be the \mathcal{O}_{X}-module that correponds to the A-module $M=A / y A$. Show that \mathcal{M} is a finite \mathcal{O}-module, but that $\mathcal{M}(U)$ isn't a finite module over the ring $\mathcal{O}(U)$.
(ii) Show that, for any $k \geq 1$, the homomorphism $\mathcal{O} \times \xrightarrow{(x, y)^{t}} \mathcal{O}$ is surjective on U, but that the map of sections on U isn't surjective.
6.10.2. An R-modue is simple if it is nonzero and if it has no proper submodules. Prove that a simple module over a finite type \mathbb{C}-algebra has dimension 1 .
6.10.3. Prove that if an \mathcal{O}-module has the coherence property for affine open sets, then it has the sheaf property for affine coverings of affine open sets.
6.10.4. Let V be the complement of a finite set in \mathbb{P}^{d}. Determine $\mathcal{O}_{\mathbb{P}}(V)$.
6.10.5. Let $U^{\prime} \subset U$ be affine open subsets of a variety X, and let \mathcal{M} be an \mathcal{O}_{X}-module. Say that $\mathcal{O}(U)=A$, $\mathcal{O}\left(U^{\prime}\right)=A^{\prime}, \mathcal{M}(U)=M$, and $\mathcal{M}\left(U^{\prime}\right)=M^{\prime}$. Prove that $M^{\prime}=M \otimes_{A} A^{\prime}$.
6.10.6. Show that if \mathcal{I} and \mathcal{J} are ideals of \mathcal{O}, so is $\mathcal{I} \cap \mathcal{J}$.
6.10.7. Let s be an element of a domain A, and let M be an A-module. Identify the limit of the directed set $M \xrightarrow{s} M \xrightarrow{s} \cdots$ is isomorphic.
6.10.8. Let $R=\mathbb{C}\left[x_{0}, x_{1}, x_{2}\right]$, and let $f=x_{0}^{2}-x_{1} x_{2}$.
(i) Determine generators and defining relations for the ring $R_{\{f\}}$ of homogeneous fractions of degree zero whose denominators are powers of f.
(ii) Prove that the twisting module $\mathcal{O}(1)$ isn't a free module on the open subset $\mathbb{U}_{\{f\}}$ of \mathbb{P}^{2} at which $f \neq 0$.
6.10.9. Let X be a variety. Prove that every strictly ascending chain of submodules of a finite \mathcal{O}-module \mathcal{M} is finite.
6.10.10. Let $R=\mathbb{C}[x, y, z]$, let $X=\mathbb{P}^{2}$, and let $s=z^{2}-x y$. Determine the degree one part of R_{s}, and prove that $\mathcal{O}(1)$ is not free on X_{s}.
6.10.11. What are the sections of $\mathcal{O}(n H)$ on an open set V that isn't contained in any \mathbb{U}^{i} ?
6.10.12. In the description 6.5.4 of modules over the projective line, we considered the standard affine open sets U^{0} and U^{1}. Interchanging these open sets changes the variable t to t^{-1}, and it changes the matrix P accordingly. Does it follow, when the rank is 1 , that the \mathcal{O}-modules defined by t^{k} and by t^{-k} are isomorphic?
6.10.13. Describe the kernel and cokernel of the multiplication mmap $\mathcal{M}(k) \xrightarrow{f} \mathcal{M}(k+d)$ when f is a homogeneous polynomial of degree d.
6.10.14. Let $X=\mathbb{P}^{2}$. What are the sections of the twisting module $\mathcal{O}_{X}(n)$ on the open complement of the line $\left\{x_{1}+x_{2}=0\right\}$?
6.10.15. Let M be a finite module over a finite-type domain A, and let α be a nonzero element of A. Prove that for all but finitely many complex numbers c, scalar multiplication by $s=\alpha-c$ defines an injective map $M \xrightarrow{s} M$.
6.10.16. Prove the following coherence property of an \mathcal{O}-module: Let Y be an open subset of a variety X, let s be a nonzero regular function on Y, and let Y_{s} be a localization. If \mathcal{M} is an \mathcal{O}_{X}-module, then $\mathcal{M}\left(Y_{s}\right)$ is the localization $\mathcal{M}(Y)_{s}$ of $\mathcal{M}(Y)$. In particular, $\mathcal{O}_{X}\left(U_{s}\right)$ is the localization $\mathcal{O}_{X}(U)_{s}$. (This is a requirement for an \mathcal{O}-module, when Y is affine.)
6.10.17. Using Exercise 6.10.16, extend the definition of direct image to an arbitrary morphism of varieties.

Chapter 7 COHOMOLOGY

cohomol-
7.1 Cohomology
7.2 Complexes
7.3 Characteristic Properties
7.4 Existence of Cohomology
7.5 Cohomology of the Twisting Modules
7.6 Cohomology of Hypersurfaces
7.7 Three Theorems about Cohomology
7.8 Bézout's Theorem
7.9 Uniqueness of the Coboundary Maps
7.10 Exercises

7.1 Cohomology

This chapter is adapted from Serre’s classic 1956 paper "Faisceaux Algébriques Cohérents", in which Serre showed how the Zariski topology could be used to define cohomology of \mathcal{O}-modules.

To save time, we define cohomology only for \mathcal{O}-modules. Anyway, the Zariski topology has limited use for cohomology with other coefficients. For instance, the constant coefficient cohomology $H^{q}(X, \mathbb{Z})$ is zero for all $q>0$, when X is given the Zariski topology.

Let \mathcal{M} be an \mathcal{O}-module on a variety X. The zero-dimensional cohomology of \mathcal{M} is the space $\mathcal{M}(X)$ of its global sections. When speaking of cohomology, one denotes that space by $H^{0}(X, \mathcal{M})$.

The functor

$$
(\mathcal{O} \text {-modules }) \xrightarrow{H^{0}}(\text { vector spaces })
$$

that carries an \mathcal{O}-module \mathcal{M} to $H^{0}(X, \mathcal{M})$ is left exact: If

$$
\begin{equation*}
0 \rightarrow \mathcal{M} \rightarrow \mathcal{N} \rightarrow \mathcal{P} \rightarrow 0 \tag{7.1.1}
\end{equation*}
$$

is a short exact sequence of \mathcal{O}-modules, the associated sequence of global sections

$$
\begin{equation*}
0 \rightarrow H^{0}(X, \mathcal{M}) \rightarrow H^{0}(X, \mathcal{N}) \rightarrow H^{0}(X, \mathcal{P}) \tag{7.1.2}
\end{equation*}
$$

is exact, but unless X is affine, the map $H^{0}(X, \mathcal{N}) \rightarrow H^{0}(X, \mathcal{P})$ needn't be surjective 6.5.8. The cohomology on X is a sequence of functors $\left(\mathcal{O}\right.$-modules) $\xrightarrow{H^{q}}$ (vector spaces),

$$
H^{0}, H^{1}, H^{2}, \ldots
$$

beginning with H^{0}, one for each dimension, that compensates for the lack of exactness in the way that is explained in (a) and (b) below:
(a) To every short exact sequence 7.1 .1 of \mathcal{O}-modules, there is an associated long exact cohomology sequence

$$
\begin{equation*}
0 \rightarrow H^{0}(X, \mathcal{M}) \rightarrow H^{0}(X, \mathcal{N}) \rightarrow H^{0}(X, \mathcal{P}) \xrightarrow{\delta^{0}} \tag{7.1.3}
\end{equation*}
$$

$$
\begin{aligned}
\xrightarrow{\delta^{0}} H^{1}(X, \mathcal{M}) & \rightarrow H^{1}(X, \mathcal{N}) \rightarrow H^{1}(X, \mathcal{P}) \xrightarrow{\delta^{1}} \cdots \\
\cdots & \xrightarrow{\delta^{q-1}} H^{q}(X, \mathcal{M})
\end{aligned} \rightarrow H^{q}(X, \mathcal{N}) \rightarrow H^{q}(X, \mathcal{P}) \xrightarrow{\delta^{q}} \cdots .
$$

The maps δ^{q} in this sequence are called the coboundary maps.
(b) A map of exact sequences of \mathcal{O}-modules, a diagram

whose rows are short exact sequences of \mathcal{O}-modules, induces a map of cohomology sequences

A sequence of functors $H^{q}, q=0,1,2, \ldots$ from \mathcal{O}-modules to vector spaces that comes with long cohomology sequences (a) for every short exact sequence of \mathcal{O}-modules and that satisfies (b) is called a cohomological functor. Cohomology is a cohomological functor.

Most of Diagram 7.1.4 comes from the fact that the H^{q} are functors. The only additional property is that the squares

deltadiagramtwo
that involve the coboundary maps δ commute.
Unfortunately, there is no canonical construction of cohomology. We present a construction in Section 7.4, but it isn't canonical. One needs to look at an explicit construction sometimes, but most of the time, it is best to work with the characteristic properties of cohomology that are described below, in Section 7.3

The one-dimensional cohomology H^{1} has an interesting interpretation that you can read about if you like. We won't use it. The cohomology in dimension greater than one has no useful direct interpretation.

7.2 Complexes

Complexes are used in the construction of cohomology, so we discuss them here.
A complex V^{\bullet} of vector spaces is a sequence of homomorphisms of vector spaces

$$
\begin{equation*}
\cdots \rightarrow V^{n-1} \xrightarrow{d^{n-1}} V^{n} \xrightarrow{d^{n}} V^{n+1} \xrightarrow{d^{n+1}} \cdots \tag{7.2.1}
\end{equation*}
$$

indexed by the integers, such that the composition $d^{n} d^{n-1}$ of adjacent maps is zero, which means that, for every n, the image of d^{n-1} is contained in the kernel of d^{n}. The q-dimensional cohomology of the complex V^{\bullet} is the quotient

$$
\begin{equation*}
\mathbf{C}^{q}\left(V^{\bullet}\right)=\left(\operatorname{ker} d^{q}\right) /\left(\operatorname{im} d^{q-1}\right) \tag{7.2.2}
\end{equation*}
$$

cohcoplxone
A complex whose cohomology is zero is an exact sequence.

A finite sequence of homomorphisms $V^{k} \xrightarrow{d^{k}} V^{k+1} \rightarrow \cdots \xrightarrow{d^{r-1}} V^{r}$ such that the compositions $d^{i} d^{i-1}$ are zero for $i=k, \ldots, r-1$, can be made into a complex, defining $V^{n}=0$ for all other integers n. For example, a homomorphism of vector spaces $V^{0} \xrightarrow{d^{0}} V^{1}$ can be made into the complex

$$
\cdots \rightarrow 0 \rightarrow V^{0} \xrightarrow{d^{0}} V^{1} \rightarrow 0 \rightarrow \cdots
$$

For this complex, the cohomology \mathbf{C}^{0} is the kernel of d^{0}, \mathbf{C}^{1} is its cokernel, and \mathbf{C}^{q} is zero for all other q.
In the complexes that arise here, V^{q} will be zero when $q<0$.

A map $V^{\bullet} \xrightarrow{\varphi} V^{\prime \bullet}$ of complexes is a collection of homomorphisms $V^{n} \xrightarrow{\varphi^{n}} V^{\prime n}$ making a diagram

A map of complexes induces maps on the cohomology

$$
\mathbf{C}^{q}\left(V^{\bullet}\right) \rightarrow \mathbf{C}^{q}\left(V^{\prime \bullet}\right)
$$

because $\operatorname{ker} d^{q}$ maps to $\operatorname{ker} d^{\prime q}$ and $\operatorname{im} d^{q}$ maps to $\operatorname{im} d^{\prime q}$.
An exact sequence of complexes
exseqcplx
cohcplx
snakecohomology

$$
\begin{equation*}
\cdots \rightarrow V^{\bullet} \xrightarrow{\varphi} V^{\prime \bullet} \xrightarrow{\psi} V^{\prime \prime \bullet} \rightarrow \cdots \tag{7.2.3}
\end{equation*}
$$

is a sequence of maps in which the sequences

$$
\begin{equation*}
\cdots \rightarrow V^{q} \xrightarrow{\varphi^{q}} V^{\prime q} \xrightarrow{\psi^{q}} V^{\prime \prime q} \rightarrow \cdots \tag{7.2.4}
\end{equation*}
$$

are exact for every q.

7.2.5. Proposition.

Let $0 \rightarrow V^{\bullet} \rightarrow V^{\prime \bullet} \rightarrow V^{\prime \prime \bullet} \rightarrow 0$ be a short exact sequence of complexes. For every q, there are maps $\mathbf{C}^{q}\left(V^{\prime \prime \bullet}\right) \xrightarrow{\delta^{q}} \mathbf{C}^{q+1}\left(V^{\bullet}\right)$ such that the sequence

$$
0 \rightarrow \mathbf{C}^{0}\left(V^{\bullet}\right) \rightarrow \mathbf{C}^{0}\left(V^{\prime \bullet}\right) \rightarrow \mathbf{C}^{0}\left(V^{\prime \prime \bullet}\right) \xrightarrow{\delta^{0}} \mathbf{C}^{1}\left(V^{\bullet}\right) \rightarrow \mathbf{C}^{1}\left(V^{\prime \bullet}\right) \rightarrow \mathbf{C}^{1}\left(V^{\prime \prime \bullet}\right) \xrightarrow{\delta^{1}} \mathbf{C}^{2}\left(V^{\bullet}\right) \rightarrow \cdots
$$

is exact.
The proof of the proposition is below.
This long exact sequence is the cohomology sequence associated to the short exact sequence of complexes. The set of functors $\left\{\mathbf{C}^{q}\right\}$ is a cohomological functor on the category of complexes.
7.2.6. Example. We make the Snake Lemma 2.1 .20 into a cohomology sequence. Suppose given a diagram

with exact rows. We form the complex $V^{\bullet}: 0 \rightarrow V \xrightarrow{f} W \rightarrow 0$ with V in degree zero, so that $\mathbf{C}^{0}\left(V^{\bullet}\right)=$ ker f and $\mathbf{C}^{1}\left(V^{\bullet}\right)=$ coker f, and we do the analogous thing for the maps f^{\prime} and $f^{\prime \prime}$. Having done that, the Snake Lemma becomes an exact sequence

$$
\mathbf{C}^{0}\left(V^{\bullet}\right) \rightarrow \mathbf{C}^{0}\left(V^{\prime \bullet}\right) \rightarrow \mathbf{C}^{0}\left(V^{\prime \prime \bullet}\right) \rightarrow \mathbf{C}^{1}\left(V^{\bullet}\right) \rightarrow \mathbf{C}^{1}\left(V^{\prime \bullet}\right) \rightarrow \mathbf{C}^{1}\left(V^{\prime \prime \bullet}\right)
$$

proof of Proposition 7.2.5 Given a complex V^{\bullet} :

$$
\cdots \rightarrow V^{q-1} \xrightarrow{d^{q-1}} V^{q} \xrightarrow{d^{q}} V^{q+1} \xrightarrow{d^{q+1}} \cdots
$$

let B^{q} be the image of d^{q-1}, let D^{q} be the cokernel of d^{q-1}, the quotient V^{q} / B^{q}, and let Z^{q} be the kernel of d^{q}. The cohomology $\mathbf{C}^{q}\left(V^{\bullet}\right)$ is is Z^{q} / B^{q}.
7.2.7. Lemma. (i) With the above notation, there is a map $D^{q} \xrightarrow{f^{q}} Z^{q+1}$ such that $V^{q} \xrightarrow{d^{q}} V^{q+1}$ becomes a composition of the three maps

$$
V^{q} \xrightarrow{\pi^{q}} D^{q} \xrightarrow{f^{q}} Z^{q+1} \xrightarrow{i^{q+1}} V^{q+1}
$$

where π^{q} is the projection from V^{q} to its quotient D^{q} and i^{q+1} is the inclusion of Z^{q+1} into V^{q+1}.
(ii) With f^{q} as in (i),

$$
\mathbf{C}^{q}\left(V^{\bullet}\right)=\operatorname{ker} f^{q} \quad \text { and } \quad \mathbf{C}^{q+1}\left(V^{\bullet}\right)=\operatorname{coker} f^{q}
$$

proof. (i) The image B^{q+1} of d^{q} is contained in Z^{q+1}, and the kernel Z^{q} of d^{q} contains B^{q}. So d^{q} factors as indicated.
(ii) Since the kernel Z^{q} of d^{q} contains B^{q}, and since $D^{q}=V^{q} / B^{q}$, the kernel of f^{q} is $Z^{q} / B^{q}=\mathbf{C}^{q}$. The image B^{q+1} of d^{q} is also the image of f^{q} in Z^{q+1}. So the cokernel of f^{q} is $Z^{q+1} / B^{q+!}=\mathbf{C}^{q+1}$.

Let $0 \rightarrow V^{\bullet} \rightarrow V^{\prime \bullet} \rightarrow V^{\prime \prime} \rightarrow 0$ be a short exact sequence of complexes, as in Proposition 7.2.5 We apply Lemma 7.2.7 In the diagram below, the top row is exact because $D^{q}, D^{\prime q}, D^{\prime \prime q}$ are cokernels, and cokernel is a right exact operation. The bottom row is exact because $Z^{q}, Z^{\prime q}, Z^{\prime \prime q}$ are kernels, and kernel is left exact:

The Snake Lemma gives us an exact sequence

$$
\mathbf{C}^{q}\left(V^{\bullet}\right) \rightarrow \mathbf{C}^{q}\left(V^{\prime \bullet}\right) \rightarrow \mathbf{C}^{q}\left(V^{\prime \prime \bullet}\right) \xrightarrow{\delta^{q}} \mathbf{C}^{q+1}\left(V^{\bullet}\right) \rightarrow \mathbf{C}^{q+1}\left(V^{\prime \bullet}\right) \rightarrow \mathbf{C}^{q+1}\left(V^{\prime \prime \bullet}\right)
$$

The cohomology sequence associated to the short exact sequence of complexes is obtained by splicing these sequences together.

The coboundary maps δ^{q} in cohomology sequences are related in a natural way. If

is a diagram of maps of complexes whose rows are short exact sequences of complexes, the diagrams

commute. It isn't difficult to check this. Thus a map of short exact sequences induces a map of cohomology sequences.

7.3 Characteristic Properties

charprop
The cohomology of \mathcal{O}-modules, which is a sequence of functors $H^{0}, H^{1}, H^{2}, \cdots$

$$
\text { (O-modules) } \xrightarrow{H^{q}}(\text { vector spaces })
$$

is characterized by the three properties below. The first two have already been mentioned.
charpro-
pone
existcohom
cohzeroaffine

(7.3.1) Characteristic Properties of Cohomology

1. $H^{0}(X, \mathcal{M})$ is the space $\mathcal{M}(X)$ of global sections of \mathcal{M}.
2. The sequence $H^{0}, H^{1}, H^{2}, \cdots$ is a cohomological functor on \mathcal{O}-modules: A short exact sequence of \mathcal{O}-modules produces a long exact cohomology sequence.
3. Let $Y \xrightarrow{f} X$ be the inclusion of an affine open subset Y into X, let \mathcal{N} be an \mathcal{O}_{Y}-module, and let $f_{*} \mathcal{N}$ be its direct image on X. The cohomology $H^{q}\left(X, f_{*} \mathcal{N}\right)$ is zero for all $q>0$.

Note. When X is an affine variety, the global section functor is exact: If $0 \rightarrow \mathcal{M} \rightarrow \mathcal{N} \rightarrow \mathcal{P} \rightarrow 0$ is a short exact sequence of \mathcal{O}-modules on X, the sequence

$$
0 \rightarrow H^{0}(X, \mathcal{M}) \rightarrow H^{0}(X, \mathcal{N}) \rightarrow H^{0}(X, \mathcal{P}) \rightarrow 0
$$

is exact 6.2.3. There is no need for the higher cohomology H^{1}, H^{2}, \cdots when X is affine. One may as well define $H^{q}(X, \cdot)=0$ when X is affine and $q>0$. This is the third characteristic property for the identity map $X \rightarrow X$, and the third property is based on this observation. Intuitively, the third property tells us that allowing poles on the complement of an affine open set kills cohomology in positive dimension.
7.3.2. Theorem. There exists a cohomology theory with the properties 7.3.1, and it is unique up to unique isomorphism.

The proof is in the next section.
7.3.3. Corollary. If X is an affine variety, $H^{q}(X, \mathcal{M})=0$ for all \mathcal{O}-modules \mathcal{M} and all $q>0$.

This follows when one applies the third characteristic property to the identity map $X \rightarrow X$.
We begin with an example, which shows how the third characteristic property can be used.
7.3.4. Example. let j be inclusion of the standard affine \mathbb{U}^{0} into $X=\mathbb{P}$. Then ${\underset{\longrightarrow}{\lim }}_{n} \mathcal{O}(n H) \approx j_{*} \mathcal{O}_{\mathbb{U}^{0}}$, where $\mathcal{M}_{\mathbb{U}^{0}}$ is the restriction of \mathcal{M} to \mathbb{U}^{0} 6.8.13. The third property tells us that the cohomology H^{q} of the direct image $j_{*} \mathcal{O}_{U}^{0}$ is zero when $q>0$. We will see below 7.4 .24 that cohomology commutes with direct limits. Therefore $\lim _{n} H^{q}\left(X, \mathcal{O}_{X}(n H)\right)$ and ${\underset{\longrightarrow}{\lim }}_{n} H^{q}\left(X, \mathcal{O}_{X}(n)\right)$ are zero when $q>0$.
cohdirsum 7.3.5. Lemma. Let \mathcal{M} and \mathcal{N} be \mathcal{O}-modules on a variety X. The cohomology of the direct sum $\mathcal{M} \oplus \mathcal{N}$ is canonically isomorphic to the direct $\operatorname{sum} H^{q}(X, \mathcal{M}) \oplus H^{q}(X, \mathcal{N})$.

In this statement, one could substitute just about any functor for H^{q}. And, since the direct sum and the direct product are equal, one could substitute \times for \oplus
proof. We have homomorphisms of \mathcal{O}-modules $\mathcal{M} \xrightarrow{i_{1}} \mathcal{M} \oplus \mathcal{N} \xrightarrow{\pi_{1}} \mathcal{M}$ and analogous homomorphisms $\mathcal{N} \xrightarrow{i_{2}} \mathcal{M} \oplus \mathcal{N} \xrightarrow{\pi_{2}} \mathcal{N}$. The direct sum can be characterized by these maps, together with the relations $\pi_{1} i_{1}=i d_{\mathcal{M}}, \pi_{2} i_{2}=i d_{\mathcal{N}}, \pi_{2} i_{1}=0, \pi_{1} i_{2}=0$, and $i_{1} \pi_{1}+i_{2} \pi_{2}=i d_{\mathcal{M} \oplus \mathcal{N}}$. The proof of this is an exercise. Applying the functor H^{q} gives analogous homomorphisms relating $H^{q}(\mathcal{M}), H^{q}(\mathcal{N})$, and $H^{q}(\mathcal{M} \oplus \mathcal{N})$. Therefore $H^{q}(\mathcal{M} \oplus \mathcal{N}) \approx H^{q}(\mathcal{M}) \oplus H^{q}(\mathcal{N})$.

7.4 Existence of Cohomology

The proof of existence and uniqueness of cohomology are based on the following facts:

- The intersection of two affine open subsets of a variety is an affine open set.
- A sequence $\cdots \rightarrow \mathcal{M} \rightarrow \mathcal{N} \rightarrow \mathcal{P} \rightarrow \cdots$ of \mathcal{O}-modules on a variety X is exact if and only if, for every affine open subset U, the sequence of sections $\cdots \rightarrow \mathcal{M}(U) \rightarrow \mathcal{N}(U) \rightarrow \mathcal{P}(U) \rightarrow \cdots$ is exact. (This is the definition of exactness.)

We begin by choosing an arbitrary affine covering $\mathbf{U}=\left\{U^{\nu}\right\}$ of our variety X by finitely many affine open sets U^{ν}, and we use this covering to describe the cohomology. When we have shown that the cohomology is unique, we will know that it doesn't depend on our choice of covering.

Let $\mathbf{U} \xrightarrow{j} X$ denote the family of inclusions $U^{\nu} \xrightarrow{j^{\nu}} X$ of our chosen affine open sets into X. If \mathcal{M} is an \mathcal{O}-module, $\mathcal{R}_{\mathcal{M}}$ will denote the \mathcal{O}-module $\prod j_{*}^{\nu} \mathcal{M}_{U^{\nu}}$, where $\mathcal{M}_{U^{\nu}}$ denotes the restriction of \mathcal{M} to U^{ν} 6.6.12. We can also write $\prod j_{*}^{\nu} \mathcal{M}_{U^{\nu}}$ as $j_{*} \mathcal{M}_{\mathrm{U}}$. As has been noted, there is a canonical map $\mathcal{M} \rightarrow j_{*}^{\nu} \mathcal{M}_{U^{\nu}}$, and therefore a canonical map $\mathcal{M} \rightarrow \mathcal{R}_{\mathcal{M}}$ 6.6.14).
7.4.1. Lemma. (i) Let X^{\prime} be an open subset of X. The module $\mathcal{R}_{\mathcal{M}}\left(X^{\prime}\right)$ of sections of $\mathcal{R}_{\mathcal{M}}$ on X^{\prime} is the product $\prod_{\nu} \mathcal{M}\left(X^{\prime} \cap U^{\nu}\right)$. The space of global sections $\mathcal{R}_{\mathcal{M}}(X)$, which is $H^{0}\left(X, \mathcal{R}_{\mathcal{M}}\right)$, is the product $\prod_{\nu} \mathcal{M}\left(U^{\nu}\right)$.
(ii) The canonical map $\mathcal{M} \rightarrow \mathcal{R}_{\mathcal{M}}$ is injective. Thus, if $\mathcal{S}_{\mathcal{M}}$ denotes the cokernel of that map, there is a short exact sequence of \mathcal{O}-modules

$$
\begin{equation*}
0 \rightarrow \mathcal{M} \rightarrow \mathcal{R}_{\mathcal{M}} \rightarrow \mathcal{S}_{\mathcal{M}} \rightarrow 0 \tag{7.4.2}
\end{equation*}
$$

MRze-
(iii) For any cohomology theory with the characteristic properties and for any $q>0, H^{q}\left(X, \mathcal{R}_{\mathcal{M}}\right)=0$.
proof. (i) This is seen by going through the definitions:

$$
\mathcal{R}\left(X^{\prime}\right)=\prod_{\nu}\left[j_{*}^{\nu} \mathcal{M}_{U^{\nu}}\right]\left(X^{\prime}\right)=\prod_{\nu} \mathcal{M}_{U^{\nu}}\left(X^{\prime} \cap U^{\nu}\right)=\prod_{\nu} \mathcal{M}\left(X^{\prime} \cap U^{\nu}\right)
$$

(ii) Let X^{\prime} be an open subset of X. The map $\mathcal{M}\left(X^{\prime}\right) \rightarrow \mathcal{R}_{\mathcal{M}}\left(X^{\prime}\right)$ is the product of the restriction maps $\mathcal{M}\left(X^{\prime}\right) \rightarrow \mathcal{M}\left(X^{\prime} \cap U^{\nu}\right)$. Because the open sets U^{ν} cover X, the intersections $X^{\prime} \cap U^{\nu}$ cover X^{\prime}. The sheaf property of \mathcal{M} tells us that the map $\mathcal{M}\left(X^{\prime}\right) \rightarrow \prod_{\nu} \mathcal{M}\left(X^{\prime} \cap U^{\nu}\right)$ is injective.
(iii) This follows from the third characteristic property.
7.4.3. Lemma. (i) A short exact sequence $0 \rightarrow \mathcal{M} \rightarrow \mathcal{N} \rightarrow \mathcal{P} \rightarrow 0$ of \mathcal{O}-modules embeds into a diagram

whose rows and columns are short exact sequences. (We have suppressed the surrounding zeros.)
(ii) The sequence of global sections $0 \rightarrow \mathcal{R}_{\mathcal{M}}(X) \rightarrow \mathcal{R}_{\mathcal{N}}(X) \rightarrow \mathcal{R}_{\mathcal{P}}(X) \rightarrow 0$ is exact.
proof. (i) We are given that the top row of the diagram is a short exact sequence, and we have seen that the columns are short exact sequences. To show that the middle row

$$
\begin{equation*}
0 \rightarrow \mathcal{R}_{\mathcal{M}} \rightarrow \mathcal{R}_{\mathcal{N}} \rightarrow \mathcal{R}_{\mathcal{P}} \rightarrow 0 \tag{7.4.5}
\end{equation*}
$$

is exact, we must show that if X^{\prime} is an affine open subset of X, the sections on X^{\prime} form a short exact sequence. The sections are explained in Lemma 7.4.1(i). Since products of exact sequences are exact, we must show that the sequence

$$
0 \rightarrow \mathcal{M}\left(X^{\prime} \cap U^{\nu}\right) \rightarrow \mathcal{N}\left(X^{\prime} \cap U^{\nu}\right) \rightarrow \mathcal{P}\left(X^{\prime} \cap U^{\nu}\right) \rightarrow 0
$$

is exact. This is true because $X^{\prime} \cap U^{\nu}$ is an intersection of affine opens, and is therefore affine.
Now that we know that the first two rows of the diagram are short exact sequences, the Snake Lemma tells us that the bottom row is a short exact sequence.
(ii) The sequence of of global sections referred to in the statement is the product of the sequences

$$
0 \rightarrow \mathcal{M}\left(U^{\nu}\right) \rightarrow \mathcal{N}\left(U^{\nu}\right) \rightarrow \mathcal{P}\left(U^{\nu}\right) \rightarrow 0
$$

These sequences are exact because the open sets U^{ν} are affine.

(7.4.6) uniqueness of cohomology

Suppose that a cohomology with the characteristic properties $\sqrt[7.3 .1]{ }$ is given, and let \mathcal{M} be an \mathcal{O}-module. The cohomology sequence associated to the sequence $0 \rightarrow \mathcal{M} \rightarrow \mathcal{R}_{\mathcal{M}} \rightarrow \mathcal{S}_{\mathcal{M}} \rightarrow 0$ is

$$
0 \rightarrow H^{0}(X, \mathcal{M}) \rightarrow H^{0}\left(X, \mathcal{R}_{\mathcal{M}}\right) \rightarrow H^{0}\left(X, \mathcal{S}_{\mathcal{M}}\right) \xrightarrow{\delta^{0}} H^{1}(X, \mathcal{M}) \rightarrow H^{1}\left(X, \mathcal{R}_{\mathcal{M}}\right) \rightarrow \cdots
$$

Lemma 7.4.1 (iii) tells us that $H^{q}\left(X, \mathcal{R}_{\mathcal{M}}\right)=0$ when $q>0$. So this cohomology sequence breaks up into an exact sequence

$$
\begin{equation*}
0 \rightarrow H^{0}(X, \mathcal{M}) \rightarrow H^{0}\left(X, \mathcal{R}_{\mathcal{M}}\right) \rightarrow H^{0}\left(X, \mathcal{S}_{\mathcal{M}}\right) \xrightarrow{\delta^{0}} H^{1}(X, \mathcal{M}) \rightarrow 0 \tag{7.4.7}
\end{equation*}
$$

and isomorphisms

$$
\begin{equation*}
0 \rightarrow H^{q}\left(X, \mathcal{S}_{\mathcal{M}}\right) \xrightarrow{\delta^{q}} H^{q+1}(X, \mathcal{M}) \rightarrow 0 \tag{7.4.8}
\end{equation*}
$$

for every $q>0$. The first three terms of the sequence 7.4.7, and the arrows connecting them, depend on our choice of covering of X, but the important point is that they don't depend on the cohomology. So that sequence determines $H^{1}(X, \mathcal{M})$ up to unique isomorphism as the cokernel of a map that is independent of the cohomology. This this is true for every \mathcal{O}-module \mathcal{M}, including for the module $\mathcal{S}_{\mathcal{M}}$. Therefore it is also true that $H^{1}\left(X, \mathcal{S}_{\mathcal{M}}\right)$ is determined uniquely. This being so, $H^{2}(X, \mathcal{M})$ is determined uniquely for every \mathcal{M}, by the isomorphism 7.4.8, with $q=1$. The isomorphisms 7.4.8) determine the rest of the cohomology up to unique isomorphism by induction on q.

(7.4.9) construction of cohomology

One can use the sequence 7.4 .2 and induction to construct cohomology, but it seems clearer to proceed by iterating the construction of $\mathcal{R}_{\mathcal{M}}$.

Let \mathcal{M} be an \mathcal{O}-module. We rewrite the exact sequence 7 7.4.2, labeling $\mathcal{R}_{\mathcal{M}}$ as $\mathcal{R}_{\mathcal{M}}^{0}$, and $\mathcal{S}_{\mathcal{M}}$ as \mathcal{M}^{1} :

$$
\begin{equation*}
0 \rightarrow \mathcal{M} \rightarrow \mathcal{R}_{\mathcal{M}}^{0} \rightarrow \mathcal{M}^{1} \rightarrow 0 \tag{7.4.10}
\end{equation*}
$$

and we repeat the construction with \mathcal{M}^{1}. Let $\mathcal{R}_{\mathcal{M}}^{1}=\mathcal{R}_{\mathcal{M}^{1}}^{0}\left(=j_{*} \mathcal{M}_{\mathbb{U}}^{1}\right)$, so that there is an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{M}^{1} \rightarrow \mathcal{R}_{\mathcal{M}}^{1} \rightarrow \mathcal{M}^{2} \rightarrow 0 \tag{7.4.11}
\end{equation*}
$$

analogous to the sequence 7.4.10, with $\mathcal{M}^{2}=\mathcal{R}_{\mathcal{M}}^{1} / \mathcal{M}^{1}$. We combine the sequences 7.4.10, and 7.4.11) into an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{M} \rightarrow \mathcal{R}_{\mathcal{M}}^{0} \rightarrow \mathcal{R}_{\mathcal{M}}^{1} \rightarrow \mathcal{M}^{2} \rightarrow 0 \tag{7.4.12}
\end{equation*}
$$

and we let $\mathcal{R}_{\mathcal{M}}^{2}=\mathcal{R}_{\mathcal{M}^{2}}^{0}$. Continuing in this way, we construct modules $\mathcal{R}_{\mathcal{M}}^{k}$ that form an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{M} \rightarrow \mathcal{R}_{\mathcal{M}}^{0} \rightarrow \mathcal{R}_{\mathcal{M}}^{1} \rightarrow \mathcal{R}_{\mathcal{M}}^{2} \rightarrow \cdots \tag{7.4.13}
\end{equation*}
$$

The next lemma follows by induction from Lemma 7.4 .1 (iii) and Lemma 7.4.3(i,ii).
7.4.14. Lemma.
(i) Let $0 \rightarrow \mathcal{M} \rightarrow \mathcal{N} \rightarrow \mathcal{P} \rightarrow 0$ be a short exact sequence of \mathcal{O}-modules. For every n, the sequences

$$
0 \rightarrow \mathcal{R}_{\mathcal{M}}^{n} \rightarrow \mathcal{R}_{\mathcal{N}}^{n} \rightarrow \mathcal{R}_{\mathcal{P}}^{n} \rightarrow 0
$$

are exact, and so are the sequences of global sections

$$
0 \rightarrow \mathcal{R}_{\mathcal{M}}^{n}(X) \rightarrow \mathcal{R}_{\mathcal{N}}^{n}(X) \rightarrow \mathcal{R}_{\mathcal{P}}^{n}(X) \rightarrow 0
$$

(ii) If H^{0}, H^{1}, \ldots is a cohomology theory, then $H^{q}\left(X, \mathcal{R}_{\mathcal{M}}^{n}\right)=0$ for all n and all $q>0$.

An exact sequence such as 7.4 .13 is called a resolution of \mathcal{M}, and because $H^{q}\left(X, \mathcal{R}_{\mathcal{M}}^{n}\right)=0$ when $q>0$, it is an acyclic resolution.

Continuing with the proof of existence, we consider the complex of \mathcal{O}-modules that is obtained by omitting the term \mathcal{M} from 7.4.13). Let $\mathcal{R}_{\mathcal{M}}^{\bullet}$ denote that complex:

$$
\begin{equation*}
\mathcal{R}_{\mathcal{M}}^{\bullet}=0 \rightarrow \mathcal{R}_{\mathcal{M}}^{0} \rightarrow \mathcal{R}_{\mathcal{M}}^{1} \rightarrow \mathcal{R}_{\mathcal{M}}^{2} \rightarrow \cdots \tag{7.4.15}
\end{equation*}
$$

The complex $\mathcal{R}_{\mathcal{M}}^{\bullet}(X)$ of its global sections

$$
\begin{equation*}
0 \rightarrow \mathcal{R}_{\mathcal{M}}^{0}(X) \rightarrow \mathcal{R}_{\mathcal{M}}^{1}(X) \rightarrow \mathcal{R}_{\mathcal{M}}^{2}(X) \rightarrow \cdots \tag{7.4.16}
\end{equation*}
$$

can also be written as

$$
0 \rightarrow H^{0}\left(X, \mathcal{R}_{\mathcal{M}}^{0}\right) \rightarrow H^{0}\left(X, \mathcal{R}_{\mathcal{M}}^{1}\right) \rightarrow H^{0}\left(X, \mathcal{R}_{\mathcal{M}}^{2}\right) \rightarrow \cdots
$$

The complex $\mathcal{R}_{\mathcal{M}}^{\bullet}$ becomes the resolution 7.4 .13 when the module \mathcal{M} is inserted. So it is an exact sequence except at $\mathcal{R}_{\mathcal{M}}^{0}$. However, the global section functor is only left exact, and the sequence 7.4.16) of global sections $\mathcal{R}_{\mathcal{M}}^{\bullet}(X)$ needn't be exact anywhere. It is a complex though, because $\mathcal{R}_{\mathcal{M}}^{\bullet}$ is a complex. The composition of adjacent maps is zero.

Recall that the cohomology of a complex $0 \rightarrow V^{0} \xrightarrow{d^{0}} V^{1} \xrightarrow{d^{1}} \cdots$ of vector spaces is $\mathbf{C}^{q}\left(V^{\bullet}\right)=$ $\left(\operatorname{ker} d^{q}\right) /\left(\operatorname{im} d^{q-1}\right)$, and that $\left\{\mathbf{C}^{q}\right\}$ is a cohomological functor on complexes 7.2.5.
7.4.17. Definition. The cohomology of an \mathcal{O}-module \mathcal{M} is the cohomology of the complex $\mathcal{R}_{\mathcal{M}}^{\bullet}(X)$:

$$
H^{q}(X, \mathcal{M})=\mathbf{C}^{q}\left(\mathcal{R}_{\mathcal{M}}^{\bullet}(X)\right)
$$

Thus if we denote the maps in the complex (7.4.16) by d^{q} :

$$
0 \rightarrow \mathcal{R}_{\mathcal{M}}^{0}(X) \xrightarrow{d^{0}} \mathcal{R}_{\mathcal{M}}^{1}(X) \xrightarrow{d^{1}} \mathcal{R}_{\mathcal{M}}^{2}(X) \rightarrow \cdots
$$

then $H^{q}(X, \mathcal{M})=\left(\operatorname{ker} d^{q}\right) /\left(\operatorname{im} d^{q-1}\right)$.
7.4.18. Lemma. Let X be an affine variety. With cohomology defined as above, $H^{q}(X, \mathcal{M})=0$ for all \mathcal{O}-modules \mathcal{M} and all $q>0$.
proof. When X is affine, the sequence of global sections of the exact sequence 7.4 .13 is exact.
To show that our definition gives the unique cohomology, we verify the three characteristic properties. Since the sequence 7.4 .13 is exact and since the global section functor is left exact, $\mathcal{M}(X)$ is the kernel of the map $\mathcal{R}_{\mathcal{M}}^{0}(X) \rightarrow \mathcal{R}_{\mathcal{M}}^{1}(X)$. This kernel is also equal to $\mathbf{C}^{0}\left(\mathcal{R}_{\mathcal{M}}^{\bullet}(X)\right)$, so our cohomology has the first property: $H^{0}(X, \mathcal{M})=\mathcal{M}(X)$.

To show that we obtain a cohomological functor, we apply Lemma 7.4.14 to conclude that, for a short exact sequence $0 \rightarrow \mathcal{M} \rightarrow \mathcal{N} \rightarrow \mathcal{P} \rightarrow 0$, the spaces of global sections

$$
\begin{equation*}
0 \rightarrow \mathcal{R}_{\mathcal{M}}^{\bullet}(X) \rightarrow \mathcal{R}_{\mathcal{N}}^{\bullet}(X) \rightarrow \mathcal{R}_{\mathcal{P}}^{\bullet}(X) \rightarrow 0 \tag{7.4.19}
\end{equation*}
$$

form an exact sequence of complexes. The cohomology $H^{q}(X, \cdot)$ is a cohomological functor because cohomology of complexes is a cohomological functor. This is the second characteristic property.

We make a digression before verifying the third characteristic property.
Let $Y \xrightarrow{f} X$ be a morphism of varieties. Let $U \xrightarrow{j} X$ be the inclusion of an open subvariety into X and let V be the inverse image $f^{-1} U$, which is an open subvariety of Y. These varieties and maps form a diagram
jstarfstar
jstarfstartwo
affinedirectimage

When we restrict the direct image $f_{*} \mathcal{N}$ of \mathcal{N} to U, we obtain an \mathcal{O}_{U}-module $\left[f_{*} \mathcal{N}\right]_{U}$. We can obtain an \mathcal{O}_{U}-module in a second way: First restrict the module \mathcal{N} to the open subset V of Y, and then take its direct image. This gives us the \mathcal{O}_{U}-module $g_{*}\left[\mathcal{N}_{V}\right]$.
7.4.21. Lemma. The \mathcal{O}_{U}-modules $g_{*}\left[\mathcal{N}_{V}\right]$ and $\left[f_{*} \mathcal{N}\right]_{U}$ are equal.
proof. Let U^{\prime} be an open subset of U, and let $V^{\prime}=g^{-1} U^{\prime}$. Then

$$
\left[f_{*} \mathcal{N}\right]_{U}\left(U^{\prime}\right)=\left[f_{*} \mathcal{N}\right]\left(U^{\prime}\right)=\mathcal{N}\left(V^{\prime}\right)=\mathcal{N}_{V}\left(V^{\prime}\right)=\left[g_{*}\left[\mathcal{N}_{V}\right]\right]\left(U^{\prime}\right)
$$

7.4.22. Proposition. Let $Y \xrightarrow{f} X$ be an affine morphism, and let \mathcal{N} be an \mathcal{O}_{Y}-module. Let $H^{q}(X, \cdot)$ be the cohomology defined as in (7.4.17), and let $H^{q}(Y, \cdot)$ be the cohomology that is defined in the analogous way, using the covering \mathbf{V} of Y. Then $H^{q}\left(X, f_{*} \mathcal{N}\right)$ is isomorphic to $H^{q}(Y, \mathcal{N})$.
proof. This proof requires untangling the notation. Except for that, it is easy.
To compute the cohomology of $f_{*} \mathcal{N}$ on X, we substitute $\mathcal{M}=f_{*} \mathcal{N}$ into (7.4.17):

$$
H^{q}\left(X, f_{*} \mathcal{N}\right)=\mathbf{C}^{q}\left(\mathcal{R}_{f_{*} \mathcal{N}}^{\bullet}(X)\right)
$$

To compute the cohomology of \mathcal{N} on Y, we let

$$
\mathcal{R}_{\mathcal{N}}^{\prime 0}=i_{*}\left[\mathcal{N}_{\mathbf{V}}\right]
$$

where i is as in Diagram 7.4.20 and we continue, to construct a resolution $0 \rightarrow \mathcal{N} \rightarrow \mathcal{R}^{\prime 0}{ }_{\mathcal{N}} \rightarrow \mathcal{R}^{\prime}{ }_{\mathcal{N}} \rightarrow \cdots$. The prime is there to remind us that \mathcal{R}^{\prime} is defined using the covering \mathbf{V} of Y. Let $\mathcal{R}_{\mathcal{N}}^{\prime \bullet}$ be the complex that is obtained by replacing the term \mathcal{N} by zero. Then

$$
H^{q}(Y, \mathcal{N})=\mathbf{C}^{q}\left(\mathcal{R}_{\mathcal{N}}^{\prime \bullet}(Y)\right) .
$$

It suffices to show that the complexes of global sections $\mathcal{R}_{f_{*} \mathcal{N}}^{\bullet}(X)$ and $\mathcal{R}_{\mathcal{N}}^{\prime \bullet}(Y)$ are isomorphic. If so, we will have

$$
H^{q}\left(X, f_{*} \mathcal{N}\right)=\mathbf{C}^{q}\left(\mathcal{R}_{f_{*} \mathcal{N}}^{\bullet}(X)\right) \approx \mathbf{C}^{q}\left(\mathcal{R}_{\mathcal{N}}^{\prime \bullet}(Y)\right)=H^{q}(Y, \mathcal{N})
$$

as required.
By definition of the direct image, $\left[f_{*} \mathcal{R}_{\mathcal{N}}^{\prime q}\right](X)=\mathcal{R}_{\mathcal{N}}^{\prime q}(Y)$. So we must show that $\left[\mathcal{R}_{f_{*} \mathcal{N}}^{q}\right](X)$ is isomorphic to $\left[f_{*} \mathcal{R}_{\mathcal{N}}^{\prime q}\right](X)$, and it suffices to show that $\mathcal{R}_{f_{*} \mathcal{N}}^{q} \approx f_{*} \mathcal{R}_{\mathcal{N}}^{\prime q}$. We look back at the definition of the modules \mathcal{R}^{0} in the form 7.4.10. On Y, the analogous sequence for \mathcal{N} is

$$
0 \rightarrow \mathcal{N} \rightarrow \mathcal{R}_{\mathcal{N}}^{\prime 0} \rightarrow \mathcal{N}^{1} \rightarrow 0
$$

where $\mathcal{R}^{\prime 0}{ }_{\mathcal{N}}=i_{*}\left[\mathcal{N}_{\mathbf{V}}\right], i$ being the map $\mathbf{V} \rightarrow Y$. When f is an affine morphism, the direct image of this sequence

$$
0 \rightarrow f_{*} \mathcal{N} \rightarrow f_{*} \mathcal{R}_{\mathcal{N}}^{\prime 0} \rightarrow f_{*} \mathcal{N}^{1} \rightarrow 0
$$

is exact. We substitute $U=\mathbf{U}$ nd $V=\mathbf{V}$ into Diagram 7.4.20. Then

$$
f_{*} \mathcal{R}_{\mathcal{N}}^{\prime 0}=f_{*} i_{*}\left[\mathcal{N}_{\mathbf{V}}\right]=j_{*} g_{*}\left[\mathcal{N}_{\mathbf{V}}\right] \xrightarrow{(1)} j_{*}\left[f_{*} \mathcal{N}\right]_{\mathbb{U}}=\mathcal{R}_{f_{*} \mathcal{N}}^{0}
$$

the equality (1) being Lemma 7.4 .21 So $f_{*} \mathcal{R}_{\mathcal{N}}^{\prime 0}=\mathcal{R}_{f_{\mathcal{N}}}^{0}$. Now induction on q completes the proof.
We go back to verify the third characteristic property of cohomology, which is that when $Y \xrightarrow{f} X$ is the inclusion of an affine open subset, $H^{q}\left(X, f_{*} \mathcal{N}\right)=0$ for all \mathcal{O}_{Y}-modules \mathcal{N} and all $q>0$. The inclusion of an affine open set is an affine morphism, so $H^{q}(Y, \mathcal{N})=H^{q}\left(X, f_{*} \mathcal{N}\right)$ 7.4.22), and since Y is affine, $H^{q}(Y, \mathcal{N})=0$ for all $q>0$ 7.4.18.
7.4.23. Corollary. Let $Y \xrightarrow{i} X$ be the inclusion of a closed subvariety Y into a variety X, and let \mathcal{N} be an \mathcal{O}_{Y}-module. With cohomology defined as above, $H^{q}(Y, \mathcal{N})$ and $H^{q}\left(X, i_{*} \mathcal{N}\right)$ are isomorphic for every q.

Proposition 7.4 .22 is one of the places where a specific construction of cohomology is used. The characteristic properties don't apply directly. The next proposition is another such place.
7.4.24. Lemma. Cohomology is compatible with limits of directed sets of \mathcal{O}-modules: $H^{q}\left(X, \underset{\rightarrow}{\lim } \mathcal{M}_{\bullet}\right) \approx$ $\lim _{\longrightarrow} H^{q}\left(X, \mathcal{M}_{\bullet}\right)$ for all q.
proof. The direct and inverse image functors and the global section functor are all compatible with direct limits, and $\underset{\longrightarrow}{\lim }$ is exact 6.5 .17 . So the module $\mathcal{R}_{l \rightarrow}^{q} \mathcal{M}_{\bullet}$ that is used to compute the cohomology of $\underset{\longrightarrow}{\lim } \mathcal{M}_{\bullet}$ is isomorphic to $\xrightarrow{\lim }\left[\mathcal{R}_{\mathcal{M}_{\bullet}}^{q}\right]$, and $\mathcal{R}_{\lim \mathcal{M}_{\bullet}}^{q}(X)$ is isomorphic to $\underset{\longrightarrow}{\lim }\left[\mathcal{R}_{\mathcal{M}_{\bullet}}^{q}\right](X)$.

7.5 Cohomology of the Twisting Modules

As we will see, the cohomology $H^{q}\left(\mathbb{P}^{n}, \mathcal{O}(d)\right)$ of the twisting modules $\mathcal{O}(d)$ on \mathbb{P}^{n} is zero for most values of q. This fact will help to determine the cohomology of other modules.

Lemma 7.4.18 about vanishing of cohomology on an affine variety, and Lemma 7.4.22 about the direct image via an affine morphism, were stated using a particular affine covering. Since we know that cohomology is unique, that particular covering is irrelevant. Though it isn't strictly necessary, we restate those lemmas here as a corollary:
7.5.1. Corollary. (i) On an affine variety $X, H^{q}(X, \mathcal{M})=0$ for all \mathcal{O}-modules \mathcal{M} and all $q>0$.
(ii) Let $Y \xrightarrow{f} X$ be an affine morphism. If \mathcal{N} is an \mathcal{O}_{Y}-module, then $H^{q}\left(X, f_{*} \mathcal{N}\right)$ and $H^{q}(Y, \mathcal{N})$ are isomorphic. If Y is an affine variety, $H^{q}\left(X, f_{*} \mathcal{N}\right)=0$ for all $q>0$.

One case to which (ii) applies is that f is the inclusion of a closed subvariety Y into a variety X :
7.5.2. Corollary. Let $X \xrightarrow{i} \mathbb{P}^{n}$ be the embedding of a projective variety into projective space, and let \mathcal{M} be an \mathcal{O}_{X}-module. For all q, the cohomology $H^{q}(X, \mathcal{M})$ of \mathcal{M} on X is isomorphic to the cohomology $H^{q}\left(\mathbb{P}^{n}, i_{*} \mathcal{M}\right)$ of its extension by zero to \mathbb{P}^{n}.

Recall also that, on projective space, $\mathcal{M}(d) \approx \mathcal{M} \otimes_{\mathcal{O}} \mathcal{O}(d)$. If \mathcal{M} is an \mathcal{O}_{X}-module on a projective variety X, its twist $\mathcal{M}(d)$ is defined to be the \mathcal{O}_{X}-module that corresponds to the twist of its extension by zero $i_{*} \mathcal{M}$, which is $\left[i_{*} \mathcal{M}\right] \otimes_{\mathcal{O}} \mathcal{O}(d)$.

Let \mathcal{M} be a finite \mathcal{O}-module on projective space \mathbb{P}^{n}. The twisting modules $\mathcal{O}(d)$ and the twists $\mathcal{M}(d)=$ $\mathcal{M} \otimes_{\mathcal{O}} \mathcal{O}(d)$ are isomorphic to $\mathcal{O}(d H)$ and $\mathcal{M}(d H)$, respectively 6.8.11) and there are maps of directed sets

The second diagram is obtained from the first one by tensoring with \mathcal{M}.
Let \mathbb{U} denote the standard affine open subset \mathbb{U}^{0} of \mathbb{P}^{n}, and let j be the inclusion of \mathbb{U} into \mathbb{P}^{n}. Then $\underset{\longrightarrow}{\lim _{d} \mathcal{O}(d H) \approx j_{*} \mathcal{O}_{\mathbb{U}} \text { and } \lim _{d} \mathcal{M}(d H) \approx j_{*} \mathcal{M}_{\mathbb{U}} \text { 6.8.15. } . ~ . ~ . ~}$

Onsequencetwo
dimnotation
7.5.3. Corollary. (i) Let j denote the inclusion $\mathbb{U} \xrightarrow{j} \mathbb{P}^{n}$. For all $q>0, H^{q}\left(\mathbb{P}^{n}, j_{*} \mathcal{O}_{\mathbb{U}}\right)=0$ and $H^{q}\left(\mathbb{P}^{n}, j_{*} \mathcal{M}_{\mathbb{U}}\right)=0$.
(ii) For all projective varieties X, for all \mathcal{O}-modules \mathcal{M} and for all $q>0, \lim _{d} H^{q}(X, \mathcal{O}(d))=0$ and $\lim _{d} H^{q}(X, \mathcal{M}(d))=0$.
proof. (i) This follows from the facts that the inclusion j is an affine morphism and that \mathbb{U} is affine.
(ii) This follows from (i) because $\mathcal{M}(d)$ is isomorphic to $\mathcal{M}(d H)$, and cohomology is compatible with direct limits 7.4.24.
7.5.4. Notation. If \mathcal{M} is an \mathcal{O}-module, we denote the dimension of $H^{q}(X, \mathcal{M})$ by $\mathbf{h}^{q} \mathcal{M}$, or by $\mathbf{h}^{q}(X, \mathcal{M})$ if there is ambiguity about the variety. We can write $\mathbf{h}^{q} \mathcal{M}=\infty$ if the dimension is infinite. However, in Section 7.7, we will see that, when \mathcal{M} is a finite \mathcal{O}-module on a projective variety X, the dimension $\mathbf{h}^{q}(X, \mathcal{M})$ will be finite for every q.

7.5.5. Theorem.

(i) For $d \geq 0, \quad \mathbf{h}^{0}\left(\mathbb{P}^{n}, \mathcal{O}(d)\right)=\binom{d+n}{n}$ and $\mathbf{h}^{q}\left(\mathbb{P}^{n}, \mathcal{O}(d)\right)=0$ if $q \neq 0$.
(ii) For $r>0, \quad \mathbf{h}^{n}\left(\mathbb{P}^{n}, \mathcal{O}(-r)\right)=\binom{r-1}{n}$ and $\mathbf{h}^{q}\left(\mathbb{P}^{n}, \mathcal{O}(-r)\right)=0$ if $q \neq n$.

Note that, in (i), the case $d=0$ asserts that $\mathbf{h}^{0}\left(\mathbb{P}^{n}, \mathcal{O}\right)=1$ and $\mathbf{h}^{q}\left(\mathbb{P}^{n}, \mathcal{O}\right)=0$ for all $q>0$, while (ii) asserts that $\mathbf{h}^{q}\left(\mathbb{P}^{n}, \mathcal{O}(-1)\right)=0$ for all q, if $1 \leq q$.
proof. We have described the global sections of $\mathcal{O}(d)$ before: If $d \geq 0, H^{0}(X, \mathcal{O}(d))$ is the space of homogeneous polynomials of degree d in the coordinate variables. Its dimension is $\binom{d+n}{n}$, and $H^{0}\left(\mathbb{P}^{n}, \mathcal{O}(d)\right)=0$ if $d<0$. (See 6.8.2.)

Let $X=\mathbb{P}^{n}$, and let Y be the hyperplane at infinity $\{x=0\}$, and let $Y \xrightarrow{i} X$ be the inclusion of Y into X.
(i) the case $d \geq 0$.

By induction on n, we may assume that the theorem has been proved for Y, which is a projective space of dimension $n-1$. We consider the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}(-1) \xrightarrow{x_{0}} \mathcal{O}_{X} \rightarrow i_{*} \mathcal{O}_{Y} \rightarrow 0 \tag{7.5.6}
\end{equation*}
$$

and its twists

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}(d-1) \xrightarrow{x_{0}} \mathcal{O}_{X}(d) \rightarrow i_{*} \mathcal{O}_{Y}(d) \rightarrow 0 \tag{7.5.7}
\end{equation*}
$$

The twisted sequences are exact because they are obtained by tensoring (7.5.6 with the invertible \mathcal{O}-modules $\mathcal{O}(d)$. Because the inclusion i is an affine morphism, $H^{q}\left(X, i_{*} \mathcal{O}_{Y}(d)\right) \approx H^{q}\left(Y, \mathcal{O}_{Y}(d)\right)$.

The monomials of degree d in $n+1$ variables form a basis of the space of global sections of $\mathcal{O}_{X}(d)$. Setting $x_{0}=0$ and deleting terms that become zero gives us a basis of $\mathcal{O}_{Y}(d)$. Every global section of $\mathcal{O}_{Y}(d)$ is the restriction of a global section of $\mathcal{O}_{X}(d)$. So the sequence of global sections

$$
0 \rightarrow H^{0}\left(X, \mathcal{O}_{X}(d-1)\right) \xrightarrow{x_{0}} H^{0}\left(X, \mathcal{O}_{X}(d)\right) \rightarrow H^{0}\left(Y, \mathcal{O}_{Y}(d)\right) \rightarrow 0
$$

is exact. The cohomology sequence associated to 7.5.7) tells us that the map $H^{1}\left(X, \mathcal{O}_{X}(d-1)\right) \longrightarrow$ $H^{1}\left(X, \mathcal{O}_{X}(d)\right)$ is injective.

By induction on the dimension of $X, H^{q}\left(Y, \mathcal{O}_{Y}(d)\right)=0$ for $d \geq 0$ and $q>0$. When combined with the injectivity noted above, the cohomology sequence of 7.5.7 shows that the maps $H^{q}\left(X, \mathcal{O}_{X}(d-1)\right) \rightarrow$ $H^{q}\left(X, \mathcal{O}_{X}(d)\right)$ are bijective for every $q>0$. Since the limits are zero 7.5.3), $H^{q}\left(X, \mathcal{O}_{X}(d)\right)=0$ for all $d \geq 0$ and all $q>0$.
(ii) the case $d<0$, or $r>0$.

We use induction on the integers r and n. We suppose the theorem proved for a given r, and we substitute $d=-r$ into the sequence 7.5.7):

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}(-(r+1)) \xrightarrow{x_{0}} \mathcal{O}_{X}(-r) \rightarrow i_{*} \mathcal{O}_{Y}(-r) \rightarrow 0 \tag{7.5.8}
\end{equation*}
$$

For $r=0$, the exact sequence is $0 \rightarrow \mathcal{O}_{X}(-1) \rightarrow \mathcal{O}_{X} \rightarrow i_{*} \mathcal{O}_{Y} \rightarrow 0$. In the cohomology sequence associated to that sequence, the terms $H^{q}\left(X, \mathcal{O}_{X}\right)$ and $H^{q}\left(Y, \mathcal{O}_{Y}\right)$ are zero when $q>0$, and $H^{0}\left(X, \mathcal{O}_{X}\right)=$ $H^{0}\left(Y, \mathcal{O}_{Y}\right)=\mathbb{C}$. Therefore $H^{q}\left(X, \mathcal{O}_{X}(-1)\right)=0$ for every q. This proves (ii) for $r=1$.

Our induction hypothesis is that, $\mathbf{h}^{n}(X, \mathcal{O}(-r))=\binom{r-1}{n}$ and $\mathbf{h}^{q}=0$ if $q \neq n$. By induction on n, we may suppose that $\mathbf{h}^{n-1}(Y, \mathcal{O}(-r))=\binom{r-1}{n-1}$ and that $\mathbf{h}^{q}=0$ if $q \neq n-1$.

Instead of displaying the cohomology sequence associated to 7.5.8, we assemble the dimensions of cohomology into a table, in which the asterisks stand for entries that are to be determined:

	$\mathcal{O}_{X}(-(r+1))$	$\mathcal{O}_{X}(-r)$	$i_{*} \mathcal{O}_{Y}(-r)$
$\mathbf{h}^{0} \quad \vdots$	$*$	0	0
\vdots	\vdots	\vdots	\vdots
$\mathbf{h}^{n-2}:$	$*$	0	0
$\mathbf{h}^{n-1}:$	$*$	0	$\binom{r-1}{n-1}$
$\mathbf{h}^{n} \quad:$	$*$	$\binom{r-1}{n}$	0

co-
hdimstwo
cohhyper
coh-
planecurvetwo
cohdims
coh-
planecurvethre

The fact that $\mathbf{h}^{0} \mathcal{O}_{C}=1$ tells us that the only rational functions that are regular everywhere on C are the constants. It follows that a plane curve is connected in the Zariski topology, and it hints at a fact to be proved later, that a plane curve is connected in the classical topology, but it isn't a proof of that fact.

7.7 Three Theorems about Cohomology

7.7.1. Theorem. Let X be a projective variety, and let \mathcal{M} be a finite \mathcal{O}_{X}-module. If the support of \mathcal{M} has dimension k, then $H^{q}(X, \mathcal{M})=0$ for all $q>k$. In particular, if X has dimension n, then $H^{q}(X, \mathcal{M})=0$ for all $q>n$.

See Section 6.7 for the definition of support.
largetwist 7.7.2. Theorem. Let $\mathcal{M}(d)$ be the twist of a finite \mathcal{O}_{X}-module \mathcal{M} on a projective variety X. For sufficiently large d and for all $q>0, H^{q}(X, \mathcal{M}(d))=0$.
findim 7.7.3. Theorem. Let \mathcal{M} be a finite \mathcal{O}-module on a projective variety X. The cohomology $H^{q}(X, \mathcal{M})$ is a finite-dimensional vector space for every q.
descind
7.6.5. Corollary. Let Y be a hypersurface of dimension d and degree k in a projective space of dimension $d+1$. Then $\mathbf{h}^{0}\left(Y, \mathcal{O}_{Y}\right)=1, \mathbf{h}^{d}\left(Y, \mathcal{O}_{Y}\right)=\binom{k-1}{d+1}$, and $\mathbf{h}^{q}\left(Y, \mathcal{O}_{Y}\right)=0$ for all other q.

In particular, when S is the surface in \mathbb{P}^{3} defined by an irreducible polynomial of degree $k, \mathbf{h}^{0}\left(S, \mathcal{O}_{S}\right)=1$, $\mathbf{h}^{1}\left(S, \mathcal{O}_{S}\right)=0, \mathbf{h}^{2}\left(S, \mathcal{O}_{S}\right)=\binom{k-1}{3}$, and $\mathbf{h}^{q}=0$ if $q>2$. When a projective surface S is embedded into a higher dimensional projective space, it is still true that $\mathbf{h}^{q}=0$ if $q>2$, but $\mathbf{h}^{1}\left(S, \mathcal{O}_{S}\right)$ may be nonzero. The dimensions $\mathbf{h}^{1}\left(S, \mathcal{O}_{S}\right)$ and $\mathbf{h}^{2}\left(S, \mathcal{O}_{S}\right)$ are invariants of a surface S that are somewhat analogous to the genus of a curve. In classical terminology, $\mathbf{h}^{2}\left(S, \mathcal{O}_{S}\right)$ is the geometric genus p_{g} and $\mathbf{h}^{1}\left(S, \mathcal{O}_{S}\right)$ is the irregularity q . The arithmetic genus p_{a} of S is defined to be

$$
\begin{equation*}
p_{a}=\mathbf{h}^{2}\left(S, \mathcal{O}_{S}\right)-\mathbf{h}^{1}\left(S, \mathcal{O}_{S}\right)=p_{g}-q \tag{7.6.6}
\end{equation*}
$$

Therefore the irregularity of S is $q=p_{g}-p_{a}$. When S is a surface in \mathbb{P}^{3}, the irregularity is zero, and $p_{g}=p_{a}$.
In modern terminology, it might seem more natural to replace the arithmetic genus by the Euler characteristic of the structure sheaf $\chi\left(\mathcal{O}_{S}\right)$, which is defined to be $\sum_{q}(-1)^{q} \mathbf{h}^{q} \mathcal{O}_{S}$ (see 7.7.7) below). The Euler characteristic of the structure sheaf on a curve is

$$
\chi\left(\mathcal{O}_{C}\right)=\mathbf{h}^{0}\left(C, \mathcal{O}_{C}\right)-\mathbf{h}^{1}\left(C, \mathcal{O}_{C}\right)=1-p_{a}
$$

and on a surface S it is

$$
\chi\left(\mathcal{O}_{S}\right)=\mathbf{h}^{0}\left(S, \mathcal{O}_{S}\right)-\mathbf{h}^{1}\left(S, \mathcal{O}_{S}\right)+\mathbf{h}^{2}\left(S, \mathcal{O}_{S}\right)=1+p_{a}
$$

But because of tradition, the arithmetic genus is still used quite often.
7.7.4. Notes. (a) As the first theorem asserts, the highest dimension in which cohomology of an \mathcal{O}_{X}-module

In the next section we will see that the cohomology of any \mathcal{O}-module on a projective curve is zero except in dimensions 0 and 1 . To determine cohomology of a curve that is embedded in a higher dimensional projective space, we will need to know that its cohomology is finite-dimensional, which is Theorem7.7.3 below, and that it is zero in dimension greater than one, which is Theorem 7.7.1 also below. The cohomology of projective curves will be studied again, in Chapter 8 .

One can make a similar computation for the hypersurface Y in $X=\mathbb{P}^{n}$ defined by an irreducible homogeneous polynomial f of degree k. The ideal of such a hypersurface Y is isomorphic to $\mathcal{O}_{X}(-k) \sqrt{6.8 .8}$, so there is an exact sequence

$$
0 \rightarrow \mathcal{O}_{X}(-k) \xrightarrow{f} \mathcal{O}_{X} \rightarrow i_{*} \mathcal{O}_{Y} \rightarrow 0
$$

Since we know the cohomology of $\mathcal{O}_{X}(-k)$ and of \mathcal{O}_{X}, and since $H^{q}\left(X, i_{*} \mathcal{O}_{Y}\right) \approx H^{q}\left(Y, \mathcal{O}_{Y}\right)$, we can use this sequence to compute the dimensions of the cohomology of \mathcal{O}_{Y}. on a projective variety X can be nonzero is the dimension of X. It is also true that, on a projective variety X of dimension n, there will be \mathcal{O}_{X}-modules \mathcal{M} such that $H^{n}(X, \mathcal{M}) \neq 0$. In contrast, in the classical topology on a projective variety X of dimnsion n, the constant coefficient cohomology $H^{2 n}\left(X_{\text {class }}, \mathbb{Z}\right)$ isn't zero. As
we have mentioned, in the Zariski topology, the cohomology $H^{q}\left(X_{z a r}, \mathbb{Z}\right)$ with constant coefficients is zero for every $q>0$. When X is an affine variety, the cohomology of any \mathcal{O}_{X}-module is zero for all $q>0$.
(b) The third theorem tells us that the space of global sections $H^{0}(X, \mathcal{M})$ of a finite \mathcal{O}-module on a projective variety is finite-dimensional. This is one of the most important consequences of the theorem, and it isn't easy to prove directly. Cohomology needn't be finite-dimensional on a variety that isn't projective. For example, on an affine variety $X=\operatorname{Spec} A, \quad H^{0}(X, \mathcal{O})=A$ isn't finite-dimensional unless X is a point. When X is the complement of a point in $\mathbb{P}^{2}, H^{1}(X, \mathcal{O})$ isn't finite-dimensional.
(c) The proofs have an interesting structure. The first theorem allows us to use descending induction to prove the second and third theorems, beginning with the fact that $H^{k}(X, \mathcal{M})=0$ when k is greater than the dimension of X.

In these theorems, we are given that X is a closed subvariety of a projective space \mathbb{P}^{n}. We can replace an \mathcal{O}_{X}-module by its extension by zero to \mathbb{P}^{n}, since this doesn't change the cohomology or the dimension of support. The twist $\mathcal{M}(d)$ of an \mathcal{O}_{X}-module that is referred to in the second theorem is defined in terms of the extension by zero. So we may assume that X is a projective space.

The proofs are based on the cohomology of the twisting modules (7.5.5) and on the vanishing of the limit $\lim _{d} H^{q}(X, \mathcal{M}(d))$ for $q>0$ 7.5.3.
proof of Theorem 7.7.1 (vanishing in large dimension)
Here \mathcal{M} is a finite \mathcal{O}-module whose support S has dimension at most k. We are to show that $H^{q}(X, \mathcal{M})=0$ when $q>k$. We choose coordinates so that the hyperplane $H: x_{0}=0$ doesn't contain any component of the support S. Then $H \cap S$ has dimension at most $k-1$. We inspect the multiplication map $\mathcal{M}(-1) \xrightarrow{x_{0}} \mathcal{M}$. The kernel \mathcal{K} and cokernel \mathcal{Q} are annihilated by x_{0}, so the supports of \mathcal{K} and \mathcal{Q} are contained in H. Since they are also in S, the supports have dimension at most $k-1$. We can apply induction on k to them. In the base case $k=0$, the supports of \mathcal{K} and \mathcal{Q} will be empty, and their cohomology will be zero.

We break the exact sequence $0 \rightarrow \mathcal{K} \rightarrow \mathcal{M}(-1) \rightarrow \mathcal{M} \rightarrow \mathcal{Q} \rightarrow 0$ into two short exact sequences by introducing the kernel \mathcal{N} of the map $\mathcal{M} \rightarrow \mathcal{Q}$:

$$
\begin{equation*}
0 \rightarrow \mathcal{K} \rightarrow \mathcal{M}(-1) \rightarrow \mathcal{N} \rightarrow 0 \quad \text { and } \quad 0 \rightarrow \mathcal{N} \rightarrow \mathcal{M} \rightarrow \mathcal{Q} \rightarrow 0 \tag{7.7.5}
\end{equation*}
$$

The induction hypothesis applies to \mathcal{K} and to \mathcal{Q}. It tells us that $H^{q}(X, \mathcal{K})=0$ and $H^{q}(X, \mathcal{Q})=0$, when $q \geq k$. For $q>k$, the cohomology sequences associated to the two exact sequences give us bijections

$$
H^{q}(X, \mathcal{M}(-1)) \rightarrow H^{q}(X, \mathcal{N}) \quad \text { and } \quad H^{q}(X, \mathcal{N}) \rightarrow H^{q}(X, \mathcal{M})
$$

Therefore the composed map $H^{q}(X, \mathcal{M}(-1)) \rightarrow H^{q}(X, \mathcal{M})$ is bijective, and this is true for every \mathcal{O}-module whose support has dimension $\leq k$, including for the \mathcal{O}-module $\mathcal{M}(d)$. For every \mathcal{O}-module whose support has dimension at most k, every d, and every $q>k$, the canonical map $H^{q}(X, \mathcal{M}(d-1)) \rightarrow H^{q}(X, \mathcal{M}(d))$ is bijective. According to 7.5 .3 , the limit $\lim _{d} H^{q}(X, \mathcal{M}(d))$ is zero. It follows that $H^{q}(X, \mathcal{M}(d))=0$ for all d when $q>0$, and in particular, $H^{q}(X, \overrightarrow{\mathcal{M}})=0$.

proof of Theorem 7.7.2 (vanishing for a large twist)

Let \mathcal{M} be a finite \mathcal{O}-module on a projective variety X. We recall that $\mathcal{M}(r)$ is generated by global sections when r is sufficiently large 6.8.20). Choosing generators gives us a surjective map $\mathcal{O}^{n} \rightarrow \mathcal{M}(r)$. Let \mathcal{N} be the kernel of this map. When we twist the exact sequence $0 \rightarrow \mathcal{N} \rightarrow \mathcal{O}^{n} \rightarrow \mathcal{M}(r) \rightarrow 0$, we obtain short exact sequences

$$
\begin{equation*}
0 \rightarrow \mathcal{N}(d) \rightarrow \mathcal{O}(d)^{n} \rightarrow \mathcal{M}(d+r) \rightarrow 0 \tag{7.7.6}
\end{equation*}
$$

for every $d \geq 0$. These sequences are useful because $H^{q}(X, \mathcal{O}(d))=0$ when $d \geq 0$ and $q>0$ 7.5.5).
To prove Theorem 7.7.2, we must show this:
(*) Let \mathcal{M} be a finite \mathcal{O}-module. For sufficiently large d and for all $q>0, H^{q}(X, \mathcal{M}(d))=0$.
Let n be the dimension of X. By Theorem 7.7.1, $H^{q}(X, \mathcal{M})=0$ for any \mathcal{O}-module \mathcal{M}, when $q>n$, In particular, $H^{q}(X, \mathcal{M}(d))=0$ when $q>n$. This leaves a finite set of integers $q=1, \ldots, n$ to consider, and it
suffices to consider them one at a time. If $(*)$ is true for each individual q, there will be a sufficiently large d such that it is true for each of the integers $q=1, \ldots, n$ at the same time, and therefore for all positive integers q, as the theorem asserts.

We use descending induction on q, the base case being $q=n+1$, for which $\left(^{*}\right)$ is true with $d=0$. We suppose that $\left({ }^{*}\right)$ is true for every finite \mathcal{O}-module \mathcal{M} when $q=p+1$, and that $p>0$, and we show that (${ }^{*}$) is true for every finite \mathcal{O}-module \mathcal{M} when $q=p$.

We substitute $q=p$ into the cohomology sequence associated to the sequence 7.7.6. The relevant part of that sequence is

$$
\rightarrow H^{p}\left(X, \mathcal{O}(d)^{n}\right) \rightarrow H^{p}(X, \mathcal{M}(d+r)) \xrightarrow{\delta^{p}} H^{p+1}(X, \mathcal{N}(d)) \rightarrow
$$

Since p is positive, $H^{p}(X, \mathcal{O}(d))=0$ for all $d \geq 0$. The map δ^{p} is injective. We note that \mathcal{N} is a finite \mathcal{O}-module. So our induction hypothesis applies to it. The induction hypothesis tells us that, when d is large, $H^{p+1}(X, \mathcal{N}(d))=0$ and therefore $H^{p}(X, \mathcal{M}(d+r))=0$. The particular form of the integer $d+r$ isn't useful. Our conclusion is that, for every finite \mathcal{O}-module $\mathcal{M}, H^{p}\left(X, \mathcal{M}\left(d_{1}\right)\right)=0$ when d_{1} is large enough.
proof of Theorem 7.7.3 (finiteness of cohomology)
This proof uses ascending induction on the dimension of support and descending induction on the degree d of a twist. As has been mentioned, it isn't easy to prove directly that the space $H^{0}(X, \mathcal{M})$ of global sections is finite-dimensional.

Let \mathcal{M} be an \mathcal{O}-module whose support has dimension at most k. We go back to the sequences (7.7.5 and their cohomology sequences, in which the supports of \mathcal{K} and \mathcal{Q} have dimension $\leq k-1$. Ascending induction on the dimension of support allows us to assume that $H^{r}(X, \mathcal{K})$ and $H^{r}(X, \mathcal{Q})$ are finite-dimensional for all r. Denoting finite-dimensional spaces ambiguously by finite, the two cohomology sequences become

$$
\cdots \rightarrow \text { finite } \rightarrow H^{q}(X, \mathcal{M}(-1)) \rightarrow H^{q}(X, \mathcal{N}) \rightarrow \text { finite } \rightarrow \cdots
$$

and

$$
\cdots \rightarrow \text { finite } \rightarrow H^{q}(X, \mathcal{N}) \rightarrow H^{q}(X, \mathcal{M}) \rightarrow \text { finite } \rightarrow \cdots
$$

The first of these sequences shows that if $H^{q}(X, \mathcal{M}(-1))$ has infinite dimension, then $H^{q}(X, \mathcal{N})$ has infinite dimension, and the second sequence shows that if $H^{q}(X, \mathcal{N})$ has infinite dimension, then $H^{q}(X, \mathcal{M})$ has infinite dimenson. Therefore either $H^{q}(X, \mathcal{M}(-1))$ and $H^{q}(X, \mathcal{M})$ are both finite-dimensional, or else they are both infinite-dimensional. This applies to the twisted modules $\mathcal{M}(d)$ as well as to $\mathcal{M}: H^{q}(X, \mathcal{M}(d-1))$ and $H^{q}(X, \mathcal{M}(d))$ are both finite-dimensional or both infinite-dimensional.

Suppose that $q>0$. Then $H^{q}(X, \mathcal{M}(d))=0$ when d is large enough (Theorem 7.7.2. Since the zero space is finite-dimensional, we can use the sequence together with descending induction on d, to conclude that $H^{q}(X, \mathcal{M}(d))$ is finite-dimensional for every finite module \mathcal{M} and every d. In particular, $H^{q}(X, \mathcal{M})$ is finite-dimensional.

This leaves the case that $q=0$. To prove that $H^{0}(X, \mathcal{M})$ is finite-dimensional, we put $d=-r$ with $r>0$ into the sequence (7.7.6:

$$
0 \rightarrow \mathcal{N}(-r) \rightarrow \mathcal{O}(-r)^{m} \rightarrow \mathcal{M} \rightarrow 0
$$

The corresponding cohomology sequence is

$$
0 \rightarrow H^{0}(X, \mathcal{N}(-r)) \rightarrow H^{0}(X, \mathcal{O}(-r))^{m} \rightarrow H^{0}(X, \mathcal{M}) \xrightarrow{\delta^{0}} H^{1}(X, \mathcal{N}(-r)) \rightarrow \cdots
$$

Here $H^{0}(X, \mathcal{O}(-r))^{m}=0$, and we've shown that $H^{1}(X, \mathcal{N}(-r))$ is finite-dimensional. It follows that $H^{0}(X, \mathcal{M})$ is finite-dimensional, and this completes the proof.

Notice that the finiteness of H^{0} comes out only at the end. The higher cohomology is essential for the proof.

Theorems 7.7.1 and 7.7.3 allow us to define the Euler characteristic of a finite module on projective variety.
7.7.8. Definition. Let X be a projective variety. The Euler characteristic of a finite \mathcal{O}-module \mathcal{M} is the alternating sum of the dimensions of its cohomology:

$$
\begin{equation*}
\chi(\mathcal{M})=\sum(-1)^{q} \mathbf{h}^{q}(X, \mathcal{M}) \tag{7.7.9}
\end{equation*}
$$

This makes sense because $\mathbf{h}^{q}(X, \mathcal{M})$ is finite for every q, and is zero when q is large.
Try not to confuse the Euler characterstic of an \mathcal{O}-module with the topological Euler characteristic of the variety X.
7.7.10. Proposition. (i) If $0 \rightarrow \mathcal{M} \rightarrow \mathcal{N} \rightarrow \mathcal{P} \rightarrow 0$ is a short exact sequence of finite \mathcal{O}-modules on a projective variety X, then $\chi(\mathcal{M})-\chi(\mathcal{N})+\chi(\mathcal{P})=0$.
(ii) If $0 \rightarrow \mathcal{M}_{0} \rightarrow \mathcal{M}_{1} \rightarrow \cdots \rightarrow \mathcal{M}_{n} \rightarrow 0$ is an exact sequence of finite \mathcal{O}-modules on X, the alternating sum $\sum(-1)^{i} \chi\left(\mathcal{M}_{i}\right)$ is zero.
7.7.11. Lemma. Let $0 \rightarrow V^{0} \rightarrow V^{1} \rightarrow \cdots \rightarrow V^{n} \rightarrow 0$ be an exact sequence of finite dimensional vector spaces. The alternating sum $\sum(-1)^{q} \operatorname{dim} V^{q}$ is zero.
proof of Proposition 7.7.10 (i) Let n be the dimension of X. The cohomology sequence associated to the given sequence is

$$
0 \rightarrow H^{0}(\mathcal{M}) \rightarrow H^{0}(\mathcal{N}) \rightarrow H^{0}(\mathcal{P}) \rightarrow H^{1}(\mathcal{M}) \rightarrow \ldots \rightarrow H^{n}(\mathcal{N}) \rightarrow H^{n}(\mathcal{P}) \rightarrow 0
$$

and the lemma tells us that the alternating sum of its dimensions is zero. That alternating sum is also equal to $\chi(\mathcal{M})-\chi(\mathcal{N})+\chi(\mathcal{P})$.
(ii) Let's denote the given sequence by \mathbb{S}_{0} and the alternating sum $\sum_{i}(-1)^{i} \chi\left(\mathcal{M}_{i}\right)$ by $\chi\left(\mathbb{S}_{0}\right)$. Let $\mathcal{N}=$ $\mathcal{M}_{1} / \mathcal{M}_{0}$. The sequence \mathbb{S}_{0} decomposes into the two exact sequences

$$
\mathbb{S}_{1}: 0 \rightarrow \mathcal{M}_{0} \rightarrow \mathcal{M}_{1} \rightarrow \mathcal{N} \rightarrow 0 \quad \text { and } \quad \mathbb{S}_{2}: 0 \rightarrow \mathcal{N} \rightarrow \mathcal{M}_{2} \rightarrow \cdots \rightarrow \mathcal{M}_{k} \rightarrow 0
$$

One sees directly that $\chi\left(\mathbb{S}_{0}\right)=\chi\left(\mathbb{S}_{1}\right)-\chi\left(\mathbb{S}_{2}\right)$, so the assertion follows from (i) by induction on n.

7.8 Bézout's Theorem

As an application of cohomology, we use it to prove Bézout's Theorem. We restate it here:
7.8.1. Bézout's Theorem. Let Y and Z be distinct curves, of degrees m and n, respectively, in the projective plane X. The number of intersection points $Y \cap Z$, when counted with an appropriate multiplicity, is equal to $m n$. Moreover, the multiplicity is 1 at a point at which Y and Z intersect transversally.

The definition of the multiplicity will emerge during the proof.
Note. Let f and g be relatively prime homogeneous polynomials. When one replaces Y and Z by their divisors of zeros 1.3.13], the theorem remains true whether or not they are irreducible. The proof isn't signifiantly different from the one we give here, except that it requires setting up some notation. For example, suppose that f and g are products of linear polynomials, so that Y is the union of m lines and Z is the union of n lines, and suppose that those lines are distinct. Since distinct lines intersect transversally in a single point, there are $m n$ intersection points of multiplicity 1.
proof of Bézout's Theorem. We suppress notation for the extension by zero from Y or Z to the plane X, denoting the direct images of \mathcal{O}_{Y} and \mathcal{O}_{Z} by the same symbols. Let f and g be the irreducible homogeneous polynomials whose zero loci are Y and Z. Multiplication by f defines a short exact sequence

$$
0 \rightarrow \mathcal{O}_{X}(-m) \xrightarrow{f} \mathcal{O}_{X} \rightarrow \mathcal{O}_{Y} \rightarrow 0
$$

This exact sequence describes $\mathcal{O}_{X}(-m)$ as the ideal \mathcal{I} of regular functions that vanish on Y, and there is a similar sequence describing the module $\mathcal{O}_{X}(-n)$ as the ideal \mathcal{J} of Z. The zero locus of the ideal $\mathcal{I}+\mathcal{J}$ is the intersection $Y \cap Z$, which is a finite set of points $\left\{p_{1}, \ldots, p_{k}\right\}$.

Let $\overline{\mathcal{O}}$ denote the quotient $\mathcal{O}_{X} /(\mathcal{I}+\mathcal{J})$. Its support is the finite set $Y \cap Z$, and therefore $\overline{\mathcal{O}}$ is isomorphic to a direct sum $\bigoplus \overline{\mathcal{O}}_{i}$, where each $\overline{\mathcal{O}}_{i}$ is a finite-dimensional algebra whose support is p_{i} 6.7.2. The intersection multiplicity of Y and Z at p_{i} is defined to be the dimension of $\overline{\mathcal{O}}_{i}$, which is also the dimension of the space of its global sections. Let's denote the intersection multiplicity by μ_{i}. The dimension of $H^{0}(X, \overline{\mathcal{O}})$ is the sum $\mu_{1}+\cdots+\mu_{k}$, and $H^{q}(X, \overline{\mathcal{O}})=0$ for all $q>0$ (Theorem 7.7.1). The Euler characteristic $\chi(\overline{\mathcal{O}})$ is equal to $\mathbf{h}^{0}(X, \overline{\mathcal{O}})$. We'll show that $\chi(\overline{\mathcal{O}})=m n$, and therefore that $\mu_{1}+\cdots+\mu_{k}=m n$. This will prove Bézout's Theorem.

We form a sequence, in which \mathcal{O} stands for \mathcal{O}_{X} :

$$
\begin{equation*}
0 \rightarrow \mathcal{O}(-m-n) \xrightarrow{(g, f)^{t}} \mathcal{O}(-m) \times \mathcal{O}(-n) \xrightarrow{(-f, g)} \mathcal{O} \xrightarrow{\pi} \overline{\mathcal{O}} \rightarrow 0 \tag{7.8.2}
\end{equation*}
$$

In order to interpret the maps in this sequence as matrix multiplication, with homomorphisms acting on the left, a section of $\mathcal{O}(-m) \times \mathcal{O}(-n)$ should be represented as a column vector $(u, v)^{t}, u$ and v being sections of $\mathcal{O}(-m)$ and $\mathcal{O}(-n)$, respectively.
7.8.3. Lemma. The sequence 7.8 .2 is exact.
proof. We suppose that coordinates have been chosen so that none of the points making up $Y \cap Z$ lie on the coordinate axes.

To prove exactness, it suffices to show that the sequence of sections on each of the standard open sets is exact. We look at the index 0 as usual, denoting \mathbb{U}^{0} by \mathbb{U}. Let A be the algebra of regular functions on \mathbb{U}, which is the polynomial algebra $\mathbb{C}\left[u_{1}, u_{2}\right]$, with $u_{i}=x_{i} / x_{0}$. We identify $\mathcal{O}(k)$ with $\mathcal{O}(k H)$, H being the hyperplane at infinity. The restriction of the module $\mathcal{O}(k H)$ to \mathbb{U} is isomorphic to the restriction $\mathcal{O}_{\mathbb{U}}$ of \mathcal{O}. Its sections on \mathbb{U} are the elements of A. Let \bar{A} be the algebra of sections of $\overline{\mathcal{O}}$ on \mathbb{U}. Since f and g are relatively prime, so are their dehomogenizations $F=f\left(1, u_{1}, u_{2}\right)$ and $G=g\left(1, u_{1}, u_{2}\right)$. The sequence of sections of 7.8.2 on \mathbb{U} is

$$
0 \rightarrow A \xrightarrow{(G, F)^{t}} A \times A \xrightarrow{(-F, G)} A \rightarrow \bar{A} \rightarrow 0
$$

and the only place at which exactness of this sequence isn't obvious is at $A \times A$. Suppose that $(u, v)^{t}$ is in the kernel of the $\operatorname{map}(-F, G)$, i.e., that $F u=G v$. Since F and G are relatively prime, F divides v, G divides u, and $v / F=u / G$. Let $w=v / F=u / G$. Then $(u, v)^{t}=(G, F)^{t} w$. So $(u, v)^{t}$ is the image of w.

We go back to the proof of Bézout's Theorem. Proposition 7.7.10(ii), applied to the exact sequence (7.8.2), tells us that the alternating sum

$$
\begin{equation*}
\chi(\mathcal{O}(-m-n))-\chi(\mathcal{O}(-m))-\chi(\mathcal{O}(-n))+\mathcal{O}-\chi(\overline{\mathcal{O}}) \tag{7.8.4}
\end{equation*}
$$

is zero. Since cohomology is compatible with products 7.3 .5 , $\chi(\mathcal{M} \times \mathcal{N})=\chi(\mathcal{M})+\chi(\mathcal{N})$. Solving for $\chi(\overline{\mathcal{O}})$ and applying Theorem 7.5.5.

$$
\chi(\overline{\mathcal{O}})=\binom{n+m-1}{2}-\binom{m-1}{2}-\binom{n-1}{2}+1
$$

The right side of this equation evaluates to $m n$. This completes the proof.
We still need to explain the assertion that the multiplicity at a transversal intersection p is equal to 1 . The intersection at p will be transversal if and only if $\mathcal{I}+\mathcal{J}$ generates the maximal ideal \mathfrak{m} of $A=\mathbb{C}[y, z]$ at p locally. If so, then the component of $\overline{\mathcal{O}}$ supported at p will have dimension 1 , and the intersection multiplicity at p will be 1 .

When Y and Z are lines, we may choose affine coordinates so that p is the origin in the plane $X=\operatorname{Spec} A$ and the curves are the coordinate axes $\{z=0\}$ and $\{y=0\}$. The variables y, z generate the maximal ideal at the origin.

Suppose that Y and Z intersect transverally at p, but that they aren't lines. We choose affine coordinates so that p is the origin and that the tangent directions of Y and Z at p are the coordinate axes. The affine equations of Y and Z will have the form $y_{1}=0$ and $z_{1}=0$, where $y_{1}=y+g(y, z)$ and $z_{1}=z+h(y, z), g$ and h being polynomials all of whose terms have degree at least 2 . Because Y and Z may intersect at points other than p, the elements y_{1} and z_{1} may fail to generate the maximal ideal \mathfrak{m} at p. However, they do generate the maximal ideal locally. To show this, it suffices to show that they generate the maximal ideal M in the local ring R at p. By Corollary 5.1.2 it suffices to show that y_{1} and z_{1} generate M / M^{2}, and this is true because y_{1} and z_{1} are congruent to y and z modulo M^{2}.

7.9 Uniqueness of the Coboundary Maps

In Section 7.4, we constructed a cohomology $\left\{H^{q}\right\}$ that has the characteristic properties, and we showed that the functors H^{q} are unique. We didn't show that the coboundary maps δ^{q} that appear in the cohomology sequences are unique. We go back to do this now.

To make it clear that there is something to show, we note that the cohomology sequence 7.1 .3 remains exact when a coboundary map δ^{q} is multiplied by -1 . Why can't we define a new collection of coboundary maps by changing some signs? The reason we can't do this is that we used the coboundary maps δ^{q} in (7.4.7) and 7.4 .8 , to identify $H^{q}(X, \mathcal{M})$. Having done that, we aren't allowed to change δ^{q} for the particular short exact sequences 7.4 .2 . We show that the coboundary maps for those sequences determine the coboundary maps for every short exact sequence of \mathcal{O}-modules
(A) $\quad 0 \rightarrow \mathcal{M} \longrightarrow \mathcal{N} \longrightarrow \mathcal{P} \rightarrow 0$

The sequences (7.4.2) were rewritten as (7.4.10):

$$
\begin{equation*}
0 \rightarrow \mathcal{M} \longrightarrow \mathcal{R}_{\mathcal{M}}^{0} \longrightarrow \mathcal{M}^{1} \rightarrow 0 \tag{B}
\end{equation*}
$$

To show that the coboundaries for the sequence (A) are determined uniquely, we relate it to the sequence (B), for which the coboundary maps are fixed. We map the sequences (A) and (B) to a third exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{M} \xrightarrow{\psi} \mathcal{R}_{\mathcal{N}}^{0} \longrightarrow \mathcal{Q} \rightarrow 0 \tag{C}
\end{equation*}
$$

where ψ is the composition of the injective maps $\mathcal{M} \rightarrow \mathcal{N} \rightarrow \mathcal{R}_{\mathcal{N}}^{0}$ and \mathcal{Q} is the cokernel of ψ.
First, we inspect the diagram

and its diagram of coboundary maps

$(C) \quad H^{q}(X, \mathcal{Q}) \xrightarrow{\delta_{C}^{q}} H^{q+1}(X, \mathcal{M})$
This diagram shows that the coboundary map δ_{A}^{q} for the sequence (A) is determined by the coboundary map δ_{C}^{q} for (C).

Next, we inspect the diagram

and its diagram of coboundary maps

When $q>0, \delta_{C}^{q}$ and δ_{B}^{q} are bijective because the cohomology of $\mathcal{R}_{\mathcal{M}}^{0}$ and $\mathcal{R}_{\mathcal{N}}^{0}$ is zero in positive dimension. Then δ_{C}^{q} is determined by δ_{B}^{q}, and so is δ_{A}^{q}.

We have to look more closely to settle the case $q=0$. The map labeled u in 7.9.1) is injective. The Snake Lemma shows that v is injective, and that the cokernels of u and v are isomorphic. We denote both of those cokernels by $\mathcal{R}_{\mathcal{P}}^{0}$. When we add the cokernels to the diagram, and pass to cohomology, we obtain a diagram whose relevant part is

Its rows and columns are exact. We want to show that the map δ_{C}^{0} is determined uniquely by δ_{B}^{0}. It is determined by δ_{B}^{0} on the image of v and it is zero on the image of β. To show that δ_{C}^{0} is determined by δ_{B}^{0}, it suffices to show that the images of v and β together span $H^{0}(X, \mathcal{Q})$. This follows from the fact that γ is surjective 7.4.3. Thus δ_{C}^{0} is determined by δ_{B}^{0}, and so is δ_{A}^{0}.

7.10 Exercises

7.10.1. Let X be the complement of the point $(0,0,1)$ in \mathbb{P}^{2}. Use the covering of X by the two standard affine open sets $\mathbb{U}^{0}, \mathbb{U}^{1}$ to compute the cohomology $H^{q}\left(X, \mathcal{O}_{X}\right)$.
7.10.2. Let $0 \rightarrow V_{0} \rightarrow \cdots \rightarrow V_{n} \rightarrow 0$ be a complex of finite-dimensional vector spaces. Prove that $\sum_{i}(-1)^{i} \operatorname{dim} V_{i}=\sum(-1)^{q} \mathbf{C}^{q}\left(V^{\bullet}\right\}$.
7.10.3. Let $0 \rightarrow \mathcal{M}_{0} \rightarrow \cdots \rightarrow \mathcal{M}_{k} \rightarrow 0$ be an exact sequence of \mathcal{O}-modules on a variety X. Prove that if $H^{q}\left(\mathcal{M}_{i}\right)=0$ for all $q>0$ and all i, the sequence of global sections is exact.
7.10.4. the Cousin Problem. Let X be a projective variety.
(i) Detemine the cohomology of the function field module \mathcal{F} 6.5.10).
(ii) Let X be a projective space, and let $\left\{V^{i}\right\}, i=1, \ldots, k$ be an open covering of X. Suppose that rational functions f_{i} are given, such that $f_{i}-f_{j}$ is a regular function on $V^{i} \cap V^{j}$ for all i and j. The Cousin Problem asks for a rational function \tilde{f} such that $\tilde{f}-f_{i}$ is a regular function on V^{i} for every i. Analyze this problem making use of the exact sequence $0 \rightarrow \mathcal{O} \rightarrow \mathcal{F} \rightarrow \mathcal{Q} \rightarrow 0$, where \mathcal{Q} is the quotient $\mathcal{F} / \mathcal{O}$.
(iii) What can one say for other varieties X ?
7.10.5. Prove that if a variety X is covered by two affine open sets, then $H^{q}(X, \mathcal{M})=0$ for every \mathcal{O}-module \mathcal{M} and every $q>1$.
7.10.6. Let C be a plane curve of degree d with δ nodes and κ cusps, and let C^{\prime} be its normalization. Determine the genus of C^{\prime}.
7.10.7. Let $f\left(x_{0}, x_{1}, x_{2}\right)$ be an irreduible homogeneous polynomial of degree $2 d$, and let Y be the projective double plane $y^{2}=f\left(x_{0}, x_{1}, x_{2}\right)$. Compute the cohomology $H^{q}\left(Y, \mathcal{O}_{Y}\right)$.
7.10.8. Let A, B be 2×2 variable matrices, let P be the polynomial ring $\mathbb{C}\left[a_{i j}, b_{i j}\right]$. and let R be the quotient of P by the ideal that expresses the condition $A B=B A$. Show that R has a resolution as P-module of the form $0 \rightarrow P^{2} \rightarrow P^{3} \rightarrow P \rightarrow R \rightarrow 0$. (Hint: Write the equations in terms of $a_{11}-a_{22}$ and $b_{11}-b_{22}$.)
7.10.9. Prove that a regular function on a projective variety is constant.
7.10.10. an algebraic version of Bézout's Theorem. Let $R=\mathbb{C}[x, y, z]$, and let f and g be homogeneous polynomials in R, of degrees m and n, respectively. The quotient falgebra $A=R /(f, g)$ inherits a grading by degree: $A=A_{0} \oplus A_{1} \oplus \cdots$, where A_{n} is the image of the space of homogeneous polynomials of degree n, together with 0 .
(i) Show that the sequence

$$
0 \rightarrow R \xrightarrow{(-g, f)} R^{2} \xrightarrow{(f, g)^{t}} R \rightarrow A \rightarrow 0
$$

is exact.
(ii) Prove that $\operatorname{dim} A_{k}=m n$ for all sufficiently large k.
(iii) Explain in what way this is an algebraic version of Bézout's Theorem.
7.10.11. Let p_{1}, p_{2}, p_{3} and q_{1}, q_{2}, q_{3} be distinct points on a conic C, and let $L_{i j}$ be the line through p_{i} and q_{j}.
(i) Let g and h be the homogeneous cubic polynomials whose zero loci are $L_{12} \cup L_{13} \cup L_{23}$ and $L_{21} \cup L_{31} \cup L_{32}$, respectively, and let x be another point on C. Show that for some scalar c, the cubic $f=g+c h$ vanishes at x as well as at the six given points p_{i} and q_{i}. What does Bézout's Theorem tell us about this cubic f ?
(ii) Prove Pascal's Theorem, which asserts that the three intersection points $r_{1}=L_{23} \cap L_{32}, r_{2}=L_{31} \cap L_{13}$, and $r_{3}=L_{12} \cap L_{21}$ lie on a line.
(iii) Let six lines Z_{1}, \ldots, Z_{6} be given, and suppose that a conic C is tangent to each of those lines. Let $p_{12}=Z_{1} \cap Z_{2}, p_{23}=Z_{2} \cap Z_{3}, p_{34}=Z_{3} \cap Z_{4}, p_{45}=Z_{4} \cap Z_{5}, p_{56}=Z_{5} \cap Z_{6}$, and $p_{61}=Z_{6} \cap Z_{1}$. We think of the six lines as sides of a 'hexagon', whose vertices are $p_{i j}=L_{i} \cap L_{j}$ for $i j=12,23,34,45,56$, and 61. The 'main diagonals' are the lines D_{1} through p_{12} and p_{45}, D_{2} through p_{23} and p_{56}, and D_{3} through p_{61} and p_{34}. Brianchon's Theorem asserts that the main diagonals have a common point. Prove this by studying the dual configuration in \mathbb{P}^{*}.
7.10.12. Let $X=\mathbb{P}^{d}$ and let $Y \xrightarrow{\pi} X$ be a finite morphism. Prove that Y is a projective variety. Do this by showing that the global sections of $\mathcal{O}_{Y}(n H)=\mathcal{O}_{Y} \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}(n H)$ define a map to projective space whose image is isomorphic to Y.
xmodfandg
7.10.13. (i) Let R be the polynomial ring $\mathbb{C}[x, y, z]$, let $f(x, y, z)$ and $g(x, y, z)$ be homogeneous polynomials of degrees m and n, and with no common factor, and let $A=R /(f, g)$. Show that the sequence

$$
0 \rightarrow R \xrightarrow{(-g, f)} R^{2} \xrightarrow{(f, g)^{t}} R \rightarrow A \rightarrow 0
$$

is exact.
(ii) Let Y be an affine variety with integrally closed coordinate ring B. Let I be an ideal of B generated by two elements u, v, and let X be the locus $V(I)$ in Y. Suppose that $\operatorname{dim} X \leq \operatorname{dim} Y-2$. Use the fact that $B=\bigcup B_{Q}$ where Q ranges over prime ideals of codimension 1 to prove that this sequence is exact:

$$
0 \rightarrow B \xrightarrow{(v,-u)^{t}} B^{2} \xrightarrow{(u, v)} B \rightarrow B / I \rightarrow 0 .
$$

7.10.14. Let Ibe the ideal of $\mathbb{C}\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ generated by two homogeneous polynomials f, g, of dimensions d, e respectively, and assume that the locus $X=V(\mathcal{I})$ in \mathbb{P}^{3} has dimension 1 . Let $\mathcal{O}=\mathcal{O}_{\mathbb{P}}$. Multiplication by f and g defines a map $\mathcal{O}(-d) \oplus \mathcal{O}(-e) \rightarrow \mathcal{O}$. Let \mathcal{A} be the cokernel of this map.
(i) Construct an exact sequence

$$
0 \rightarrow \mathcal{O}(-d-e) \rightarrow \mathcal{O}(-d) \oplus \mathcal{O}(-e) \rightarrow \mathcal{O} \rightarrow \mathcal{A} \rightarrow 0
$$

(ii) Show that X is a connected subset of \mathbb{P}^{3} in the Zariski topology, i.e., that it is not the union of two proper disjoint Zariski-closed subsets.
(iii) Determine the genus of X in the case that X is a smooth curve.
7.10.15. A curve in \mathbb{P}^{3} that is the zero locus of a homogeneous prime ideal generated by two elements is a complete intersection. Determine the genus of a smooth complete intersection when the generators have degrees r and s.
7.10.16. a theorem of Max Noether. (Max Noether was Emmy Noether's father.) Let f and g be homogeneous polynomials in x_{0}, \ldots, x_{k}, of degrees r and s, respectively, with $k \geq 2$. Suppose that the locus $X:\{f=g=$ $0\}$ in \mathbb{P}^{k} consists of $r s$ distinct points if $k=2$, or is a closed subvariety of codimension 2 if $k>2$. A theorem that is called the AF+BG Theorem, asserts that, if a homogeneous polynomial p of degree n vanishes on X, there are homogeneous polynomials a and b such that $p=a f+b g$. Prove this theorem.
7.10.17. Let

$$
U=\left(\begin{array}{ll}
u_{11} & u_{12} \\
u_{21} & u_{22} \\
u_{31} & u_{32}
\end{array}\right)
$$

be a 3×2 matrix whose entries are homogeneous quadratic polynomials in four variables x_{0}, \ldots, x_{3}. Let $M=\left(m_{1}, m_{2}, m_{3}\right)$ be the 1×3 matrix of minors

$$
m_{1}=u_{21} u_{32}-u_{22} u_{31}, \quad m_{2}=-u_{11} u_{32}+u_{12} u_{31}, \quad m_{3}=u_{11} u_{22}-u_{12} u_{21}
$$

The matrices U and M give us a sequence

$$
0 \rightarrow \mathcal{O}(-6)^{2} \xrightarrow{U} \mathcal{O}(-4)^{3} \xrightarrow{M} \mathcal{O} \rightarrow \mathcal{O} / \mathcal{I} \rightarrow 0
$$

where \mathcal{I} is the ideal generated by the minors.
(i) Suppose that the above sequence is exact, and that the locus of zeros of I in \mathbb{P}^{3} is a curve. Determine the genus of that curve.
(ii) Prove that, if the locus is a curve, the sequence is exact.

Chapter 8 THE RIEMANN-ROCH THEOREM FOR CURVES

rrcurves

Divisors
8.2 The Riemann-Roch Theorem I
8.3 The Birkhoff-Grothendieck Theorem
8.4 Differentials
8.5 Branched Coverings
8.6 Trace of a Differential
8.7 The Riemann-Roch Theorem II
8.8 Using Riemann-Roch
8.9 Exercises

In this chapter, we investigate a classical problem of algebraic geometry, to determine the rational functions with given poles on a smooth projective curve. This is often difficult. The rational functions whose poles have orders at most r_{i} at p_{i}, for $i=1, \ldots, k$, form a vector space, and one is happy when one can determine the dimension of that space. The most important tool for determining the dimension is the Riemann-Roch Theorem.

8.1 Divisors

divtwo Smooth affine curves were discussed in Chapter 5 An affine curve is smooth if its local rings are valuation rings, or if its coordinate ring is a normal domain. An arbitrary curve is smooth if it has an open covering by smooth affine curves.

We take a brief look at modules on a smooth curve. Recall that a module M over a domain A is said to be torsion-free if its only torsion element is zero: If $a \in A$ and $m \in M$ are nonzero, then $a m \neq 0$. This definition is extended to \mathcal{O}-modules by applying it to the affine open subsets.
lfree
vringpid
8.1.1. Lemma. Let Y be a smooth curve.
(i) A finite \mathcal{O}_{Y}-module \mathcal{M} is locally free if and only if it is torsion-free.
(ii) An \mathcal{O}_{Y}-module \mathcal{M} that isn't torsion-free has a nonzero global section.
proof. (i) We may assume that Y is affine, $Y=\operatorname{Spec} B$, and that \mathcal{M} is the \mathcal{O}-module associated to a B module M. Let \widetilde{B} be the local ring of B at a point q, and let \widetilde{M} be the localization of M at q. It is isomorphic to the tensor product $M \otimes_{B} \widetilde{B}$. If M is a torsion-free B-module, then \widetilde{M} is a torsion-free module over the ring \widetilde{B}, which is a valuation ring. It suffices to show that, for every point q of Y, \widetilde{M} is a free \widetilde{B}-module 2.7.13. The next sublemma does this.

8.1.2. Sublemma. A finite, torsion-free module \widetilde{M} over a valuation ring \widetilde{B} is a free module.

proof. It is easy to prove this directly. Or, one can use the fact that every finite, torsion-free module over a principal ideal domain is free. A valuation ring is a principal ideal domain because its nonzero ideals are powers of its maximal ideal, and the maximal ideal is a principal ideal.
proof of Lemma 8.1 .1 (ii) If \mathcal{M} isn't torsion-free, then for some affine open subset U, there will be nonzero elements m in $\mathcal{M}(U)$ and a in $\mathcal{O}(U)$, such that $a m=0$. Let Z be the finite set of zeros of a in U, and let $V=Y-Z$ be the open complement of Z in Y. Then a is invertible on the intersection $W=U \cap V$, and since $a m=0$, the restriction of m to W is zero.

The open sets U and V cover Y, and the sheaf property for this covering can be written as an exact sequence

$$
0 \rightarrow \mathcal{M}(Y) \rightarrow \mathcal{M}(U) \times \mathcal{M}(V) \xrightarrow{-,+} \mathcal{M}(W)
$$

(see Lemma6.4.11). In this sequence, the section $(m, 0)$ of $\mathcal{M}(U) \times \mathcal{M}(V)$ maps to zero in $\mathcal{M}(W)$. Therefore it is the image of a nonzero global section of \mathcal{M}.
8.1.3. Lemma. Let Y be a smooth curve. Every nonzero ideal \mathcal{I} of \mathcal{O}_{Y} is a product of powers of maximal ideals: $\mathfrak{m}_{1}^{e_{1}} \cdots \mathfrak{m}_{k}^{e_{k}}$. proof. This follows for any smooth curve from the case that the curve is affine, which is Proposition 5.2.9.

(8.1.4) divisors

A divisor on a smooth curve Y is a finite combination

$$
D=r_{1} q_{1}+\cdots+r_{k} q_{k}
$$

where r_{i} are integers and q_{i} are points. The terms whose integer coefficients r_{i} are zero can be omitted or not, as desired.

The degree of the divisor D is the sum $r_{1}+\cdots+r_{k}$ of the coefficients. Its support the set of points q_{i} of Y such that $r_{i} \neq 0$.

The restriction of a divisor $D=r_{1} q_{1}+\cdots+r_{k} q_{k}$ to an open subset of Y^{\prime} of Y is the divisor obtained from D by deleting points of the support that aren't in Y^{\prime}. For example, let $D=q$. The restriction to Y^{\prime} is q if q is in Y^{\prime}, and it is zero if q is not in Y^{\prime}.

A divisor $D=\sum r_{i} q_{i}$ is effective if all of its coefficients r_{i} are non-negative, and D is effective on an open set Y^{\prime} if its restriction to Y^{\prime} is effective - if $r_{i} \geq 0$ for every i such that q_{i} is a point of Y^{\prime}.

Let $D=\sum r_{i} p_{i}$ and $E=\sum s_{i} p_{i}$ be divisors. We my write $E \geq D$ if $s_{i} \geq r_{i}$ for all i, or if $E-D$ is effctive. With this notation, $D \geq 0$ means that D is effective.

(8.1.5) the divisor of a function

The divisor of a nonzero rational function f on a smooth curve Y is

$$
\operatorname{div}(f)=\sum_{q \in Y} \mathrm{v}_{q}(f) q
$$

where, as usual, v_{q} denotes the valuation of K that corresponds to the point q. The divisor of the zero function is defined to be the zero divisor. The divisor of f is written here as a sum over all points q, but it becomes a finite sum when we disregard terms with coefficient zero, because f has finitely many zeros and poles. The coefficients will be zero at all other points.

The map

$$
\begin{equation*}
K^{\times} \xrightarrow{\text { div }}(\text { divisors })^{+} \tag{8.1.6}
\end{equation*}
$$

that sends a nonzero rational function to its divisor is a homomorphism from the multiplicative group K^{\times}of nonzero elements of K to the additive group of divisors:

$$
\operatorname{div}(f g)=\operatorname{div}(f)+\operatorname{div}(g)
$$

The divisor of a rational function is called a principal divisor. The image of the map 8.1.6 is the set of principal divisors.

As before, if r is a positive integer, a nonzero rational function f has a zero of order r at q if $\mathrm{v}_{q}(f)=r$, and it has a pole of order r at q if $\mathrm{v}_{q}(f)=-r$. Thus the divisor of f is the difference of two effective divisors:

$$
\operatorname{div}(f)=\operatorname{zeros}(f)-\operatorname{poles}(f)
$$

A rational function f is regular on Y if and only if $\operatorname{div}(f)$ is effective - if and only if poles $(f)=0$.
Every divisor is locally principal: There is an affine covering $\left\{Y^{i}\right\}$ of Y such that the restriction of D is a principal divisor on each Y^{i}. This is true because the maximal ideals of Y are locally principal. If f is a generator of the maximal ideal at a point q, then $\operatorname{div}(f)=q$.

Two divisors D and E are linearly equivalent if their difference $D-E$ is a principal divisor. For instance, the divisors $\operatorname{zeros}(f)$ and $\operatorname{poles}(f)$ of a rational function f are linearly equivalent.
8.1.7. Lemma. Let f be a rational function on a smooth curve Y. For all complex numbers c, the divisors $z \operatorname{eros}(f-c)$, the level sets of f, are linearly equivalent.
proof. The functions $f-c$ have the same poles as f.

(8.1.8) review of terminology

divisor: a (finite) integer combination of points: $D=r_{1} q_{1}+\cdots+r_{k} q_{k}$.
divisor of a function: The divisor of the rational function f is the $\operatorname{sum} \sum_{q} \mathrm{v}_{q}(f) q$.
effective divisor: The divisor D is effective if $r_{i} \geq 0$ for all i.
linearly equivalent divisors: Two divisors D and E are linearly equivalent if $D-E$ is a principal divisor.
principal divisor: The divisor of a rational function.
restriction of the divisor D to an open set: The restriction to the open set U is the sum of the terms $r_{i} q_{i}$ such that q_{i} is a point of U.
support of the divisor D : the points q_{i} such that $r_{i} \neq 0$.
zeros and poles of a divisor: The zeros of D are the points q_{i} such that $r_{i}>0$. The poles are the points q_{i} such that $r_{i}<0$.

(8.1.9) the module $\mathcal{O}(D)$

To analyze functions with given poles on a smooth curve Y, we associate an \mathcal{O}-module $\mathcal{O}(D)$ to a divisor D. The module $\mathcal{O}(D)$ is a submodule of the function field module \mathcal{F} 6.5.10. Its nonzero sections on an open subset V of Y are the nonzero rational functions f such that the the divisor $\operatorname{div}(f)+D$ is effective on V such that its restriction to V is effective.

$$
\begin{align*}
{[\mathcal{O}(D)](V) } & =\{f \mid \operatorname{div}(f)+D \text { is effective on } V\} \cup\{0\} \tag{8.1.10}\\
& =\{f \mid \operatorname{poles}(f) \leq D \text { on } V\} \cup\{0\}
\end{align*}
$$

When D is effective, the global sections of $\mathcal{O}(D)$ are the solutions of the classical problem, to determine the rational functions whose poles are bounded by D.

Points that aren't in an open set V impose no conditions on the sections of $\mathcal{O}(D)$ on V. A section on V can have arbitrary zeros or poles at points not in V.

Let D be the divisor $\sum r_{i} q_{i}$. If q_{i} is a point of an open set V and if $r_{i}>0$, a section of $\mathcal{O}(D)$ on V may have a pole of order at most r_{i} at q_{i}, and if $r_{i}<0$ a section must have a zero of order at least $-r_{i}$ at q_{i}. For example, the sections of the module $\mathcal{O}(-q)$ on an open set V that contains q are the regular functions on V that are zero at q. So $\mathcal{O}(-q)$ is the maximal ideal \mathfrak{m}_{q}. Similarly, the sections of $\mathcal{O}(q)$ on an open set V that contains q are the rational functions that have a pole of order at most 1 at q and are regular at every other point of V. The sections of $\mathcal{O}(-q)$ and of $\mathcal{O}(q)$ on an open set V that doesn't contain p are the regular functions on V.

The fact that a section of $\mathcal{O}(D)$ is allowed to have a pole at q_{i} when $r_{i}>0$ contrasts with the divisor of a function. If $\operatorname{div}(f)=\sum r_{i} q_{i}$, then $r_{i}>0$ means that f has a zero at q_{i}. If $\operatorname{div}(f)=D$, then f will be a global section of $\mathcal{O}(-D)$.
8.1.11. Lemma. (i) If D is the principal divisor $\operatorname{div}(g)$, then $\mathcal{O}(D)$ is the free \mathcal{O}-module $g^{-1} \mathcal{O}$ of rank 1 .
(ii) For any divisor D on a smooth curve, $\mathcal{O}(D)$ is a locally free module of rank one.
proof. (i) Let D be the divisor of a rational function g. The sections of $\mathcal{O}(D)$ on an open set U are the rational functions f such that $\operatorname{div}(f)+D=\operatorname{div}(f)+\operatorname{div}(g) \geq 0$ on U. These are the functions f such that $f g$ is a section of \mathcal{O} on U, or such that f is a section of $g^{-1} \mathcal{O}$.
(ii) This follows from (i) because every divisor is locally principal,
8.1.12. Proposition. Let D and E be divisors on a smooth curve Y.
(i) The map $\mathcal{O}(D) \otimes_{\mathcal{O}} \mathcal{O}(E) \rightarrow \mathcal{O}(D+E)$ that sends $f \otimes g$ to the product fg is an isomorphism.
(ii) $\mathcal{O}(D) \subset \mathcal{O}(E)$ if and only if $E \geq D$.
proof. (i) It is enough to verify this locally, so we may assume that Y is affine and that the supports of D and E contain just one point, say $D=r q$ and $E=s q$. We may also assume that the maximal ideal at q is a principal ideal, generated by an element x. Then $\mathcal{O}(D), \mathcal{O}(E)$, and $\mathcal{O}(D+E)$ are free modules with bases x^{r}, x^{s} and x^{r+s}, respectively.
8.1.13. Proposition. Let Y be a smooth curve.
(i) The nonzero ideals of \mathcal{O}_{Y} are the modules $\mathcal{O}(-E)$, where E is an effective divisor.
(ii) The modules $\mathcal{O}(D)$ are the finite \mathcal{O}-submodules of the function field module \mathcal{F} of Y.
(iii) The function field module \mathcal{F} is the union of the modules $\mathcal{O}(D)$.
proof. (i) Say that $E=r_{1} q_{1}+\cdots+r_{k} q_{k}$, with $r_{i} \geq 0$ for all i. A rational function f is a section of $\mathcal{O}(-E)$ if $\operatorname{div}(f)-E$ is effective, which happens when $\operatorname{poles}(f)=0$, and $\operatorname{zeros}(f) \geq E$. The same condition describes the elements of the ideal $\mathcal{I}=\mathfrak{m}_{1}^{r_{1}} \cdots \mathfrak{m}_{k}^{r_{k}}$.
(ii) First, if D_{1} and D_{2} are divisors, and if $D_{1} \neq D_{2}$, then $\mathcal{O}\left(D_{1}\right) \neq \mathcal{O}\left(D_{2}\right)$. Let \mathcal{L} be a finite \mathcal{O}-submodule of \mathcal{F}. The local ring R of Y at a point q is a valuation ring. Since \mathcal{L} is a finite \mathcal{O}-module, it will be generated by one element, a rational function f, in some open neighborhood U of q. 2.7.13. If D is the divisor of f^{-1} on U, then $\mathcal{L}=\mathcal{O}(D)$ on U, and this determines the divisor D uniquely. So when $\mathcal{L}=\mathcal{O}(D)$ on U and $\mathcal{L}=\mathcal{O}\left(D^{\prime}\right)$ on U^{\prime}, then D and D^{\prime} agree on $U \cap U^{\prime}$. Therefore there is a divisor D on the whole curve Y such that $\mathcal{L}=\mathcal{O}(D)$ in a suitable neighbohood U of any point q. This implies that $\mathcal{L}=\mathcal{O}(D)$.
8.1.14. Proposition. Let D and E be divisors on a smooth curve Y. Multiplication by a rational function f such that $\operatorname{div}(f)+E-D \geq 0$ defines a homomorphism of \mathcal{O}-modules $\mathcal{O}(D) \rightarrow \mathcal{O}(E)$, and every homomorphism $\mathcal{O}(D) \rightarrow \mathcal{O}(E)$ is multiplication by such a function.
proof. For any \mathcal{O}-module \mathcal{M}, a homomorphism $\mathcal{O} \rightarrow \mathcal{M}$ is multiplication by a global section of \mathcal{M} (6.3.7) (b). So a homomorphism $\mathcal{O} \rightarrow \mathcal{O}(E-D)$ will be multiplication by a rational function f such that $\operatorname{div}(f)+E-D \geq 0$. If f is such a function, one obtains a homomorphism $\mathcal{O}(D) \rightarrow \mathcal{O}(E)$ by tensoring with $\mathcal{O}(D)$.
8.1.15. Corollary. Let D and E be divisors on a smooth curve Y.
(i) The modules $\mathcal{O}(D)$ and $\mathcal{O}(E)$ are isomorphic if and only if D and E are linearly equivalent divisors.
(ii) Let f be a rational function on Y, and let $D=\operatorname{div}(f)$. Multiplication by f defines an isomorphism $\mathcal{O}(D) \rightarrow \mathcal{O}$.
proof. If a rational function f defines an isomorphism, the inverse morphism is defined by f^{-1}. Then $\operatorname{div}(f)+$ $E-D \geq 0$ and also $\operatorname{div}\left(f^{-1}\right)+D-E=-\operatorname{div}(f)+D-E \geq 0, \operatorname{so} \operatorname{div}(f)=D-E$. This proves (i), and (ii) is the special case that $E=0$.

(8.1.16) invertible modules

mapODtoOE

ODOE
invertmod

An invertible \mathcal{O}-module is a locally free module of rank one, a module that is isomorphic to the module \mathcal{O} in a neighborhood of any point.

The tensor product $\mathcal{L} \otimes_{\mathcal{O}} \mathcal{M}$ of invertible modules is invertible. The dual \mathcal{L}^{*} of an invertible module \mathcal{L} is invertible. If D is a divisor on a smooth curve Y, then $\mathcal{O}(D)$ is an invertible module. Its dual is the module $\mathcal{O}(-D)$.
inversemod

Lequal$s O D$
thetaspole
chicurve
chicurvetwo

RRcurve
8.1.17. Lemma. Let \mathcal{L} be an invertible \mathcal{O}-module.
(i) Let \mathcal{L}^{*} be the dual module. The canonical map $\mathcal{L}^{*} \otimes_{\mathcal{O}} \mathcal{L} \rightarrow \mathcal{O}$ defined by $\gamma \otimes \alpha \mapsto \gamma(\alpha)$ is an isomorphism. Thus \mathcal{L}^{*} may be thought of as an inverse to \mathcal{L}. (This is the reason for the term 'invertible'.)
(ii) The map $\mathcal{O} \rightarrow \mathcal{O}(\mathcal{L}, \mathcal{L})\left(=\underline{\operatorname{Hom}}_{\mathcal{O}}(\mathcal{L}, \mathcal{L})\right)$ that sends a regular function α to the operation of multiplication by α is an isomorphism.
(iii) Every nonzero homomorphism $\mathcal{L} \xrightarrow{\varphi} \mathcal{M}$ to a locally free module \mathcal{M} is injective.
proof. (i,ii) It is enough to verify these assertions in the case that \mathcal{L} is free, isomorphic to \mathcal{O}, in which case they are clear.
(iii) The problem is local, so we may assume that the variety is affine, say $Y=\operatorname{Spec} A$, and that \mathcal{L} and \mathcal{M} are free. Then φ becomes a nonzero homomorphism $A \rightarrow A^{k}$, which is injective because A is a domain.

Lemma 8.1.11 shows that the only difference between an invertible module \mathcal{L} and a module $\mathcal{O}(D)$ is that $\mathcal{O}(D)$ is a submodule of the function field module \mathcal{F}, while $\mathcal{L} \otimes_{\mathcal{O}} \mathcal{F}$ can be any one-dimensional K-vector space.
8.1.18. Corollary. Every invertible \mathcal{O}-module \mathcal{L} on a smooth curve Y is isomorphic to a module of the form $\mathcal{O}(D)$.

We will use the next lemma in the proof of Theorem8.6.15 below.
8.1.19. Lemma. Let $\mathcal{L} \subset \mathcal{M}$ be an inclusion of invertible modules on a smooth curve Y, let q be a point in the support of $\mathcal{M} / \mathcal{L}$, and let V be an affine open subset of Y that contains q. Suppose that a rational function f has a simple pole at q and is regular at all other points of V. If α is a section of \mathcal{L} on V, then $f^{-1} \alpha$ is a section of \mathcal{M} on V.
proof. Working locally, we may assume that $\mathcal{L}=\mathcal{O}$. Then $\mathcal{M}=\mathcal{O}(D)$ for some effective divisor D. Since q is in the support of $\mathcal{M} / \mathcal{L}$, the coefficient of q in D is positive. Therefore $\mathcal{L}=\mathcal{O} \subset \mathcal{O}(q) \subset \mathcal{O}(D)=\mathcal{M}$. With this notation, α will be a section of \mathcal{O}, while f^{-1} is a section of $\mathcal{O}(q)$. Then $f^{-1} \alpha$ will be a section of $\mathcal{O}(q)$, and therefore a section of $\mathcal{O}(D)=\mathcal{M}$.

8.2 The Riemann-Roch Theorem I

Let Y be a smooth projective curve, and let \mathcal{M} be a finite \mathcal{O}_{Y}-module. In Chapter 7 , we learned that the cohomology $H^{q}(Y, \mathcal{M})$ is a finite-dimensional vector space for $q=0,1$, and is zero when $q>1$. As before, we denote the dimension of $H^{q}(Y, \mathcal{M})$ by $\mathbf{h}^{q} \mathcal{M}$ or by $\mathbf{h}^{q}(Y, \mathcal{M})$.

The Euler characteristic (7.6.6 of a finite \mathcal{O}-module \mathcal{M} is

$$
\begin{equation*}
\chi(\mathcal{M})=\mathbf{h}^{0} \mathcal{M}-\mathbf{h}^{1} \mathcal{M} \tag{8.2.1}
\end{equation*}
$$

In particular,

$$
\chi\left(\mathcal{O}_{Y}\right)=\mathbf{h}^{0} \mathcal{O}_{Y}-\mathbf{h}^{1} \mathcal{O}_{Y}
$$

The dimension $\mathbf{h}^{1} \mathcal{O}_{Y}$ is called the arithmetic genus of Y. It is denoted by p_{a}. This is a notation that was used before, for plane curves. We will see below, in 8.2.9 (iv), that $\mathbf{h}^{0} \mathcal{O}_{Y}=1$. So

$$
\begin{equation*}
\chi(\mathcal{O})=1-p_{a} \tag{8.2.2}
\end{equation*}
$$

8.2.3. Riemann-Roch Theorem (version 1). Let $D=\sum r_{i} p_{i}$ be a divisor on a smooth projective curve Y. Then

$$
\chi(\mathcal{O}(D))=\chi(\mathcal{O})+\operatorname{deg} D \quad\left(=\operatorname{deg} D+1-p_{a}\right)
$$

proof. To analyze the effect on cohomology when a divisor is changed by adding or subtracting a point, we inspect the inclusion $\mathcal{O}(D-p) \subset \mathcal{O}(D)$. The cokernel ϵ of the inclusion map is a one-dimensional vector space supported at p. So there is a short exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}(D-p) \rightarrow \mathcal{O}(D) \rightarrow \epsilon \rightarrow 0 \tag{8.2.4}
\end{equation*}
$$

addpoint
Because $\mathfrak{m}_{p}=\mathcal{O}(-p)$, this sequence can be obtained by tensoring the sequence

$$
\begin{equation*}
0 \rightarrow \mathfrak{m}_{p} \rightarrow \mathcal{O} \rightarrow \kappa_{p} \rightarrow 0 \tag{8.2.5}
\end{equation*}
$$

with the invertible module $\mathcal{O}(D)$.
Since ϵ is a one-dimensional module supported at $p, \mathbf{h}^{0} \epsilon=1$ and $\mathbf{h}^{1} \epsilon=0$. Let's denote the onedimensional vector space $H^{0}(Y, \epsilon)$ by [1]. Then the cohomology sequence associated to 8.2.4 is

$$
\begin{equation*}
0 \rightarrow H^{0}(Y, \mathcal{O}(D-p)) \rightarrow H^{0}(Y, \mathcal{O}(D)) \xrightarrow{\gamma}[1] \xrightarrow{\delta} H^{1}(Y, \mathcal{O}(D-p)) \rightarrow H^{1}(Y, \mathcal{O}(D)) \rightarrow 0 \tag{8.2.6}
\end{equation*}
$$

In this exact sequence, one of the two maps, γ or δ, must be zero. Either
(1) γ is zero and δ is injective. In this case

$$
\mathbf{h}^{0} \mathcal{O}(D-p)=\mathbf{h}^{0} \mathcal{O}(D) \quad \text { and } \quad \mathbf{h}^{1} \mathcal{O}(D-p)=\mathbf{h}^{1} \mathcal{O}(D)+1, \quad \text { or }
$$

(2) δ is zero and γ is surjective. In this case

$$
\left.\mathbf{h}^{0} \mathcal{O}(D)-p\right)=\mathbf{h}^{0} \mathcal{O}(D)-1 \quad \text { and } \quad \mathbf{h}^{1} \mathcal{O}(D-p)=\mathbf{h}^{1} \mathcal{O}(D)
$$

In either case,

$$
\begin{equation*}
\chi(\mathcal{O}(D))=\chi(\mathcal{O}(D-p))+1 \tag{8.2.7}
\end{equation*}
$$

The Riemann-Roch theorem follows, because $\operatorname{deg} D=\operatorname{deg}(D-p)+1$, and because we can get from \mathcal{O} to $\mathcal{O}(D)$ by a finite number of operations, each of which changes the divisor by adding or subtracting a point.

Because $\mathbf{h}^{0} \geq \mathbf{h}^{0}-\mathbf{h}^{1}=\chi$, this version of the Riemann-Roch Theorem gives reasonably good control of H^{0}. It is less useful for controlling H^{1}. For that, one wants the full Riemann-Roch Theorem (version 2), which identifies H^{1}. The full theorem requires some preparation, so we have put it into Section 8.7. However, version 1 has important consequences:
8.2.8. Corollary. Let p be a point of a smooth projective curve Y. The dimension $\mathbf{h}^{0}(Y, \mathcal{O}(n p))$ tends to infinity with n. Therefore there exist rational functions on Y that have a pole of sufficiently large order at a single point p and no other poles.
proof. When we go from $\mathcal{O}(n p)$ to $\mathcal{O}((n+1) p)$, either \mathbf{h}^{0} increases or else \mathbf{h}^{1} decreases. Since $\mathbf{h}^{1}(Y, \mathcal{O}(n p))$ is finite, the second possibility can occur only finitely many times, as x tends to ∞.
8.2.9. Corollary. Let Y be a smooth projective curve.
chichange
onepole

RRcor
(i) The divisor of a rational function on Y has degree zero: The number of zeros is equal to the number of poles.
(ii) Linearly equivalent divisors on Y have equal degrees.
(iii) A nonconstant rational function on Y takes every value, including infinity, the same number of times (counted with multiplicity).
(iv) A rational function on Y that is regular at every point of Y is a constant: $H^{0}(Y, \mathcal{O})=\mathbb{C}$.
proof. (i) Let f be a nonzero rational function and let $D=\operatorname{div}(f)$. Multiplication by f defines an isomorphism $\mathcal{O}(D) \rightarrow \mathcal{O}$ 8.1.15, so $\chi(\mathcal{O}(D))=\chi(\mathcal{O})$. On the other hand, by Riemann-Roch, $\chi(\mathcal{O}(D))=\chi(\mathcal{O})+$ $\operatorname{deg} D$. Therefore deg $D=0$.
(ii) If D and E are linearly equivalent divisors, say $D-E=\operatorname{div}(f)$, then, according to (i), $D-E$ has degree zero, and $\operatorname{deg} D=\operatorname{deg} E$.
(iii) The divisor of zeros of the function $f-c$ is linearly equivalent to the divisor of poles of f.
(iv) According to (iii), a nonconstant function must have a pole.
8.2.10. Corollary. Let D be a divisor on Y. If $\operatorname{deg} D \geq p_{a}$, then $\mathbf{h}^{0} \mathcal{O}(D)>0$. If $\mathbf{h}^{0} \mathcal{O}(D)>0$, then $\operatorname{deg} D \geq 0$.
proof. If $\operatorname{deg} D \geq p_{a}$, then $\chi(\mathcal{O}(D))=\operatorname{deg} D+1-p_{a} \geq 1$, and $\mathbf{h}^{0} \geq \mathbf{h}^{0}-\mathbf{h}^{1}=\chi$. If $\mathcal{O}(D)$ has a nonzero global section f, a rational function such that $\operatorname{div}(f)+D$ is effective, then $\operatorname{deg}(\operatorname{div}(f)+D) \geq 0$, and because the degree of $\operatorname{div}(f)$ is zero, $\operatorname{deg} D \geq 0$.
8.2.11. Theorem. With its classical topology, a smooth projective curve Y is a connected, compact, orientable two-dimensional manifold.
proof. We prove connectedness here. The other points have been discussed before (see Theorem 1.8.20).
A nonempty topological space is connected if it isn't the union of two disjoint, nonempty, closed subsets. Suppose that, in the classical topology, Y is the union of disjoint, nonempty closed subsets Y_{1} and Y_{2}. Both Y_{1} and Y_{2} will be compact, two-dimensional manifolds. Let p be a point of of Y_{1}. Corollary 8.2.8 shows that there is a nonconstant rational function f whose only pole is at p. Then f will be a regular function on the complement of p, and therefore a regular function on the entire compact manifold Y_{2}.

For review: Any point q of the smooth curve Y has a neighborhood V that is analytically equivalent to an open subset U of the affine line X. If a function g on V is analytic, the function on U that corresponds to g is an analytic function of one variable on U. The maximum principle for analytic functions asserts that a nonconstant analytic function on an open region of the complex plane has no maximal absolute value in the region. This applies to the open set U and therefore also to the neighborhood V of q. Since q can be any point of Y_{2}, a nonconstant function g that is analytic on Y_{2} cannot have a maximum anywhere on Y_{2}. On the other hand, since Y_{2} is compact, a continuous function does have a maximum. So an analytic function g on Y_{2} must be a constant.

Going back to the rational function f with a single pole p, the restriction of f to Y_{2} will be analytic, and therefore constant. When we subtract that constant from f, we obtain a nonconstant rational function on Y that is zero on Y_{2}. But the zero locus of a rational function on a curve is a finite set. This is a contradiction.

8.3 The Birkhoff-Grothendieck Theorem

This theorem describes finite, torsion-free modules on the projective line $X=\mathbb{P}^{1}$.
8.3.1. Birkhoff-Grothendieck Theorem. A finite, torsion-free \mathcal{O}-module on the projective line X is isomorphic to a direct sum of twisting modules: $\mathcal{M} \approx \bigoplus \mathcal{O}\left(n_{i}\right)$.
(Because X is a smooth curve, an \mathcal{O}-module \mathcal{M} is locally free if and only if it is torsion-free.)
This theorem was proved by Grothendieck in 1957 using cohomology. It had been proved by Birkhoff in 1909, in the following equivalent form:

Birkhoff Factorization Theorem. Let $A_{0}=\mathbb{C}[u], A_{1}=\mathbb{C}\left[u^{-1}\right]$, and $A_{01}=\mathbb{C}\left[u, u^{-1}\right]$. Let P be an invertible A_{01}-matrix. There exist an invertible A_{0}-matrix Q_{0} and an invertible A_{1}-matrix Q_{1} such that $Q_{0}^{-1} P Q_{1}$ is diagonal, and its diagonal entries are integer powers of u.
proof of the Birkhoff-Grothendieck Theorem. This is Grothendieck's proof.
According to Theorem 7.5.5, the cohomology of the twisting modules on X is $\mathbf{h}^{0} \mathcal{O}=1, \mathbf{h}^{1} \mathcal{O}=0$, and if r is a positive integer,

$$
\mathbf{h}^{0} \mathcal{O}(r)=r+1, \quad \mathbf{h}^{1} \mathcal{O}(r)=0, \quad \mathbf{h}^{0} \mathcal{O}(-r)=0, \quad \text { and } \quad \mathbf{h}^{1} \mathcal{O}(-r)=r-1
$$

8.3.2. Lemma. Let \mathcal{M} be a finite, torsion-free \mathcal{O}-module on the projective line X. For sufficiently large r,
(i) the only homomorphism $\mathcal{O}(r) \rightarrow \mathcal{M}$ is the zero map, and
(ii) $\mathbf{h}^{0}(X, \mathcal{M}(-r))=0$.
proof. (i) A nonzero homomorphism $\mathcal{O}(r) \xrightarrow{\varphi} \mathcal{M}$ from the twisting module $\mathcal{O}(r)$ to the locally free module \mathcal{M} will be injective (8.1.17), and the associated map $H^{0}(X, \mathcal{O}(r)) \rightarrow H^{0}(X, \mathcal{M})$ will be injective too, so $\mathbf{h}^{0}(X, \mathcal{O}(r)) \leq \mathbf{h}^{0}(X, \mathcal{M})$. Since $\mathbf{h}^{0}(X, \mathcal{O}(r))=r+1, \quad r$ is bounded by the integer $\mathbf{h}^{0}(X, \mathcal{M})-1$.
(ii) A global section of $\mathcal{M}(-r)$ defines a map $\mathcal{O} \rightarrow \mathcal{M}(-r)$. Its twist by r will be a map $\mathcal{O}(r) \rightarrow \mathcal{M}$. By (i), r is bounded.

We go to the proof now.
As Lemma 8.1.1 tells us, \mathcal{M} is locally free. We use induction on its rank. We suppose that \mathcal{M} has rank r, that $r>0$, and that the theorem has been proved for locally free \mathcal{O}-modules of rank less than r. The plan is to show that \mathcal{M} has a twisting module as a direct summand, so that $\mathcal{M}=\mathcal{W} \oplus \mathcal{O}(n)$ for some \mathcal{W}. Then induction on the rank, applied to \mathcal{W}, will prove the theorem.

Twisting is compatible with direct sums, so we may replace \mathcal{M} by a twist $\mathcal{M}(n)$. Instead of showing that \mathcal{M} has a twisting module $\mathcal{O}(n)$ as a direct summand, we show that, after we replace \mathcal{M} by a suitable twist, the structure sheaf \mathcal{O} will be a direct summand.

The twist $\mathcal{M}(n)$ will have a nonzero global section when n is sufficiently large 6.8.20), and it will have no nonzero global section when n is sufficiently negative 8.3.2 (ii)). Therefore, when we replace \mathcal{M} by a suitable twist, we will have $H^{0}(X, \mathcal{M}) \neq 0$ but $H^{0}(X, \mathcal{M}(-1))=0$. We assume that this is true for \mathcal{M}.

We choose a nonzero global section m of \mathcal{M} and consider the injective multiplication map $\mathcal{O} \xrightarrow{m} \mathcal{M}$. Let \mathcal{W} be its cokernel, so that we have a short exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O} \xrightarrow{m} \mathcal{M} \xrightarrow{\pi} \mathcal{W} \rightarrow 0 \tag{8.3.3}
\end{equation*}
$$

8.3.4. Lemma. Let \mathcal{W} be the \mathcal{O}-module that appears in the sequence 8.3.3.
(i) $H^{0}(X, \mathcal{W}(-1))=0$.
(ii) \mathcal{W} is torsion-free, and therefore locally free.
(iii) \mathcal{W} is a direct sum $\bigoplus_{i=1}^{r-1} \mathcal{O}\left(n_{i}\right)$ of twisting modules on \mathbb{P}^{1}, with $n_{i} \leq 0$.
proof. (i) This follows from the cohomology sequence associated to the twisted sequence

$$
0 \rightarrow \mathcal{O}(-1) \rightarrow \mathcal{M}(-1) \rightarrow \mathcal{W}(-1) \rightarrow 0
$$

because $H^{0}(X, \mathcal{M}(-1))=0$ and $H^{1}(X, \mathcal{O}(-1))=0$.
(ii) If the torsion submodule of \mathcal{W} were nonzero, the torsion submodule of $\mathcal{W}(-1)$ would also be nonzero, and then $\mathcal{W}(-1)$ would have a nonzero global section 8.1.1.
(iii) The fact that \mathcal{W} is a direct sum of twisting modules follows by induction on the rank: $\mathcal{W} \approx \bigoplus \mathcal{O}\left(n_{i}\right)$. Since $H^{0}(X, \mathcal{W}(-1))=0$, we must have $H^{0}\left(X, \mathcal{O}\left(n_{i}-1\right)\right)=0$. Therefore $n_{i}-1<0$, and $n_{i} \leq 0$.

We go back to the proof of Theorem 8.3.1. Because $\mathcal{O}^{*}=\mathcal{O}$, the dual of the sequence 8.3.3 is an exact sequence

$$
0 \longleftarrow \mathcal{O} \stackrel{m^{*}}{\leftrightarrows} \mathcal{M}^{*} \stackrel{\pi^{*}}{\leftarrow} \mathcal{W}^{*} \longleftarrow 0
$$

and $\mathcal{W}^{*} \approx \bigoplus \mathcal{O}\left(-n_{i}\right)$ with $-n_{i} \geq 0$. Therefore $\mathbf{h}^{1} \mathcal{W}^{*}=0$. The map $H^{0}\left(\mathcal{M}^{*}\right) \rightarrow H^{0}(\mathcal{O})$ is surjective. Let α be a global section of \mathcal{M}^{*} whose image in \mathcal{O} is 1 . Multiplication by α defines a map $\mathcal{O} \xrightarrow{\alpha} \mathcal{M}^{*}$ that splits the sequence: $m^{*} \alpha$ is the identity map on \mathcal{O}, and \mathcal{M}^{*} is the direct sum $\operatorname{im}(\alpha) \oplus \operatorname{ker}\left(m^{*}\right) \approx \mathcal{O} \oplus \mathcal{W}^{*}$. Therefore $\mathcal{M} \approx \mathcal{W} \oplus \mathcal{O}$.

8.4 Differentials

We introduce some terminology, differentials and branched coverings, that will be used in version II of the Riemann-Roch theorem. Why differentials enter into the Riemann-Roch Theorem is something of a mystery, but one important fact is the Residue Theorem, which controls the poles of a rational differential. Proofs of Reimann-Roch are often based on that theorem. We recommend reading about the Residue Theorem, though we won't use it. ${ }^{1}$

Try not to get bogged down in the preliminary disussions. Give the next pages a quick read to learn the terminology. You can look back as needed. Begin to read more carefully when you get to Section 8.6

Let A be an algebra and let M be an A-module. A derivation $A \xrightarrow{\delta} M$ is a \mathbb{C}-linear map that satisfies the product rule for differentiation, a map that has these properties:

[^1]deriv
\[

$$
\begin{equation*}
\delta(a b)=a \delta b+b \delta a, \quad \delta(a+b)=\delta a+\delta b, \quad \text { and } \quad \delta c=0 \tag{8.4.1}
\end{equation*}
$$

\]

for all a, b in A and all c in \mathbb{C}. The fact that δ is \mathbb{C}-linear, i.e., that it is a homomorphism of vector spaces, follows: Since $d c=0, \delta(c b)=c \delta b+b \delta c=c \delta b$.

For example, differentiation $\frac{d}{d t}$ is a derivation $\mathbb{C}[t] \rightarrow \mathbb{C}[t]$.
compde

defdiff

8.4.2. Lemma. (i) Let B be an algebra, let $M \xrightarrow{g} N$ be a homomorphism of B-modules, and let $B \xrightarrow{\delta} M$ be a derivation. The composition $B \xrightarrow{g \delta} N$ is a derivation.
(ii) Let $A \xrightarrow{\varphi} B$ be an algebra homomorphism, and let $B \xrightarrow{\delta} M$ be a derivation. The composition $A \xrightarrow{\delta \varphi} M$ is a derivation.
(iii) Let $A \xrightarrow{\varphi} B$ be a surjective algebra homomorphism, let $B \xrightarrow{h} M$ be a map to a B-module M, and let $d=h \varphi$. If $A \xrightarrow{d} M$ is a derivation, then h is a derivation.

The module of differentials Ω_{A} of an algebra A is an A-module generated by elements denoted by $d a$, one for each element a of A. The elements of Ω_{A} are (finite) combinations $\sum b_{i} d a_{i}$, with a_{i} and b_{i} in A. The defining relations among the generators $d a$ are the ones that make the map $A \xrightarrow{d} \Omega_{A}$ that sends a to $d a$ a derivation: For all a, b in A and all c in \mathbb{C},

$$
\begin{equation*}
d(a b)=a d b+b d a, \quad d(a+b)=d a+d b, \quad \text { and } \quad d c=0 \tag{8.4.3}
\end{equation*}
$$

The elements of Ω_{A} are called differentials.

8.4.4. Lemma.

(i) When we compose a homomorphism $\Omega_{A} \xrightarrow{f} M$ of \mathcal{O}-modules with the derivation $A \xrightarrow{d} \Omega_{A}$, we obtain a derivation $A \xrightarrow{f d} M$. Composition with d defines a bijection between module homomorphisms $\Omega_{A} \rightarrow M$ and derivations $A \xrightarrow{\delta} M$.
(ii) Ω is a functor: An algebra homomorphism $A \xrightarrow{u} B$ induces a homomorphism $\Omega_{A} \xrightarrow{v} \Omega_{B}$ that is compatible with the ring homomorphism u, and that makes a diagram

Recall that, when ω is an element of Ω_{A} and α is an element of A, compatibility of v with u means that $v(\alpha \omega)=u(\alpha) v(\omega)$.
proof. (ii) When Ω_{B} is made into an A-module by restriction of scalars, the composed map $A \xrightarrow{u} B \xrightarrow{d} \Omega_{B}$ will be a derivation to which (i) applies.
omegafree
8.4.5. Lemma. Let R be the polynomial ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. The module of differentials Ω_{R} is a free R-module with basis $d x_{1}, \ldots, d x_{n}$.
proof. The formula $d f=\sum \frac{d f}{d x_{i}} d x_{i}$ follows from the defining relations. It shows that the elements $d x_{1}, \ldots, d x_{n}$ generate the R-module Ω_{R}. Let V be a free R-module with basis v_{1}, \ldots, v_{n}. The product rule for differentiation shows that the map $\delta: R \rightarrow V$ defined by $\delta(f)=\frac{\partial f}{\partial x_{i}} v_{i}$ is a derivation. It induces a module homomorphism $\Omega_{A} \xrightarrow{\varphi} V$ ssu that sends $d x_{i}$ to $v_{i} \mathrm{~b}$ 8.4.4. Since $d x_{1}, \ldots, d x_{n}$ generate Ω_{R} and since v_{1}, \ldots, v_{n} is a basis of V, φ is an isomorphism.
8.4.6. Proposition. Let I be an ideal of an algebra R, let A be the quotient algebra R / I, and let dI denote the set of differentials df with f in I. The subset $N=d I+I \Omega_{R}$ of Ω_{R} is a submodule, and Ω_{A} is isomorphic to the quotient Ω_{R} / N.

The proposition can be interpreted this way: Suppose that the ideal I is generated by elements f_{1}, \ldots, f_{r} of R. Then Ω_{A} is the quotient of Ω_{R} that is obtained by introducing these two rules:

- $d f_{i}=0$, and
- multiplication by f_{i} is zero.
8.4.7. Example. Let R be the polynomial ring $\mathbb{C}[y]$ in one variable. So Ω_{R} is a free module with basis $d y$. Let I be the principal ideal (y^{2}), and let A be the quotient R / I. In this case, $d I$ is an R-module generated by te element $2 y d y$, and $y^{2} d y$ generates $I \Omega_{A}$. The R-module N is generated by $y d y$. If \bar{y} denotes the residue of y in $A, \Omega_{A}=\Omega_{R} / N$ is generated by an element $d \bar{y}$, with the relation $\bar{y} d \bar{y}=0$. It isn't the zero module.
proof of Proposition 8.4.6. First, $I \Omega_{R}$ is a submodule of Ω_{R}, and $d I$ is an additive subgroup of Ω_{R}. To show that N is a submodule, we must show that scalar multiplication by an element of R maps $d I$ to N, i.e., that if g is in R and f is in I, then $g d f$ is in N. By the product rule, $g d f=d(f g)-f d g$. Since I is an ideal, $f g$ is in I. Then $d(f g)$ is in $d I$, and $f d g$ is in $I \Omega_{R}$. So $g d f$ is in N.

The rules displayed above hold in Ω_{A} because the generators f_{i} of I are zero in A. Therefore N is contained in the kernel of the surjective map $\Omega_{R} \xrightarrow{v} \Omega_{A}$ defined by the homomorphism $R \rightarrow A$. Let $\bar{\Omega}$ denote the quotient module Ω_{R} / N. This is an A-module, and because $N \subset$ ker v, v defines a surjective map of A-modules $\bar{\Omega} \xrightarrow{\bar{v}} \Omega_{A}$. We show that \bar{v} is bijective. Let r be an element of R, let a be its image in A, and let $\overline{d r}$ be its image in $\bar{\Omega}$. The composed map $R \xrightarrow{d} \Omega_{R} \xrightarrow{\pi} \bar{\Omega}$ is a derivation that sends r to $\overline{d r}$, and I is in its kernel. It defines a derivation $R / I=A \xrightarrow{\delta} \bar{\Omega}$ that sends a to $\overline{d r}$. This derivation corresponds to a homomorphism of A-modules $\Omega_{A} \rightarrow \bar{\Omega}$ that sends $d a$ to $\overline{d r}$, and that inverts \bar{v}.
8.4.8. Corollary. If A is a finite-type algebra, then Ω_{A} is a finite A-module.

This follows from Proposition 8.4.6, because the module of differentials of the polynomial ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is a finite module.
8.4.9. Lemma. Let S be a multiplicative system in a domain A. The module $\Omega_{S^{-1} A}$ of differentials of $S^{-1} A$ is canonically isomorphic to the module of fractions $S^{-1} \Omega_{A}$. In particular, if K is the field of fractions of A, then $K \otimes_{A} \Omega_{A} \approx \Omega_{K}$.

We have moved the symbol S^{-1} to the left for clarity.
proof of Lemma 8.4.9. The composed map $A \rightarrow S^{-1} A \xrightarrow{d} \Omega_{S^{-1} A}$ is a derivation. It defines an A-module homomorphism $\Omega_{A} \rightarrow \Omega_{S^{-1} A}$ which extends to an $S^{-1} A$-homomorphism $S^{-1} \Omega_{A} \xrightarrow{\varphi} \Omega_{S^{-1} A}$ because scalar multiplication by the elements of S is invertible in $\Omega_{S^{-1} A}$. The relation $d s^{-k}=-k s^{-k-1} d s$ follows from the definition of a differential, and it shows that φ is surjective. The quotient rule

$$
\delta\left(s^{-k} a\right)=-k s^{-k-1} a d s+s^{-k} d a
$$

defines a derivation $S^{-1} A \xrightarrow{\delta} S^{-1} \Omega_{A}$, that corresponds to a homomorphism $\Omega_{S^{-1} A} \rightarrow S^{-1} \Omega_{A}$ and that inverts φ. Here, one must show that δ is well-defined, that $\delta\left(s_{1}^{-k} a_{1}\right)=\delta\left(s_{2}^{-\ell} a_{2}\right)$ if $s_{1}^{-\ell} a_{1}=s_{2}^{-k} a_{2}$, and that δ is a derivation. You will be able to do this.

Lemma 8.4 .9 shows that a finite \mathcal{O}-module Ω_{Y} of differentials on a variety Y is defined such that, when $U=\operatorname{Spec} A$ is an affine open subset of $Y, \Omega_{Y}(U)=\Omega_{A}$.
8.4.10. Proposition. Let y be a local generator for the maximal ideal at a point q of a smooth curve Y. In a suitable neighborhood of q, the module Ω_{Y} of differentials is a free \mathcal{O}-module with basis $d y$. Therefore Ω_{Y} is an invertible module.
proof. We may assume that Y is affine, say $Y=\operatorname{Spec} B$. Let q be a point of Y, and let y be an element of B with $\mathrm{v}_{q}(y)=1$. To show that $d y$ generates Ω_{B} locally, we may localize, so we may suppose that y generates the maximal ideal \mathfrak{m} at q. We must show that after we localize B once more, every differential $d f$ with f in B will be a multiple of $d y$. Let $c=f(q)$, so that $f=c+y g$ for some g in B, and because $d c=0$, $d f=g d y+y d g$. Here $g d y$ is in $B d y$ and $y d y$ is in $\mathfrak{m} \Omega_{B}$. This shows that

$$
\Omega_{B}=B d y+\mathfrak{m} \Omega_{B}
$$

diffmodsquare

Omegafi-

 nitelocal-
izeomega

An element β of Ω_{B} can be written as $\beta=b d y+\gamma$, with b in B and γ in $\mathfrak{m} \Omega_{B}$. If W denotes the quotient module $\Omega_{B} /(B d y)$, then $W=\mathfrak{m} W$. The Nakayama Lemma tells us that there is an element z in \mathfrak{m} such that $s=1-z$ annihilates W. When we replace B by its localization B_{s}, we will have $W=0$ and $\Omega_{B}=B d y$, as required.

We must still verify that the generator $d y$ of Ω_{B} isn't a torsion element. Suppose that $b d y=0$, with $b \neq 0$, then Ω_{B} will be zero except at the finite set of zeros of b in Y. We replace the point q by a point at which Ω_{B} is zero, keeping the rest of the notation unchanged. Let and $A=\mathbb{C}[y] /\left(y^{2}\right)$. As was noted in Example 8.4.7, Ω_{A} isn't the zero module. Proposition 5.2 .8 tells us that, at our point q, the algebra B / \mathfrak{m}_{q}^{2} is isomorphic to A, and Proposition 8.4.6 tells us that Ω_{A} is a quotient of Ω_{B}. Since Ω_{A} isn't zero, neither is Ω_{B}. Therefore $d y$ isn't a torsion element.

8.5 Branched Coverings

covercurve

By a branched covering, we mean an integral morphism $Y \xrightarrow{\pi} X$ of smooth curves. Chevalley's Finiteness Theorem 4.6.8 shows that, when a smooth curve Y is projective, every nonconstant morphism $Y \rightarrow X$ will be a branched covering, unless it maps Y to a point.

Let $Y \rightarrow X$ be a branched covering. The function field K of Y will be a finite extension of the function field F of X. The degree $[Y: X]$ of the covering is defined to be the degree $[K: F]$ of that field extension. If $X^{\prime}=\operatorname{Spec} A$ is an affine open subset of X, its inverse image Y^{\prime} will be an affine open subset $Y^{\prime}=\operatorname{Spec} B$ of Y, and B will be a locally free A-module whose rank is $[Y: X]$.

To describe the fibre of a branched covering $Y \xrightarrow{\pi} X$ over a point p of X, we may localize. So we may assume that X and Y are affine, say $X=\operatorname{Spec} A$ and $Y=\operatorname{Spec} B$, and that the maximal ideal \mathfrak{m}_{p} of A at a point p is a principal ideal, generated by an element x of A.

If a point q of Y lies over p, the ramification index at q is defined to be $\mathrm{v}_{q}(x)$, where v_{q} is the valuation of the function field K that corresponds to q. We usually denote the ramification index by e. Then, if y is a local generator for the maximal ideal \mathfrak{m}_{q} of B at q, we will have

$$
x=u y^{e}
$$

where u is a local unit - a rational function on Y that is regular and invertible on some open neighborhood of q.

Points of Y whose ramification indices are greater than one are called branch points. We will also call a point p of X a branch point of the covering Y if there is a branch point of Y that lies over p.
8.5.1. Lemma. (i) A branched covering $Y \rightarrow X$ has finitely many branch points.
(ii) Let n denote the degree $[Y: X]$. If a point p of X isn't a branch point, the fibre over p consists of n points with ramification indices equal to 1 .
proof. This is very simple. We may delete finite sets of points, so we may suppose that X and Y are affine, $X=\operatorname{Spec} A$ and $Y=\operatorname{Spec} B$. Then B is a finite A-module of rank n. Let F and K be the fraction fields of A and B, respectively, and let β be an element of B that generates the field extension K / F. Then $A[\beta] \subset B$, and since these two rings have the same fraction field, there will be a nonzero element s in A such that $A_{s}[\beta]=B_{s}$. We may replace A and B by A_{s} and B_{s}, so that $B=A[\beta]$. Let g be the monic irreducible polynomial for β over A. The discriminant of g isn't the zero ideal 1.7.22. So for all but finitely many points p of X, the discriminant will be nonzero, and there will be n points of Y over p with ramification indices equal to 1 .
8.5.2. Corollary. A branched covering $Y \xrightarrow{\pi} X$ of degree one is an isomorphism.
proof. When $[Y: X]=1$, the function fields of Y and X will be equal. Then, because $Y \rightarrow X$ is an integral morphism and X is normal, $Y=X$.

The next lemma follows from Lemma8.1.3 and the Chinese Remainder Theorem.
8.5.3. Lemma. Let $Y \xrightarrow{\pi} X$ be a branched covering, with $X=\operatorname{Spec} A$ and $Y=\operatorname{Spec} B$. Suppose that the maximal ideal \mathfrak{m}_{p} at p is a principal ideal, generated by an element x. Let q_{1}, \ldots, q_{k} be the points of Y that lie over a point p of X and let \mathfrak{m}_{i} and e_{i} be the maximal ideal and ramification index at q_{i}, respectively.
(i) The extended ideal $\mathfrak{m}_{p} B=x B$ is the product ideal $\mathfrak{m}_{1}^{e_{1}} \cdots \mathfrak{m}_{k}^{e_{k}}$.
(ii) Let $\bar{B}_{i}=B / \mathfrak{m}_{i}^{e_{i}}$. The quotient $\bar{B}=B / x B$ is isomorphic to the product $\bar{B}_{1} \times \cdots \times \bar{B}_{k}$.
(iii) The degree $[Y: X]$ of the covering is the sum $e_{1}+\cdots+e_{k}$ of the ramification indices at the points q_{i}.

(8.5.4) local analytic structure

The local analytic structure of a branched covering $Y \xrightarrow{\pi} X$ in the classical topology is very simple. We explain it here because it is useful and helpful for intuition.
8.5.5. Proposition. Locally in the classical topology, Y is analytically isomorphic to an e-th root covering $y^{e}=x$.
proof. Let q be a point of Y, let p be its image in X, let x and y be local generators for the maximal ideals \mathfrak{m}_{p} of \mathcal{O}_{X} and \mathfrak{m}_{q} of \mathcal{O}_{Y}, respectively. Let e be the ramification index at q. So $x=u y^{e}$, where u is a local unit at q. In a neighborhood of q in the classical topology, u will have an analytic e-th root w. The element $y_{1}=w y$ also generates \mathfrak{m}_{q} locally, and $x=y_{1}^{e}$. We replace y by y_{1}. Then the implicit function theorem tells us that that x and y are local analytic coordinate functions on X and Y (see 1.4.18).
8.5.6. Proposition. Let $Y \xrightarrow{\pi} X$ be a branched covering, let $\left\{q_{1}, \ldots, q_{k}\right\}$ be the fibre over a point p of X, and let e_{i} be the ramification index at q_{i}. As a point p^{\prime} of X approaches p, e_{i} points that lie over p^{\prime} approach q_{i}.

(8.5.7) suppressing notation for the direct image

When considering a branched covering $Y \xrightarrow{\pi} X$ of smooth curves, we will often pass between an $\mathcal{O}_{Y^{-}}$ module \mathcal{M} and its direct image $\pi_{*} \mathcal{M}$, and it will be convenient to work primarily on X. Recall that if X^{\prime} is an open subset X^{\prime} of X and Y^{\prime} is its invere image, then

$$
\left[\pi_{*} \mathcal{M}\right]\left(X^{\prime}\right)=\mathcal{M}\left(Y^{\prime}\right)
$$

One can think of the direct image $\pi_{*} \mathcal{M}$ as working with \mathcal{M}, but looking only at the open subsets Y^{\prime} of Y that are inverse images of open subsets of X. If we look only at such subsets, the only significant difference between \mathcal{M} and its direct image will be that, when X^{\prime} is open in X and $Y^{\prime}=\pi^{-1} X^{\prime}$, the $\mathcal{O}_{Y}\left(Y^{\prime}\right)$-module $\mathcal{M}\left(Y^{\prime}\right)$ is made into an $\mathcal{O}_{X}\left(X^{\prime}\right)$-module by restriction of scalars.

To simplify notation, we will often drop the symbol π_{*}, and write \mathcal{M} instead of $\pi_{*} \mathcal{M}$. If X^{\prime} is an open subset of $X, \mathcal{M}\left(X^{\prime}\right)$ will stand for $\mathcal{M}\left(\pi^{-1} X^{\prime}\right)$. When denoting the direct image of an \mathcal{O}_{Y}-module \mathcal{M} by the same symbol \mathcal{M}, we may refer to it as an \mathcal{O}_{X}-module. In accordance with this convention, we may also write \mathcal{O}_{Y} for $\pi_{*} \mathcal{O}_{Y}$, but we must include the subscript Y.

This abbreviated terminology is analogous to the one used for restriction of scalars in a module. When $A \rightarrow B$ is an algebra homomorphism and M is a B-module, the B-module ${ }_{B} M$ and the A-module ${ }_{A} M$ obtained from it by restriction of scalars are usually denoted by the same letter M.
8.5.8. Lemma. Let $Y \xrightarrow{\pi} X$ be a branched covering of smooth curves, of degree $n=[Y: X]$. With notation as above,
(i) The direct image of \mathcal{O}_{Y}, which we may also denote by \mathcal{O}_{Y}, is a locally free \mathcal{O}_{X}-module and of rank n.
(ii) A finite \mathcal{O}_{Y}-module \mathcal{M} is a torsion \mathcal{O}_{Y}-module if and only if its direct image (also denoted by \mathcal{M}) is a torsion \mathcal{O}_{X}-module.
(iii) A finite \mathcal{O}_{Y}-module \mathcal{M} is a locally free \mathcal{O}_{Y}-module if and only if its direct image is a locally free $\mathcal{O}_{X^{-}}$module. If \mathcal{M} is a locally free \mathcal{O}_{Y}-module of rank r, then its directc image is a locally free \mathcal{O}_{X}-module of rank $n r$.

8.6 Trace of a Differential

(8.6.1) trace of a function

Let $Y \xrightarrow{\pi} X$ be a branched covering of smooth curves, and let F and K be the function fields of X and Y, respectively. The trace map $K \xrightarrow{\text { trace }} F$ for a field extension of finite degree has been defined before (4.3.11). If α is an element of K, multiplication by α on the F-vector space K is a linear operator, and trace (k) is the trace of that operator. The trace is F-linear: If f_{i} are in F and α_{i} are in K, then trace $\left(\sum f_{i} \alpha_{i}\right)=\sum f_{i}$ trace $\left(\alpha_{i}\right)$. Moreover, the trace carries regular functions to regular functions: If $X^{\prime}=\operatorname{Spec} A^{\prime}$ is an affine open subset of X, with inverse image $Y^{\prime}=\operatorname{Spec} B^{\prime}$, then because A^{\prime} is a normal algebra, the trace of an element of B^{\prime} will be in A^{\prime} 4.3.7). Using our abbreviated notation \mathcal{O}_{Y} for $\pi_{*} \mathcal{O}_{Y}$ (8.5.7), the trace defines a homomorphism of \mathcal{O}_{X}-modules

$$
\begin{equation*}
\mathcal{O}_{Y} \xrightarrow{\text { trace }} \mathcal{O}_{X} \tag{8.6.2}
\end{equation*}
$$

Analytically, this trace can be described as a sum over the sheets of the covering. Let $n=[Y: X]$. When a point p of X isn't a branch point, there will be n points q_{1}, \ldots, q_{n} of Y lying over p. If U is a small neighborhood of p in X in the classical topology, its inverse image V will consist of disjoint neighborhoods V_{i} of q_{i}, each of which maps bijectively to U. The ring of analytic functions on V_{i} will be isomorphic to the ring \mathcal{A} of analytic functions on U. So the ring of analytic functions on V is isomorphic to a direct sum $\mathcal{A}_{1} \oplus \cdots \oplus \mathcal{A}_{n}$ of n copies of \mathcal{A}. If a rational function g on Y is regular on V, its restriction to V can be written as $g=g_{1} \oplus \cdots \oplus g_{n}$, with g_{i} in \mathcal{A}_{i}. The matrix of left multiplication by g on $\mathcal{A}_{1} \oplus \cdots \oplus \mathcal{A}_{n}$ is the diagonal matrix with entries g_{1}, \ldots, g_{n}, and

$$
\begin{equation*}
\operatorname{trace}(g)=g_{1}+\cdots+g_{n} \tag{8.6.3}
\end{equation*}
$$

8.6.4. Lemma. Let $Y \xrightarrow{\pi} X$ be a branched covering of smooth curves, let p be a point of X, let q_{1}, \ldots, q_{k} be the fibre over p, and let e_{i} be the ramification index at q_{i}. If a rational function g on Y is regular at the points q_{1}, \ldots, q_{k}, its trace is regular at p. Its value at p is $[\operatorname{trace}(g)](p)=e_{1} g\left(q_{1}\right)+\cdots+e_{k} g\left(q_{k}\right)$.
proof. The regularity was discussed above. If p isn't a branch point, we will have $k=n$ and $e_{i}=1$ for all i. In this case, the lemma follows by evaluating (8.6.3). It follows by continuity for any point p. As a point p^{\prime} approaches p, e_{i} points q^{\prime} of Y approach q_{i} 8.5.6. For each point q^{\prime} that approaches q_{i}, the limit of $g\left(q^{\prime}\right)$ will be $g\left(q_{i}\right)$.

(8.6.5) trace of a differential

The structure sheaf is naturally contravariant. A branched covering $Y \xrightarrow{\pi} X$ corresponds to a homomorphism of \mathcal{O}_{X}-modules $\mathcal{O}_{X} \rightarrow \mathcal{O}_{Y}$. The trace map for functions is a homomorphism in the opposite direction: $\mathcal{O}_{Y} \xrightarrow{\text { trace }} \mathcal{O}_{X}$.

Differentials are also naturally contravariant. A morphism $Y \xrightarrow{\pi} X$ induces an \mathcal{O}_{X}-module homomorphism $\Omega_{X} \rightarrow \Omega_{Y}$ that sends a differential $d x$ on X to a differential on Y that we may also denote by $d x$ (8.4.4) (ii). As is true for functions, there is a trace map for differentials in the opposite direction. It is defined below, in 8.6.7), and it will be denoted by τ :

$$
\Omega_{Y} \xrightarrow{\tau} \Omega_{X}
$$

But first, a lemma about the natural contravariant map $\Omega_{X} \rightarrow \Omega_{Y}$:
8.6.6. Lemma. Let $Y \rightarrow X$ be a branched covering.
(i) Let p be the image in X of a point q of Y, let x and y be local generators for the maximal ideals of X and Y at p and q, respectively, and let e be the ramification index at q. As a differential on $Y, d x=v y^{e-1} d y$, where v is a local unit at q.
(ii) The canonical homomorphism $\Omega_{X} \rightarrow \Omega_{Y}$ is injective.
proof. (i) As we have noted before, $x=u y^{e}$, for some local unit u. Since $d y$ generates Ω_{Y} locally, there is a rational function z that is regular at q, such that $d u=z d y$. Let $v=y z+e u$. Then

$$
d x=d\left(u y^{e}\right)=y^{e} z d y+e y^{e-1} u d y=v y^{e-1} d y
$$

Since $y z$ is zero at q and $e u$ is a local unit, v is a local unit.
See 8.1.17 (iv) for the proof of part (ii).
To define the trace for differentials, we begin with differentials of the functions fields F and K of X and Y, respectively. The \mathcal{O}_{Y}-module Ω_{Y} is invertible 8.4.10, and the module Ω_{K} of K-differentials is a localization of Ω_{Y}. So Ω_{K} is a free K-module of rank one. Any nonzero differential will form a K-basis. We choose as basis a nonzero F-differential α. Its image in Ω_{K}, which we denote by α too, will be a K-basis for Ω_{K}. We could take $\alpha=d x$, where x is a local coordinate function on X, for instance.

Since α is a basis, any element β of Ω_{K} can be written uniquely, as

$$
\beta=g \alpha
$$

where g is an element of K. The trace $\Omega_{K} \xrightarrow{\tau} \Omega_{F}$ is defined by

$$
\begin{equation*}
\tau(\beta)=\operatorname{trace}(g) \alpha \tag{8.6.7}
\end{equation*}
$$

where $\operatorname{trace}(g)$ is the trace of the function g. Since the trace for functions is F-linear, τ is also F-linear.
We need to check that τ is independent of the choice of α. Let α^{\prime} be another nonzero F-differential. Then $f \alpha^{\prime}=\alpha$ for some nonzero element f of F, and $g f \alpha^{\prime}=g \alpha$. Since trace is F-linear, trace $(g f)=f$ trace (g). Then

$$
\tau\left(g f \alpha^{\prime}\right)=\operatorname{trace}(g f) \alpha^{\prime}=f \operatorname{trace}(g) \alpha^{\prime}=\operatorname{trace}(g) f \alpha^{\prime}=\operatorname{trace}(g) \alpha=\tau(g \alpha)
$$

Using α^{\prime} in place of α gives the same value for the trace.
A differenial of the function field K is called a rational differential. A rational differential β is regular at a point q of Y if there is an affine open neighborhood $Y^{\prime}=\operatorname{Spec} B$ of q such that β is an element of Ω_{B}. If y is a local generator for the maximal ideal \mathfrak{m}_{q} and if $\beta=g d y$, the differential β is regular at q if and only if the rational function g is regular at q.

Let $X=\operatorname{Spec} A$ and $Y=\operatorname{Spec} B$ be affine varieties, and let p be a point of X. Suppose that the maximal ideal at p is a principal ideal, generated by an element x of A, and that the differential $d x$ generates Ω_{A}. Let q_{1}, \ldots, q_{k} be the points of Y that lie over p, and let e_{i} be the ramification index at q_{i}.
8.6.8. Corollary. With notation as above,
(i) When viewed as a differential on Y, dx has a zero of order $e_{i}-1$ at q_{i}.
(ii) If a differential β on Y that is regular at q_{i} is written as $\beta=g d x$, where g is a rational function on Y, then g has a pole of order at most $e_{i}-1$ at q_{i}.

This follows from Lemma 8.6.6(i).
8.6.9. Main Lemma. Let $Y \xrightarrow{\pi} X$ be a branched covering, let p be a point of X, let q_{1}, \ldots, q_{k} be the points of Y that lie over p, and let β be a rational differential on Y.
(i) If β is regular at the points q_{1}, \ldots, q_{k}, its trace $\tau(\beta)$ is regular at p.
(ii) If β has a simple pole at q_{i} and is regular at q_{j} for all $j \neq i$, then $\tau(\beta)$ is not regular at p.
proof. Let x be a local generator for the maximal ideal at p. We write β as $g d x$, where g is a rational function on Y.
(i) Suppose that β is regular at the points q_{i}. Corollary 8.6 .8 tells us that g has poles of orders at most $e_{i}-1$ at the points q_{i}. Since x has a zero of order e_{i} at q_{i}, the function $x g$ is regular at q_{i}, and its value there is zero. Then trace $(x g)$ is regular at p, and its value at p is zero 8.6.4. So x^{-1} trace $(x g)$ is a regular function at p. Since trace is F-linear and x is in F, x^{-1} trace $(x g)=\operatorname{trace}(g)$. Therefore trace (g) and $\tau(\beta)=\operatorname{trace}(g) d x$ are regular at p.
(ii) In this case, g has poles of orders at most $e_{j}-1$ at the points q_{j} when $j \neq i$, and it has a pole of order e_{i} at q_{i}. So $x g$ will be regular at the points q_{i}. It will be zero at q_{j} when $j \neq i$, and nonzero at q_{i}. The function $x g$ will be regular at all of the points q_{j}. Its value at q_{j} will be zero when $j \neq i$, and not zero when $j=i$. Then $\operatorname{trace}(x g)$ will be regular at p, but not zero there 8.6.4. Therefore $\tau(\beta)=x^{-1}$ trace $(x g) d x$ won't be regular at p.
8.6.10. Corollary. The trace map 8.6 .7 defines a homomorphism of \mathcal{O}_{X}-modules $\Omega_{Y} \xrightarrow{\tau} \Omega_{X}$.
8.6.11. Example. (i) Let x be a local generator for the maximal ideal \mathfrak{m}_{p} at a point p of X. If the degree $[Y: X]$ of Y over X is n, then when we regard $d x$ as a differential on Y,

$$
\begin{equation*}
\tau(d x)=n d x \tag{8.6.12}
\end{equation*}
$$

(ii) Let Y be the locus $y^{e}=x$ in $\mathbb{A}_{x, y}^{2}$. Multiplying y by $\zeta=e^{2 \pi i / e}$ permutes the sheets of Y over X. The trace of an integer power y^{k} is

$$
\begin{equation*}
\operatorname{trace}\left(y^{k}\right)=\sum_{j=0}^{e-1} \zeta^{j k} y^{k} \tag{8.6.13}
\end{equation*}
$$

The sum $\sum_{j} \zeta^{k j}$ is zero unless $k \equiv 0$ modulo e. Then trace $(d y)$ is not regular at $x=0$, but $d y / y$ is regular there.

Let $Y \xrightarrow{\pi} X$ be a branched covering. As is true for any \mathcal{O}_{Y}-module, Ω_{Y} is isomorphic to the module of homomorphisms $\mathcal{O}_{Y}\left(\mathcal{O}_{Y}, \Omega_{Y}\right)$. The homomorphism $\mathcal{O}_{Y} \rightarrow \Omega_{Y}$ that corresponds to a section β of Ω_{Y} on an open set U sends a regular function f on U to $f \beta$. We denote that homomorphism by β too: $\mathcal{O}_{Y} \xrightarrow{\beta} \Omega_{Y}$.
8.6.14. Lemma. Composition with the trace $\Omega_{Y} \xrightarrow{\tau} \Omega_{X}$ defines a homomorphism of \mathcal{O}_{X}-modules

$$
\Omega_{Y} \approx \mathcal{O}_{Y}\left(\mathcal{O}_{Y}, \Omega_{Y}\right) \xrightarrow{\tau} \mathcal{O}_{X}\left(\mathcal{O}_{Y}, \Omega_{X}\right)
$$

proof. An \mathcal{O}_{Y}-linear map becomes an \mathcal{O}_{X}-linear map by restriction of scalars. When we compose an $\mathcal{O}_{Y^{-}}$ linear map β with τ, then because τ is \mathcal{O}_{X}-linear, the result will be \mathcal{O}_{X}-linear. It will be a homomorphism of \mathcal{O}_{X}-modules.
8.6.15. Theorem. (i) The map 8.6.14 is bijective.
(ii) Let \mathcal{M} be a locally free \mathcal{O}_{Y}-module. Composition with the trace defines a bijection

$$
\begin{equation*}
\mathcal{O}_{Y}\left(\mathcal{M}, \Omega_{\mathcal{O}_{Y}}\right) \xrightarrow{\tau \circ} \mathcal{O}_{X}\left(\mathcal{M}, \Omega_{\mathcal{O}_{X}}\right) \tag{8.6.16}
\end{equation*}
$$

This theorem follows from the Main Lemma, when one looks carefully.
Note. The domain and range 8.6.16 are to be interpreted as modules on X. When we put the symbols Hom and π_{*} that we have suppressed into the notation, the map 8.6.16 becomes a bijection

$$
\pi_{*}\left(\underline{\operatorname{Hom}}_{\mathcal{O}_{Y}}\left(\mathcal{M}, \Omega_{Y}\right)\right) \xrightarrow{\tau \circ} \underline{\operatorname{Hom}}_{\mathcal{O}_{X}}\left(\pi_{*} \mathcal{M}, \Omega_{X}\right)
$$

It suffices to verify the theorem locally, because it concerns modules on X. So we may suppose that X and Y are affine, say $X=\operatorname{Spec} A$ and $Y=\operatorname{Spec} B$. When the theorem is stated in terms of algebras and modules, it becomes this:
8.6.17. Theorem. Let $Y \rightarrow X$ be a branched covering, with $Y=\operatorname{Spec} B$ and $X=\operatorname{Spec} A$.
(i) The trace map $\Omega_{B}={ }_{B}\left(B, \Omega_{B}\right) \xrightarrow{\tau \circ}{ }_{A}\left(B, \Omega_{A}\right)$ is bijective.
(ii) For any locally free B-module M, composition with the trace defines a bijection $B\left(M, \Omega_{B}\right) \xrightarrow{\tau \circ} A\left(M, \Omega_{A}\right)$.

When we write ${ }_{A}\left(M, \Omega_{A}\right)$ here, we are interpreting the B-module M as an A-module by restriction of scalars.
8.6.18. Lemma. Let $A \subset B$ be rings, let M be a B-module, and let N be an A-module. Then the module ${ }_{A}(M, N)$ of homomorphisms has the structure of a B-module.
homisB-
mod
proof. We must define scalar multiplication of a homomorphism $M \xrightarrow{\varphi} N$ of A-modules by an element b of B. The definition is: $[b \varphi](m)=\varphi(b m)$. One must show that the map $b \varphi$ is a homomorphism of A-modules $M \rightarrow N$, and that the axioms for a B-module are true. You will be able to check those things.
proof of Theorem 8.6 .15 (i). Since the theorem is local, we are still allowed to localize. We use the algebra version 8.6 .17 of the theorem. Both B and Ω_{B} are torsion-free, and therefore locally free A-modules. Localizing as needed, we may assume that they are free A-modules, and that Ω_{A} is a free module of rank one with basis of the form $d x$. Then ${ }_{A}\left(B, \Omega_{A}\right)$ will be a free A-module too.

Let's denote ${ }_{A}\left(B, \Omega_{A}\right)$ by Θ. Lemma 8.6 .18 tells us that Θ is a B-module. Because B and Ω_{A} are free A-modules, Θ is a free A-module and a locally free B-module. Since Ω_{A} has A-rank 1, the A-rank of Θ is the same as the A-rank of B. Then the B-rank of Θ is 1 , the same as the B-rank of B too (see 8.5.8). Therefore Θ is an invertible B-module.

If x is a local coordinate on X, then $\tau d x \neq 0$ 8.6.12. The trace map $\Omega_{B} \xrightarrow{\tau} \Theta$ isn't the zero map. Since domain and range are invertible B-modules, it is an injective homomorphism. Its image, which is isomorphic to Ω_{B}, is an invertible submodule of the invertible B-module Θ.

To show that $\Omega_{B}=\Theta$, we will apply Lemma 8.1 .19 to show that the quotient $\bar{\Theta}=\Theta / \Omega_{B}$ is the zero module. Suppose not, and let q be a point in the support of $\bar{\Theta}$. Let p be the image of q in X and let q_{1}, \ldots, q_{k} be the fibre over p, with $q=q_{1}$.

We choose a differential α that is regular at all of the points q_{i}. If y is a local generator for the maximal ideal at q_{1}, then $\alpha=g d y$, where g is a regular function at q_{1}. We assume also that α has been chosen so that that $g\left(q_{1}\right) \neq 0$.

Let f be a rational function that is regular on an affine open set V of Y that contains the points q_{1}, \ldots, q_{k}, and such that $f\left(q_{1}\right)=0$ and $f\left(q_{i}\right) \neq 0$ when $i>1$. Lemma 8.1.19 tells us that $\beta=f^{-1} \alpha$ is a section of Θ on V, but the Main Lemma 8.6.9tells us that $\tau(\beta)$ isn't regular at p. This contradicion proves the theorem.
proof of Theorem 8.6 .15 (ii). We are to show that if \mathcal{M} is a locally free \mathcal{O}_{Y}-module, composition with the trace defines a bijective map $\mathcal{O}_{Y}\left(\mathcal{M}, \Omega_{\mathcal{O}_{Y}}\right) \rightarrow \mathcal{O}_{X}\left(\mathcal{M}, \Omega_{\mathcal{O}_{X}}\right)$. Part (i) of the theorem tells us that this is true in when $\mathcal{M}=\mathcal{O}_{Y}$. Therefore it is also true when \mathcal{M} is a free module \mathcal{O}_{Y}^{k}. And, since (ii) is a statement about \mathcal{O}_{X}-modules, it suffices to prove it locally on X.
8.6.19. Lemma. Let q_{1}, \ldots, q_{k} be points of a smooth curve Y, and let \mathcal{M} be a locally free \mathcal{O}_{Y}-module. There is an open set V that contains the points q_{1}, \ldots, q_{k}, such that \mathcal{M} is free on V.

We assume the lemma and complete the proof of the theorem. Let $\left\{q_{1}, \ldots, q_{k}\right\}$ be the fibre over a point p of X and let be V as in the lemma. The complement $D=Y-V$ is a finite set whose image Z in X is also finite, and Z doesn't contain p. If U is the complement of Z in X, its inverse image W will be a subset of V that contains the points of the fibre, on which \mathcal{M} is free.
proof of the lemma. We may assume that Y is affine, $Y=\operatorname{Spec} B$, and that the \mathcal{O}-module \mathcal{M} corresponds to a locally free B-module M.

With terminology as in Lemma 8.5.3 let \mathfrak{m}_{i} be the maximal ideal of B at q_{i}, and let $\bar{B}_{i}=B / \mathfrak{m}_{i}^{e_{i}}$. The quotient $\bar{B}=B / x B$ is isomorphic to the product $\bar{B}_{1} \times \cdots \times \bar{B}_{k}$. Since \mathcal{M} is locally free, $M / \mathfrak{m}_{i} M=\bar{M}_{i}$ is a free \bar{B}_{i}-module. Its dimension is the rank r of the B-module M.

If M has rank r, there will be a set of elements $m=\left(m_{1}, \ldots, m_{r}\right)$ in M whose residues form a basis of \bar{M}_{i} for every i. This follows from the Chinese Remainder Theorem. Therefore m generates M locally at each of the points. Let M^{\prime} be the B-submodule of M generated by m. The cokernel of the map $M^{\prime} \rightarrow M$ is zero at the points q_{1}, \ldots, q_{k}, and therefore it's support, which is a finite set, is disjoint from those points. When we localize to delete this finite set from X, the set m becomes a basis for M.

Note. Theorem 8.6.15 is subtle. Unfortunately the proof, though understandable, doesn't give an intuitive explanation of the fact that Ω_{B} is isomorphic to ${ }_{A}\left(B, \Omega_{A}\right)$. To get more insight into that, we would need a better understanding of differentials. My father Emil Artin said: "One doesn't really understand differentials, but one can learn to work with them."

8.7 The Riemann-Roch Theorem II

rroch serredual defSerred-

(8.7.1) the Serre dual

Let Y be a smooth projective curve, and let \mathcal{M} be a locally free \mathcal{O}_{Y}-module. The Serre dual of \mathcal{M}, is the module

$$
\begin{equation*}
\mathcal{M}^{S}={ }_{Y}\left(\mathcal{M}, \Omega_{Y}\right) \quad\left(=\underline{\operatorname{Hom}}_{\mathcal{O}_{Y}}\left(M, \Omega_{Y}\right)\right) \tag{8.7.2}
\end{equation*}
$$

Its sections on an open subset U are the homomorphisms of $\mathcal{O}_{Y}(U)$-modules $\mathcal{M}(U) \rightarrow \Omega_{Y}(U)$, and it can also be written as $\mathcal{M}^{S}=\mathcal{M}^{*} \otimes_{\mathcal{O}} \Omega_{Y}$, where \mathcal{M}^{*} is the ordinary dual ${ }_{Y}\left(\mathcal{M}, \mathcal{O}_{Y}\right)$. Since the module Ω_{Y} is invertible, it is locally isomorphic to \mathcal{O}_{Y}. So the Serre dual \mathcal{M}^{S} is locally isomorphic to the ordinary dual \mathcal{M}^{*}. It is a locally free module of the same rank as \mathcal{M}, and the Serre bidual $\left(\mathcal{M}^{S}\right)^{S}$ is isomorphic to \mathcal{M} :

$$
\left(\mathcal{M}^{S}\right)^{S} \approx\left(\mathcal{M}^{*} \otimes_{\mathcal{O}} \Omega_{Y}\right)^{*} \otimes_{\mathcal{O}} \Omega_{Y} \approx \mathcal{M}^{* *} \otimes_{\mathcal{O}} \Omega_{Y}^{*} \otimes_{\mathcal{O}} \Omega_{Y} \approx \mathcal{M}^{* *} \approx \mathcal{M}
$$

(See 8.1.17 (i).) For example, $\mathcal{O}_{Y}^{S}=\Omega_{Y}$ and $\Omega_{Y}^{S}=\mathcal{O}_{Y}$.
8.7.3. Riemann-Roch Theorem, version 2. Let \mathcal{M} be a locally free \mathcal{O}_{Y}-module on a smooth projective curve Y, and let \mathcal{M}^{S} be its Serre dual. Then $\mathbf{h}^{0} \mathcal{M}=\mathbf{h}^{1} \mathcal{M}^{S}$ and $\mathbf{h}^{1} \mathcal{M}=\mathbf{h}^{0} \mathcal{M}^{S}$.
The two assertions are equivalent, because \mathcal{M} and $\left(\mathcal{M}^{S}\right)^{S}$ are isomorphic. The second one follows from the first when one replaces \mathcal{M} by \mathcal{M}^{S}. For example, $\mathbf{h}^{1} \Omega_{Y}=\mathbf{h}^{0} \mathcal{O}_{Y}=1$ and $\mathbf{h}^{0} \Omega_{Y}=\mathbf{h}^{1} \mathcal{O}_{Y}$ is the arithmetic genus p_{a}.

If \mathcal{M} is a locally free \mathcal{O}_{Y}-module, then

$$
\begin{equation*}
\chi(\mathcal{M})=\mathbf{h}^{0} \mathcal{M}-\mathbf{h}^{0} \mathcal{M}^{S} \tag{8.7.4}
\end{equation*}
$$

A more precise statement of the Riemann-Roch Theorem is that $H^{1}(Y, \mathcal{M})$ and $H^{0}\left(Y, \mathcal{M}^{S}\right)$ are dual vector spaces. This becomes important when one wants to apply the theorem to a cohomology sequence, but we omit the proof. The fact that the dimensions are equal is enough for many applications.

Our plan is to prove Theorem 8.7.3 directly for the projective line \mathbb{P}^{1}. This will be easy, because the structure of locally free modules on \mathbb{P}^{1} is very simple. We derive it for an arbitrary smooth projective curve Y by projection to \mathbb{P}^{1}. Projection to projective space is the method that was used by Grothendieck in his proof of the general Riemann-Roch Theorem.

Let $X=\mathbb{P}^{1}$, let Y be a smooth projective curve, and let $Y \xrightarrow{\pi} X$ be a branched covering. Let \mathcal{M} be a locally free \mathcal{O}_{Y}-module, and let the Serre dual of \mathcal{M}, as defined in 8.7.2, be

$$
\mathcal{M}_{1}^{S}={ }_{Y}\left(\mathcal{M}, \Omega_{Y}\right)
$$

The direct image of \mathcal{M} is a locally free \mathcal{O}_{X}-module that we are denoting by \mathcal{M} too, and we can form the Serre dual on X. Let

$$
\mathcal{M}_{2}^{S}={ }_{x}\left(\mathcal{M}, \Omega_{X}\right)
$$

8.7.5. Corollary. The direct image $\pi_{*} \mathcal{M}_{1}^{S}$, which we also denote by \mathcal{M}_{1}^{S}, is isomorphic to \mathcal{M}_{2}^{S}. proof. This is Theorem 8.6.15.

The corollary allows us to drop the subscripts from \mathcal{M}^{S}. Because a branched covering $Y \xrightarrow{\pi} X$ is an affine morphism, the cohomology of \mathcal{M} and of its Serre dual \mathcal{M}^{S} can be computed, either on Y or on X. If \mathcal{M} is a locally free \mathcal{O}_{Y}-module, then $H^{q}(Y, \mathcal{M}) \approx H^{q}(X, \mathcal{M})$ and $H^{q}\left(Y, \mathcal{M}^{S}\right) \approx H^{q}\left(X, \mathcal{M}^{S}\right)$ 7.4.22).

Thus it is enough to prove Riemann-Roch for the projective line.

(8.7.6) Riemann-Roch for the projective line

The Riemann-Roch Theorem for the projective line $X=\mathbb{P}^{1}$ is a consequence of the Birkhoff-Grothendieck Theorem, which tells us that a locally free \mathcal{O}_{X}-module \mathcal{M} on X is a direct sum of twisting modules. To prove Riemann-Roch for the projective line X, it suffices to prove it for the twisting modules $\mathcal{O}_{X}(k)$.
8.7.7. Lemma. The module of differentials Ω_{X} on the projective line X is isomorphic to the twisting module $\mathcal{O}_{X}(-2)$.
proof. Let $\mathbb{U}^{0}=\operatorname{Spec} \mathbb{C}[x]$, and $\mathbb{U}^{1}=\operatorname{Spec} \mathbb{C}[z]$ be the standard open subsets of \mathbb{P}^{1}, with $z=x^{-1}$. On \mathbb{U}^{0}, the module of differentials is free, with basis $d x$, and $d x=d\left(z^{-1}\right)=-z^{-2} d z$ describes the differential $d x$ on \mathbb{U}^{1}. Since the point p_{∞} at infinity is $\{z=0\}, d x$ has a pole of order 2 there. It is a global section of $\Omega_{X}\left(2 p_{\infty}\right)$, and as a section of that module, it isn't zero anywhere. Multiplication by $d x$ defines an isomorphism $\mathcal{O} \rightarrow \Omega_{X}\left(2 p_{\infty}\right)$ that sends 1 to $d x$. Tensoring with $\mathcal{O}\left(-2 p_{\infty}\right)$ shows that $\mathcal{O}\left(-2 p_{\infty}\right)$ is isomorphic to Ω_{X}.
8.7.8. Lemma. Let \mathcal{M} and \mathcal{N} be locally free \mathcal{O}-modules on the projective line X. Then $x_{X}(\mathcal{M}(r), \mathcal{N})$ is canonically isomorphic to ${ }_{x}(\mathcal{M}, \mathcal{N}(-r))$.
proof. When we tensor a homomorphism $\mathcal{M}(r) \xrightarrow{\varphi} \mathcal{N}$ with $\mathcal{O}(-r)$, we obtain a homomorphism $\mathcal{M} \rightarrow$ $\mathcal{N}(-r)$, and tensoring with $\mathcal{O}(r)$ is the inverse operation.

The Serre dual $\mathcal{O}(n)^{S}$ of $\mathcal{O}(n)$ is therefore

$$
\mathcal{O}(n)^{S}={ }_{x}(\mathcal{O}(n), \mathcal{O}(-2)) \approx \mathcal{O}(-2-n)
$$

To prove Riemann-Roch for $X=\mathbb{P}^{1}$, we must show that

$$
\mathbf{h}^{0} \mathcal{O}(n)=\mathbf{h}^{1} \mathcal{O}(-2-n) \quad \text { and } \quad \mathbf{h}^{1} \mathcal{O}(n)=\mathbf{h}^{0} \mathcal{O}(-2-n)
$$

This follows from Theorem 7.5.5, which computes the cohomology of the twisting modules. As we've noted before, the two assertions are equivalent, so it suffices to verify the first one. If $n<0$, then $-2-n \geq-1$. In this case $\mathbf{h}^{0} \mathcal{O}(n)$ and $\mathbf{h}^{1} \mathcal{O}(-2-n)=0$ are both zero. If $n \geq 0$, then $-2-n<-2$, and then $\mathbf{h}^{0} \mathcal{O}(n)=$ $\mathbf{h}^{1} \mathcal{O}(-2-n)=n+1$.

8.8 Using Riemann-Roch

(8.8.1) genus

Three closely related numbers associated to a smooth projective curve Y are: the topological genus g, the arithmetic genus $p_{a}=\mathbf{h}^{1} \mathcal{O}_{Y}$, and the degree δ of the module of differentials Ω_{Y}.
8.8.2. Theorem. The topological genus g and the arithmetic genus p_{a} of a smooth projective curve Y are equal, and the degree δ of the module Ω_{Y} is $2 g-2$, which is equal to $2 p_{a}-2$.

Thus the Riemann-Roch Theorem 8.2.3 can we written as

$$
\begin{equation*}
\chi(\mathcal{O}(D))=\operatorname{deg} D+1-g \tag{8.8.3}
\end{equation*}
$$

We'll write it this way when the theorem is proved.
\#\#\#By the way, the fact that the genus is always ≥ 0 has applications. \#\#\#
proof. Let $Y \xrightarrow{\pi} X$ be a branched covering with $X=\mathbb{P}^{1}$. The topological Euler characteristic $e(Y)$, which is $2-2 g$, can be computed in terms of the branching data for the covering, as in 1.8.23. Let q_{i} be the ramification points in Y, and let e_{i} be the ramification index at q_{i}. Then e_{i} sheets of the covering come together at q_{i}. (One might say that $e_{i}-1$ points are lacking.) If the degree of Y over X is n, then since $e(X)=2$,

$$
\begin{equation*}
2-2 g=e(Y)=n e(X)-\sum\left(e_{i}-1\right)=2 n-\sum\left(e_{i}-1\right) \tag{8.8.4}
\end{equation*}
$$

We compute the degree δ of Ω_{Y} in two ways. First, the Riemann-Roch Theorem tells us that $\mathbf{h}^{0} \Omega_{Y}=$ $\mathbf{h}^{1} \mathcal{O}_{Y}=p_{a}$ and $\mathbf{h}^{1} \Omega_{Y}=\mathbf{h}^{0} \mathcal{O}_{Y}=1$. So $\chi\left(\Omega_{Y}\right)=-\chi\left(\mathcal{O}_{Y}\right)=p_{a}-1$. The Riemann-Roch Theorem also tells us that $\chi\left(\Omega_{Y}\right)=\delta+1-p_{a}$. Therefore

$$
\begin{equation*}
\delta=2 p_{a}-2 \tag{8.8.5}
\end{equation*}
$$

Next, we compute δ by computing the divisor of the differential $d x$ on Y, x being a coordinate on the projective line X. Let q_{i} be one of the ramification points in Y, and let e_{i} be the ramification index at q_{i}. Then $d x$ has a zero of order $e_{i}-1$ at q_{i}. At the point of X at infinity, $d x$ has a pole of order 2. Let's choose coordinates so that the point at infinity isn't a branch point. Then there will be n points of Y at which $d x$ has a pole of order $2, n$ being the degree of Y over X. The degree of Ω_{Y} is therefore

$$
\begin{equation*}
\delta=\text { zeros }- \text { poles }=\sum\left(e_{i}-1\right)-2 n \tag{8.8.6}
\end{equation*}
$$

Combining 8.8.6 with 8.8.4, one sees that $\delta=2 g-2$. Since we also have $\delta=2 p_{a}-2$, we conclude that $g=p_{a}$.

(8.8.7) canonical divisors

Because the module Ω_{Y} of differentials on a smooth curve Y is invertible, it is isomorphic to $\mathcal{O}(K)$ for some divisor K that is called a canonical divisor (Proposition 8.1.13). The degree of a canonical divisor is $2 g-2$, the same as the degree of Ω_{Y}. It is often convenient to represent Ω_{Y} as a module $\mathcal{O}(K)$, though the canonical divisor K isn't unique. It is determined only up to linear equivalence 8.1.15.

When written in terms of a canonical divisor K, the Serre dual of an invertible module $\mathcal{O}(D)$ will be

$$
\begin{equation*}
\mathcal{O}(D)^{S} \approx \mathcal{O}(K-D) \tag{8.8.8}
\end{equation*}
$$

8.1.16, 8.1.12). With this notation, the Riemann-Roch Theorem for $\mathcal{O}(D)$ becomes

$$
\begin{equation*}
\mathbf{h}^{0} \mathcal{O}(D)=\mathbf{h}^{1} \mathcal{O}(K-D) \quad \text { and } \quad \mathbf{h}^{1} \mathcal{O}(D)=\mathbf{h}^{0} \mathcal{O}(K-D) \tag{8.8.9}
\end{equation*}
$$

(8.8.10) curves of genus zero

Let Y be a smooth projective curve Y of genus $g=0$, and let p be a point of Y. The exact sequence

$$
0 \rightarrow \mathcal{O}_{Y} \rightarrow \mathcal{O}_{Y}(p) \rightarrow \epsilon \rightarrow 0
$$

where ϵ is a one-dimensional module supported at p, gives us an exact cohomology sequence

$$
0 \rightarrow H^{0}\left(Y, \mathcal{O}_{Y}\right) \rightarrow H^{0}\left(Y, \mathcal{O}_{Y}(p)\right) \rightarrow H^{0}(Y, \epsilon) \rightarrow 0
$$

The zero on the right is due to the fact that $\mathbf{h}^{1} \mathcal{O}_{Y}=g=0$. We also have $\mathbf{h}^{0} \mathcal{O}_{Y}=1$ and $\mathbf{h}^{0} \epsilon=1$, so when Y has genus zero, $\mathbf{h}^{0} \mathcal{O}_{Y}(p)=2$. We choose a basis $(1, x)$ for $H^{0}\left(Y, \mathcal{O}_{Y}(p)\right), 1$ being the constant function and x being a nonconstant function with a single pole of order 1 at p. This basis defines a point of \mathbb{P}^{1} with values in the function field K of Y, and therefore a morphism $Y \xrightarrow{\varphi} \mathbb{P}^{1}$ 5.2.4. Because x has just one pole of order 1 , it takes every value exactly once 8.2 .9 (iii). Therefore φ is bijective. It is a map of degree 1 , and therefore an isomorphism 8.5.2).
8.8.11. Corollary. A smooth projective curve of genus zero is isomorphic to the projective line \mathbb{P}^{1}.

A rational curve is a curve, smooth or not, whose function field is isomorphic to the field $\mathbb{C}(t)$ of rational functions in one variable. A smooth projective curve of genus zero is a rational curve.

(8.8.12) curves of genus one

A smooth projective curve of genus $g=1$ is called an elliptic curve. The Riemann-Roch Theorem tells us that on an elliptic curve Y,

$$
\chi(\mathcal{O}(D))=\operatorname{deg} D
$$

Since $\mathbf{h}^{0} \Omega_{Y}=\mathbf{h}^{1} \mathcal{O}_{Y}=1, \Omega_{Y}$ has a nonzero global section ω. Since Ω_{Y} has degree zero 8.8.2, ω doesn't vanish anywhere. Multiplication by ω defines an isomorphism $\mathcal{O} \rightarrow \Omega_{Y}$. So Ω_{Y} is a free module of rank one.
8.8.13. Lemma. Let D be a divisor of degree $r>0$ on an elliptic curve Y. Then $\mathbf{h}^{0} \mathcal{O}(D)=r$, and $\mathbf{h}^{1} \mathcal{O}(D)=0$.

This follows from Riemann-Roch. Since $\Omega) Y$ is free, isomorphic to co $K=0$ is a canonical divisor, so the Serre dual of $\mathcal{O}(D)$ is $\mathcal{O}(-D)$, and $\mathbf{h}^{1} \mathcal{O}(D)=\mathbf{h}^{0} \mathcal{O}(-D)$, which is zero when the degree of D is positive.

Now, since $H^{0}\left(Y, \mathcal{O}_{Y}\right) \subset H^{0}\left(Y, \mathcal{O}_{Y}(p)\right)$, and since both spaces have dimension one, they are equal. So (1) is a basis for $H^{0}\left(Y, \mathcal{O}_{Y}(p)\right)$. We choose a basis $(1, x)$ for the two-dimensional space $H^{1}\left(Y, \mathcal{O}_{Y}(2 p)\right)$. Then x isn't a section of $\mathcal{O}(p)$. It has a pole of order precisely 2 at p and no other pole. Next, we choose a basis $(1, x, y)$ for $H^{1}\left(Y, \mathcal{O}_{Y}(3 p)\right)$. So y has a pole of order 3 at p, and no other pole. The point $(1, x, y)$ of \mathbb{P}^{2} with values in K determines a morphism $Y \xrightarrow{\varphi} \mathbb{P}^{2}$.

Let u, v, w be coordinates in \mathbb{P}^{2}. The map φ sends a point q distinct from p to $(u, v, w)=(1, x(q), y(q))$. Since Y has dimension one, φ is a finite morphism. Its image Y^{\prime} is closed (5.5.4). It is a plane curve.

To determine the image of the point p, we multiply $(1, x, y)$ by $\lambda=y^{-1}$, obtaining the equivalent vector $\left(y^{-1}, x y^{-1}, 1\right)$. The rational function y^{-1} has a zero of order 3 at p, and $x y^{-1}$ has a simple zero there. Evaluating at p, we see that the image of p is the point $(0,0,1)$.

Let ℓ be a generic line $\{a u+b v+c w=0\}$ in \mathbb{P}^{2}. The rational function $a+b x+c y$ on Y has a pole of order 3 at p and no other pole. It takes every value, including zero, three times, and the three points of Y at which $a+b x+c y$ is zero form the inverse image of ℓ. The only possibilities for the degree of Y^{\prime} are 1 and 3. Since $1, x, y$ are independent, they don't satisfy a homogeneous linear equation. So Y^{\prime} isn't a line. It is a cubic curve (see Corollary 1.3.10).

To determine the image, we look for a cubic relation among the functions $1, x, y$ on Y. The seven monomials $1, x, y, x^{2}, x y, x^{3}, y^{2}$ have poles at p, of orders $0,2,3,4,5,6,6$, respectively, and no other poles. They are sections of $\mathcal{O}_{Y}(6 p)$. Riemann-Roch tells us that $\mathbf{h}^{0} \mathcal{O}_{Y}(6 p)=6$. So those seven functions are linearly dependent. The dependency relation gives us a cubic equation among x and y, which we may write in the form

$$
c y^{2}+\left(a_{1} x+a_{3}\right) y+\left(a_{0} x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right)=0
$$

There can be no linear relation among functions whose orders of pole at p are distinct. So when we delete either x^{3} or y^{2} from the list of monomials, we obtain an independent set of six functions - a basis for the six-dimensional space $H^{0}(Y, \mathcal{O}(6 p))$. In the cubic relation, the coefficients c and a_{0} aren't zero. We normalize c and a_{0} to 1 . Next, we eliminate the linear term in y from the relation by substituting $y-\frac{1}{2}\left(a_{1} x+a_{3}\right)$ for y, and we eliminate the quadratic term in x in the resulting polynomial by substituting $x-\frac{1}{3} a_{2}$ for x. Bringing the terms in x to the other side of the equation, we are left with a cubic relation of the form

$$
y^{2}=x^{3}+a_{4} x+a_{6}
$$

The coefficients a_{4} and a_{6} have been changed, of course.
The cubic curve Y^{\prime} defined by the homogenized equation $y^{2} z=x^{3}+a_{4} x z^{2}+a_{6} z^{3}$ is the image of Y. This curve meets a generic line $a x+b y+c z=0$ in three points and, as we saw above, its inverse image in Y consists of three points too. Therefore the morphism $Y \xrightarrow{\varphi} Y^{\prime}$ is generically injective, and Y is the normalization of Y^{\prime}. Let's denote the direct image $\varphi_{*}\left(\mathcal{O}_{Y}\right)$ by \mathcal{O}_{Y}, and let \mathcal{F} be the $\mathcal{O}_{Y^{\prime}}$-module $\mathcal{O}_{Y} / \mathcal{O}_{Y^{\prime}}$. Since Y is the normalization of Y^{\prime}, \mathcal{F} is a torsion module, and $H^{1}(\mathcal{F})=0$. We assemble the dimensions of cohomology into a table:

The table shows that $\mathbf{h}^{0} \mathcal{F}=0$. So \mathcal{F} is torsion module with no global sections. So $\mathcal{F}=0$, and $Y \approx Y^{\prime}$.
8.8.14. Corollary. Every elliptic curve is isomorphic to a cubic curve in \mathbb{P}^{2}.

(8.8.15) the group law on an elliptic curve

The points of an elliptic curve Y form an abelian group, once one fixes a point as the identity element. We choose a point and label it o. Let p and q be points of Y. We write the law of composition as $p \oplus q$, to make
genu-
sonecubic
genusonegroup
a clear distinction between the product in the group, which is a point of Y, and the divisor $p+q$. To define $p \oplus q$, we compute the cohomology of $\mathcal{O}_{Y}(p+q-o)$. Lemma 8.8.13 shows that $\mathbf{h}^{0} \mathcal{O}_{Y}(p+q-o)=1$. So there is a nonzero function f, unique up to scalar factor, with simple poles at p and q and a simple zero at o. This function has exactly one additional zero. That zero is defined to be the sum $p \oplus q$ in the group. In terms of linearly equivalent divisors, $p \oplus q$ is the unique point s such that the divisor $p+q$ is linearly equivalent to $o+s$.
grplaw
maptoP
mapcurve
exbasepoints
8.8.16. Proposition. With the law of composition \oplus defined above, an elliptic curve mibecomes an abelian group.

The proof is left as an exercise.

(8.8.17) maps to projective space

Let Y be a smooth projective curve. We have seen that any set $\left(f_{0}, \ldots, f_{n}\right)$ of rational functions on Y, not all zero, defines a morphism $Y \xrightarrow{\varphi} \mathbb{P}^{n}$ 5.2.4. As a reminder, let q be a point of Y and let $g_{j}=f_{j} / f_{i}$, where i is an index such that the value $\mathrm{v}_{q}\left(f_{i}\right)$ is a minimum, for $k=0, \ldots, n$. The rational functions g_{j} are regular at q for all j, and the morphism φ sends the point q to $\left(g_{0}(q), \ldots, g_{n}(q)\right)$. For example, the inverse image $\varphi^{-1}\left(\mathbb{U}^{0}\right)$ of the standard open set \mathbb{U}^{0} is the set of points of Y at which the functions $g_{j}=f_{j} / f_{0}$ are regular. If q is such a point, then $\varphi(q)=\left(1, g_{1}(q), \ldots, g_{n}(q)\right)$.

The degree d of a nonconstant morphism $Y \xrightarrow{\varphi} \mathbb{P}^{n}$ from a projective curve Y (smooth or not) to projective space is defined to be the number of points of the inverse image $\varphi^{-1} H$ of a generic hyperplane H in \mathbb{P}^{n}.
8.8.18. Lemma. Let Y be a smooth projective curve, and let $Y \xrightarrow{\varphi} \mathbb{P}^{n}$ be the morphism to projective space defined by a set $\left(f_{0}, \ldots, f_{n}\right)$ of rational functions on Y.
(i) If the space spanned by $\left\{f_{0}, \ldots, f_{n}\right\}$ has dimension at least two, then φ isn't a constant morphism to a point.
(ii) If f_{0}, \ldots, f_{n} are linearly independent, the image of Y isn't contained in a hyperplane.

(8.8.19) base points

Let D be a divisor on the smooth projective curve Y, and suppose that $\mathbf{h}^{0} \mathcal{O}(D)=k>1$. A basis $\left(f_{0}, \ldots, f_{k}\right)$ of global sections of $\mathcal{O}(D)$ defines a morphism $Y \rightarrow \mathbb{P}^{k-1}$. This is a common way to construct a morphism to projective space, though one could use any set of rational functions that aren't all zero.

If a global section of $\mathcal{O}(D)$ vanishes at a point p of Y, it is also a global section of $\mathcal{O}(D-p)$. A base point of $\mathcal{O}(D)$ is a point of Y at which every global section of $\mathcal{O}(D)$ vanishes. A base point can be described in terms of the usual exact sequence (8.2.4

$$
0 \rightarrow \mathcal{O}(D-p) \rightarrow \mathcal{O}(D) \rightarrow \epsilon \rightarrow 0
$$

where ϵ is a one-dimensional module whose support is p. The point p is a base point if $\mathbf{h}^{0} \mathcal{O}(D-p)=\mathbf{h}^{0} \mathcal{O}(D)$, or if $\mathbf{h}^{1} \mathcal{O}(D-p)=\mathbf{h}^{1} \mathcal{O}(D)-1$.
8.8.20. Lemma. Let D be a divisor on a smooth projective curve Y with $\mathbf{h}^{0} \mathcal{O}(D)=n>1$, and let $Y \xrightarrow{\varphi} \mathbb{P}^{n}$ be the morphism defined by a basis of global sections.
(i) The image of φ isn't contained in any hyperplane.
(ii) If $\mathcal{O}(D)$ has no base point, the degree of φ is equal to degree of D. If there are base points, the degree is lower.
8.8.21. Proposition. Let K be a canonical divisor on a smooth projective curve Y of genus $g>0$.
(i) $\mathcal{O}(K)$ has no base point.
(ii) Every point p of Y is a base point of $\mathcal{O}(K+p)$.
proof. (i) Let p be a point of Y. We apply Riemann-Roch to the exact sequence

$$
0 \rightarrow \mathcal{O}(K-p) \rightarrow \mathcal{O}(K) \rightarrow \epsilon \rightarrow 0
$$

The Serre duals of $\mathcal{O}(K)$ and $\mathcal{O}(K-p)$ are $\mathcal{O}(K)^{S}=\mathcal{O}$ and $\mathcal{O}(K-p)^{S}=\mathcal{O}(p)$, respectively. They form an exact sequence

$$
0 \rightarrow \mathcal{O} \rightarrow \mathcal{O}(p) \rightarrow \epsilon^{\prime} \rightarrow 0
$$

Because Y has positive genus, there is no rational function on Y with just one simple pole. So $\mathbf{h}^{0} \mathcal{O}=$ $\mathbf{h}^{0} \mathcal{O}(p)=1$. Riemann-Roch tells us that $\mathbf{h}^{1} \mathcal{O}(K-p)=\mathbf{h}^{1} \mathcal{O}(K)=1$. The cohomology sequence

$$
0 \rightarrow H^{0}(\mathcal{O}(K-p)) \rightarrow H^{0}(\mathcal{O}(K)) \rightarrow[1] \rightarrow H^{1}(\mathcal{O}(K-p)) \rightarrow H^{1}(\mathcal{O}(K)) \rightarrow 0
$$

shows that $\mathbf{h}^{0} \mathcal{O}(K-p)=\mathbf{h}^{0} \mathcal{O}(K)-1$. So p is not a base point.
(ii) Here, the relevant sequence is

$$
0 \rightarrow \mathcal{O}(K) \rightarrow \mathcal{O}(K+p) \rightarrow \epsilon^{\prime \prime} \rightarrow 0
$$

The Serre dual of $\mathcal{O}(K+p)$ is $\mathcal{O}(-p)$, which has no global section. Therefore $\mathbf{h}^{1} \mathcal{O}(K+p)=0$, while $\mathbf{h}^{1} \mathcal{O}(K)=\mathbf{h}^{0} \mathcal{O}=1$. The cohomology sequence

$$
0 \rightarrow \mathbf{h}^{0} \mathcal{O}(K) \rightarrow \mathbf{h}^{0} \mathcal{O}(K+p) \rightarrow[1] \rightarrow \mathbf{h}^{1} \mathcal{O}(K) \rightarrow \mathbf{h}^{1} \mathcal{O}(K+p) \rightarrow 0
$$

shows that $H^{0}(\mathcal{O}(K+p))=H^{0}(\mathcal{O}(K))$. So p is a base point of $\mathcal{O}(K+p)$.

hyperelliptic curves

A hyperelliptic curve Y is a smooth projective curve of genus $g \geq 2$ that can be represented as a branched double covering of the projective line - such that there exists a morphism $Y \xrightarrow{\pi} X=\mathbb{P}^{1}$ of degree two. The term 'hyperelliptic' comes from the fact that every elliptic curve can be represented (not uniquely) as a double cover of \mathbb{P}^{1}. The global sections of $\mathcal{O}(2 p)$, where p can be any point of an elliptic curve, define a map to \mathbb{P}^{1} of degree 2.

The topological Euler characteristic of a hyperelliptic curve Y can be computed in terms of the double covering $Y \rightarrow X$, which will be branched at a finite set, say of n points, of Y. Since π has degree two, the ramification index at a branch point will be 2 . The Euler characteristic is therefore $e(Y)=2 e(X)-n=4-n$. Since we know that $e(Y)=2-2 g$, the number of branch points is $n=2 g+2$. When $g=3, n=8$.

It would take some experimentation to guess that the next remarkable theorem might be true, and some time to find a proof.
8.8.23. Theorem. Let Y be a hyperelliptic curve, let $Y \xrightarrow{\pi} X=\mathbb{P}^{1}$ be a branched covering of degree 2 .

The morphism $Y \xrightarrow{\psi} \mathbb{P}^{g-1}$ defined by the global sections of $\Omega_{Y}=\mathcal{O}(K)$ factors through π. There is a unique morphism $X \xrightarrow{u} \mathbb{P}^{g-1}$ such that ψ is the composed map $Y \xrightarrow{\pi} X \xrightarrow{u} \mathbb{P}^{g-1}$:

proof. Let x be an affine coordinate in X, so that the standard affine open subset \mathbb{U}^{0} of X is $\operatorname{Spec} \mathbb{C}[x]$. We suppose that the point of X at infinity isn't a branch point of the covering π. The open set $Y^{0}=\pi^{-1} \mathbb{U}^{0}$ will be described by an equation of the form $y^{2}=f(x)$, where f is a polynomial of degree $n=2 g+2$ with simple roots, and there will be two points of Y above the point of X at infinity, that are interchanged by the automorphism $y \rightarrow-y$. Let's call those points q_{1} and q_{2}.

We start with the differential $d x$, which we view as a rational differential on Y. Then $2 y d y=f^{\prime}(x) d x$. Since f has simple roots, f^{\prime} doesn't vanish at any of those roots. Solving for $d x$, we see that it has simple
oned-
blcover
zeros on Y above the roots of f, which are the points at which $y=0$. We also have a regular function on Y^{0} with simple roots at those points, namely the function y. Therefore the differential $\omega=\frac{d x}{y}$ is regular and nowhere zero on Y^{0}. Because the degree of a differential on Y is $2 g-2$, ω has a total of $2 g-2$ zeros at infinity. By symmetry, ω has zeros of order $g-1$ at the points q_{1} and q_{2}. Then $K=(g-1) q_{1}+(g-1) q_{2}$ is a canonical divisor on Y.

Since K has zeros of order $g-1$ at infinity, the rational functions $1, x, x^{2}, \ldots, x^{g-1}$, viewed as functions on Y, are among the global sections of $\mathcal{O}_{Y}(K)$. They are independent, and there are g of them. Since $\mathbf{h}^{0} \mathcal{O}_{Y}(K)=g$, they form a basis of $H^{0}\left(\mathcal{O}_{Y}(K)\right)$. The map $Y \rightarrow \mathbb{P}^{g-1}$ defined by the global sections of $\mathcal{O}_{Y}(K)$ evaluates these powers of x, so it factors through X.
canonembtwo
8.8.24. Corollary. A curve of genus $g \geq 2$ can be presented as a branched covering of \mathbb{P}^{1} of degree 2 in at most one way.

(8.8.25) canonical embedding

Let Y be a smooth projective curve of genus $g \geq 2$, and let K be a canonical divisor on Y. Its global sections define a morphism $Y \rightarrow \mathbb{P}^{g-1}$. This morphism is called the canonical map. We denote the canonical map by ψ. Since $\mathcal{O}(K)$ has no base point, the degree of ψ is the degree $2 g-2$ of the canonical divisor. Theorem 8.8.23 shows that, when Y is hyperelliptic, the image of the canonical map is isomorphic to \mathbb{P}^{1}.
8.8.26. Theorem. Let Y be a smooth projective curve of genus g at least two. If Y isn't hyperelliptic, the canonical map embeds Y as a closed subvariety of projective space \mathbb{P}^{g-1}.
proof. We show first that, if the canonical map $Y \xrightarrow{\psi} \mathbb{P}^{g-1}$ isn't injective, then Y is hyperelliptic.
Let p and q be distinct points of Y with the same image: $\psi(p)=\psi(q)$. We choose an effective canonical divisor K whose support doesn't contain p or q, and we inspect the global sections of $\mathcal{O}(K-p-q)$. Since $\psi(p)=\psi(q)$, any global section of $\mathcal{O}(K)$ that vanishes at p vanishes at q too. Therefore $\mathcal{O}(K-p)$ and $\mathcal{O}(K-p-q)$ have the same global sections, and so q is a base point of $\mathcal{O}(K-p)$. We've computed the cohomology of $\mathcal{O}(K-p)$ before: $\mathbf{h}^{0} \mathcal{O}(K-p)=g-1$ and $\mathbf{h}^{1} \mathcal{O}(K-p)=1$. Therefore $\mathbf{h}^{0} \mathcal{O}(K-p-q)=g-1$ and $\mathbf{h}^{1} \mathcal{O}(K-p-q)=2$. The Serre dual of $\mathcal{O}(K-p-q)$ is $\mathcal{O}(p+q)$, so by Riemann-Roch, $\mathbf{h}^{0} \mathcal{O}(p+q)=2$. For any divisor D of degree one on a curve of positive genus, $\mathbf{h}^{0}(\mathcal{O}(D)) \leq 1$. So $\mathcal{O}(p+q)$ has no base point, and the global sections of $\mathcal{O}(p+q)$ define a morphism $Y \rightarrow \mathbb{P}^{1}$ of degree 2 . This shows that Y is hyperelliptic.

If Y isn't hyperelliptic, the canonical map is injective, so Y is mapped bijectively to its image Y^{\prime} in \mathbb{P}^{g-1}. This almost proves the theorem. But: can Y^{\prime} have a cusp? We must show that the bijective map $Y \xrightarrow{\psi} Y^{\prime}$ is an isomorphism. We go over the computation made above for a pair of points p, q, this time taking $q=p$. The computation is the same. Since Y isn't hyperelliptic, p isn't a base point of $\mathcal{O}_{Y}(K-p)$. Therefore $\mathbf{h}^{0} \mathcal{O}_{Y}(K-2 p)=\mathbf{h}^{0} \mathcal{O}_{Y}(K-p)-1$. This tells us that there is a global section f of $\mathcal{O}_{Y}(K)$ that has a zero of order exactly 1 at p. When properly interpreted, this fact shows that ψ doesn't collapse any tangent vector at p, and that ψ is an isomorphism. Since we haven't discussed tangent vectors, we prove this directly.

Since ψ is bijective, the function fields of Y and its image Y^{\prime} are equal, and Y is the normalization of Y^{\prime}. Moreover, ψ is an isomorphism except on a finite set. We work locally at a point p^{\prime} of Y^{\prime}, and we denote the unique point of Y that maps to Y^{\prime} by p. When we restrict the global section f of $\mathcal{O}_{Y}(K)$ found above to the image Y^{\prime}, we obtain an element of the maximal ideal $\mathfrak{m}_{p^{\prime}}$ of $\mathcal{O}_{Y^{\prime}}$ at p^{\prime}, that we denote by x. On Y, this element has a zero of order one at p, and therefore it is a local generator for the maximal ideal \mathfrak{m}_{p} of \mathcal{O}_{Y}. Let R^{\prime} and R denote the local rings at p. We apply the Local Nakayama Lemma 5.1.1, regarding R as a finite R^{\prime}-module. We substitute $V=R$ and $M=\mathfrak{m}_{p^{\prime}}^{\prime}$ into the statement of that lemma. Since x is in $\mathfrak{m}_{p^{\prime}}, V / M V=R / \mathfrak{m}_{p^{\prime}} R$ is the residue field $k(p)$ of R, which is spanned, as R^{\prime}-module, by the element 1 . The Local Nakayama Lemma tells us that R is spanned, as R^{\prime}-module, by 1 , and this shows that $R=R^{\prime}$.
lowgenus (8.8.27) some curves of low genus

curves of genus 2

When Y is a smooth projective curve of genus 2 . The canonical map ψ is a map from Y to \mathbb{P}^{1}, of degree $2 g-2=2$. Every smooth projective curve of genus 2 is hyperelliptic.

curves of genus 3

Let Y be a smooth projective curve of genus 3 . The canonical map ψ is a morphism of degree 4 from Y to \mathbb{P}^{2}. If Y isn't hyperelliptic, its image will be a plane curve of degree 4 that is isomorphic to Y. The genus of a smooth projective curve of degree 4 is $\binom{3}{2}=3$ 1.8.25, which checks.

There is another way to arrive at the same result. We go through it because the method can be used for curves of genus 4 or 5 . Let K be a canonical divisor. Riemann-Roch determines the dimension of the space of global sections of $\mathcal{O}(d K)$. When $d>1$,

$$
\mathbf{h}^{1} \mathcal{O}(d K)=\mathbf{h}^{0} \mathcal{O}((1-d) K)=0
$$

Then

$$
\begin{equation*}
\mathbf{h}^{0} \mathcal{O}(d K)=\operatorname{deg}(d K)+1-g=d(2 g-2)-(g-1)=(2 d-1)(g-1) \tag{8.8.28}
\end{equation*}
$$

OdK
In our case $g=3$, so when $d>1, \mathbf{h}^{0} \mathcal{O}(d K)=4 d-2$.
The number of monomials of degree d in $n+1$ variables x_{0}, \ldots, x_{n} is $\binom{n+d}{d}$. When $n=2$, that number is $\binom{d+2}{2}$.

We assemble this information into a table:

d	0	1	2	3	4	5
monos deg d	1	3	6	10	15	21
$\mathbf{h}^{0} \mathcal{O}(d K)$	1	3	6	10	14	18

Now let $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)$ be a basis of $H^{0} \mathcal{O}(K)$. The products $\alpha_{i_{1}} \cdots \alpha_{i_{d}}$ of length d of elements of the basis are global sections of $\mathcal{O}(d K)$. It is a fact that they generate the space $H^{0} \mathcal{O}(d K)$ of global sections. However, this isn't very important here, and the proof isn't easy. So we omit it. What we see from the table is that there is at least one nonzero homogeneous polynomial $f\left(x_{0}, \ldots, x_{2}\right)$ of degree 4 , such that $f(\alpha)=0$. This means that the curve Y lies in the zero locus of that polynomial, which is a quartic curve. The table also shows that Y isn't in the zero locus of any curve of lower degree. So Y is a quartic curve, and f is, up to scalar factor, the only homogeneous quartic that vanishes on Y. The monomials of degree 4 in α span a space of dimension 14, and therefore they span $H^{0} \mathcal{O}(4 K)$. This is one case of the fact that was stated above.

The table also shows that there are (at least) three independent polynomials of degree 5 that vanish on Y. They are $x_{0} f, x_{1} f, x_{2} f$.

curves of genus 4

When Y is a smooth projective curve of genus 4 that isn't hyperelliptic, the canonical map embeds Y as a curve of degree 6 in \mathbb{P}^{3}. Let's leave the analysis of this case as an exercise.

curves of genus 5

With genus 5 , things become more complicated.
Let Y be a smooth projective curves of genus 5 that isn't hyperelliptic. The canonical map embeds Y as a curve of degree 8 in \mathbb{P}^{4}. We make a computation analogous to what was done for genus 3 . For $d>1$, the dimension of the space of global sections of $\mathcal{O}(d K)$ is

$$
\mathbf{h}^{0} \mathcal{O}(d K)=(2 d-1)(g-1)=8 d-4
$$

and the number of monomials of degree d in 5 variables is $\binom{d+4}{4}$.
We form a table:

d	0	1	2	3
$\operatorname{monos} \operatorname{deg} d$	1	5	15	35
$\mathbf{h}^{0} \mathcal{O}(d K)$	1	5	12	20

This table predicts that there are at least three independent homogeneous quadratic polynomials q_{1}, q_{2}, q_{3} that vanish on the curve Y. Let Q_{i} be the quadric $\left\{q_{i}=0\right\}$. Then Y will be contained in the zero locus $Z=Q_{1} \cap Q_{2} \cap Q_{3}$.

Bézout's Theorem has a generalization that applies here. Let Q_{1}, Q_{2}, Q_{3} be hypersurfaces in \mathbb{P}^{4}, of degrees r_{1}, r_{2}, r_{3}, respectively. Let $Z_{1},,,,, Z_{k}$ be the irreducible components of the zero locus $Z:\left\{q_{1}=q_{2}=q_{3}=\right.$ $0\}$. If Z has dimension 1 , then the sum $\operatorname{deg} Z_{1}+\cdots+\operatorname{deg} Z_{k}$ is at most equal to the product $r_{1} r_{2} r_{3}$, and is equal to that product when counted with a suitable multiplicity. We omit the proof, which is similar to the proof of the usual Bézout's Theorem.

When Q_{i} are the quadrics $\left\{q_{i}=0\right\}, i=1,2,3$, the intersection $Z=Q_{1} \cap Q_{2} \cap Q_{3}$ will contain Y. If Z has dimension one, the generalized Bézout's Theorem shows that its degree is 8 , the same as the degree of the embedded curve Y. In this case, $Y=Z$, and Y is called a complete intersection of the three quadrics. However, it is possible that the intersection Z has dimension 2.

A curve Y that can be represented as a three-sheeted covering of \mathbb{P}^{1} is called a trigonal curve (another peculiar term).

8.8.29. Proposition. A trigonal curve of genus 5 is not isomorphic to an intersection of three quadrics in \mathbb{P}^{4}.

proof. A trigonal curve Y has a morphism of degree 3 to the projective line: $Y \rightarrow X=\mathbb{P}^{1}$. Let's suppose that the point at infinity of X isn't a branch point. Let the fibre over the point at infinity be $\left\{p_{1}, p_{2}, p_{3}\right\}$. With coordinates $\left(x_{0}, x_{1}\right)$ on X, the rational function $u=x_{1} / x_{0}$ on X has poles $D=p_{1}+p_{2}+p_{3}$ on Y, so $H^{0}(Y, \mathcal{O}(D))$ contains 1 and u, and therefore $\mathbf{h}^{0} \mathcal{O}(D) \geq 2$. By Riemann-Roch, $\chi \mathcal{O}(D)=3+1-g=-1$. Therefore $\mathbf{h}^{1} \mathcal{O}(D)=\mathbf{h}^{0} \mathcal{O}(K-D) \geq 3$. There are (at least) three independent global sections of $\mathcal{O}(K)$ that vanish on D. Let them be $\alpha_{0}, \alpha_{1}, \alpha_{2}$. We extend this set to a basis ($\alpha_{0}, \ldots, \alpha_{4}$) of $\mathcal{O}(K)$. When Y is embedded into \mathbb{P}^{4} by that basis, the three planes $\left\{x_{i}=0\right\}, i=0,1,2$ contain the points p_{1}, p_{2}, p_{3}. The intersection of those planes is a line L that contains the three points.

We go back to the three quadrics Q_{1}, Q_{2}, Q_{3} that contain Y. Since they contain Y, they contain D. A quadric Q intersects the line L in at most two points unless it contains L. Therefore each of the quadrics Q_{i} contains L, and then $Q_{1} \cap Q_{2} \cap Q_{3}$ contains L as well as Y. Suppose that $Z=Q_{1} \cap Q_{2} \cap Q_{3}$ has dimension 1. Then, according to Bézout, the sum $1+8$ of the degrees of L and Y, must be at most $2 \cdot 2 \cdot 2=8$. Nope: $Z=Q_{1} \cap Q_{2} \cap Q_{3}$ cannot have dimension 1 .

In fact, this is the only exceptional case. A curve of genus 5 is either hyperelliptic, or trigonal, or else it is a complete intersection of three quadrics in \mathbb{P}^{4}. But we omit the proof. We have done enough.

8.9 Exercises

8.9.1. Let D be a divisor on a smooth projective curve Y, and suppose that $\mathbf{h}^{0} \mathcal{O}(D)=k>1$. When Y is mapped to projective space using a basis for $H^{0}\left(\mathcal{O}_{Y}(D)\right)$, what is the inverse image in Y of a hyperplane?
8.9.2. (i) Prove that every projective curve of degree 2 is a plane conic.
(ii) Classify projective curves of degree 3 .
8.9.3. Let \mathcal{M} and \mathcal{N} be \mathcal{O}-modules. Prove that $\mathcal{O}(\mathcal{M}, \mathcal{N})=\underline{\operatorname{Hom}}_{\mathcal{O}}(\mathcal{M}, \mathcal{N})$ is an \mathcal{O}-module.
8.9.4. Let D be a divisor of degree d on a smooth projective curve Y, such that $\mathbf{h}^{0} \mathcal{O}(D)=k>0$.
(i) Prove that if p is a generic point of Y, then $\mathbf{h}^{0} \mathcal{O}(D-p)=k-1$.
(ii) Prove that $\mathbf{h}^{0} \mathcal{O}(D) \leq d+1$, and that if $\mathbf{h}^{0} \mathcal{O}(D)=d+1$, then X is isomorphic to \mathbb{P}^{1}.
8.9.5. Prove that every nonempty open subset of a smooth affine curve is affine.
8.9.6. Let D be a divisor of degree d on a smooth projective curve Y. Show that $\mathbf{h}^{0}(\mathcal{O}(D)) \leq d+1$, and if $\mathbf{h}^{0}(\mathcal{O}(D))=d+1$, then Y is a smooth rational curve, isomorphic to \mathbb{P}^{1}.
8.9.7. Prove that a projective curve Y such that $\mathbf{h}^{1}\left(\mathcal{O}_{Y}\right)=0$, smooth or not, is isomorphic to the projective line \mathbb{P}^{1}.
8.9.8. Use version 1 of the Riemann-Roch Theorem to compute $\mathbf{h}^{q}(\mathcal{O}(r p))$ for a smooth projective curve of genus 1
8.9.9. Let C be a plane projective curve of degree d, with δ nodes and κ cusps. Determine the genus of the normalization $C^{\#}$ of C.
8.9.10. Let Y be a smooth projective curve of genus 2. Determine the possible dimensions of $H^{q}(Y, \mathcal{O}(D))$, when D is an effective divisor of degree n.
8.9.11. Let Y be a curve of genus 2 , and let p be a point of Y. Suppose that $\mathbf{h}^{1} \mathcal{O}(2 p)=0$. Show that there is a basis of global sections of $\mathcal{O}(4 p)$ of the form $(1, x, y)$, where x and y have poles of orders 3 and 4 at p. Prove that this basis defines a morphism $Y \rightarrow \mathbb{P}^{2}$ whose image is a singular curve Y^{\prime} of degree 4 .
8.9.12. The projective line $X=\mathbb{P}^{1}$ with coordinates x_{0}, x_{1} is covered by the two standard affine open sets $U^{0}=\operatorname{Spec} R_{0}$ and $U^{1}=\operatorname{Spec} R_{1}, R_{0}=\mathbb{C}[u]$ with $u=x_{1} / x_{0}$, and $R_{1}=\mathbb{C}[v]$ with $v=x_{0} / x_{1}=u^{-1}$. The intersection U^{01} is the spectrum of the Laurent polynomial ring $R_{01}=\mathbb{C}[u, v]=\mathbb{C}\left[u, u^{-1}\right]$. The units of R_{01} are the monomials $c u^{k}$, where k can be any integer.
(i) Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be an invertible R_{01}-matrix. Prove that there is an invertible R_{0}-matrix Q, and there is an invertible R_{1}-matrix P, such that $Q^{-1} A P$ is diagonal.
(ii) Use part (i) to prove the Birkhoff-Grothendieck Theorem for torsion-free \mathcal{O}_{X}-modules of rank 2 .
8.9.13. On \mathbb{P}^{1}, when is $\mathcal{O}(m) \oplus \mathcal{O}(n)$ isomorphic to $\mathcal{O}(r) \oplus \mathcal{O}(s)$?
8.9.14. Let Y be an elliptic curve.
(i) Prove that, with the law of composition \oplus defined in $\mathbf{8 . 8 . 1 5}, Y$ is an abelian group.
(ii) Let p be a point of Y. Describe the sum $p \oplus p \cdots \oplus p$ of k copies of p.
(iii) Determine the number of points of order 2 on Y.
(iv) Suppose that Y is a plane curve. Show that, if origin is a flex point, the other the flexes of Y are the points of order 3, and determine the number of points of Y of order 3.
8.9.15. How many real flex points can a real cubic curve have?
8.9.16. Prove that a finite \mathcal{O}-module on a smooth curve is a direct sum of a torsion module and a locally free module.
8.9.17. Let A be a finite-type domain.
(i) Let $B=A[x]$ be the ring of polynomials in one variable with coefficients in A. Deascribe the module Ω_{B} in terms of Ω_{A}.
(ii) Let s be a nonzero element of A and let A^{\prime} be the localization $A[x] /(s x-1)$. Describe the module $\Omega_{A^{\prime}}$.
chapeightex
degtwoisconic
xhomco-
herent
generic-
notbp
openaffine
xsmrat
xHonezero
xcohgenusone
xnode-
sandcusps
xgenustwo
xgenustwotwo
xproveBG
xOmplu-
sOn
xellgrplaw
xrealflex
xmod-
dirsum
xde-
scomega
xprove-
trace
xdegfive
bptfre
8.9.18. Let $Y=\operatorname{Spec} B$ a smooth affine curve, and let y be an element of B. At what points does $d y$ generate Ω_{Y} locally?
8.9.19. Let $Y \xrightarrow{\pi} X$ be a branched covering of smooth affine curves, $X=\operatorname{Spec} A$ and $Y=\operatorname{Spec} B$, and let $B \xrightarrow{\delta}{ }_{A}\left(B, \Omega_{A}\right)$ be the composition of the derivation $B \xrightarrow{d} \Omega_{B}$ with the trace map $\Omega_{B} \approx_{B}\left(B, \Omega_{B}\right) \xrightarrow{\tau \otimes}{ }_{A}$ $\left(B, \Omega_{A}\right)$. Prove that δ is a derivation from B to the B-module ${ }_{A}\left(B, \Omega_{A}\right)$.
8.9.20. Let $Y \rightarrow X$ be a branched covering, and let p be a point of X whose inverse image in Y consists of one point q. Prove a local analytic version of the main theorem on the trace map for differentials by computation.
8.9.21. (i) Let Y be plane curve of degree 5 with a node. Show that the projection of the plane to $X=\mathbb{P}^{1}$ with the double point as center of projection represents Y as a trigonal curve of genus 5 .
(ii) The canonical embedding of a trigonal genus 5 curve Y will have three colinear points $D=p_{1}+p_{2}+p_{3}$, Show that $\mathbf{h}^{0} \mathcal{O}(K-D)=3$ and that $\mathcal{O}(K-D)$ has no base point. Show that a basis of $H^{0} \mathcal{O}(K-D)$ maps Y to a curve of degree 5 in \mathbb{P}^{2} with a double point.
8.9.22. the basepoint-free trick. Let D be an effective divisor on a smooth projective curve Y, and suppose that $\mathcal{O}(D)$ has no base point, and that $\mathbf{h}^{1} \mathcal{O}(D)=0$. Choose global sections α, β of $\mathcal{O}(D)$ with no common zeros. Prove the following:
(i) The sections α, β generate the \mathcal{O}-module $\mathcal{O}(D)$, and there is an exact sequence

$$
0 \rightarrow \mathcal{O}(-D) \xrightarrow{(-\beta, \alpha)} \mathcal{O}^{2} \xrightarrow{(\alpha, \beta)^{t}} \mathcal{O}(D) \rightarrow 0
$$

(ii) The tensor product of this sequence with $\mathcal{O}(k D)$ is an exact sequence

$$
\left.0 \rightarrow \mathcal{O}((k-1) D) \xrightarrow{(-\beta, \alpha)} \mathcal{O}(k D)^{2} \xrightarrow{(\alpha, \beta}\right)^{t} \mathcal{O}((k+1) D) \rightarrow 0
$$

(iii) If $H^{1} \mathcal{O}((k-1) D)=0$, every global section of $\mathcal{O}((k+1) D)$ can be obtained as a combination $\alpha u+\beta v$ with $u, v \in H^{0} \mathcal{O}(k D)$
8.9.23. ???kill this??? Let C and D be conics that meet in four distinct points in the projective plane \mathbb{P}, and let D^{*} be the dual conic of tangent lines to D. Let E be the locus of points $\left(p, \ell^{*}\right)$ in $\mathbb{P} \times \mathbb{P}^{*}$ such that $\ell^{*} \in D^{*}$ and $p \in \ell$.
(i) Prove that E is a smooth elliptic curve.
(ii) Show that, for most $p \in C$, there will be two tangent lines ℓ to D such that $\left(p, \ell^{*}\right)$ is in E, and that, for most $\ell^{*} \in D^{*}$, there will be two points p such that $\left(p, \ell^{*}\right)$ is in E. Identify the exceptional points.
(iii) If $\left(p_{1}, \ell_{1}\right)$ is given, let p_{2} denote the second intersection of C with ℓ_{1}, and let ℓ_{2} denote the second tangent to D that contains p_{2}. Define a map, where possible, by sending $\left(p_{1}, \ell_{1}^{*}\right) \rightarrow\left(p_{2}, \ell_{2}^{*}\right)$. Show that this map extends to a morphism $E \xrightarrow{\gamma} E$ on E, and that this morphism is a translation $p \rightarrow p \oplus a$, for some point a of E.
(iv) It might happen that for some point p of C and some $n, \gamma^{n}(p)=p$. Show that if this occurs, the same is true for every point of C. For example, if $\gamma^{3}(p)=p$, the lines $\ell_{1}, \ell_{2}, \ell_{3}$ will form a triangle whose vertices are on C, and this will be true for all points p of C. This is Poncelet's Theorem.
8.9.24. Let x_{0}, x_{1} and y_{0}, y_{1} be the coordinates in the two factors of the product $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$.A homogeneous fraction of bidegree m, n on X is a fraction g / h of bihomogeneous polynomials in x, y such that, if the bidegree of g is i, j an the bidegree of h is k, ℓ, then $m=i-k$ and $n=j-\ell$. Rational functions on X can be represented as bihomogeneous fractions of bidegree 0,0 . A curve C in X of bidegree m, n is the zero locus of a bihomogeneous polynomial $f(x, y)$ of bidegree m, n.

Let $\mathcal{O}_{X}(m, n)$ denote the \mathcal{O}-module whose sections on an open subset W of X are the rational functions f on X such that $f x_{0}^{m} y_{0}^{n}$ is a regular function on W. We say that such a function f has poles of orders $\leq m$ on V and $\leq n$ on H, where H is the 'horizontal' line $y_{0}=0$, and V is the 'vertical' line $x_{0}=0$.
(i) Determine the cohomology of $\mathcal{O}_{X}(m, n)$.
(ii) Determine the genus of a smooth curve of bidegree m, n.
8.9.25. Let Y be a smooth projective curve Y of genus g, and let d be an integer. Prove that
(i) If $d<g-1$, then $\mathbf{h}^{1} \mathcal{O}(D)>0$ for every divisor D of degree d on Y.
(ii) If $d \leq 2 g-2$, there exist divisors D of degree d on Y such that $\mathbf{h}^{1} \mathcal{O}(D)>0$.
(iii) If $d \geq g-1$, there exist divisors D of degree d on Y such that $\mathbf{h}^{1} \mathcal{O}(D)=0$.
(iv) If $d>2 g-2$, then $\mathbf{h}^{1} \mathcal{O}(D)=0$ for every divisor D of degree d on Y.
8.9.26. Let $Y \xrightarrow{\pi} X$ be a branched covering of smooth curves. Use the trace from \mathcal{O}_{Y} to \mathcal{O}_{X} to prove that its direct image is isomorphic to the direct sum $\mathcal{O}_{X} \oplus \mathcal{M}$ for some locally free \mathcal{O}_{X}-module \mathcal{M}.
8.9.27. Let Y be a smooth projective curve of genus $g>1$, and let D be an effective divisor of degree $g+1$ decomposeOY on Y, such that $\mathbf{h}^{1} \mathcal{O}(D)=0$ and $\mathbf{h}^{0} \mathcal{O}(D)=2$. Let $Y \xrightarrow{\pi} X$ be the morphism to the projective line X defined by a basis $(1, f)$ of $H^{0} \mathcal{O}(D)$. The \mathcal{O}_{X}-module \mathcal{O}_{Y} is isomorphic to a direct sum $\mathcal{O}_{X} \oplus \mathcal{M}$, where \mathcal{M} is a locally free \mathcal{O}_{X}-module of rank g (Exercise ??).
(i) Let p be the point at infinity of X. Prove that $\mathcal{O}_{Y}(D)$ is isomorphic to $\mathcal{O}_{Y} \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}(p)$.
(ii) Determine the dimensions of cohomology of \mathcal{M} and of $\mathcal{M}(p)$.
(iii) According to the Birkhoff-Grothendieck Theorem, \mathcal{M} is isomorphic to a sum of twisting modules $\sum_{i=1}^{g} \mathcal{O}_{X}\left(r_{i}\right)$. Determine the twists r_{i}.
8.9.28. (a) Let C be a plane curve of degree d with a node as its only singularity. Determine the genus of its normalization $C^{\#}$. Do the same for a curve with a cusp.
(b) Let $f\left(x_{0}, x_{1}, x_{2}\right)$ be a homogeneous polynomial of degree d. Suppose that, when $f(x, y, 1)$ is written as a sum of its homogeneous parts $f_{0}+f_{1}+f_{2}+\cdots, f_{0}=f_{1}=f_{2}=0$, and that f_{3} has three distinct zeros, so that the plane curve $C:\{f=0\}$ has an ordinary triple point at $p=(0,0,1)$, and suppose that there are no other singularities. Determine the genus of the normalization $C^{\#}$.
(c) A point p of curve C in \mathbb{P}^{3} may be a triple point, in which three smooth points p_{1}, p_{3}, p_{3} of the normalization $C^{\#}$ lie over p. \#\#\#\#etcetc\#\#\#\#\#
8.9.29. Use the results of Exercise 8.9 .28 as an aid to factor the polynomial $x^{3} y^{2}-x^{3} z^{2}+y^{3} z^{2}$.
2. \#\# There is an error in the statement of this problem. See web page.\#\#

Let f and g be homogeneous polynomials in $\mathbb{C}\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$, of degrees d and e respectively, and with no common factor. Let X be the locus of common zeros of f and g in the projective space \mathbb{P}^{3} with coordinates x, and let i be the inclusion $X \rightarrow \mathbb{P}$.
(a) Construct an exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}}(-d-e) \rightarrow \mathcal{O}_{\mathbb{P}}(-d) \oplus \mathcal{O}_{\mathbb{P}}(-e) \rightarrow \mathcal{O}_{\mathbb{P}} \rightarrow i_{*} \mathcal{O}_{X} \rightarrow 0
$$

(b) Prove that X is connected, i.e., that it is not the union of two proper disjoint Zariski-closed subsets of \mathbb{P}.
(c) Determine the cohomology of \mathcal{O}_{X}.

1. Let

$$
N=\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22} \\
y_{31} & y_{32}
\end{array}
$$

be a 3×2 matrix whose entries are homogeneous polynomials of degree d in $R=\mathbb{C}\left[x_{0}, x_{1}, x_{2}\right]$, and let $M=\left(m_{1}, m_{2}, m_{3}\right)$ be the 1×3 matrix of minors

$$
m_{1}=y_{21} y_{32}-y_{22} y_{31}, \quad m_{2}=-y_{11} y_{32}+y_{12} y_{31}, \quad m_{3}=y_{11} y_{22}-y_{12} y_{21} .
$$

Let I be the ideal of R generated by the minors m_{1}, m_{2}, m_{3}.
(a) Prove that if I is the unit ideal of R, the sequence

$$
0 @ \lll R @<M \ll R^{3} @<N \ll R^{2} @ \lll 0
$$

is exact.
(We've written the arrows from right to left here so that matrix multiplication by M on R^{3} and N on R^{2} are defined, when elements of R^{3} and R^{2} are represented as column vectors.)
(b) Let $X=\mathbb{P}^{2}$, and suppose that the locus Y of zeros of I in X has dimension zero. Prove that the sequence

$$
0 @ \lll R / I @ \lll R @<M \ll R^{3} @<N \ll R^{2} @ \lll 0
$$

is exact.
(c) The sequence in (b) corresponds to the following sequence, in which the terms R are replaced by twisting modules:

$$
0 @ \lll \mathcal{O}_{Y} @ \lll \mathcal{O}_{X} @<M \ll \mathcal{O}_{X}(-2 d)^{3} @<N \ll \mathcal{O}_{X}(-3 d)^{2} @ \lll 0
$$

Use this sequence to determine $h^{0}\left(Y, \mathcal{O}_{Y}\right)$. Check your work in some example in which $y_{i j}$ are homogeneous linear polynomials.
2. There are 10 monomials of degree 3 in x_{0}, x_{1}, x_{2}, so the homogeneous polynomials of degree 3 form a vector space of dimension 10 . Let Z be the corresponding projective space of dimension 9 , whose points are classes of nonzero homogeneous cubic polynomials up to scalar factor. Prove that the subset of Z of classes of reducible polynomials is (Zariski) closed.
2. With coordinates x_{0}, x_{1}, x_{2} in the plane \mathbb{P} and s_{0}, s_{1}, s_{2} in the dual plane \mathbb{P}^{*}, let C be a smooth projective plane curve $f=0$ in \mathbb{P}, where f is an irreducible homogeneous polynomial in x. Let Γ be the locus of pairs (x, s) of $\mathbb{P} \times \mathbb{P}^{*}$ such that $x \in C$ and the line $s_{0} x_{0}+s_{1} x_{1}+s_{2} x_{2}=0$ is the tangent line to C at x. Prove that Γ is a (Zariski) closed subset of the product $\mathbb{P} \times \mathbb{P}^{*}$.

GLOSSARY

algebra: a ring that contains the complex numbers ??).
analytic function: A function that can be represented by a convergent power series (1.4.18)
annihilator: The annihilator of an element m of an R-module is the ideal of elements a of R such that $a m=0$ 6.7).
arithmetic genus: The arithmetic genus of a smooth projective curve is $p_{a}=1-\mathbf{C}^{1} \mathcal{O}$ 7.6.2.
basis for a topology: A basis \mathcal{B} for a topology is a set of open subsets such that every open subset if a union of members of \mathcal{B} 2.7.2.
bitangent: a line that is tangent to a curve at two points $\mathbf{1 . 8 . 1 7}$.
branch point: a point at which the ramification index of a branched covering is greater than 1 . 8.5.
branched covering: a finite morphism of curves 1.8.15, , 8.5.
canonical: A mathematical construction is called canonical if it is the natural one in the context.
canonical divisor: a divisor K on a smooth projective curve X such that $\mathcal{O}(K)$ is isomorphic to Ω_{X} 8.8.7.).
canonical map: the map fom a curve to projective space defined by the regular differentials 8.8.26.
classical topology: the usual topology $\mathbf{1 . 3 . 1 7}$.
closure: The closure of a subset S of a topological space is the smallest closed subset that contains S.
coarser topology: A topology T^{\prime} on a set X is coarser than another topology T if T^{\prime} contains fewer closed subsets than T.
cohomological functor: A sequence of functors $H^{0}, H^{1}, H^{2}, \ldots$ to vector spaces such that a short exact sequence produces a long cohomology sequence (7.1.4).
cokernel: The cokernel of a homomorphism $M \rightarrow N$ is the quotient $N /$ im M 2.1.17.
commutative diagram: A diagram of maps is commutative if all maps from A to B that can be obtaind by composition of the ones in the diagram are equal (2.1.5).
complement: The complement of a subset S of a set X is the set of elements of X that are not in S.
complex: A complex of vector spaces is a sequence $\cdots \rightarrow V^{n-1} \xrightarrow{d^{n}} V^{n} \rightarrow \cdots$ of vector spaces such that $\operatorname{ker} d^{n} \subset \operatorname{im} d^{n-1} 7.2$.
constructible set: a finite union of locally closed sets 5.3.).
cusp: a certain type of singular point of a curve (1.8).
dimension: The dimension of a variety is the transcendence degree of its field of rational functions, or the length of a maximal chain of closed subvarieties (4.5).
discriminant: a polynomial in the coefficients of a polynomial f that vanishes if and only if f has a double root 1.7 .13 .
divisor: A divisor on a smooth curve is an integer combination $a_{1} q_{1}+\cdots+a_{k} q_{k}$ of points 8.1).
domain: A nonzero ring with no zero divisors.
dual curve: The dual curve of a smooth plane curve is the locus of tangent lines as smooth points $\mathbf{1 . 6 . 3}$.
dual plane: the projective plane whose points correspond to lines in the given plane $(\mathbf{1 . 6 . 1}$.
elliptic curve: a smooth projective curve of genus 1 8.8.12 .
Euler characteristic: The Euler characteristic of an \mathcal{O}-module is the alternating sum of the dimensions of its cohomology 7.7.7.
exact sequence: a sequence $\cdots \rightarrow V^{n-1} \xrightarrow{d^{n-1}} V^{n} \xrightarrow{d^{n}} V^{n+1} \rightarrow \cdots$ is exact if ker $d_{n}=\operatorname{im} d^{n-1}$ 2.1.17). exterior algebra: the graded algebra generated by the elements of a vector space, with the relations $v v=0$ 3.7.2.

Fermat Curve: one of the plane curves $x_{o}^{k}+x_{1}^{k}+x_{2}^{k}=0$.
fibre of a map: The fibre of a map $Y \xrightarrow{\pi} X$ over a point x is the number of points in its inverse image.
finer topology: A topology T^{\prime} on a set X is finer than another topology T if T^{\prime} contains more closed subsets than T.
finite module: a module that can be generated by finitiely many of its elements 2.1 .
finite-type algebra: an algebra that can be generated, as algbera, by finitely many elements 2.1).
generic, general position: not in a special "bad" position 1.8.17).
genus: the genus of a compact two-dimensional manifold is the number of its handles (1.8.22).
Grassmanian: a variety that parametrizes subspaces of a given dimension of a vector space 3.7.
Hessian matrix: the matrix of second partial derivatives 1.4.10.
homogeneous parts: the homogeneous part of degree k of a polynomial is the sum of terms of degree k 1.3.1).
hyperelliptic curve: a curve of genus at least two, that can be represented as a double cover of \mathbb{P}^{1} 8.8.22.
hypersurface: a subvariety of projective space that is defined by one equation 2.3.3).
increasing sequence: a sequence S_{n} of sets is increasing if $S_{n} \subset S_{n+1}$ for all n, and it is strictly increasing if if $S_{n}<S_{n+1}$ for all n 2.1.12.
integral morphism: a morphism $Y \rightarrow X$ such that \mathcal{O}_{Y} becomes a finite \mathcal{O}_{X}-module (4.2.4).
invertible module: a locally free module of rank 1 (8.1.16).
irreducible polynomial: a polynomial of positive degree that isn't the product of two polynomials of positive degree.
irreducible space: a topological space that isn't the union of two proper closed subsets 2.2 .11 .
isolated point: a point p of topological space such that both p and its complement are closed $1 \mathbf{1 . 3 . 1 8}$.
line at infinity: The line at infinity in the projective plane \mathbb{P}^{2} is the locus $\left\{x_{0}=0\right\}$ 1.2.7 .
local property: a property that is true in an open neighborhood of any point 5.1.3).
localization: the process of adjoining inverses $\mathbf{2 . 1 . 2 3}$.
locally closed set: the intersection of a closed set and an open set 5.3 .
member: When a set is made up of subsets of another set, we call an element of that set a member to avoid confusion 2.1.12).
module homomorphism: a homomorphism from an R-module M to an R^{\prime}-module M^{\prime} is defined in Section 6.2.
morphism: one of the allowed maps between varieties 2.6, ,3.5).
nilradical: the radical of the zero ideal $\mathbf{2 . 5 . 1 4}$.
node: a point at which two branches of a curve met transverslly (1.8).
noetherian space: a space that satisfies the descending chain condition on closed sets $\mathbf{2 . 2 . 8}$.
normal domain: an integrally closed domain (4.3).
Nullstellensatz: the theorem that identifies points with maximal ideals 2.4.
ordinary: a plane curve is ordinary if all flexes and bitangents are ordinary, and there are no accidents (1.10.11).

Plücker formulas: the formulas that count flexes, bitangents, nodes and cusps of an ordinary curve 1.11). quadric: the locus of an irreducible homogeneous quadratic equation in projective space 3.1.6.
quasicompact: A topological space is quasicompact if every open covering has a finite subcovering.
radical of an ideal: the radical of an ideal I is the set of elements such that some power is in I 2.2.20 .
reducible curve: a union of finitely many irreducible curves.
resultant: a polynomial in the coefficients of two polynomials f and g that vanishes if and only if they have a common root (1.7).
scalar: a complex number.
scaling: adjusting by scalar factors.
Segre embedding. a map that embeds a product of projective varieties into projective space 3.1.9.
Serre dual. The Serre dual \mathcal{M}^{S} of a locally free \mathcal{O}-module \mathcal{M} is the module $\operatorname{Hom}_{\mathcal{O}}(\mathcal{M}, \Omega)$ 8.7.1 .
smooth point, singular point: a point p of a plane curve $\{f=0\}$ is a smooth point if at least one partial derivative is nonzero at p. Otherwise it is a singular point 1.4.4.
Special line: A line L through a singular point of a curve whose intersection multiplicity with C is greater than the multiplicity of C. 1.8.4.
spectrum: the spectrum of a finite-tpe domain is the set of its maximal ideals 2.5.
structure sheaf: its sections on an open set are the regular functions on that set 6.1.
tensor algebra: the graded algebra T such that T^{n} is the nth tensor power of a vector space V 3.7.21).
torsion: an element m of am R-module is a torsion element if there is a nonzero element r in R such that $r m=0$ (2.1.24.
transcendence basis: a maximal algebraically independent set of elements (1.5).
transcendence degree: the number of elements in a transcendnce basis 1.5).
transversal intersection: two curves intersect transvesally at a point p if they are smooth at p and their tangent lines there are distinct 1.9.11).
trigonal curve: a curve that can be represented as a overing of \mathbb{P}^{1} of degree 3 8.8.29.
twisted cubic: the locus of points $\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{2} x_{2}, x_{1}^{2}\right)$ in \mathbb{P}^{3} 3.1.15.
unit ideal: the unit ideal of a ring R is R.
valuation: a surjective homomorphism from the multiplicative group K^{\times}of nonzero elements of a field K to the additive group \mathbb{Z}^{+}of integers (5.1.4.
valuation ring: the set of elements with value greater than zero, together with the identity element.
variety: an irreducible subspace of affine or projective space 2.2.17, (3.0.1, (3.2.11).
Veronese embedding: the embeding of a projective space using the monomials of given degree 3.1.13).
weight: a variable may be assigned an integer called a weight 4.6.20.
weighted projective space: projective space when the variables have weights 4.6.20).
Zariski topology: the closed sets are the zero sets of families of polynomial equations (2.2).

INDEX OF NOTATION

$\mathbb{A}^{n} \quad$ affine space 1.1 .
(affines) the category of affine open sets, morphism being localizations 6.1).
ann annihilator 6.7).
$C^{*} \quad$ the dual of the curve C 1.6.6.
C^{q} the cohomology of a complex (7.2).
$\operatorname{Discr}(F)$ the discriminant of f 1.7.14.
Δ the diagonal, or the branch locus 3.5 .19 , 4.6.14).
e the Euler characteristic, or the ramification index 1.8.21, 7.7.7, 8.5.
g often, the genus of a curve. $\mathbf{1 . 8 . 1 9}$
H; the Hessian matrix of second partial derivatives. 1.4.10
H_{p} the evaluation of H at the point p.
H^{q} cohomology 7.1.
$\mathbf{h}^{q} \quad$ the dimension of H^{q}.
$K^{\times} \quad$ the multiplicative group of nonzero elements of the field K.
$k(p)$ the residue field at a point $2.3 .1,(2.5)$.
$L^{*} \quad$ the point of \mathbb{P}^{*} that corresponds to the line L in the plane \mathbb{P} 1.6.1.
\mathcal{M} an \mathcal{O}-module 6.2.1.
\mathfrak{m} a maximal ideal 2.3.1, (2.5).
\mathcal{O} the structure sheaf on a variety 6.1.1.
$\mathcal{O}(\mathcal{M}, \mathcal{N}),{ }_{X}(\mathcal{M}, \mathcal{N})$ abbreviated notations for the \mathcal{O}_{X}-module of homomorphisms Hom $_{\mathcal{O}}(\mathcal{M}, \mathcal{N})$.
(opens) the category whose objects are open subsets 6.1).
$p^{*} \quad$ the line in the dual plane \mathbb{P}^{*} that corresponds to the point p of the plane $\mathbb{P} \quad \mathbf{1 . 6 . 1}$.
p_{a} the arithmetic genus 8.7.4), 8.8.2).
$\mathbb{P}, \mathbb{P}^{n} \quad$ projective space 1.2 .
$\mathbb{P}^{*} \quad$ the dual of the plane \mathbb{P} 1.6.1.
$\pi_{p} \quad$ the homomorphism to the residue field $k(p)$ 2.3.1, 2.5 .
$\operatorname{rad} I$ the radical of the ideal I 2.2.20.
$\operatorname{Res}(f, g)$ the resultant of f and g 1.7.
${ }^{S} \quad \mathcal{M}^{S}$ is the Serre dual of \mathcal{M} 8.7.1.
$\operatorname{Spec} A$ the set of maximal ideals of a finite-type algebra A 2.5.
$\mathbb{U}^{i} \quad$ the standard affine open subset $\left\{x_{i} \neq 0\right\}$ of projective space 1.2.7.
$V(f)$ the locus of zeros of f 2.2, 3.2.4.
$\wedge V$ the exterior algebra 3.7.2.
∇ the gradient vector of partial derivatives 1.4 .10
∇_{p} the evaluation of ∇ at the point p.
\approx an isomorphism.
\otimes tensor product 2.1.25.
\cap intersection.
$<S<T$ means that the set S is a subset of T and is not equal to T 2.1.12.
\# $\quad A^{\#}$ denotes the normalization of the algebra A.
[] square brackets are sometimes used in place of parentheses for clarity.

BIBLIOGRAPHY

Two classic works:
Fulton, William, Algebraic Curves, 2008, available on the web www.math.lsa.umich.edu/ wfulton/CurveBook.pdf
Mumford, David Algebraic Geometry I, Complex Projectie Varieties Grundlehren, Springer, 1976.

An introduction based on many specific examples:
Harris, J. Algebraic Geometry, A First Course Grad. Texts in Math. Springer, 1992.

Books for a more formal introduction:
Cutkosky, D. Introduction to Algebraic Geometry Grad. Studies in Math., AMS, 2018.
Hartshorne, Robin Algebraic Geometry Grad. Texts in Math. Springer, 1977.

Books with an analytic point of view:
Griffiths, P., Harris, J Principles of Algebraic Geometry Wiley, 2014.
Miranda, R. Algebraic Curves and Riemann Surfaces Grad. Studies in Math., AMS, 1979.

A computational approach to algebraic geometry:
Cox, D., Little, J., O’Shea, D. Using Algebraic Geometry 2nd ed Grad. Texts in Math., Springer, 2004.

Books for the background on algebra:
Cohn, P. M. Algebra vol, 2 Wiley,, 1977.
Lang, Serge Algebra 3rd ed Grad. Texts in Math., Springer, 2002.

Index

Artin, Emil (1898-1962), 198
Bézout, Etienne (1730-1783), 37,176
Betti, Enrico (1823-1892), 33
Birkhoff, George David (1884-1944), 189
Borel, Emile (1871-1956),77
Brianchon, Charles-Julien 1783-1864, 180
Cayley, Arthur (1821-1895), 35
Chevalley, Claude (1909-1984), 112
Dürer, Albrecht (1471-1528), 11
Desargues, Girard (1591-1661), 11
Fermat, Pierre de (1607-1665), 17
Grassmann, Hermann (1809-1877), 93
Grothendieck, Alexander (1928-2014), 189, 199
Hausdorff, Felix (1868-1942), 77
Heine, Eduard (1821-1881), 77
Hensel, Kurt 1861-1941, 35
Hesse, Otto (1811-1877), 18
Hilbert, David (1862-1943), 4960
Jacobi, Carl Gustav Jacob 1804-1851, 35
Laurent, Pierre Alphonse (1813-1854), 68
Möbius, August Ferdinand (1790-1868), 11
Nagata, Masayoshi (1927-2008),60
Nakayama, Tadashi (1912-1964), 101
Noether, Emmy (1882-1935), 49, 57, 104
Noether, Max (1844-1921), 181
Pascal, Blaise 1623-1662, 180
Plücker, Julius (1801-1868),41
Poncelet, Jean-Victor 1788-1867, 209
Rainich, George Yuri (1886-1968),61
Schelter, William (1947-2001), 114
Segre, Corrado (1863-1924), 79
Serre, Jean-Pierre (1926-), 161, 199
Veronese, Giuseppe (1854-1917),79
Zariski, Oscar (1899-1986),55
affine cone, 81
affine covering, 104
affine hypersurface, 59
affine morphism, 150
affine open subset, 92
affine plane, 7
affine plane curve, 7
affine space, 7
affine variety, 58,91
algebaic dimension, 8
algebra, 20
algebra generators,47
algebraically dependent, independent, 20
analytic function, 19
annihilator, 152
arithmetic genus, 172, 173
ascending, descending chain conditions, 57
Bézout's Theorem, 37, 176
basis,47
basis for a topology, 68
bidual, 23, 149
bihomogeneous polynomial, 83
bilinear relations, 53
Birkhoff-Grothendieck Theorem, 189
bitangent, 33
blowup, 29,91
branch locus, 116, 117
branch point, 32, 34,193
branched covering, 32, 193
Brianchon's Theorem, 180
canonical,48
canonical divisor, 201
canonical map, 205
center of projection, 91
center of projection, 32
characteristic properties of cohomology, 165
Chevalley's Finiteness Theorem, 112
Chinese Remainder Theorem, 49, 153
classical topology, 15
closed set, open set, 57
coarser topology, 56
coboundary map, 162
codimension, 111
cohomological functor, 162, 163
cohomology of \mathcal{O}-modules, 161
cohomology of a complex, 162
cohomology sequence, 161, 163
cokernel,50
comaximal ideals, 49
combinatorial dimension, 109
commutative diagram,49
commutative ring, 47
commuting matrices, 62
compact space, 77
complement of a subset, 55
complete intersection, 181, 207
complex, 162
conic, 8, 12
connected space, 57
constant \mathcal{O}-module, 146
constructible function, 134
constructible set, 129
contracted ideal, 69
contravariant functor, 138
coordinate algebra, 59,62
Correspondence Theorem, 49
covering diagram, 143
curve, 126
cusp, 30
decomposable element, 95
degree, 79
degree of a morphism to $\mathbb{P}^{n}, 203$
degree of an affine plane curve, 7
derivation, 190
diagonal, 90
differential, 191
dimension, 109
direct limit, 147
directed set, 147
discrete valuation, 124
discriminant, 27
divisor, 184
divisor of a function, 184
divisor of a polynomial, 14
domain, 20
double plane, 116
double point, 30
dual curve, 21
dual module, 51, 148
dual plane, 21
effective divisor, 184
eigenvector, 101
elliptic curve, 201
Euler characteristic, 33,187
Euler characteristic of an \mathcal{O}-module, 176
exact sequence, 50,140
extended ideal,69
extension by zero, 150
extension of domains, 102
extension of scalars, 54
exterior algebra, 94
Fermat curve, 17
fibre dimension, 134
fibre of a map, 8
finer topology, 56
finite module, 48140
finite morphism, 112
finite-type algebra, 47
finitely generated ideal,48
flex point, 17
formal power series, 74
fractions, 69
free module, 47
function field, 137
function field, 64,85
function field module, 146
general position, 33
generators of an \mathcal{O}-module, 156
generic, 33
genus, 34 187, 200
geometric genus, 173
global section, 138, 139
good point, 87
graded algebra, 94
graph of a morphism, 90
Grassmanian, 93
Hausdorff space, 77
Heine-Borel Theorem, 77
Hensel's Lemma, 35
Hessian deteminant, 18
Hessian divisor, 39
Hessian matrix, 18
Hilbert Basis Theorem, 49
Hilbert Nullstellensatz, 60
homogeneous fraction, 86,153
homogeneous ideal, 80,113
homogeneous parts, 12
homogeneous polynomial, 12, 113
homogenize, dehomogenize, 16
homomorphism, 140
homomorphism of modules, 139
hyperelliptic curve, 204
hypersurface, 79
ideal, 140
ideal generators, 48
ideal generators, 55
increasing, strictly increasing, 49
induced topology, 56
integral closure, 105
integral extension, 102
integral morphism, 103, 112
intersection multiplicity, 14,177
invariant element, 70
invertible \mathcal{O}-module, 186
irreducible space, 57
irreducible polynomial, 8
irregularity, 173
irrelevant ideal, 81
isolated point, 15,129
isomorphism, 6589
left module, right module, 47
line, 8, 9, 56, 78
line at infinity, 10
linear subspace, 78
linear map, 47
linearly equivalent divisors, 185
local domain of dimension one, 123
local property, 123
local ring, 123
local ring at a point, 124,125
local unit, 193
localization, 52, 68
locally principal ideal, 124
locally closed set, 129
locally free module, 123
locus of zeros, 7,55
matrix, 51
maximal ideal, 48,141
maximal member, 50
member, 50
module, 139
module generators,47
morphism, 88
morphism of affine varieties, 65
morphism of families, 143
multiplicative system, 69
multiplicity, 13
nilpotent ideal, 64
nilradical, 64
node, 30
Noether Normalization Theorem, 104
Noether's AF+BG Theorem, 181
noetherian ring, 49
noetherian space, 57
normal domain, normal variety, 104
normalization, 104
Nullstellensatz, 60
open covering, 77
order of zero, pole, 124
ordinary bitangent, 40
ordinary curve, 40
ordinary flex, 17
orientability, 33
Pascal's Theorem, 180
Plücker Formulas, 41
plane projective curve, 14
point at infinity, 9,10
point with values in a field, 86
Poncelet's Theorem, 209
power of an ideal, 48
presentation of a module, 51
presentation of an algebra, 60
prime ideal,48
principal divisor, 184
product equations, 35
product ideal, 48
product topology, 82,84
projection, 32, 91
projective double plane, 117
projective line, plane, 9
projective space, line, plane, 9
projective variety, 78
proper variety, 133
pullback, 92
quadric, 78
quasicompact, 57, 77
radical,58
Rainich's proof, 61
ramification index, 193
rank, 47, 123
rational curve, 201
rational function, 14, 64, 85
real projective plane, 10
reducible curve, 14
regular differential, 196
regular function, 64, 85, 137
regular function on an affine variety, 62
residue field, 59
residue field module, 140
residue field of a local ring, 123
resolution, acyclic resolution, 168
restriction, 139
restriction of a divisor to an open set, 184
restriction of a module to an open set, 151
restriction of a morphism, 112
restriction of scalars, 54
resultant, 26
resultant matrix, 26
Riemann-Roch Theorem, 187, 199
scaling, 12
section, 138, 139
sections equal on an open set, 141
Segre embedding, 79
semicontinuous function, 134
Serre dual, 199
short exact sequence, 50
simple localization, 69
smooth curve, singular curve, 17
smooth point, singular point, 17, 126
special line, 29
special linear group, 59
spectrum of an algebra, 62
split exact sequence, 50
square-free polynomial, 106
standard cusp, 30
standard open set, 10, 85
standard open subset, 82
Strong Nullstellensatz, 61
structure sheaf, 138
subspace, 56
support of a divisor, 184
support of a module, 152
tacnode, 31
tangent line, 17
tensor product module, 52
tensoralgebra, 97
torsion, torsion-free, 52, 140
trace of a differential, 196
trace of a field extension, 106
trace of a function, 195
transcendence basis,20
transcendental element, 20
transversal intersection, 36
trefoil knot, 31
triangulation, 33
trigonal curve, 207
twist of an \mathcal{O}-module, 155
twisted cubic, 80
twisting module, 155
unit ideal, 14
valuation, 124
valuation ring, 124
value of a function, 62, 85
variety, 82
Veronese Embedding, 79
weight, 117
weighted degree, 26
weighted projective space, 117
Zariski closed, Zariski open, 55, 77
Zariski topology, 78
zero divisor,20
zero of a polynomial, 13

[^0]: ${ }^{1}$ While writing a paper, the mathematician Nagata decided that the English language needed this unusual word. Then he found it in a dictionary.

[^1]: ${ }^{1}$ See one of the books by Fulton, Miranda, or Mumford in the bibliography, or for a general treatment, Tate, J., Residues of differentials on curves, Ann Sci ENS 1968.

