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PREFACE

These are notes that have been used for an algebraic geometry course at MIT. I had thought of teaching
such a course for quite a while, motivated partly by the fact that MIT didn’t have very many courses suitable
for students who had taken the standard theoretical math classes. I got around to thinking seriously about this
twelve years ago, and have now taught the class seven times. I wanted to get to cohomology of O-modules
(aka quasicoherent sheaves) in one semester without presupposing a knowledge of sheaf theory or of much
commutative algebra, so it has been a challenge. Fortunately, MIT has many outstanding students who are
interested in mathematics. The students and I have made some progress, but much remains to be done. Ideally,
one would like the development to be so natural as to seem obvious. Though I haven’t tried to put in anything
unusual, this has yet to be achieved. And there are too many pages for my taste. To paraphrase Pascal, we
haven’t had the time to make it shorter.

To cut the material down, I decided to work exclusively with varieties over the complex numbers, and to
use that restriction freely. Schemes are not discussed. Some people will disagree with these decisions, but I
feel that absorbing schemes and general ground fields won’t be too difficult for someone who is familiar with
complex varieties. Also, I don’t go out of my way to state and prove things in their most general form.

If one plans to teach such a course in a single semester, it is essential to keep moving. One can’t linger
over the topics in the first Chapter. To save time, consider replacing some proofs with heuristic reasoning
or omitting them. Proposition 1.9.11 on the order of vanishing of the discriminant is a candidate for some
hand-waving, and Lemma 1.10.7 on flex points may be a proof to skip.

Indices can cloud the picture. When that happens, I recommend focussing attention on a low dimensional
case. Schelter’s neat proof of Chevalley’s Finitness Theorem is a good example. Schelter discovered the proof
while studying P1. That case demonstrates the main point, and is a bit easier to follow.

In Chapter 6 on O-modules, all technical points about sheaves are eliminated when one sticks to affine
open sets and localizations. Sections over other open sets are important, mainly because one wants the global
sections, but the proof that a module extends to arbitrary open sets can safely be put on a back burner, as is
done in the notes.

In Chapter 7, I decided to restrict to O-modules when defining cohomology, and to characterize the coho-
mology axiomatically. This was in order to minimize technical points. Simplicial operations are eliminated,
though they appear in disguise in the resolution (7.4.13).

The special topics at the ends of Chapters 2,3,4 enrich the subject. I don’t recommend skipping them. And,
without some of the applications at the end of Chapter 8, the Riemann Roch Theorem would be pointless.

When I last taught the subject in the spring of 2020, MIT semester had 39 class hours. I followed this
schedule: Chapter 1, 6 hours, Chapters 2-7, roughly 4 hours each, Chapter 8, 7 hours, in-class quizzes, 2
hours. This was a brisk pace. The topics in the notes could be covered comfortably in a one-year course, and
there would be time for some extra material.

Great thanks are due to the students who have been in my classes. Many of you contributed to these
notes by commenting on the drafts or by creating figures. Though I remember you well, I’m not naming you
individually because I’m sure I’d overlook someone important. I hope that you will understand.

A Note for the Student

The prerequisites are standard undergraduate courses in algebra, analysis, and topology, and the definitions
of category and functor. I also suppose a familiarity with the implicit function theorem for complex variables.
But don’t worry too much about the prerequisites. You can look them up as needed, and many points are
reviewed briefly in the notes as they come up.

Proofs of some lemmas and propositions are omitted. I have omitted a proof when I consider it simple
enough that including it would just clutter up the text or, occasionally, when I feel that it is important for the
reader to supply a proof.

As with all mathematics, working exercises and, most importantly, writing up the solutions carefully is, by
far, the best way to learn the material well.
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Chapter 1 PLANE CURVES

planecurves 1.1 The Affine Plane
1.2 The Projective Plane
1.3 Plane Projective Curves
1.4 Tangent Lines
1.5 Transcendence Degree
1.6 The Dual Curve
1.7 Resultants and Discriminants
1.8 Nodes and Cusps
1.9 Hensel’s Lemma
1.10 Bézout’s Theorem
1.11 The Plücker Formulas
1.12 Exercises

We begin with plane curves. They were the first algebraic varieties to be studied, and they provide instructive
examples. Chapters 2 – 7 are about varieties of arbitrary dimension. We will see in Chapter 5 how curves
control higher-dimensional varieties, and we come back to curves in Chapter 8.

1.1 The Affine Plane
affine-
plane The n-dimensional affine space An is the space of n-tuples of complex numbers. The two-dimensional affine

space A2 is the affine plane.
Let f(x1, x2) be an irreducible polynomial in two variables, with complex coefficients. The set of points

of the affine plane at which f vanishes, the locus of zeros of f , is called a plane affine curve. Let’s denote that
locus by X . Writing x for the vector (x1, x2),

(1.1.1) X = {x | f(x) = 0}affcurve

The degree of the curve X is the degree of its irreducible defining polynomial f .
When it seems unlikely to cause confusion, we may abbreviate the notation for an indexed set, using a

single letter, as here, where x stands for (x!, x2).

1.1.2.goober8

The Cubic Curve y2 = x3 − x (real locus)
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About figures. In algebraic geometry, the dimensions are too big to allow realistic figures. Even with an affine
plane curve, one is dealing with a locus in the affine plane A2, whose topological dimension is 4. In some
cases, such as in the figure above, depicting the real locus can be helpful, but in most cases, even the real locus
is too big, and one must make do without a figure, or with a schematic diagram. �

We will get an understanding of the geometry of a plane curve as we go along, and we mention just one
point here. A plane curve is called a curve because it is defined by one equation in two variables. Its algebraic
dimension is 1. The only proper subsets of a curve X that can be defined by polynomial equations are the
finite sets (see Proposition 1.3.12). But because our scalars are complex numbers, the affine plane A2 is a real
space of dimension 4, and X will be a surface in that space. This is analogous to the fact that the affine line
A1 is the plane of complex numbers.

One can see that a plane curve X has dimension 2, geometrically, by inspecting its projection to a line. To
do this, one writes the defining polynomial as a polynomial in x2:

f(x1, x2) = c0x
d
2 + c1x

d−1
2 + · · ·+ cd

whose coefficients ci are polynomials in x1. Let’s suppose that d is positive, i.e., that f isn’t a polynomial in
x1 alone. Let X π−→ A1 be the projection from the plane curve X to the affine x1-line A1.

The fibre of a map V → U over a point p of U is the inverse image of p, the set of points of V that map to
p. One can describe the fibre of the map π over the point x1 = a, as the set of points (a, b) in which b is a root
of the one-variable polynomial

f(a, x2) = c0x
d
2 + c1x

d−1
2 + · · ·+ cd

with ci = ci(a). There will be finitely many points in this fibre, and it won’t be empty unless f(a, x2) is a
constant. The plane curve X covers most of the x1-line, a complex plane, finitely often.

1.1.3. Note. polyirredIn contrast with complex polynomials in one variable, most polynomials in two or more variables
are irreducible — they cannot be factored. This can be shown by a method called “counting constants”. For in-
stance, quadratic polynomials in x1, x2 depend on the six coefficients of the monomials 1, x1, x2, x

2
1, x1x2, x

2
2

of degree at most two. Linear polynomials ax1+bx2+c depend on three coefficients, but the product of two
linear polynomials depends on only five parameters, because a scalar factor can be moved from one of the lin-
ear factors to the other. So the quadratic polynomials cannot all be written as products of linear polynomials.
This reasoning is fairly convincing. It can be justified formally in terms of dimension, which will be discussed
in Chapter 5. �

(1.1.4) planeco-
ords

changing coordinates

We allow linear changes of variable and translations in the affine plane A2. When a point x is written as
the column vector (x1, x2)t, the coordinates x′ = (x′1, x

′
2)t after such a change of variable will be related to x

by a formula

(1.1.5) x = Qx′ + a chgcoord

whereQ is an invertible 2×2 matrix with complex coefficients and a = (a1, a2)t is a complex translation vector.
This changes a polynomial equation f(x) = 0, to f(Qx′ + a) = 0. One may also multiply a polynomial f by
a nonzero complex scalar without changing its locus of zeros. Using these operations, all lines, plane curves
of degree 1, become equivalent.

An affine conic is a plane affine curve of degree 2. Every affine conic is equivalent to one of the two loci

(1.1.6) affconicx2
1 − x2

2 = 1 or x2 = x2
1

by a suitable linear change of variable, a translation, and scaling. The proof of this is similar to the one used
to classify real conics. These loci might be called a complex ’hyperbola’ and ’parabola’, respectively. The
complex ’ellipse’ x2

1 + x2
2 = 1 becomes the ’hyperbola’ when one multiplies the coordinate x2 by i.
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On the other hand, there are infinitely many inequivalent cubic curves. Cubic polynomials in two variables
depend on the coefficients of the ten monomials 1, x1, x2, x

2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2 of degree at most

3 in x1, x2. Linear changes of variable, translations, and scalar multiplication, give us only seven scalars to
work with, leaving three essential parameters.

1.2 The Projective Plane
projplane

The n-dimensional projective space Pn is the set of equivalence classes of nonzero vectors x = (x0, x1, ..., xn),
the equivalence relation being

(1.2.1) (x′0, ..., x
′
n) ∼ (x0, ..., xn) if (x′0, ..., x

′
n) = (λx0, ..., λxn)

(
if x′ = λx

)
equivrel

for some nonzero complex number λ. The equivalence classes are the points of Pn. One often refers to a point
by giving a particular vector in its class.

When x is a nonzero vector, the one-dimensional subspace of Cn+1 spanned by x consists of the vectors
λx, together with the zero vector. So points of Pn correspond to one-dimensional subspaces of the complex
vector space Cn+1.

(1.2.2)projline the projective line

Points of the projective line P1 are equivalence classes of nonzero vectors x = (x0, x1).
If the first coordinate x0 of a vector x = (x0, x1) isn’t zero, we may multiply by λ = x−1

0 to normalize the
first entry to 1, and write the point that x represents in a unique way as (1, u1), with u1 = x1/x0. There is one
remaining point, the point represented by the vector (0, 1). The projective line P1 can be obtained by adding
this point, called the point at infinity, to the affine u1-line, which is a complex plane. As u1 tends to infinity in
any direction, the point (1, u1) approaches (0, 1). Topologically, P1 is a two-dimensional sphere.

(1.2.3)projpl lines in projective space

Let p and q be vectors that represent distinct points of the projective space Pn. There is a unique line L in Pn
that contains those points, the set of points L = {rp+sq}, with r, s in C not both zero. Points of L correspond
bijectively to points of the projective line P1, by

(1.2.4) rp+ sq ←→ (r, s)pline

A line in the projective plane P2 can also be described as the locus of solutions of a homogeneous linear
equation

(1.2.5) s0x0 + s1x1 + s2x2 = 0eqline

1.2.6. Lemma.linesmeet In the projective plane, two distinct lines have exactly one point in common, and in a pro-
jective space of any dimension, a pair of distinct points is contained in exactly one line. �

(1.2.7) the standard covering of the projective planestandcov

The projective plane P2 is the two-dimensional projective space. Its points are equivalence classes of
nonzero vectors (x0, x1, x2).

If the first entry x0 of a point p = (x0, x1, x2) of the plane isn’t zero, we may normalize it to 1 without
changing the point: (x0, x1, x2) ∼ (1, u1, u2), where ui = xi/x0. We did the analogous thing for P1 above.
The representative vector (1, u1, u2) is uniquely determined by p, so points with x0 6= 0 correspond bijectively
to points of the affine plane A2 with coordinates (u1, u2):

(x0, x1, x2) ∼ (1, u1, u2) ←→ (u1, u2)
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We regard the affine u1, u2-plane as a subset of P2 by this correspondence, and we denote that subset by U0.
The points of U0, those with x0 6= 0, are the points at finite distance. The points at infinity of P2 are those of
the form (0, x1, x2). They are on the line at infinity L0, the locus {x0 = 0} in P2. The projective plane is the
union of the two sets U0 and L0. When a point is given by a coordinate vector, one can assume that the first
coordinate is either 1 or 0.

We may write the point (x0, x1, x2) that is in U0 as (1, u1, u2), with ui = xi/x0 as above. The notation
ui = xi/x0 is important when the coordinate vector (x0, x1, x2) has been given. When no coordinate vector
of a point p has been given, one may simply assume that the first coordinate is 1 and write p = (1, x1, x2).

There is an analogous correspondence between points (x0, 1, x2) and points of an affine plane A2, and
between points (x0, x1, 1) and points of an affine plane. We denote the subsets {x1 6= 0} and {x2 6= 0} by U1

and U2, respectively. The three sets U0,U1,U2 form the standard covering of P2 by three standard affine open
sets. Since the vector (0, 0, 0) has been ruled out, every point of P2 lies in at least one of the three standard
open sets. Points whose three coordinates are nonzero lie in all of them.

1.2.8. Note. pointatin-
finity

Which points of P2 are at infinity depends on which of the standard open sets is taken to be the
one at finite distance. When the coordinates are (x0, x1, x2), I like to normalize x0 to 1, as above. Then the
points at infinity are those of the form (0, x1, x2). But when coordinates are (x, y, z), I may normalize z to 1.
Then the points at infinity are the points (x, y, 0). I hope this won’t cause too much confusion. �

(1.2.9) digression: the real projective plane realproj-
plane

Points of the real projective plane RP2 are equivalence classes of nonzero real vectors x = (x0, x1, x2),
the equivalence relation being x′ ∼ x if x′ = λx for some nonzero real number λ. The real projective plane
can also be thought of as the set of one-dimensional subspaces of the real vector space R3.

Let’s denote R3 by V . The plane U in V defined by the equation x0 = 1 is analogous to the standard open
subset U0 of the complex projective plane P2. We can project V from the origin p0 = (0, 0, 0) to U , sending
a point x = (x0, x1, x2) of V to the point (1, u1, u2), with ui = xi/x0. The fibres of this projection are the
lines through p0 and x, with p0 omitted.

The projection to U is undefined at the points (0, x1, x2), which are orthogonal to the x0-axis. The line
connecting such a point to p0 doesn’t meet U . Those points are the points at infinity of RP2.

Looking from the origin, U becomes a “picture plane”.
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1.2.10.durerfig

This is an illustration from a book on perspective by Albrecht Dürer

The projection from three-space to a picture plane goes back to the the 16th century, the time of Desargues
and Dürer. Projective coordinates were introduced 200 years later, by Möbius.

The figure below shows the planeW : x+y+z = 1 in the real vector space R3, together with its coordinate
lines and a conic. The one-dimensional subspace spanned by a nonzero vector (x0, y0, z0) in R3 will meet W
in a single point unless that vector is on the line L : x+y+z = 0. So W is a faithful representation of most
of RP2. It contains all points except those on L.

1.2.11.goober4

z = 0

x
=

0 y
=

0

1 1 1

0 0 1

0 1 0 1 0 0

The Real Projective Plane

(1.2.12) changing coordinates in the projective planechgco-
ordssec
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An invertible 3×3 matrix P determines a linear change of coordinates in P2. With x = (x0, x1, x2)t and
x′ = (x′0, x

′
1, x
′
2)t represented as column vectors, that coordinate change is given by

(1.2.13) x = Px′ chg

The next proposition shows that four special points, the points

e0 = (1, 0, 0)t, e1 = (0, 1, 0)t, e2 = (0, 0, 1)t and ε = (1, 1, 1)t

determine the coordinates in P2.

1.2.14. Proposition. fourpointsLet p0, p1, p2, q be four points of P2, no three of which lie on a line. There is, up to a
scalar factor, a unique linear coordinate change Px′ = x such that Ppi = ei and Pq = ε.

proof. The hypothesis that the points p0, p1, p2 don’t lie on a line tells us that the vectors that represent those
points are independent. They span C3. So q will be a combination q = c0p0 + c1p1 + c2p2, and because no
three of the four points lie on a line, the coefficients ci will be nonzero. We can scale the vectors pi (multiply
them by nonzero scalars) to make q = p0 +p1 +p2 without changing the points. Next, the columns of P can
be an arbitrary set of independent vectors. We let them be p0, p1, p2. Then Pei = pi, and Pε = q. The matrix
P is unique up to scalar factor. �

(1.2.15) conics projconics

A polynomial f(x0, ..., xn) is homogeneous, of degree d, if all monomials that appear with nonzero coef-
ficient have (total) degree d. For example, x3

0 + x3
1 − x0x1x2 is a homogeneous cubic polynomial.

A homogeneous quadratic polynomal is a combination of the six monomials

x2
0, x

2
1, x

2
2, x0x1, x1x2, x0x2

The locus of zeros of an irreducible homogeneous quadratic polynomial is a conic.

1.2.16. Proposition. classify-
conic

For any conic C, there is a choice of coordinates so that it becomes the locus

x0x1 + x0x2 + x1x2 = 0

proof. A conic will contain three points that aren’t colinear. Let’s leave the verification of this fact as an
exercise. We choose three non-colinear points on the conic C, and adjust coordinates so that they become the
points e0, e1, e2. Let f be the homogeneous quadratic polynomial in those coordinates whose zero locus is
C. Because e0 is a point of C, f(1, 0, 0) = 0, and therefore the coefficient of x2

0 in f is zero. Similarly, the
coefficients of x2

1 and x2
2 are zero. So f has the form

f = ax0x1 + bx0x2 + cx1x2

Since f is irreducible, a, b, c aren’t zero. By scaling appropriately (adjusting f, x0, x1, x2 by scalar factors),
we can make a = b = c = 1. We will be left with the polynomial x0x1 + x0x2 + x1x2. �

1.3 Plane Projective Curves
projcurve

The loci in projective space that are studied in algebraic geometry are the ones that can be defined by systems
of homogeneous polynomial equations. The reason that we use homogeneous equations is this:

To say that a polynomial f(x0, ..., xn) vanishes at a point of projective space Pn means that if the vector
a = (a0, ..., an) represents a point p, then f(a) = 0. Perhaps this is obvious. Now, if a represents p, the other
vectors that represent p are the vectors λa (λ 6= 0). When f vanishes at p, f(λa) must also be zero. The
polynomial f(x) vanishes at p if and only if f(λa) = 0 for every λ.

We write a polynomial f(x0, ..., xn) as a sum of its homogeneous parts:

(1.3.1) f = f0 + f1 + · · ·+ fd homparts

where f0 is the constant term, f1 is the linear part, etc., and d is the degree of f .
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1.3.2. Lemma.hompart-
szero

Let f = f0 + · · · + fd be a polynomial of degree d in x0, ..., xn, and let a = (a0, ..., an)
be a nonzero vector. Then f(λa) = 0 for every nonzero complex number λ if and only if fi(a) = 0 for every
i = 0, ..., d.

This lemma shows that we may as well work with homogeneous equations.

proof of the lemma. We substitute into (1.3.1): f(λx) = f0 + λf1(x) + λ2f2(x) + ·+ λdfd(x). Evaluating at
x = a, f(λa) = f0 + λf1(a) + λ2f2(a) + ·+ λdfd(a), and fi(a) are scalars (complex numbers). The right
side of this equation is a polynomial of degree at most d in λ, with complex coefficients fi(a). Since a nonzero
polynomial of degree at most d has at most d roots, f(λa) won’t be zero for every λ unless that polynomial is
zero — unless fi(a) is zero for every i. �

1.3.3. Lemma.fequalsgh (i) If the product f = gh of two polynomials is homogeneous, then g and h are homogeneous.
(ii) The zero locus in projective space of a product gh of homogeneous polynomials is the union of the two loci
{g = 0} and {h = 0}.
(iii) The zero locus in affine space of a product gh of polynomials, not necessarily homogeneous, is the union
of the two loci {g = 0} and {h = 0}. �

(1.3.4) loci in the projective linelocipone

Before going to plane projective curves, we describe the zero locus in P1 of a homogeneous polynomial in
two variables.

1.3.5. Lemma.fac-
torhom-

poly

A nonzero homogeneous polynomial f(x, y) = a0x
d + a1x

d−1y+ · · ·+ ady
d with complex

coefficients is a product of homogeneous linear polynomials that are unique up to scalar factor.

To prove this, one uses the fact that the field of complex numbers is algebraically closed. A one-variable
complex polynomial factors into linear factors. To factor f(x, y), one can factor the one-variable polynomial
f(1, y) into linear factors, substitute y/x for y, and multiply the result by xd. When one adjusts scalar factors,
one will obtain the expected factorization of f(x, y). For instance, to factor f(x, y) = x2 − 3xy + 2y2,
we substitute x = 1: 2y2 − 3y + 1 = 2(y − 1)(y − 1

2 ). Substituting y = y/x and multiplying by x2,
f(x, y) = 2(y − x)(y − 1

2x). The scalar 2 can be distributed arbitrarily among the linear factors. �

When a homogeneous polynomial f is a product of linear factors, we can adjust the factors by scalars, to
put f into the form

(1.3.6)factor-
polytwo

f(x, y) = c(v1x− u1y)r1 · · · (vkx− uky)rk

where no factor vix − uiy is a constant multiple of another, c is a nonzero scalar, and r1 + · · · + rk is the
degree of f . The exponent ri is the multiplicity of the linear factor vix− uiy.

A linear polynomial vx − uy determines the point (u, v) in the projective line P1, the unique zero of that
polynomial, and changing the polynomial by a scalar factor doesn’t change its zero. Thus the linear factors of
the homogeneous polynomial (1.3.6) determine points of P1, the zeros of f . The points (ui, vi) are zeros of
multiplicity ri. The total number of those points, counted with multiplicity, will be the degree of f .

1.3.7.zerosand-
roots

The zero (ui, vi) of f corresponds to a root x = ui/vi of multiplicity ri of the one-variable polynomial
f(x, 1), except when the zero is the point (1, 0). This happens when the coefficient a0 of f is zero, and y is a
factor of f . One could say that f(x, y) has a zero at infinity in that case.

This sums up the information contained in the locus of a homogeneous polynomial in the projective line.
It will be a finite set of points with multiplicities.

(1.3.8) intersections with a lineintersect-
line

Let Z be the zero locus of a homogeneous polynomial f(x0, ..., xn) of degree d in projective space Pn,
and let L be a line in Pn (1.2.4). Say that L is the set of points rp + sq, where p and q are points that are

13



represented by specific vectors (a0, ..., an) and (b0, ..., bn), respectively. So L corresponds to the projective
line P1, by rp + sq ↔ (r, s). Let’s also assume that L isn’t entirely contained in the zero locus Z. The
intersection Z ∩ L corresponds to the zero locus in P1 of the polynomial f in r, s obtained by substituting
rp + sq into f . This substitution yields a homogeneous polynomial f(r, s) of degree d, and the zeros of f in
P1 correspond to the points of Z ∩ L. If f has degree d, there will be d zeros, counted with multiplicity.

For instance, let f be the polynomial x0x1+x0x2+x1x2. Then with p = (a0, a1, a2) and q = (b0, b1, b2),
f is the following quadratic polynomial in r, s:

f(r, s) = f(rp+ sq) = (ra0 + sb0)(ra1 + sb1) + (ra0 + sb0)(ra2 + sb2) + (ra1 + sb1)(ra2 + sb2)

= (a0a1+a0a2+a1a2)r2 +
(∑

i 6=j aibj
)
rs+ (b0b1+b0b2+b1b2)s2

1.3.9. Definition. intersect-
linetwo

With notation as above, the intersection multiplicity of the zero locus Z and a line L at a
point p is the multiplicity of zero of the polynomial f . �

1.3.10. Corollary. XcapLLet Z be the zero locus of a homogeneous polynomial f in projective space Pn, and let L
be a line in Pn that isn’t contained in Z. The number of intersections of Z and L, counted with multiplicity, is
equal to the degree of f . �

(1.3.11) loci in the projective plane lociptwo

The locus of zeros in P2 of a single irreducible homogeneous polynomial f(x, y, z) is called a plane
projective curve. The degree of a plane projective curve is the degree of its irreducible defining polynomial.

The next proposition shows that plane projective curves are the most interesting loci in the projective plane.

1.3.12. Proposition. fgzerofi-
nite

Homogeneous polynomials f1, ..., fr in three variables with no common factor have
finitely many common zeros in P2 if r > 1.

The proof of this proposition is below.

1.3.13. Note. redcurveSuppose that a homogeneous polynomial f(x, y, z) is reducible, say f = g1 · · · gk, that gi are
irreducible, and that no two of them are scalar multiples of one another. Then the zero locus C of f is the
union of the zero loci Vi of the factors gi. In this case, C may be called a reducible curve.

When there are multiple factors, say f = ge11 · · · gekk and some ei are greater than 1, it is still true that the
locus C : {f = 0} is the union of the loci Vi : {gi = 0}, but the connection between the geometry of C and
the algebra is weakened. In this situation, the structure of a scheme becomes useful We won’t discuss schemes.
The only situation in which we may need to keep track of multiple factors is when counting intersections with
another curve D. For this purpose, one can use the divisor of f , which is defined to be the integer combination
e1V1 + · · ·+ ekVk. �

A rational function is a fraction of polynomials. The polynomial ring C[x, y] embeds into its field of
fractions, the field of rational functions in x, y. That field is often denoted by C(x, y), but let’s denote it by F
here. The polynomial ring C[x, y, z] in three variables becomes a subring of the one-variable polynomial ring
F [z]. When one is presented with a problem about the ring C[x, y, z], it can be useful to begin by studying
it in the ring F [z], which is a principal ideal domain. The polynomial rings C[x, y] and C[x, y, z] are unique
factorization domains, but not principal ideal domains.

1.3.14. Lemma. relprimeLet F = C(x, y) be the field of rational functions in x, y.
(i) If f1, ..., fk are homogeneous polynomials in x, y, z with no common factor, their greatest common divisor
in F [z] is 1, and therefore they generate the unit ideal of F [z]. (The unit ideal of a ring R is the ring R itself.)
So there is an equation of the form

∑
g′ifi = 1, with g′i in F [z].

(ii) An irreducible element of C[x, y, z] that has positive degree in z is also an irreducible element of F [z].

proof. (i) Ṫhis is a proof by contradiction. Let h′ be a nonzero element of F [z] that isn’t a unit, i.e., isn’t an
element of F , and suppose that h′ divides fi in F [z] for every i. Say that fi = u′ih

′ with u′i in F [x]. The
coefficients of h′ and u′i are rational functions, whose denominators are polynomials in x, y. We multiply by
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a polynomial in x, y to clear the denominators from the coefficients of all of the elements h′ and u′i. This will
give us equations of the form difi = uih , where di are polynomials in x, y, and h and ui are polynomials in
x, y, z. Since h′ isn’t in F , neither is h. So h will have positive degree in z. Let g be an irreducible factor of h
of positive degree in z. Then g divides difi, but it doesn’t divide di, which has degree zero in z. So g divides
fi, and this is true for every i. This contradicts the hypothesis that f1, ..., fk have no common factor.

(ii) Say that a polynomial f(x, y, z) factors in F [z], f = g′h′, where g′ and h′ are polynomials of positive
degree in z with coefficients in F . When we clear denominators from g′ and h′, we obtain an equation of the
form df = gh, where g and h are polynomials in x, y, z of positive degree in z and d is a polynomial in x, y.
Since neither g nor h divides d, f must be reducible. �

proof of Proposition 1.3.12. We are to show that homogeneous polynomials f1, ..., fr in x, y, z with no com-
mon factor have finitely many common zeros. Lemma 1.3.14 tells us that we may write

∑
g′ifi = 1, with g′i

in F [z]. Clearing denominators from the elements g′i gives us an equation of the form∑
gifi = d

where gi are polynomials in x, y, z and d is a polynomial in x, y. Taking suitable homogeneous parts of gi and
d produces an equation

∑
gifi = d in which all terms are homogeneous.

Lemma 1.3.5 asserts that d(x, y) is a product of linear polynomials, say d = `1 · · · `r. A common zero of
f1, ..., fk is also a zero of d, and therefore it is a zero of `j for some j. It suffices to show that, for each j,
f1, ..., fr and `j have finitely many common zeros.

Since f1, ..., fk have no common factor, there is at least one fi that isn’t divisible by `j . Then Corollary
1.3.10 shows that fi and `j have finitely many common zeros. �

1.3.15. Corollary.
pointscurves

Every locus in the projective plane P2 that can be defined by a system of homogeneous
polynomial equations is a finite union of points and curves. �

The next corollary is a special case of the Strong Nullstellensatz, which will be proved in the next chapter.

1.3.16. Corollary.idealprin-
cipal

Let f(x, y, z) be an irreducible homogeneous polynomial that vanishes on an infinite set
S of points of P2. If another homogeneous polynomial g(x, y, z) vanishes on S, then f divides g. Therefore,
if an irreducible polynomial vanishes on an infinite set S, that polynomial is unique up to scalar factor.

proof. If the irreducible polynomial f doesn’t divide g, then f and g have no common factor, and therefore
they have finitely many common zeros. �

(1.3.17) the classical topologyclassical-
topology

The usual topology on the affine space An will be called the classical topology. A subset U of An is open in
the classical topology if, whenever U contains a point p, it contains all points sufficiently near to p. We call this
the classical topology to distinguish it from another topology, the Zariski topology, which will be discussed in
the next chapter.

The projective space Pn also has a classical topology. A subset U of Pn is open if, whenever a point p of
U is represented by a vector (x0, ..., xn), all vectors x′ = (x′0, ..., x

′
n) sufficiently near to x represent points of

U .

(1.3.18)isopts isolated points

A point p of a topological space X is isolated if the set {p} is both open and closed, or if both {p} and
its complement X−{p} are closed. If X is a subset of An or Pn, a point p of X is isolated in the classical
topology if X doesn’t contain points p′ distinct from p, but arbitrarily close to p.

1.3.19. Propositionnoisolat-
edpoint

Let n be an integer greater than one. In the classical topology, the zero locus of a
polynomial in An, or of a homogeneous polyomial in Pn, contains no isolated points.
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1.3.20. Lemma. polymonicLet f be a polynomial of degree d in x1, ..., xn. After a suitable coordinate change and
scaling, f(x) will become a monic polynomial of degree d in the variable xn.

proof. We write f = f0 +f1 + · · ·+fd , where fi is the homogeneous part of f of degree i. We choose a point
p of An at which fd isn’t zero, and change variables so that p becomes the point (0, ..., 0, 1). We call the new
variables x1, .., .xn and the new polynomial f . Then fd(0, ..., 0, xn) will be equal to cxdn for some nonzero
constant c, and f/c will be monic. �

proof of Proposition 1.3.19. The proposition is true for loci in affine space and also for loci in projective space.
We look at the affine case.

Let f(x1, ..., xn) be a polynomial, and let Z be its zero locus. If f is a product, say f = gh, then Z will
be the union of the zero loci Z1 : {g = 0} and Z2 : {h = 0}. A point p of Z will be in one of those two
sets, say in Z1. If p is an isolated point of Z, then its complement U = Z − {p} in Z is closed. If so, then its
complement Z1 − {p} in Z1, which is the intersection U ∩ Z1, will be closed in Z1, and therefore p will be
an isolated point of Z1. So it suffices to prove the proposition in the case that f is irreducible. Let p be a point
of Z. We adjust coordinates and scale, so that p becomes the origin (0, ..., 0) and f becomes monic in xn. We
relabel xn as y, and write f as a polynomial in y:

f̃(y) = f(x1, ..., xn−1, y) = yd + cd−1(x)yd−1 + · · ·+ c0(x)

where ci is a polynomial in x1, ..., xn−1. Since f is irreducible, c0(x) 6= 0. Since p is the origin and f(p) = 0,
c0(0) = 0. So c0(x), which is the product of the roots of f̃(y), will tend to zero with x. When c0(x) is small,
at least one root of f̃ will be small. So there are points of Z distinct from p, but arbitrarily close to p. �

1.3.21. Corollary. function-
iszero

Let C ′ be the complement of a finite set of points in a plane curve C. In the classical
topology, a continuous function g on C that is zero at every point of C ′ is identically zero. �

1.4 Tangent Lines
tanlines

(1.4.1) a notation for working locally standnot

We will often want to inspect a plane projective curve C : {f(x0, x1, x2) = 0} in a neighborhood of a
particular point p. To do this we may adjust coordinates so that p becomes the point (1, 0, 0), and work with
points (1, x1, x2) in the standard open set U0 : {x0 6= 0}. When we identify U0 with the affine x1, x2-plane,
p becomes the origin (0, 0) and C becomes the zero locus of the nonhomogeneous polynomial f(1, x1, x2).
The loci f(x0, x1, x2) = 0 and f(1, x1, x2) = 0 are the same on the subset U0.

This will be a standard notation for working locally. Of course, it doesn’t matter which variable we set
to 1. If the variables are x, y, z, we may prefer to take for p the point (0, 0, 1) and work with the polynomial
f(x, y, 1).

(1.4.2) homogenizing and dehomogenizing homde-
homone

Let f(x0, x1, ..., xn) be a homogeneous polynomial. The polynomial f(1, x1, ..., xn) is called the deho-
mogenization of f , with respect to the variable x0. A simple procedure, homogenization, inverts this dehomog-
enization. Suppose given a nonhomogeneous polynomial F (x1, x2) of degree d. To homogenize F , we replace
the variables xi, i = 1, ..., n, by ui = xi/x0. Then since ui have degree zero in x, so does F (u1, ..., un).
When we multiply by xd0, the result will be a homogeneous polynomial of degree d in x0, ..., xn, that isn’t
divisible by x0.

For example, let F (x1, x2) = 1 + x1 + x2
2. Then x2

0F [u1, u2] = x2
0 + x0x1 + x2

2.

1.4.3. Lemma. foneirredA homogeneous polynomial f(x0, x1, x2) that isn’t divisible by x0 is irreducible if and only if
f(1, x1, x2) is irreducible. �

(1.4.4) smsingptssmooth points and singular points
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Let C be the plane curve defined by an irreducible homogeneous polynomial f(x0, x1, x2), and let fi
denote the partial derivative ∂f

∂xi
, computed by the usual calculus formula. A point of C at which the partial

derivatives fi aren’t all zero is a smooth point ofC. A point at which all partial derivatives are zero is a singular
point. A curve is smooth, or nonsingular, if it contains no singular point. Otherwise, it is a singular curve.

The Fermat curvefer-
matcurve

(1.4.5) xd0 + xd1 + xd2 = 0

is smooth because the only common zero of the partial derivatives dxd−1
0 , dxd−1

1 , dxd−1
2 , which is (0, 0, 0),

doesn’t represent a point of P2. The cubic curve x3
0 + x3

1 − x0x1x2 = 0 is singular at the point (0, 0, 1).

The Implicit Function Theorem explains the meaning of smoothness. Suppose that p = (1, 0, 0) is a point
of C. We set x0 = 1 and inspect the locus f(1, x1, x2) = 0 in the standard open set U0. If f2 = ∂f

∂x2
isn’t zero

at p, the Implicit Function Theorem tells us that we can solve the equation f(1, x1, x2) = 0 for x2 locally (for
small x1), as an analytic function ϕ of x1, with ϕ(0) = 0, and then f(1, x1, ϕ(x1)) will be zero. (See (1.4.18)
below.) Sending x1 to (1, x1, ϕ(x1)) inverts the projection from C to the affine x1-line locally. So at a smooth
point, C is locally homeomorphic to the affine line.

1.4.6. Euler’s Formula.eulerfor-
mula

If f is a homogeneous polynomial of degree d in the variables x0, ..., xn, then∑
i

xi
∂f
∂xi

= d f

It suffices to check the formula when f is a monomial. You will be able to do this. For instance, if the variables
are x, y, z, and f = x2y3z, then

xfx + yfy + zfz = x(2xy3z) + y(3x2y2z) + z(x2y3) = 6x2y3z = 6 f �

1.4.7. Corollary.sing-
pointon-

curve

(i) If all partial derivatives of an irreducible homogeneous polynomial f(x0, x1, x2) are
zero at a point p of P2, then f is zero at p, and therefore p is a point, a singular point, of the curve {f = 0}.
(ii) At a smooth point of the plane curve defined by an irreducible homogeneous polynomial f , at least two
partial derivatives of f will be nonzero.
(iii) At a smooth point of the curve {f = 0}, the dehomogenization f(1, u1, u2) will have a nonvanishing
partial derivative.
(iv) The partial derivatives of an irreducible polynomial have no common (nonconstant) factor.
(v) A plane curve has finitely many singular points. �

(1.4.8)tangent tangent lines and flex points

Let C be the plane projective curve defined by an irreducible homogeneous polynomial f(x0, x1, x2). A
line L is tangent to C at a smooth point p if the intersection multiplicity of C and L at p is at least 2. (See
(1.3.9).) A smooth point p of C is a flex point if the intersection multiplicity of C and its tangent line at p is at
least 3, and p is an ordinary flex point if that intersection multiplicity is equal to 3.

Let L be a line through a point p and let q be a point of L distinct from p. We represent p and q by specific
vectors (p0, p1, p2) and (q0, q1, q2), to write a variable point of L as p+ tq, and we expand the restriction of f
to L in a Taylor’s series. The Taylor expansion carries over to complex polynomials because it is an identity.
Let fi = ∂f

∂xi
and fij = ∂2f

∂xi∂xj
. Taylor’s formula is

(1.4.9) f(p+ tq) = f(p) +

(∑
i

fi(p) qi

)
t + 1

2

(∑
i,j

qi fij(p) qj

)
t2 + O(3)taylor

where the symbol O(3) stands for a polynomial in which all terms have degree at least 3 in t. The point q is
missing from this parametrization, but this won’t be important.
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The intersection multiplicity of C and L at a point p was defined in (1.3.8). It is equal to the lowest power
of t that has nonzero coefficient in f(p + tq). The point p lies on the curve C if f(p) = 0. If so, and if p is a
smooth point of C, then the line L with the parametrization p + tq will be a tangent line to C at p, provided
that the coefficient

∑
i fi(p) qi of t is zero. If p is a smooth point and L is a tangent line, then p is a flex point

if in addition,
∑
i,j qifij(p) qj is zero.

One can write the equation (1.4.9) in terms of the gradient vector∇ = (f0, f1, f2) and the Hessian matrix
H of f . The Hessian is the matrix of second partial derivatives fij :

(1.4.10) H =

f00 f01 f02

f10 f11 f12

f20 f21 f22

 hessian-
matrix

Let ∇p and Hp denote the evaluations of∇ and H , respectively, at p.
When we regard p and q as the column vectors (p0, p1, p2)t and (q0, q1, q2)t, Equation 1.4.9 can be written

as

(1.4.11) f(p+ tq) = f(p) +
(
∇p q

)
t + 1

2 (qtHp q)t
2 + O(3) texp

in which qt is the transpose of the column vector q, a row vector, and where ∇pq and qtHpq are computed as
matrix products.

So p is a smooth point of C if f(p) = 0 and ∇p 6= 0. If p is a smooth point, then L is tangent to C at p
when ∇p q is zero, and p is a flex point when∇p q and qtHp q are both zero.

The equation of the tangent line L at a smooth point p of C is ∇p x = 0, or

(1.4.12) tanlineeqf0(p)x0 + f1(p)x1 + f2(p)x2 = 0

The point q lies on the tangent line L if the coefficient of t in (1.4.11) is zero. So a line L is a tangent line at a
smooth point p if it is orthogonal to the gradient∇p. There is a unique tangent line at a smooth point.

Note. Taylor’s formula shows that the restriction of f to any line through a singular point has a multiple zero.
However, we will speak of tangent lines only at smooth points of the curve.

1.4.13. Lemma. applyeuler∇p p = d f(p) and ptHp = (d− 1)∇p.

This lemma is obtained by applying Euler’s Formula to the entries of∇p and Hp. �

We rewrite Equation 1.4.9 one more time, using the notation 〈u, v〉 to represent the symmetric bilinear
form utHp v on the complex 3-dimenional vector space. It makes sense to say that this form vanishes on a
pair of points of P2, because the condition 〈u, v〉 = 0 doesn’t change when u or v is multiplied by a nonzero
scalar λ.

1.4.14. Proposition. linewith-
form

With notation as above,
(i) Equation (1.4.9) can be written as

f(p+ tq) = 1
d(d−1) 〈p, p〉 + 1

d−1 〈p, q〉t + 1
2 〈q, q〉t2 + O(3)

(ii) A point p is a smooth point of C if and only if 〈p, p〉 = 0 but 〈p, v〉 is not identically zero.

proof. (i) This is obtained by applying Lemma 1.4.13 to (1.4.11).

(ii) 〈p, v〉 = ∇pv/(d−1) is identically zero if and only if∇p = 0. �

1.4.15. Corollary. bilinformLet p be a smooth point of C, let q be a point of P2 distinct from p, and let L be the line
through p and q. Then
(i) L is tangent to C at p if and only if 〈p, p〉 = 〈p, q〉 = 0, and
(ii) p is a flex point of C with tangent line L if and only if 〈p, p〉 = 〈p, q〉 = 〈q, q〉 = 0. �

1.4.16. Theorem. tangent-
line

A smooth point p of the curve C is a flex point if and only if the Hessian determinant
detHp at p is zero.
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proof. Let p be a smooth point of C. If detHp = 0 , the form 〈u, v〉 is degenerate, and there is a nonzero null
vector q. Then 〈p, q〉 = 〈q, q〉 = 0. But p isn’t a null vector, because 〈p, v〉 isn’t identically zero at a smooth
point. So q is distinct from p. Therefore p is a flex point.

Conversely, suppose that p is a flex point and let q be a point on the tangent line at p and distinct from p, so
that 〈p, p〉 = 〈p, q〉 = 〈q, q〉 = 0. The restriction of the form to the two-dimensional space spanned by p and q
is zero, and this implies that the form is degenerate. If (p, q, v) is a basis of V , the matrix of the form will look
like this: 0 0 ∗

0 0 ∗
∗ ∗ ∗


�

1.4.17. Proposition.hess-
notzero (i) Let f(x, y, z) be an irreducible homogeneous polynomial of degree at least two. The Hessian determinant

detH isn’t divisible by f . In particular, the Hessian determinant isn’t identically zero.
(ii) A plane curve that isn’t a line has finitely many flex points.

proof. (i) Let C be the plane curve defined by f . If f divides the Hessian determinant, every smooth point
of C will be a flex point. We set z = 1 and look on the standard open set U2, choosing coordinates so that
the origin p is a smooth point of C, and so that ∂f∂y 6= 0 at p. The Implicit Function Theorem tells us that we
can solve the equation f(x, y, 1) = 0 for y locally, say y = ϕ(x), where ϕ is an analytic function. The graph
Γ : {y = ϕ(x)} will be equal to C in a neighborhood of p. (See the review below.) A point of Γ is a flex
point if and only if d2ϕ

dx2 is zero there. If this is true for all points near to p, then d2ϕ
dx2 will be identically zero,

which implies that ϕ is linear, and since ϕ(0) = 0, that ϕ(y) has the form ax. Then y = ax solves f = 0,
and therefore y − ax divides f(x, y, 1). But f(x, y, z) is irreducible, and so is f(x, y, 1). So f(x, y, 1) and
f(x, y, z) are linear, contrary to hypothesis.

(ii) This follows from (i) and (1.3.12). The irreducible polynomial f and the Hessian determinant detH
have finitely many common zeros. �

1.4.18. Review.ifthm (about the Implicit Function Theorem)

By analytic function ϕ(x1, ..., xk), in one or more variables, we mean a complex-valued function, defined
for small x, which can be represented as a power series that converges when x is small.

If f(x, y) is a polynomial of two variables such that f(0, 0) = 0 and df
dy (0, 0) 6= 0, the Implicit Function

Theorem asserts that there is a unique analytic function ϕ(x) such that ϕ(0) = 0 and f(x, ϕ(x)) is identically
zero.

Let R be the ring af analytic functions in x. In the ring R[y] of polynomials with coefficients in R, the
polynomial y−ϕ(x) divides f(x, y). To see this, we do division with remainder of f by the monic polynoial
y − ϕ(x) in y:

(1.4.19)divrem f(x, y) = (y − ϕ(x))q(x, y) + r(x)

The quotient q and remainder r are in R[y], and r(x) has degree zero in y, so it is in R. Setting y = ϕ(x) in
the equation, one sees that r(x) = 0.

Let Γ be the graph of ϕ in a suitable neighborhood U of the origin in x, y-space. Since f(x, y) =
(y − ϕ(x))q(x, y), the locus f(x, y) = 0 in U has the form Γ ∪ ∆, where Γ is the zero locus of y − ϕ(x)
and ∆ is the zero locus of q(x, y). Differentiating, we find that ∂f∂y (0, 0) = q(0, 0). So q(0, 0) 6= 0. Then ∆
doesn’t contain the origin, while Γ does. This implies that ∆ is disjoint from Γ, locally. A sufficiently small
neighborhood U of the origin won’t contain any points of ∆. In such a neighborhood, the locus of zeros of f
will be Γ.

If ∂f∂x (0, 0) is also nonzero, one can also solve for x as an analytic function ψ(y) of y. Then ψ(y) will be a
local inverse function of ϕ. �

1.5 Transcendence Degree
transcdeg
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A domain that contains another domain R as a subring will be called an R-algebra. Domains that contain the
complex numbers, C-algebras, will occur frequently, so we refer to them simply as algebras.

If F is a field, we use the customary notation F [α1, ..., αn] or F [α] for the F -algebra generated by a set of
elements α = {α1, ..., αn}, and we may denote the field of fractions of F [α1, ..., αn] by F (α1, ..., αn) or by
F (α).

Let F ⊂ K be a field extension. A set α = {α1, ..., αn} of elements of K is algebraically dependent over
F if there is a nonzero polynomial f(x1, ..., xn) with coefficients in F , such that f(α) = 0. If there is no such
polynomial, the set α is algebraically independent over F .

A set {α1, ..., αn} is algebraically independent over F if and only if the surjective map from the polynomial
algebra F [x1, ..., xn] to F [α1, ..., αn] that sends xi to αi is bijective. If so, we may say that F [α1, ..., αn] is a
polynomial algebra.

An infinite set is called algebraically independent over F if every finite subset is algebraically independent
over F — if there is no polynomial relation among any finite set of its elements.

The set {α1} consisting of a single element of K is algebraically dependent if α1 is algebraic over F .
Otherwise, it is algebraically independent, and then α1 is said to be transcendental over F .

A transcendence basis for K over F is a finite algebraically independent set α = {α1, ..., αn} that isn’t
contained in a larger algebraically independent set. If there is a transcendence basis, its order is the transcen-
dence degree of the field extension K. Proposition 1.5.3 below shows that all transcendence bases for K over
F have the same order. If there is no (finite) transcendence basis, the transcendence degree ofK over F is said
to be infinite.

For example, when K = F (x1, ..., xn) is the field of rational functions in n variables, the variables form a
transcendence basis of K over F , and the transcendence degree of K over F is n. The elementary symmetric
functions s1 = x1+· · ·+xn , . . . , sn = x1 · · ·xn also form a transcendence basis.

An element a of a ring R is a zero divisor if there is a nonzero element b of R such that the product ab is
zero. A domain is a nonzero ring with no zero divisors.

1.5.1. Proposition. trdegalgLet F be a field, let A be domain that is an F -algebra, and let K be its field of fractions.
IfK has transcendence degree n over F , then every algebaically independent set of elements ofA is contained
in an algebraically independent set of order n. �

1.5.2. Proposition. algindtriv-
ialities

Let K/F be a field extension, let α = {α1, ..., αn} be a set of elements of K that is
algebraically independent over F , and let F (α) be the field of fractions of the F -algebra that is generated by
α.
(i) Let β be another element of K. The set {α1, ..., αn, β} is algebraically dependent if and only if β is
algebraic over F (α).
(ii) The algebraically independent set α is a transcendence basis if and only if every element ofK is algebraic
over F (α). �

1.5.3. Proposition. trdegLetK/F be a field extension. IfK has a finite transcendence basis, then all algebraically
independent subsets of K are finite, and all transcendence bases have the same order.

proof. Let α = {α1, ..., αr} and β = {β1, ..., βs} be subsets of K. Assume that K is algebraic over F (α) and
that the set β is algebraically independent over F . We show that s ≤ r. The fact that all transcendence bases
have the same order will follow: If both α and β are transcendence bases, then we can interchange α and β,
so r ≤ s.

The proof that s ≤ r proceeds by reducing to the trivial case that β is a subset of α. Suppose that some
element of β, say βs, isn’t in the set α. The set β′ = {β1, ..., βs−1} is algebraically independent, but it isn’t
a transcendence basis. So K isn’t algebraic over F (β′). Since K is algebraic over F (α), there is at least one
element of α, say αr, that isn’t algebraic over F (β′). Then γ = β′∪{αr} will be an algebraically independent
set of order s that contains more elements of the set α than β does. Induction shows that s ≤ r. �

1.5.4. Corollary. sametrdegLet L ⊃ K ⊃ F be fields. If the degree [L :K] of the field extension L/K is finite, then L
and K have the same transcendence degree over F .

This follows from Proposition 1.5.2. �
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1.6 The Dual Curve
dualcurve

(1.6.1)dualplane-
sect

the dual plane

Let P denote the projective plane with coordinates x0, x1, x2, let s0, s1, s2 be scalars, not all zero, and let
L be the line in P with the equation

(1.6.2) s0x0 + s1x1 + s2x2 = 0lineequa-
tion

The solutions (x0, x1, x2) of this equation, the points of L, are unchanged when we multiply (s0, s1, s2)
by a nonzero scalar λ. They determine the coefficients si up to a common nonzero factor. So L determines a
point (s0, s1, s2) in another projective plane P∗ called the dual plane. We denote the point (s0, s1, s2) of P∗
by L∗. Moreover, a point p = (x0, x1, x2) in P determines a line in the dual plane, the line with the equation
(1.6.2), when si are regarded as the variables and xi as the scalar coefficients. We denote that line by p∗. The
equation exhibits a duality between P and P∗. A point p of P lies on the line L if and only if the equation is
satisfied, and this means that, in P∗, the point L∗ lies on the line p∗.

As this duality shows, the dual P∗∗ of the dual plane P∗ is the plane P.

(1.6.3)dual-
curvetwo

the dual curve

Let C be the plane projective curve defined by an irreducible homogeneous polyomial f of degree at least
two, and let U be the set of its smooth points. Corollary 1.4.7 tells us that U is the complement of a finite set
in C. We define a map

U
t−→ P∗

as follows: Let p be a point of U and let L be the tangent line to C at p. The definition of the map is t(p) = L∗,
where L∗ is the point of P∗ that corresponds to L. Thus the image t(U) is the locus of the tangent lines at the
smooth points of C. We assume that f has degree at least two because, if C were a line, the image t(U) of U
would be a point.

Let ∇f = (f0, f1, f2) denote the gradient of f , with a fi = ∂f
∂xi

as before. The tangent line L at a smooth
point p = (x0, x1, x2) of C has the equation f0x0 + f1x1 + f2x2 = 0. Therefore L∗ = t(p) is the point

(1.6.4) (s0, s1, s2) ∼
(
f0(x), f1(x), f2(x)

)
= ∇f(x)ellstare-

quation
1.6.5. Lemma.phize-

rogzero
Let ϕ(s0, s1, s2) be a homogeneous polynomial of degree r, and let g(x0, x1, x2) =

ϕ(∇f(x)). Then ϕ(s) is identically zero on the image t(U) of the set U of smooth points if and only if
g(x) is identically zero on U , and this is true if and only if f divides g.

proof. The point s = (s0, s1, s2) is in t(U) if for some x in U and some λ 6= 0, ∇f(x) = λs. Then
g(x) = ϕ(∇f(x)) = ϕ(λs) = λrϕ(s). So g(x) = 0 if and only if ϕ(s) = 0. �

1.6.6. Theorem.dual-
curvethm

Let C be the plane curve defined by an irreducible homogeneous polynomial f of degree at
least two. With notation as above, the image t(U) is contained in a curve C∗ in the dual plane P∗.

The curve C∗ referred to in the theorem is the dual curve.

proof of Theorem 1.6.6. If an irreducible homogeneous polynomial ϕ(s) vanishes on t(U), it will be unique
up to scalar factor (Corollary 1.3.16). We show first that there is a nonzero polynomial ϕ(s), not necessarily
irreducible or homogeneous, that vanishes on t(U). The field C(x0, x1, x2) has transcendence degree three
over C. Therefore the four polynomials f0, f1, f2, and f are algebraically dependent. There is a nonzero poly-
nomial ψ(s0, s1, s2, t) such that ψ(f0(x), f1(x), f2(x), f(x)) is the zero polynomial. We can cancel factors
of t, so we may assume that ψ isn’t divisible by t. Let ϕ(s) = ψ(s0, s1, s2, 0). When t doesn’t divide ψ, this
isn’t the zero polynomial. If a vector x = (x1, x2, x3) represents a point of U , then f(x) = 0, and therefore

ψ(f0(x), f1(x), f2(x), f(x)) = ψ(∇f(x), 0) = ϕ(∇f(x))

Since the left side of this equation is identically zero, ϕ(∇f(x)) = 0 for every x that represents a point of U .
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Next, say that f has degree d. Then the partial derivatives fi have degree d−1. Therefore∇f(λx) = λd−1∇f(x)
for all λ, and because the vectors x and λx represent the same point of U , ϕ(∇f(λx)) = ϕ(λd−1∇f(x))) = 0
for all λ, when x is in U . Writing∇f(x) = s, ϕ(λd−1s) = 0 for all λ when x is in U . Since λd−1 can be any
complex number, Lemma 1.3.2 tells us that the homogeneous parts of ϕ(s) vanish at s, when s = ∇f(x) and
x is in U . So the homogeneous parts of ϕ(s) vanish on t(U). This shows that there is a nozero, homogeneous
polynomial ϕ(s) that vanishes on t(U). We choose such a polynomial ϕ(s). Let its degree be r.

Let g(x) = ϕ(∇f(x)). If f has degree d, then g will be homogeneous, of degree r(d − 1). It will vanish
on U , and therefore on C (1.3.21). So f will divide g. If ϕ(s) factors, then g(x) factors accordingly, and
because f is irreducible, it will divide one of the factors of g. The corresponding factor of ϕ will vanish on
t(U) (1.6.5). So we may replace the homogeneous polynomial ϕ by one of its irreducible factors. �

In principle, the proof of Theorem 1.6.6 gives a method for finding a polynomial that vanishes on the dual
curve. That method is to find a polynomial relation among fx, fy, fz, f , and set f = 0. But it is usually painful
to determine the defining polynomial of C∗ explicitly. Most often, the degrees of C and C∗ will be different.
Moreover, several points of the dual curve C∗ may correspond to a singular point of C, and vice versa.

We give two examples in which the computation is easy.

1.6.7. Examples. exampled-
ualone(i) (the dual of a conic) Let f = x0x1 + x0x2 + x1x2 and let C be the conic f = 0. Let (s0, s1, s2) =

(f0, f1, f2) = (x1+x2, x0+x2, x0+x1). Then

(1.6.8) s2
0 + s2

1 + s2
2 − 2(x2

0 + x2
1 + x2

2) = 2f and s0s1 + s1s2 + s0s2 − (x2
0 + x2

1 + x2
2) = 3f exampled-

ualtwo
We eliminate (x2

0 + x2
1 + x2

2) from the two equations:

(1.6.9) (s2
0 + s2

1 + s2
2)− 2(s0s1 + s1s2 + s0s2) = −4f equationd-

ualthree
Setting f = 0 gives us the equation of the dual curve. It is another conic.

(ii) (the dual of a cuspidal cubic) The dual of a smooth cubic is a curve of degree 6. It is too much work
to compute that dual here. We compute the dual of a singular cubic instead. The curve C defined by the
irreducible polynomial f = y2z + x3 has a singularity, a cusp. at the point (0, 0, 1). The Hessian matrix of f
is

H =

6x 0 0
0 2z 2y
0 2y 0


and the Hessian determinant detH is h = −24xy2. The common zeros of f and h are the singular point
(0, 0, 1), and a single flex point (0, 1, 0).

We scale the partial derivatives of f to simplify notation. Let u = fx/3 = x2, v = fy/2 = yz, and
w = fz = y2. Then

v2w − u3 = y4z2 − x6 = (y2z + x3)(y2z − x3) = f(y2z − x3)

The zero locus of the irreducible polynomial v2w − u3 is the dual curve, another singular cubic. �

(1.6.10) equa-
tionofcstar

a local equation for the dual curve

We label the coordinates in P and P∗ as x, y, z and u, v, w, respectively, and we work in a neighborhood
of a smooth point p0 of the curve C defined by a homogeneous polynomial f(x, y, z). We choose coordinates
so that p0 = (0, 0, 1), and that the tangent line L0 at p0 is the line {y = 0}. The image of p0 in the dual curve
C∗ is the point L∗0 at which (u, v, w) = (0, 1, 0).

Let f̃(x, y) = f(x, y, 1). In the affine x, y-plane, the point p0 becomes the origin (0, 0). So f̃(p0) = 0,
and since the tangent line is L0, ∂f̃

∂x (p0) = 0, while ∂f̃
∂y (p0) 6= 0. We can solve the equation f̃ = 0 for y

as an analytic function y(x), with y(0) = 0. Let y′(x) denote the derivative dy
dx . Differentiating the equation

f(x, y(x)) = 0 shows that y′(0) = 0.

22



Let p̃1 = (x1, y1) be a point of C0 near to p̃0, so that y1 = y(x1), and let y′1 = y′(x1). The tangent line
L1 at p̃1 has the equation

(1.6.11) y − y1 = y′1(x− x1)localtan-
gent

Putting z back, the homogeneous equation of the tangent line L1 at the point p1 = (x1, y1, 1) is

−y′1x+ y + (y′1x1−y1)z = 0

The point L∗1 of the dual plane that corresponds to L1 is

(1.6.12) (u1, v1, w1) = (−y′1, 1, y′1x1−y1)projlocal-
tangent

(1.6.13)bidualone the bidual

The bidual C∗∗ of C is the dual of the curve C∗. It is a curve in the space P∗∗, which is P.

1.6.14. Theorem.bidualC A plane curve C of degree greater than one is equal to its bidual C∗∗.

We use the following notation for the proof:

• U is the set of smooth points of the curve C, and U∗ is the set of smooth points of the dual curve C∗.

• U∗
t∗−→ P∗∗ = P is the map analogous to the map U t−→ P∗.

• V is the set of points p of C such that p is a smooth point of C and also t(p) is a smooth point of C∗, and
V ∗ is the image tV .

Then V ⊂ U ⊂ C and V ∗ ⊂ U∗ ⊂ C∗.
1.6.15. Lemma.vopen
(i) V is the complement of a finite set in C.
(ii) Let p1 be a point near to a smooth point p of a curve C, let L1 and L be the tangent lines to C at p1 and
p, respectively, and let q be intersection point L1 ∩ L. Then lim

p1→p
q = p.

(iii) If L is the tangent line to C at a point p of V , then p∗ is the tangent line to C∗ at the point L∗, and
t∗(L∗) = p.

(iv) V ∗ is the complement of a finite set in C∗, and the map V t−→ V ∗ is bijective.

The points and lines that appear in (ii) are displayed in the figure below.
proof. (i) Let S and S∗ denote the finite sets of singular points of C and C∗, respectively. The set V is obtained
from C by deleting points of S and points in the inverse image of S∗. The fibre of the map U t−→ P∗ over
a point L∗ of C∗ is the set of smooth points of C whose tangent line is L. Since L meets C in finitely many
points, the fibre is finite. So the inverse image of the finite set S∗ is finite.

(ii) We work analytically in a neighborhood of p, choosing coordinates so that p = (0, 0, 1) and that L is
the line {y = 0}. Let (xq, yq, 1) be the coordinates of the point q. Since q is a point of L, yq = 0. The
coordinate xq can be obtained by substituting x = xq and y = 0 into the local equation (1.6.11) for L1:
xq = x1 − y1/y

′
1.

Now, when a function has an nth order zero at the point x = 0, i.e, when it has the form y = xnh(x), where
n > 0 and h(0) 6= 0, the order of zero of its derivative at that point is n−1. This is verified by differentiating
xnh(x). Since the function y(x) has a zero of positive order at p, lim

p1→p
y1/y

′
1 = 0. We also have lim

p1→p
x1 = 0.

Therefore lim
p1→p

xq = 0, and lim
p1→p

q = lim
p1→p

(xq, yq, 1) = (0, 0, 1) = p.

(iii) Let p1 be a point of C near to p, and let L1 be the tangent line to C at p1. The image L∗1 of p1 is the point
(f0(p1), f1(p1), f2(p1)) of C∗. Because the partial derivatives fi are continuous,

lim
p1→p

L∗1 = (f0(p), f1(p), f2(p)) = L∗
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With q = L ∩ L1 as above, q∗ is the line through the points L∗ and L∗1. As p1 approaches p, L∗1 approaches
L∗, and therefore q∗ approaches the tangent line to C∗ at L∗. On the other hand, it follows from (ii) that
q∗ approaches p∗. Therefore the tangent line to C∗ at L∗ is p∗. By definition, t∗(L∗) is the point of C that
corresponds to the tangent line p∗ at L∗. So t∗(L∗) = p∗∗ = p. �

1.6.16. curveand-
dual

p

p1

L1

q

L

C

L∗

L∗
1

p∗

q∗

p∗1

C∗

A Curve and its Dual

In this figure, the curve C on the left is the parabola y = x2. We used the local equation (1.6.11) to obtain a
local equation u2 = 4w of the dual curve C∗.

proof of theorem 1.6.14. Let p be a point of V , and let L be the tangent line at p. The map t∗ is defined at L∗),
and t∗(L∗) = p. Since L∗ = t(p), t∗t(p) = p. It follows that the restriction of t to V is injective, and that it
defines a bijective map from V to its image V ∗, whose inverse function is t∗. So V is contained in the bidual
C∗∗. Since V is dense in C and since C∗∗ is a closed set, C is contained in C∗∗. Since C and C∗∗ are curves,
C = C∗∗. �

1.6.17. Corollary. cstarisim-
age

(i) Let U be the set of smooth points of a plane curve C, and let t denote the map from U
to the dual curve C∗. The image t(U) of U is the complement of a finite subset of C∗.

(ii) If C is a smooth curve, the map C t−→ C∗, is defined at all points of C, and it is a surjective map.

proof. (i) With U , U∗, and V as above, V = t∗t(V ) ⊂ t∗(U∗) ⊂ C∗∗ = C. Since V is the complement of a
finite subset of C, so is t∗(U∗). The assertion to be proved follows when we interchange C and C∗.

(ii) The map t is continuous, so its image t(C) is a compact subset of C∗, and by (i), its complement S is a
finite set. Therefore S is both open and closed. It consists of isolated points of C∗. Since a plane curve has no
isolated point, S is empty. �

1.6.18. Corollary. notbitan-
gent

Let C be a smooth curve, and suppose that the tangent line L at a point p of C isn’t tangent
to C at another point, i.e., that L isn’t a bitangent. Then the path defined by the local equation (1.6.12) traces
out the dual curve C∗ near to L∗ = (0, 1, 0).

proof. Let D be an open neighborhood of p in C in the classical topology, such that the equation (1.6.12)
describes the point L∗1 when p1 is in D. The complement of D in C is compact, and so is its image tZ. If
L∗ = t(p) isn’t in tZ, then p has a neighborhood U whose image is disjoint from tZ. In that neighborhood,
the local equation traces out the dual curve.

The reasoning breaks down when C is singular, because the locus of smooth points won’t be compact. �

1.7 Resultants and Discriminants
resultant

Let
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(1.7.1) F (x) = xm + a1x
m−1 + · · ·+ am and G(x) = xn + b1x

n−1 + · · ·+ bnpolys

be monic polynomials. The resultant Res(F,G) of F and G is a certain polynomial in the undetermined
coefficients ai, bj . Its important property is that, when the coefficients are given values in a field, the resultant
is zero if and only if F and G have a common factor.

For instance, suppose that F (x) = x+ a1 and G(x) = x2 + b1x+ b2. The root −a1 of F is a root of G if
G(a1) = a2

1 − b1a1 + b2 is zero. The resultant of F and G is a2
1 − b1a1 + b2.

1.7.2. Example.restwovar Suppose that the coefficients ai and bj in (1.7.1) are polynomials in t, so that F and G
become polynomials in two variables. Let C and D be (possibly reducible) curves F = 0 and G = 0 in the
affine plane A2

t,x. The resultant Res(F,G), computed regarding x as the variable, will be a polynomial in t,
whose roots are the t-coordinates of the intersections of C and D.

tRes = 0↘

F = 0

G = 0

The analogous statement is true when there are more variables. If F and G are relatively prime polynomials
in x, y, z, the loci C : {F = 0} and D : {G = 0} in A3 will be surfaces, and the intersection S = C ∩D will
be a curve. The resultant Resz(F,G), computed regarding z as the variable, is a polynomial in x, y. Its zero
locus is the projection of S to the x, y-plane. �

The formula for the resultant is nicest when one allows leading coefficients different from 1. We work with
homogeneous polynomials in two variables to prevent the degrees from dropping when a leading coefficient
happens to be zero. The common zeros of two homogeneous polynomials f(x, y) and g(x, y) correspond to
the common roots of the polynomials F (x) = f(x, 1) and G(x) = g(x, 1), except when the common zero is
the point (0, 1) at infinity.

Let

(1.7.3) f(x, y) = a0x
m + a1x

m−1y + · · ·+ amy
m and g(x, y) = b0x

n + b1x
n−1y + · · ·+ bny

nhompolys

be homogeneous polynomials in x and y, of degrees m and n, respectively, and with complex coefficients. If
these polynomials have a common zero (x, y) = (u, v) in P1

xy , then vx−uy divides both g and f (see (1.3.6)).
Then the polynomial h = fg/(vx−uy), which has degree r = m+n−1, will be divisible by f and also by g.
Suppose that this is so, and that h = pf = qg, where p and q are homogeneous polynomials of degrees n−1
and m−1, respectively. Then p will be a linear combination of the polynomials xiyj , with i+j = n−1 and q
will be a linear combination of the polynomials xky`, with k+` = m−1. The fact that the two combinations
pf and qg are equal tells us that the r+1 polynomials

(1.7.4) xn−1f, xn−2yf, ..., yn−1f ; xm−1g, xm−2yg, ..., ym−1gmplus-
npolys

of degree r are (linearly) dependent. For example, if f has degree 3 and g has degree 2, and if f and g have a
common zero, then the polynomials

xf = a0x
4 + a1x

3y + a2x
2y2 + a3xy

3

yf = a0x
3y + a1x

2y2 + a2xy
3 + a3y

4

x2g = b0x
4 + b1x

3y + b2x
2y2
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xyg = b0x
3y + b1x

2y2 + b2xy
3

y2g = bx2y2 + b1xy
3 + b2y

4

will be dependent. Conversely, if the polynomials (1.7.4) are dependent, there will be an equation of the form
pf − qg = 0, with p of degree n−1 and q of degree m−1. Then since g has degree n while p has degree n−1,
at least one zero of g must be a zero of f .

The polynomials (1.7.4) have degree r = m+n−1. We form a square (m+n)×(m+n) matrix R, the
resultant matrix, whose columns are indexed by the monomials xr, xr−1y, ..., yr of degree r, and whose rows
list the coefficients of those monomials in the polynomials (1.7.4). The matrix is illustrated below for the cases
m,n = 3, 2 and m,n = 1, 2, with dots representing entries that are zero:

(1.7.5) R =


a0 a1 a2 a3 ·
· a0 a1 a2 a3

b0 b1 b2 · ·
· b0 b1 b2 ·
· · b0 b1 b2

 or R =

a0 a1 ·
· a0 a1

b0 b1 b2

 resmatrix

The resultant of f and g is defined to be the determinant ofR.

(1.7.6) Res(f, g) = detR resequals-
det

In this definition, the coefficients of f and g can be in any ring.
The resultant Res(F,G) of the monic, one-variable polynomials F (x) = xm+a1x

m−1 + · · ·+am and
G(x) = xn+b1x

n−1+· · ·+bn is the determinant of the matrix obtained fromR by setting a0 = b0 = 1.

1.7.7. Corollary. homogre-
sult

Let f and g be homogeneous polynomials in two variables, or monic polynomials in one
variable, of degrees m and n, respectively, and with coefficients in a field. The resultant Res(f, g) is zero if
and only if f and g have a common factor. If so, there will be polynomials p and q of degrees n−1 and m−1
respectively, such that pf = qg. If the coefficients are complex numbers, the resultant is zero if and only if f
and g have a common zero. �

When the leading coefficients a0 and b0 of f and g are both zero, the point (1, 0) of P1 will be a zero of f and
of g. In that case, one could say that f and g have a common zero at infinity.

1.7.8. Aside. resentries(the entries of the resultant matrix) Define ai = 0 when i isn’t in the range 0, ...,m, and bi = 0
when i isn’t in the range 0, ..., n. The resultant matrix has two parts. For rows 1 to n, the (i, j)-entry Rij
of R is the coefficient of xm+n−jyj−1 in the polynomial xn−iyif , which is equal to the coefficient aj−i of
xm+i−jyj−i in f . So Rij = aj−i. The computation for the bottom part ofR is similar, except that one needs
to adjust the indices. For rows n + 1, ..,m+n, let k = n − i. The (i, j)-entry of R is the coefficient of
xm+n−kyk−1 in xn−kykg, which is equal to the coefficient bj−k of xm+k−jyj−kg. The i, j-entry ofR is

Rij = aj−i when i = 1, ..., n , and Rij = bj−k when i = n+ k and k = 1, ...,m

entries with negative subscripts being zero. �

(1.7.9) weightsweighted degree

When defining the degree of a polynomial, one may assign an integer called a weight to each variable. If
one assigns weight wi to the variable xi, the monomial xe11 · · ·xenn gets the weighted degree

e1w1 + · · ·+ enwn

For instance, one may assign weight k to the coefficient ak of the polynomial f(x) = xn−a1x
n−1+a2x

n−2−
· · ·±an. This is natural because, if f factors into linear factors, f(x) = (x−α1) · · · (x−αn), then ak will be
the kth elementary symmetric function in the roots α1, ..., αn. When ak written as a polynomial in the roots,
its degree will be k.
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1.7.10. Lemma.degresult Let f(x, y) and g(x, y) be homogeneous polynomials of degrees m and n respectively, with
variable coefficients ai and bj , as in (1.7.3). When one assigns weight i to ai and to bi, the resultant Res(f, g)
becomes a weighted homogeneous polynomial of degree mn in the variables {ai, bj}. �

For example, when the degrees of f and g are 1 and 2, respectively, the resultant Res(f, g) is the determi-
nant of the 3×3 matrix depicted in (1.7.5), which is a2

0b2 + a2
1b0 − a0a1b1. Its weighted degree is 1 · 2 = 2.

1.7.11. Proposition.resroots Let F and G be products of monic linear polynomials, say F =
∏m
i=1(x − αi) and

G =
∏n
j=1(x− βj). Then

Res(F,G) =
∏
i,j

(αi − βj) =
∏
i

G(αi)

proof. The equality of the second and third terms is obtained by substituting αi for x into the formula G =∏
(x − βj). We prove the first equality. Let the polynomials F and G have variable roots αi and βj , let R

denote the resultant Res(F,G), and let Π =
∏
i.j(αi − βj). Lemma 1.7.10 tells us that, when we write the

coefficients of F and G as symmetric functions in the roots, αi and βj , the resultant R will be homogeneous.
Its (unweighted) degree in {αi, βj} will be mn. This is also the degree of Π. To show that R = Π, we choose
i and j. We view R as a polynomial in the variable αi, and divide by αi − βj , which is monic in αi:

R = (αi − βj)q + r

where r has degree zero in αi. Corollary 1.7.7 tells us that the resultant R vanishes when we make the
substitution αi = βj , because the coefficients of F and G are in the field of rational functions in {αi, βj}.
Looking at the equation above, we see that the remainder r also vanishes when αi = βj . On the other hand, the
remainder is independent of αi. It doesn’t change when we make that substitution. Therefore the remainder
is zero, and αi − βj divides R. This is true for all i and j, so Π divides R, and since these two polynomials
have the same degree, R = cΠ for some scalar c. One can show that c = 1 by computing R and Π for some
particular polynomials. We suggest making the computation with F = xm and G = xn−1. �

1.7.12. Corollary.restriviali-
ties

Let F,G, and H be monic polynomials and let c be a scalar. Then
(i) Res(F,GH) = Res(F,G) Res(F,H), and
(ii) Res(F (x−c), G(x−c)) = Res(F (x), G(x)). �

(1.7.13)discrim-
sect

the discriminant

The discriminant Discr(F ) of a polynomial F = a0x
m + a1x

n−1 + · · · am is the resultant of F and its
derivative F ′:

(1.7.14) Discr(F ) = Res(F, F ′)discrdef

It is computed using the formula for the resultant of a polynomial of degree m, and it will be a weighted
polynomial of degree m(m−1). The definition makes sense when the leading coefficient a0 is zero, but the
discriminant will be zero in that case.

When F is a polynomial of degree n with complex coefficients, the discriminant is zero if and only if F
and F ′ have a common factor, which happens when F has a multiple root.

Note. The formula for the discriminant is often normalized by a scalar factor. We won’t make this normaliza-
tion, so our formula is slightly different from the usual one.

The discriminant of the quadratic polynomial F (x) = ax2 + bx+ c is

(1.7.15) det

 a b c
2a b ·
· 2a b

 = −a(b2 − 4ac)discrquadr
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and the discriminant of a monic cubic x3 + px+ q whose quadratic coefficient is zero is

(1.7.16) discrcubicdet


1 · p q ·
· 1 · p q
3 · p · ·
· 3 · p ·
· · 3 · p

 = 4p3 + 27q2

As mentioned, these formulas differ from the usual ones by a scalar factor. The usual formula for the discrimi-
nant of the quadratic ax2 + bx+ c is b2−4ac, and the discriminant of the cubic x3 +px+ q is usually written
as −4p3 − 27q2.

Though it conflicts with our definition, we’ll follow tradition and continue writing the discriminant of a
quadratic as b2 − 4ac.

1.7.17. Example. discrt-
wovar

Suppose that the coefficients ai of F are polynomials in t, so that F = F (t, x) becomes a
polynomial in two variables. Let’s suppose that F is an irreducible polynomial. Let C be the curve F = 0 in
the t, x-plane. The discriminant Discrx(F ), computed regarding x as the variable, will be a polynomial in t.
At a root t0 of the discriminant, F (t0, x) will have a multiple root. Therefore the vertical line {t = t0} will be
tangent to C, or pass though a singular point of C. �

1.7.18. Proposition. dis-
crnotzero

Let K be a field of characteristic zero. The discriminant of an irreducible polynomial F
with coefficients in K isn’t zero. Therefore F has no multiple root.

proof. When F is irreducible, it cannot have a factor in common with the derivative F ′, which has lower
degree. �

This proposition is false when the characteristic of K isn’t zero. In characteristic p, the derivative F ′ might be
the zero polynomial.

1.7.19. Proposition. discrfor-
mulas

Let F =
∏

(x − αi) be a polynomial that is a product of monic linear polynomials
x− αi. Then

Discr(F ) =
∏
i

F ′(αi) =
∏
i 6=j

(αi − αj) = ±
∏
i<j

(αi − αj)2

proof. The fact that Discr(F ) =
∏
F ′(αi) follows from (1.7.11). We prove the second equality by showing

that F ′(αi) =
∏
j,j 6=i(αi − αj). By the product rule for differentiation,

F ′(x) =
∑
k

(x− α1) · · · ̂(x− αk) · · · (x− αn)

where the hat ̂ indicates that that term is deleted. When we substitute x = αi, all terms in this sum, except
the one with k = i, become zero. �

1.7.20. Corollary. translate-
discr

Discr(F (x)) = Discr(F (x− c)). �

1.7.21. Proposition. discrpropLet F (x) and G(x) be monic polynomials. Then

Discr(FG) = ±Discr(F ) Discr(G)Res(F,G)2

proof. This proposition follows from Propositions 1.7.11 and 1.7.19 for polynomials with complex coefficients.
It is true for polynomials with coefficients in any ring because it is an identity. For the same reason, Corollary
1.7.12 is true when the coefficients of the polynomials F,G,H are in any ring. �

When f and g are polynomials in several variables, one of which is z, Resz(f, g) and Discrz(f) will
denote the resultant and the discriminant, computed regarding f and g as polynomials in z. They will be
polynomials in the other variables.

1.7.22. Lemma. firroverKLet f be an irreducible polynomial in C[x, y, z] of positive degree in z, and not divisible by
z. The discriminant Discrz(f), regarding f as a polynomial in z, is a nonzero polynomial in x, y.

proof. This follows from Lemma 1.3.14 (ii) and Proposition 1.7.18. �
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1.8 Nodes and Cusps
nodes

(1.8.1)singmult the multiplicity of a singular point

Let C be the projective curve defined by an irreducible homogeneous polynomial f(x, y, z) of degree d,
and let p be a point of C. We choose coordinates so that p = (0, 0, 1), and we set z = 1. This gives us an affine
curve C0 in A2

x,y , the zero set of the polynomial f̃(x, y) = f(x, y, 1), and p becomes the origin. We write

(1.8.2) f̃(x, y) = f0 + f1 + f2 + · · ·+ fdseriesf

where fi is the homogeneous part of f̃ of degree i. The homogeneous part fi is also the coefficient of zd−i in
f(x, y, z). If the origin p is a point of C0, the constant term f0 will be zero, and the linear term f1 will define
the tangent direction to C0 at p, If f0 and f1 are both zero, p will be a singular point of C. It seems permissible
to drop the tilde and the subscript 0 in what follows, denoting f(x, y, 1) by f(x, y), and C0 by C.

We use analogous notation for an analytic function f(x, y) (1.4.18), denoting the homogeneous part of
degree i of the series f by fi:

(1.8.3) f(x, y) = f0 + f1 + · · ·multr

Let C denote the locus of zeros of f in a neighborhood of the origin p. To describe the singularity of C at the
origin, we look at the part of f of lowest degree. The smallest integer r such that fr(x, y) isn’t zero is called
the multiplicity of C at p. When the multiplicity is r, f will have the form fr + fr+1 + · · · .

Let L be the line {vx = uy} through p, and suppose that u 6= 0. In analogy with Definition 1.3.9, the
intersection multiplicity (1.3.9) of C and L at p is the order of zero of the series in x obtained by substituting
y = vx/u into f . The intersection multiplicity will be r unless fr(u, v) is zero. If fr(u, v) = 0, the intersection
multiplicity will be greater than r. A line L through p whose intersection multiplicity with C at p is greater
than the multiplicity of C will be called a special line. The special lines correspond to the zeros of fr in P1.
Because fr has degree r, there will be at most r special lines.

1.8.4.goober14

a Singular Point, with its Special Lines (real locus)

###please make point a visible dot in this figure###

(1.8.5)dpt double points

To analyze a singularity at the origin, one may blow up the plane. The map W π−→ X from the (x,w)-
plane to the (x, y)-plane defined by π(x,w) = (x, xw) is called an affine blowup because the fibre over the
origin in X is the line {x = 0} in W : π(0, w) = (0, 0) for all w. (It might seem more appropriate to call the
inverse of π the blowup, but the inverse isn’t a map.)
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The blowup is bijective at points (x, y) of X at which x 6= 0, and points (x, 0) of X with x 6= 0 aren’t in
its image.

Suppose that the origin p is a double point, a point of multiplicity 2, and let the quadratic part of f be

f2 = ax2 + bxy + cy2 quadrat-
icterm

To blow up the plane, we adjust coordinates so that c isn’t zero, and normalize c to 1. Writing

f(x, y) = ax2 + bxy + y2 + dx3 + · · ·

we make the substitution y = xw and cancel x2. This gives us a polynomial

g(x,w) = f(x, xw)/x2 = a+ bw + w2 + dx+ · · ·

in which all of the terms represented by · · · are divisible by x. Let D be the locus {g = 0} in W . The blowup
map π restricts to a map D π−→ C. Since π is bijective at points at which x 6= 0, so is π.

Suppose first that the quadratic polynomial y2 + by + a has distinct roots α, β, so that ax2 + bxy + y2 =
(y − αx)(y − βx). Then g(x,w) = (w− α)(w− β) + dx+ · · · . The fibre of D over the origin p = (0, 0) in
X is obtained by substituting x = 0 into g. It consists of the two points (x,w) = (0, α) and (x,w) = (0, β).
The partial derivative ∂g

∂w isn’t zero at either of those points, so they are smooth points of D. At each of the
points, we can solve g(x,w) = 0 for w as analytic functions of x, say w = u(x) and w = v(x), with u(0) = α
and v(0) = β. So the curve C has two analytic branches y = xu(x) and y = xv(x) through the origin, with
distinct tangent directions α and β. This singularity is called a node. A node is the simplest singularity that a
curve can have.

1.8.6. mapton-
ode

a Map to a Nodal Curve

###This figure is ugly. Curves aren’t smooth.###

When the discriminant b2 − 4ac is zero, f2 will be a square, and f will have the form

f(x, y) = (y − αx)2 + dx3 + · · ·
Let’s change coordinates, substituting y + αx for y, so that

(1.8.7) cuspeqf(x, y) = y2 + dx3 + · · ·

The blowup substitution y = xw gives

g(x,w) = w2 + dx+ · · ·

Here the fibre over (x, y) = (0, 0) is the point (x,w) = (0, 0), and gw(0, 0) = 0. However, if d 6= 0, then
gx(0, 0) 6= 0, and if so, thenD will be smooth at (0, 0), and the equation ofC will have the form y2+dx3+· · · .
This singularity is called a cusp.

The standard cusp is the locus y2 = x3. All cusps are analytically equivalent with the standard cusp.
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1.8.8. Corollary.nodeor-
cusp

A double point p of a curve C is a node or a cusp if and only if the blowup of C is smooth
at the points that lie over p. �

The simplest example of a double point that isn’t a node or cusp is a tacnode, a point at which two smooth
branches of a curve intersect with the same tangent direction.

goober23

1.8.9. a Node, a Cusp, and a Tacnode (real locus)

Cusps have an interesting geometry. Let x denote the complex conjugate of x. The intersection of the
standard cusp X : {y2 = x3}, with a small 3-sphere S : {xx+ yy = ε} in C2 is a trefoil knot, as is illustrated
below.

1.8.10.trefoil

Intersection of a Cusp Curve with a Three-Sphere

This nice figure was made by Jason Chen and Andrew Lin.
The standard cusp X , the locus y2 = x3, can be parametrized as (x, y) = (t2, t3). The trefoil knot is

the locus of points (x, y) = (e2iθ, e3iθ), the set of points of X of absolute value
√

2. It embeds into the
product of a unit x-circle and a unit y-circle in C2, a torus that we denote by T . The figure depicts T as the
usual torus T0 in R3, but the mapping from T to T0 distorts the torus. The circumference of T0 represents the
x-coordinate, and the loop through the hole represents y. As θ runs from 0 to 2π, the point (x, y) goes around
the circumference twice, and it loops through the hole three times, as is illustrated. �

1.8.11. Proposition.tracecusp Let x(t) = t2 + · · · and y(t) = t3 + · · · be analytic functions of t, whose orders of
vanishing are 2 and 3, as indicated. For small t, the path (x, y) = (x(t), y(t)) in the x, y-plane traces out a
curve with a cusp at the origin.

proof. We show that there are analytic functions b(x) = b2x
2 + · · · and c(x) = x3 + · · · that vanish to orders

2 and 3 at x = 0, such that x(t) and y(t) solve the equation y2 + b(x)y + c(x) = 0. The locus of such an
equation has a cusp at the origin.

We solve for b and c. The function x = t2 + · · · = t2(1 + · · · ) has an analytic square root of the form
z = t + · · · . This follows from the Implicit Function Theorem, which also tells us that t can be written as an
analytic function of z. So the function z is a coordinate equivalent to t, and we may replace t by z. Then we
will have x = t2, and y will still have a zero of order 3, y = t3 + · · · , though the series for y is changed.

Let’s call the even part of a series
∑
ant

n the sum of the terms antn with n even, and the odd part the
sum of terms with n odd. We write y(t) = u(t) + v(t), where u an v are the even and the odd parts of y,

31



respectively. The convergent series y(t) is absolutely convergent its radius of convergence. Therefore u(t) and
v(t) are convergent series too. Since y has a zero of order 3, v has a zero of order 3 and u has a zero of order
at least 4.

Now y2 = (u2 + v2) + 2uv, uy = u2 + uv, and y2 − 2uy + (u2 − v2) = 0. The terms −2u and u2 + v2

in this last equation are even series. They can be written as convergent series in x = t2, say −2u = b(x) and
u2−v2 = c(x). Then bwill have a zero of order at least 2, cwill have a zero of order 3, and y2+b(x)y+c(x) =
0. �

(1.8.12) coverlineprojection to a line

Let π denote the projection P2 −→ P1 that drops the last coordinate, sending a point (x, y, z) to (x, y).
The projection is defined at all points of P2 except at the center of projection, the point q = (0, 0, 1).

The fibre of π over a point p = (x0, y0) of P1 is the line through p = (x0, y0, 0) and q = (0, 0, 1), with the
point q omitted — the set of points (x0, y0, z0). We denote that line by Lpq or Lp.

1.8.13. projtoline

Projection from the Plane to a Line

###The letters in this figure should be same size as in the text. Also, I’m not happy with the dashed arrows.
I’d like more space between the dashes###

Let f(x, y, z) be an irreducible homogeneous polynomial whose zero locus C is a plane curve that doesn’t
contain the center of projection q, and let d be the degree of f . the projection π will be defined at all points of
the curve. We write f as a polynomial in z,

(1.8.14) f = c0z
d + c1z

d−1 + · · ·+ cd poly-
inztwo

with ci homogeneous, of degree i in x, y. When q isn’t in C, the scalar c0 = f(0, 0, 1) won’t be zero, and we
can normalize c0 to 1, so that f becomes a monic polynomial of degree d in z.

Let’s assume that C is a smooth curve. The fibre of C over a point p = (x0, y0) of P1 is the intersection of
C with the line Lpq described above. Its points are (x0, y0, α), where α is a root of the one-variable polynomial

(1.8.15) f̃(z) = f(x0, y0, z) effp

We call the smooth curve C a branched covering of P1, of degree d. All but finitely many fibres of C over P1

consist of d points.
The fibres of π with fewer than d points are those above the zeros of the discriminant (see Lemma 1.7.22).

Those zeros are the branch points of the covering. We use the same term for points of C, calling a point of C
a branch point if its tangent line is Lpq , in which case its image in P1 will also be a branch point.
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1.8.16. Proposition.flexbitan Let C be a smooth plane curve, let q be a generic point of the plane, and let p be a
branch point of C, so that the tangent line L at p contains q. The intersection multiplicity of L and C at p is 2,
and L and C have d− 2 other intersections of multiplicity 1.

The proof is below, but we explain the word generic first.

(1.8.17)genpos generic and general position

In algebraic geometry, the word generic is used for an object, a point for instance, that has no special ’bad’
properties. Typically, the object will be parametrized somehow, and the adjective generic indicates that the
parameter representing that particular object avoids a proper closed subset of the parameter space, which may
be described explicitly or not. The phrase general position has a similar meaning. It indicates that an object is
not in a special ’bad’ position. In Proposition 1.8.16, what is required of the generic point q is that it shall not
lie on a flex tangent line or on a bitangent line — a line that is tangent to C at two or more points. We have
seen that a smooth curve C has finitely many flex points (1.4.17), and Lemma 1.8.18 below states that it has
finitely many bitangents. So q must avoid a finite set of lines. Most points of the plane will be generic in this
sense. �

proof of Proposition 1.8.16. The intersection multipicity of the tangent line L with C at p is at least 2 because
L is a tangent line. It will be equal to 2 unless p is a flex point. The generic point q won’t lie on any of
the finitely many flex tangents, so the intersection multiplicity at p is 2. Next, the intersection multiplicity at
another point p′ of L ∩ C will be 1 unless L is tangent to C at p′ as well as at p, i.e., unless L is a bitangent.
The generic point q won’t lie on a bitangent. �

1.8.18. Lemma.finbitan A plane curve has finitely many bitangent lines.

proof. We use the map U t−→ C∗ from the set U of smooth points of C to the dual curve C∗. If L is tangent to
C at distinct smooth points p and p′, then t will be defined at those points, and t(p) = t(p′) = L∗. Therefore
L∗ will be a singular point of C∗. Since C∗ has finitely many singular points, C has finitely many bitangents.
�

(1.8.19)genus the genus of a plane curve

We describe the topological structure of a smooth plane curve in the classical topology here.

1.8.20. Theorem.
curveshome-

omorphic

A smooth projective plane curve of degree d is a compact, orientable and connected
two-dimensional manifold.

The fact that a smooth curve is a two-dimensional manifold follows from the Implicit Function Theorem. (See
the discussion (1.4.4)).

orientability: A two-dimensional manifold is orientable if one can choose one of its two sides (as in front
and back of a sheet of paper) in a continuous, consistent way. A smooth curve C is orientable because its
tangent space at a point, the affine line with the equation (1.4.11), is a one-dimensional complex vector space.
Multiplication by i orients the tangent space by defining the counterclockwise rotation, and the right-hand rule
tells us which side of C is “up”.

compactness: A plane projective curve is compact because it is a closed subset of the compact space P2.

connectedness: The fact that a plane curve is connected is subtle. It mixes topology and algebra. Unfortunately,
I don’t know a proof that fits into our discussion here. It will be proved later (see Theorem 8.2.11).

The topological Euler characteristic of a compact, orientable two-dimensional manifold M is the alter-
nating sum b0 − b1 + b2 of its Betti numbers. The Betti numbers are the dimensions of the homology groups
of M . The Euler characteristic, which we denote by e, can be computed using a topological triangulation, a
subdivision of M into topological triangles, called faces, by the formula

(1.8.21) e = |vertices| − |edges|+ |faces|vef
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For example, a sphere is homeomorphic to a tetrahedron, which has four vertices, six edges, and four faces.
Its Euler characteristic is 4− 6 + 4 = 2. Any other topological triangulation of a sphere, such as the one given
by the icosahedron, yields the same Euler characteristic.

Every compact, connected, orientable two-dimensional manifold is homeomorphic to a sphere with a finite
number of “holes” or “handles”. Its genus is the number of handles. A torus has one handle. Its genus is one.
The projective line P1, a two-dimensional sphere, has genus zero.

The Euler characteristic and the genus are related by the formula

(1.8.22) e = 2− 2g genuseuler

The Euler characteristic of a torus is zero, and the Euler characteristic of P1 is two.

To compute the Euler characteristic of a smooth curve C of degree d, we analyze a generic projection (a
projection from a generic point q of the plane), to represent C as a branched covering of the projective line:
C

π−→ P1 (see 1.8.17). We choose generic coordinates x, y, z in P2 and project from the point q = (0, 0, 1).
When the defining equation of C is written as a monic polynomial in z: f = zd + c1z

d−1 + · · ·+ cd where
ci is a homogeneous polynomial of degree i in the variables x, y, the discriminant Discrz(f) with respect to z
will be a homogeneous polynomial of degree d(d−1) = d2−d in x, y.

Let p̃ be the image in P1 of a point p of C. The covering C π−→ P1 will be branched at p̃ when the tangent
line at p is the line Lpq through p and q. Proposition 1.8.16 tells us that if Lpq is a tangent line, there will be
one intersection of multiplicity 2 and d − 1 simple intersections. The discriminant will have a simple zero at
such a point p̃. This is proved in Proposition 1.9.12 below. Let’s assume it for now.

Since the discriminant has degree d2−d, there will be d2−d points p̃ of P1 at which the discriminant
vanishes, and the fibre over such a point will contain d−1 points. Those points p̃ are the branch points of the
covering. All other fibres consist of d points.

We triangulate the sphere P1 in such a way that the branch points are among the vertices, and we use the
inverse images of the vertices, edges, and faces to triangulate C. Then C will have d faces and d edges lying
over each face and each edge of P1, respectively. There will also be d vertices of C lying over a vertex of P1,
except when the vertex is one of the branch points. In that case the the fibre will contain only d−1 vertices. So
the Euler characteristic of C can be obtained by multiplying the Euler characteristic of P1 by d and subtracting
the number d2 − d of branch points:

(1.8.23) eulercovere(C) = d e(P1)− (d2−d) = 2d− (d2−d) = 3d− d2

This is the Euler characteristic of any smooth curve of degree d, so we denote it by ed :

(1.8.24) ed = 3d− d2 equatione

Formula (1.8.22) shows that the genus gd of a smooth curve of degree d is

(1.8.25) gd = 1
2 (d2 − 3d+ 2) =

(
d−1

2

)
equationg

Thus smooth curves of degrees 1, 2, 3, 4, 5, 6, ... have genus 0, 0, 1, 3, 6, 10, ..., respectively. A smooth plane
curve cannot have genus 2.

The generic projection to P1 with center q can also be used to compute the degree of the dual curve of a
smooth curve C of degree d. The degree of the dual C∗ is the number of its intersections with the generic line
q∗ in P∗. The intersections of C∗ and q∗ are the points L∗, where L is a tangent line that contains q. As we
saw above, there are d2−d such lines.

1.8.26. Corollary. degdualLet C be a smooth plane projective curve of degree d. The degree d∗ of the dual curve C∗

is the number of tangent lines to C that pass through a generic point q of the plane. It is equal to d2 − d. �

When C is a singular curve, the degree of C∗ will be less than d2 − d.
When d = 2, C will be a conic, and d∗ = d. As we have seen, the dual curve of a conic is also a conic.

But when d > 2, d∗ = d2 − d will be greater than d. Then the dual curve C∗ must be singular. If it were
smooth, the degree of its dual curve C∗∗ would be d∗2 − d∗, which would be greater than d. This would
contradict the fact that C∗∗ = C. For instance, when d = 3, d∗ = 32 − 3 = 6, and d∗2 − d∗ = 30. The dual
curve C∗ is singular enough to account for the discrepancy between 30 and 3. (See (1.11.2)
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1.9 Hensel’s Lemma
hensel The resultant matrix (1.7.5) arises in a second context that we explain here.

Suppose given a product P = FG of two polynomials, say

(1.9.1)
(
c0x

m+n+ c1x
m+n−1 + · · ·+ cm+n

)
=
(
a0x

m+a1x
m−1 + · · ·+am

)(
b0x

n+ b1x
n−1 + · · ·+ bn

)
multiply-

polys
We call the relations among the coefficients that are implied by this polynomial equation the product equations.
The product equations are

ci = aib0 + ai−1b1 + · · ·+ a0bi =

i∑
j=0

ai−jbj

for i = 0, ...,m+n. For instance, when m = 3 and n = 2, the product equations are

1.9.2.prodeqns
c0 = a0b0

c1 = a1b0 + a0b1

c2 = a2b0 + a1b1 + a0b2

c3 = a3b0 + a2b1 + a1b2

c4 = a3b1 + a2b2

c5 = a3b2

Let J denote the Jacobian matrix of partial derivatives of c1, ..., cm+n with respect to the variables b1, ..., bn
and a1, ..., am, treating a0, b0 and c0 as constants. Since ∂ci

∂bj
= ai−j and ∂ci

∂aj
= bi−j , the i, j-entry of J is

Jij = ai−j when j = 1, ..., n and Jij = bi−k whenj = n+ k andk = 1, ...,m

entries with negative subscripts being set to 0.

When m,n = 3, 2,

(1.9.3) J =
∂(ci)

∂(bj , ak)
=


a0 . b0 . .
a1 a0 b1 b0 .
a2 a1 b2 b1 b0
a3 a2 . b2 b1
. a3 . . b2

prodjacob

1.9.4. Lemma.jacres The Jacobian matrix J is the transpose of the resultant matrixR (1.7.5).

See (1.7.8). But this seems like an occasion to quote Cayley. While discussing the the Cayley-Hamilton
Theorem, he wrote: ’I have not thought it necessary to undertake the labour of a formal proof of the theorem
in the general case.’ �

1.9.5. Corollary.jacobian-
notzero

Let F and G be polynomials with complex coefficients. The Jacobian matrix is singular if
and only if, either F and G have a common root, or a0 = b0 = 0. �

This corollary has an application to polynomials with analytic coefficients. Let

(1.9.6) P (t, x) = c0(t)xd + c1(t)xd−1 + · · ·+ cd(t)poly-
forhensel

be a polynomial in x whose coefficients ci are analytic functions of t, and let P = P (0, x) = c0x
d+c1x

d−1 +
· · · + cd be the evaluation of P at t = 0, so that ci = ci(0). Suppose given a factorization P = F G, where
F = xm+a1x

m−1+· · ·+am andG = b0x
n+b1x

n−1+· · ·+bn are polynomials with complex coefficients, and
F is monic. Are there polynomials F (t, x) = xm+a1x

m−1+· · ·+am andG(t, x) = b0x
n+b1x

n−1+· · ·+bn,
with F monic, whose coefficients ai and bj are analytic functions of t, such that F (0, x) = F , G(0, x) = G,
and P = FG?
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1.9.7. Hensel’s Lemma.
hensellemma

With notation as above, suppose that F and G have no common root. Then P
factors: P = FG, where F and G are polynomials in x, whose coefficients are analytic functions of t, and F
is monic.

proof. We look at the product equations. Since F is supposed to be monic, we set a0(t) = 1. The first product
equation tells us that b0(t) = c0(t). Corollary 1.9.5 tells us that the Jacobian matrix for the remaining product
equations is nonsingular at t = 0, so according to the Implicit Function Theorem, the product equations have
a unique solution in analytic functions ai(t), bj(t). �

Note that P isn’t assumed to be monic. If c0 = 0, the degree of P will be less than the degree of P . In that
case, G will have lower degree than G.

1.9.8. Example. henselexLet P = c0(t)x2 + c1(t)x+ c2(t). The product equations P = FG with F = x+ a1 monic
and G = b0x+ b1, are

(1.9.9) quadfactorc0 = b0 , c1 = a1b0 + b1 , c2 = a1b1

and the Jacobian matrix is ∂(c1, c2)

∂(b1, a1)
=

(
1 b0
a1 b1

)
Suppose that P = P (0, x) factors: c0x

2 + c1x + c2 = (x + a1)(b0x + b1) = F G. The determinant of the
Jacobian matrix at t = 0 is b1 − a1b0. It is nonzero if and only if the factors F and G are relatively prime, in
which case P factors too.

On the other hand, the one-variable Jacobian criterion allows us to solve the equation P (t, x) = 0 for x as
function of t with x(0) = −a1, provided that ∂P∂x = 2c0x + c1 isn’t zero at the point (t, x) = (0,−a1). If P
factors as above, then when we substitute (1.9.9) into P , we find that ∂P∂x (0,−a1) = −2c0a1+c1 = b1−a1b0.
Not surprisingly, ∂P∂x (0,−a1) is equal to the determinant of the Jacobian matrix at t = 0. �

(1.9.10) vandiscorder of vanishing of the discriminant

We introduce some terminology for use in the next proposition. Let X be the affine x-line, let Y be the
affine x, y-plane and let p be the origin in Y . Two curves are said to intersect transversally at a point p if they
are smooth at p and if their tangent lines there are distinct.

Let C be the plane affine curve defined by a polynomial f(x, y) with no multiple factors, and suppose that
C contains the origin p. Let L be the y-axis {x = 0} in Y . Suppose that all intersections of C with L are
transversal, except for the point p. This will be true when the coordinates x, y are generic.

1.9.11. Proposition. affdvan
(i) a) Let p be a smooth point of C with tangent line L. If p isn’t a flex point of C, the discriminant
Discry(f) has a simple zero at the origin.

b) If p is a node of C and L is not a special line at p, Discry(f) has a double zero at the origin.
c) If p is a cusp of C and L is not its special line at p, Discry(f) has a triple zero at the origin.

(ii) If p is an ordinary flex point of C and L is its tangent line, then Discry(f) has a double zero at the origin.

### make figure ??###
proof. (i) Let f(y) = f(0, y). In each of the three cases, f(y) will have a double zero at y = 0. We will
have f(y) = y2h(y), with h(0) 6= 0. So y2 and h(y) have no common root. We apply Hensel’s Lemma:
f(x, y) = g(x, y)h(x, y), where g and h are polynomials in y whose coefficients are analytic functions of x,
g is monic, g(0, y) = y2, and h(0, y) = h. Then Discry(f) = ±Discry(g) Discry(h) Resy(g, h)2 (1.7.21).

Since C is tranversal to L except at q, h has simple zeros (1.8.16). Then Discry(h) doesn’t vanish at
y = 0. Neither does Resy(g, h). So the orders of vanishing of Discry(f) and Discry(g) at p are equal.

We replace f by g, so that f becomes a monic quadratic polynomial in y, of the form

f(x, y) = y2 + b(x)y + c(x)
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where the coefficients b and c are now analytic functions of x, and f(0, y) = y2. The discriminant Discry(f) =
b2 − 4c is unchanged when we complete the square by the substitution of y − 1

2b for y, and if p is a smooth
point, a node or a cusp, that property isn’t affected by this operation. So we may assume that f has the form
y2 + c(x). The discriminant is then D = 4c(x).

We write c(x) as a series:
c(x) = c0 + c1x+ c2x

2 + c3x
3 + · · ·

Since C contains p, the constant coefficient c0 is zero. If c1 6= 0, p is a smooth point with tangent line L̃, and
D has a simple zero. If p is a node, c0 = c1 = 0 and c2 6= 0. Then D has a double zero. If p is a cusp,
c0 = c1 = c2 = 0, and c3 6= 0. Then D has a triple zero at p.

(ii) In this case, the polynomial f̃(y) = f(0, y) will have a triple zero at y = 0. Proceding as above, we
may factor: f = gh where g and h are polynomials in y whose coefficients are analytic funcicton so x,
g(x, y) = y3 + a(x)y2 + b(x)y + c(x), and g(0, y) = y3. We eliminate the quadratic coefficient a by
substituting y − 1

3a for y. With g = y3 + by + c in the new coordinates, the discriminant Discry(g) is
4b3 + 27c2 (1.7.16). We write c(x) = c0 + c1x+ · · · and b(x) = b0 + b1x+ · · · . Since p is a point of C with
tangent line {y= 0}, c0 = 0 and c1 6= 0. Since the intersection multiplicity of C with the line {y= 0} at p is
three, b0 = 0. The discriminant 4b3 + 27c2 has a zero of order two. �

Now let f(x, y, z) be a homogeneous polynomial with no multiple factors, and let C be the (possibly
reducible) plane curve {f = 0}. We project to X = P1 from a point q that is not on C. Let Lpq denote the
line through a point p = (x0, y0, 0) and q, the set of points (x0, y0, z0), and let p̃ = (x0, y0). Suppose that all
intersections of C with Lpq except at q are transversal.

1.9.12. Corollary.discrim-
vanishing

(i) With notation as above:
a) If p is a smooth point of C with tangent line Lpq , the discriminant Discrz(f) has a simple zero at p̃.
b) If p is a node of C, Discrz(f) has a double zero at p̃.
c) If p is a cusp, Discrz(f) has a double zero at p̃.

(ii) If p is an ordinary flex point of C, Discrz(f) has a double zero at z=0. �

In cases (i a,b,c), the hypotheses are satisfied when the center of projection q is in general position. To be
precise about what is required of the generic point q in those cases, we ask that q not lie on any of these lines:generic-

cond
(1.9.13)

flex tangent lines and bitangent lines,
lines that contain more than one singular point,
special lines through singular points,
tangent lines that contain a singular point.

This is a list of finitely many lines that q must avoid.

1.9.14. Corollary.transres Let C : {g = 0} and D : {h = 0} be plane curves that intersect transversally at a point
p = (z0, y0, z0). With coordinates in general position, Resz(g, h) has a simple zero at (x0, y0).

proof. Proposition 1.9.12 (i b) applies to the product gh, whose zero locus is the union C ∪D. It shows that
the discriminant Discrz(gh) has a double zero at p. We also have the formula

Discrz(gh) = Discrz(g) Discrz(h) Res(g, h)2

(1.7.21) with f = gh. When coordinates are in general position, Discrz(g) and Discrz(h) will not be zero at
p. Then Resz(g, h) has a simple zero at p. �

1.10 Bézout’s Theorem
bezoutthm

Bézout’s Theorem counts intersections of plane curves. We state it here in a form that is ambiguous because
it contains a term “multiplicity” that hasn’t yet been defined.
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1.10.1. Bézout’s Theorem. bezoutoneLet C and D be distinct curves of degrees m and n, respectively. When in-
tersections are counted with an appropriate multiplicity, the number of intersections is mn. Moreover, the
multiplicity at a transversal intersection is 1.

As before, C and D intersect transversally at p if they are smooth at p and their tangent lines there are distinct.

1.10.2. Proposition. bezoutlineBézout’s Theorem is true when one of the curves is a line.

See Corollary 1.3.10. The multiplicity of intersection of a curve and a line is the one that was defined there. �

The proof in the general case requires some algebra that we would rather defer. It will be given later
(Theorem 7.8.1), but we will use the theorem in the rest of this chapter.

It is possible to determine the intersections by counting the zeros of the resultant with respect to one of the
variables. To do this, one chooses coordinates x, y, z, so that neither C nor D contains the point (0, 0, 1). One
writes their defining polynomials f and g as polynomials in z with coefficients in C[x, y]. The resultantR with
respect to z will be a homogeneous polynomial in x, y, of degree mn. It will have mn zeros in P1

x,y , counted
with multiplicity. Let p̃ = (x0, y0) be a zero of R. Then f(x0, y0, z) and g(x0, y0, z), which are polynomials
in z, have a common root z = z0, and then p = (x0, y0, z0) will be a point of C ∩ D. It is a fact that the
multiplicity of the zero of the resultant R at the image p̃ is the (as yet undefined) intersection multiplicity of
C and D at p. Unfortunately, this won’t be obvious, even when the multiplicity is defined. However, one can
prove the next proposition using this approach.

1.10.3. Proposition. nocom-
monfactor

Let C and D be distinct plane curves of degrees m and n, respectively.
(i) C and D have at least one intersection, and the number of intersections is at most mn.
(ii) If all intersections are transversal, the number of intersections is precisely mn.

It isn’t obvious that two curves in the projective plane intersect. If two curves in the affine plane have no
intersection, If they are parallel lines, for example, their closures in the projective plane meet on the line at
infinity.

1.10.4. Lemma. resnotzeroLet f and g be homogeneous polynomials in x, y, z of degrees m and n, respectively, and
suppose that the point (0, 0, 1) isn’t a zero of f or g. If the resultant Resz(f, g) with respect to z is identically
zero, then f and g have a common factor.

proof. Let F denote the field of rational functions C(x, y). If the resultant is zero, f and g have a common
factor in F [z]. There will be polynomials p and q in F [z], of degrees at most n−1 and m−1 in z, respectively,
such that pf = qg (1.7.3). We may clear denominators, so we may assume that the coefficients of p and q
are in C[x, y]. This doesn’t change their degree in z. Then pf = qg is an equation in C[x, y, z], and p isn’t
divisible by g. Since C[x, y, z] is a unique factorization domain, f and g have a common factor. �

proof of Proposition 1.10.3. (i) Let C and D be distinct curves, defined by irreducible homogeneous poly-
nomials f and g. Proposition 1.3.12 shows that there are finitely many intersections. We project to P1 from
a point q that doesn’t lie on any of the finitely many lines through pairs of intersection points. Then a line
through q passes through at most one intersection, and the zeros of the resultant Resz(f, g) that correspond to
the intersection points will be distinct. The resultant has degree mn (1.7.10). It has at least one zero, and at
most mn of them. Therefore C and D have at least one and at most mn intersections.

(ii) Every zero of the resultant will be the image of an intersection of C and D. To show that there are mn
intersections if all intersections are transversal, it suffices to show that the resultant has simple zeros. This is
Corollary 1.9.14. �

1.10.5. Corollary.
smoothirred

If the zero locus X of a homogeneous polynomial f(x, y, z) is smooth, then f is irre-
ducible, and therefore X is a smooth curve.

proof. Suppose that f = gh, and let p be a point of intersection of the loci {g = 0} and {h = 0}. Proposition
1.10.3 shows that such a point exists. All partial derivatives of f vanish at p, so p is a singular point of the
locus f = 0 (1.4.7). �

1.10.6. Proposition. numberof-
flexes

(i) Let d be an integer ≥ 3. A smooth plane curve of degree d has at least one flex
point, and the number of flex points is at most 3d(d−2).
(ii) If all flex points are ordinary, the number of flex points is 3d(d−2).
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Thus smooth curves of degrees 2, 3, 4, 5, ... have at most 0, 9, 24, 45, ... flex points, respectively.
proof. (i) LetC be the smooth curve defind by a homogeneous polynomial f of degree d. LetH be the Hessian
matrix of f , let detH = he11 · · ·hekk be the factorization of the determinant into irreducible polynomials hi, and
let Zi be the locus of zeros of hi. The Hessian divisor is defined to be the combinationD = e1Z1+· · ·+ekZk.

The flex points ofC are its intersections with its Hessian divisorD (1.4.16). The entries of the 3×3 Hessian
matrix H , the second partial derivatives ∂2f

∂xi∂xj
, are homogeneous polynomials of degree d−2. So the Hessian

determinant is homogeneous, of degree 3(d−2). Propositions 1.4.17 and 1.10.3 tell us that there are at most
3d(d−2) intersections.

(ii) A flex point is ordinary if the multiplicity of intersection of the curve and its tangent line is 3 (1.4.8).
Bézout’s Theorem asserts that the number of flex points is 3d(d−2) if the intersections of C with its Hessian
divisor D are transversal, and therefore have multiplicity 1. So the next lemma completes the proof.

1.10.7. Lemma.transver-
salH

A curve C : {f = 0} intersects its Hessian divisor D transversally at a point p if and only
p is an ordinary flex point of C.

proof. We prove the lemma by computation. I don’t know a conceptual proof.
Let D be the Hessian divisor {detH = 0}. The Hessian determinant detH vanishes at a smooth point p

of C if and only if p is a flex point (1.4.16).
Assume that p is a flex point, let L be the tangent line to C at p, and let h denote the restriction of the

determinant detH to L. The Hessian divisor D will be transversal to C at p if and only if it is transversal to L
there, which will be true if and only if h has a zero of order 1.

We adjust coordinates x, y, z so that p is the point (0, 0, 1) and L is the line {y = 0}, and we set z = 1 to
work in the affine space A2

x,y . Because p is a flex point, the coefficients of the monomials 1, x and x2 in the
polynomial f(x, y, 1) are zero. So

f(x, y, 1) = ay + bxy + cy2 + dx3 + ex2y + · · ·

To restrict to L, we set y = 0, keeping z = 1: f(x, 0, 1) = dx3 +O(4), where O(k) stands for a polynomial
all of whose terms have degree ≥ k.

To compute the determinant detH , we put the variable z back. If f has degree n, then

f(x, y, z) = ayzn−1 + bxyzn−2 + cy2zn−2 + dx3zn−3 + ex2yzn−3 + · · ·

We set y = 0 and z = 1 in the second order partial derivatives. With v = 6dx and w = (n−1)a+ (n−2)bx,
fxx(x, 0, 1) = 6dx+O(2) = v +O(2),
fxz(x, 0, 1) = 0 +O(2),
fyz(x, 0, 1) = (n−1)a+ (n−2)bx+O(2) = w +O(2),
fzz(x, 0, 1) = 0 +O(2),

We won’t need fxy or fyy. The Hessian matrix at y = 0, z = 1 has the form

(1.10.8) H(x, 0, 1) =

v ∗ 0
∗ ∗ w
0 w 0

 + O(2)

Because of the zeros, the entries marked with ∗ don’t affect the determinant of H(x, 0, 1). It is

h = −vw2 +O(2) = −6d(n−1)2a2x+O(2)

and it has a zero of order 1 at x = 0 if and only if a and d aren’t zero there. Since C is smooth at p and
since the coefficient of x in f is zero, the coefficient of y, which is a, can’t be zero. Thus the curve C and its
Hessian divisor D intersect transversally, if and only if d isn’t zero. This is true if and only if p is an ordinary
flex point. �

1.10.9. Corollary.nineflexes A smooth cubic curve contains exactly 9 flex points.

proof. Let C be a smooth cubic curve. The Hessian divisor D of C also has degree 3, so Bézout’s Theorem
predicts at most 9 intersections ofD withC. To derive the corollary, we show thatD intersectsC transversally,
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and to do this, we show thatD intersects the tangent lineL toC at p transversally. According to Lemma 1.10.7,
a nontransversal intersection of D and L would correspond to a point at which C has a flex that isn’t ordinary,
and at such a point, the intersection multiplicity of C and L would be greater than 3. This is impossible when
the curve is a cubic. �

(1.10.10) singdualsingularities of the dual curve

Let C be a plane curve. As before, an ordinary flex point is a smooth point p such that the intersection
multiplicity of the curve and its tangent line L at p is equal to 3. A bitangent, a line L that is tangent to C at
distinct points p and p′, is an ordinary bitangent if neither p nor p′ is a flex point. A tangent line L at a smooth
point p of C is an ordinary tangent if p isn’t a flex point and L isn’t a bitangent.

The tangent line L at a point p will have other intersections with C. Most often, those other intersections
will be transversal unless L is a bitangent, in which case it will be tangent to C at another point. However,
it may also happen that one of the other intersections of L with C is a singular point of C. Or, L may be a
tritangent, tangent to C at three points. Let’s call such occurences accidents.

1.10.11. Definition. ordcurveA plane curve C is ordinary if it is smooth, all of its bitangents and flex points are
ordinary, and if there are no accidents.

1.10.12. Lemma. genisordA generic curve C is ordinary.

We verify this by counting constants (see (1.1.3)). The reasoning is fairly convincing, though not completely
precise.

There are three ways in which a curve C might fail to be ordinary:
• C may be singular.
• C may have a flex point that isn’t ordinary.
• A bitangent to C may be a flex tangent or a tritangent.
The curve will be ordinary if none of these occurs.

Let the coordinates in the plane be x, y, z. The homogeneous polynomials of degree d form a vector
space whose dimension is equal to the number N of monomials xiyjzk of degree i+j+k = d. Let f be a
homogeneous polynomial of degree d, and let f =

∏
feii be its factorization into irreducible polynomials. If

Zi denotes the zero locus of fi, the divisor associated to f is
∑
eiZi. The divisors of degree d are parametrized

by points of a projective space of dimension n = N−1, and curves correspond to points in a subset of that
space.

singular points. We look at the point p0 = (0, 0, 1), and we set z = 1. If p0 is a singular point of a curve C
defined by a polynomial f , the coefficients of 1, x, y in the polynomial f(x, y, 1) will be zero. This is three
conditions. So the curves that are singular at p0 are parametrized by a linear subspace of dimension n − 3 in
the projective space of dimension n, and the same will be true when p0 is replaced by any other point of P2.
The points of P2 depend on only 2 parameters. Therefore, in the space of divisors, the singular curves form a
subset of dimension at most n− 1. Most curves are smooth.

flex points. Let’s look at curves that have a four-fold tangency with the line L : {y = 0} at p0. Setting z = 1 as
before, we see that the coefficients of 1, y, y2, y3 in f must be zero. This is four conditions. The lines through
p0 depend on one parameter, and the points of P2 depend on two parameters, giving us three parameters to
vary. We can’t get all curves this way. Most curves have no four-fold tangencies, and therefore they have only
ordinary flexes.

bitangents. To be tangent to the line L : {y = 0} at the point p0, the coefficients of 1 and y in f must be zero.
This is two conditions. Then to be tangent to L at three given points p0, p1, p2 imposes 6 conditions. A set of
three points of L depends on three parameters, and a line depends on two parameters, giving us 5 parameters
in all. Most curves don’t have a tritangent. Similar reasoning takes care of bitangents in which one tangency
is a flex. �

1.10.13. Proposition. dualcuspLet p be a point of an ordinary curve C, and let L be the tangent line at p.
If L is an ordinary tangent at p, then L∗ is a smooth point of C∗.
If L is a bitangent, then L∗ is a node of C∗.
If p is a flex, then L∗ is a cusp of C∗.
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proof. We refer to the map C t−→ C∗ from C to the dual curve (1.6.3). Because C is smooth, t is defined s at
all points of C.

We dehomogenize the defining polynomial f by setting z = 1, and choose affine coordinates, so that p is
the point (x, y, z) = (0, 0, 1), the tangent line L at p is the line {y = 0}. Then L∗ is the point (u, v, w) =

(0, 1, 0). Let f̃(x, y) = f(x, y, 1). We solve f̃ = 0 for y = y(x) as an analytic function of x, as before.
The tangent line L1 to C at a nearby point p1 = (x1, y1) has the equation (1.6.11), and L∗1 is the point
(u, v, w) = (−y′1, 1, y′1x1 − y1) of P∗ (1.6.12). Since there are no accidents, this path traces out all points of
C∗ near to L∗ (Corollary 1.6.18).

If L is an ordinary tangent line, y(x) will have a zero of order 2 at x = 0. Then u = −y′ will have a simple
zero. So the path (−y′, 1, y′x− y) is smooth at x = 0, and therefore C∗ is smooth at the origin.

If L is an ordinary bitangent, tangent to C at two points p and p′, the reasoning given for an ordinary tangent
shows that the images in C∗ of small neighborhoods of p and p′ in C will be smooth at L∗. Their tangent lines
p∗ and p′∗ will be distinct, so p is a node.

Suppose that p is an ordinary flex point. Then, in the power series y(x) = c0 + c1x + c2x
2 + · · · , the

coefficients c0, c1, c2 are zero and since the flex is ordinary, c3 6= 0. We may assume that c3 = 1 and that
y(x) = x3 + · · · . Then, in the local equation (u, v, w) = (−y′, 1, y′x−y) for the dual curve, u = −3x2 + · · ·
and w = 2x3 + · · · . Proposition 1.8.11 tells us that the singularity at the origin is a cusp. �

1.11 The Plücker Formulas
plucker The Plücker formulas compute the number of flexes and bitangents of an ordinary plane curve. The fact

that there is a sfle formula for bitangents is particularly interesting. The bitangents aren’t very easy to count
directly.

1.11.1. Theorem: Plücker Formulas.plform Let C be an ordinary curve of degree d at least two, and let C∗ be its
dual curve. Let f and b denote the numbers of flex points and bitangents of C, and let d∗, δ∗ and κ∗ denote
the degree, the numbers of nodes, and the number of cusps of C∗, respectively. Then:

(i) The dual curve C∗ has no flexes or bitangents. Its singularities are nodes or cusps.

(ii) d∗ = d2 − d, f = κ∗ = 3d(d− 2), and b = δ∗ = 1
2d(d− 2)(d2 − 9).

proof. (i) A bitangent or a flex on C∗ would produce a singularity on the bidual C∗∗, which is the smooth
curve C.

(ii) The degree d∗ was computed in Corollary 1.8.26. Bézout’s Theorem counts the flex points: f = 3d(d −
2)(1.10.6). The facts that κ∗ = f and δ∗ = b are in Proposition 1.10.13. Thus κ∗ = 3d(d− 2).

When we project C∗ to P1 from a generic point s of P∗. The number of branch points that correspond to
tangent lines through s at smooth points of C∗ is the degree d of the bidual C (1.8.26).

Next, let F (u, v, w) be the defining polynomial for C∗. The discriminant Discrw(F ) has degree d∗2 − d∗.
Corollary 1.9.12 describes the order of vanishing of the discriminant at the images of the d tangent lines
through s, the δ nodes of C∗, and the κ cusps of C∗. It tells us that d∗2 − d∗ = d + 2δ∗ + 3κ∗. Substituting
the known values d∗ = d2−d, and κ∗ = 3d(d−2) into this formula gives us (d2 − d)2 − (d2 − d) =
d+ 2δ∗ + 9d(d− 2), or

2δ∗ = d4 − 2d3 − 9d2 + 18d = d(d− 2)(d2 − 9)

�

1.11.2. Examples.some-
plucker-

formulas
(i) All curves of degree 2 and all smooth curves of degree 3 are ordinary.
(ii) A curve of degree 2 has no flexes and no bitangents. Its dual curve has degree 2.
(iii) A smooth curve of degree 3 has 9 flexes and no bitangents. Its dual curve has degree 6.
(iv) An ordinary curve C of degree 4 has 24 flexes and 28 bitangents. Its dual curve has degree 12. �
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We will make use of the fact that a quartic curve has 28 bitangents in Chapter 4 (see (4.6.31)). The Plücker
Formulas are rarely used for curves of larger degree, but the fact that there is such a formula is interesting.

1.11.3. goober13

A Quartic Curve whose 28 Bitangents are Real (real locus)

To obtain this quartic, we added a small constant ε to the product of the quadratic equations of the two ellipses
that are shown. The equation of the quartic is (2x2 + y2 − 1)(x2 + 2y2 − 1) + ε = 0.
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1.12 Exercises
chaponeex 1.12.1.xinfpoints Prove that a plane curve contains infinitely many points.

1.12.2.xsin Prove that the path x(t) = t, y(t) = sin t doesn’t lie on any plane algebraic curve in A2.

1.12.3.
xtwovarirred

Using counting constants, prove that most (nonhomogeneous) polynomials in two or more variables
are irreducible.

1.12.4.xstaysirre-
ducible

Let f(x, y, z) be a homogeneous polynomial not divisible by z. Prove that f is irreducible if and only
if f(x, y, 1) is irreducible.

1.12.5.xcoordtri-
angle

(i) Describe the points that lie in the interior of the coordinate triangle in Figure1.2.11.
(ii) What can be deduced about the equation of the conic that is depicted in the figure?

1.12.6.xaffcon-
ictwo

Prove that all affine conics can be put into one of the forms 1.1.6 by linear changes of variable,
translations, and scalar multiplication.

1.12.7.xdiagform (i) Classify conics in P2 by writing an irreducible quadratic polynomial in three variables in the form
XtAX where A is symmetric, and diagonalizing this quadratic form.
(ii) Quadrics in projective space Pn are zero sets of irreducible homogeneous quadratic polynomials in x0, ..., xn.
Classify quadrics in P3.

1.12.8.xlociequal Let f and g be irreducible homogeneous polynomials in x, y, z. Prove that if the loci {f = 0} and
{g = 0} are equal, then g = cf .

1.12.9.xcubicsing Without using Bézout’s Theorem, prove that a plane cubic curve can have at most one singular point.

1.12.10.xtanconic Let C be the plane projective curve defined by the equation x0x1 + x1x2 + x2x0 = 0, and let p be
the point (−1, 2, 2). What is the equation of the tangent line to C at p?

1.12.11.xeqforcu-
bic

Let C be a smooth cubic curve in P2, and let p be a flex point of C. Choose coordinates so that p is
the point (0, 1, 0) and the tangent line to C at p is the line {z = 0}.
(i) Show that the coefficients of x2y, xy2, and y3 in the defining polynomial f of C are zero.
(ii) Show that with a suitable choice of coordinates, one can reduce the defining polynomial to the form
y2z + x3 + axz2 + bz3, and that x3 + ax+ b will be a polynomial with distinct roots.
(iii) Show that one of the coefficients a or b can be eliminated, and therefore that smooth cubic curves in P2

depend on just one parameter.

1.12.12.xhessian Using Euler’s formula together with row and column operations, show that the Hessian determinant
is equal to a detH ′, where

H ′ =

cf f1 f2

f1 f11 f12

f2 f21 f22

 , a =
(
d−1
x0

)2
, and c = d

d−1

1.12.13.xhes-
sianZero

(i) Verify that the vanishing of the Hessian determinant isn’t affected by a change of coordinates.
(ii) Prove that a smooth point of a curve is a flex point if and only if the Hessian determinant is zero, in this
way: Given a smooth point p of X , choose coordinates so that p = (0, 0, 1) and the tangent line ` is the line
{x1 = 0}. Then compute the Hessian.

1.12.14.
xsymmfnin-

dep

Prove that the elementary symmetric functions s1 = x1+· · ·+xn, . . . , sn = x1 · · ·xn are algebaically
independent.

1.12.15.xelement-
transc

Let K be a field extension of a field F , and let α be an element of K that is transcendental over F .
Prove that every element of the field F (α) that isn’t in F is transcendental over F .

1.12.16.xtdadds Let td(K/F ) denote the transcendence degree of a field extension K/F . Prove that, if L ⊃ K ⊃ F
are fields, then td(L/F ) = td(L/K) + td(L/F ).
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1.12.17. xdualis-
curve

Let f(x0, x1, x2) be a homogeneous polynomial of degree d, let fi = ∂f
∂xi

, and let C be the plane
curve {f = 0}. Use the following method to prove that the image in the dual plane of the set of smooth points
of C is contained in a curve C∗: Let Nr(k) be the dimension of the space of polynomials of degree ≤ k in
r variables. Determine Nr(k) for r = 3 and r = 4. Show that N4(k) > N3(kd) if k is sufficiently large.
Conclude that there is a nonzero polynomial G(x0, x1, x2) such that G(f0, f1, f2) = 0.

(This method doesn’t give a good bound for the degree of C∗. One reason may be that f and its derivatives
are related by Euler’s Formula. It is tempting try using Euler’s Formula to help compute the equation of C∗,
but I haven’t succeeded in getting anywhere that way.)

1.12.18. xtangentqLet C be a smooth cubic curve in the plane P2, and let q be a generic point of P2. How many lines
through q are tangent lines to C?

1.12.19. xprojcurveLet X and Y be the surfaces in A3
x,y,z defined by the equations z3 = x2 and yz2 + z + y = 0,

respectively. The intersection C = X ∩ Y is a curve. Determine the equation of its projection to the x, y-
plane.

1.12.20. xercres-
formula

Complete the proof of Proposition 1.7.11 by computing the resultant of the polynomials xm and
xn − 1.

1.12.21. xresfghLet f, g, and h be polynomials. Prove that
(i) Res(f, gh) = Res(f, g) Res(f, h).
(ii) If the degree of gh is less than or equal to the degree of f , then Res(f, g) = Res(f + gh, g).

1.12.22. xresWith notation as in 1.7.3, suppose that a0 and b0 are not zero, and let αi and βj be the roots of
f(x, 1) and g(x, 1), respectively. Show that Res(f, g) = an0 b

m
0

∏
(αi − βj).

1.12.23. gener-
alline

Prove that a generic line meets a plane projective curve of degree d in d distinct points.

1.12.24. xrest-
wopol

Let f = x2 + xz + yz and g = x2 + y2. Compute the resultant Resx(f, g) with respect to the
variable x.

1.12.25.
xsignindisc

Compute
∏
i 6=j(ζ

i − ζj) when ζ = e2πi/n.

1.12.26. xsignIf F (x) =
∏

(x− αi), then Discr(F ) = ±∏i<j(αi − αj)2. Determine the sign.

1.12.27. etdegresLet f = a0x
m + a1x

m−1 + · · · am and g = b0x
n + b1x

n−1 + · · · bn, and let R = Res(f, g) be the
resultant of these polynomials. Prove that
(i) R is a polynomial that is homogeneous in each of the sets of variables a and b, and determine its degree.
(ii) If one assigns weighted degree i to the coefficients ai and bi, then R is homogeneous, of weighted degree
mn.

1.12.28. xamapLet coordinates in A4 be x, y, z, w, let Y be the variety defined by z2 = x2 − y2 and w(z − x) = 1,
and let π denote projection from Y to (x, y)-space. Describe the fibres and the image of π.

1.12.29. xcusptanLet p be a cusp of the curve C defined by a homogeneous polynomial f . Prove that there is just one
line L through p such that the restriction of f to L has as zero of order > 2 at p, and that the order of zero for
that line is precisely 3.

1.12.30. geometry-
ofnode

Describe the intersection of the node xy = 0 at the origin with the unit 3-sphere in A2.

1.12.31. fermat-
conn

Prove that the Fermat curve C : {xd + yd + zd = 0} is connected by studying its projection to P1

from the point (0, 0, 1).

1.12.32. xhenselLet p(t, x) = x3 + x2 + t. Then p(0, x) = x2(x + 1). Since x2 and x + 1 are relatively prime,
Hensel’s Lemma predicts that p factors: p = fg, where g and g are polynomials in x whose coefficients are
analytic functions in t, and f is monic, f(0, x) = x2, and g(0, x) = x+ 1. Determine this factorization up to
degree 3 in t. Do the same for the polynomial tx4 + x3 + x2 + t.

1.12.33.
xxhensellemma

Let f(t, y) = ty2 − 4y + t.
(i) Solve f = 0 for y by the quadratic formula, and sketch the real locus f = 0 in the t, y plane.
(ii) What does Hensel’s Lemma tell us about f?
(iii) Factor f , modulo t4.
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1.12.34.
xxhensellem-

matwo

Factor f(t, x) = x3 + 2tx2 + t2x+ x+ t, modulo t2.

1.12.35.xthreepts (i) Show that there is a conic C that passes through any five points of P2.
(ii) Use (i) to prove that a plane curve X of degree 4 can have at most three singular points.

1.12.36.xintconic By parametrizing a conic C, show that C meets a plane curve X of degree d and distinct from C in
2d points, when counted with multiplicity.

1.12.37.cus-
pcurved-

ual

Using a generic projection to P1, determine the degree of the dual C∗ of
(i) a plane cubic curve C with a cusp.
(ii) a plane curve C of degree 4 with three nodes.

1.12.38.xdualnode Let C be a cubic curve with a node. Determine the degree of the dual curve C∗, and the numbes of
flexes, bitangents, nodes, and cusps of C and of C∗.

1.12.39.xcuspstan-
dard

Prove that every cusp (1.8.7) is analytically equivalent with the standard cusp.

1.12.40. Prove that a plane curve is connected.

1.12.41.xdefsing This is about the order of vanishing of the discriminant. With notation as in (1.9.10): If one perturbs
the equation of C, the line L that meets C at p will be replaced by a finite set of nearby tangent lines. Choose
particular examples for C in parts (i b,c),(ii) of (1.9.11) and compare the number of nearby tangents with the
order of vanishing of the discriminant.

1.12.42.xsing-
sofcurve

Analyze the singularities of the plane curve x3y2 − x3z2 + y3z2 = 0.

1.12.43.xthree-
cusps

Exhibit an irreducible homogeneous polynomial f(x, y, z) of degree 4 whose locus of zeros is a
curve with three cusps.

1.12.44.notonline Let f(x, y, z) be an irreducible homogeneous polynomial of degree > 1. Prove that the locus f = 0
in P2 contains three points that do not lie on a line.
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Chapter 2 AFFINE ALGEBRAIC GEOMETRY

affine
2.1 Rings and Modules
2.2 The Zariski Topology
2.3 Some Affine Varieties
2.4 The Nullstellensatz
2.5 The Spectrum
2.7 Localization
2.6 Morphisms of Affine Varieties
2.8 Finite Group Actions
2.9 Exercises

The next chapters are about varieties of arbitrary dimension. We will use some of the terminology, such as
discriminant and transcendence degree, that was introduced in Chapter 1, but many of the results in Chapter 1
won’t be used again until we come back to curves in Chapter 8.

We begin with a review of some basic facts about rings and modules, omitting proofs. Give the next section
a quick read, but don’t spend too much time on it. You can refer back as needed, and look up information on
the concepts that aren’t familiar.

2.1 Rings and Modules
ringreview

By the word ‘ring’, we mean commutative ring: ab = ba, unless the contrary is stated explicitly. A commuta-
tive ring has two associative and commutative operations, addition and multiplication, that are related by the
distributive law. It contains additive and multiplicative identity elements denoted by 0 and 1, respectively and
it is a group with the operation of addition,

As before, a domain is a ring that has no zero divisors and isn’t the zero ring. An algebra is a ring that
contains the field C of complex numbers as a subring.

A set of elements α = {α1, ..., αn} generates an algebraA if every element ofA can be expressed, usually
not uniquely, as a polynomial in α1, ..., αn, with complex coefficients. Another way to state this is that the set
α generates A if the homomorphism C[x1, ..., xn]

τ−→ A that evaluates a polynomial at x = α is surjective.
If α generates A, then A will be isomorphic to the quotient C[x]/I of the polynomial algebra C[x], where I is
the kernel of τ . A finite-type algebra is an algebra that can be generated by a finite set of elements.

We usually regard an R-module M as a left module, writing the scalar product of an element m of M by an
element a of R as am. However, it is sometimes convenient to view M as a right module, writing ma instead
of am. So we define ma = am. This is permissible when the ring is commutative.

A homomorphism of modules M → N over a ring R may also be called an R-linear map. When we say that
a map is linear without mentioning a ring, we mean a C-linear map, a homomorphism of vector spaces.

The term ’generate’ is used in a second way, for modules and ideals. A set (m1, ...,mk) of elements of
an R-module M generates M if every element of M can be obtained as a combination r1m1 + · · · + rkmk

with coefficients ri in R, or that the homomorphism from the free R-module Rk to M that sends a vector
(r1, ..., rk) to the combination r1m1 + · · ·+ rkmk is surjective. A set (m1, ...,mk) that generates M is an
R-basis if every element of M is a combination in a unique way, or if r1m1 + · · · + rkmk = 0 only when
r1 = · · · = rk = 0. A module M that has a basis of order k is a free R-module, of rank k.

47



A set of elements (α1, ..., αk) generates an ideal I of a ringR it generates I as sR-module, if every element
of I can be written as a combination r1α1 + · · ·+ rkαk, with ri in R.

A finite module M is one that is spanned, or generated, by some finite set of elements. A ideal I of a ring
R is finitely generated if it is a finite R-module.

It is important not to confuse the concept of a finite module with that of a finite-type algebra. An R-module
M is a finite module if every element of M can be written as a (linear) combination r1m1 + · · · + rkmk of
some finite set {m1, ...,mk} of elements of M , with coefficients in the ring R. A finite-type algebra A is an
algebra in which every element can be written as a polynomial f(α1, ..., αk) in some finite set {α1, ..., αk} of
elements of A, with complex coefficients.

If I and J are ideals of a ring R, the product ideal, which is denoted by IJ , is the ideal whose elements
are finite sums of products

∑
aibi, with ai ∈ I and bi ∈ J . The product ideal is usually different from the

product set whose elements are products ab. The product set may not be an ideal.
The power Ik of I is the product of k copies of I — the ideal generated by products of k elements of I .

The intersection I ∩ J of two ideals is an ideal, and

(2.1.1) (I ∩ J)2 ⊂ IJ ⊂ I ∩ J intersect-
product

An ideal M of a ring R is a maximal ideal if M isn’t the unit ideal, M < R, and if there is no ideal I with
M < I < R. An ideal M is a maximal ideal if and only if the quotient ring R/M is a field.

An ideal P of a R is a prime ideal if the quotient R/P is a domain. A maximal ideal is a prime ideal.

2.1.2. Lemma. defprimeLet P be an ideal of a ring R, not the unit ideal. The following conditions are equivalent.
(i) P is a prime ideal.
(ii) If a and b are elements of R, and if the product ab is in P , then a ∈ P or b ∈ P .
(iii) If A and B are ideals of R, and if the product ideal AB is contained in P , then A ⊂ P or B ⊂ P . �

The following equivalent version of (iii) is sometimes convenient:

(iii’) If A and B are ideals that contain P , and if the product ideal AB is contained in P , then A = P or
B = P . �

2.1.3. Lemma. invim-
prime

Let A
ϕ−→ B be a ring homomorphism. The inverse image of a prime ideal of B is a prime

ideal of A. �

2.1.4. the Mapping Property of quotients. mapprop

(i) LetK be an ideal of a ringR, letR τ−→ R denote the canonical map fromR to the quotient ringR = R/K,

and let S be another ring. Ring homomorphisms R
ϕ−→ S correspond bijectively to ring homomorphisms

R
ϕ−→ S whose kernels contain K, the correspondence being ϕ = ϕ ◦ τ :

R
ϕ−−−−→ S

τ

y ∥∥∥
R

ϕ−−−−→ S

If ker ϕ = I, then ker ϕ = I/K.

(ii) Let M and N be modules over a ring R, let L be a submodule of M , and let M τ−→M denote the canon-
ical map from M to the quotient module M = M/L. Homomorphisms of modules M

ϕ−→ N correspond
bijectively to homomorphisms M

ϕ−→ N whose kernels contain L, the correspondence being ϕ = ϕ ◦ τ . If
ker ϕ = L, then ker ϕ = L/L. �

The word canonical that appears here is used often, to mean a construction that is the natural one in the given
context. Exactly what this means is usually left unspecified.

(2.1.5) commutative diagrams commdiag
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In the diagram displayed above, the maps ϕτ and ϕ from R to S are equal. This is referred to by saying
that the diagram is commutative. A commutative diagram is one in which every map that can be obtained by
composing its arrows depends only on the domain and range of that map. In these notes, almost all diagrams
of maps are commutative. We won’t mention commutativity most of the time. �

2.1.6. Correspondence Theorem.corrthm

(i) Let R
ϕ−→ S be a surjective ring homomorphism with kernel K. (For instance, ϕ might be the canonical

map from R to the quotient ring R/K. In any case, S will be isomorphic to R/K.) There is a bijective
correspondence

{ideals of R that contain K} ←→ {ideals of S}
This correspondence associates an ideal I of R that contains K with its image ϕ(I) in S and it associates an
ideal J of S with its inverse image ϕ−1(J) in R.

If an ideal I of R that contains K corresponds to the ideal J of S, then ϕ induces an isomorphism of
quotient rings R/I → S/J . If one of the ideals, I or J , is prime or maximal, they both are.

(ii) Let R be a ring, and let M
ϕ−→ N be a surjective homomorphism of R-modules with kernel L. There is a

bijective correspondence

{submodules of M that contain L} ←→ {submodules of N}

This correspondence associates a submodule V of M that contains L with its image ϕ(V ) in N and it asso-
ciates a submodule W of N with its inverse image ϕ−1(W ) in M . �

2.1.7. Chinese Remainder Theorem.comax Let I1, ..., Ik be comaximal ideals of a ring R.
(i) The product ideal I1 · · · Ik is equal to the intersection I1 ∩ · · · ∩ Ik.
(ii) The map R −→ R/I1×· · ·×R/Ik that sends an element a of R to the vector of its residues in R/Iν is a
surjective homomorphism. Its kernel is I1 ∩ · · · ∩ Ik, or I1 · · · Ik.
(iii) Let M be an R-module, and let Mν = M/Iν . The canonical homomorphism M → M1×· · ·×Mk is
surjective. �

Ideals I1, ..., Ik of a ring R are said to be comaximal if the sum of any two of them is the unit ideal.

2.1.8. Proposition.quotof-
prod

Let R be a product of rings, R = R1×· · ·×Rk , let I be an ideal of R. There are ideals
Ij of Rj such that I = I1×· · ·×Ik and R/I = R1/I1×· · ·×Rk/Ik. �

(2.1.9) Noetherian ringsnoethr

A ring R is noetherian if all of its ideals are finitely generated. The ring Z of integers is noetherian. Fields
are notherian. If I is an ideal of a noetherian ring R, the quotient ring R/I is noetherian.

2.1.10. Hilbert Basis Theorem.basisthm Let R be a noetherian ring. The ring R[x1, ..., xn] of polynomials with
coefficients in R is noetherian. �

Thus Z[x1, ..., xn] and F [x1, ..., xn], F a field, are noetherian rings.

2.1.11. Corollary.qnoeth Every finite-type algebra is noetherian. �

(2.1.12)ascchcond the ascending chain condition

The condition that a ring R be noetherian can be rewritten in several ways that we review here.
Our convention is that, if X ′ and X are sets, the notation X ′ ⊂ X means that X ′ is a subset of X , while

X ′ < X means that X ′ is a subset that is distinct from X . A proper subset X ′ of a set X is a nonempty subset
distict from X , a set such that ∅ < X ′ < X .

A sequence X1, X2, ... , finite or infinite, of subsets of a set Z forms an increasing chain if Xn ⊂ Xn+1

for all n, equality Xn = Xn+1 being permitted. If Xn < Xn+1 for all n, the chain is strictly increasing.

49



When S is a set whose elements are subsets of a set Z, we may refer to an element of S as a member of
S to avoid confusion with the elements of Z. A member of S is a subset of Z. So the words ’member’ and
’element’ are synonymous.

A member M of S is a maximal member if it isn’t properly contained in another member — if there is
no member M ′ of S such that such that M < M ′. For example, the set of proper subsets of a set of five
elements contains five maximal members, the subsets of order four. The set of finite subsets of the set of
integers contains no maximal member.

A maximal ideal of a ring R is a maximal member of the set of ideals of R that are different from the unit
ideal.

2.1.13. Proposition. noether-
conds

The following conditions on a ring R are equivalent:
(i) Every ideal of R is finitely generated.
(ii) The ascending chain condition: Every strictly increasing chain I1 < I2 < · · · of ideals of R is finite.
(iii) Every nonempty set of ideals of R contains a maximal member. �

It is customary, though ungrammatical, to say that a ring has the ascending chain condition if it has no
infinite, strictly increasing sequence of ideals.

The next corollaries follow from the ascending chain condition, though the conclusions are true whether
or not R is noetherian.

2.1.14. Corollary. idealin-
maximal

Let R be a noetherian ring.
(i) Every ideal of R except the unit ideal is contained in a maximal ideal.
(ii) A nonzero ring R contains at least one maximal ideal.
(iii) An element of R that isn’t in any maximal ideal is a unit — an invertible element of R. �

2.1.15. Corollary. powers-
generate

Let s1, ..., sk be elements that generate the unit ideal of a ring R. For any positive integer
n, the powers sn1 , ..., s

n
k generate the unit ideal. �

2.1.16. Proposition. noetheri-
anmodule

Let R be a noetherian ring, and let M be a finite R-module.
(i) Every submodule of M is a finite module.
(ii) The set of submodules of M satisfies the ascending chain condition.
(iii) Every nonempty set of submodules of M contains a maximal member. �

(2.1.17) exact sequences exactseq

An exact sequence

· · · → V n−1 dn−1

−→ V n
dn−→ V n+1 dn+1

−→ · · ·
of modules over a ring R is a sequence of homomorphisms, finite or infinite, such that for all k, the image of
dk−1 is equal to the kernel of dk. For instance, a sequence 0 → V

d−→ V ′ is exact if d is injective, and a
sequence V d−→ V ′ → 0 is exact, if d is surjective.

A short exact sequence is an exact sequence of the form

(2.1.18) 0→ V0
a−→ V1

b−→ V2 → 0

sexseqTo say that this sequence is exact means that the map a is injective, and that b induces an isomorphism from
the quotient module V1/aV0 to V2.

The short exact sequence (2.1) splits if there is a map V1
s←− V2 such that bs is the identity on V2. If the

sequence splits, V1 will be isomorphic to the direct sum V1 ⊕ V2.

Let V d−→ V ′ be a homomorphism of R-modules, and let W be the image of d. The cokernel of d is the
module C = V ′/W (= V ′/dV ). The homomorphism d embeds into an exact sequence

(2.1.19) kercok-
erseq

0→ K → V
d−→ V ′ → C → 0
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where K and C are the kernel and cokernel of d, respectively.

A module homomorphism V ′
f−→ M with cokernel C induces a homomorphism C → M if and only if

the composed homomorphism fd is zero. This follows from the mapping property Corollary 2.1.4(ii).
Let V be a finite-dimensional C-module V (a vector space). The dual module V ∗ is the module of linear

maps (homomorphisms of C-modules) V → C. When V d−→ V ′ is a homomorphism of C-modules, there is

a canonical dual homomorphism V ∗
d∗←− V ′∗. The dual of the sequence (2.1.19) is an exact sequence

0← K∗ ← V ∗
d∗←− V ′∗ ← C∗ ← 0

So the dual of the kernel K is the cokernel of d∗, which is K∗, and the dual of the cokernel C is the kernel C∗

of d∗. This is the reason for the term “cokernel”.

2.1.20. Proposition.snake (functorial property of the kernel and cokernel) Suppose given a diagram of R-modules

V
u−−−−→ V ′ −−−−→ V ′′ −−−−→ 0

f

y f ′
y f ′′

y
0 −−−−→ W −−−−→ W ′ −−−−→

v
W ′′

whose rows are exact sequences. Let K,K ′,K ′′ and C,C ′, C ′′ denote the kernels and cokernels of f, f ′, and
f ′′, respectively.
(i) (kernel is left exact) The kernels form an exact sequence K → K ′ → K ′′. If u is injective, the sequence
0→ K → K ′ → K ′′ is exact.
(ii) (cokernel is right exact) The cokernels form an exact sequence C → C ′ → C ′′. If v is surjective, the
sequence C → C ′ → C ′′ → 0 is exact.

(iii) (Snake Lemma) There is a canonical homomorphismK ′′
d−→ C that combines with the sequences above

to form an exact sequence
K → K ′ → K ′′

d−→ C → C ′ → C ′′.

If u is injective and/or v is surjective, the sequence remains exact with zeros at the appropriate ends. �

(2.1.21)present-
module

presenting a module

Let R be a ring. A presentation of an R-module M is an exact sequence of modules of the form

R` → Rk →M → 0

The map R` → Rk will be given by an `×k R-matrix, a matrix with entries in R, and that matrix determines
the module M up to isomorphism as the kernel of that map.

Every finite module over a noetherian ring R has a presentation. To obtain a presentation, one chooses
a finite set m = (m1, ...,mk) of generators for the finite module M , so that multiplication by m defines a
surjective map Rk → M . Let N be the kernel of that map. Because R is noetherian, N is a finite module.
Next, one chooses a finits set of generators of N , which gives us a surjective map R` → N . Composition of
that map with the inclusion N ⊂ R` produces an exact sequence R` → Rk →M → 0.

(2.1.22) direct sum and direct productsumprod

Let M and N be modules over a ring R. The product module M×N is the product set, whose elements
are pairs (m,n), with m in M and n in N . The laws of composition are the same as the laws for vectors:
(m1, n1) + (m2, n2) = (m1 +m2, n1 +n2) and r(m,n) = (rm, rn). There are homomorphisms M i1−→
M×N and M×N π1−→ M , defined by i1(m) = (m, 0) and π1(m,n) = m, and similarly, homomorphisms
N

i2−→M×N and M×N π2−→ N . So i1 and i2 are inclusions, and π1 and π2 are projections.
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The product module is characterized by this mapping property:

• Let T be an R-module. Homomorphisms T
ϕ−→ M×N correspond bijectively to pairs of homomorphisms

T
α−→ M and T

β−→ N . The homomorphism ϕ that corresponds to the pair α, β is ϕ(m,n) = (αm, βn),
and when ϕ is given, the homomorphisms to M are α = π1ϕ and β = π2ϕ.

There is another product, the tensor product module M ⊗R N which is defined below.

The product module M×N is isomorphic to the direct sum M ⊕N . Elements of M ⊕N can be written
either as m+ n, or with product notation, as (m,n).

The direct sum M ⊕N is characterized by this mapping property:

• Let S be an R-module. Homomorphisms M ⊕ N
ψ−→ S correspond bijectively to pairs u, v of homo-

morphisms M u−→ S and N v−→ S. The homomorphism ψ that corresponds to the pair u, v is ψ(m,n) =
um+ vn, and when ψ is given, u = ψi1 and v = ψi2.

We use the direct product and direct sum notations interchangeably, but we note that the direct sum of an
infinite set of modules isn’t the same as the product.

(2.1.23) localization localiz

This is a preliminary dicsussion of an important construction. We will come back to it in Section 2.7.

Let s be a nonzero element of a domain A. The ring A[s−1], obtained by adjoining an inverse of s to A
is called a localization of A. If A[z] denotes the ring of polynomials in one variable z, with coefficients in A,
the localization is isomorphic to the quotient A[z]/(sz − 1) of A[z] modulo the principal ideal generated by
sz − 1. The residue of z becomes the inverse of s. We will often denote this localization by As. If A is a
finite-type domain, so is As.

(2.1.24) localizing a module locmod

Let A be a domain, and let M be an A-module. Let’s regard M as a right module here. A torsion element
of M is an element that is annihilated by some nonzero element s of A: ms = 0. A nonzero element m such
that ms = 0 is an s-torsion element.

The set of all torsion elements ofM is the torsion submodule ofM , and a module whose torsion submodule
is zero is torsion-free.

Let s be a nonzero element of a domainA. The localizationMs of anA-moduleM is defined in the natural
way, as the As-module whose elements are equivalence classes of fractions m/sr = ms−r, with m in M and
r ≥ 0. An alternate notation for the localization Ms is M [s−1].

The only complication comes from the fact that M may contain s-torsion elements. If ms = 0, then m
must map to zero in Ms, because in Ms, we will have mss−1 = m. To define Ms, one must to modify the
equivalence relation, as follows: Two fractionsm1s

−r1 andm2s
−r2 are defined to be equivalent ifm1s

r2+n =
m2s

r1+n when n is sufficiently large. This takes care of torsion, and Ms becomes an As-module. There is a
homomorphism M → Ms that sends an element m to the fraction m/1. If M is an s-torsion module, then
Ms = 0.

In this definition of localization, it isn’t necessary to assume that s 6= 0. But if s = 0, then Ms = 0 for
every module M .

(2.1.25) tensor products tensprod

Let U and V be modules over a ring R. The tensor product U ⊗RV is an R-module that is generated by
elements u ⊗v called tensors, one for each u in U and each v in V . The elements of the tensor product are
combinations

∑k
1 ri(ui ⊗ vi) of tensors with coefficients in R.
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The defining relations among the tensors are the bilinear relations:

(2.1.26)bilinrels (u1+u2)⊗ v = u1 ⊗ v+u2 ⊗v , u⊗ (v1+v2) = u⊗ v1+u⊗ v2

and r(u⊗ v) = (ru)⊗ v = u⊗ (rv)

for all u in U , v in V , and r in R. The symbol ⊗ is used as a reminder that tensors are to be manipulated using
these relations.

One can absorb a coefficient from R into either one of the factors of a tensor, so every element of U ⊗RV
can be written as a finite sum

∑
ui ⊗vi with ui in U and vi in V .

2.1.27. Examples.colxrow (i) If U is the space of m dimensional (complex) column vectors, and V is the space of
n-dimensional row vectors, then U ⊗C V identifies naturally with the space of m×n-matrices.
(ii) If U and V are free R-modules of ranks m and n, with bases {u1, ..., um} and {v1, ..., vn}, respectively,
the tensor product U ⊗RV is a free R-module of rank mn, with basis {ui ⊗ vj}. In contrast, the product
module U×V is a free module of rank m+ n, with basis {(ui, 0)} ∪ {(0, vj)}.

There is an obvious map of sets

(2.1.28)bilin U×V β−→ U ⊗RV

from the product set to the tensor product, that sends a pair (u, v) to the tensor u ⊗ v. This map isn’t a
homomorphism of R-modules. The defining relations (2.1.26) show that β is R-bilinear, not R-linear.

The next corollary follows from the defining relations of the tensor product.

2.1.29. Corollary.tensorbilin Let U, V , and W be R-modules. Homomorphisms of R-modules U ⊗R V → W
correspond bijectively to R-bilinear maps U×V →W . �

Thus the map U×V β−→ U ⊗R V is a universal bilinear map. Any R-bilinear map U×V f−→ W to a

module W can be obtained from a module homomorphism U ⊗RV f̃−→ W by composition with the bilinear

map β: U×V β−→ U ⊗RV f̃−→W .

2.1.30. Proposition.canonisom There are canonical isomorphisms
• U⊗RR ≈ U , defined by u⊗ r! ur

• (U ⊕ U ′)⊗RV ≈ (U⊗RV )⊕ (U ′⊗RV ), defined by (u1 + u2)⊗ v! u1 ⊗ v + u2 ⊗ v
• U⊗RV ≈ V ⊗RU , defined by u⊗ v! v ⊗ u
• (U⊗RV )⊗RW ≈ U⊗R(V ⊗RW ), defined by (u⊗ v)⊗ w! u⊗ (v ⊗ w) �

2.1.31. Proposition.rexactten-
sor

tensor product is right exact Let U
f−→ U ′

g−→ U ′′ → 0 be an exact sequence of
R-modules. For any R-module V , the sequence

U ⊗RV f⊗1−→ U ′ ⊗RV g⊗1−→ U ′′ ⊗RV → 0

in which [f ⊗ 1](u⊗ v) = f(u)⊗ v, is exact. �

Tensor product isn’t left exact. For example, if R = C[x], then R/xR ≈ C. There is an exact sequence
0 → R

x−→ R → C → 0. When we tensor with C we get a sequence 0 → C → C → C → 0, in which the
first map C→ C is the zero map.

proof of Proposition 2.1.31. We suppose that an exact sequence of R-modules U
f−→ U ′

g−→ U ′′ → 0 and

another R-module V are given. We are to prove that the sequence U ⊗RV f⊗1−→ U ′ ⊗RV g⊗1−→ U ′′ ⊗RV → 0
is exact. It is evident that the composition (g ⊗ 1)(f ⊗ 1) is zero, and that g ⊗ 1 is surjective. We must prove
that U ′′ ⊗RV is isomorphic to the cokernel of f ⊗1.

Let C be the cokernel of f⊗1. The mapping property (2.1.4)(ii) gives us a canonical map C
ϕ−→ U ′′⊗RV

that we want to show is an isomorphism. To show this, we construct the inverse of ϕ. We choose an element
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v of V , and form a diagram of R-modules

U×v −−−−→ U ′×v −−−−→ U ′′×v −−−−→ 0

βv

y β′v

y yγv
U ⊗RV f⊗1−−−−→ U ′ ⊗RV −−−−→ C −−−−→ 0

in which U×v denotes the module of pairs (u, v) with u ∈ U . It is isomorphic to U .
The rows in the diagram are exact sequences of modules. The vertical arrows βv and β′v are obtained by

restriction from the canonical bilinear maps (2.1.28). They are R-linear because v is held constant. The map
γv is determined by the definition of the cokernel, because the composition of the maps in the top row of the
diagram is zero. Putting the maps γv together for all v in V gives us a bilinear map U×V → C. That bilinear
map induces a linear map U ⊗R V → C, the inverse of ϕ. �

2.1.32. Corollary. locisten-
sor

Let U and V be modules over a domain R and let s be a nonzero element of R. Let Rs be
the localization of RV .
(i) The localization Usis isomorphic to U⊗R(Rs).
(ii) Tensor product is compatible with localization: Us⊗RsVs ≈ (U⊗RV )s

proof. (ii) The composition of the canonical maps U×V → Us×Vs → Us ⊗Rs Vs is R-bilinear. It defines
an R-linear map U ⊗RV → Us ⊗Rs Vs. Since s is inverible in Us ⊗Rs Vs, this map extends to an Rs-linear
map (U ⊗RV )s → Us ⊗RsVs. Next, we define an Rs-bilinear map Us×Vs → (U ⊗R V )s by mapping a pair
(us−m, vs−n) to (u⊗ v)s−m+n. This bilinear map induces the inverse map Us⊗RsVs → (U ⊗RV )s. �

(2.1.33) extend-
scalars

extension of scalars

Let A
ρ−→ B be a ring homomorphism. Extension of scalars is an operation that constructs anB-module from

an A-module.
Let’s write scalar multiplication on the right. So M will be a right A-module. Then M ⊗A B becomes

a right B-module, scalar multiplication by b ∈ B being defined by (m ⊗ b′)b = m ⊗ (b′b). This gives the
functor

A−modules ⊗B−→ B−modules
called the extension of scalars from A to B.

(2.1.34) restriction of scalars resscal

If A
ρ−→ B is a ring homomorphism, a (left) B-module M can be made into an A-module by restriction

of scalars. Scalar multiplication by an element a of A is defined by the formula

(2.1.35) restrscalam = ρ(a)m

It is customary to denote a module and the one obtained by restriction of scalars by the same symbol. But
when it seems advisable, one can denote a B-module M and the A-module obtained from M by restriction of
scalars by BM and AM , respectively. The additive groups of BM and AM are the same.

For example, a module over the prime field Fp beomes a Z-module by restriction of scalars. If a denotes
the residue of an integer a in Fp and V is an Fp-module, scalar multiplication in ZV is defined in the obvious
way, by av = av.

2.1.36. Lemma. xtscaltens(extension and restriction of scalars are adjoint operators)

Let A
ρ−→ B be a ring homomorphism, let M be an A-module, and let N be an B-module. Homomorphisms

M
ϕ−→ AN of A-modules correspond bijectively to homomorphisms of B-modules M ⊗AB ψ−→ BN . �

This concludes our review of rings and modules.
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2.2 The Zariski Topology
zartop

Affine algebraic geometry is a study of subsets of affine space that can be defined by systems of polynomial
equations. Those subsets are the closed sets in the Zariski topology on An, the Zariski closed sets. A Zariski
open set is a set whose complement, the set of points not in U , is Zariski closed.

Let f1, ..., fk be polynomials in x1, ..., xn. The set of points of An that solve the system of equations

(2.2.1)fequat f1 = 0 , . . . , fk = 0

the locus of zeros of f , may be denoted by V (f1, ..., fk) or by V (f). Thus V (f) is a Zariski closed set.
We use analogous notation for infinite sets. If F is any set of polynomials, V (F) denotes the set of points

of affine space at which all elements of F are zero. In particular, if I is an ideal of the polynomial ring, V (I)
denotes the set of points at which all elements of I vanish.

As before, the ideal I of C[x1, ..., xn] generated by polynomials f1, ..., fk is the set of combinations
r1f1+· · ·+rkfk with polynomial coefficients ri. Some notations for this ideal are (f1, ..., fk) and (f). All
elements of I vanish on the zero set V (f), so V (f) = V (I). The Zariski closed subsets of An can also be
described as the sets V (I), where I is an ideal.

An ideal isn’t determined by its zero locus. For one thing, all powers fk of a polynomial f have the same
zeros as f .

2.2.2. Lemma.IinJ Let I and J be ideals of the polynomial ring C[x1, ..., xn].
(i) If I ⊂ J , then V (I) ⊃ V (J).
(ii) V (Ik) = V (I).
(iii) V (I ∩ J) = V (IJ) = V (I) ∪ V (J).
(iv) If Iν are ideals, then V (

∑
Iν) is the intersection

⋂
V (Iν).

proof. (iii) Recall that (I ∩ J)2 ⊂ IJ ⊂ I ∩ J . Then (i) and (ii) show that V (I ∩ J) = V (IJ). Because I
and J contain IJ , V (IJ) ⊃ V (I) ∪ V (J). To prove that V (IJ) ⊂ V (I) ∪ V (J), we note that V (IJ) is the
locus of common zeros of the products fg with f in I and g in J . Suppose that a point p is a common zero:
f(p)g(p) = 0 for all f in I and all g in J . If there is an element f in I such that f(p) 6= 0, we must have
g(p) = 0 for every g in J , and then p is a point of V (J). If f(p) = 0 for all f in I , then p is a point of V (I).
In either case, p is a point of V (I) ∪ V (J). �

2.2.3.ztop To verify that the Zariski closed sets are the closed sets of a topology, one must show that

• the empty set and the whole space are Zariski closed,
• the intersection

⋂
Cν of an arbitrary family of Zariski closed sets is Zariski closed, and

• the union C ∪D of two Zariski closed sets is Zariski closed.

The empty set and the whole space are the zero sets of the elements 1 and 0, respectively. The other conditions
follow from Lemma 2.2.2. �

2.2.4. Example.ztopdi-
mone

The proper Zariski closed subsets of the affine line, or of a plane affine curve, are the
nonempty finite sets. The proper Zariski closed subsets of the affine plane are finite unions of points and
curves. We omit the proofs of these facts. The corresponding facts for loci in the projective line and the
projective plane have been noted before. (See (1.3.4) and (1.3.15).) �
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2.2.5.

A Zariski closed subset of the affine plane (real locus)

A subset of a topological space X becomes a topological space with its induced topology. The closed (or
open) subsets of a subset S in the induced topology are intersections S ∩Y , where Y is closed (or open) in X .
When we speak of a subset S as a subspace of X , we mean that S is given the induced topology.

The topology induced on a subset S from the Zariski topology on An will be called the Zariski topology
on S too. A subset of S is closed in its Zariski topology if it has the form S ∩Z for some Zariski closed subset
Z of An. If S is a Zariski closed subset of An, a closed subset of S can also be described as a closed subset of
An that is contained in S.

2.2.6. Lemma. closedi-
naff

Let {Xi} be a covering of a topological space X by open sets. A subset V of X is open if
and only if V ∩Xi is open in Xi for every i, and V is closed if and only if V ∩Xi is closed in Xi for every i.
In particular, if {Ui} is the standard open covering of Pn, a subset V of Pn is open (or closed) if and only if
V ∩ Ui is open (or closed) in Ui for every i. �

When two topologies T and T ′ on a set X are given, T ′ is said to be coarser than T if every closed set
in T ′ is closed in T i.e., if T ′ contains fewer closed sets (or fewer open sets) than T , and T ′ is finer than T
if it contains more closed sets (or more open sets) than T . The Zariski topology is coarser than the classical
topology, and the next proposition shows that it is much coarser.

2.2.7. Proposition. opendenseEvery nonempty Zariski open subset of An is dense and path connected in the classical
topology.

proof. The (complex) line L through distinct points p and q of An is a Zariski closed subset of An, whose
points can be written as p + t(q − p), with t in C. It corresponds bijectively to the affine t-line A1, and the
Zariski closed subsets of L correspond to Zariski closed subsets of A1. They are the finite subsets, and L itself.

Let U be a nonempty Zariski open subset of An, and let C be the Zariski closed complement of U . To
show that U is dense in the classical topology, we choose distinct points p and q of An, with p in U . If L is
the line through p and q, C ∩ L will be a Zariski closed subset of L, a finite set that doesn’t contain p. The
complement of this finite set in L is U ∩ L. In the classical topology, the closure of U ∩ L will be the whole
line L. The closure of U contains the closure of U ∩L, which is L. So it contains q, and since q was arbitrary,
the closure of U is An.

Next, let L be the line through two points p and q of U . As before, C ∩ L will be a finite set of points.
In the classical topology, L is a complex plane. The points p and q can be joined by a path in that plane that
avoids a finite set. �

Thus the Zariski topology is very different from the classical topology (1.3.17), but it is very useful in
algebraic geometry. We will use the classical topology from time to time, but the Zariski topology will appear
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more often. Because of this, we refer to a Zariski closed subset simply as a closed set. Similarly, by an open
set we mean a Zariski open set. We will mention the adjective “Zariski” only for emphasis.

(2.2.8) irreducible closed setsirrclosed

The fact that the polynomial algebra is a noetherian ring has an important consequence for the Zariski
topology that we discuss here.

A topological space X has the descending chain condition on closed subsets there is no infinite, strictly
descending chain C1 > C2 > · · · of closed subsets of X . (See (2.1.13).) The descending chain condition on
closed subsets is equivalent with the ascending chain condition on open sets.

A noetherian space is a topological space that has the descending chain condition on closed sets. In a
noetherian space, every nonempty family S of closed subsets has a minimal member, one that doesn’t contain
any other member of S, and every nonempty family of open sets has a maximal member. (See (2.1.12).)

2.2.9. Lemma.noethq-
comp

A noetherian topological space is quasicompact: Every open covering has a finite subcover-
ing. �

2.2.10. Proposition.deschain With its Zariski topology, An is a noetherian space.

proof. Suppose that a strictly descending chain C1 > C2 > · · · of closed subsets of An is given. Let Ij be the
ideal of elements of the polynomial ring C[x1, ..., xn] that are identically zero on Cj . Then Cj = V (Ij). The
fact that Cj > Cj+1 implies that Ij < Ij+1. The ideals Ij form a strictly increasing chain. Since C[x1, ..., xn]
is noetherian, that chain is finite. Therefore the chain Cj is finite. �

2.2.11. Definition.de-
firrspace

A topological space X is irreducible if it isn’t the union of two proper closed subsets.

Another way to say that a topological space X is irreducible is this:

2.2.12.ir-
redspacetwo

If C andD are closed subsets of an irreducible toplogical spaceX , and if X = C∪D, thenX = C
or X = D.

The concept of irreducibility is useful primarily for noetherian spaces. The only irreducible subsets of a
Hausdorff space are its points. So, in the classical topology, the only irreducible subsets of affine space are
points.

Irreducibility may seem analogous to connectedness. A topological space is connected if it isn’t the union
C ∪D of two proper disjoint closed subsets. However, the condition that a space be irreducible is much more
restrictive because, in Definition 2.2.11, the closed sets C and D aren’t required to be disjoint. In the Zariski
topology on the affine plane, lines are irreducible closed sets. The union of two intersecting lines is connected,
but not irreducible.

2.2.13. Lemma.ir-
redlemma

The following conditions on a topological space X are equivalent.
• X is irreducible.
• The intersection U ∩ V of nonempty open subsets is nonempty.
• Every nonempty open subset U of X is dense — its closure is X . �

The closure of a subset U of a topological space X , is the smallest closed subset of X that contains U . The
closure exists because it is the intersection of all closed subsets that contain S.

2.2.14. Lemma.closurein-
ters

Let Y be a subspace of a topological space X , let S be a subset of Y , and let C be the
closure of S in X . The closure of S in Y is C ∩ Y .

proof. Let S be the closure of S in Y . It is is the intersection of the closed subsets of Y that contain S. A
subset W is closed in Y if and only if W = V ∩ Y for some closed subset V of X , and if W contains S, so
does V . The intersection of those subsets V is C. Then S =

⋂
W =

⋂
(V ∩ Y ) =

(⋂
V
)
∩ Y = C ∩ Y . �

2.2.15. Lemma.quasicom-
pact

(i) The closure Z of a subspace Z of a topological space X is irreducible if and only if Z is
irreducible.
(ii) A nonempty open subspace W of an irreducible space X is irreducible.
(iii) Let Y → X be a continuous map of topological spaces. The image of an irreducible subset D of Y is an
irreducible subset of X .
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proof. (i) Let Z be an irreducible subset ofX , and suppose that its closure Z is the union C∪D of two closed
sets C andD. Then Z is the union of the sets C = C∩Z andD = D∩Z, and they are closed in Z. Therefore
Z is one of those two sets, say Z = C. Then Z ⊂ C, and since C is closed, Z ⊂ C. Because C ⊂ Z as well,
C = Z. Conversely, suppose that the closure Z of a subset Z of X is irreducible, and that Z is a union C ∪D
of closed subsets. Then Z = C ∪ D, and therefore Z = C or Z = D. If Z = C, then Z = C ∩ Z = C
(2.2.14). So Z is irreducible.

(ii) See (2.2.13)). The closure of W is the irreducible space X .

(iii) LetD be an irreducible subspace of Y , and suppose that its imageC is the unionC1∪C2 of closed subsets
of C. The inverse image Di of Ci is closed in D, and D = D1 ∪D2. Therefore either D1 = D or D2 = D.
Say that D1 = D. Then the map D → C is surjective, and so is the map D1 → C1. Therefore C1 = C. �

2.2.16. Theorem. unionirredIn a noetherian topological space, every closed subset is the union of finitely many irre-
ducible closed sets.

proof. If a closed subset C0 of a topological spaceX isn’t a union of finitely many irreducible closed sets, then
it isn’t irreducible, so it is a union C1 ∪D1, where C1 and D1 are proper closed subsets of C0, and therefore
closed subsets of X . Since C0 isn’t a finite union of irreducible closed sets, C1 and D1 cannot both be finite
unions of irreducible closed sets. Say that C1 isn’t such a union. We have the beginning C0 > C1 of a chain
of closed subsets. We repeat the argument, replacing C0 by C1, and we continue in this way, to construct an
infinite, strictly descending chain C0 > C1 > C2 > · · · . So X isn’t a noetherian space. �

2.2.17. Definition. defadffvarAn affine variety is an irreducible closed subset of affine space An.

Theorem 2.2.16 tells us that every closed subset of An is a finite union of affine varieties. Since an affine
variety is irreducible, it is connected in the Zariski topology. An affine variety is also connected in the classical
topology, but this isn’t easy to prove. We may not get to the proof.

(2.2.18) noetherian induction noethind

In a noetherian space Z one can use noetherian induction in proofs. Suppose that a statement Σ is to be
proved for every closed subvariety X of Z. It suffices to prove Σ for X under the assumption that it is true for
every closed subvariety that is a proper subset of X . Or, to prove a statement Σ for every closed subset X of
Z, it suffices to prove it for X under the assumption that Σ is true for every proper closed subset of X .

The justification of noetherian induction is similar to the justification of complete induction. Let S be the
family of closed subvarieties for which Σ is false. If S isn’t empty, it will contain a minimal member X . Then
Σ will be true for every proper closed subvariety of X , etc.

(2.2.19) the coordinate algebra of a variety coordi-
nateagebra

Let I be an ideal of R. The radical of I of is the set of elements α of R such that some power αr is in I .
It is an ideal that contains I . The radical will be denoted by rad I:

(2.2.20) rad I = {α ∈ R |αr ∈ I for some r > 0} raddef

An ideal that is equal to its radical is a radical ideal. A prime ideal is a radical ideal.

2.2.21. Lemma. radpower(i) An ideal I of a noetherian ring R contains a power of its radical.
(ii) If I is an ideal of the polynomial ring C[x], then V (I) = V (rad I).

proof. (i) Since R is noetherian, rad I is generated by a finite set of elements α = {α1, ..., αk}, and for large
r, αri is in I . We can use the same large integer r for every i. A monomial β = αe11 · · ·αekk of sufficiently
large degree n in α will be divisible αri for at least one i, and therefore it will be in I . The monomials of degree
n generate (rad I)n, so (rad I)n ⊂ I . �
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Consequently, if I and J are ideals and if rad I = rad J , then V (I) = V (J). The converse of this statement
is also true: If V (I) = V (J), then rad I = rad J . This is a consequence of the Strong Nullstellensatz that is
proved below (see (2.4.9)).

Because (I ∩ J)2 ⊂ IJ ⊂ I ∩ J ,

(2.2.22)radIJ rad(IJ) = rad(I ∩ J)

Also, rad(I ∩ J) = (rad I) ∩ (rad J). Therefore V (rad(I ∩ J)) = V (I) ∪ V (J).
Recall that V (P ) denotes the set of points of affine space at which all elements of P vanish.

2.2.23. Proposition.irredprime The affine varieties in An are the sets V (P ), where P is a prime ideal of the polynomial
algebra C[x] = C[x1, ..., xn]. If P is a radical ideal of C[x], then V (P ) is an affine variety if and only if P is
a prime ideal.

We will use Proposition 2.2.23 in the next section, where we give a few examples of varieties, but we defer the
proof to Section 2.5, where the proposition will be proved in a more general form. (See Proposition 2.5.13).)

2.2.24. Definition.defco-
ordalg

Let P be a prime ideal of the polynomial ring C[x1, ..., xn], and let V be the affine variety
V (P ) in An. The coordinate algebra of V is the quotient algebra A = C[x]/P .

Geometric properties of the variety are reflected in algebraic properties of its coordinate algebra and vice
versa. In a primitive sense, one can regard the geometry of an affine variety V as given by closed subsets
and incidence relations — the inclusion of one closed set into another, as when a point lies on a line. A finer
study of the geometry takes into account other things, tangency, for instance, but it is reasonable to begin by
studying incidences C ′ ⊂ C among closed subvarieties. Such incidences translate into inclusions P ′ ⊃ P in
the opposite direction among prime ideals.

2.3 Some affine varieties
somevari-

eties
This section contains a few simple examples of varieties.

2.3.1.ptvar A point p = (a1, . . . , an) of affine space An is irreducible, so it is a variety. It is the set of solutions of
the n equations xi−ai = 0, i = 1, . . . , n. The polynomials xi−ai generate a maximal ideal in the polynomial
algebra C[x], and a maximal ideal is a prime ideal. We will denote the maximal ideal that corresponds to the
point p by mp. It is the kernel of the substitution homomorphism πp : C[x] → C that evaluates a polynomial
g(x1, ..., xn) at p: πp(g) = g(a1, ..., an) = g(p).

The coordinate algebra of the point p is the quotient C[x]/mp. It is called the residue field at p, and it will
be denoted by k(p). The residue field k(p) is isomorphic to the image of πp, the field of complex numbers, but
it is a particular quotient of the polynomial ring.

2.3.2.varinline The varieties in the affine line A1 are its points and the whole line A1. The varieties in the affine plane
A2 are points, plane affine curves, and the whole plane.

This is true because the varieties correspond to the prime ideals of the polynomial ring. The prime ideals of
C[x1, x2] are the maximal ideals, the principal ideals generated by irreducible polynomials, and the zero ideal.
The proof is an exercise.

2.3.3.hsurf The set X of solutions of a single irreducible polynomial equation f1(x1, ..., xn) = 0 in An is a
variety called an affine hypersurface.

A hypersurface in the affine plane A2 is a plane affine curve. The special linear group SL2, the group of
complex 2×2 matrices with determinant 1, is a hypersurface in A4. It is the locus of zeros of the irreducible
polynomial x11x22−x12x21−1.

The reason that an affine hypersurface is a variety is that an irreducible element of a unique factorization
domain is a prime element, and a prime element generates a prime ideal. The polynomial ring C[x1, ..., xn] is
a unique factorization domain.

2.3.4.apc A line in the plane, the locus of a linear equation ax + by = c, is a plane affine curve. Its coordinate
algebra, which is C[x, y]/(ax+ by− c), is isomorphic to a polynomial ring in one variable. Every line is
isomorphic to the affine line A1.
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2.3.5. pointprLet p = (a1, . . . , an) and q = (b1, . . . , bn) be distinct points of An. The point pair (p, q) isn’t
irreducible, so it isn’t a variety. It is the closed set defined by the system of n2 equations (xi−ai)(xj−bj) = 0,
1 ≤ i, j ≤ n, and the ideal I generated by the polynomials (xi − ai)(xj − bj) isn’t a prime ideal. The next
corollary, which follows from the Chinese Remainder Theorem 2.1.7, describes that ideal:

2.3.6. Corollary. pointpairThe ideal I of polynomials that vanish on a point pair p, q is the product mpmq of the
maximal ideals at those points, and the quotient algebra C[x]/I is isomorphic to the product algebra C×C.
�

2.4 Hilbert’s Nullstellensatz
nullThe Hilbert Nullstellesatz establishes the fundamental relation between affine algebraic geometry and algebra.

It identifies the points of an affine variety with maximal ideals.

2.4.1. Nullstellensatz (version 1). nulloneLet C[x] be the polynomial algebra in the variables x1, . . . , xn. There
are bijective correspondences between the following sets:

• points p of the affine space An,
• algebra homomorphisms πp : C[x]→ C,
• maximal ideals mp of C[x].

The homomorphism πp evaluates a polynomial at a point p of An. If p = (a1, ..., an), then πp(g) = g(p) =
g(a1, ...., an). The maximal ideal mp is the kernel of πp. It is the ideal generated by the linear polynomials
x1−a1, . . . , xn−an. �

It is obvious that every algebra homomorphism C[x] → C is surjective, so its kernel is a maximal ideal. It
isn’t obvious that every maximal ideal of C[x] is the kernel of such a homomorphism. The proof can be found
manywhere.1

The Nullstellensatz gives a way to describe the set V (I) of zeros of an ideal I in affine space in terms of
maximal ideals. The points of V (I) are those at which all elements of I vanish — the points p such that I is
contained in mp.

(2.4.2) maxide-
alscheme

V (I) = {p ∈ An | I ⊂ mp}

2.4.3. Proposition. VemptyLet I be an ideal of the polynomial ring C[x]. If the zero locus V (I) is empty, then I is
the unit ideal.

proof. Every ideal I except the unit ideal is contained in a maximal ideal. �

2.4.4. nulltwoNullstellensatz (version 2). Let A be a finite-type algebra. There are bijective correspondences
between the following sets:
• algebra homomorphisms π : A→ C,
• maximal ideals m of A.
The maximal ideal m that corresponds to a homomorphism π is the kernel o, π.

If A is presented as a quotient of a polynomial ring, say A ≈ C[x1, ..., xn]/I , then these sets also corre-
spond bijectively to points of the set V (I) of zeros of I in An.

The symbol ≈ stands for an isomorphism.
As before, a finite-type algebra is an algebra that can be generated by a finite set of elements. A presentation

of a finite-type algebra A is an isomorphism of A with a quotient C[x1, ..., xn]]/I of a polynomial ring. (This
isn’t the same as a presentation of a module (2.1.21).)

proof of version 2 of the Nullstellensatz. We choose a presentation of A as a quotient of a polynomial ring, to
identify A with a quotient C[x]/I . The Correspondence Theorem tells us that maximal ideals of A correspond
to maximal ideals of C[x] that contain I . Those maximal ideals correspond to points of V (I).

1While writing a paper, the mathematician Nagata decided that the English language needed this unusual word. Then he found it in a
dictionary.
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Let τ denote the canonical homomorphism C[x]→ A.

(2.4.5)

C[x]
π−−−−→ C

τ

y ∥∥∥
A

π−−−−→ C

polyring-
toA

The Mapping Property 2.1.4, applied to τ , tells us that homomorphisms A π−→ C correspond to homo-
morphisms C[x]

π−→ C whose kernels contain I . Those homomorphisms also correspond to points of V (I).
�

2.4.6. Strong Nullstellensatz.strongnull Let I be an ideal of the polynomial algebra C[x1, . . . , xn], and let V denote
its locus of zeros in affine space: V = V (I). If a polynomial g(x) vanishes at every point of V , then I
contains a power of g.

proof. This is Rainich’s beautiful proof. Let g(x) be a polynomial that is identically zero on V . We are to
show that I contains a power of g. The zero polynomial is in I , so we may assume that g isn’t zero.

The Hilbert Basis Theorem tells us that I is a finitely generated ideal. Let f = (f1, . . . , fk) be a set of gen-
erators. We introduce a new variable y. In the n+1–dimensional affine space with coordinates (x1, . . . , xn, y),
let W be the locus of solutions of the k+1 equations

(2.4.7)fgy f1(x) = 0, . . . , fk(x) = 0 and g(x)y − 1 = 0

Suppose that we have a solution of the equations f(x) = 0, say (x1, ..., xn) = (a1, ..., an). Then a is
a point of V , and our hypothesis tells us that g(a) = 0 too. There can be no b such that g(a)b = 1. So
there is no point (a1, ..., an, b) that solves the equations (2.4.7): The locus W is empty. Proposition 2.4.3 tells
us that the polynomials f1, ..., fk, gy − 1 generate the unit ideal of C[x1, ..., xn, y]. There are polynomials
p1(x, y), . . . , pk(x, y) and q(x, y) such that

(2.4.8) p1f1 + · · ·+ pkfk + q(gy − 1) = 1rabinowitz

The ring R = C[x, y]/(gy − 1) can be described as the one obtained by adjoining an inverse of g to the
polynomial ring C[x]. The residue of y becomes the inverse. Since g isn’t zero, C[x] is a subring of R. In
R, gy − 1 = 0, and the equation (2.4.8) becomes p1f1 + · · · + pkfk = 1. When we multiply both sides
of this equation by a large power gN of g, we can use the equation gy = 1, which is true in R, to eliminate
all occurences of y in the polynomials pi(x, y). Let hi(x) denote the polynomial in x that is obtained by
eliminating y from gNpi. Then

h1(x)f1(x) + · · ·+ hk(x)fk(x) = gN (x)

is a polynomial equation that is true in R and in its subring C[x]. Since f1, ..., fk are in I , this equation shows
that gN is in I . �

2.4.9. Corollary.VIsupVJ Let C[x] denote the polynomial ring in the variables x1, ..., xn.
(i) Let P be a prime ideal of C[x], and let V = V (P ) be the variety of zeros of P in An. If a polynomial g
vanishes at every point of V , then g is an element of P .
(ii) Let f be an irreducible polynomial in C[x]. If a polynomial g vanishes at every point of V (f), then f
divides g.
(iii) Let I and J be ideals of C[x]. Then V (I) ⊃ V (J) if and only if rad I ⊂ rad J , and V (I) > V (J) if
and only if rad I > rad J (see (2.2.20)). �

2.4.10. Examples.
strongnullex
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(i) Let I be the ideal of the polynomial algebra C[x, y] generated by y5 and y2 − x3. In the affine plane, the
origin (0, 0), is the only common zero of these polynomials, and the polynomial x also vanishes at the origin.
The Strong Nullstellensatz predicts that I contains a power of x. This is verified by the following equation:

yy5 − (y4 + y2x3 + x6)(y2 − x3) = x9

(ii) We may regard pairsA,B of n×nmatrices as points of an affine space A of dimension 2n2, with coordinates
aij , bij , 1 ≤ i, j ≤ n. The pairs of commuting matrices (AB = BA) form a closed subset of A, the locus of
common zeros of the n2 polynomials cij that compute the entries of the matrix AB −BA:

(2.4.11) cij(a, b) =
∑
ν

aiνbνj − biνaνj comm-
mateq

If I is the ideal of the polynomial algebra C[a, b] generated by the set of polynomials {cij}, then V (I) is the
set of pairs of commuting complex matrices. The Strong Nullstellensatz asserts that, if a polynomial g(a, b)
vanishes on every pair of commuting matrices, some power of g is in I . Is g itself in I? It is a famous conjecture
that I is a prime ideal. If so, g would be in I . Proving the conjecture would establish your reputation as a
mathematician, but I don’t recommend spending very much time on it right now. �

2.5 The Spectrum
spectru-
malg

When a finite-type domain A is presented as a quotient of a polynomial ring C[x]/P , where P is a prime
ideal, A becomes the coordinate algebra of the variety V (P ) in affine space. The points of V (P ) correspond
to maximal ideals of A and also to homomorphisms A→ C.

The Nullstellensatz allows us to associate a set of points to a finite-type domain A without reference to a
presentation. We can do this because the maximal ideals of A and the homomorphisms A → C don’t depend
on a presentation. We replace the variety V (P ) by an abstract set of points, the spectrum of A, that we denote
by SpecA and call an affine variety. We put one point p into the spectrum for every maximal ideal of A, and
then we turn around and denote the maximal ideal that corresponds to a point p by mp. The Nullstellensatz tells
us that p also corresponds to a homomorphism A → C whose kernel is mp. We denote that homomorphism
by πp. In analogy with (2.2.24), A is called the coordinate algebra of the affine variety SpecA. To work with
SpecA, we may interpret its points as maximal ideals or as homomorphisms to C, whichever is convenient.

When defined in this way, the variety SpecA isn’t embedded into any affine space, but because A is a
finite-type domain, it can be presented as a quotient C[x]/P , where P is a prime ideal. When this is done,
points of SpecA correspond to points of the subset V (P ) in An.

Even when the coordinate ring A of an affine variety X is presented as C[x]/P , we will often denote X
by SpecA rather than by V (P ).

2.5.1. Note. primespecIn modern terminology, the word “spectrum” is usually used to denote the set of prime ideals of
a ring. This becomes important when one studies rings that aren’t finite-type algebras. When working with
finite-type domains, there are enough maximal ideals. The other prime ideals aren’t needed to fill out SpecA,
so we don’t include them. �

Let X = SpecA. An element α of A defines a (complex-valued) function on X that we denote by the
same letter α. The definition of the function α is as follows: A point p of X corresponds to a homomorphism

A
πp−→ C. By definition The value α(p) of the function α at p is πp(α):

(2.5.2) defalphapα(p)
def
= πp(α)

Thus the kernel of πp, which is mp, is the set of elements α of the coordinate algebra A at which the value of
α is 0:

mp = {α ∈ A |α(p) = 0}
The functions defined in this way by the elements of A are called the regular functions on X . (See Proposition
2.6.2 below.)

When A is a polynomial algebra C[x1, ..., xn], the function defined by a polynomal g(x) is simply the
usual polynomial function, because πp is defined by evaluating a polynomial at p: g(p) = πp(g) (2.3.1).
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2.5.3. Lemma.gpequal-
salphap

Let A be a quotient C[x]/P of the polynomial ring C[x1, ..., xn], modulo a prime ideal P , so
that SpecA identifies with the closed subset V (P ) of An. Then a point p of SpecA becomes a point of An:
p = (a1, ..., an). When an element α of A is represented by a polynomial g(x), the value of α at p can be
obtained by evaluating g: α(p) = g(p) = g(a1, ..., an).

So the value α(p) at a point p of SpecA can be obtained by evaluating a suitable polynomial g. However,
unless P is the zero ideal, that polynomial won’t be unique.

proof of Lemma 2.5.3. The point p of SpecA gives us a diagram (2.4.5), with π = πp and π = πp, and
where τ is the canonical map C[x]→ A. Then α = τ(g), and

(2.5.4)redefinefn g(p)
def
= πp(g) = πpτ(g) = πp(α)

def
= α(p). �

2.5.5. Lemma.regfndetelt The regular functions determined by distinct elements α and β of A are distinct. In particular,
the only element α of A that is zero at all points of SpecA is the zero element.

proof. We replace α by α− β. Then what is to be shown is that, if the function determined by an element α is
the zero function, then α is the zero element.

We present A as C[x]/P , x = x1, ..., xn, where P is a prime ideal. Let X be the locus of zeros of P in
An. Corollary 2.4.9 (i) tells us that P is the ideal of all elements that are zero on X . Let g(x) be a polynomial
that represents α. If p is a point of X , and if α(p) = 0, then g(p) = 0. So if α is the zero function, then g is in
P , and therefore α = 0. �

(2.5.6)ztoponvar the Zariski topology on an affine variety

Let X = SpecA be an affine variety with coordinate algebra A. An ideal J of A defines a locus in X , a
closed subset, that we denote by V (J), using the same notation as for loci in affine space. The points of V (J)
are the points of X at which all elements of J vanish. This is analogous to (2.4.2):

(2.5.7)locusin-
spec

V (J) = {p ∈ SpecA | J ⊂ mp}

2.5.8. Lemma.zerolocus-
inX

Let A be a finite-type domain that is presented as A = C[x]/P . An ideal J of A corresponds
to an ideal J of C[x] that contains P , and J = J/P . Let V (J) denote the zero locus of J in An. When we
regard SpecA as a subvariety of An, the loci V (J) in SpecA and V (J) in An will be equal. �

2.5.9. Proposition.empty Let J be an ideal of a finite-type domain A. The zero set V (J) in X = SpecA is empty
if and only if J is the unit ideal of A. If X is empty, then A is the zero ring.

proof. The only ideal that isn’t contained in a maximal ideal is the unit ideal. �

2.5.10. Note.nobar We have put bars on the symbols m, π, and J in this section up to now, in order to distinguish
ideals of A from ideals of C[x] and homomorphisms A → C from homomorphisms C[x1, . . . , xn] → C.
From now on we will put bars over the letters only when there is a danger of confusion. Most of the time, we
will drop the bars, and write m, π, and J instead of m, π , and J . �

2.5.11. Proposition.inter-
sprimes

Let I be an ideal of noetherian ring R. The radical of I is the intersection of the prime
ideals of R that contain I .

proof. Let x be an element of rad I . Some power xk is in I . If P is a prime ideal that contains I , then xk ∈ P ,
and since P is a prime ideal, x ∈ P . So rad I ⊂ P . Conversely, let x be an element not in rad I . So no power
of x is in I . We show that there is a prime ideal that contains I but not x. Let S be the set of ideals that contain
I , but don’t contain any power of x. The ideal I is one such ideal, so S isn’t empty. Since R is noetherian, S
contains a maximal member P (2.1.12). We show that P is a prime ideal by showing that, if two ideals A and
B are strictly larger than P , their product AB isn’t contained in P (2.1.2)(iii’). Since P is a maximal member
of S, A and B aren’t in S. They contain I and they contain powers of x, say xk ∈ A and x` ∈ B. Then xk+`

is in AB but not in P . Therefore AB 6⊂ P . �

The properties of closed sets in affine space that are given in Lemmas 2.2.2 and 2.2.21 are true for closed
subsets of an affine variety. In particular, V (J) = V (rad J), and V (IJ) = V (I ∩ J) = V (I) ∪ V (J).
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2.5.12. Corollary. subsof-
specA

Let I and J be ideals of a finite-type domainA, and letX = SpecA. Then V (I) ⊃ V (J)
if and only if rad I ⊂ rad J .

This follows from the case of a polynomial ring, Corollary 2.4.9 (iii), and Lemma 2.5.8. �

The next proposition includes Proposition 2.2.23 as a special case.

2.5.13. Proposition.
proofirred-
prime

Let A be a finite-type domain, let X = SpecA, and let P be a radical ideal of A. The
closed set V (P ) of zeros of P is irreducible if and only if P is a prime ideal.

proof. Let Y = V (P ), and let C and D be closed subsets of X such that Y = C ∪ D. Say C = V (I) and
D = V (J). We may suppose that I and J are radical ideals. Then the inclusion C ⊂ Y implies that I ⊃ P ,
and similarly, J ⊃ P (2.5.12). Because Y = C∪D, we also have V (P ) = V (I)∪V (J) = V (IJ). Therefore
rad(IJ) = P . If P is a prime ideal, then P = I or P = J , and therefore C = Y or D = Y . Then Y is
irreducible. Conversely, suppose that P isn’t a prime ideal. So there are ideals I, J strictly larger than the
radical ideal P , such that IJ ⊂ P . In this case, Y will be the union of the two proper closed subsets V (I) and
V (J) (2.5.12), so Y isn’t irreducible. �

(2.5.14) the nilradical thenilradi-
cal

The nilradical of a ring is the set of its nilpotent elements. It is the radical of the zero ideal. If a ring R is
noetherian, its nilradical N will be nilpotent: some power of N will be the zero ideal (Lemma 2.2.21). The
nilradical of a domain is the zero ideal.

The next corollary follows from Proposition 2.5.11.

2.5.15. Corollary. intersect-
primes

The nilradical of a noetherian ring R is the intersection of the prime ideals of R. �

Note. The conclusion of this corollary is true whether or not R is noetherian.

2.5.16. Corollary.
strongnullA(i) Let A be a finite-type algebra. An element of A that is in every maximal ideal of A is nilpotent.

(ii) Let A be a finite-type domain. The intersection of the maximal ideals of A is the zero ideal.

proof. (i) Say that A is presented as C[x1, ..., xn]/I . Maximal ideals of A correspond to the maximal ideals of
C[x] that contain I , and to points of the closed subset V (I) of An. Let α be the element ofA that is represented
by a polynomial g(x) in C[x]. Then α is in every maximal ideal of A if and only if g = 0 at all points of V (I).
If so, the Strong Nullstellensatz asserts that some power gN is in I . Then αN = 0. �

2.5.17. Corollary. fndetermi-
neselt

An element α of a finite-type domain A is determined by the function that α defines on
SpecA.

proof. It is enough to show that an element α that defines the zero function is the zero element. Such an
element α is in every maximal ideal (2.5.9), so it is nilpotent, and since A is a domain, α = 0. �

2.6 Morphisms of Affine Varieties
morphism

Morphisms are the maps between varieties that are allowed. Morphisms between affine varieties, as will be de-
fined in this section, correspond to algebra homomorphisms in the opposite direction between their coordinate
algebras. Morphisms of projective varieties will be defined in the next chapter.

(2.6.1) regfnoneregular functions

The function field K of an affine variety X = SpecA is the field of fractions of A. A rational function
on X is a nonzero element of the function field. A rational function f is regular at a point p of X if it can be
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written as a fraction f = a/s with s(p) 6= 0, and f is regular on a subset U of X if it is regular at every point
of U .

In (2.5.2), we have seen that an element of the coordinate algebra A defines a function on X . The value
a(p) of a function a at a point p is πp(a), where πp is the homomorphism A → C that corresponds to p.
A rational function f = a/s is an element of As. It defines a function on the open subset Xs of X , with
f(p) = a(p)/s(p).

2.6.2. Proposition.deloca The regular functions on an affine variety X = SpecA are the elements of the coordinate
algebra A.

proof. Let f be a rational function that is regular onX . So for every point p ofX , f can be written as a fraction
a/s such that s(p) 6= 0. The localization Xs = SpecAs contains p, and f is an element of As. Because X
is quasicompact, a finite set of such localizations, say Xs1 , . . . , Xsk , will cover X . Then s1, ..., sk have no
common zeros on X , so they generate the unit ideal of A. Since f is in Asi , we can write f = s−ni bi, or
sni f = bi, with bi in A, and we can use the same exponent n for each i. Since the elements si generate the
unit ideal of A, so do the powers sni . Writing 1 =

∑
sni ci with ci in A, f =

∑
sni cif =

∑
cibi. So f is an

element of A.
This reasoning, in which one writes the identity element as a sum, occurs often. �

(2.6.3)morphtwo morphisms

Let X = SpecA and Y = SpecB be affine varieties, and let A
ϕ−→ B be an algebra homomorphism. A

point q of Y corresponds to an algebra homomorphism B
πq−→ C. When we compose πq with ϕ, we obtain

a homomorphism A
πqϕ−→ C. By definition, points p of SpecA correspond to homomorphisms A

πp−→ C. So
there is a unique point p of X = SpecA such that πqϕ = πp.

2.6.4. Definition.defmor-
phaff

Let X = SpecA and Y = SpecB. A morphism Y
u−→ X is a map that is defined, as

above, by an algebra homomorphism A
ϕ−→ B. If q is a point of Y , then uq is the point p of X such that

πp = πqϕ:

(2.6.5)piqphi

A
ϕ−−−−→ B

πp

y yπq
C C

X
u←−−−− Yx x

p ←−−−− q

So p = uq means that πqϕ = πp.

2.6.6. Lemma.betaqal-
phap

Let X = SpecA and Y = SpecB, and let Y u−→ X be the morphism defined by a
homomorphism A

ϕ−→ B. Also, let q be a point of Y , and let p = uq be its image in X .
(i) If α is an element of A and β = ϕ(α), then β(q) = α(p).
(ii) Let mp and mq be the maximal ideals of A and B at p and q, respectively. Then mp = ϕ−1mq .

proof. (i) β(q) = πq(β) = πq(ϕα) = πp(α) = α(p).
(ii) α(p) = 0 if and only if [ϕα](q) = 0. �

Thus the homomorphism ϕ is determined by the morphism u, and vice-versa. But just as a map A → B
needn’t be a homomorphism, a map Y → X needn’t be a morphism.

Notation.brackets Parentheses tend to accumulate, and this can make expressions hard to read. When we want to
denote the value of a complicated function such as ϕ(α) on an object q we may, for clarity, drop some paren-
theses and enclose the functor in square brackets, writing [ϕα](q) instead of (ϕ(α))(q). When a square bracket
is used this way, there is no logical difference between it and a parenthesis. �

A morphism Y
u−→ X is an isomorphism if and only if it is bijective, and its inverse function is a morphism.

This will be true if and only if A
ϕ−→ B is an isomorphism of algebras.
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2.6.7. Proposition. uisomphi-
isom

(i) The morphism Y
u−→ X defined by a homomorphism A

ϕ−→ B is an isomorphism if
and only if ϕ is an isomorphism.

(ii) The morphismX
u−→ X defined by a homomorphismA

ϕ−→ A is the identity if and only if ϕ is the identity.
�

The definition of a morphism can be confusing because the direction of the arrow is reversed. It will
become clearer as we expand the discussion, but the reversal of arrows will remain a potential source of
confusion.

morphisms to affine space.

A morphism Y
u−→ A1 from a variety Y = SpecB to the affine line SpecC[x] is defined by an al-

gebra homomorphism C[x]
ϕ−→ B, and such a homomorphism substitutes an element β of B for x. The

corresponding morphism u sends a point q of Y to the point x = β(q) of the x-line.

For example, let Y be the space of 2×2 matrices, Y = SpecC[yij ], where yij are variable matrix entries,
1 ≤ i, j ≤ 2. The determinant defines a morphism Y → A1 that sends a matrix to its determinant. The
corresponding algebra homomorphism C[x]

ϕ−→ C[yij ] substitutes y11y22−y12y21 for x. It sends a polynomial
f(x) to f(y11y22 − y12y21).

A morphism in the other direction, from the affine line A1 to a variety Y may be called a (complex)
polynomial path in Y . When Y is the space of matrices, a morphism A1 → Y corresponds to a homomorphism
C[yij ]→ C[x]. It substitutes a polynomial in x for each variable yij .

A morphism from an affine variety Y = SpecB to affine space An is defined by a homomorphism
C[x1, ..., xn]

Φ−→ B, which substitutes elements βi of B for xi: Φ(f(x)) = f(β). (We use an upper case
Φ here, keeping ϕ in reserve.) The corresponding morphism Y

u−→ An sends a point q of Y to the point
(β1(q), ..., βn(q)) of An.

morphisms to affine varieties.
Let X = SpecA and Y = SpecB be affine varieties. Say that we have chosen a presentation A =

C[x1, ..., xm]/(f1, ..., fk) of A, so that X becomes the closed subvariety V (f) of affine space Am. There
is no need to choose a presentation of B. A natural way to define a morphism from a variety Y to X is
as a morphism Y

u−→ Am to affine space, whose image is contained in X . We check that this agrees with
Definition 2.6.4.

A morphism Y
u−→ Am corresponds to a homomorphism C[x1, ..., xm]

Φ−→ B, determined by a set
(β1, ..., βm) of elements of B, with the rule that Φ(xi) = βi. Since X is the locus of zeros of the polynomials
f , the image of Y will be contained in X if and only if fi(β1(q), ..., βm(q)) = 0 for every point q of Y and
every i, i.e., if and only if fi(β) is in every maximal ideal of B, in which case fi(β) = 0 (2.5.16)(ii). A better
way to say this is: The image of Y is contained in X if and only if β = (β1, ..., βm) solves the equations
f(x) = 0. And, if β is a solution, the homomorphism Φ defines a homomorphism A

ϕ−→ B.

C[x]
Φ−−−−→ By ∥∥∥

A
ϕ−−−−→ B

This is an elementary, but important, principle:

• Homomorphisms from the algebra A = C[x]/(f) to an algebra B correspond to solutions
of the equations f = 0 in B.

2.6.8. Corollary. mor-
phandho-
mom

Let X = SpecA and let Y = SpecB be affine varieties, and suppose that A =
C[x1, ..., xm]/(f1, ..., fk). There are bijective correspondences between the following sets:
• algebra homomorphisms A→ B,
• morphisms Y → X ,
• morphisms Y → Am whose images are contained in X ,
• solutions of the equations fi(x) = 0 in B, i = 1, ..., k. �
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The second and third sets refer to an embedding of the variety X into affine space, but the first one does not.
It shows that a morphism depends only on the varieties X and Y , not on their embeddings.

2.6.9. Example.maptocusp Let B = C[x] be the polynomial ring in one variable, and let A be the coordinate algebra
C[u, v]/(v2 − u3) of a cubic curve with a cusp. A homomorphism A→ B is determined by a solution of the
equation v2 = u3 in C[x]. The solutions have the form u = g2, v = g3 with g in C[x]. For instance, u = x2

and v = x3 is a solution. �

We note a few more facts about morphisms here. Their geometry will be analyzed further in Chapters 4
and 5.

2.6.10. Proposition.phisurj Let Y u−→ X be the morphism of affine varieties that corresponds to a homomorphism
of finite-type domains A

ϕ−→ B.
(i) Suppose that B = A/P , where P is a prime ideal of A, and that ϕ is the canonical homomorphism
A→ A/P . Then u is the inclusion of the variety of zeros Y = V (P ) of P into X .
(ii) The homomorphism ϕ is surjective if and only if u maps Y isomorphically to a closed subvariety of X .

(iii) Let Z v−→ Y be another morphism, that corresponds to a homomorphismB
ψ−→ R of finite-type domains,

the composed map Z uv−→ X corresponds to the composed homomorphism A
ψϕ−→ R. �

It can be useful to phrase the definition of the morphism Y
u−→ X that corresponds to a homomorphism

A
ϕ−→ B in terms of maximal ideals. Let mq be the maximal ideal of B at a point q of Y . The inverse image

of mq in A is the kernel of the composed homomorphism A
ϕ−→ B

πq−→ C, so it is a maximal ideal of A:
ϕ−1mq = mp, for some p in X . That point p is the image of q: If p = uq, then mp = ϕ−1mq .

The fibre over a point p of the morphism Y
u−→ X defined by a homomorphism A

ϕ−→ B is described
as follows: let mp be the maximal ideal at a point p of X , and let J be the extended ideal mpB, the ideal
generated by the image of mp in B. Its elements are finite sums

∑
ϕ(zi)bi with zi in mp and bi in B. (See

(2.7.5) below.) If q is is a point of Y , then uq = p if and only if mp = ϕ−1mq . This will be true if and only
J ⊂ mq .

2.6.11. Example. (blowing up the plane)cusp-
normx Let W and X be planes with coordinates (x,w) and (x, y), respectively. The affine blowup morphism

W
π−→ X was described before (1.8.5). It is defined by the substitution π(x,w) = (x, xw), and if corresponds

to the algebra homomorphism C[x, y]
ϕ−→ C[x,w] defined by ϕ(x) = x and ϕ(y) = xw. To be specific, the

image of a point q : (x,w) = (a, c) of W is the point p : (x, y) = (a, ac) of X .
As was explained in (1.8.5), the blowup π is bijective at points (x, y) at which x 6= 0. The fibre of Z over

a point of Y of the form (0, y) is empty unless y = 0, and the fibre over the origin (0, 0) in Y is the w-axis,
the line x = 0 in the plane W . �

2.6.12. Proposition.mcont A morphism Y
u−→ X of affine varieties is a continuous map in the Zariski topology

and also in the classical topology.

proof. the Zariski topology: Let X = SpecA and Y = SpecB, so that u corresponds to an algebra homo-
morphism A

ϕ−→ B. A closed subset C of X will be the zero locus of a set α = {α1, ..., αk} of elements
of A. Let βi = ϕαi. The inverse image u−1C is the set of points q such that p = uq is in C, i.e., such that
αi(uq) = βi(q) = 0 (2.6.6). So u−1C is the zero locus in Y of the elements βi = ϕ(αi). It is a closed set.

the classical topology: We use the fact that polynomials are continuous functions. First, a morphism of
affine spaces Any

U−→ Amx is defined by an algebra homomorphism C[x1, ..., xm]
Φ−→ C[y1, ..., yn], and

that homomorphism is determined by the polynomials h1(y), ..., hm(y) that are the images of the variables
x1, ..., xm. The morphism U sends the point (y1, ..., yn) of An to the point (h1(y), ..., hm(y)) of Am. It is
continuous because polynomials are continuous functions.

Next, say that a morphism Y
u−→ X is defined by a homomorphism A

ϕ−→ B of algebras that are
presented as A = C[x]/I and B = C[y]/J . We form a diagram of homomorphisms and the associated
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diagram of morphisms:
C[x]

Φ−−−−→ C[y]

α

y yβ
A

ϕ−−−−→ B

Anx
U←−−−− Amyx x

X
u←−−−− Y

Here the map α sends x1, ..., xn to α1, ..., αn, and β sends yi to βi = ϕ(αi). Then Φ is obtained by choosing
elements hi of C[y], such that β(hi) = βi.

In the diagram on the right, U is a continuous map, and the vertical arrows are the embeddings of X and
Y into their affine spaces. Since the topologies on X and Y are induced from their embeddings into affine
spaces, u is continuous. �

Thus every morphism of affine varieties can be obtained by restriction from a morphism of affine spaces.
However, in the diagram above, the morphism U depends on the choice of the polynomials hi and on the
presentations of A and B. It isn’t unique.

2.7 Localization
boldlocIn these notes, the word “localization” refers to the process of adjoining inverses to an algebra, and to the effect

of that process on the spectrum.

Let s be a nonzero element of a domainA. As before (2.1.23), the ringAs = A[s−1] obtained by adjoining
an inverse of s to A is called a localization of A. If X denotes the variety SpecA, Xs will denote the variety
SpecAs. It will be called a localization of X too.

2.7.1. Proposition. topology-
onlocal-
ization

The localization Xs = SpecAs is homeomorphic to the open subspace of X of points
at which the function defined by s isn’t zero.

proof. Let p be a point of X , let A
πp−→ C be the corresponding homomorphism. If s isn’t zero at p, say

s(p) = c 6= 0, then πp extends uniquely to a homomorphism As → C that sends s−1 to c−1. This gives us a
unique point of Xs that corresponds to p. If c = 0, then πp doesn’t extend to As.

A closed subset C of X will be the set of zeros of the elements a1, ..., ak of A. Then C ∩Xs will be the
set of zeros of those same elements in Xs. It will be closed in Xs. Conversely, let D be a closed subset of
Xs, say the zero set in Xs of some elements β1, ..., βk, where βi = bis

−ni with bi in A. Since s−1 doesn’t
vanish on Xs, the elements bi and βi have the same zeros in Xs. If C is the zero set of b1, ..., bk in X , then
C ∩Xs = D. �

Thus we may identify a localization Xs with the open subset of X of points at which the value of s isn’t
zero. Then the effect of adjoining the inverse is to throw out the points of X at which s vanishes. For example,
the spectrum of the Laurent polynomial ring C[t, t−1] becomes the complement of the origin in the affine line
A1 = SpecC[t].

Most varieties contain open sets that aren’t localizations. The complement X ′ of the origin in the affine
plane X = SpecC[x1, x2] is a simple example. Every polynomial that vanishes at the origin vanishes on an
affine curve, which has points distinct from the origin. Its inverse doesn’t define a function on X ′. So X ′ isn’t
a localization of X . This is rather obvious, but in other situations, it is often hard to tell whether or not a given
open set is a localization.

Localizations are important for two reasons:

2.7.2. basistop
• The relation between an algebra A and a localization As is easy to understand.
• The localizations Xs of an affine variety X form a basis for the Zariski topology on X .

A basis for the topology on a topological space X is a family B of open sets with this property: Every open
subset of X is a union of open sets that are members of B.

To show that the localizations Xs of an affine variety X form a basis for the topology on X , we must show
that every open subset U of X = SpecA can be covered by sets of the form Xs. Let C be the complement
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X−U of U in X . Then C is closed, so it is the set of common zeros of some nonzero elements s1, ..., sk of
A. The zero set V (si) of si is the complement of the locus Xsi in X , C is the intersection of the sets V (si),
and U is the union of the sets Xsi . �

2.7.3. Corollary.coverby-
locs

Let X = SpecA be an affine variety.
(i) Let s1, ..., sk be elements of A. If the localizations Xs1 , ..., Xsk cover X , then s1, ..., sk generate the unit
ideal of A.
(ii) If {Uν} is an open covering of X , a covering by open sets, there are elements s1, ..., sk of A such that each
Xsi is contained in one of the open sets Uν , and the localizations Xs1 , ..., Xsk cover X . �

2.7.4. Lemma.locloc Let X = SpecA be an affine variety.
(i) If if As and At are localizations of A, and if As ⊃ At, then As is a localization of At. Or, if Xs and Xt

are localizations of X , and if Xs ⊂ Xt, then Xs is a localization of Xt.
(ii) If u is an element of a localization As of A, then (As)u is also a localization of A. �

(2.7.5) extension and contraction of idealsextcontr

Let A ⊂ B be the inclusion of a ring A as a subring of a ring B. The extension of an ideal I of A is the
ideal IB of B generated by I . Its elements are finite sums

∑
i zibi with zi in I and bi in B. The contraction

of an ideal J of B is the intersection J ∩A. It is an ideal of A.
When As is a localization of A and I is an ideal of A, the elements of the extended ideal IAs are fractions

of the form zs−k, with z in I . We denote this extended ideal by Is.

2.7.6. Lemma.xtcontr-
prop

Let s be a nonzero element of a domain A.
(i) Let J be an ideal of the localizationAs and let I = J ∩A. Then J = Is. Every ideal ofAs is the extension
of an ideal of A.
(ii) Let P be a prime ideal of A. If s isn’t in P , the extended ideal Ps is a prime ideal of As. If I is any ideal
of A that contains I , the extended ideal Is is the unit ideal. �

(2.7.7) multiplicative systemsmultsys

To work with the inverses of finitely many nonzero elements, one may simply adjoin the inverse of their
product. For working with an infinite set of inverses, the concept of a multiplicative system is useful. A
multiplicative system S in a domain A is a subset of A that consists of nonzero elements, is closed under
multiplication, and contains 1. If S is a multiplicative system, the ring of S-fractionsAS−1 is the ring obtained
by adjoining inverses of all elements of S. Its elements are equivalence classes of fractions as−1 with a in A
and s in S, the equivalence relation and the laws of composition being the usual ones for fractions. The ring
AS−1 will be called a localization too. When necessary to avoid confusion, the ring obtained by inverting a
single nonzero element s may be called a simple localization.

2.7.8. Examples.inverseex-
amples

(i) The set consisting of the powers of a nonzero element s of a domainA is a multiplicative
system. Its ring of fractions is the simple localization As.
(ii) The set S of all nonzero elements of a domain A is a multiplicative system. Its ring of fractions is the field
of fractions of A.
(iii) An ideal P of a domain A is a prime ideal if and only if its complement, the set of elements of A not in
P , is a multiplicative system. �

2.7.9. Proposition.extendide-
altoloc

Let S be a multiplicative system in a domain A, and let A′ be the localization AS−1.
(i) Let I be an ideal of A. The extended ideal IA′ is the set IS−1 whose elements are classes of fractions
xs−1, with x in I and s in S. The extended ideal is the unit ideal if and only if I contains an element of S.
(ii) Let J be an ideal of the localization A′ and let I = J ∩A. Then IA′ = J .
(iii) If P is a prime ideal of A and if P ∩ S is empty, the extended ideal P ′ = PA′ is a prime ideal of A′,
and the contraction P ′ ∩A is equal to P . If P ∩S isn’t empty, the extended ideal is the unit ideal. Thus prime
ideals of AS−1 correspond bijectively to prime ideals of A that don’t meet S. �
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2.7.10. Corollary. locfintypeEvery localization AS−1 of a noetherian domain A is a noetherian domain. �

2.7.11. loc-
modtwo

When S is a multiplicative system in a domain A, the localization MS−1 of an A-module M is
defined in a way analogous to the one used for simple localizations: It is the AS−1-module whose elements
are equivalence classes of fractions ms−1 with m in M and s in S. To take care of torsion, two fractions
m1s

−1
1 and m2s

−1
2 are defined to be equivalent if there is a nonzero element s in S such that m1s2s = m2s1s.

Then ms−1
1 = 0 if and only if ms = 0 for some nonzero s in S. As with simple localizations, there will be a

homomorphism M →MS−1 that sends an element m to the fraction m/1.

2.7.12. Proposition. localexactLet S be a multiplicative system in a domain A.

(i) Localization is an exact functor: A homomorphism M
ϕ−→ N of A-modules induces a homomorphism

MS−1 ϕ′−→ NS−1 of AS−1-modules. If M
ϕ−→ N

ψ−→ P is an exact sequence of A-modules, the localized

sequence MS−1 ϕ′−→ NS−1 ψ′−→ PS−1 is exact.
(ii) Let M be an A-module and let N be an AS−1-module. When N is made into an A-module by restriction
of scalars, homomorphisms of A-modules M →A N correspond bijectively to homomorphisms of AS−1-
modules MS−1 → N .
(iii) If multiplication by s is an injective map M → M for every s in S, then M ⊂ MS−1. If multiplication
by every s is a bijective map M →M , then M ≈MS−1. �

(2.7.13) a general principle import-
princ

An elementary principle for working with fractions is that any finite sequence of computations in a local-
ization AS−1 will involve finitely many denominators, and can therefore be done in a simple localization As,
where s is a common denominator for the fractions that occur.

2.8 Finite Group Actions
grpi

LetG be a finite group of automorphisms of a finite-type domainB. An invariant element β ofB is an element
such that σβ = β for every element σ of G. For example, for all b in B, the product and the sum

(2.8.1)
∏
σ∈G

σb ,
∑
σ∈G

σb invarelts

are invariant elements. The invariant elements form a subalgebra of B that is often denoted by BG. Theo-
rem 2.8.5 below asserts that BG is a finite-type domain, and that points of the variety SpecBG correspond
bijectively to G-orbits in the variety SpecB.

2.8.2. Examples. actonpla-
neex(i) The symmetric group G = Sn operates on the polynomial algebra R = C[y1, ..., yn] by permuting the

variables. The Symmetric Functions Theorem asserts that the elementary symmetric functions

s1(y) =
∑
i

yi , s2(y) =
∑
i<j

yiyj , . . . , sn(y) = y1y2 · · · yn

generate the algebra RG of invariant polynomials. Moreover, s1, ..., sn are algebraically independent, so RG

is the polynomial algebra C[s1, ..., sn]. The inclusion of RG into R gives us a morphism Y → S, from affine
y-space Y = Any to affine s-space S = Ans . The operation of G on R defines an operation on Y . We use the
same symbol sj to denote the symmetric function sj(y) and the coordinate variable in the affine space S. If
c1, ..., cn are scalars, one can evaluate the variables s1, ..., sn at y = c, to obtain a point c = (c1, ..., cn) of
S. The points a = (a1, ..., an) of Y with image c in S are those such that sj(a) = cj , and a1, ..., an are the
roots of the polynomial yn − c1yn−1 + · · · ± cn. The roots form a G-orbit, so the set of G-orbits in Y maps
bijectively to S.

(ii) Let σ be the automorphism of the polynomial ringB = C[y1, y2] defined by σy1 = ζy1 and σy2 = ζ−1y2,
where ζ = e2πi/n. Let G be the cyclic group of order n generated by σ, and let A denote the algebra BG
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of invariant elements. A monomial m = yi1y
j
2 is invariant if and only if n divides i− j, and an invariant

polynomial is a linear combination of invariant monomials. You will be able to show that the three monomials

(2.8.3)zetainvar u1 = yn1 , u2 = yn2 , and w = y1y2

generate the algebra A of invariants. Let’s use the same symbols u1, u2, w to denote variables in a polynomial
ring C[u1, u2, w]. Let J be the kernel of the canonical homomorphism C[u1, u2, w]

τ−→ A that sends u1, u2

and w to yn1 , y
n
2 and y1y2, respectively.

2.8.4. Lemma.slaction With notation as above, the kernel of τ is the principal ideal of C[u1, u2, w], generated by the
polynomial f = wn − u1u2. Thus A ≈ C[u1, u2, w]/(wn − u1u2).

proof. First, f is in J . Let g(u1, u2, w) be any element of J . So g(yn1 , y
n
2 , y1y2) = 0. We divide g by

f , considered as a monic polynomial in w, say g = fq + r, where the remainder r(u1, u2, w) has degree
< n in w. The remainder will be in J too: r(yn1 , y

n
2 , y1y2) = 0. We write r as a polynomial in w: r =

r0(u1, u2) + r1(u1, u2)w+ · · ·+ rn−1(u1, u2)wn−1. When we substitute yn1 , y
n
2 , y1y2, the term ri(u1, u2)wi

becomes ri(yn1 , y
n
2 )(y1y2)i. The degree in y1 of every monomial that appears there will be congruent to i

modulo n, and the same is true for the degree in y2. Since r(yn1 , y
n
2 , y1y2) = 0, and since the indices i are

distinct, ri(yn1 , y
n
2 ) must be zero for every i. This implies that ri(u1, u2) = 0 for every i. So r = 0, which

means that f divides g. �

We go back to the operation of the cyclic group G on B = C[y1, y2] and the algebra of invariants A. Let Y
denote the affine plane SpecB, and let X = SpecA. The group G operates on Y , and except for the origin,
which is a fixed point, the orbit of a point (y1, y2) consists of the n points (ζiy1, ζ

−iy2), i = 0, . . . , n − 1.
To show that G-orbits in Y correspond bijectively to points of X , we fix complex numbers u1, u2, w with
wn = u1u2, and look for solutions of the equations (2.8.3). When u1 6= 0, the equation u1 = yn1 has n
solutions for y1, and when a soluion is given, y2 is determined by the equation y1y2 = w. So the fibre has
order n. Similarly, there are n points in the fibre if u2 6= 0. If u1 = u2 = 0, then y1 = y2 = w = 0, and the
fibre contains just one point. In all cases, the fibres are the G-orbits. �

2.8.5. Theorem.
groupoper-

one

Let G be a finite group of automorphisms of a finite-type domain B, and let A denote the
algebra BG of invariant elements. Let Y = SpecB and X = SpecA.
(i) A is a finite-type domain and B is a finite A-module.
(ii) G operates by automorphisms on Y .
(iii) The morphism Y → X defined by the inclusion A ⊂ B is surjective. Its fibres are the G-orbits of points
of Y .

When a group G operates on a set Y , one often denotes the set of G-orbits of Y by Y/G, which is read as ’Y
mod G’. With that notation, part (iii) of the theorem asserts that there is a bijective map

Y/G→ X

proof of 2.8.5 (i): The invariant algebra A = BG is a finite-type algebra, and B is a finite A-module.
This is an interesting indirect proof. To show that A is a finite-type algebra, one constructs a finite-type

subalgebra R of A such that B is a submodule of a finite R-module.

Let {z1, . . . , zk} be the G-orbit of an element z1 of B. The orbit is the set of roots of the polynomial

f(t) = (t− z1) · · · (t− zk) = tk − s1t
k−1 + · · · ± skspoly

Its coefficients si(z) are the elementary symmetric functions in {z1, ..., zk}. Let R1 denote the algebra gen-
erated by those symmetric functions. Because the symmetric functions are invariant, R1 ⊂ A. Using the
equation f(z1) = 0, we can write any power of z1 as a polynomial in z1 of degree less than k, with coeffi-
cients in R1.

We choose a finite set of generators {y1, . . . , yr} for the algebraB. If the order of the orbit of yj is kj , then
yj will be the root of a monic polynomial fj of degree kj with coefficients in A. Let R denote the finite-type
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algebra generated by all of the coefficients of all of the polynomials f1, ..., fr. For every j = 1, ..., r, we can
write any power of yj as a polynomial in yj with coefficients in R, and of degree less than kj . Using such
expressions, we can write every monomial in y1, ..., yr as a polynomial with coefficients in R, whose degree
in the variable yj is less than kj . Since y1, ..., yr generate B, we can write every element of B as such a
polynomial. Then the finite set of monomials ye11 · · · yerr with ej < kj spans B as an R-module. Therefore B
is a finite R-module.

The algebra A of invariants is a subalgebra of B that contains R. Since R is a finite-type algebra, it is
noetherian. When regarded as an R-module, A is a submodule of the finite R-module B. Therefore A is also
a finite R-module. When we put a finite set of algebra generators for R together with a finite set of R-module
generators for A, we obtain a finite set of algebra generators for A, so A is a finite-type algebra. And, since B
is a finite R-module, it is also a finite module over the larger ring A.

proof of 2.8.5 (ii): The group G operates on Y .
A group element σ is a homomorphism B

σ−→ B. It defines a morphism Y
uσ←− Y , as in Definition 2.6.4.

Since σ is an invertible homomorphism, i.e., an automorphism of B, uσ is an automorphism of Y . Thus G
operates on Y . However, there is a point that should be mentioned.

We write the operation of G on B on the left as usual, so that a group element σ maps an element β of B
to σb. Then if σ and τ are two group elements, the product στ acts as first do τ , then σ: (στ)β = σ(τβ).

(2.8.6) BBBB
τ−→ B

σ−→ B

We substitute u = uσ into Definition 2.6.4: If q is a point of Y , the morphism Y
uσ←− Y sends q to the

point p such that πp = πqσ. It seems permissible to drop the symbol u, and to write the morphism simply as
Y

σ←− Y . But since arrows are reversed when going from homomorphisms of algebras to morphisms of their
spectra (2.6.5), the maps displayed in (2.8.6) above, give us morphisms

(2.8.7) Y
τ←− Y σ←− Y YYY

On Y = SpecB, the product στ acts as first do σ, then τ . This is a problem, but we can get around it by
putting the symbol σ on the right when it operates on Y , so that σ sends a point q to qσ. Then if q is a point of
Y , we will have q(στ) = (qσ)τ , as required of the operation.

• If G operates on the left on B, then it operates on the right on SpecB.

This is important only when one wants to compose morphisms. In Definition 2.6.4, we followed custom
and wrote the morphism u that corresponds to an algebra homomorphism ϕ on the left. We will continue to
write morphisms on the left where possible, but not here.

Let β be an element of B and let q be a point of Y . The value of the function σβ at a point q is the same
as the value of β at the point qσ (2.6.6):

(2.8.8) bsigmay[σβ](q) = β(qσ) �

proof of 2.8.5 (iii): The fibres of the morphism Y → X are the G-orbits in Y .
We go back to the subalgebra A = BG. For σ in G, we have a diagram of algebra homomorphisms and

the corresponding diagram of morphisms of varieties

(2.8.9)

B
σ−−−−→ Bx x

A A

Y
σ←−−−− Yy y

X X

actonB

The diagram of morphisms shows that points of Y that are in aG-orbit have the same image inX , and therefore
that the set of G-orbits in Y , which we may denote by Y/G, maps to X . We show that the map Y/G→ X is
bijective.

2.8.10. Lemma. arbvals(i) Let p1, . . . , pk be distinct points of affine space An, and let c1, . . . , ck be complex
numbers. There is a polynomial f(x1, . . . , xn) such that f(pi) = ci for i = 1, . . . , n.
(ii) Let B be a finite-type algebra, let q1, . . . , qk be distinct points of SpecB, and let c1, . . . , ck be distinct
complex numbers. There is an element β in B such that β(qi) = ci for i = 1, . . . , k. �
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injectivity of the map Y/G → X: Let O1 and O2 be distinct G-orbits in Y . Lemma 2.8.10 tells us that there
is an element β in B whose value is 0 at every point of O1, and 1 at every point of O2. Since G permutes
the orbits, σβ will also be 0 at points of O1 and 1 at points of O2. Then the product γ =

∏
σ σβ will be 0

at points of O1 and 1 at points of O2, and the product γ is invariant. If pi denotes the image in X of the orbit
Oi, the maximal ideal mpi of A is the intersection A∩mq , where q is any point in the orbit Oi. Therefore γ is
in the maximal ideal mp1 , but not in mp2 . The images of the two orbits are distinct.

surjectivity of the map Y/G→ X: It suffices to show that the map Y → X is surjective.

2.8.11. Lemma.extideal If I is an ideal of the invariant algebra A, and if the extended ideal IB is the unit ideal of B,
then I is the unit ideal of A.

As before, the extended ideal IB is the ideal of B generated by I .

Let’s assume the lemma for the moment, and use it to prove surjectivity of the map Y → X . Let p be a
point ofX . The lemma tells us that the extended ideal mpB isn’t the unit ideal. So it is contained in a maximal
ideal mq of B, where q is a point of Y . Then mp ⊂ (mpB) ∩ A ⊂ mq ∩ A. The contraction mq ∩ A is an
ideal of A, and it isn’t the unit ideal because it doesn’t contain 1, which isn’t in mq . Since mp is contained in
mq ∩A and mp is a maximal ideal, mp = mq ∩A. This means that q maps to p in X . �

proof of the lemma. If IB = B, there will be an equation
∑
i zibi = 1, with zi in I and bi in B. The sums

αi =
∑
σ σbi are invariant, so they are elements of A, and the elements zi are invariant because they are in A.

Therefore
∑
σ σ(zibi) = zi

∑
σ σbi = ziαi is in I . Then∑

σ

1 =
∑
σ

σ(1) =
∑
σ,i

σ(zibi) =
∑
i

ziαi

The right side is in I , and the left side is the order of the group which, because A contains the complex
numbers, is an invertible element of A. So I is the unit ideal. �
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2.9 Exercises
chaptwoex2.9.1. xxfin-
manyzeros

Prove that relatively prime polynomials in F,G two variables x, y, not necessarily homogeneous, have
finitely many common zeros in A2.

2.9.2. xtensftypProve that if A,B are finite-type domains, defining (a1 ⊗ b1)(a2 ⊗ b2) = (a1a2 ⊗ b1b2) makes the
tensor product A⊗B into a finite-type domain.

2.9.3. xidealnilpProve that if a noetherian ring contains just one prime ideal, then that ideal is nilpotent.

2.9.4. xatmost-
max

Prove that an algebra A that is a complex vector space of dimension d contains at most d maximal
ideals.

2.9.5. xtanvectLet T denote the ring C[ε], with ε2 = 0. If A is the coordinate ring of an affine variety X , an
(infinitesimal) tangent vector to X is, by definition, given by an algebra homomorphism ϕ : A→ T .
(i) Show that such a homomorphism can be written in the form ϕ(a) = f(a) + d(a)ε, where f and d are
functions A → C. Show that f is an algebra homomorphism, and that d is an f -derivation, a linear map that
satisfies the identity d(ab) = f(a)d(b) + d(a)f(b).
(ii) Let A = C[x1, ..., xn]/(f1, ..., fr). Show that the tangent vectors to X = SpecA are defined by the
equations ∇fi(p)x = 0. In other words, the tangent vectos are the vectors that are the vectors that are
orthogonal to the gradients.

2.9.6. exinvert-
series

Let i = (i1, ..., in) be a set of non-negative integers, and let x(i) denote the monomial xi11 · · ·xinn . A
formal power series is a sum

∑
a(i)x

(i), where a(i) are arbitrary complex numbers. There is no condition of
convergence. Prove that the set of formal power series forms a ring C[[x1, ..., xn]], and that an element whose
constant term is nonzero is invertible.

2.9.7. xvarin-
plane

Prove that that the varieties in the affine plane A2 are points, curves, and the affine plane A2 itself.

2.9.8. xdimthreeClassify algebras that are complex vector spaces of dimensions two or three.

2.9.9.
xstrongim-
pliesN

Derive version 1 of the Nullstellensatz from the Strong Nulletellensatz.

2.9.10. xptsidealFind generators for the ideal of C[x, y] of polynomials that vanish at the three points (0, 0), (0, 1), (1, 0).

2.9.11. xintprimeLet A be a noetherian ring. Prove that a radical ideal I of A is the intersection of finitely many prime
ideals.

2.9.12. xnotvan-
ish

Let C and D be closed subsets of an affine variety X = SpecA. Suppose that no component of D
is contained in C. Prove that there is a regular function f that vanishes on C and isn’t identically zero on any
component of D.

2.9.13. xmin-
prime

A minimal prime ideal is an ideal that doesn’t properly contain any other prime ideal. Prove that a
nonzero, finite-type algebra A (not necessarily a domain) contains at least one and only finitely many minimal
prime ideals. Try to find a proof that doesn’t require much work.

2.9.14. franotfgLet K be a field and let R be the polynomial ring K[x1, ..., xn], with n > 0. Prove that the field of
fractions of R is not a finitely generated K-algebra.

2.9.15. xcircleProve that the algebra A = C[x, y]/(x2 + y2 + 1) is isomorphic to the Laurent Polynomial Ring
C[t, t−1], but that R[x, y]/(x2 + y2 + 1) is not isomorphic to R[t, t−1].

2.9.16. xglueptsLet B be a finite type domain, and let p and q be points of the affine variety Y = SpecB. Let A be
the set of elements f ∈ B such that f(p) = f(q). Prove
(i) A is a finite type domain.
(ii) B is a finite A-module.
(iii) Let ϕ : SpecB → SpecA be the morphism obtained from the inclusionA ⊂ B. Show that ϕ(p) = ϕ(q),
and that ϕ is bijective everywhere else.

2.9.17. xcuspThe equation y2 = x3 defines a plane curve X with a cusp at the origin, the spectrum of the algebra
A = C[x, y]/(y2 − x3). There is a homomorphism A

ϕ−→ C[t], such that ϕ(x) = t2 and ϕ(y) = t3, and the
associated morphism A1

t
u−→ X sends a point t of A1 to the point (x, y) = (t2, t3) of X . Prove that u is a

homeomorphism in the Zariski topology and in the classical topology.
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2.9.18.xspellout-
morph

Explain what a morphism SpecB → SpecA means in terms of polynomials, when
A = C[x1, . . . , xm]/(f1, . . . , fr) and B = C[y1, . . . , yn]/(g1, . . . , gk).

2.9.19.xadjoin-
frac

Let A = C[x1, ..., x2], and let B = A[α], where α is an element of the fraction field C(x) of A.
Describe the fibres of the morphism Y = SpecB → SpecA = X .

2.9.20.xparam-
curve

Let X be the plane curve y2 = x(x−1)2, let A = C[x, y]/(y2−x(x−1)2) be its coordinate algebra,
and let x, y denote the residues of those elements in A too.
(i) Points of the curve can be parametrized by a variable t. Use the lines y = t(x − 1) to determine such a
parametrization.
(ii) Let B = C[t] and let T be the affine line SpecC[t]. The parametrization gives us an injective homomor-
phism A→ B. Describe the corresponding morphism T → X .

2.9.21.grplawtwo Let X be the affine line SpecC[x]. When we view SpecC[x1, x2] as the product X×X , a homo-
morphism C[x] → C[x1, x2] defines a law of composition on X , a morphism X×X → X . Determine the
homomorphisms that are group laws on X with the point x = 0 as the identity.

2.9.22.xzetaxy The cyclic group G = 〈σ〉 of order n operates on the polynomial algebra A = C[x, y] by σ(x) = ζx

and σ(y) = ζy, where ζ = e2πi/n.
(i) Describe the invariant ring AG by exhibiting generators and defining relations.
(ii) Prove that the there is a 2×n matrix whose 2×2-minors are defining relations for AG.
(iii) Prove that the morphism SpecA = A2 → SpecB defined by the inclusion B ⊂ A is surjective, and that
its fibres are the G-orbits. Don’t use Theorem 2.8.5.

2.9.23.remainirrd Let A be a finite-type domain, and let f be an irreducible element of C[x1, ..., xn] of positive degree.
Prove that f is an irreducible element of A[x1, ..., xn].

2.9.24. try to make exercise: missing points in C∗ are L∗, where L is a special line.
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Chapter 3 PROJECTIVE ALGEBRAIC GEOMETRY

projgeom
3.1 Projective Varieties
3.2 Homogeneous Ideals
3.3 Product Varieties
3.4 Rational Functions
3.5 Morphisms
3.6 Affine Varieties
3.7 Lines in Three-Space
3.8 Exercises

As before, points of projective space Pn are equivalence classes of nonzero vectors (x0, ..., xn), the equiva-
lence relation being that, for any nonzero complex number λ

(3.0.1) (x0, ..., xn) ∼ (λx0, ..., λxn).xlambdax

Projective varieties are irreducible closed subsets of projective space.

Though affine varieties are important, most of algebraic geometry concerns projective varieties. It isn’t
completely clear why this is so, but one property of projective space gives a hint of its importance: With its
classical topology, projective space is compact. Therefore a projective variety is compact.

A topological space is compact if:

It is a Hausdorff space: Distinct points p, q of X have disjoint open neighborhoods, and
it is quasicompact: If X is covered by a family {U i} of open sets, then a finite subfamily covers X .

By the way, when we say that the sets {U i} cover a topological space X , we mean that X is the union
⋃
U i.

We don’t allow U i to contain elements that aren’t in X , though that would be a customary usage in English.

In the classical topology, affine space An isn’t quasicompact, and therefore it isn’t compact. The Heine-
Borel Theorem asserts that a subset of An is compact in the classical topology if and only if it is closed and
bounded.

We show that Pn is compact, assuming that the Hausdorff property has been verified. The 2n+ 1-
dimensional sphere S of unit length vectors in An+1 is a bounded set, and because it is the zero locus of
the equation x0x0 + · · · + xnxn = 1, it is closed. The Heine-Borel Theorem tells us that S is compact, and
the map S→ Pn that sends a vector (x0, ..., xn) to the point of projective space with that coordinate vector is
continuous and surjective. The next lemma of topology shows that Pn is compact.

3.0.2. Lemma.image-
compact

Let Y
f−→ X be a continuous map. Suppose that Y is compact and that X is a Hausdorff

space — that it has the Hausdorff property. Then the image f(Y ) is a closed, compact subset of X . �

3.1 Projective Varieties
pvariety

A subset of Pn is Zariski closed if it is the set of common zeros of a family of homogeneous polynomials
f1, ..., fk in the coordinate variables x0, ..., xn, or if it is the set of zeros of the ideal I generated by such a
family. As was explained in (1.3.1), f(λx) = 0 for all λ if and only if all of the homogeneous parts of f vanish
at x.
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The Zariski closed sets are the closed sets in the Zariski topology on Pn. We usually refer to Zariski closed
sets simply as closed sets.

Because the polynomial ring C[x0, ..., xn] is noetherian, projective space Pn is a noetherian space: Every
strictly increasing family of ideals of C[x] is finite, and every strictly decreasing family of closed subsets of
Pn is finite. Therefore every closed subset of Pn is a finite union of irreducible closed sets (2.2.16).

3.1.1. Definition. defprojvarA projective variety is an irreducible closed subset of a projective space Pn.

We will want to know when two projective varieties are isomorphic. This will be explained in Section 3.5,
when morphisms are defined.

The Zariski topology on a projective variety X is induced from the topology on the projective space that
contains it (??). Since a projective variety X is closed in Pn, a subset of X is closed in X if and only if it is
closed in Pn.

3.1.2. Lemma. point-
closed

The one-point sets in projective space are closed.

proof. Let p be the point (a0, ..., an). The first guess might be that the one-point set {p} is defined by the
equations xi = ai, but the polynomials xi − ai aren’t homogeneous in x. This is reflected in the fact that,
for any λ 6= 0, the vector (λa0, ..., λan) represents the same point, but it doesn’t satisfy those equations. The
equations that define the set {p} are

(3.1.3) aixj = ajxi, define-
point

for i, j = 0, ..., n, which imply that the ratios ai/aj and xi/xj are equal. �

3.1.4. Lemma. closedin-
line

The proper closed subsets of the projective line are its nonempty finite subsets, and the proper
closed subsets of the projective plane are finite unions of points and curves. �

The rest of this section contains a few examples of projective varieties.

(3.1.5) linear subspaces linsubsp

If W is a subspace of dimension r+1 of the vector space Cn+1, the points of Pn that are represented by
the nonzero vectors in W form a linear subspace L of Pn, of dimension r. If (w0, ..., wr) is a basis of W , the
linear subspace L corresponds bijectively to a projective space of dimension r, by

c0w0 + · · ·+ crwr ←→ (c0, ..., cr)

For example, the set of points (x0, ..., xr, 0, ..., 0) is a linear subspace of dimension r. A line is a linear
subspace of dimension 1. �

(3.1.6) a quadric surface quadric-
surface

A quadric in projective three-space P3 is the locus of zeros of an irreducible homogeneous quadratic polyno-
mial in four variables.

We describe a bijective map from the product P1×P1 of projective lines to a quadric in P3. Let coordinates
in the two copies of P1 be (x0, x1) and (y0, y1), respectively, and let the four coordinates in P3 be zij , with
0 ≤ i, j ≤ 1. The map is defined by zij = xiyj . Its image is the quadric Q whose equation is

(3.1.7) z00z11 = z01z10 ponepone

To check that the map P1×P1 → Q defined by the euation zij = xiyj is bijective, we choose a point w of
Q. One of its coordinates, say z00, will be nonzero. Then if (x, y) is a point of P1×P1 whose image is w, so
that zij = xiyj , the coordinates x0 and y0 must be nonzero too. When we normalize z00, x0, and y0 to 1, the
equation of the quadric becomes z11 = z01z10. This equation has a unique solution for x1 and y1 such that
zij = xiyj , namely x1 = z10 and y1 = z01.
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The quadric whose equation is (3.1.7) contains two families of lines, the images of the subsets x×P1 and
P1×y of P×P.

The equation (3.1.7) can be diagonalized by substituting z00 = s+t, z11 = s − t, z01 = u+v, z10 = u − v.
This changes the equation (3.1.7) to s2 − t2 = u2−v2. When we look at the affine open set {u = 1}, the
equation becomes s2 +v2− t2 = 1. The real locus of this equation is a one-sheeted hyerboloid in R3, and
the two families of complex lines in the quadric correspond to the familiar rulings of that hyperboloid by real
lines.

###insert figure###

(3.1.8) hypersurfaceshsurftwo

A hypersurface in projective space Pn is the locus of zeros of an irreducible homogeneous polynomial
f(x0, ..., xn). Its degree is the degree of the polynomial f . Plane projective curves and quadric surfaces are
hypersurfaces.

(3.1.9) the Segre embedding of a productsegreemb

The product Pmx ×Pny of projective spaces can be embedded by its Segre embedding into a projective space
PNz that has coordinates zij , with i = 0, ...,m and j = 0, ..., n. So N = (m+1)(n+1)−1. The Segre
embedding is defined by

(3.1.10) zij = xiyjsegreco-
ords

We call the coordinates zij the Segre variables. The map from P1× P1 to P3 that was described in (3.1.6) is
the simplest case of a Segre embedding.

3.1.11. Proposition.segreeq The Segre embedding maps the product Pm× Pn bijectively to the locus S of the Segre
equations

(3.1.12) zijzk` − zi`zkj = 0segree-
quations

The proof is analogous to the one given in (3.1.6). �

The Segre embedding is important because it makes the product of projective spaces into a projective
variety, the closed subvariety of PN defined by the Segre equations. However, to show that the product is a
variety, we need to show that the locus of the Segre equations is irreducible, and this isn’t obvious. We defer
the proof to Section 3.3 below. (See Proposition 3.3.4.)

(3.1.13) the Veronese embedding of projective spaceverone-
seemb

Let the coordinates in Pn be xi, and let those in PN be vij , with 0≤ i≤ j≤n. So N =
(
n+2

2

)
− 1. The

Veronese embedding is the map Pn f−→ PN defined by vij = xixj . The Veronese embedding resembles the
Segre embedding, but in the Segre embedding, there are distinct sets of coordinates x and y, and i≤ j isn’t
required.

The proof of the next proposition is similar to the proof of (3.1.11), once one has untangled the inequalities.

3.1.14. Proposition.veroneq The Veronese embedding f maps Pn bijectively to the locus X in PN of the equations

vijvk` = vi`vkj for 0≤ i≤k≤j≤`≤n �

For example, the Veronese embedding maps P1 bijectively to the conic v00v11 = v2
01 in P2.
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(3.1.15) the twisted cubic twistcubic

There are higher order Veronese embeddings. They are defined by evaluating the monomials of some
degree d > 2. The first example is the embedding of P1 by the cubic monomials in two variables, which maps
P1 to P3. Let the coordinates in P3 be v0, ..., v3. The cubic Veronese embedding is defined by

v0 = x3
0, v1 = x2

0x1, v2 = x0x
2
1, v3 = x3

1

Its image, the locus (v0, v1, v2, v3) = (x3
0, x

2
0x1, x0x

2
1, x

3
1), is called a twisted cubic in P3. It is the set of

common zeros of three polynomials:

(3.1.16) twcubicv0v2 − v2
1 , v1v2 − v0v3 , v1v3 − v2

2

the 2×2 minors of the 2×3 matrix

(3.1.17)
(
v0 v1 v2

v1 v2 v3

)
twothree-
matrix

A 2×3 matrix has rank≤ 1 if and only if its 2×2 minors are zero. So a point (v0, v1, v2, v3) lies on the twisted
cubic if (3.1.17) has rank one, which means that the vectors (v0, v1, v2) and (v1, v2, v3), if both are nonzero,
represent the same point of P2.

Setting x0 = 1 and x1 = t, the twisted cubic becomes the locus of points (1, t, t2, t3). There is one point
on the twisted cubic at which x0 = 0, the point (0, 0, 0, 1). �

3.2 Homogeneous Ideals
homogenLet R denote the polynomial algebra C[x0, ..., xn].

3.2.1. Lemma. ho-
mogideal

Let I be an ideal of R. The following conditions are equivalent.
(i) I can be generated by homogeneous polynomials.
(ii) A polynomial is in I if and only if its homogeneous parts are in I. �

An ideal I that satisfies these conditions is a homogeneous ideal.

3.2.2. Corollary. ideal-
ishom

Let S be a subset of projective space Pn. The set of elements of R that vanish at all points
of S is a homogeneous ideal.

This follows from Lemma 1.3.2. �

3.2.3. Lemma. radicalho-
moge-
neous

The radical of a homogeneous ideal is homogeneous.

proof. Let I be a homogeneous ideal, and let f be an element of its radical rad I. So for some r, fr is in I.
When f is written as the sum f0 + · · · + fd of its homogeneous parts, the highest degree part of fr is (fd)

r.
Since I is homogeneous, (fd)

r is in I and fd is in rad I. Then f0 + · · ·+ fd−1 is also in rad I. By induction
on d, all of the homogeneous parts f0, ..., fd are in rad I. �

3.2.4. defVXIThe locus of zeros of a set f of homogeneous polynomials in Pn may be denoted by V (f), and the
locus of zeros of a homogeneous ideal I may be denoted by V (I). We use the same notation as for closed
subsets of affine space.

The complement of the origin in the affine space An+1 is mapped to the projective space Pn by sending
a vector (x0, ..., xn) to the point of Pn defined by that vector. A homogeneous ideal I has a zero locus W in
affine space and V in projective space. Unless I is the unit ideal, the origin x = 0 will be a point of W . The
complement of the origin in W will map surjectively to V .

If W contains a point x other than the origin, then every point of the one-dimensional subspace of An+1

spanned by x is in W , because a homogeneous polynomial f vanishes at x if and only if it vanishes at λx. An
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affine variety that is the union of lines through the origin is called an affine cone. If the locus W contains a
point x other than the origin, it is an affine cone.

The loci {x2
0 + x2

1 − x2
2 = 0} and {x0x

3
1 + x2

1x
2
2 + x3

0x2 = 0} are affine cones in A3.

Note. The real locus x2
0 + x2

1− x2
2 = 0 in R3 decomposes into two parts when the origin is removed. Because

of this, it is sometimes called a “double cone”. However, the complex locus doesn’t decompose.

(3.2.5) the irrelevant idealirrel

In the polynomial algebra R = C[x0, ..., xn], the maximal ideal M = (x0, ..., xn) generated by the
variables is called the irrelevant ideal because its zero locus in projective space is empty.

3.2.6. Proposition.nozeros The zero locus V (I) in Pn of a homogeneous ideal I of R is empty if and only if I
contains a power of the irrelevant idealM.

Another way to say this is: The zero locus of a homogeneous ideal I is empty if and only if either I is the unit
ideal R, or its radical is the irrelevant ideal.

proof of Proposition 3.2.6. Let V be the zero locus of I in Pn. If I contains a power ofM, it contains a power
of each variable. Powers of the variables have no common zeros in projective space, so V is empty.

Suppose that V is empty, and let W be the locus of zeros of I in the affine space An+1 with coordinates
x0, ..., xn. Since the complement of the origin in W maps to the empty locus V , it is empty. The origin is the
only point that might be in W . If W is the one point space consisting of the origin, then rad I =M. If W is
empty, I is the unit ideal. �

3.2.7. Strong Nullstellensatz, projective version.homstrnull Let g be a nonconstant homogeneous polynomial in
x0, ..., xn, and let I be a homogeneous ideal of C[x], not the unit ideal. If g vanishes at every point of the zero
locus V (I) in Pn, then I contains a power of g.

proof. Let W be the locus of zeros of I in the affine space with coordinates x0, ..., xn. A homogeneous
polynomial g that vanishes on V (I) vanishes at every point of W different from the origin, and if g isn’t a
constant, it vanishes at the origin too. So the affine Strong Nullstellensatz 2.4.6 applies. If a nonconstant
homogeneous polynomial g vanishes on W , then I contains a power of g. �

3.2.8. Corollary.
hstrongnull-

cor

(i) Let f and g be homogeneous polynomials. If f is irreducible and if V (f) ⊂ V (g),
then f divides g.
(ii) Let I and J be homogeneous radical ideals, neither of which is the unit ideal. If V (I) = V (J ), then
I = J .

proof. (ii) Suppose that V (f) = V (g). Let g be a homogeneous element of J that vanishes on V (J ) and
therefore on V (I). Since I is a radical ideal, the Strong Nullstellensatz tells us that I contains g. This shows
that J ⊂ I. Similarly, I ⊂ J . �

3.2.9. Lemma.homprime Let P be a homogeneous ideal in the polynomial algebra C[x0, ..., xn], not the unit ideal. The
following conditions are equivalent:
(i) P is a prime ideal.
(ii) If f and g are homogeneous polynomials, and if fg ∈ P , then f ∈ P or g ∈ P .
(iii) If A and B are homogeneous ideals, and if AB ⊂ P , then A ⊂ P or B ⊂ P . Or, if A and B are
homogeneous ideals that contain P , and if AB ⊂ P , then A = P or B = P .

In other words, a homogeneous ideal is a prime ideal if the usual conditions for a prime ideal are satisfied
when the polynomials or ideals are homogeneous.

proof of the lemma. When the word homogeneous is omitted, (ii) and (iii) become the definition of a prime
ideal. So (i) implies (ii) and (iii). The fact that (iii) ⇒ (ii) is proved by considering the principal ideals
generated by f and g.
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(ii)⇒ (i) Suppose that a homogeneous ideal P satisfies condition (ii), and that the product fg of two poly-
nomials, not necessarily homogeneous, is in P . If f has degree d and g has degree e, the highest degree part
of fg is the product of the homogeneous parts fd and ge. Since P is a homogeneous ideal that contains fg, it
contains fdge. Therefore one of the factors, say fd, is in P . Let h = f − fd. Then hg = fg− fdg is in P , and
it has lower degree than fg. By induction on the degree of fg, h or g is in P , and if h is in P , so is f . �

3.2.10. Proposition.
closedirred

Let V be the zero locus in Pn of a homogeneous radical ideal I that isn’t the irrelevant
ideal or the unit ideal. Then V is a projective variety (an irreducible closed subset of Pn) if and only if I is a
prime ideal. Thus a subset V of Pn is a projective variety if and only if it is the zero locus of a homogeneous
prime ideal other than the irrelevant ideal.

proof. The closed set V isn’t empty, so the locus W of zeros of the radical ideal I in the affine space An+1

contains points other than the origin. LetW ′ be the complement of the origin inW . ThenW ′ maps surjectively
to V . If V is irreducible, then W ′ is irreducible and therefore W is irreducible (2.2.15) (ii). Proposition 2.2.23
tells us that I is a prime ideal.

Conversely, suppose that I isn’t a prime ideal. Then there are homogeneous idealsA > I and B > I, such
thatAB ⊂ I. Since I is a radical ideal, rad(AB) ⊂ I, and since radA radB ⊂ rad(AB), radA radB ⊂ I.
Therefore we may suppose that A and B are radical ideals. If α is an element of A that isn’t in I, the Strong
Nullstellensatz asserts that α doesn’t vanish on V (I). So V (A) < V (I) and similarly, V (B) < V (I). But
V (A) ∪ V (B) = V (AB) ⊃ V (I). Then V (I) isn’t an irreducible space. �

(3.2.11) quasiprojective varieties var-
quasiproj

We may somwtimes want to study a nonempty open subset of a projective variety in addition to the pro-
jective variety itself. We call such an open subset a variety too. The topology on a variety is induced from the
topology on projective space. It will be an irreducible topological space (Lemma 2.2.15). However, most of
the the varieties we encounter will be either affine or projective.

For example, the complement of a point in a projective variety is a variety.
We denote the open subspace {xi 6= 0} of Pn by Ui, as we did for subsets of P2. The points of U0 can be

written as (1, u1, ..., un), with ui = xi/x0. This subspace is an affine space of dimension n that we refer to as
a standard open subset of projective space.

An affine variety X = SpecA may be embedded as a closed subvariety into the standard open set U0. It
becomes an open subset of its closure in Pn, which is a projective variety (Lemma 2.2.15). So it is a variety.
And of course, a projective variety is a variety.

Elsewhere, what we call a variety is called a quasiprojective variety. We drop the adjective ’quasipro-
jective’. There are abstract varieties that aren’t quasiprojective, varieties that cannot be embedded into any
projective space. But such varieties aren’t very important and we won’t study them. In fact, it is hard enough
to find examples that we won’t try to give one here. So for us, the adjective ’quasiprojective’ is superfluous as
well as ugly.

3.2.12. Lemma. topon-
standaff

The topology on the affine open subset U0 of Pn induced from the Zariski topology on
Pn is same as the Zariski topology that is obtained by viewing U0 as the affine space SpecC[u1, ..., un],
ui = xi/x0.

This follows from the fact that a homogeneous polynomial f(x0, ..., xn) and its dehomogeniztionF (u1, ..., un) =
f(1, u1, ..., un) have the same zeros on U0. �

3.3 Product Varieties
prodvarThe properties of products of varieties are intuitively plausible, but one must be careful because the Zariski

topology on a product isn’t the product topology.
The product topology on the product X×Y of topological spaces is the coarsest topology such that the

projection maps X×Y → X and X×Y → Y are continuous. If C and D are closed subsets of X and Y
respectively, then C×D is a closed subset ofX×Y in the product topology, and every closed set in the product
topology is a finite union of such subsets. The product topology is much coarser than the Zariski topology. For
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example, the proper Zariski closed subsets of P1 are the nonempty finite subsets. In the product topology, the
proper closed subsets of P1×P1 are finite unions of sets of the form p×P1, P1× q , and p×q (’vertical’ lines,
’horizontal’ lines, and points). Most Zariski closed subsets of P1× P1, the diagonal ∆ = {(p, p) | p ∈ P1} for
instance, aren’t of this form.

(3.3.1) the Zariski topology on Pm× Pnzartopprod

As has been mentioned, the product of projective spaces Pm× Pn can be embedded into a projective
space PN by the Segre map, which identifies the product as a closed subset of PN , with N = mn+m+n.
It is the locus of the Segre equations zijzk` = zi`zkj , Since Pm× Pn, with its Segre embedding, becomes
a closed subset of PN , we don’t really need a separate definition of its Zariski topology. Its closed subsets
are the zero sets of families of homogeneous polynomials in the Segre variables zij , families that include the
Segre equations. However, it is important to know that the Segre embedding maps the product Pm×Pn to an
irreducible closed subset of PN , so that the product becomes a projective variety. This will be proved below,
in Corollary 3.3.5.

One can describe the closed subsets of Pm×Pn directly, in terms of bihomogeneous polynomials. A
polynomial f(x, y) in x = (x0, ..., xm) and y = (y0, ..., yn) is bihomogeneous if it is homogeneous in the
variables x and homogeneous in the variables y. For example, x2

0y0 +x0x1y1 is a bihomogeneous polynomial,
of degree 2 in x and degree 1 in y.

The bihomogeneous part of bidegree i, j of a polynomial f(x, y) is the sum of terms whose degrees in
x and y are i and j, respectively. Because (x, y) and (λx, µy) represent the same point of Pm× Pn for all
nonzero scalars λ and µ, we want to know that f(x, y) = 0 if and only if f(λx, µy) = 0 for all nonzero λ and
µ. This will be true if and only if all of the bihomogeneous parts of f are zero. (See (1.3.2).)

3.3.2. Proposition.closedin-
pxp

(i) Let Z be a subset of Pm×Pn. The Segre image of Z is closed if and only if Z is the
locus of zeros of a family of bihomogeneous polynomials.
(ii) If X and Y are closed subsets of Pm and Pn, respectively, then X×Y is a closed subset of Pm×Pn.
(iii) The projection maps Pm× Pn π1−→ Pm and Pm× Pn π2−→ Pn are continuous.
(iv) For all x in Pm the fibre x×Pn is homeomorphic to Pn, and for all y in Pn, the fibre Pm×y is homeomorphic
to Pm.

proof. (i) Let Π denote the Segre image of Pm× Pn, and let f(z) be a homogeneous polynomial in the Segre
variables zij . When we substitute zij = xiyj into f , we obtain a bihomogeneous polynomial f̃(x, y) whose
degree in x and in y is the same as the degree of f . The inverse image of the zero set of f in Π is the zero set of
f̃ in Pm×Pn. Therefore the inverse image of a closed subset of Π is the zero set of a family of bihomogeneous
polynomials in Pm× Pn.

Conversely, let g̃(x, y) be a bihomogeneous polynomial, say of degrees r in x and degree s in y. If r= s,
we may collect variables that appear in g̃ in pairs xiyj and replace each pair xiyj by zij . We will obtain a
homogeneous polynomial g in z such that g(z) = g̃(x, y) when zij = xiyj . The zero set of g in Π is the image
of the zero set of g̃ in Pm× Pn.

Suppose that r ≥ s, and let k = r−s. Because the variables y cannot all be zero at any point of Pn, the
equation g = 0 on Pm× Pn is equivalent with the system of equations gyk0 = gyk1 = · · · = gykn = 0. The
polynomials gyki are bihomogeneous, of same degree in x as in y. This puts us back in the first case.

(ii) A homogeneous polynomial f(x) is a bihomogeneous polynomial of degree zero in y, and a homogeneous
polynomial g(y) as a bihomogeneous polynomial of degree zero in x. So X×Y , which is a locus of the form
f(x) = g(y) = 0 in Pm×Pn, is closed in Pm×Pn.

(iii) For the projection π1, we must show that if X is a closed subset of Pm, its inverse image X×Pn is closed.
This is a special case Y = Pn of (ii).

(iv) It will be best to denote the chosen point of Pm by a symbol other than x here. We’ll denote it by x. Part
(i) tells us that the bijective map x×Pn → Pn is continuous. To show that the inverse map is continuous, we
must show that a closed subset Z of x×Pn is the inverse image of a closed subset of Pn. Say that Z is the zero
locus of a set of bihomogeneous polynomials f(x, y). The polynomials f(y) = f(x, y) are homogeneous in
y, and the inverse image of their zero locus is Z. �
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3.3.3. Corollary. projcontLet X and Y be projective varieties, and let Π denote the product X×Y , regarded as a
closed subspace of Pm×Pn.
• The projections Π→ X and Π→ Y are continuous.
• For all x in X and all y in Y , the fibres x×Y and X×y are homeomorphic to Y and X , respectively. �

3.3.4. Proposition. PirredSuppose that a topology is given on the product X×Y = Π of irreducible topological
spaces X and Y , and that it has these properties:
• The projections Π

π1−→ X and Π
π2−→ Y are continuous.

• For all x in X and all y in Y , the fibres x×Y and X×y are homeomorphic to Y and X , respectively.
Then Π is an irreducible topological space.

The first condition tells us that the topology on X×Y is at least as fine as the product topology, and the second
one tells us that the topology isn’t too fine. (We don’t want to give Π the discrete topology.)

Some notation for use in the proof of the proposition: Let x be a point of X . If W is a subset of X×Y , we
denote the intersection W ∩ (x×Y ) by xW . Similarly, if y is a point of Y , we denote W ∩ (X×y) by Wy .
By analogy with the x, y-plane, we call xW and Wy a vertical slice and a horizontal slice, of W , respectively.

proof of Proposition 3.3.4. We prove irreducibility by showing that the intersection of two nonempty open
subsets W and W ′ of X×Y isn’t empty (2.2.13).

We show first that the image U = π2W of an open subset W of X×Y via projection to Y is an open
subset of Y . We are given that, for every x, the fibre x×Y is homeomorphic to Y . Since W is open in X×Y ,
the vertical slice xW is open in x×Y . Its image π2(xW ) is open in the homeomorphic space Y . Since W is
the union of the sets xW , U is the union of the open sets π2(xW ). So U is open.

Now let W and W ′ be nonempty open subsets of X×Y , and let U and U ′ be their images via projection
to Y . So U and U ′ are nonempty open subsets of Y . Since Y is irreducible, U ∩ U ′ isn’t empty. Let y be a
point of U ∩ U ′. Since U = π2W and y is a point of U , the horizontal slice Wy , which is an open subset of
the fibre X×y, isn’t empty. Similarly, W ′y isn’t empty. Since X×y is homeomorphic to the irreducible space
X , it is irreducible. So Wy ∩W ′y isn’t empty. Therefore W ∩W ′ isn’t empty, as was to be shown. �

3.3.5. Corollary. prodirredThe product X×Y of projective varieties X and Y is a projective variety. �

(3.3.6) products of affine varieties

Let X = SpecA and Y = SpecB be affine varieties. Say that X is embedded as a closed subvariety
of Am, so that A = C[x1, ..., xm]/P for some prime ideal P , and that Y is embedded similarly into An,
B = C[y1, ..., yn]/Q for some prime ideal Q. Then in affine x, y-space Am+n, X×Y is the locus of the
equations f(x) = 0 and g(y) = 0, with f in P and g in Q. Proposition 3.3.4 shows that X×Y is irreducible,
so it is a variety. Let P ′ be the ideal of C[x, y] generated by the elements of P . It consists of sums of products
of elements of P with polynomials in x, y. Let Q′ be defined in the analogous way.

3.3.7. Proposition. fgprimeThe elements of the ideal I = P ′+Q′ are the polynomials that vanish on the variety
X×Y . Therefore I is a prime ideal.

The fact that X×Y is a variety tells us only that the radical of I is a prime ideal.

proof of Proposition 3.3.7. Let R = C[x, y]/I . The projection X×Y → X is surjective. Therefore the map
A→ R is injective, and similarly, B → R is injective. We identify A and B with their images in R.

Any polynomial f(x, y) can the written, in many ways, as a sum, each of whose terms is a product of a
polynomial in x with a polynomial in y: f(x, y) =

∑
ai(x)bi(y). Therefore any element ρ of R can be

written as a finite sum of products

(3.3.8) ρ =

k∑
i=1

aibi

with ai in A and bi in B. To show that 0 is the only element of R that vanishes identically on X×Y , we show
that a sum ρ of k products aibi that vanishes on X×Y can also be written as a sum of k−1 products.
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Say that ρ =
∑k

1 aibi. If ak = 0, then ρ is the sum
∑k−1
i=1 aibi of k−1 products. If ak 6= 0, the function

on X defined by ak isn’t identically zero. We choose a point x of X such that ak(x) 6= 0. Let ai = ai(x)

and ρ(y) = ρ(x, y). Then ρ(y) =
∑k
i=1 aibi is an element of B. Since ρ vanishes on X×Y , ρ vanishes on

Y = SpecB. Therefore ρ = 0. Let ci = ai/ak. Then bk = −∑k−1
i=1 cibi. Substituting for bk into ρ and

collecting coefficients of b1, ..., bk−1 gives us an expression for ρ as a sum of k−1 terms. When k = 1, b1 = 0,
and therefore ρ = 0. �

3.4 Rational Functions
ratfnsec

(3.4.1)fnfld the function field

Let X be a projective variety, say a closed subvariety of Pn, and let Ui : {xi 6= 0} be one of the standard
open subsets of Pn. The intersection Xi = X ∩ Ui, if it isn’t empty, will be a closed subvariety of the affine
space Ui and a dense open subset of X . It will be an affine variety, and its localizations will also be affine
varieties. (The intersection X ∩ Ui is empty when X is contained in the hyperplane {xi = 0}.) Let’s call the
nonempty sets Xi = X ∩ Ui the standard open subsets of X .

3.4.2. Lemma.enufaff The localizations of the standard open sets sets Xi = X ∩ Ui are affine varieties, and they
form a basis for the topology on X .

This follows from (2.7.2). �

There are affine open sets that aren’t localizations of these standard open sets, but we don’t yet have a
definition of affine varieties. Rather than defining affine open sets here, we postpone discussion to Section 3.6.

Let X be a closed subvariety of Pn, and let x0, ..., xn be coordinates in Pn. For each i = 0, ..., n, let
Xi = X ∩ Ui. We omit the indices for which Xi is empty. Then Xi will be affine, and the intersection
Xij = Xi∩Xj will be a localization, both of Xi and of Xj . The coordinate algebra Ai of Xi is generated by
the images of the elements uij = xj/xi inAi, and if we denote those images by uij too, thenXij = SpecAij ,
where Aij = Ai[u

−1
ij ] = Aj [u

−1
ji ].

3.4.3. Definition.deffnfld The function fieldK of a projective varietyX is the function field of any one of the standard
open subsetsXi (3.4.1), and the function field of an open subvarietyX ′ of a projective varietyX is the function
field of X . All open subvarieties of variety have the same function field.

For example, let x0, x1, x2 be coordinates in P2. To describe the function field of P2, we can use the
standard open set U0, which is an affine plane SpecC[u1, u2] with ui = xi/x0. The function field of P2 is
the field of rational functions: K = C(u1, u2). We must use u1, u2 as coordinates here. It wouldn’t be good
to normalize x0 to 1 and use coordinates x1, x2, because we may want to change to another standard open set
such as U1. The coordinates in U1 are v0 = x0/x1 and v2 = x2/x1, and the function field K is also the field
of rational functions C(v0, v2). The two fields C(u1, u2) and C(v0, v2) are the same.

A rational function on a variety X is an element of its function field. If a point p of X lies in a standard
open set Xi = SpecAi, a rational function α is regular at p if it can be written as a fraction a/s of elements
of Ai with s(p) 6= 0. If so, its value at p is α(p) = a(p)/s(p). If X ′ is an open subvariety of a projective
variety X , a rational function on X ′ is regular at a point p of X ′ if it is a regular function on X at p.

When we regard an affine variety X = SpecA as a closed subvariety of U0, its function field will be the
field of fractions of A, and Proposition 2.6.2 shows that the regular functions on the affine variety SpecA are
the elements of A.

Thus a rational function on a projective variety X will define a function on a nonempty open subset of X .
It can be evaluated at some points of X , not at all points.

3.4.4. Lemma.regindep (i) Let p be a point of a projective variety X . The regularity of a rational function at p doesn’t
depend on the choice of a standard open set that contains p.
(ii) A rational function that is regular on a nonempty open subset X ′ is determined by the function it defines
on X ′.
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Part (ii) follows from Corollary 2.5.17. �

(3.4.5) points with values in a field ptvlfld

Let K be a field that contains the complex numbers. A point of projective space Pn with values in K is an
equivalence class of nonzero vectors α = (α0, ..., αn) with αi in K, the equivalence relation being analogous
to the one for ordinary points: α ∼ α′ if α′ = λα for some λ in K. If X is the subvariety of Pn defined by a
homogeneous prime ideal P of C[x], a point α of X with values in K is a point of Pn with values in K such
that f(α) = 0 for all f in P .

Let K be the function field of a projective variety X . If X is embedded into Pn, the embedding defines
a point of X with values in K. To get this point, we choose a standard affine open set Ui of Pm such that
Xi = X ∩ Ui isn’t empty, say i = 0. Then X0 will be affine, X0 = SpecA0. The embedding of X0 into the
affine space U0 is defined by a homomorphism C[u1, ..., un]→ A0, with ui = xi/x0. If αi denotes the image
of ui in A0, for i = 1, ..., n and α0 = 1, then (α0, ..., αn) is the point of Pn with values in K defined by the
projective embedding of X .

3.4.6. Note. ffprod(the function field of a product) The function field of the productX×Y of varieties isn’t generated
by the function fields KX and KY of X and Y . For example, let X = SpecC[x] and Y = SpecC[y] (one
x and one y). Then X×Y = SpecC[x, y]. The function field of X×Y is the field of rational functions
C(x, y) in two variables. The algebra generated by the fraction fields C(x) and C(y) consists of the rational
functions p(x, y)/q(x, y) in which q(x, y) is a product of a polynomial in x and a polynomial in y. Most
rational functions, 1/(x+ y) for instance, aren’t of that type. �

(3.4.7) ratfn-
spspace

interlude: rational functions on projective space

Let R denote the polynomial ring C[x0, ..., xn]. A homogeneous fraction is a fraction of homogeneous
polynomials in x0, ..., xn. The degree of a homogeneous fraction is the difference of degrees: deg g/h =
deg g − deg h.

A homogeneous fraction f is regular at a point p of Pn if, when it is written as a fraction g/h of relatively
prime homogeneous polynomials, the denominator h isn’t zero at p, and f is regular on a subset U if it is
regular at every point of U .

A homogeneous fraction f of degree d 6= 0 won’t define a function anywhere on projective space, beause
f(λx) = λdf(x). In particular, a nonconstant homogeneous polynomial g of won’t define a function, though
it makes sense to say that such a polynomial vanishes at a point of Pn.

On the other hand, a homogeneous fraction f = g/h of degree zero, so that g and h have the same degree
r, then f does define a function wherever h isn’t zero, because g(λx)/h(λx) = λrg(x)/λrh(x) = g(x)/h(x).

3.4.8. Lemma. ho-
mogfractsfn-
fld

(i) Let h be a homogeneous polynomial of positive degree d, and let V be the open subset of
Pn of points at which h isn’t zero. The rational functions that are regular on V are those of the form g/hk,
where k ≥ 0 and g is a homogeneous polynomial of degree dk.
(ii) The only rational functions that are regular at every point of Pn are the constant functions.

For example, the homogeneous polynomials that don’t vanish at any point of the standard open set U0 are the
scalar multiples of powers of x0. So the rational functions that are regular on U0 are those of the form g/xk0 ,
with g homogeneous of degree k. This agrees with the fact that the coordinate algebra of U0 is the polynomial
ring C[u1, ..., un], ui = xi/x0, because g(x0, ..., xm)/xk0 = g(u1, ..., un).

proof of Lemma 3.4.8. (i) Let α be a regular function on the open set V , say α = g1/h1, where g1 and h1 are
relatively prime homogeneous polynomials. Then h1 doesn’t vanish on V , so its zero locus in Pn is contained
in the zero locus of h. According to the Strong Nullstellensatz, h1 divides a power of h. Say that hk = fh1.
Then g1/h1 = fg1/fh1 = fg1/h

k.

(ii) If a rational function f is regular at every point of Pn, then it is regular on U0. It will have the form g/xk0 ,
where g is a homogeneous polynomial of degree k not divisible by x0. Since f is also regular on U1, it will
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have the form h/x`1, where h is homogeneous and not divisible by x1. Then gx`1 = hxk0 . Since x0 doesn’t
divide g, k = 0. Therefore g is a constant. �

It is also true that the only rational functions that are regular at every point of a projective variety are the
constants. The proof of this will be given later (Corollary 8.2.9). When studying projective varieties, the
constant functions are useless, so one has to look at at regular functions on open subsets. Affine varieties
appear in projective algebraic geometry, as open subsets on which there are enough regular functions.

3.5 Morphisms
sectmorph As with affine varieties, morphisms are the allowed maps between varieties. Some morphisms, such as the

projection from a product X×Y to X , are sufficiently obvious that they don’t require much discussion, but
many morphisms aren’t obvious.

Let X and Y be subvarieties of the projective spaces Pm and Pn, respectively. A morphism Y → X , as
defined below, will be determined by a morphism from Y to Pm whose image is contained in X . However,
in most cases, such a morphism won’t be the restriction of a morphism from Pn to Pm. This is an important
point: It is usually impossible to define f using polynomials in the coordinate variables of Pn.

3.5.1. Example.veronex Let the coordinates in P2 be y0, y1, y2. The Veronese map from the projective line P1 to P2,
defined by (x0, x1)  (x2

0, x0x1, x
2
1), is an obvious morphism. Its image is the conic C in P2 defined by the

polynomial {y0y2 − y2
1}. The Veronese map defines a bijective morphism P1 f−→ C, whose inverse function

π sends a point (y0, y1, y2) of C with y0 6= 0 to the point (x0, x1) = (y1, y2), and it sends the remaining point,
which is (0, 0, 1), to (0, 1). Though π is a morphism C → P1, there is no way to extend it to a morphism
P2 → P1. In fact, the only morphisms from P2 to P1 are the constant morphisms, whose images are points.�

It is convenient, though somewhat artificial, to use points with values in a field to define morphisms.

(3.5.2) morphisms to projective spacemorphtoP

In this section, it will be helpful to have a separate notation for the point with values in a fieldK determined
by a nonzero vector α = (α0, ..., αn), with entries in K. We’ll denote that point by α. So if α and α′ are
points with values in K, then α = α′ if α′ = λα for some nonzero λ in K. We’ll drop this notation later.

Let Y be a variety with function field K. A morphism from Y to projective space Pn will be defined by a
point of Pn with values in K. The fact that points of projective space are equivalence classes of vectors, not
the vectors themselves, will be useful.

Let α = (α0, ..., αn) be a vector with entries in the function field K of a variety Y . We try to use the point
α to define a morphism from Y to projective space Pn. To define the image α(q) of a point q of Y (an ordinary
point), we look for a vector α′ = (α′0, ..., α

′
n), such that α′ = α, i.e., α′ = λα, with λ ∈ K, and such that the

rational functions α′i are regular at q and not all zero there. Such a vector may exist or not. If α′ exists, we
define

(3.5.3)defmor-
phP

α(q) = (α′0(q), ..., α′n(q))
(

= α′(q)
)

We call α a good point if such a vector α′ exists for every point q of Y .

3.5.4. Lemma.twoconds A point α of Pn with values in the function field K of a variety Y is a good point if either one
of the two following conditions holds for every point q of Y :
• There is an element λ of K such that the rational functions α′i = λαi, i = 0, ..., n, are regular and not all
zero at q, for i = 0, ..., n.
• There is an index j such that αj 6= 0, and the rational functions αi/αj are regular at q, for i = 0, ..., n.

proof. The first condition simply restates the definition. We show that it is equivalent with the second one.
Suppose that αi/αj is regular at q for every i. Let λ = α−1

j , and let α′i = λαi = αi/αj . The rational functions
α′i are regular at q, and they aren’t all zero there because α′j = 1. Conversely, suppose that for some nonzero
λ in K, α′i = λαi are all regular at q and that α′j isn’t zero there. Then α′j

−1 is a regular function at q, so the
rational functions α′i/α

′
j , which are equal to αi/αj , are regular at q for all i. �
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3.5.5. Lemma. doesntde-
pend

Let α be a good point with values in the function field K of a variety Y . The image α(q) in
Pn of a point q of Y is independent of the choice of the vector that represents α.

This follows from Lemma 3.5.4 because the second condition doesn’t involve λ. �

3.5.6. Definition. defmor-
phtoP

Let Y be a variety with function field K. A morphism from Y to projective space Pn is a
map that can be defined, as in (3.5.3), by a good point α with values in K.

We may denote the morphism defined by a good point α by the same symbol α.

3.5.7. Proposition. maptouiLet α be a vector with values in the function field K of a variety Y , and suppose that α is
a good point, that defines a morphism Y → Pn. Suppose that the inverse image of the standard open set U0

in Pn is nonempty. Then α0 6= 0, and the inverse image of U0 the set of points q ∈ Y at which the functions
αi/α0 are regular, for j = 1, ..., n.

proof. If α0 were zero, α would map Y to the hyperplane {x0 = 0}. So α0 6= 0. Let q be a point of
Y . Since α is a good point, there is a λ such that α′i = λαi are all regular at q and not all zero, and then
α(q) = (α′0(q), ..., α′n(q)). The image will be in U0 if α′0(q) 6= 0. If so, we let α′′ = α′0

−1
α′ = α−1

0 α. Then
α′′i are all regular at q and α′′0(q) = 1. �

3.5.8. Examples. identmap
(i) The identity map P1 → P1. Let X = P1, and let (x0, x1) be coordinates in X . The function field of X is
the fieldK = C(t) of rational functions in the variable t = x1/x0. The identity map X → X is defined by the
point α = (1, t) with values in K. For every point p of X except the point (0, 1), α(p) = α(p) = (1, t(p)).
For the point q = (0, 1), we let α′ = t−1α = (t−1, 1). Then α(q) = α′(q) = (x0(q)/x1(q), 1) = (0, 1). So α
is a good point.

(ii) We go back to Example 3.5.1, in which C is the conic y0y2 = y2
1 and f is the morphism P1 → C defined

by f(x0, x1) = (x2
0, x0x1, x

2
1). The inverse morphism π can be described as the projection from C to the line

L0 : {y0 = 0}, π(y0, y1, y2) = (y1, y2). This formula for π is undefined at the point q = (1, 0, 0), though the
map extends to the whole conic C. Let’s write this projection using a point with values in the function field K
of C. The standard affine open set {y0 6= 0} of P2 is the polynomial algebra C[u1, u2], with u1 = y1/y0 and
u2 = y2/y0. Denoting the restriction of the function ui to C0 = C ∩U0 by ui too, the restricted functions are
related by the equation u2 = u2

1 that is obtained by dehomogenizing f . The function field K is C(u1).
The projection π is defined by the point α = (u1, u

2
1) with values in K: π(y0, y1, y2) = π(1, u1, u2) =

(u1, u
2
1). Lemma 3.5.4 tells us that α is a good point if and only if one of the two vectors α′ = (1, u1) or

α′′ = (u−1
1 , 1) is regular at every (ordinary) point p of C. Since u1 = y1/y0, α′ is regular at all points at

which y0 6= 0. This leaves just one point p = (0, 0, 1) to consider. Noting that u−1
1 = y0/y1 = y1/y2, we see

that α′′ is regular there. So α is a good point. �

(3.5.9) morphisms to projective varieties morphtoV

3.5.10. Definition. defmor-
phtoX

Let Y be a variety, and let X be a subvariety of a projective space Pm. A morphism of

varieties Y
α−→ X is the restriction of a morphism Y

α−→ Pm whose image is contained in X .

3.5.11. Lemma. ptfvalK-
fzero

Let X be a projective variety that is the locus of zeros of a family f of homogeneous polyno-

mials. A morphism Y
α−→ Pm defines a morphism Y → X if and only if f(α) = 0.

proof. Let f(x0, ..., xm) be a homogeneous polynomial of degree d, with zero locus X in Pm. We show that
the image of a morphism Y

α−→ Pm is contained in X if and only if f(α) = 0. Whether or not X is a variety
is irrelevant. Suppose that f(α) = 0, and let q be a point of Y . Since α is a good point, the ratios α′j = αj/αi

are regular at q for some i, and α(q) = α′(q). Then f(α′) = α−di f(α) = 0. Therefore q is a point of X .
Conversely, suppose that f(α) 6= 0. Let Y ′ be the open subset of Y of points at which all nonzero αi

are invertible regular functions. Then f(α′) = αdi f(α) will be a nonzero rational function on Y ′. It will be
nonzero at some points q. �

We remark that a morphism Y
α−→ X won’t restrict to a map of function fields KX → KY unless the image

of Y is dense in X .
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3.5.12. Proposition.morphcont A morphism of varieties Y
α−→ X is a continuous map in the Zariski topology, and a

continuous map in the classical topology.

proof. Since the topologies on a projective variety X are induced from those on projective space Pm, we may
suppose that X = Pm. Let Ui be a standard open subset of X whose inverse image in Y isn’t empty, and let
Y ′ be a localization of a standard open subset of that inverse image. The restriction Y ′ → Ui of the morphism
α is continuous in either topology because it is a morphism of affine varieties (3.5.7). Since Y is covered by
open sets such as Y ′, α is continuous. �

3.5.13. Lemma.firstprop-
morph (i) The inclusion of an open or a closed subvariety Y into a variety X is a morphism.

(ii) Let Y
f−→ X be a map whose image lies in an open or a closed subvariety Z of X . Then f is a morphism

if and only if its restriction Y → Z is a morphism.

(iii) A composition of morhisms Z
β
−→ Y

α−→ X is a morphism.

(i) Let {Y i} be an open covering of a variety Y , and let Y i
fi−→ X be morphisms. If the restrictions of f i and

f j to the intersections Y i ∩ Y j are equal for all i, j, there is a unique morphism f whose restriction to Y i is
f i.

We omit the proofs of (i) - (iii). Part (iv) is true because the points with values in K that define the morphisms
f i will be equal. �

(3.5.14) the mapping property of a productmapprop-
prod

The productX×Y of setsX and Y can be characterized by this property: Maps from a set T to the product

X×Y correspond bijectively to pairs of maps T
f−→ X and T

g−→ Y . The map T h−→ X×Y that corresponds
to a pair of maps f, g sends a point t to the point pair (f(t), g(t)). So h = (f, g). If T h−→ X×Y is a map to
the product, the corresponding maps to X and Y are the compositions with the projections X×Y π1−→ X and
X×Y π2−→ Y : f = π1h and g = π2h.

The analogous statements are true for morphisms of varieties:

3.5.15. Proposition.mapprop-
var

Let X and Y be varieties, and let X×Y be the product variety.

(i) The projections X×Y π1−→ X and X×Y π2−→ Y are morphisms.
(ii) Morphisms from a variety T to the product variety X×Y correspond bijectively to pairs of morphisms
T → X and T → Y , the correspondence being the same as for maps of sets.

(iii) IfX
f−→ U and Y

g−→ V are morphisms of varieties, the product mapX×Y f×g−→ U×V , which is defined
by [f×g](x, y) = (f(x), g(y)), is a morphism.

proof. Perhaps it suffices to exhibit the points with values in the function fields that define the morphisms.

(i) The function field of X×Y contains the function field KX of X . The point with values in K that defines
the projection π1 is the point with values in KX defined by the embedding of X into projective space.

(ii) Let zij = xiyj be the Segre coordinates for X×Y , and let x = α and y = β be the points with values in
the function field KT of T that define the morphisms T → X and T → Y . The point with values in KT the
defines the map T → X×Y is zij = αiβj .

(iii) Let the coordinates in U , V , and U×V be ui and vj and wij = uivj , respectively. Say that the morphism
f is defined by the point α with values in KX , and that g is defined by the point β with values in KY . The
function field KX×Y contains KX and KY . Then wij = αiβj defines the product morphism X×Y → U×V .
�

(3.5.16) isomorphismsisomor-
phisms

An isomorphism of varieties is a bijective morphism Y
u−→ X whose inverse function is also a morphism.

Isomorphisms are important because they allow us to identify different incarnations of what might be called
the “same” variety.
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3.5.17. Example. twistcu-
bicinverse

The projective line P1, a conic in P2, and a twisted cubic in P3 are isomorphic. Let Y
denote the projective line with coordinates y0, y1. The function field K of Y is the field of rational functions
in t = y1/y0. The degree 3 Veronese map Y −→ P3 (3.1.15) defines an isomorphism from Y to its image X ,
a twisted cubic. It is defined by the vector α = (1, t, t2, t3) of P3 with values inK, and α′ = (t−3, t−2, t−1, 1)
defines the same point.

The twisted cubic X is the locus of zeros of the equations v0v2 = v2
1 , v2v1 = v0v3 , v1v3 = v2

2 . To
identify the function field of X , we put v0 = 1, obtaining relations v2 = v2

1 , v3 = v3
1 . The function field is the

field F = C(v1). The point of Y = P1 with values in F that defines the inverse X → Y of the morphism α is
defined by the point β = (1, v1). �

3.5.18. Lemma. propisomLet Y
f−→ X be a morphism of varieties, let {Xi} and {Y i} be open coverings of X and

Y , respectively, such that the image of Y i in X is contained in Xi. If the restrictions Y i
fi−→ Xi of f are

isomorphisms, then f is an isomorphism.

proof. Let gi denote the inverse of the morphism f i. Then gi = gj on Xi ∩Xj , because f i = f j on Y i ∩ Y j .
By (3.5.13) (iv), there is a unique morphism X

g−→ Y whose restriction to Y i is gi. That morphism is the
inverse of f . �

(3.5.19) the diagonal diagonal

Let X be a variety. The diagonal X∆ is the set of points (p, p) in the product variety X×X . It is a subset of
the product that is closed in the Zariski topology, but not in the product topology.

3.5.20. Proposition. diagclosedLet X be a variety. The diagonal X∆ is a closed subvariety of the product X×X , and
it is isomorphic to X .

proof. Let P denote the projective space Pn that contains X , and let x0, ..., xn and y0, ..., yn be coordinates in
the two factors of P×P. The diagonal P∆ in P×P is the closed subvariety defined by the bilinear equations
xiyj = xjyi, or in the Segre variables, by the equations zij = zji, which show that the ratios xi/xj and yi/yj
are equal.

Next, let X be the closed subvariety of P defined by a system of homogeneous equations f(x) = 0. The
diagonal X∆ can be identified as the intersection of the product X×X with the diagonal P∆ in P×P, so it is
a closed subvariety of X×X . As a closed subvariety of P×P, the diagonal X∆ is defined by the equations

(3.5.21) xiyj = xjyi and f(x) = 0 Xdelta

The morphisms X
(id,id)−→ X∆

π1−→ X show that X∆ is isomorphic to X . �

It is interesting to compare Proposition 3.5.20 with the Hausdorff condition for a topological space. The
proof of the next lemma is often assigned as an exercise in topology.

3.5.22. Lemma. hausdorff-
diagonal

A topological space X is a Hausdorff space if and only if, when X×X is given the product
topology, the diagonal X∆ becomes a closed subset of X×X . �

Though a variety X , with its Zariski topology, isn’t a Hausdorff space unless it is a point, Lemma 3.5.22
doesn’t contradict Proposition 3.5.20 because the Zariski topology onX×X is finer than the product topology.

(3.5.23) the graph of a morphism ggraph

Let Y
f−→ X be a morphism of varieties. The graph Γf of f is the subset of Y ×X of pairs (q, p) such

that f(q) = p.

3.5.24. Proposition. graphThe graph Γf of a morphism Y
f−→ X is a closed subvariety of Y ×X , isomorphic to

Y .
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proof. We form a diagram of morphisms

(3.5.25)graphdia-
gram

Γf −−−−→ Y ×X
v

y yf×id
X∆ −−−−→ X×X

where v sends a point (q, p) of Γf to the point (f(q), p) = (p, p) of the diagonal X∆. The graph is the inverse
image of X∆ in Y ×X . Since X∆ is closed in X×X , Γf is closed in Y ×X .

Let π1 denote the projection from Y×X to Y . The composition of the morphisms Y
(id,f)−→ Y×X π1−→ Y is

the identity map on Y , and the image of the map (id, f) is the graph Γf . The two maps Y → Γf and Γf → Y
are inverses, so Γf is isomorphic to Y . �

(3.5.26) projectiondefprojec-
tion

The map

(3.5.27) Pn π−→ Pn−1projec-
tiontwo

that drops the last coordinate of a point: π(x0, ..., xn) = (x0, ..., xn−1) is called a projection. It is defined at
all points of Pn except at the center of projection, the point q = (0, ..., 0, 1), . So π is a morphism from the
complement U = Pn−{q} to Pn−1:

U
π−→ Pn

The points of U are the ones that can be written in the form (x0, ..., xn−1, 1)

Let the coordinates in Pn and Pn−1 be x = x0, ..., xn and y = y0, ..., yn−1, respectively. The fibre π−1(y)
over a point (y0, ..., yn−1) is the set of points (x0, ..., xn) such that (x0, ..., xn−1) = λ(y0, ..., yn−1), while
xn is arbitrary. It is the line in Pn through the points (y1, ..., yn−1, 0) and q = (0, ..., 0, 1), with the center of
projection q omitted.

In Segre coordinates, the graph of π in U×Pn−1
y is the locus Γ of solutions of the equations zij = zji for

0≤ i, j≤n−1, which imply that the vectors (x0, ..., xn−1) and (y0, ..., yn−1) are proportional.

3.5.28. Proposition.projgrah In Pnx× Pn−1
y , the locus W of the equations xiyj = xjyi, or zij = zji, with 0 ≤ i, j ≤

n− 1 is the closure of the graph Γ of π.

proof. At points x distinct from q, the solutions of these equations are the points of Γ, and all remaining points
of Pn×Pn−1, points of the form (q, y) are also solutions. So the locus W , a closed set, is contained in the
union Γ ∪ (q×Pn−1). To show that W is equal to that union, we show that a homogeneous polynomial g(w)
that vanishes on Γ, vanishes at all points of q×Pn−1. Given (y0, ..., yn−1) in Pn−1, let xt = (ty0, ..., tyn−1, 1).
For all t 6= 0, the point (xt, y) is in Γ and therefore g(xt, y) = 0. Since g is a continuous function, g(xt, y)
approaches g(q, y) as t→ 0. So g(q, y) = 0. �

We denote the closure W of Γ by Γ now. The projection Γ→ Pnx that sends a point (x, y) to x is bijective
except when x = q, and the fibre over q, which is q×Pn−1, is a projective space of dimension n−1. Because
the point q of Pn is replaced by a projective space in Γ, the map Γ → Pnx is called a blowup of the point q.
This is a projective blowup.

3.6 Affine Varieties
affineV We have used the term ’affine variety’ in several contexts: An irreducible closed subset of affine space Anx is

an affine variety. The spectrum SpecA of a finite type domain A is an affine variety. A closed subvariety in
An becomes a variety in Pn when the ambient affine space An is identified with the standard open subset U0.
We combine these definitions now, in a rather obvious way: An affine variety X is a variety that is isomorphic
to a variety of the form SpecA.

If X is an affine variety with coordinate algebra A, the function field K of X will be the field of fractions
of A, and as Proposition 2.6.2 shows, the regular functions on X are the elements of A. So A and SpecA are
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determined uniquely byX . The isomorphism SpecA→ X is also determined uniquely. It seems permissible
to identify X with SpecA, when A is the coordinate algebra of an affine variety X .

(3.6.1) affopensaffine open sets affopens

Now that we have a definition of an affine variety, we can make the next definition. Though obvious, it is
important: An affine open subset of a variety X is an open subvariety that is an affine variety. From now on,
this will be the definition. A nonempty open subset V of X is an affine open subset if and only if
(a) the algebra R of regular functions on V is a finite-type domain, so that SpecR is defined, and
(b) V is isomorphic to SpecR.

Since the localizations of the standard open sets are affine, the affine open subsets form a basis for the
topology on X .

3.6.2. Lemma. locloctwoLet U and V be affine open subsets of an affine variety X .
(i) If U is a localization of X and V is a localization of U , then V is a localization of X .
(ii) If V ⊂ U and V is a localization of X , then V is a localization of U .
(iii) Let p be a point of U ∩ V . There is an open set Z containing p that is a localization of U and also a
localization of V . �

3.6.3. Lemma. XmapsLet X = SpecA be an affine variety, and let R be the algebra of regular functions on an

arbitrary variety Y . An algebra homomorphism A→ R defines a morphism Y
f−→ X .

proof. (i) The point here is that Y isn’t assumed to be affine. The algebra R consists of the regular functions
on Y . Other than that, we don’t know much about R.

Let {Y i} be a covering of Y by affine open sets, and let Ri be the coordinate algebra of Y i. A rational
function that is regular on Y is regular on Y i, so R ⊂ Ri. The composition of the homomorphism A→ R ⊂
Ri define morphisms Y i = SpecRi

fi−→ SpecA for each i, and it is true that f i = f j on the affine variety

Y i ∩ Y j . Lemma 3.5.13 (iv) shows that there is a unique morphism Y
f−→ SpecA that restricts to f i on Y i.

�

3.6.4. Corollary. pullback-
reg

Let Y
f−→ X be a morphism of varieties, let q be a point of X , and let p = f(q). If a

rational function g on X is regular at p, its pullback g◦f is a regular function on Y at q.

proof. We choose an affine open neighborhood U of p in X on which g is a regular function and an affine
open neighborhood V of q in Y that is contained in the inverse image f−1U . The morphism f restricts to a
morphism V → U that we denote by the same letter f . Let A and B be the coordinate algebras of U and

V , respectively. The morphism V
f−→ U corresponds to an algebra homomorphism A

ϕ−→ B. On U , the
function g is an element of A, and g◦f = ϕ(g). �

3.6.5. Proposition. comphy-
per

The complement of a hypersurface is an affine open subvariety of Pn.

proof. Let H be the hypersurface defined by an irreducible homogeneous polynomial f of degree d, and let
Y be the complement of H in Pn. Let R be the algebra of regular functions on Y . The elements of R are
the homogeneous fractions of degree zero, of the form g/fk (3.4.7). The fractions m/f , where m are the
monomials of degree d, generate R. Since there are finitely many monomials of degree d, R is a finite-type
domain. Lemma 3.6.3 gives us a morphism Y

u−→ X = SpecR. We show that u is an isomorphism.
Let A be the algebra of regular functions on the standard affine open set U0 of Pn. The intersection

Y 0 = Y ∩ U0 is a localization of U0, the spectrum of A[s−1], where s = f/xd0. Let t = s−1 = xd0/f . This is
an element of R.

3.6.6. Lemma. YzeroThe localizations A[s−1] and R[t−1] are equal.

proof of the lemma. The generators m/f of R, m a monomial of degree d, can be written as products
s−1(m/xd0). Since m/xd0 is in A, the generators are in As. So R ⊂ As, and since t−1 = s is in A,
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Rt ⊂ As. Next, the fractions xi/x0 generate A, and xi/x0 can be written as t−1(m/f), with m = xix
d−1
0 , so

they are in Rt. Then A ⊂ Rt and since s−1 = t is in R, As ⊂ Rt. �

We go back to the proof of the Proposition 3.6.5. According Lemma 3.6.6, the morphism Y
u−→ X

restricts to an isomorphism Y 0 → X0 = SpecA[s−1], and the index 0 can be replaced by any i = 0, ..., n.
The next lemma, together with Lemma 3.5.18 shows that u is an isomorphism. �

3.6.7. Lemma.mover-
fzero

The open sets Xi cover X .

proof. Suppose that a point p of X isn’t contained in any of the subsets Xi. Let si = f/xdi and let ti = s−1
i .

Then ti(p) = 0 for all i. If m is any monomial of degree d, md will divisible by xdi for some i and then
(m/f)d will be divisible by ti. So if ti(p) = 0, then [m/f ](p) = 0 for every monomial of degree d, and
therefore [f/f ](p) = 0. Since f/f = 1, this is a contradiction. �

3.6.8. Theorem.inter-
sectaffine

Let U and V be affine open subvarieties of a variety X . The intersection U ∩ V is an affine
open subvariety. If , say U ≈ SpecA and V ≈ SpecB, the coordinate algebra of U ∩ V is generated by the
two algebras A and B.

proof. Let [A,B] denote the subalgebra generated by two subalgebras A and B of the function field K of X .
The elements of [A,B] are finite sums of products

∑
aibi with ai in A and bi in B. If A = C[a1, ..., ar], and

B = C[b1, ..., bs], the algebra [A,B] is generated by the set {ai} ∪ {bj}. It is a finite-type algebra.
The algebrasA andB that appear in the statement of the theorem are subalgebras of the function fieldK of

X . Let R = [A,B] and let W = SpecR. To prove the theorem, we show that W is isomorphic to U ∩V . The
varieties U, V , W , and X have the same function field K, and the inclusions of coordinate algebras A → R
and B → R give us morphisms W → U and W → V . We also have inclusions U ⊂ X and V ⊂ X , and
X is a subvariety of a projective space Pn. Restricting the projective embedding of X gives us embeddings
of U and V and it gives us a morphism from W to Pn. All of these morphisms to Pn will be defined by
the same good point α with values in K, the point that defines the projective embedding of X . Let’s denote
the morphisms to Pn by αX , αU , αV and αW . The morphism αW can be obtained as the composition of the
morphisms W → U ⊂ X ⊂ Pn, and also as the analogous composition, in which V replaces U . Therefore
the image of W in Pn is contained in U ∩ V . Thus αW restricts to a morphism W

ε−→ U ∩ V . We show that
ε is an isomorphism.

Let p be a point of U ∩ V . We choose an affine open subset Us of U ∩ V that is a localization of U and
that contains p (3.6.2). The coordinate algebra of Us will be As, with s in A, and B will be a subalgebra of
As. Then

Rs = [A,B]s = [As, B] = As

So ε maps the localization Ws = SpecRs of W isomorphically to the open subset Us = SpecAs of U ∩ V .
Since we can cover U ∩ V by open sets such as Us, Lemma 3.5.13 (ii) shows that ε is an isomorphism. �

3.7 Lines in Three-Space
linesinp

The Grassmanian G(m,n) is a variety whose points correspond to subspaces of dimension m of the vector
space Cn, or to linear subspaces of dimension m−1 of Pn−1. One says that G(m,n) parametrizes those
subspaces. For example, the Grassmanian G(1, n+1) is the projective space Pn. The points of Pn parametrize
one-dimensional subspaces of Cn+1.

The Grassmanian G(2, 4) parametrizes two-dimensional subspaces of C4, or lines in P3. We denote that
Grassmanian by G, and we describe it in this section. The point of G that corresponds to a line ` in P3 will be
denoted by [`].

One can get some insight into the structure of G using row reduction. Let V = C4, let u1, u2 be a basis
of a two-dimensional subspace U of V , and let M be the 2×4 matrix whose rows are u1, u2. The rows of
the matrix M ′ obtained from M by row reduction span the same space U , and the row-reduced matrix M ′ is
uniquely determined by U . Provided that the left hand 2×2 submatrix of M is invertible, M ′ will have the
form

(3.7.1) M ′ =

(
1 0 ∗ ∗
0 1 ∗ ∗

)
rowre-
duced
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The Grassmanian G contains, as an open subset, a four-dimensional affine space whose coordinates are the
variable entries of M ′.

In any 2×4 matrix M with independent rows, some pair of columns will be independent, and the corre-
sponding 2×2 submatrix will be invertible.. That pair of columns can be used in place of the first two in a row
reduction. So G is covered by six four-dimensional affine spaces that we denote by Wij , 1≤ i < j≤ 4, Wij

being the space of 2×4 matrices such that column i is (1, 0)t and column j is (0, 1)t.
The fact that P4 and G are both covered by affine spaces of dimension four might lead one to guess that

they are similar. They are quite different.

(3.7.2) the exterior algebra extalgone

Let V be a complex vector space. The exterior algebra
∧
V (‘wedge V ’) is a noncommutative algebra —

an algebra whose multiplication law isn’t commutative. It is generated by the elements of V , with the relations

(3.7.3) vw = −wv for all v, w in V . extalg

3.7.4. Lemma. vvzeroThe condition (3.7.3) is equivalent with: vv = 0 for all v in V .

proof. To get vv = 0 from (3.7.3), one sets w = v. Suppose that vv = 0 for all v in V . Then vv, ww, and
(v+w)(v+w) are all zero. Since (v+w)(v+w) = vv + vw + wv + ww, it follows that vw + wv = 0. �

To familiarize yourself with computation in
∧
V , verify that v3v2v1 = −v1v2v3 and that v4v3v2v1 =

v1v2v3v4.

Let
∧r

V denote the subspace of
∧
V spanned by products of length r of elements of V . The exterior algebra∧

V is the direct sum of the subspaces
∧r

V . An algebra A that is a direct sum of subspaces Ai, and such that
multiplication maps Ai×Aj to Ai+j , is called a graded algebra. The exterior algebra is a noncommutative
graded algebra.

3.7.5. Proposition. depen-
dentprod-
uct

If (v1, ..., vn) is a basis for V , the products vi1 · · · vir of length r, with increasing indices
i1 < i2 < · · · < ir, form a basis for

∧r
V .

The proof of this proposition is at the end of the section.

3.7.6. Corollary. wedgezeroLet v1, ..., vr be elements of V . In
∧r

V , the product v1 · · · vr is zero if and only if the
elements are dependent. �

For the rest of the section, we let V be a vector space of dimension four, with basis (v1, ..., v4). Proposition
3.7.5 tells us that

(3.7.7) extba-
sistwo∧0

V = C is a space of dimension 1, with basis {1}∧1
V = V is a space of dimension 4, with basis {v1, v2, v3, v4}∧2
V is a space of dimension 6, with basis {vivj | i < j} = {v1v2, v1v3, v1v4, v2v3, v2v4, v3v4}∧3
V is a space of dimension 4, with basis {vivjvk | i < j < k} = {v1v2v3, v1v2v4, v1v3v4, v2v3v4}∧4
V is a space of dimension 1, with basis {v1v2v3v4}∧q
V = 0 when q > 4.

The elements of
∧2

V are combinations

(3.7.8) w =
∑
i<j

aijvivj wedgetwo

We regard
∧2

V as an affine space of dimension 6, identifying the combination w with the vector
(a12, a13, a14, a23, a24, a34), and we use the same symbol w to denote the corresponding element of the pro-
jective space P5.
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3.7.9. Definition.defde-
comp

An element of
∧2

V is decomposable if it is the product of two elements of V .

3.7.10. Proposition.de-
scribede-

comp

The decomposable elements w of
∧2

V are those such that ww = 0, and the relation
ww = 0 is equivalent with the following equation in its coefficients aij:

(3.7.11) a12a34 − a13a24 + a14a23 = 0eqgrass

proof. If w is decomposable, say w = u1u2 with ui in V , then w2 = u1u2u1u2 = −u2
1u

2
2 is zero because

u2
1 = 0. For the converse, we compute w2 with w =

∑
i<j aijvivj . The result is

ww = 2
(
a12a34 − a13a24 + a14a23

)
v1v2v3v4

To show that w is decomposable if w2 = 0, it seems simplest to factor w explictly. Since the assertion is trivial
when w = 0, we may suppose that some coefficient of w is nonzero. Say that a12 6= 0. Then if w2 = 0,

(3.7.12) w =
1

a12

(
a12v2 + a13v3 + a14v4

)(
− a12v1 + a23v3 + a24v4

)
factorw

The computation for another pair of indices is similar. �

3.7.13. Corollary.de-
comptwo

(i) Let w be a nonzero decomposable element of
∧2

V , say w = u1u2, with ui in V .
Then (u1, u2) is a basis for a two-dimensional subspace of V .
(ii) Let (u1, u2) and (u′1, u

′
2) be bases for two subspaces U and U ′ of V , and let w = u1u2 and w′ = u′1u

′
2.

Then U = U ′, if and only if w and w′ differ by a scalar factor — if and only if they represent the same point
of P5.
(iii) The Grassmanian G corresponds bijectively to the quadric Q in P5 whose equation is (3.7.11). If U is
a two-dimensional subspace of V with basis (u1, u2), the point of G that represents U is sent to the point
w = u1u2 of Q.

Thus the Grassmanian G can be represented as the quadric (3.7.11) in P5.
proof. (i) If an element w of

∧2
V is decomposable, say w = u1u2, and if w isn’t zero, then u1 and u2 must

be independent (3.7.6). They span a two-dimensional subspace.

(ii) Suppose that U ′ = U . Then, when we write the second basis in terms of the first one, say (u′1, u
′
2) =

(au1+bu2, cu1+du2), the product w′ becomes the scalar multiple (ad−bc)w of w, and ad−bc 6= 0.
If U ′ 6= U , then at least three of the vectors u1, u2, u

′
1, u
′
2 will be independent. Say that u1, u2, u

′
1 are

independent. Then, according to Corollary 3.7.6, the product u1u2u
′
1 isn’t zero. Since u′1u

′
2u
′
1 = 0, u′1u

′
2

cannot be a scalar multiple of u1u2.

(iii) This follows from (i) and (ii). �

For the rest of this section, we will use the concept of the algebraic dimension of a variety X . This
dimension can be defined as the length d of the longest chain C0 > C1 > · · · > Cd of closed subvarieties of
X . We refer to the algebraic dimension simply as the dimension, and we use some of its properties informally
here, deferring proofs to the discussion of dimension in the next chapter.

The topological dimension of X , its dimension in the classical topology, is always twice the algebraic
dimension. Because the Grassmanian G is covered by affine spaces of dimension 4, its algebraic dimension is
4 and its topological dimension is 8.

3.7.14. Proposition.pinlclosed Let P3 be the projective space associated to a four dimensional vector space V . In the
product P3×G, the locus Γ of pairs p,[`] such that p lies on ` is a closed subset of dimension 5.

proof. Let ` be the line in P3 that corresponds to a subspace U with basis (u1, u2), let w = u1u2, and let p be
the point represented by a vector x in V . Then p ∈ ` means x ∈ U , which is true if and only if (x, u1, u2) is a
dependent set — if and only if xw = 0 (3.7.5). An element w of

∧2
V is decomposable when w2 = 0. So Γ

is the closed subset of points (x,w) of P3
x×P5

w defined by the bihomogeneous equations xw = 0 and w2 = 0.
�
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When we project Γ to G, the fibre over a point [`] of G is the set of pairs p, [`] such that p ∈ `. The
projection maps that fibre bijectively to the line `. Thus Γ can be viewed as a family of lines, parametrized by
G. Its dimension is dim `+ dimG = 1 + 4 = 5.

(3.7.15) linesina-
surface

lines on a surface linesina-
surface

When one is given a surface S in P3, one may ask: Does S contain a line? One surface that contains lines is
the quadric Q in P3 whose equation is z01z10 = z00z11, the image of the Segre embedding P1× P1 → P3

w

(3.1.6). It contains two families of lines, the lines that correspond to the two “rulings” p×P1 and P1×q of
P1× P1. There are surfaces of arbitrary degree that contain lines, but a generic surface of degree four or more
won’t contain any line.

We use coordinates xi with i = 1, 2, 3, 4 for P3 here. There are N =
(
d+3

3

)
monomials of degree d in four

variables, so homogeneous polynomials of degree d are parametrized by an affine space of dimension N , and
surfaces of degree d in P3 by a projective space of dimension n = N−1. Let S denote that projective space,
let [S] denote the point of S that corresponds to a surface S, and let f be the irreducible polynomial whose
zero locus is S. The coordinates of [S] are the coefficients of f . Speaking infomally, we say that a point of S
is a surface of degree d in P3. (When f is reducible, its zero locus isn’t a variety. Let’s not worry about this.)

Consider the line `0 defined by x3 = x4 = 0. Its points are those of the form (x1, x2, 0, 0), and a surface
S : {f = 0} will contain `0 if and only if f(x1, x2, 0, 0) = 0 for all x1, x2. Substituting x3 = x4 = 0 into f
leaves us with a polynomial in two variables:

(3.7.16) f(x1, x2, 0, 0) = c0x
d
1 + c1x

d−1
1 x2 + · · ·+ cdx

d
2 scon-

tainslzero
where ci are some of the coefficients of the polynomial f . If f(x1, x2, 0, 0) is identically zero, all of those
coefficients will be zero. So the surfaces that contain `0 correspond to the points of the linear subspace L0 of
S defined by the equations c0 = · · · = cd = 0. Its dimension is n−d−1. This is a satisfactory answer to the
question of which surfaces contain `0, and we can use it to make a guess about lines in a generic surface of
degree d.

3.7.17. Lemma. scon-
tainslclosed

In the product variety G×S, the set Σ of pairs [`],[S] such that ` is a line, S is a surface of
degree d, and ` ⊂ S, is a closed set.

proof. Let Wij , 1≤ i < j≤ 4 denote the six affine spaces that cover the Grassmanian, as at the beginning of
this section. It suffices to show that the intersection Σij = Σ∩ (Wij×S) is closed in Wij×S for all i, j (2.2.6).
We inspect the case i, j = 1, 2.

A line ` such that [`] is in W12 corresponds to a subspace of C2 with basis (u1, u2) of the form u1 =
(1, 0, a2, a3), u2 = (0, 1, b2, b3), and the coordinates of the points of ` are combinations ru1 + su2 of u1, u2.
Let f(x1, x2, x3, x4) be the polynomial that defines a surface S of degree d. The line ` is contained in S if and
only if f(r, s, ra2+sb2, ra3+sb3) = f̃(r, s) is zero for all r and s, and f̃(r, s) is a homogeneous polynomial
of degree d in r, s. If we write f̃(r, s) = z0r

d + z1r
d−1s+ · · ·+ zds

d, the coefficients zν will be polynomials
in ai, bi and in the coefficients of f . The locus z0 = · · · = zd = 0 is the closed subset Σ12 of W12 × S that
represents surfaces containing a line. �

The set of surfaces that contain our special line `0 corresponds to the linear space L0 of S of dimension
n−d−1, and `0 can be carried to any other line ` by a linear map P3 → P3. So the sufaces that contain another
line ` also form a linear subspace of S of dimension n−d−1. Those subspaces are the fibres of Σ over G. The
dimension of the Grassmanian G is 4. Therefore the dimension of Σ is

dim Σ = dimL0 + dimG = (n−d−1) + 4

Since S has dimension n,

(3.7.18) dim Σ = dimS− d+ 3 dimspace-
lines

When we project the product G×S and its subvariety Σ to S, the fibre of Σ over a point [S] is the set of
pairs [`],[S] such that ` is contained in S — the set of lines in S.
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3.7.19.lines-
lowdeg

When the degree d of the surfaces we are studying is 1, dim Σ = dimS+2. Every fibre of Σ over S
will have dimension at least 2. In fact, every fibre has dimension equal to 2. Surfaces of degree 1 are planes,
and the lines in a plane form a two-dimensional family.

When d = 2, dim Σ = dim S+1. We can expect that most fibres of Σ over S will have dimension 1. This
is true: A smooth quadric contains two one-dimensional families of lines. (All smooth quadrics are equivalent
with the quadric (3.1.7).) But if a quadratic polynomial f(x1, x2, x3, x4) is the product of linear polynomials,
its locus of zeros will be a union of planes. It will contain two-dimensional families of lines. Some fibres have
dimension 2.

When d ≥ 4, dim Σ < dimS. The projection Σ → S cannot be surjective. Most surfaces of degree 4 or
more contain no lines.

The most interesting case is that the degree d is 3. In this case, dim Σ = dim S. Most fibres will have
dimension zero. They will be finite sets. In fact, a generic cubic surface contains 27 lines. We have to wait to
see why the number is precisely 27 (see Theorem 4.6.27).

Our conclusions are intuitively plausible, but to be sure about them, we need to study dimension carefully.
We do this in the next chapters.

(3.7.20)prdep-
prrod

proofofProposition3.7.5.

Let v = (v1, ..., vn) be a basis of a vector space V . The proposition asserts that the products vi1 · · · vir of
length r with increasing indices i1 < i2 < · · · < ir form a basis for

∧r
V . To prove this, we need to be more

precise about the definition of the exterior algebra
∧
V .

3.7.21.tensalg We start with the algebra T (V ) of noncommutative polynomials in the basis v, which is also called the
tensor algebra on V . The part T r(V ) of T (V ) of degree r has, as basis, the nr noncommutative monomials of
degree r, the products vi1 · · · vir of length r of elements of the basis. Its dimension is nr. For example, when
n=2, the eight-dimensional space T 3(V ) has basis (x3

1, x
2
1x2, x1x2x1, x2x

2
1, x1x

2
2, x2x1x2, x

2
2x1, x

3
2).

The exterior algebra
∧
V is the quotient of T (V ) obtained by forcing the relations vw+wv = 0 (3.7.3).

Using the distributive law, one sees that the relations vivj+vjvi = 0, 1≤ i, j≤n, are sufficient to define this
quotient.

We can multiply the relations vivj+vjvi on left and right by noncommutative monomials p(v) and q(v) in
v1, ..., vn. When we do this with all pairs p, q of monomials whose degrees sum to r−2, the noncommutative
polynomials

(3.7.22)vivj p(v)(vivj+vjvi)q(v)

span the kernel of the linear map T r(V ) → ∧r
V . So in

∧r
V , p(v)(vivj)q(v) = −p(v)(vjvi)q(v). Using

these relations, any product vi1 · · · vir in
∧r

V is, up to sign, equal to a product in which the indices iν are in
increasing order. Thus the products with indices in increasing order span

∧r
V , and because vivi = 0, such a

product will be zero unless the indices are strictly increasing.

We go to the proof now. Let v = (v1, ..., vn) be a basis for V . We show first that the product w = v1 · · · vn
of the basis elements in increasing order is a basis of the space

∧n
V . We have shown that w spans

∧n
V , and

it remains to show that w 6= 0, or that
∧n

V 6= 0.
Let’s use multi-index notation, writing (i) = (i1, ..., ir), and v(i) = vi1 · · · vir . We define a surjective

linear map Tn(V )
ϕ−→ C. The products v(i) = (vi1 · · · vin) of length n form a basis of Tn(V ). If there is no

repetition among the indices i1, ..., in, then (i) will be a permutation of the indices 1, ..., n. In that case, we
set ϕ(v(i)) = ϕ(vi1 · · · vin) = sign(i). If there is a repetition, we set ϕ(v(i)) = 0.

Let p and q be noncommutative monomials whose degrees sum to n−2. If the product p(vivj)q has no
repeated index, the indices in p(vivj)q and in p(vjvi)q will be permutations of 1, ..., n, and those permutations
will have opposite signs. So p(vivj + vjvi)q will be in the kernel of ϕ. Since these elements span the space of
relations that define

∧n
V as a quotient of Tn(V ), the surjective map Tn(V )

ϕ−→ C defines a surjective map∧n
V → C. Therefore

∧n
V 6= 0.
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To prove (3.7.5), we must show that for r ≤ n, the products vi1 · · · vir with i1 < i2 < · · · < ir form a basis for∧r
V , and we have seen that those products span

∧r
V . We must show that they are independent. Suppose that

a combination z =
∑
c(i)v(i) is zero, the sum being over the sets {i1, ..., ir} of strictly increasing indices. We

choose a particular set (j1, ..., jr) of n strictly increasing indices, and we let (k) = (k1, ..., kn−r) be the set of
indices that don’t occur in (j), listed in arbitrary order. Then all terms in the sum zv(k) =

∑
c(i)v(i)v(k) will

be zero except the term with (i) = (j). On the other hand, since z = 0, zv(k) = 0. Therefore c(j)v(j)v(k) = 0,
and since v(j)v(k) differs by sign from v1 · · · vn, it isn’t zero. It follows that c(j) = 0. This is true for all (j),
so z = 0. �

98



3.8 Exercises
chap-

threeex
3.8.1.closureinP Let X be the affine surface in A3 defined by the equation x3

1 + x1x2x3 + x1x3 + x2
2 + x3 = 0, and let

X be its closure in P3. Describe the intersection of X with the plane at infinity in P3.

3.8.2.xcubiceq Let C be a cubic curve, the locus of a homogeneous cubic polynomial f(x, y, z) in P2. Suppose that
(0, 0, 1) and (0, 1, 0) are flex points of C, that the tangent line to C at (0, 0, 1) is the line {y = 0}, and the
tangent line at (0, 1, 0) is the line {z = 0}. What are the possible polynomials f? Disregard the question of
whether f is irreducible.

3.8.3.xtendtoinf Let Y and Z be the zero sets in P of relatively prime homogeneous polynomials g and h of the same
degree r. Prove that the rational function α = g/h will tend to infinity as one approaches a point of Z that isn’t
also a point of Y and that, at intersections of Y and Z, α is indeterminate in the sense that the limit depends
on the path.

3.8.4.xf-
zoneirred

Let f be a homogeneous polynomial in x, y, z, not divisible by z. Prove that f is irreducible if and
only if f(x, y, 1) is irreducible.

3.8.5.homog-
primecon-

verse

Let P be a homogeneous ideal in C[x0, ..., xn], and suppose that its dehomogenization P is a prime
ideal. Is P a prime ideal?

3.8.6.xcondpt Let U be the open complement of a closed subset Z in a projective variety X in Pn. Say that X is the
set of solutions of the homogeneous polynomial equations f = 0 and that Z is the set of solutions of some
equations g = 0. What conditions must a point p of Pn satisfy in order to be a point of U?

3.8.7.xideali-
nAxP

Describe the ideals that define closed subsets of Am×Pn.

3.8.8.xlocusin-
PxP

With coordinates x0, x1, x2 in the plane P and s0, s1, s2 in the dual plane P∗, let C be a smooth
projective plane curve f = 0 in P, where f is an irreducible homogeneous polynomial in x. Let Γ be the locus
of pairs (x, s) of P× P∗ such that the line s0x0 + s1x1 + s2x2 = 0 is the tangent line to C at x. Prove that Γ
is a Zariski closed subset of the product P×P∗.

3.8.9.xfn-
bounded

Let U be a nonempty open subset of Pn. Prove that if a rational function is bounded on U , it is a
constant.

3.8.10.xmapcusp Let Y be the cusp curve SpecB, where B = C[x, y]/(y2− x3). This algebra embeds as subring into
C[t], by x = t2. y = t3. Show that the two vectors v0 = (x−1, y−1) and v1 = (t+1, t2 +t+1) define
the same point of P1 with values in the fraction field K of B, and that they define morphisms from Y to P1

wherever the entries are regular functions on Y . Prove that the two morphisms they define piece together to
give a morphism Y → P1.

3.8.11.xdoes-
ntextend

Let C be a conic in P2, and let π be the projection to P1 from a point q of C. Prove that there is no
way to extend this map to a morphism from P2 to P1.

3.8.12.xverify-
morph

Verify that the following maps are morphisms of projective varieties:
(i) the projection from a product variety X×Y to X ,
(ii) the inclusion of X into the product X×Y as the set X×y for a point y of Y ,
(iii) the morphism of products X×Y → X ′×Y when a morphism X → X ′ is given.

3.8.13.zautPone A pair f0, f1 of homogeneous polynomials in x0, x1 of the same degree d can be used to define a
morphism P1 → P1. At a point q of P1, the morphism evaluates (1, f1/f0) or (f0/f1, 1) at q.
(i) The degree of such a morphism is the number of points in a generic fibre. Determine the degree.
(ii) Describe the group of automorphisms of P1.

3. A pair (f0, f1) of relatively prime, homogeneous polynomials in x0, x1 of the same degree d defines a
morphism u : P1 → P1 that maps a point q to (1, f1(q)/f0(q)) if f0(q) 6= 0 and to (f0(q)/f1(q), 1) if
f1(q) 6= 0. By inspecting the inverse images of a few points, determine the maps that are injective, and use
your result to describe the group of automorphisms of P1.
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3.8.14. xmorph-
Ptwo

(i) What are the conditions that a triple of f = (f0, f1, f2) homogeneous polynomials in x0, x1, x2 of
the same degree d must satisfy in order to define a morphism P2 → P2?
(ii) If f does define a morphism, what is its degree?

3.8.15. cuspto-
pone

Let C be the plane projective curve x3 − y2z = 0.
(i) Show that the function field K of C is the field C(t) of rational functions in t = y/x.
(ii) Show that the point (t2 − 1, t3 − 1) of P1 with values in K defines a morphism C → P1.

3.8.16. xPtwo-
Pone

Describe all morphisms P2 → P1.

3.8.17. xblowupblowing up a point in P2. Consider the Veronese embedding of P2
xyz → P5

u by monomials of degree
2 defined by (u0, u1, u2, u3, u4, u5) = (z2, y2, x2, yz, xz, xy). If we drop the coordinate u0, we obtain a map
P2 ϕ−→ P4: ϕ(x, y, z) = (y2, x2, yz, xz, xy) that is defined at all points except the point q = (0, 0, 1). Find

defining equations for the closure of the imageX . Prove that the inverse mapX
ϕ−1

−→ P2 is everywhere defined,
that the fibre of ϕ−1 over q is a projective line, and that f is bijective everywhere else.

3.8.18. xconic-
cubic

Show that the conic C in P2 defined by the polynomial y2
0 + y2

1 + y2
2 = 0 and the twisted cubic V in

P3, the zero locus of the polynomials v0v2 − v2
1 , v0v3 − v1v2, v1v3 − v2

2 are isomorphic by exhibiting inverse
morphisms between them.

3.8.19. xmapplan-
etoPone

Let X be the affine plane with coordinates (x, y). Given a pair of polynomials u(x, y), v(x, y) in
x, y, one may try to define a morphism f : X → P1 by f(x, y) = (u, v). Under what circumstances is f a
morphism?

3.8.20. xmap-
toPthree

Let x0, x1, x2 be the coordinate variables in the projective plane X , and for i = 1, 2, let ui = xi/x0.
The function field K of X is the field of rational functions in the variables ui. Let f(u1, u2) and g(u1, u2) be
polynomials. Under what circumstances does the point (1, f, g) with values inK define a morphismX → P2?

3.8.21. easyk-
leiman

Prove that every finite subset S of a projective variety X is contained in an affine open subset.

3.8.22.
xaffinopen-
plane

Describe the affine open subsets of the projective plane P2.

3.8.23. xdimgrassWhat is the dimension of the Grassmanian G(m,n)?

3.8.24. xconicin-
quartic

According to (3.7.19), a generic quartic surface in P3 won’t contain any lines. Will a generic quartic
surface contain a plane conic?

3.8.25. xlinesp-
five

Let V be a vector space of dimension 5, and let G denote the Grassmanian G(2, 5) of lines in
P(V ) = P4. So G is a subvariety of the projective space P(W ), W =

∧2
V , which has dimension 10. let D

denote the subset of decomposable vectors in P(W ). Prove that there is a bijective correspondence between
two-dimensional subspaces of V and points of D, and that a vector w in

∧2
V is decomposable if and only if

ww = 0. Exhibit defining equations for G in the space P(W ).

3.8.26. xflaga flag variety. Let P = P3. The space of planes in P is the dual projective space P∗. The variety F
that parametrizes triples (p, `,H) consisting of a point p, a line `, and a plane H in P, with p ∈ ` ⊂ H , is
called a flag variety. Exhibit defining equations for F in P3×P5×P3∗. The equations should be homogeneous
in each of 3 sets of variables.

3.8.27. xmorphaffLet Y be an affine variety. Prove that morphisms Y → Pn whose images are in U0 correspond
bijectively to morphisms of affine varieties Y → U0, as defined in (2.6.4).

3.8.28. xtwotooneDetermine all morphisms P2 → P1.
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Chapter 4 INTEGRAL MORPHISMS

4.1 The Nakayama Lemma
4.2 Integral Extensions
4.3 Normalization
4.4 Geometry of Integral Morphisms
4.5 Dimension
4.6 Chevalley’s Finiteness Theorem
?? Double Planes
4.7 Exercises

The concept of an algebraic integer was one of the essential ideas in the development of algebraic number
theory in the 19th century. Then, largely through the work of Noether and Zariski, an analog was seen to be
essential in algebraic geometry. We study that analog here.

4.1 The Nakayama Lemma
nakayama

(4.1.1) eigenvectorseigen

It won’t be a surprise that eigenvectors are important, but the way that they are used to study modules may
be less familiar.

Let P be an n× n matrix with entries in a ring A. The concept of an eigenvector for P makes sense when
the entries of a vector are in an A-module. A column vector v = (v1, ..., vn)t with entries in an A-module M
is an eigenvector of P with eigenvalue λ in A if Pv = λv.

When the entries of a vector are in a module, it becomes hard to adapt the usual requirement that an
eigenvector must be nonzero. So we drop it, though the zero vector tells us nothing.

4.1.2. Lemma.eigenval Let P be a square matrix with entries in a ringA and let p(t) be the characteristic polynomial
det (tI−P ) of P . If v is an eigenvector of P with eigenvalue λ, then p(λ)v = 0.

The usual proof, in which one multiplies the equation (λI−P )v = 0 by the cofactor matrix of (λI−P ), carries
over. �

The next lemma is a cornerstone of the theory of modules. In it, JM denotes the set of (finite) sums∑
i aimi with ai in J and mi in M .

4.1.3. Nakayama Lemma.nakaya-
malem

Let M be a finite module over a ring A, and let J be an ideal of A such that
M = JM . There is an element z in J such that m = zm for all m in M , i.e., such that (1−z)M = 0.

Since it is always true that M ⊃ JM , the hypothesis M = JM could be replaced by M ⊂ JM .

proof of the Nakayama Lemma. Let v1, ..., vn be generators for the finite A-module M . The equation M =
JM tells us that there are elements pij in J such that vi =

∑
pijvj . We write this equation in matrix notation,
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as v = Pv, where v is the column vector (v1, ..., vn)t and P is the matrix P = (pij). Then v is an eigenvector
of P with eigenvalue 1, and if p(t) is the characteristic polynomial of P , then p(1)v = 0. Since the entries of
P are in the ideal J , inspection of the determinant of I−P shows that p(1) has the form 1−z, with z in J .
Then (1−z)vi = 0 for all i. Since v1, ...., vn generate M , (1−z)M = 0. �

With notation as in the Nakayama Lemma, let s = 1−z, so that sM = 0. The localized module Ms is the
zero module.

4.1.4. Corollary. idealzeroLet I and J be ideals of a noetherian domain A.
(i) If I = JI , then either I is the zero ideal or J is the unit ideal.
(ii) LetB be a domain that containsA, and that is a finiteA-module. If the extended ideal JB is the unit ideal
of B, then J is the unit ideal of A.

proof. (i) Since A is noetherian, I is a finite A-module. If I = JI , the Nakayama Lemma tells us that there is
an element z of J such that zx = x for all x in I . Suppose that I isn’t the zero ideal. We choose a nonzero
element x of I . Because A is a domain, we can cancel x from the equation zx = x, obtaining z = 1. Then 1
is in J , and J is the unit ideal.

(ii) The elements of the extended ideal JB are sums
∑
uibi with ui in J and bi in B. Suppose that B = JB.

Then there is an element z of J such that b = zb for all b in B. Setting b = 1 shows that z = 1. So J is the
unit ideal. �

4.1.5. Corollary. xkdividesyLet x be an element of a noetherian domain A, not a unit, and let J be the principal ideal
xA.
(i) The intersection

⋂
Jn is the zero ideal.

(ii) If y is a nonzero element of A, the integers k such that xk divides y in A are bounded.
(iii) For every k > 0, Jk > Jk+1.

proof. Let I =
⋂
Jn and let y be an element of I . Since Jn = xnA, the elements of I are divisible by xn for

every n. So for every n, there is an element an in A such that y = anx
n. Then y/x = anx

n−1, which is an
element of Jn−1. Since this is true for every n, y/x is in I , and y is in JI . Here y can be any element of I ,
so I = JI . Since x isn’t a unit, J isn’t the unit ideal. Corollary 4.1.4(i) tells us that I = 0. This proves (i),
and (ii) follows. For (iii), we note that if Jk = Jk+1, then, multiplying by Jn−k, we see that Jn = Jn+1 for
every n ≥ k. Therefore Jk =

⋂
Jn = 0. But since A is a domain and x 6= 0, Jk = xkA 6= 0. �

4.2 Integral Extensions
int

An extension of a domain A is a domain B that contains A as a subring.
Let B be an extension of a domain A. An element β of B is integral over A if it is a root of a monic

polynomial with coefficients in A. An extension B of A is an integral extension if all elements of B are
integral over A.

4.2.1. Lemma. aboutinte-
gral

Let A ⊂ B be an extension of noetherian domains.
(i) An element b of B is integral over A if and only if the subring A[b] of B generated by b is a finite A-module.
(ii) The set of elements of B that are integral over A is a subring of B.
(iii) If B is generated as A-algebra by finitely many integral elements, then B is a finite A-module.
(iv) Let R ⊂ A ⊂ B be domains, and suppose that A is an integral extension of R. An element of B is integral
over A if and only if it is integral over R. Therefore, if A is an integral extension of R and B is an integral
extension of A, then B is an integral extension of R. �

4.2.2. Corollary. inte-
graliffinite

An extension A ⊂ B of finite-type domains is an integral extension if and only if B is a
finite A-module. �

Thus, if f(x) is a monic irreducible polynomial with cofficients in A, and if B = A[x]/(f), then every
element of B will be integral over A.

4.2.3. Lemma. betainte-
gral

Let A ⊂ B be an extension of domains, with A noetherian, let I be a nonzero ideal of A, and
let b be an element of B. If bI ⊂ I , then b is integral over A.
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proof. BecauseA is noetherian, I is finitely generated. Let v = (v1, ..., vn)t be a vector whose entries generate
I . The hypothesis bI ⊂ I allows us to write bvi =

∑
pijvj with pij in A, or in matrix notation, bv = Pv. So

v is an eigenvector of P with eigenvalue b, and if p(t) is the characteristic polynomial of P , then p(b)v = 0.
Since I isn’t zero, at least one vi is nonzero, but p(b)vi = 0. Since A is a domain, p(b) = 0. The characteristic
polynomial is a monic polynomial with coefficients in A, so b is integral over A. �

4.2.4. Definition.deffinmor-
phaff

Let Y = SpecB and X = SpecA be affine varieties. The morphism Y
u−→ X defined

by an integral extension A ⊂ B will be called an integral morphism of affine varieties.

Thus an integral morphism of affine varieties Y → X is a morphism whose associated algebra homo-
morphism A

ϕ−→ B is injective, and such that B is a finite A-module. The inclusion u of a proper closed
subvariety Y into X isn’t an integral morphism, though B is a finite A-module.

4.2.5. Proposition.integral-
surj

An integral morphism Y
u−→ X of affine varieties is a surjective map.

proof. Let mx be the maximal ideal at point x of X . Corollary 4.1.4 (ii) shows that the extended ideal mxB
isn’t the unit ideal of B, so mxB is contained in a maximal ideal my of B, where y is a point of Y . Then
my ∩ A contains mx and it isn’t the unit ideal because it doesn’t contain 1. So my ∩ A = mx, and x is the
image uy. Therefore u is surjective. �

4.2.6. Example.grpii Let G be a finite group of automorphisms of a normal, finite-type domain B, let A be the
algebra BG of invariant elements of B. According to Theorem 2.8.5, A is a finite-type domain, B is a finite
integral extension of A, and points of X = SpecA correspond to G-orbits of points of Y = SpecB. �

The next example is helpful for an intuitive understanding of the geometric meaning of integrality.

4.2.7. Example.inte-
gralovercx

Let f be an irreducible polynomial in C[x, y] (one x and one y), let A = C[x], and let
B = C[x, y]/(f). So X = SpecA is an affine line and Y = SpecB is a plane affine curve. The canonical
map A→ B defines the morphism Y → X that is obtained by restricting the projection A2

x,y → A1
x to Y .

We write f as a polynomial in y, whose coefficients are polynomials in x, say

(4.2.8)fxy f(x, y) = a0y
n + a1y

n−1 + · · ·+ an

with ai = ai(x). Let x0 be a point of X . The fibre of the map Y → X over x0 consists of the points (x0, y0)
such that y0 is a root of the one-variable polynomial f(x0, y).

Let δ(x) be the discriminant of f(x, y), viewed as a polynomial in y. This discriminant isn’t identically
zero because f is irreducible (1.7.22). For all but finitely many values x0 of x, both a0 and δ will be nonzero.
Then f(x0, y) will have n distinct roots, and the fibre of Y over x0 will have order n.

When f(x, y) is a monic polynomial in y, the morphism Y → X will be an integral morphism. If so, the
leading term yn of f will be the dominant term, when y is large. For x1 near to a point x0 of X , there will be
a positive real number N such that

|yn| > |a1(x1)yn−1 + · · ·+ an(x1)|

when |y| > N , and therefore f(x1, y) 6= 0. So the roots y of f(x1, y) are bounded by N for all x1 near to x0.
On the other hand, when the leading coefficient a0(x) isn’t a constant, B won’t be integral over A. If

x0 is a root of a0(x), f(x0, y) will have degree less than n. What happens there is that, for points x1 near
to x0, some roots of f(x1, y) are unbounded. In calculus, one says that the locus f(x, y) = 0 has a vertical
asymptote at x0.

To see this, we divide f by its leading coefficient. Let g(x, y) = f(x, y)/a0 = yn + c1y
n−1 + · · · + cn

with ci(x) = ai(x)/a0(x). For any x at which a0(x) isn’t zero, the roots of g are the same as those of f .
However, let x0 be a root of a0. Because f is irreducible. At least one coefficient aj(x) doesn’t have x0 as a
root. Then cj(x) is unbounded near x0, and because the coefficient cj is a symmetric function in the roots, the
roots are not all bounded.

This is the general picture: The roots of a polynomial remain bounded near points at which the leading
coefficient isn’t zero, but some roots are unbounded near to a point at which the leading coefficient is zero. �
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4.2.9. Noether Normalization Theorem. noether-
normal

Let A be a finite-type domain over an infinite field k. There
exist elements y1, . . . , yn in A that are algebraically independent over k, such that A is a finite module over
the polynomial subalgebra R = k[y1, . . . , yn], i.e., such that A is an integral extension of R.

When k = C, the theorem can be stated by saying that every affine variety X admits an integral morphism
to an affine space. (It is trivial that an affine variety admits a finite morphism to affine space, because its
embedding into affine space is a finite morphism.)

The Noether Normalization Theorem remains true whenA is a finite-type algebra over a finite field, though
the proof given below needs to be modified.

4.2.10. Lemma. nonzero-
coeff

Let k be an infinite field, and let f(x) be a nonzero polynomial of degree d in x1, . . . , xn,
with coefficients in k. After a suitable linear change of variable and scaling, f will be a monic polynomial in
xn.

proof. Let fd be the homogeneous part of f of maximal degree d. We regard fd as a function kn → k.
Since k is infinite, that function isn’t identically zero. We choose coordinates x1, ..., xn so that the point
q = (0, ..., 0, 1) isn’t a zero of fd. Then fd(0, ..., 0, xn) = cxdn, and the coefficient c, which is fd(0, ..., 0, 1),
will be nonzero. We can multiply by c−1 to make f monic. �

proof of the Noether Normalization Theorem. Say that the finite-type domain A is generated by elements
x1, . . . , xn. If those elements are algebraically independent over k, A will be isomorphic to the polynomial al-
gebra C[x]. In that case we letR = A. If x1, ..., xn aren’t algebraically independent, they satisfy a polynomial
relation f(x) = 0 of some positive degree d, with coefficients in k. The lemma tells us that, after a suitable
change of variable and scaling, the coefficient of xdn in f will be 1. Then f will be a monic polynomial in xn
with coefficients in the subalgebra B of A generated by x1, . . . , xn−1. So xn will be integral over B, and A
will be a finite B-module. By induction on n, we may assume that B is a finite module over a polynomial
subalgebra R. Then A will be a finite module over R too. �

The next corollary is an example of the general principle, as has been noted before, that in any localization,
a construction involving finitely many denominators can be done in a simple localization.

4.2.11. Corollary. localnthe-
orem

Let A ⊂ B be finite-type domains. There is a nonzero element s in A such that Bs is a
finite module over a polynomial subring As[y1, ..., yr].

proof. Let S be the multiplicative system of nonzero elements of A, so that K = AS−1 is the fraction field
of A, and let BK = BS−1 be the ring obtained from B by adjoining inverses of all elements of S. Also,
let β = (β1, ..., βk) be a set of algebra generators for the finite-type algebra B. Then as K-algebra, BK is
generated by β. It is a finite-type K-algebra. The Noether Normalization Theorem tells us that BK is a finite
module over a polynomial subring RK = K[y1, ..., yr]. So BK is an integral extension of RK . An element of
B will be in BK . Therefore it will be the root of a monic polynomial, say

f(x) = xn + cn−1x
n−1 + · · ·+ c0 = 0

where the coefficients cj(y) are elements of RK . Each coefficient cj is a combination of finitely many mono-
mials in y, with coefficients in K. If d ∈ A is a common denominator of those coefficients, cj(x) will have
coefficients in Ad[y]. Since the generators β1, ..., βk of B are integral over RK , we may choose a single de-
nominator s so that they are all integral over As[y]. The algebra Bs is generated over As by β, so Bs will be
an integral extension of As[y]. �

4.3 Normalization
finint

Let A be a domain with fraction field K. The normalization A# of A is the set of elements of K that are
integral over A. The normalization is a domain that contains A (4.2.1) (ii).

A domain A is normal if it is equal to its normalization, and a normal variety X is a variety that has an
affine covering {Xi = SpecAi}, a covering by affine open sets, in which the algebrasAi are normal domains.

To justify the definition of normal variety, we need to show that if an affine variety X = SpecA has an
affine covering {Xi = SpecAi}, in which Ai are normal domains, then A is a normal domain. This follows
from Lemma 4.3.4 (iii) below.

Our goal here is the next theorem, whose proof is at the end of the section.
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4.3.1. Theorem.normalfi-
nite

LetA be a finite-type domain with fraction fieldK of characteristic zero. The normalization
A# of A is a finite A-module and a finite-type domain.

Thus there is an integral morphism SpecA# → SpecA.
The theorem is true also when the characteristic of K isn’t zero.

4.3.2. Corollary.Asharp-
modA

With notation as above, there is a nonzero element s in A such that sA# ⊂ A.

proof. We assume that the theorem has been proved. Since A and A# have the same fraction field, every
element α of A# can be written as a fraction α = a/s with a, s in A, and then sα is in A. Since A# is a finite
A-module, one can find a nonzero element s in A such that sα is in A for all α in A#. Then sA# ⊂ A. �

4.3.3. Example.nodecurve (normalization of a nodal cubic curve) The algebra A = C[u, v]/(v2−u3−u2) can be
embedded into the one-variable polynomial algebra B = C[x], by u = x2 − 1 and v = x3 − x. The fraction
fields of A and B are equal because x = v/u, and the equation x2 = u+1 shows that x is integral over A. The
algebra B is normal, so it is the normalization of A.

The plane curve C = SpecA has a node at the origin p = (0, 0), and SpecB is the affine line A1. The
inclusion A ⊂ B defines an integral morphism A1 → C whose fibre over p is the point pair x = ±1, and that
is bijective at all other points. I think of C as the variety obtained by gluing the points x = ±1 of the affine
line together.

In this example, the effect of normalization can be visualized geometrically. This is fairly unusual, because
normalization is an algebraic process. Its effect on geometry may be subtle. �

4.3.4. Lemma.ufdnormal (i) A unique factorization domain is normal. In particular, a polynomial algebra over a field
is normal.
(ii) A localization As of a normal domain A is normal.
(iii) Let s1, ..., sk be nonzero elements of a domain A that generate the unit ideal. If the localizations Asi are
normal for all i, then A is normal.

proof. (i) Let A be a unique factorization domain, and let β be an element of its fraction field that is integral
over A. Say that

(4.3.5)eqntwo βn + a1β
n−1 + · · ·+ an−1β + an = 0

with ai in A. We write β = r/s, where r and s are relatively prime elements of A. Multiplying by sn gives us
the equation

rn = −s (a1r
n−1 + · · ·+ ans

n−1)

This equation shows that if a prime element ofA divides s, it also divides r. Since r and s are relatively prime,
there is no such prime element. So s is a unit, and β is in A.

(ii) Let β be an element of the fraction field ofA that is integral overAs. There will be a polynomial relation of
the form (4.3.5), where the coefficients ai are elements ofAs. The element γ = skβ is a root of the polynomial

γn + (ska1)γn−1 + (s2ka2)γn−2 + · · ·+ +(snkan) = 0

Since ai are in As, all coefficients in this polynomial will be in A when k is sufficiently large, and then γ will
be integral over A. Since A is normal, γ will be in A, and β = s−kγ will be in As.

(iii) This proof follows a common pattern. Suppose that Asi is normal for every i. If an element β of K is
integral over A, it will be in Asi for all i, and sni β will be an element of A, when n is large. We can use
the same exponent n for all i. Since s1, ..., sk generate the unit ideal, so do their powers sni , ..., s

n
k . Say that∑

ris
n
i = 1, with ri in A. Then β =

∑
ris

n
i β is in A. �

We prove Theorem 4.3.1 in a slightly more general form. Let A be a finite type domain with fraction field
K, and let L be a finite field extension of K. The integral closure of A in L is the set of all elements of L that
are integral over A.

4.3.6. Theorem.intclo LetA be a finite type domain with fraction fieldK of characteristic zero, and let L be a finite
field extension of K. The integral closure of A in L is a finite A-module.
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The proof that we give at the end of the section makes use of the characteristic zero hypothesis, though the
theorem is true for a finite-type algebra over any field k.

4.3.7. Lemma. about-
tracetwo

Let A be a normal noetherian domain with fraction field K of characteristic zero, and let L
be an algebraic field extension of K. An element β of L is integral over A if and only if the monic irreducible
polynomial f for β over K has coefficients in A.

proof. If the monic polynomial f has coefficients inA, then β is integral overA. Suppose that β is integral over
A. We may replace L by any field extension that contains β. So we may replace L byK[β]. Then L becomes a
finite extension of K, which embeds into a Galois extension. So we may replace L by a Galois extension. Let
G be its Galois group, and let {β1, . . . , βr} be the G-orbit of β, with β = β1. Then the irreducible polynomial
for β over K is

(4.3.8) f(x) = (x− β1) · · · (x− βr) orbitpoly

If β is integral over A, all elements of the orbit are integral over A. Therefore the coefficients of f , which are
elemetary symmetric functions in the orbit, are integral over A, and since A is normal, they are in A. So f has
coefficients in A. �

4.3.9. Example. dplanenor-
mal

A nonconstant polynomial f(x, y) in the polynomial ring A = C[x, y] is said to be square-
free if it has no nonconstant square factors.

Let f be an irreducible, square-free polynomial, and letB denote the integral extension C[x, y, w]/(w2 − f)
of A. Let K and L be the fraction fields of A and B, respectively. Then L is a Galois extension of K. Its
Galois group is generated by the automorphism σ of order 2 that is defined by σ(w) = −w. The elements of
L have the form β = a+ bw with a, b in K, and σ(β) = β′ = a− bw.

We show that B is the integral closure of A in L. Suppose that β = a+ bw is integral over A, with a, b in
K. If b = 0, then β = a. This is an element of A and therefore it is in B. If b 6= 0, the irreducible polynomial
for β will be

(x− β)(x− β′) = x2 − 2ax+ (a2−b2f)

Because β is integral over A, 2a and a2−b2f will be in A, and because the characteristic isn’t 2, this is true if
and only if a and b2f are in A. We write b = u/v, with u, v relatively prime elements of A, so b2f = u2f/v2.
If v weren’t a constant, then since u and v are relatively prime and f is square-free, v2 couldn’t be canceled
from u2f . So b2f wouldn’t be in A. From b2f in A we can conclude that v is a constant and that b is in A.
Summing up, β is integral if and only if a and b are in A, which means that β is in B. �

(4.3.10) trace deftrace

Let L be a finite field extension of a fieldK and let β be an element ofK. When L is viewed as aK-vector
space, multiplication by β becomes a K-linear operator L→ L. The trace of that operator will be denoted by
trace(β). The trace is a K-linear map L→ K.

4.3.11. Lemma. about-
traceone

Let L/K be a field extension of degree n, let K ′ = K[β] be the extension of K generated
by an element β of L, and let f(x) = xr + a1x

r−1 + · · ·+ ar be the irreducible polynomial of β over K. Say
that [L :K ′] = d, so that n = rd. Then trace(β) = −da1. If β is an element of K, then trace(β) = nβ.

proof. The set (1, β, . . . , βr−1) is a K-basis for K ′. On this basis, the matrix of multiplication by β has the
form illustrated below for the case r = 3. Its trace is −a1.

M =

0 0 −a3

1 0 −a2

0 1 −a1

 .

Next, if (u1, . . . , ud) is a basis for L over K ′, the set {βiuj}, with i = 0, . . . , r−1 and j = 1, . . . , d, will be a
basis for L over K. When this basis is listed in the order

(u1, u1β, ..., u1β
n−1;u2, u2β, . . . u2β

n−1; . . . ;ud, udβ, ..., udβ
n−1),

the matrix of multiplication by β will be made up of d blocks of the matrix M . �
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4.3.12. Corollary.traceinA Let A be a normal domain with fraction field K and let L be a finite field extension of K.
If an element β of L is integral over A, its trace is in A.

This follows from Lemmas 4.3.7 and 4.3.11. �

4.3.13. Lemma.formnon-
deg

Let A be a normal noetherian domain with fraction field K of characteristic zero, and let L
be a finite field extension of K. The form L×L→ K defined by 〈α, β〉 = trace(αβ) is K-bilinear, symmetric,
and nondegenerate. If α and β are integral over A, then 〈α, β〉 is an element of A.

proof. The form is obviously symmetric, and it is K-bilinear because multiplication is K-bilinear and trace is
K-linear. A form is nondegenerate if its nullspace is zero, which means that when α is a nonzero element, there
is an element β such that 〈α, β〉 6= 0. Given α 6= 0, let β = α−1. Then 〈α, β〉 = trace(1), which, according
to (4.3.11), is the degree [L :K] of the field extension. It is here that the hypothesis on the characteristic of K
enters: The degree is a nonzero element of K.

If α and β are integral over A, so is their product αβ (4.2.1) (ii). Corollary 4.3.12 shows that 〈α, β〉 is an
element of A. �

4.3.14. Lemma.clearde-
nom

Let A be a domain with fraction field K, let L be a field extension of K, and let β be an
element of L that is algebraic over K. If β is a root of a polynomial f = anx

n + an−1x
n−1 + · · ·+ a0 with

ai in A, then γ = anβ is integral over A.

proof. One finds a monic polynomial with root γ by substituting x = y/an into f and multiplying by an−1
n . �

(4.3.15) proof of Theorem 4.3.1normfin-
proof

LetA be a finite-type domain with fraction fieldK of characteristic zero, and letL be a finite field extension
of K. We are to show that the integral closure of A in L is a finite A-module.

Step 1. We may assume that A is normal.
We use the Noether Normalization Theorem to write A as a finite module over a polynomial subalgebra

R = C[y1, . . . , yd]. Let F be the fraction field of R. Then K and L are finite extensions of F . An element of
L will be integral over A if and only if it is integral over R (4.2.1) (iv). So the integral closure of A in L is the
same as the integral closure of R in L. We replace A by the normal algebra R and K by F .

Step 2. Bounding the integral extension.
We assume that A is normal. Let (v1, . . . , vn) be a K-basis for L whose elements are integral over A.

Such a basis exists because we can multiply any element of L by a nonzero element of K to make it integral
(Lemma 4.3.14). Let

(4.3.16) T : L→ Knmapvector

be the map defined by T (β) =
(
〈v1, β〉, . . . , 〈vn, β〉

)
, where 〈 , 〉 is the bilinear form defined in Lemma

4.3.13. This map is K-linear. If 〈vi, β〉 = 0 for all i, then because (v1, . . . , vn) is a basis for L, 〈γ, β〉 = 0 for
every γ in L, and since the form is nondegenerate, β = 0. Therefore T is injective.

Let B be the integral closure of A in L. We are to show that B is a finite A-moule. The basis elements vi
are in B, and if β is in B, then viβ will be in B too. Then 〈vi, β〉 = trace(vib) will be in A, and T (β) will be
in An (4.3.13). When we restrict T to B, we obtain an injective map B → An that we denote by T0. Since
T is K-linear, T0 is A-linear. It is an injective homomorphism of A-modules that maps B isomorphically to
its image, a submodule of An. Since A is noetherian, every submodule of the finite A-module An is a finite
module. Therefore the image of T0 is a finite A-module, and so is the isomorphic module B. �

4.4 Geometry of Integral Morphisms
prmint The main geometric properties of an integral morphism of affine varieties are summarized by the theorems in

this section, which show that the geometry is as nice as could be expected.
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Let Y → X be an integral morphism of affine varieties. We say that a closed subvariety D of Y lies over
a closed subvariety C of X if C is the image of D.

Similarly, if A → B is an integral extension of finite-type domains, we say that a prime ideal Q of B lies
over a prime ideal P of A if P is the contraction Q ∩ A. For example, if Y → X is the morphism of affine
varieties that corresponds to a homomorphism A → B, and if a point y of Y has image x in X , then y lies
over x, and the maximal ideal my lies over the maximal ideal mx.

4.4.1. Lemma. contrzeroLet A ⊂ B be an integral extension of finite-type domains, and let J be an ideal of B. If J
isn’t the zero ideal of B, then its contraction J ∩A isn’t the zero ideal of A.

proof. An element β of J will be a root of a monic polynomial with coefficients in A, say βk+ ak−1β
k−1 +

· · ·+a0. If a0 = 0, then since B is a domain, we can cancel β from this polynomial. So we may assume that
a0 6= 0. The equation shows that a0 is in J as well as in A. �

4.4.2. Proposition. QoverPLet A → B be an integral extension of finite-type domains, and let X = SpecA and
Y = SpecB.
(i) Let P and Q be prime ideals of A and B, respectively, let C be the locus of zeros of P in X , and let D be
the locus of zeros of Q in Y . Then Q lies over P if and only if D lies over C.
(ii) Let Q and Q′ be prime ideals of B that lie over the same prime ideal P of A. If Q ⊂ Q′, then Q = Q′.
Therefore, if D′ and D are closed subvarieties of Y that lie over the same subvariety C of X and if D′ ⊂ D,
then D′ = D.

proof. (i) Let A = A/P and B = B/Q. Then D = SpecB and C = SpecA. Suppose that Q lies over P . So
P = Q ∩ A. Then the canonical map A → B will be injective, and B will be generated as A-module by the
residues of a set of generators of the finite A-module B. So B is an integral extension of A, and the map from
D to C is surjective (Proposition 4.2.5), which means that D lies over C. Conversely, if D lies over C, the
morphismD → C is surjective. Then the canonical mapA→ B is injective, and this implies thatQ∩A = P .

(ii) Suppose that Q and Q′ lie over P and that Q ⊂ Q′. With A = A/P and B = B/Q as before, let
Q
′

= Q′/Q. Because B is an integral extension of A, B is an integral extension of A, and Q
′

is an ideal of B.
Since Q and Q′ lie over P , Q∩A = Q′ ∩A = P . We show that Q

′ ∩A = 0. Let x be an element of Q
′ ∩A,

and let x ∈ Q′ and z ∈ A be elements whose residues in Q
′

are equal to x. Then the residue of x− z is zero,
so x − z is in Q and in Q′. Therefore z is in Q′ ∩ A = P , and x = 0. So Q

′ ∩ A = 0. Lemma 4.4.1 tells us
that Q

′
= 0. Therefore Q′ = Q. �

4.4.3. Theorem. closedim-
age

Let Y u−→ X be an integral morphism of affine varieties.
(i) The fibres of u have bounded cardinality.
(ii) The image of a closed subset of Y is a closed subset of X , and the image of a closed subvariety of Y is a
closed subvariety of X .
(iii) The set of closed subvarieties of Y that lie over a closed subvariety C of X is finite and nonempty.

proof. Let Y = SpecB and X = SpecA, and let A ⊂ B be the extension that corresponds to the integral
morphism u.
(i) (bounding the fibres) Let y1, ..., yr be points of Y in the fibre over a point x ofX . For each i, the contraction
of the maximal ideal myi of B at yi is the maximal ideal mx of A at x. To bound the number r, we use the
Chinese Remainder Theorem to show that B cannot be spanned as A-module by fewer than r elements.

Let ki and k denote the residue fields B/myi , and A/mx, respectively, all of these fields being isomorphic
to C. Let B = k1× · · · × kr. We form a diagram of algebra homomorphisms

B
ϕ−−−−→ B ≈ Crx x

A −−−−→ k ≈ C
which we interpret as a diagram ofA-modules. The minimal number of generators of theA-moduleB is equal
to its dimension as k-module, which is r. The Chinese Remainder Theorem asserts that ϕ is surjective, so B
cannot be spanned by fewer than r elements.
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(ii) (the image of a closed set is closed) The image of an irreducible set via a continuous map is irreducible
(2.2.15)(iii), so it suffices to show that the image of a closed subvariety is closed. LetD be the closed subvariety
of Y that corresponds to a prime ideal Q of B, and let P = Q ∩ A be its contraction, which is a prime ideal
of A. Let C be the variety of zeros of P in X . The coordinate algebras of the affine varieties D and C are
B = B/Q and A = A/P , respectively, and B is an integral extension of A because B is an integral extension
of A (4.2.5). The map D → C is surjective. Therefore C is the image of D.

(iii) (subvarieties that lie over a closed subvariety) Let C be a closed subvariety of X . Its inverse image
Z = u−1C is closed in Y . It is the union of finitely many irreducible closed sets, say Z = D′1∪ · · ·∪D′k. Part
(i) tells us that the image C ′i of D′i is a closed subvariety of X . Since u is surjective, C =

⋃
C ′i, and since C

is irreducible, C ′i = C for at least one i. For such an i, D′i lies over C. Next, any subvariety D that lies over
C will be contained in the inverse image Z, and therefore contained in D′i for some i. Proposition 4.4.2 (ii)
shows that D = D′i. Therefore the varieties that lie over C are among the varieties D′i. �

4.5 Dimension
dim Every variety has a dimension, and as is true for the dimension of a vector space, the dimension is important,

though it is a very coarse measure. We give two definitions of dimension of a variety X here. However, the
proof that they are equivalent requires work.

The first definition is that the dimension of a variety X is the transcendence degree of its function field.
For now, we’ll refer to this as the t-dimension of X .

4.5.1. Corollary.intdim Let Y → X be an integral morphism of affine varieties. The t-dimensions of X and Y are
equal. �

The second definition of dimension is the combinatorial dimension, which is defined as follows: A chain
of closed subvarieties of a variety X is a strictly decreasing sequence

(4.5.2) C0 > C1 > C2 > · · · > Ckchntwo

of closed subvarieties. The length of this chain is defined to be k. The chain is maximal if it cannot be
lengthened by inserting another closed subvariety, which means thatC0 = X , that there is no closed subvariety
C̃ with Ci > C̃ > Ci+1 for i < k, and that Ck is a point.

For example, Pn > Pn−1 > · · · > P0, where Pi is the linear subspace of points (x0, ..., xi, 0, ..., 0), is a
maximal chain in projective space X = Pn, and its length is n.

Theorem 4.5.6 below shows that all maximal chains of closed subvarieties have the same length. The
combinatorial dimension of X is the length of a maximal chain. We’ll refer to it as the c-dimenson. Theorem
4.5.6 also shows that the t-dimension and the c-dimension of a variety are equal. When we have proved that
theorem, we will refer to the t-dimension and to the c-dimension simply as the dimension, and we will use the
two definitions interchangeably.

In an affine variety SpecA, a strictly decreasing chain (4.5.2) of closed subvarieties corresponds to a
strictly increasing chain

(4.5.3) P0 < P1 < P2 < · · · < Pk,chn

of prime ideals of A of length k, a prime chain. This prime chain is maximal if it cannot be lengthened
by inserting another prime ideal, which means that P0 is the zero ideal, that there is no prime ideal P̃ with
Pi < P̃ < Pi+1 for i < k, and that Pk is a maximal ideal. The c-dimension of a finite-type domain A is the
length k of a maximal chain (4.5.3) of prime ideals. If X = SpecA, then the c-dimensions of X and of A are
equal.

The next theorem is the basic tool for studying dimension. Though the statement is intuitively plausible,
its proof isn’t easy. It is a subtle theorem. We have put the proof at the end of this section.

4.5.4. Krull’s Principal Ideal Theorem.krullthm Let X = SpecA be an affine variety of t-dimension d, and let V
be the zero locus in X of a nonzero element α of A. Every irreducible component of V has t-dimension d−1.
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4.5.5. Corollary. compmaxLet X = SpecA be an affine variety of t-dimension d, and let C be a component of the zero
locus of a nonzero element α of A. Then among proper closed subvarieties, C maximal. There is no closed
subvariety D such that C < D < X .

proof. Let C < D < X be closed subvarieties of X = SpecA. Some nonzero element β of A will vanish on
D. Then D will be a subvariety of the zero locus of β, so by Krull’s Theorem, its t-dimension will be at most
d− 1. Similarly, if D = SpecB, some nonzero element of B will vanish on C, so the t-dimension of C will
be at most d−2, and C isn’t the zero locus of a nonzero element of A. �

4.5.6. Theorem. dimtheo-
rem

Let X be a variety of t-dimension d. All chains of closed subvarieties of X have length at
most d, and all maximal chains have length d. Therefore the c-dimension and the t-dimension of X are equal.

proof. We do the case that X is affine. Induction allows us to assume that the theorem is true for an affine
variety whose t-dimension is less than d. Let X = SpecA be an affine variety of t-dimension d, and let
C0 > C1 > · · · > Ck be a chain of closed subvarieties of X . We must show that k ≤ d and that k = d if
the chain is maximal. We may insert closed subvarieties into the chain where possible, so we may assume that
C0 = X . Next, C1, being a proper closed subset of X , is contained in the zero locus Z of a nonzero element
α of A, and it will be contained in an irreducible component C̃ of Z. If C̃ > C1, we insert C̃ into the chain,
to reduce ourselves to the case that C1 is a component of the zero locus of α. By Krull’s Theorem, C1 has
t-dimension d− 1. By Corollary 4.5.5 C1 is a maximal proper closed subvariety, and induction applies to the
chain C1 > · · · > Ck of closed subvarieties of C1. The length of that chain, which is k − 1 is less than d− 1,
and it is equal to d−1 if the chain is maximal. Therefore the chain {Ci} has length at most n, and it has length
n if it is a maximal chain.

Theorem 4.5.6 for an arbitrary variety follows from the next lemma. �

4.5.7. Lemma. re-
strictchain

Let X ′ be an open subvariety of a variety X . There is a bijective correspondence between
chains C0 > · · · > Ck of closed subvarieties ofX such that Ck∩X ′ 6= ∅ and chains C ′0 > · · · > C ′k of closed
subvarieties of X ′. Given the chain {Ci} in X , the chain {C ′i} in X ′ is defined by C ′i = Ci ∩ X ′. Given a
chain C ′i in X ′, the corresponding chain in X consists of the closures Ci in X of the varieties C ′i.

proof. Suppose given a chain Ci and that Ck ∩X ′ 6= ∅. Then for every i, the intersection C ′i = Ci ∩X ′ is a
dense open subset of the irreducible closed set Ci (2.2.13). So the closure of C ′i is Ci, and since Ci > Ci+1,
it is also true that C ′i > C ′i+1. Therefore C ′0 > · · · > C ′k is a chain of closed subsets of X ′. Conversely, if
C ′0 > · · · > C ′k is a chain in X ′, the closures in X form a chain in X . (See 2.2.14).) �

From now on, we use the word dimension to denote either the t-dimension or the c-dimension, and we
denote the dimension of a variety by dimX .

4.5.8. Examples. dim-
polyalg

(i) The polynomial algebra C[x0, . . . , xn] in n+1 variables has dimension n+1. The chain
of prime ideals

(4.5.9) 0 < (x0) < (x0, x1) < · · · < (x0, . . . , xn)
primechain

is a maximal prime chain. When the irrelevant ideal (x0, ..., xn) is removed from this chain, it corresponds to
a maximal chain

Pn > Pn−1 > · · · > P0

of closed subvarieties of projective space Pn, which has dimension n.

(ii) The maximal chains of closed subvarieties of P2 have the form P2 > C > p, where C is a plane curve and
p is a point. �

If (4.5.2) is a maximal chain in X , then

(4.5.10) C1 > C2 > · · · > Ck chaini

will be a maximal chain in the variety C1. So when X has dimension k, the dimension of C1 will be k−1.
Similarly, let P0 < P1 < · · · < Pk be a maximal chain of prime ideals in a finite-type domainA, letA = A/P1

and let P j denote the image Pj/P1 of Pj in A, for j ≥ 1. Then

0 = P 1 < P 2 < · · · < P k

will be a maximal prime chain in A, and therefore the dimension of the domain A will be k−1.
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4.5.11. Corollary.inte-
graldime-

qual

Let X be a variety.
(i) If X ′ is an open subvariety of a X , then dimX ′ = dimX .
(ii) If Y → X is an integral morphism of varieties, then dimY = dimX .
(iii) If Y is a proper closed subvariety of X , then dimY < dimX . �

One more term: A closed subvariety C of a variety X has codimension 1 if C < X and if dimC =
dimX − 1. If so, there is no closed set C̃ with C < C̃ < X . A prime ideal P of a noetherian domain has
codimension 1 if it isn’t the zero ideal, and if there is no prime ideal P̃ with (0) < P̃ < P .

In the polynomial algebra C[x1, . . . , xn], the prime ideals of codimension 1 are the principal ideals gener-
ated by irreducible polynomials.

(4.5.12) proof of Krull’s TheoremKrullproof

4.5.13. Lemma.lemmaone Krull’s Theorem is true when X is an affine space.

proof. Here A is the polynomial ring C[x1, ..., xn]. Let α1 · · ·αk be the factorization of the polynomial α into
irreducible polynomials, and let Vi be the zero locus of αi. The irreducible factors generate prime ideals of A,
so Vi are irreducible, and V is their union. We replace α by the irreducible factor α1 whose zero locus is V1,
and we relabel that factor as f(x). Then V becomes the zero locus V (f), and the coordinate algebra of V is
A = A/Af . We may assume that f is monic in xd (1.3.20). ThenA is an integral extension of C[x1, ..., xd−1].
Its t-dimension is d−1. �

4.5.14. Lemma.lemmatwo To prove Krull’s Theorem, it suffices to prove it when the coordinate ring A is normal and
the zero locus of α is irreducible.

proof. We are given an affine variety X = SpecA of t-dimension d, a nonzero element α of A, and an
irreducible component C of the zero locus of α. We are to show that the t-dimension of C is d− 1.

Let A# be the normalization of A and let X# = SpecA#. There is an integral morphism X# → X . The
t-dimensions of X# and X are the same. Let V ′ and V be the zero loci of α in X# and in X , respectively.
Then V ′ is the inverse image of V in X#. The map V ′ → V is surjective because the integral morphism
X# → X is surjective.

Let D1, · · · , Dk be the irreducible components of V ′, and let Ci be the image of Di in X . The closed
sets Ci are irreducible (4.4.3) (ii), and their union is V . So at least one Ci is equal to the chosen component
C. Let D be a component of V ′ whose image is C. The map D → C is also an integral morphism, so the
t-dimensions of D and C are equal. We may therefore replace X and C by X# and D, respectively. Hence
we may assume that A is normal.

Next, suppose that the zero locus of α has the form C ∪∆, where C is the chosen irreducible component,
and ∆ is the union of the other components. We choose an element s of A that is identically zero on ∆ but
not identically zero on C. Inverting s eliminates all points of ∆, but Xs ∩ C = Cs won’t be empty. If X is
normal, so is Xs (4.3.4) (ii). Since localization doesn’t change t-dimension, we may replace X and C by Xs

and Cs, respectively. �

We go to the proof of Krull’s Theorem now. According to Lemma 4.5.14, we may assume that X = SpecA
is a normal affine variety of dimension d, and that the zero locus of α is an irreducible closed set C. We are to
prove that the t-dimension of C is d− 1.

We apply the Noether Normalization Theorem. Let X → S be an integral morphism to an affine space
S = SpecR of dimension d, where R is a polynomial ring C[u1, ..., ud].

Let K and F be the function fields of X and S, respectively, and let f(t) be the monic irreducible poly-
nomial for α over F . The coefficients of f are in R. Let α1, ..., αr be the roots of f in a splitting field L of
f over K, with α1 = α, let B be the integral closure of A in L, and let Y = SpecB. Then Y is an integral
extension of X and of S. We have morphisms

Y
u−→ X

v−→ S

Let w denote the composed morphism Y
vu−→ S. The Galois group G of L/F operates on B and on Y . and S

is the space Y/G of G-orbits.
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The coefficients of f(t) = (t−α1) · · · (t−αr) are G-invariant. They are elements of R, and the constant
term is the product α1 · · ·αr. Let’s denote that product by β.

4.5.15. Lemma. lemmath-
ree

Let Z be the zero locus of β in S. The morphism X
v−→ S maps C surjectively to Z.

C −−−−→ Zy y
Y −−−−→ X −−−−→ S

Assuming the lemma, Z will be irreducible because C is irreducible. Lemma 4.5.13 shows that the t-
dimension of Z is d− 1. Therefore the t-dimension of C is at least d− 1, and since it is a closed subset of X ,
it is less than d. So the t-dimension of C is equal to d− 1. �

proof of Lemma 4.5.15 The element β of R defines functions on S, X , and Y , the functions on X and Y being
obtained from the function on S by composition with the maps v and w, respectively. We denote all of those
functions by β. If y is a point of Y , x = uy and s = wy, then β(y) = β(x) = β(s). Similarly, α defines
functions on X and on Y that we denote by α: α(y) = α(x).

Let x be a point of C. So α(x) = 0. Since α divides β, β(x) = 0. If s is the image of x in S, then
β(s) = β(x), so β(s) = 0. This shows that s is a point of Z. Therefore Z contains the image of C.

For the other inclusion, let z be a point of Z. Then β(z) = 0. Let y be a point of Y such that wy = z.
So β(y) = 0. The fibre of Y over z is the G-orbit of y, and since β is a function on S, it vanishes at every
point of that orbit. Since β = α1 · · ·αk, αi(y) = 0 for some i. Let σ be an element of G such that αi = σα.
We recall that [σα](y) = α(yσ). So α(yσ) = 0. We replace y by yσ. Then α(y) = 0, and it is still true that
wy = z. Let x = uy. Because α(y) = 0, it is also true that α(x) = 0. So x is a point of C. The image of x in
S is vx = wy = z. Since z can be any point of Z, the map C → Z is surjective. �

4.6 Chevalley’s Finiteness Theorem
finmorph

(4.6.1) finite morphisms prodagain

The concept of an integral morphism of affine varieties was defined in Section 4.2. A morphism Y
u−→ X

of affine varieties X = SpecA and Y = SpecB is a finite morphism if the homomorphism A
ϕ−→ B

that corresponds to u makes B into a finite A-module. We extend these definitions to varieties that aren’t
necessarily affine here.

As has been noted, the difference between a finite morphism and an integral morphism of affine varieties
is that for a finite morphism, the homomorphism ϕ needn’t be injective. If u is a finite morphism and ϕ is
injective, B will be an integral extension of A, and u will be an integral morphism.

By the restriction of a morphism Y
u−→ X to an open subset X ′ of X , we mean the induced morphism

Y ′ → X ′, where Y ′ is the inverse image of X ′.

4.6.2. Definition. deffin-
morph

A morphism of varieties Y u−→ X is a finite morphism if X can be covered by affine
open subsets Xi such that the restriction of u to each Xi is a finite morphism of affine varieties, as defined in
(4.2.4). Similarly, a morphism u is an integral morphism if X can be covered by affine open sets Xi to which
the restriction of u is an integral morphism of affine varieties.

4.6.3. Corollary. finiteex-
amp

An integral morphism is a finite morphism. The composition of finite morphisms is a finite
morphism. The inclusion of a closed subvariety into a variety is a finite morphism. �

When X is affine, Definitions 4.2.4 and 4.6.2 both apply. Proposition 4.6.5, which is below, shows that the
two definitions are equivalent. Unfortunately, the proof is rather long. Such verifications are a cost of doing
business with affine open sets.

4.6.4. Lemma. restfin-
morph

(i) Let A
ϕ−→ B be a homomorphism of finite-type domains that makes B into a finite A-

module, and let s be a nonzero element of A. Then Bs is a finite As-module.
(ii) Using Definition 4.6.2, the restriction of a finite (or an integral) morphism Y

u−→ X to an open subset of
a variety X is a finite (or an integral) morphism.
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proof. (i) Here Bs denotes the localization of B as an A-module. This localization can also be obtained
by localizing the algebra B with respect to the image s′ = ϕ(s), provided that s′ isn’t zero. If s′ is zero,
then s annihilates B, so Bs = 0. In either case, a set of elements that spans B as A-module will span Bs as
As-module, so Bs is a finite As-module.

(ii) Say that X is covered by affine open sets to which the restriction of u is a finite morphism. The localiza-
tions of these open sets form a basis for the Zariski topology onX , soX ′ can be covered by such localizations.
Part (i) shows that the restriction of u to X ′ is a finite morphism. �

4.6.5. Proposition.onecov-
erfinite

Let Y u−→ X be a finite (or an integral) morphism, as defined in (4.6.2), and let X1 be
an affine open subset of X . The restriction of u to X1 is a finite (or an integral) morphism of affine varieties,
as defined in (4.2.4).

The proof isn’t difficult proof, but there are several things to check. We’ve put it at the end of the section.

Let P denote the projective space Pn with coordinates y0, ..., yn, and let X be a variety. For next theorem,
we abbreviate the notation for a product of a variety V with X , writing

Ṽ = V ×X
4.6.6. Chevalley’s Finiteness Theorem.chevfin Let X be a variety, let Y be a closed subvariety of the product
P̃ = P×X , and let π denote the projection Y → X , respectively. If all fibres of π are finite sets, then π is a
finite morphism.

Y −−−−→ P̃

π

y y
X X

4.6.7. Example.familyof-
vars

Let A = C[t], and let X = SpecA. The zero locus of the polynomial y3
0 + y3

1 + y3
2 +

ty0y1y2 = 0 in P2×X can be regarded as a family of plane cubic curves, parametrized by X . �

4.6.8. Corollary.pro-
jchevfin

Let Y be a projective variety, and let Y π−→ X be a morphism. If the fibres of π are finite
sets, then π is a finite morphism. If Y is a projective curve, every nonconstant morphism Y

π−→ X is a finite
morphism.

proof. This follows from the theorem when one replaces Y by the graph of π in Ỹ = Y ×X . The graph is
isomorphic to Y . If Y is a closed subvariety of P, the graph will be a closed subvariety of P̃ (Proposition
3.5.24). When Y is a curve, the fibres of any nonconstant morphism Y → X will be finite sets. �

We need two lemmas for the proof of Chevalley’s Theorem.

Let y0, ..., yn be coordinates in P = Pn, and let A[y0, ..., yn] be the algebra of polynomials in y with
coefficients in A. In analogy for terminology used with complex polynomials, we say that a polynomial with
coefficients in A is homogeneous if it is homogeneous as a polynomial in y, and that an ideal of A[y] that can
be generated by homogeneous polynomials is a homogeneous ideal.

4.6.9. Lemma.hompoly-
coeffA

(i) Let X = SpecA be an affine variety, and let Y be a nonempty subset of P̃ = P×X . The
ideal I of elements of A[y] that vanish at every point of Y is a homogeneous radical ideal. If Y is a closed
subvariety of P̃, then I is a prime ideal.
(ii) If the zero locus of a homogeneous ideal I of A[y] is empty, then I contains a power of the irrelevant ideal
M = (y0, ..., yn) of A[y].

proof. This is similar to Proposition 3.2.6 and 2.5.13. Let y0, ..., yn be coordinates in P, let A be the affine
space of dimension n + 1 with those coordinates, and let o bethe origin in A. Let Z be the inverse image of
Y in Ã = A×X , and let Z ′ be the complement of õ = o×X in Z. Because Y isn’t empty, I is the ideal of
all polynomials that vanish on Z ′, and also the ideal of all polynomials that vanish on Z. Proposition 2.5.13
shows that I is a prime ideal.

If the zero locus of I in P×X is empty, the zero locus in Ã will be contained in õ. The radical of I will
contain the ideal of õ in A[y], which is the irrelevant ideal. �
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4.6.10. Lemma. powerso-
fyenuf

Let A be a finite type domain, let I be an ideal of the polynomial algebra A[u1, ..., un], and
let k be a positive integer. Suppose that, for each i = 1, ..., n, there is a polynomial gi(u1, ..., un) of degree at
most k−1, with coefficients in A, such that uki − gi(u) is in I . Then B = A[u]/I is a finite A-module.

proof. Let’s denote the residue of ui in B by the same symbol ui. In B, we will have uki = gi(u). Any
monomial m of degree at least nk in u1, ..., un will be divisible by uki for at least one i. Then in B, m is
equal to a polynomial in u1, ..., un of degree less than d, with coefficients in A. It follows by induction that
the monomials in u1, ..., un of degree at most nk−1 span B as an A-module. �

proof of Chevelley’s Finiteness Theorem. This is Schelter’s proof.
We are given a closed subvariety Y of P̃ = P×X , with P = Pn, and the fibres of Y over X are finite sets. We
are to prove that the projection Y → X is a finite morphism. By induction, we may assume that the theorem
is true when P is a projective space of dimension n−1.

We may suppose that X is affine, say X = SpecA (see Definition 4.6.2).

Case 1. There is a hyperplane H in P such that Y is disjoint from H̃ = H×X in P̃.
This is the main case. We adjust coordinates y0, ..., yn in P so thatH is the hyperplane at infinity {y0 = 0}.

Because Y is disjoint from H̃ , it is a subset of the affine variety Ũ0 = U0×X , U0 being the standard open
set {y0 6= 0} in P. Since Y is irreducible and closed in P̃, it is a closed subvariety of the affine variety Ũ0. So
Y is affine.

Let P be the homogeneous prime ideal of A[y] whose zero set in P̃ is Y . The ideal Q whose zero set is H̃
is the principal ideal of A[y]generated by y0. Let I = P+Q. A homogeneous polynomial of degree k in I
has the form f(y) + y0g(y), where f is a homogeneous polynomial in P of degree k, and g is a homogeneous
polynomial of degree k−1 in A[y].

By hypothesis, Y ∩ H̃ is empty. Therefore the sum I = P+Q contains a power of the irrelevant ideal
M = (y0, ..., yn) of A[y]. Say that Mk ⊂ I. Then yki is in I, for i = 0, ..., n. So there are polynomial
equations

(4.6.11) yki = fi(y) + y0gi(y) fplusg

with fi in P homogeneous, of degree k and gi in A[y] homogeneous, of degree k−1.

Recall that Y is a closed subset of Ũ0. Its (nonhomogenous) ideal P in A[u] can be obtained by dehomog-
enizing the ideal P . We dehomogenize the equations (4.6.11). With ui = yi/y0, let Fi = fi(1, u1, ..., un)
and Gi = gi(1, u1, ..., un). Then Fi = uki − Gi. The important points are that Fi is in the ideal P , and that
the degree of Gi is at most k−1. Lemma 4.6.10 shows that Y → X is a finite morphism. This completes the
proof of Case 1.

Case 2. the general case.
We have taken care of the case in which there exists a hyperplane H such that Y is disjoint from H̃ . The

next lemma shows that we can cover the given variety X by open subsets to which this special case applies.
Then Lemma 4.6.4 and Proposition 4.6.5 apply, to complete the proof. �

4.6.12. Lemma. avoidh-
plane

Let Y be a closed subvariety of Pn×X , and suppose that the projection Y π−→ X has
finite fibres. Suppose also that Chevalley’s Theorem has been proved for closed subvarieties of Pn−1×X . For
every point p of X , there is an open neighborhood X ′ of p in X , and there is a hyperplane H in P such that
Y ′ = π−1X ′ is disjoint from H̃ .

proof. Let p be a point of X , and let q̃ = (q̃1, ..., q̃r) be the finite set of points of Y making up the fibre over p.
We project q̃ from P×X to P, obtaining a finite set q = (q1, ..., qr) of points of P, and we choose a hyperplane
H in P that avoids this finite set. Then H̃ avoids the fibre q̃. Let Z denote the closed set Y ∩ H̃ . Because the
fibres of Y over X are finite, so are the fibres of Z over X . By hypothesis, Chevalley’s Theorem is true for
subvarieties of Pn−1×X , and H̃ is isomorphic to Pn−1×X . It follows that, for every component Z ′ of Z,
the morphism Z ′ → X is a finite morphism, and therefore its image is closed in X (Theorem 4.4.3). Thus the
image of Z is a closed subset of X that doesn’t contain p. Its complement is the required neighborhood of p.�

(4.6.13) proof of Proposition 4.6.5 proof-
covfin
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We’ll do the case of an integral morphism. The case of a finite morphism is similar.

Step 1. Preliminaries.
We are given a morphism Y

u−→ X , and we are given an affine covering {Xi} of X , such that, for every
i, the restriction ui of u to Xi is an integral morphism of affine varieties. We are to show that the restriction
of u to any affine open subset X1 of X is an integral morphism of affine varieties.

The affine open set X1 is covered by the affine open sets Xi
1 = X1 ∩Xi. For every i, the restriction ui1 of

u to Xi
1 can also be obtained by restricting ui. So ui1 are integral morphisms (4.6.4) (ii). We may replace X

by X1. Since the localizations of an affine variety form a basis for its Zariski topology, we see that what is to
be proved is this:

A morphism Y
u−→ X is given in which X = SpecA is affine. There are elements s1, ..., sk that generate

the unit ideal ofA such that, for every i, the inverse image Y i ofXi = Xsi is affine, and its coordinate algebra
Bi is an integral extension of the localized algebra Ai = Asi . We must show that Y is affine, and that its
coordinate algebra B is an integral A-module.

Step 2. The algebra of regular functions on Y .
We assume that X is affine, X = SpecA. Let B be the algebra of regular functions on Y . If Y is affine,

B will be its coordinate algebra, and Y will be its spectrum. Here Y isn’t assumed to be affine. By hypothesis,
the inverse image Y i of Xi is the spectrum of an integral Ai-algebra Bi. Then B and Bi are subalgebras of
the function field of Y . Since the localizations Xi cover X , the affine varieties Y i cover Y . A function is
regular on Y if and only if it is regular on each Y i, and therefore

B =
⋂
Bi

Step 3. The coordinate algebra Bj of Y j is a localization of B.
Denoting the images in B of the elements si by the same symbols, we show that Bj is the localization

B[s−1
j ]. The localization Xi is the set of points of X at which si 6= 0. The inverse image Y i of Xi is the set

of points of Y at which si 6= 0, and the affine variety Y j ∩ Y i is the set of points of Y j at which si 6= 0. So
the coordinate algebra of Y j ∩ Y i is the localization Bj [s−1

i ]. Then

B[s−1
j ]

(1)
=
⋂
i

(
Bi[s

−1
j ]
) (2)

=
⋂
i

Bj [s
−1
i ]

(3)
= Bj [s

−1
j ]

(4)
= Bj

The explanation of the numbered equalities is as follows:
(1) A rational function β is in Bi[s−1

j ] if snj β is in Bi for large n, and we can use the same exponent n for all
i = 1, ..., r. Then β is in

⋂
i

(
Bi[s

−1
j ]
)

if and only if snj β is in
⋂
iBi = B. So β is in

⋂
i

(
Bi[s

−1
j ]
)

if and
only if it is in B[s−1

j ].

(2) Bi[s
−1
j ] = Bj [s

−1
i ] because Y j ∩ Y i = Y i ∩ Y j .

(3),(4) Since sj is one of the elements si,
⋂
iBj [s

−1
i ] ⊂ Bj [s

−1
j ]. For all i, Bj ⊂ Bj [s

−1
i ]. Moreover, sj

doesn’t vanish on Y j . It is a unit in Bj , and therefore Bj [s−1
j ] = Bj . Then Bj ⊂

⋂
iBj [s

−1
i ] ⊂ Bj [s

−1
j ] =

Bj .

Step 4. B is an integral extension of A.
With Ai = Asi as before, we choose a finite set (b1, ..., bn) of elements of B that generates the Ai-

module Bi for every i. We can do this because we can span the finite Ai-module Bi = B[s−1
i ] by finitely

many elements of B, and there are finitely many algebras Bi. We show that the set (b1, ..., bn) generates the
A-module B.

Let x be an element of B. Then x is in Bi, so it is a combination of (b1, ..., bn) with coefficients in Ai. For
large k, ski x will be a combination of those elements with coefficients in A, say

ski x =
∑
ν

ai,νbν

with ai,ν in A. We can use the same exponent k for all i. The powers ski generate the unit ideal. With∑
ris

k
i = 1,

x =
∑
i

ris
k
i x =

∑
i

ri
∑
ν

ai,νbν
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The right side is a combination of b1, ..., bn with coefficients in A.

Step 5. Y is affine.
The algebraB of regular functions on Y is a finite-type domain because it is a finite module over the finite-

type domainA. Let Ỹ = SpecB. The fact thatB is the algebra of regular functions on Y gives us a morphism

Y
ε−→ Ỹ (Corollary 3.6.3). Restricting to the open subsetXj ofX gives us a morphism Y j

εj−→ Ỹ j in which,
since Bj = B[s−1

j ], Y j and Ỹ j are both equal to SpecBj . Therefore εj is an isomorphism. Corollary 3.5.13
(ii) shows that ε is an isomorphism. So Y is affine, and by Step 4, its coordinate algebra B is an integral
A-module. �

(4.6.14) affdplanesaffine double planes

LetA be the polynomial algebra C[x, y] and letX be the affine plane SpecA. An affine double plane is a locus
of the form w2 = f(x, y) in the affine 3-space with coordinates w, x, y, where f is a square-free polynomial
in x, y (see Example 4.3.9). The affine double plane is Y = SpecB, where B = C[w, x, y]/(w2 − f), and
the inclusion A ⊂ B gives us an integral morphism Y → X .

Let w, x, y denote the variables and also their residues in B. As in Example 4.3.9, B is a normal domain
of dimension two, and a free A-module with basis (1, w). It has an automorphism σ of order 2, defined by
σ(a+ bw) = a− bw.

The fibres of Y over X are the σ-orbits in Y . If f(x0, y0) 6= 0, the fibre over the point x0 of X consists
of two points, and if f(x0, y0) = 0, it consists of one point. The reason that Y is called a double plane is that
most points of the plane X are covered by two points of Y . The branch locus of the covering, which will be
denoted by ∆, is the (possibly reducible) curve {f = 0} in X . The fibres over the branch points, the points of
∆, are single points.

If a closed subvariety D of Y lies over a curve C in X , then D′ = Dσ lies over C too. The curves D and
D′ may be equal or not. They will have dimension one, and we call them curves too. Let g be the polynomial
whose zero locus in X is C. Krull’s Theorem tells us that the components of the zero locus of g in Y have
dimension one. If a point q of Y lies over a point p of C, then q and qσ are the only points of Y lying over p.
One of them will be in D, the other in D′. So the inverse image of C is D ∪D′. There are no isolated points
in the inverse image, and there is no room for another curve.

Thus if D = D′, then D is the only curve lying over C. Otherwise, there will be two curves D and D′ that
lie over C. In that case, we say that C splits in Y .

A curve C in the plane X will be the zero set of a principal prime ideal P of the polynomial algebra A,
and if D lies over C, it will be the zero set of a prime ideal Q of B that lies over P (4.4.2) (i).

4.6.15. Example. circleex-
ample

Let f(x, y) = x2 + y2 − 1. The double plane Y : {w2 = x2+y2−1} is an affine quadric
in A3. Its branch locus ∆ in the affine plane X is the curve {x2+y2 = 1}.

The line C1 : {y = 0} in X meets the branch locus ∆ transversally at the points (x, y) = (±1, 0), and
when we set y = 0 in the equation for Y , we obtain w2 = x2 − 1. The polynomial w2−x2+1 is irreducible,
so y generates a prime ideal of B. On the other hand, the line C2 : {y = 1} is tangent to ∆ at the point (0, 1),
and it splits. When we set y = 1 in the equation for Y , we obtain w2 = x2. The locus {w2 = x2} is the union
of the two lines {w = x} and {w = −x} that lie over C1. The prime ideals of B that correspond to these lines
aren’t principal ideals.

�

This example illustrates a general fact: A curve that intersects the branch locus transversally doesn’t split.
We explain this now.
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(4.6.16)localanal local analysis

Suppose that a plane curve C : {g = 0} and the branch locus ∆ : {f = 0} of a double plane w2 = f meet at
a point p. We adjust coordinates so that p becomes the origin (0, 0), and we write

f(x, y) =
∑

aijx
iyj = a10x+ a01y + a20x

2 + · · ·

Since p is a point of ∆, the constant coefficient of f is zero. If the two linear coefficients aren’t both zero, p
will be a smooth point of ∆, and the tangent line to ∆ at p will be the line {a10x + a01y = 0}. Similarly,
writing g(x, y) =

∑
bijx

iyj , the tangent line to C, if p is a smooth point, is the line {b10x+ b01y = 0}.
Let’s suppose that the two tangent lines are defined and distinct, i.e., that ∆ and C intersect transversally at

p. We change coordinates once more, to make the tangent lines the coordinate axes. After adjusting by scalar
factors, the polynomials f and g will have the form

f(x, y) = x+ u(x, y) and g(x, y) = y + v(x, y),

where u and v are polynomials all of whose terms have degree at least 2.
Let X1 = SpecC[x1, y1] be another affine plane. The map X1 → X defined by the substitution x1 =

x+ u(x, y), y1 = y + v(x, y) is invertible analytically near the origin, because the Jacobian matrix

(4.6.17)
(
∂(x1, y1)

∂(x, y)

)
(0,0)

jacob

at the origin p is the identity matrix. When we make that substitution, ∆ becomes the locus {x1 = 0} and C
becomes the locus {y1 = 0}. In this local analytic coordinate system, the equation w2 = f that defines the
double plane becomes w2 = x1. When we restrict it to C by setting y1 = 0, x1 becomes a local coordinate
function on C. The restriction of the equation remains w2 = x1. So the inverse image Z of C can’t be split
analytically. Therefore it doesn’t split algebraically either.

4.6.18. Corollary.splitnot-
transver-

sal

A curve that intersects the branch locus transversally at some point doesn’t split. �

This isn’t a complete analysis. When a curve C and the branch locus ∆ are tangent at every point of in-
tersection, C may split or not, and which possibility occurs cannot be decided locally in most cases. However,
one case in which a local analysis suffices to decide splitting is that C is a line. Let t be a coordinate in a line
L, so that L ≈ SpecC[t]. The restriction of the polynomial f to L will give us a polynomial f(t) in t. A root
of f corresponds to an intersection of L with ∆, and a multiple root corresponds to an intersection at which L
and ∆ are tangent, or at which ∆ is singular. The line L will split if and only if the polynomial w2− f factors,
i.e., if and only if f is a square in C[t]. This will be true if and only if every root of f has even multiplicity —
if and only if the intersection multiplicity of L and ∆ at every intersection point is even.

(4.6.19)projdplane projective double planes

Let X be the projective plane P2, with coordinates x0, x1, x2. A projective double plane is a locus of the form

(4.6.20) y2 = f(x0, x1, x2)wtdplane

where f is a square-free, homogeneous polynomial of even degree 2d. To regard (4.6.20) as a homogeneous
equation, we must assign weight d to the variable y (see 1.7.9). Then, since we have weighted variables,
we must work in a weighted projective space WP with coordinates x0, x1, x2, y, where xi have weight 1
and y has weight d. A point of this weighted space is represented by a nonzero vector (x0, x1, x2, y), with
the equivalence relation that, for all nonzero λ, (x0, x1, x2, y) ∼ (λx0, λx1, λx2, λ

dy). The points of the
projective double plane Y are the points of WP that solve the equation (4.6.20).

The projection WP → X that sends (x0, x1, x2, y) to (x0, x1, x2) is defined at all points except at
(0, 0, 0, 1). If (x, y) solves (4.6.20) and if x = 0, then y = 0 too. So (0, 0, 0, 1) isn’t a point of Y . The
projection is defined at all points of Y . The fibre of the morphism Y → X over a point x consists of points
(x, y) and (x,−y), which will be equal if and only if x lies on the branch locus of the double plane, the (pos-
sibly reducible) plane curve ∆ : {f = 0} in X . The map σ : (x, y) (x,−y) is an automorphism of Y , and
points of X correspond bijectively to σ-orbits in Y .
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Since the double plane Y is embedded into a weighted projective space, it isn’t presented to us as a pro-
jective variety in the usual sense. However, it can be embedded into a projective space in the following way:
The projective plane X can be embedded by a Veronese embedding of higher order, using as coordinates the
monomials m = (m1,m2, . . .) of degree d in the variables x. This embeds X into a projective space PN
where N =

(
d+2

2

)
− 1. When we add a coordinate y of weight d, we obtain an embedding of the weighted

projective space WP into PN+1, that sends the point (x, y) to (m, y). The double plane can be realized as a
projective variety by this embedding.

When Y → X is a projective double plane, then, as with affine double planes, a curve C in X may split in
Y or not. If C has a transversal intersection with the branch locus ∆, it will not split. On the other hand, if L
is a line all of whose intersections with the branch locus ∆ have even multiplicity, it will split.

4.6.21. Corollary. bitansplitLet Y be a generic quartic double plane – a double plane whose branch locus ∆ is a
generic quartic curve. The lines that split in Y are the bitangent lines to ∆. �

(4.6.22) ho-
mogdplane

homogenizing an affine double plane

To construct a projective double plane from an affine double plane, we write the affine double plane as

(4.6.23) w2 = F (u1, u2) rela-
belaffd-
planefor some nonhomogeneous polynomial F . We suppose that F has even degree 2d, and we homogenize F ,

setting ui = xi/x0. We multiply both sides of this equation by x2d
0 and set y = xd0 w. This produces an

equation of the form (4.6.20), where y has weight d and f is the homogenization of F .
If F has odd degree 2d − 1, one needs to multiply F by x0 in order to make the substitution y = xd0w

permissible. When one does this, the line at infinity {x0 = 0} becomes a part of the branch locus.

(4.6.24) cubicisd-
plane

cubic surfaces and quartic double planes

Let P3 be the ordinary projective 3-space with coordinates x0, x1, x2, z of weight one, and let X be be the
projective plane P2 with coordinates x0, x1, x2. We consider the projection P3 π−→ X that sends (x, z) to x.
It is defined at all points except at the center of projection q = (0, 0, 0, 1), and its fibres are the lines through
q, with q omitted.

Let S be a cubic surface in P3, the locus of zeros of an irreducible homogeneous cubic polynomial g(x, z),
and suppose that q is a point of S. Then the coefficient of z3 in g will be zero, so g will be quadratic in z:
g(x, z) = az2 + bz + c, where a, b, c are homogeneous polynomials in x, of degrees 1, 2, 3, respectively. The
defining equation g for S becomes

(4.6.25) projequa-
tion

az2 + bz + c = 0

The discriminant f(x) = b2 − 4ac of g with respect to z is a homogeneous polynomial of degree 4 in x. Let
Y be the projective double plane

(4.6.26) y2 = b2 − 4ac quarticd-
plane

in which the variable y is given weight 2.
The quadratic formula solves for z in terms of the chosen square root y of the disriminant, wherever a 6= 0:

(4.6.27) z =
−b+ y

2a
or y = 2az + b quadrfor-

mula
The formula y = 2az + b remains correct when a = 0, and it defines a map S → Y . The inverse map Y → Z
given by the quadratic formula (4.6.27) is defined wherever a 6= 0. So the cubic surface and the quartic double
plane are isomorphic except above the line {a = 0} in X .
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4.6.28. Lemma.quarticis-
generic

The discriminants of the cubic polynomials az2 + bz + c include every homogeneous
quartic polynomial f(x) whose divisor of zeros ∆ : {f = 0} has at least one bitangent line. Therefore the
discriminants of those polynomials form a dense subset of the space of quartic polynomials.

proof. Let f be a quartic polynomial whose zero locus has a bitangent line `0. Then `0 splits in the double
plane y2 = f . Say that `0 is the zero set of a homogeneous linear polynomial a(x). Then f is congruent to
a square, modulo a. There is a homogeneous quadratic polynomial b(x) such that f ≡ b2, modulo a. Then
f = b2 − 4ac for some homogeneous cubic polynomial c(x). The cubic polynomial g(x, z) = az2 + bz + c
has discriminant f .

Conversely, let g(x, z) = az2 + bz + c be given. The intersections of the line `0 : {a = 0} with
the discriminant divisor ∆ : {b2 − 4ac = 0} are the solutions of the equations a = 0 and b = 0. Since
the quadratic polynomial b appears as a square in the discriminant, the intersections of `0 and ∆ have even
multiplicity. So `0 will be a bitangent, provided that the locus b = 0 meets `0 two distinct points, and this will
be true when g is generic. �

From now on, we suppose that S is a generic cubic surface. With a suitable change of coordinates any
point of a generic surface can become the point q, so we may suppose that both S and q are generic. Then S
contains only finitely many lines, and those lines won’t contain q (3.7.19).

Let ` be a line in the plane X , say the locus of zeros of the linear equation r0x0 + r1x1 + r2x2 = 0. The
same equation defines a plane H in P3

x,y that contains q, and the intersection S ∩H is a cubic curve C in the
plane H . The curve C is the inverse image of ` in S.

4.6.29. Lemma.cubicsplits Let S be a generic cubic surface. The lines L contained in S correspond bijectively to lines
` in X whose inverse images C are reducible cubic curves. If C is reducible, it will be the union L ∪ Q of a
line and a conic.

proof. A line L in S won’t contain q. So its image in X will be a line, call it `, and L will be a component of
its inverse image. Therefore C will be reducible.

Let ` be a line in X . At least one irreducible component of its inverse image C will contain q, and there
are no lines through q. So if the cubic C is reducible, it will be the union of a conic and a line L, and q will be
a point of the conic. Then L will be one of the lines in S. �

Let `0 be the line {a = 0}. The points of Y that lie above `0 are the points (x, y) such that a = 0 and
y = ±b. Also, let H0 denote the inverse image of `0 in P3, the plane {a = 0}, and let C0 be the cubic curve
S ∩H0. The points of C0 are the solutions in P3 of the equations a = 0 and bz + c = 0.

4.6.30. Lemma.ae-
qualzero

The curve C0 is irreducible.

proof. We may adjust coordinates so that a becomes the linear polynomial x0. When we restrict to H0 by
setting x0 = 0 in the polynomial bz+c, we obtain a polynomial bz+c, where b and c are generic homogeneous
polynomials in x1, x2 of degrees 2 and 3, respectively. Such a polynomial is irreducible, and C0 is the locus
bz + c = 0. �

4.6.31. Theorem.twenty-
seven

A generic cubic surface S in P3 contains precisely 27 lines.

This theorem follows from next lemma, which relates the 27 lines in the generic cubic surface S to the 28
bitangents of its generic quartic discriminant curve ∆.

4.6.32. Lemma.linesplits Let S be a generic cubic surface az2 + bz+ c = 0, and suppose that coordinates are chosen
so that q = (0, 0, 0, 1) is a generic point of S. Let ∆ : {b2 − 4ac = 0} be the quartic discriminant curve, and
let Y be the double plane y2 = b2 − 4ac.
(i) If a line L is contained in S, its image in X will be a bitangent to the quartic curve ∆. Distinct lines in S
have distinct images in X .
(ii) The line `0 : {a = 0} is a bitangent. It isn’t the image of a line in S.
(iii) Every bitangent ` except `0 is the image of a line in S.

proof. Let L be a line in S, let ` be its image inX , and let C be the inverse image of ` in S. Lemma 4.6.29 tells
us that C is the union of the line L and a conic. So L is the only line in S that has ` as its image. The quadratic
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formula (4.6.27) shows that, because the inverse image C of ` is reducible, ` splits in the double plane Y too,
and therefore ` is a bitangent to δ. This proves (i). Moreover, Lemma 4.6.30 shows that ` cannot be the line
`0. This proves (ii). If a bitangent ` is distinct from `0, the map Y → Z given by the quadratic formula is
defined except at the finite set ` ∩ `0. Since ` splits in Y , its inverse image C in S will be reducible, and one
component of C is a line in S. This proves (iii). �
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4.7 Exercises
chap-

fourex
4.7.1.xdcc A ringA is said to have the descending chain condition (dcc) if every strictly decreasing chain of ideals
I1 > I2 > · · · is finite. Let A be a finite type C-algebra. Prove
(i) A has dcc if and only if it is a finite dimensional complex vector space.
(ii) If A has dcc, then it has finitely many maximal ideals, and every prime ideal is maximal.
(iii) If a finite-type algebra A has finitely many maximal ideals, then it has dcc.
(iv) Suppose that A has dcc, let M be an arbitrary A-module, and let I denote the intersection of the maximal
ideals of A. If IM = M , then M = 0. (This might be called the Stong Nakayama Lemma. The usual
Nakayama Lemma requires that M be finitely generated.)

4.7.2.xfinmod-
fld

Let A ⊂ B be noetherian domains and suppose that B is a finite A-module. Prove that A is a field if
and only if B is a field.

4.7.3.xaltnull Prove this alternate form of the Nullstellensatz: Let k be a field, and let B be a domain that is a finitely
generated k-algebra. If B is a field, then [B : k] <∞.

4.7.4.xinver-
seintegral

Let α be an element of a domain A, and let β = α−1. Prove that if β is integral over A, then it is an
element of A.

4.7.5.xopeni-
som

Let X and Y be varieties with the same function field K. Show that there are nonempty open subsets
X ′ of X and and Y ′ of Y that are isomorphic.

4.7.6.xAsint-
closed

Let A ⊂ B be finite type domains with fraction fields K ⊂ L of characteristic zero, and let Y → X be
the corresponding morphism of affine varieties. Prove the following:
(i) There is a nonzero element s in A such that As is integrally closed.
(ii) There is a nonzero element s in A such that Bs is a finite module over a polynomial ring As[y1, ..., yd].
(iii) Suppose that L is a finite extension ofK of degree d. There is a nonzero element s ∈ A such that all fibres
of the morphism Y → X consist of d points.

4.7.7.chainmax-
imalx

Verify directly that the prime chain 4.5.9 is maximal.

4.7.8.xpchain-
max

Prove that Pn > Pn−1 > · · · > P0 is a maximal chain of closed subsets of Pn.

4.7.9.xorbits Let G be a finite group of automorphisms of a normal, finite-type domain B, let A be the algebra of
invariant elements of B, and let Y u−→ X be the integral morphism of varieties corresponding to the inclusion
A ⊂ B. Prove that there is a bijective correspondence betweenG-orbits of closed subvarieties of Y and closed
subvarieties of X .

4.7.10.xatmost-
deg

Let A ⊂ B be an extension of finite-type domains such that B is a finite A-module, and let P be a
prime ideal of A. Prove that the number of prime ideals of B that lie over P is at most equal to the degree
[L : K] of the field extension.

4.7.11.xnotidzero Let Y = SpecB be an affine variety, let D1, . . . , Dn be distinct closed subvarieties of Y and let V
be a closed subset of Y . Assume that V doesn’t contain any of the sets Dj . Prove that there is an element β of
B that vanishes on V , but isn’t identically zero on any Dj .

4.7.12.dimdim Let Y u−→ X be a surjective morphism of affine varieties, and let K and L be the function fields of
X and Y , respectively. Show that if dimY = dimX , there is a nonempty open subset X ′ of X such that all
fibres over points of X ′ have the same order n, and that n = [L : K].

4.7.13.xchevth-
mdimone

Work out the proof of Chevalley’s Theorem in the case that Y is a closed subset of P1×X that doesn’t
meet the locus at infinity H̃ = H×X . (In P1,H will be the point at infinity.) Do this in the following way: Say
that X = SpecA. Let B0 = A[u], B1 = A[v], and B01 = A[u, v], where u = y1/y0 and v = u−1 = y0/y1.
Then Ũ0 = U0×X = SpecB0, Ũ1 = SpecB1, and Ũ01 = SpecB01. Let P1 be the ideal of B1 that
defines Y ∩ Ũ1, and let P0 be the analogous ideal of B0. In B1, the ideal of H̃ is the principal ideal vB1.
Since Y ∩ H̃ = ∅, P1 + vB1 is the unit ideal of B1. Write out what this means. Then go over to the open set
Ũ0, and show that the residue of u in the coordinate algebra B0/P0 of Y is the root of a monic polynomial.

4.7.14.
xmapcurvefin

Prove that a nonconstant morphism from a curve Y to P1 is a finite morphism without appealing to
Chevalley’s Theorem.
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4.7.15. ximclosedLet A be a finite type domain, R = C[t], X = SpecA, and Y = SpecR. Let ϕ : A → R be a
homomorphism whose image is not C, and let π : Y → X be the corresponding morphism.
(i) Show that R is a finite A-module.
(ii) Show that the image of π is a closed subset of X .

4.7.16. xPtwoPt-
wofinite

Prove that every nonconstant morphism P2 → P2 is a finite morphism.

4.7.17. countfibLet Y u−→ X be a finite morphism of curves, and let K and L be the function fields of X and Y ,
respectively, and suppose [L : K] = n. Prove that all fibres have order at most n, and all but finitely many
fibres of Y over X have order equal to n.

4.7.18. xnoisolptProve that a variety of any dimension contains no isolated point.

4.7.19. xmiss-
point

LetX be the subset obtained by deleting the origin from A2. Prove that there is no injective morphism
from an affine variety Y to A2 whose image is X .

4.7.20. xnotprincWith reference to Example 4.6.15, show that the prime ideal that corresponds to the line w = x is not
a principal ideal.

4.7.21. xquadrd-
plane

Identify the double plane y2 = f(x) defined as in (4.6.19) by a quadratic polynomial f .

4.7.22. xdblcurveA double line is a locus y2 = f(x0, x1) analogous to a double plane (4.6.20), where f is a homoge-
neous polynomial of even degree 2d with distinct roots. Determine the genus of a double line.

4.7.23. xstrangeLet Y → X be an affine double plane, and let D be a curve in Y whose image in X is a plane curve
C. Say that C has degree d. Define deg D to be d if C splits and 2d if C remains prime or ramifies. Most
curves C in X will intersect the branch locus transversally. Therefore they won’t split. On the other hand,
most curves D in Y will not be symmetric with respect to the automorphism σ of Y over X . Then there will
be two curves D,Dσ lying over C, so C will split. Try to explain this curious point.

4.7.24. xfmorphLet Y be a closed subvariety of projective space Pn with coordinates y = (y0, ..., yn), let d be a
positive integer, and let w = (w0, ..., wk) be homogeneous polynomials in y of degree d with no common
zeros on Y . Prove that sending a point q of Y to (w0(q), ..., wk(q)) defines a finite morphism Y

u−→ Pk.
Consider the case that wi are linear polynomials first.

4.7.25. xmultbyf-
plusc

Let M be a module over a finite-type domain A, and let α be an element of A. Prove that for all but
finitely many complex numbers c, scalar multiplication by s = α− c is an injective map M s−→M .

4.7.26. xpt-
woptwo

Prove that every nonconstant morphism P2 → P2 is a finite morphism. Do this by showing that the
fibres cannot have positive dimension.
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Chapter 5 STRUCTURE OF VARIETIES IN THE ZARISKI TOPOL-
OGY

5.1 Local Rings
5.2 Smooth Curves
5.3 Constructible sets
5.4 Closed Sets
5.5 Projective Varieties are Proper
5.6 Fibre Dimension
5.7 Exercises

In this chapter, we will see how algebraic curves control the geometry of higher dimensional varieties.

5.1 Local Rings
localrings A local ring is a noetherian ring that contains just one maximal ideal. We make a few comments about local

rings here though we will be interested mainly in some special ones, the discrete valuation rings that are
discussed below.

Let R be a local ring with maximal ideal M . An element of R that isn’t in M isn’t in any maximal ideal,
so it is a unit. The quotient R/M is a field called the residue field of R. For us, the residue field will often be
the field of complex numbers.

The Nakayama Lemma 4.1.3 has a useful version for local rings:

5.1.1. Local Nakayama Lemma.local-
nakayama

Let R be a local ring with maximal ideal M and residue field k = R/M .
Let V be a finite R-module, and let V = V/MV . If V = 0, then V = 0.

proof. If V = 0, then V = MV . The usual Nakayama Lemma tells us that M contains an element z such that
1−z annihilates V . Then 1−z isn’t in M , so it is a unit. A unit annihilates V , and therefore V = 0. �

5.1.2. Corollary.gen-
modmsq

Let R be a local ring. A set z1, ..., zk of elements generates M if the set of its residues
generates M/M2. �

A local domain R with maximal ideal M has dimension one if it contains only two prime ideals, (0) and
M , and they are distinct. We describe the normal local domains of dimension one in this section. They are the
discrete valuation rings that are defined below.

5.1.3. A note about the overused word local.local
A property is true locally on a topological space X if every point p of X has an open neighborhood U such

that the property is true on U .
In these notes, the words localize and localization refer to the process of adjoining inverses. The (simple)

localizations of an affine variety X = SpecA form a basis for the topology on X . If some property is true
locally on X , one can cover X by localizations on which the property is true. There will be elements s1, ..., sk
of A that generate the unit ideal, such that the property is true on each of the localizations Xsi .

Let A be a noetherian domain. An A-module M is locally free if there are elements s1, ..., sk that generate
the unit ideal of A, such that Msi is a free Asi -module for each i. The free modules Msi will have equal rank
(2.1.27. That rank is the rank of the locally free A-module M .
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An ideal I of a domain A is locally principal if A contains elements si that generate the unit ideal, such
that Isi is a principal ideal of Asi for every i. A locally principal ideal is a locally free module of rank one. �

(5.1.4) dvrValuations

Let K be a field. A discrete valuation v on K is a surjective homomorphism

(5.1.5) K×
v−→ Z+ , v(ab) = v(a) + v(b) dval

from the multiplicative group K× of nonzero elements of K to the additive group Z+ of integers, such that, if
a, b are elements of K, and if a, b and a+b aren’t zero, then

v(a+b) ≥ min{v(a), v(b)}

The word “discrete” refers to the fact that Z+ is given the discrete topology. Other valuations exist. They
are interesting, but less important, and we won’t use them. To simplify terminology, we refer to a discrete
valuation simply as a valuation.

Let r be a positive integer. If v is a valuation and if v(a) = r, then r is the order of zero of a, and if
v(a) = −r, then r is the order of pole of a, with respect to the valuation.

The valuation ring R associated to a valuation v on a field K is the subring of K of elements with non-
negative value, together with zero:

(5.1.6) R = {a∈K×| v(a)≥0} ∪ {0} valnring

Valuation rings are usually called “discrete valuation rings”, but we are dropping the word discrete.

5.1.7. Proposition. valsinCtValuations of the field C(t) of rational functions in one variable correspond bijectively
to points of the projective line. The valuation ring that corresponds to a point p 6= ∞ is the ring of rational
functions that are regular at p..

beginning of the proof. Let a be a complex number. To define the valuation v that corresponds to the point
p : {t = a} of P1, we write a nonzero polynomial f as (t − a)kh, where t − a doesn’t divide h, and we
define, v(f) = k. Then we define v(f/g) = v(f)− v(g). You will be able to check that, with this definition,
v becomes a valuation whose valuation ring is the algebra of functions that are regular at p (2.6.1). This
valuation ring is called the local ring of P1 at p (see (5.1.10) below). Its elements are rational functions in t
whose denominators aren’t divisible by t − a. The valuation that corresponds to the point of P1 at infinity is
obtained by working with t−1 in place of t.

The proof that these are all of the valuations of C(t) will be given at the end of the section.

5.1.8. Proposition. idealsin-
valring

Let v be a valuation on a field K, and let x be a nonzero element of K with value
v(x) = 1.
(i) The valuation ring R of v is a normal local domain of dimension one. Its maximal ideal M is the principal
ideal xR. The elements of M are the elements of K with positive value, together with zero:

M = {a ∈ K× | v(a) > 0} ∪ {0}

(ii) The units of R are the elements of K× with value zero. Every nonzero element z of K has the form
z = xku, where u is a unit and k, is an integer, not necessarily positive.
(iii) The proper R-submodules of K are the sets xkR, where k is an integer. The set xkR consists of zero
and the elements of K× with value ≥ k. The sets xkR with k ≥ 0 are the nonzero ideals of R. They are the
powers of the maximal ideal, and they are principal ideals.
(iv) There is no ring properly between R and K: If R′ is a ring and if R ⊂ R′ ⊂ K, then either R = R′ or
R′ = K.
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proof. We prove (i) last.

(ii) Since v is a homomorphism, v(u−1) = − v(u) for any nonzero u in K. Then u and u−1 are both in R,
i.e., u is a unit of R, if and only if v(u) is zero. If z is a nonzero element of K with v(z) = k, then u = x−kz
has value zero, so u is a unit, and z = xku.

(iii) It follows from (ii) that xkR consists of the elements of K of value at least k. Suppose that a nonzero
R-submodule J of K contains an element z with value k. Then z = uxk and u is a unit, so J contains xk.
Therefore J contains xkR. If xkR < J , then J contains an element with value < k. So if k is the smallest
integer such J contains an element with value k, then J = xkR. If there is no minimum value among the
elements of J , then J contains xkR for every k, and J = K.

(iv) This follows from (iii). The ring R′ will be a nonzero R-submodule of K. If R′ < K, then R′ = xkR
for some k, and if R ⊂ R′, then k ≤ 0. But xkR isn’t closed under multiplication when k < 0. So the only
possibility is that k = 0 and R = R′.

(i) Part (iii) tells us that R is a principal ideal domain, so it is noetherian. Its maximal ideal is M = xR. It
also follows from (iii) that M and {0} are the only prime ideals of R. So R is a local ring of dimension 1. If
the normalization of R were larger than R, then according to (iv), it would be equal to K, and x−1 would be
integral over R. There would be a polynomial relation x−r + a1x

−(r−1) + · · ·+ ar = 0 with ai in R. When
one multiplies this relation by xr, one sees that 1 would be a multiple of x. Then x would be a unit, which it
is not, because its value is 1. �

5.1.9. Theorem.character-
izedvr (i) A local domain whose maximal ideal is a nonzero principal ideal is a valuation ring.

(ii) A normal local domain of dimension 1 is a valuation ring.

proof. (i) Let R be a local domain whose maximal ideal M is a nonzero principal ideal, say M = xR, with
x 6= 0, and let y be a nonzero element of R. The integers k such that xk divides y are bounded (4.1.5). Let xk

be the largest power that divides y. Then y = uxk, where k ≥ 0 and u is in R but not in M . So u is a unit.
Every nonzero element z of the fraction field K of R will have the form z = uxr where u is a unit and r is
an integer, possibly negative. This is shown by writing the numerator and denominator of a fraction in such a
form.

The valuation whose valuation ring is R is defined by v(z) = r when z = uxr with u a unit, as above.
Suppose that zi = uix

ri for i = 1, 2, where ui are units and 0 ≤ r1 ≤ r2, then z1 + z2 = αxr1 and
α = u1 + u2x

r2−r1 is an element of R. Therefore v(z1 + z2) ≥ r1 = min{v(z1), v(z2)}. We also have
v(z1z2) = v(z1) + v(z2). Thus v is a surjective homomorphism. The requirements for a valuation are
satisfied.

(ii) The fact that a valuation ring is a normal, one-dimensional local ring is Proposition 5.1.8 (i). We show that
a normal local domain R of dimension 1 is a valuation ring by showing that its maximal ideal M is a principal
ideal. The proof is tricky.

Let z be a nonzero element of M . Because R is a local ring of dimension 1, M is the only prime ideal
that contains z, so M is the radical of the principal ideal zR, and Mr ⊂ zR if r is large (Proposition 2.5.11).
Let r be the smallest integer such that Mr ⊂ zR. Then there is an element y in Mr−1 but not in zR, such
that yM ⊂ zR. We restate this by saying that w = y/z isn’t in R, but wM ⊂ R. Since M is an ideal,
multiplication by an element of R carries wM to wM . So wM is an ideal. Since M is the maximal ideal of
the local ring R, either wM ⊂ M , or wM = R. If wM ⊂ M , Corollary 4.1.4 (iii) shows that w is integral
over R. This can’t happen because R is normal and w isn’t in R. Therefore wM = R and M = w−1R. This
implies that w−1 is in R and that M is a principal ideal. �

(5.1.10)local-
ringatp

the local ring at a point

Let m be the maximal ideal at a point p of an affine variety X = SpecA, and let S be the complement of
m in A, a multiplicative system (2.7.7). The prime ideals P of the localization AS−1 are the extensions of the
prime ideals Q of A that are contained in m: P = QS−1 (2.7.9). Since m is a maximal ideal of A, mS−1 is
the unique maximal ideal of AS−1, and AS−1 is a local ring. This ring is called the local ring of A at p . It is
often denoted by Ap. Lemma 4.3.4 shows that, if A is a normal domain, then Ap is normal.
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For example, let X = SpecA be the affine line, A = C[t], and let p be the point t = 0. The local ring Ap
is the ring whose elements are fractions of polynomials f(t)/g(t) with g(0) 6= 0.

The local ring at a point p of any variety, not necessarily affine, is the the local ring at p of an affine open
neighborhood of p.

5.1.11. Corollary. intlocLet X = SpecA be an affine variety.
(i) The coordinate algebra A is the intersection of the local rings Ap at the points of X .

A =
⋂
p∈X

Ap intersect-
codi-
monea-
gain(ii) The coordinate algebra A is normal if and only if all of its local rings Ap are normal. �

5.1.12. Proposition. gener-
ateMinloc

Let M be a finite module over a finite-type domain A, and let p be a point of SpecA. If
the localized module Mp (2.7.11) is a free Ap-module, then there is an element s, not in mp, such that Ms is a
free As-module.

This is an example of the general principle (2.7.13). �

5.1.13. Note. inconsistThe notationsAs andAp are traditional, though inconsistent. In the localizationAs, the element
s is the one that is inverted, while in the local ring Ap, the elements of the maximal ideal mp are the ones that
are not inverted. �

Completion of the proof of Proposition 5.1.7. We show that every valuation v of the function field C(t) of P1

corresponds to a point of P1.
Let R be the valuation ring of v. If v(t) < 0, we replace t by t−1, so that v(t) ≥ 0. Then t is an element

of R, and therefore C[t] ⊂ R. The maximal ideal M of R isn’t zero. It contains a nonzero fraction g/h of
polynomials in t. The denominator h is in R, so M also contains the numerator g. Since M is a prime ideal,
it contains a monic irreducible factor of g of the form t− a for some complex number a. The local ring R0 of
C[t] at the point t = a is a valuation ring that is obtained by inverting t − c for all c 6= a. When c 6= a, the
scalar c−a isn’t in M , so t−c won’t be in M . Since R is a local ring, t−c will be a unit of R for all c 6= a. So
R0 is contained in R (5.1.7). There is no ring properly containing R0 except K (5.1.8), so R0 = R. �

5.2 Smooth Curves
smaf-
fcurve

A curve is a variety of dimension 1. The proper closed subsets of a curve are finite subsets.
A point p of a curve X is a smooth point if the local ring at p is a valuation ring. Otherwise, it is a singular

point. A curve X is smooth if all of its points are smooth. If X = SpecA is a smooth affine curve, the prime
ideals different from the zero ideal are maximal.

If vp is the valuation associated to a smooth point p of a curve X and r is a positive integer, a rational
function α on X has a zero of order r > 0 at p if vp(α) = r, and it has a pole of order r at p if vp(α) = −r.

5.2.1. Note. jacobianSuppose that an affine curve X is the spectrum of an algebra A = C[x1, ..., xn]/P , and that
f1, ..., fk generate the prime ideal P . A better definition of a smooth point p is that the rank of the Jacobian
matrix J = ∂fi

∂xj
, evaluated at p, is n−1. However, we will use the Jacobian matrix just once, at the end of this

section. For us, the definition given above is more convenient. �

5.2.2. Lemma. smptsopen(i) An affine curve X is smooth if and only if its coordinate algebra is a normal domain.
(ii) A curve has finitely many singular points.
(iii) The normalization X# of a curve X is a smooth curve, and the finite morphism X# → X becomes an
isomorphism when singular points of X and their inverse images are deleted.

proof. (i) This follows from Theorem 5.1.9 and Proposition 4.3.4.

(ii) The statement that a morphism is an isomorphism can be verified locally, so we may replaceX by an affine
open subset SpecA. LetA# be the normalization ofA. There is a nonzero element s inA such that sA# ⊂ A
(Corollary 4.3.2). Then As = A#

s . So SpecAs, which is the complement of a finite set in SpecA, is smooth.

(iii) This is rather obvious. �
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5.2.3. Example.node-
curvetwo

We go back to Example 4.3.3 of a nodal cubic curveC = SpecA, A = C[u, v]/(v2−u3−u2)

and its normalization B = C[x], the map A
ϕ−→ B being defined by ϕ(u) = x2 − 1 and ϕ(v) = x3 − x. The

normalization C# = SpecB is the affine line. The curve C has a node at the origin p, and the fibre of C#

over p is the point pair x = ±1. Let’s denote the points x = 1 and x = −1 by q1 and q2, respectively, and
the polynomial x2 − 1 by w. The open subset U = C − {p} is the localization SpecAu. Its inverse image in
C# is the complement of the point pair q1, q2, which is the localization W = SpecBw. Since ϕ(u) = w, ϕ
extends to a map Au → Bw, and its inverse maps x to v/u. So W and U are isomorphic. �

5.2.4. Proposition.
pointsofcurve

Let X be a smooth curve with function field K. Every point of Pn with values in K
defines a morphism X → Pn.

proof. A point (α0, ..., αn) of Pn with values inK determines a morphismX → Pn if it is a good point, which
means that, for every (ordinary) point p of X , there is an index j such that the functions αi/αj are regular at
p for i = 0, ..., n (3.5.6). This will be true when j is chosen so that the order of zero of αj at p is the minimal
integer among the orders of zero of αi of the elements αi that aren’t zero. �

The next example shows that this proposition doesn’t extend to varieties X of dimension greater than one.

5.2.5. Example.nomaptop Let X ′ be the complement of the origin in the affine plane X = SpecC[x, y], and let
K = C(x, y) be the function field of X . The vector (x, y) defines a good point of X ′ with values in K, and
therefore a morphism X ′ → P1. If (x, y) were a good point of X then, according to Proposition 3.5.4, at least
one of the two rational functions x/y or y/x would be regular at the origin q = (0, 0). This isn’t the case, so
(x, y) isn’t a good point of X . The morphism X ′ → P1 doesn’t extend to X . �

5.2.6. Proposition.ptsvals Let X = SpecA be a smooth affine curve with function field K.
(i) The local rings of X are the valuation rings of K that contain A.
(ii) The maximal ideals of A are locally principal.

In fact, it follows from Proposition 5.2.9 below that every ideal of A is locally principal.

proof of the proposition. Since A is a normal domain of dimension one, its local rings are valuation rings that
contain A (see Theorem 5.1.9 and Corollary 5.1.11). Let R be a valuation ring of K that contains A, let v be
the associated valuation, and let M be the maximal ideal of R. The intersection M ∩ A is a prime ideal of
A. Since A has dimension 1, the zero ideal is the only prime ideal of A that isn’t a maximal ideal. We can
multiply by an element of R to clear the denominator of an element of M , obtaining an element of A while
staying inM . SoM ∩A isn’t the zero ideal. It is the maximal ideal mp ofA at a point p ofX . The elements of
A that aren’t in mp aren’t in M either. They are invertible in R. So the local ring Ap at p, which is a valuation
ring, is contained inR, and is therefore equal toR (5.1.8) (iii). SinceM is a principal ideal, so is the maximal
ideal of Ap, and mp is locally principal. �

5.2.7. Proposition.
pointsvalns

Let X ′ and X be smooth curves with the same function field K.

(i) A morphism X ′
f−→ X that is compatible with the identity map on the function field K maps X ′ isomor-

phically to an open subvariety of X .
(ii) If X is projective, X ′ is isomorphic to an open subvariety of X .
(iii) If X ′ and X are both projective, they are isomorphic.
(iv) If X is projective, every valuation ring of K is the local ring at a point of X .

proof. (i) Let p be the image in X of a point p′ of X ′, let U be an affine open neighborhood of p in X , and let
V be an affine open neighborhood of p′ in X ′ that is contained in the inverse image of U . Say U = SpecA
and V = SpecB. The morphism f gives us an injective homomorphism A→ B, and since p′ maps to p, this
homomorphism extends to an inclusion of local rings Ap ⊂ Bp′ . These local rings are valuation rings with
the same field of fractions, so they are equal. Since B is a finite-type algebra, there is an element s in A, with
s(p′) 6= 0, such that As = Bs. Then the open subsets SpecAs of X and SpecBs of X ′ are equal. Since p′ is
arbitrary, X ′ is a union of open subvarieties of X . So X ′ is an open subvariety of X .

(ii) The projective embedding X ⊂ Pn is defined by a point (α0, ..., αn) with values in K. That point also
defines a morphism X ′ → Pn. If f(x0, ..., xn) = 0 is a set of defining equations of X in Pn, then f(α) = 0
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in K. Therefore f vanishes on X ′ too. So the image of X ′ is contained in the zero locus of f , which is X .
Then (i) shows that X ′ is an open subvariety of X .

(iii) This follows from (ii).

(iv) The local rings of X are normal and they have dimension one. They are valuation rings of K. Let R be
any valuation ring of K, let v be the corresponding valuation, and let β = (β0, ..., βn) be the point with values
in K that defines the projective embedding of X . When we order the coordinates so that v(β0) is minimal, the
ratios γj = βj/β0 will be in R. The coordinate algebra A0 of the affine variety X0 = X ∩U0 is generated by
the coordinate functions γ1, ..., γn, so A0 ⊂ R. Prposition 5.2.6 tells us that R is the local ring of X0 at some
point. �

5.2.8. Proposition. truncate-
curve

Let p be a smooth point of an affine curve X = SpecA, and let m and v be the maximal
ideal and valuation, respectively, at p. The valuation ring R of v is the local ring of A at p.
(i) The power mk consists of the elements of A whose values are at least k. If I is an ideal of A whose radical
is m, then I = mk for some k > 0.
(ii) For every n ≥ 0, the algebras A/mn and R/Mn are isomorphic to the truncated polynomial ring
C[t]/(tn).

proof. (i) Proposition 5.1.8 tells us that the nonzero ideals of R are powers of its maximal ideal M , and that
Mk is the set of elements of R with value ≥ k. Let I be an ideal of A whose radical is m, and let k be the
minimal value v(x) of the nonzero elements x of I . We will show that I is the set of all elements of A with
value ≥ k, i.e., that I = Mk ∩A. Since we can apply the same reasoning to mk, it will follow that I = mk.

We must show that if an element y of A has value v(y) ≥ k, then it is in I . We choose an element x of I
with value k. Then x divides y in R, say y/x = w, with w in R. The element w will be a fraction a/s with s
and a in A and s not in m: sy = ax. The element s will vanish at a finite set of points q1, ..., qr, but not at p.
We choose an element z of A that vanishes at p but not at any of the points q1, ..., qr. Then z is in m, and since
the radical of I is m, some power of z is in I . We replace z by such a power, so that z is in I . By our choice,
z and s have no common zeros in X . They generate the unit ideal of A, say 1 = cs + dz with c and d in A.
Then y = csy + dzy = cax+ dzy. Since x and z are in I , so is y.

(ii) Since p is a smooth point, the local ring of A at p is the valuation ring R. Let s be an element of A that
isn’t in m. Then A/mk will be isomorphic to As/mks . We may localize A by inverting s. Doing so suitably,
we may suppose that m is a principal ideal, say tA. Then mk = tkA. Let B be the subring C[t] of A, and let
Bk = B/tkB, Ak = A/mk = A/tkA, and Rk = R/Mk = R/tkR. The quotients tk−1B/tkB, mk−1/mk,
andMk−1/Mk are one-dimensional vector spaces. So the map labelled gk−1 in the diagram below is bijective.

0 −−−−→ tk−1B/tkB −−−−→ Bk −−−−→ Bk−1 −−−−→ 0

gk−1

y fk

y fk−1

y
0 −−−−→ mk−1/mk −−−−→ Ak −−−−→ Ak−1 −−−−→ 0

By induction on k, we may assume that the map fk−1 is bijective, and then fk is bijective too. So Bk and Ak
are isomorphic. Analogous reasoning shows that Bk and Rk are isomorphic.

5.2.9. Proposition. idealsin-
curve

Let X = SpecA be a smooth affine curve. Every nonzero ideal I of A is a product of
powers of maximal ideals: I = me11 · · ·mekk .

proof. Let I be a nonzero ideal of A. Because X has dimension one, the locus of zeros of I is a finite set
{p1, ..., pk}. Therefore the radical of I is the intersection m1∩ · · · ∩mk of the maximal ideals mj at pj , which,
by the Chinese Remainder Theorem, is the product ideal m1 · · ·mk, Moreover, I contains a power of that
product, say I ⊃ mN1 · · ·mNk . Let J = mN1 · · ·mNk . The quotient algebra A/J is the product B1×· · ·×Bk,
withBj = A/mNj , andA/I is a quotient ofA/J . Proposition 2.1.8 tells us thatA/I is a productA1×· · ·×Ak,
where Aj is a quotient of Bj . By Proposition 5.2.8(ii), each Bj is a truncated polynomial ring, so the quotient
Aj is also a truncated polynomial ring. The kernel of the map A → Aj is a power of mj . The kernel I of the
map A→ A1×· · ·×Ak is a product of powers of m1, ...,mk. �

(5.2.10) jacobtwoisolated points, again
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Recall that a point q of a topological space Y is an isolated point if the one-point set {q} is open in Y .

5.2.11. Proposition.noisolat-
edpt

In the classical topology, a curve, smooth or not, contains no isolated point.

This was proved for plane curves in Chapter 1 (Proposition 1.3.19).

5.2.12. Lemma.isolptofy
(i) Let Y ′ be an open subvariety of a variety Y . A point q of Y ′ is an isolated point of Y if and only if it is an
isolated point of Y ′.

(ii) Let Y ′ u′−→ Y be a nonconstant morphism of curves, let q′ be a point of Y ′, and let q be its image in Y . If
q is an isolated point of Y , then q′ is an isolated point of Y ′.

proof. (ii) Because Y ′ has dimension one, the fibre over q will be a finite set. Say that the fibre is {q′} ∪ S,
where S is a finite set of points distinct form q. Let Y ′′ denote the open complement Y ′−S of S in Y ′, and let
u′′ be the restriction of u′ to Y ′′. The fibre of Y ′′ over q is the point q′. If {q} is open in Y , then because u′′

is continuous, {q′} will be open in Y ′′. By (i), {q′} is open in Y ′. �

proof of Proposition 5.2.11. Let q be a point of a curve Y . Part (i) of Lemma 5.2.12 allows us to replace Y by
an affine neighborhood of q. Let Y # be the normalization of Y . Part (ii) of that lemma allows us to replace Y
by Y #. So we may assume that Y is a smooth affine curve, say Y = SpecB. We can still replace Y by an
open neighborhood of q, so we may assume that the maximal ideal mq of B is a principal ideal (5.2.6). Say
that B = C[x1, ..., xn]/(f1, ..., fk), and that q is the origin in An. Let f0 be a polynomial whose residue in B
generates mq . Then f0, f1, ..., fk generate the maximal ideal of the polynomial ring C[x] at q.

Let f and x be the column vectors (f0, ..., fk)t and (x1, ..., xn)t, respectively. Since f generates the
maximal ideal at q, there is an n×(k+1) polynomial matrix P such that Pf = x. Let J be the (k+1)×n
Jacobian matrix ∂fi/∂xj , and let J and P denote the constant terms of J and P , respectively. Then f =
Jx + O(2), where O(2) stands for a polynomial in x, all of whose terms have degree at least 2. Since
Pf = x, x = PJx + O(2), and therefore x = PJx. This shows that PJ is the identity matrix, and that
the (k+1)×n matrix J has rank n. Adjusting coordinates, we may assume that the submatrix Q of J with
the indices 1 ≤ i, j ≤ n−1 is invertible at q. The Implicit Function Theorem tells us that the equations
f1 = · · · = fn−1 = 0 can be solved for x1, ..., xn−1 as analytic functions of xn. It follows that the locus of
zeros Z of f1, ..., fn−1 is locally homeomorphic to the affine xn-line (1.4.18), and it contains Y . Since Y has
dimension 1, the component of Z that contains q is equal to Y . So Y is locally homeomorphic to A1, which
has no isolated point. Therefore q isn’t an isolated point of Y . �

5.3 Constructible Sets
construct

In this section, X will denote a noetherian topological space. Every closed subset of X is a finite union of
irreducible closed sets (2.2.16).

The intersection L = Z ∩ U of a closed set Z and an open set U is a locally closed set. Open sets and
closed sets are locally closed. The following conditions on a subset L of X are equivalent.
• L is locally closed.
• L is a closed subset of an open subset U of X .
• L is an open subset of a closed subset Z of X .

A constructible set is a subset that is the union of finitely many locally closed sets.

5.3.1. Examples.constrin-
curve (i) A subset S of a curve X is constructible if and only if it is either a finite set or the complement of a finite

set. Thus S is constructible if and only if it is either closed or open.
(ii) In the affine plane X = SpecC[x, y], let U be the complement of the line {y = 0}, and let p be the origin.
The union U ∪ {p} is constructible, but not locally closed. �

We use the following notation: Z will denote a closed set, U will denote an open set. and L will denote a
locally closed set, such as Z ∩ U .
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5.3.2. Theorem. defloc-
closed

The set S of constructible subsets of a noetherian topological spaceX is the smallest family
of subsets that contains the open sets and is closed under the three operations of finite union, finite intersection,
and complementation.

By closure under complementation, we mean that if S is in S, then its complement Sc = X − S is in S too.
proof. Let S1 denote the family of subsets obtained from the open sets by the three operations mentioned in
the statement. Open sets are constructible, and using those three operations, one can make any constructible
set from the open sets. So S ⊂ S1. To show that S = S1, we show that the family of constructible sets is closed
under the three operations.

It is obvious that a finite union of constructible sets is constructible. The intersection of two locally closed
sets L1 = Z1 ∩ U1 and L2 = Z2 ∩ U2 is locally closed because L1 ∩ L2 = (Z1 ∩ Z2) ∩ (U1 ∩ U2). If
S = L1 ∪ · · · ∪ Lk and S′ = L′1 ∪ · · · ∪ L′r are constructible sets, the intersection S ∩ S′ is the union of the
locally closed intersections Li ∩ L′j , so it is constructible.

Let S be the constructible set L1 ∪ · · · ∪Lk. Its complement Sc is the intersection of the complements Lci
of Li: Sc = Lc1 ∩ · · · ∩ Lck. We have shown that intersections of constructible sets are constructible. So to
show that Sc is constructible, it suffices to show that the complement of any locally closed set is constructible.
Let L be the locally closed set Z ∩ U , and let Zc and U c be the complements of Z and U , respectively. Then
Zc is open and U c is closed. The complement Lc of L is the union Zc ∪ U c of two constructible sets, so it is
constructible. �

5.3.3. Proposition. contain-
sopen

In a noetherian topological space X , every constructible set is a finite union of locally
closed sets, Li = Zi ∩ Ui, in which the irreducible sets Zi are irreducible and distinct.

proof. Let L = Z ∩ U be a locally closed set, and let Z = Z1 ∪ · · · ∪ Zr be the decomposition of Z into
irreducible components. Then L = (Z1 ∩U) ∪ · · · ∪ (Zr ∩U), which is constructible. So every constructible
set S is a union of locally closed sets Li = Zi ∩ Ui in which Zi are irreducible. Next, suppose that two of the
irreducible closed sets are equal, say Z1 = Z2. Then L1 ∪ L2 = (Z1 ∩ U1) ∪ (Z1 ∩ U2) = Z1 ∩ (U1 ∪ U2) is
locally closed. So we can find an expression in which the irreducible closed sets are distinct. �

5.3.4. Lemma. sinx
(i) Let X1 be a closed subset of a variety X , and let X2 be its open complement. A subset S of X is con-
structible if and only if S ∩X1 and S ∩X2 are constructible.
(ii) Let X ′ be an open or a closed subvariety of a variety X .

a) If S is a constructible subset of X , then S ∩X ′ is a constructible subset of X ′.
b) A subset S′ of X ′ is a constructible subset of X ′ if and only if it is a constructible subset of X .

proof. (i) This follows from Theorem 5.3.2.

(iia) It suffices to prove that, if L is a locally closed subset of X , the intersection L′ = L ∩ X ′ is a locally
closed subset of X ′. If L = Z ∩ U , then Z ′ = Z ∩X ′ is closed in X ′, and U ′ = U ∩X ′ is open in X ′. So
L′ = Z ′ ∩ U ′ is locally closed.

(iib) It follows from a) that if a subset S′ of X ′ is constructible in X , then it is constructible in X ′. To
show that a constructible subset of X ′ is contructible in X , it suffices to show that a locally closed subset
L′ = Z ′ ∩ U ′ of X ′ is locally closed in X . If X ′ is a closed subset of X , then Z ′ is a closed subset of X ,
and U ′ = X ∩ U for some open subset U of X . Since Z ′ ⊂ X ′, L′ = Z ′ ∩ U ′ = Z ′ ∩X ′ ∩ U = Z ′ ∩ U ,
which is locally closed in X . If X ′ is open in X , then U ′ is open in X . Let Z be the closure of Z ′ in X . Then
L′ = Z ∩ U ′ = Z ∩X ′ ∩ U ′ = Z ′ ∩ U ′. Again, L′ is locally closed in X . �

The next theorem illustrates a general fact, that many of the sets that arise in algebraic geometry are
constructible.

5.3.5. Theorem. imagecon-
str

Let Y
f−→ X be a morphism of varieties. The inverse image of a constructible subset of X

is a constructible subset of Y . The image of a constructible subset of Y is a constructible subset of X .

proof. The fact that a morphism is continuous implies that the inverse image of a constructible set is con-
structible. It is less obvious that the image of a constructible set is constructible. To prove that, we keep
pecking away until there is nothing left to do. There may be a shorter proof.
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Let S be a constructible subset of Y . Lemma 5.3.4 and Noetherian induction allow us to assume that the
theorem is true when S is contained in a proper closed subset of Y , and also when its image f(S) is contained
in a proper closed subvariety of X .

Suppose that Y is the union of a proper closed subset Y1 and its open complement Y2. The sets Si = S∩Yi
are constructible subsets of Yi. It suffices to show that their images f(Si) are constructible, and Noetherian
induction applies to Y1. So we may replace Y by the open subvariety Y2, which can be arbitrary.

Next, suppose that X is the union of a proper closed subset X1 and its open complement X2. Let Y1 and
Y2 denote the inverse images of X1 and X2, respectively, and let Si = S ∩ Yi. As before, it suffices to show
that the images f(Si) are constructible. Here f(Si) is contained in Xi, and induction applies to X1. So we
may replace X by the arbitrary open subvariety X2.

Summing up, we may replace X by any nonempty open subset X ′, and Y by any nonempty open subset
of its inverse image Y ′. We can do this finitely often.

Since a constructible set S is a finite union of locally closed sets, it suffices to show that the image of a
locally closed subset S of Y is constructible. Moreover, we may suppose that S has the form Z ∩ U , where
U is open and Z is closed and irreducible. Then Y is the union of the closed set Z = Y1 and its complement
Y2 = (Y −Z), and S ∩ Y2 = ∅. We may replace Y by Y1 = Z. Then S = U , and we may replace Y by U .
We are thus reduced to the case that S = Y .

We may again replace X and Y by nonempty open subsets, so we may assume that they are affine, say
Y = SpecB and X = SpecA, so that the morphism Y → X corresponds to an algebra homomorphism
A

ϕ−→ B. If the kernel P of ϕ were nonzero, the image of Y would be contained in the proper closed subset
SpecA/P of X , to which induction would apply. So we may assume that ϕ is injective.

Corollary 4.2.11 tells us that, for suitable nonzero element s inA, the localizationBs will be a finite module
over a polynomial subring As[y1, ..., yk]. We may replace Y and X by the open subsets Ys = SpecBs and
Xs = SpecAs. Then the maps Y → SpecA[y] and SpecA[y] → X are both surjective, so Y = S maps
surjectively to X . �

5.4 Closed Sets
us-

ingcurves Limits of sequences are often used to analyze subsets of a topological space. In the classical topology, a subset
Y of Cn is closed if, whenever a sequence of points in Y has a limit in Cn, the limit is in Y . In algebraic
geometry, curves can be used as substitutes for sequences.

We use the following notation:

5.4.1.Cwith-
point

C is a smooth affine curve, q is a point of C, and C ′ is the complement of q in C.

The closure of C ′ will be C, and we think of q as a limit point. In fact, the closure will be C in the classical
topology as well as in the Zariski topology, because C has no isolated point (5.2.11). Theorem 5.4.3, which is
below, characterizes constructible subset of a variety in terms of such limit points.

The next theorem tells us that there are enough curves to do the job.

5.4.2. Theorem.
enoughcurves

(enough curves) Let Y be a constructible subset of a variety X , and let p be a point of its

closure Y . There exists a morphism C
f−→ X from a smooth affine curve to X and a point q of C, such that

f(q) = p. and that the image of C ′ = C − {q} is contained in Y .

proof. If X = p, then Y = p. In this case, we may take for f the constant morphism from any curve C to p.
So we may assume that X has dimension at least one. Next, we may replace X by an affine open subset X ′

that contains p, and Y by Y ′ = Y ∩ X ′. If Y denotes the losure of Y in X , the closure of Y ′ in X ′ will be
Y ∩X ′, and it will contain p. So we may assume that X is affine, say X = SpecA.

Since Y is constructible, it is a union L1 ∪ · · · ∪ Lk of locally closed sets, say Li = Zi ∩ Ui where Zi are
irreducible closed sets and Ui are open. The closure of Y is the union Z1 ∪ · · · ∪ Zk, and p will be in at least
one of the closed sets, say p ∈ Z1. We replace X by Z1 and Y by U1. This reduces us to the case that Y is a
nonempty open subset of X .

We use Krull’s Theorem to slice X down to dimension one. Suppose that the dimension n of X is at least
two. Let D = X − Y be the closed complement of the open set Y . The components of D have dimension at
most n−1. We choose an element α of the coordinate algebraA ofX that is zero at p and isn’t identically zero
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on any component of D, except at p itself, if p happens to be a component. Krull’s Theorem tells us that every
component of the zero locus of α has dimension n−1, and at least one of those components, call it V , contains
p. If V were contained in D, it would be a component of D because dimV = n− 1 and dimD ≤ n− 1. By
our choice of α, this isn’t the case. So V 6⊂ D, and therefore V ∩ Y 6= ∅. Let W = V ∩ Y . Because V is
irreducible and Y is open, W is a dense open subset of V , its closure is V , and p is a point of V . We replace
X by V and Y by W . The dimension of X is thereby reduced to n− 1.

Thus it suffices to treat the case that X has dimension one. Then X will be a curve that contains p, and Y
will be a nonempty open subset of X . The normalization of X will be a smooth curve X# that comes with an
integral, and therefore surjective, morphism to X . Finitely many points of X# will map to p. We choose for
C an affine open subvariety of X# that contains just one of those points, and we call that point q. �

5.4.3. Theorem (curve criterion for a closed set) closed-
crittwo

Let Y be a constructible subset of a varietyX . The following
conditions are equivalent:
(a) Y is closed.

(b) For any morphism C
f−→ X from a smooth affine curve to X , the inverse image f−1Y is closed in C.

(c) Let q be a point of a smooth affine curve C, let C ′ = C−{q}, and let C
f−→ X be a morphism. If

f(C ′) ⊂ Y , then f(C) ⊂ Y .

The hypothesis that Y be constructible is necessary. For example, in the affine line X , the set W of points
with integer coordinates isn’t constructible, but it satisfies condition (b). Any morphismC ′ → X whose image
is in W will map C ′ to a single point, and therefore it will extend to C.

proof of Theorem 5.4.3. The implications (a)⇒ (b)⇒ (c) are obvious. We prove the contrapositive of the
implication (c)⇒ (a). Suppose that Y isn’t closed. We choose a point p of the closure Y that isn’t in Y , and

we apply Theorem 5.4.2. There exists a morphism C
f−→ X from a smooth curve to X and a point q of C

such that f(q) = p and f(C ′) ⊂ Y . Since q 6∈ Y , this morphism shows that (c) doesn’t hold either. �

5.4.4. Theorem. class-
closed

A constructible subset Y of a variety X is closed in the Zariski topology if and only if it is
closed in the classical topology.

proof. A Zariski closed set is closed in the classical topology because the classical topology is finer than the
Zariski topology. Suppose that a constructible subset Y of X is closed in the classical topology. To show that
Y is closed in the Zariski topology, we choose a point p of the Zariski closure Y of Y , and we show that p is a
point of Y .

We use the notation (5.4.1). Theorem 5.4.2 tells us that there is a map C
f−→ X from a smooth curve C

to X and a point q of C such that f(q) = p and f(C ′) ⊂ Y . Let C1 denote the inverse image f−1(Y ) of Y .
Because C1 contains C ′, either C1 = C ′ or C1 = C. In the classical topology, a morphism is continuous.
Since Y is closed, its inverse image C1 is closed in C. If C1 were C ′, then C ′ would closed as well as open.
Its complement {q} would be an isolated point of C. Because a curve contains no isolated point, the inverse
image of Y is C, which means that f(C) ⊂ Y . In particular, p is in Y . Therefore Y is closed in the Zariski
topology. �

5.5 Projective Varieties are Proper
proper

As has been noted before, an important property of projective space is that, in the classical topology, it is
compact. A variety isn’t compact in the Zariski topology unless it is a single point. However, in the Zariski
topology, projective varieties have a property closely related to compactness: They are proper.

Before defining the concept of a proper variety, we explain an analogous property of compact spaces.

5.5.1. Proposition. proper-
compact

Let X be a compact space, let Z be a Hausdorff space, and let V be a closed subset of
Z×X . The image of V via the projection Z×X → Z is closed in Z.

proof. Let W be the image of V in Z. We show that if a sequence of points zi of the image W has a limit z
in Z, then that limit is in W . For each i, we choose a point pi of V that lies over zi. So pi is a pair (zi, xi),
xi being a point of X . Since X is compact, there is a subsequence of the sequence xi that has a limit x in X .
Passing to a subsequence of {pi}, we may suppose that xi has limit x. Then pi has limit p = (z, x). Since V
is closed, p is in V . Therefore z is in its image W . �
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5.5.2. Definition.defproper A variety X is proper if it has the following property: Let Z×X be the product of X
with another variety Z, let πZ denote the projection Z×X −→ Z, and let V be a closed subvariety of Z×X .
The image W of V is a closed subvariety of Z.

(5.5.3)imclos

V
⊂−−−−→ Z×Xy yπZ

W
⊂−−−−→ Z

If X is proper, then because every closed set is a finite union of closed subvarieties, the image of a closed
subset of Z×X will be a closed subset of Z.

5.5.4. Corollary.propim-
closed

Let X be a proper variety, let V be a closed subvariety of X , and let X
f−→ Y be a

morphism. The image f(V ) of V is a closed subvariety of Y .

proof. In X×Y , the graph Γf of f is a closed set isomorphic to X , and V corresponds to a subset V ′ of Γf
that is closed in Γf and in X×Y . The points of V ′ are pairs (x, y) such that x ∈ V and y = f(x). The image
of V ′ via the projection to X×Y → Y is the same as the image of V . Since X is proper, the image of V ′ is
closed. �

The next theorem is the most important application of the use of curves to characterize closed sets.

5.5.5. Theorem.pnproper
(i) Projective varieties are proper.
(ii) If X is a projective variety and X → Y is a morphism, the image in Y of a closed subvariety of X is a
closed subvariety of X .

proof. Part (ii) follows from (i) and Corollary 5.5.4. Let X be a projective variety. Suppose we are given a
closed subvariety V of the product Z×X . We must show that its image W in Z is a closed subvariety of Z
(see Diagram 5.5.3). Since V is irreducible, its image is irreducible, so it suffices to show that W is closed.
Theorem 5.3.5 tells us that W is a constructible set, and since X is closed in projective space, it is compact in
the classical topology. Proposition 5.5.1 tells us that W is closed in the classical topology, and 5.4.4 tells us
that W is closed in the Zariski topology too. �

5.5.6. Note.needcover Since Theorem 5.5.5 is about algebra, an algebraic proof would be preferable. To make an
algebraic proof, one could attempt to replace the limit argument used in the proof of Proposition 5.5.1 by the
curve criterion, proceeding as follows: Given a closed subset V of Z×X with image W and a point p in the

closure of W , one chooses a map C
f−→ Z from an affine curve C to Z such that f(q) = p and f(C ′) ⊂ W ,

C ′ being the complement of q in C. Then one tries to lift this map by finding a morphism C
g−→ Z×X such

that g(C ′) ⊂ V and f = π ◦ g. Since V is closed, it would contain g(q), and therefore f(q) = πg(q) would be
in π(V ) = W . However, to find the lifting g, it may be necessary to replace C by a suitable covering. It isn’t
difficult to make this method work, but it takes longer. That is why we resorted to the classical topology. �

The next examples show how Theorem 5.5.5 can be used.

5.5.7. Example.properex (singular curves) We parametrize the plane projective curves of a given degree d. The
number of monomials xi0x

j
1x
k
2 of degree d = i+ j+k is the binomial coefficient

(
d+2

2

)
. We label those

monomials as m0, ...,mr, ordered arbitrarily, with r =
(
d+2

2

)
− 1. A homogeneous polynomial of degree d

will be a combination
∑
zimi with complex coefficients zi, so the homogeneous polynomials f of degree d in

x, taken up to scalar factors, are parametrized by the projective space of dimension r with coordinates z. Let’s
denote that projective space by Z. Points of Z correspond bijectively to divisors of degree d in the projective
plane, as defined in (1.3.13).

The product variety Z×P2 represents pairs (D, p), where D is a divisor of degree d and p is a point of P2.
A variable homogeneous polynomial of degree d in x can be written as a bihomogeneous polynomial f(z, x)
of degree 1 in z and degree d in x. For example, in degree 2, f would be

z0x
2
0 + z1x

2
1 + z2x

2
2 + z3x0x1 + z4x0x2 + z5x1x2
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The locus Γ: {f(z, x) = 0} in Z × P2 is closed. A point z = c, x = a of Γ is a pair (D, p) such that D is the
divisor f(c, x) = 0 and p is the point (c, a) of D.

The set Σ of pairs (D, p) such that p is a singular point of D is also a closed set, because it is defined by
the system of equations f0(z, x) = f1(z, x) = f2(z, x) = 0, where fi are the partial derivatives ∂f

∂xi
. (Euler’s

Formula shows that f(x, z) = 0 follows from those equalities.) The partial derivatives fi are bihomogeneous,
of degree 1 in z and degree d−1 in x.

The next proposition isn’t especially easy to verify directly, but the proof becomes easy when one uses the
fact that projective space is proper.

5.5.8. Proposition singclosedThe singular divisors of degree d, those that contain at least one singular point, form a
closed subset S of the projective space Z of all divisors of degree d.

proof. The subset S is the projection of the closed subset Σ of Z×P2. Since P2 is proper, the image of the
closed set Σ is closed. �

5.5.9. Example. surface-
line

(surfaces that contain a line) We go back to the discussion (3.7.15) of lines in a surface. Let
S denote the projective space that parametrizes surfaces of degree d in P3.

5.5.10. Proposition sur-
faceswith-
line

In P3, the surfaces of degree d that contain a line form a closed subset of the space S.

The Grssmanian G = G(2, 4) of lines in P3 is a projective variety (Corollary 3.7.13). Let Ξ be the subset
of G×S of pairs of pairs [`], [S] such that ` ⊂ S. Lemma 3.7.17 tells us that Ξ is a closed subset of G×S.
Therefore its image in S is closed. �

5.6 Fibre Dimension
semicont

A function Y δ−→ Z from a variety to the integers is a constructible function if, for every integer n, the set
of points of Y such that δ(p) = n is constructible, and δ is an upper semicontinuous functiion if for every n,
the set of points such that δ(p) ≥ n is closed. For brevity, we refer to an upper semicontinuous function as
semicontinuous, though the term is ambiguous. A function might be lower semicontinuous.

A function δ on a curve Y is semicontinuous if and only if there exists an integer n and a nonempty open
subset Y ′ of Y such that δ(p) = n for all points p of Y ′ and δ(p) ≥ n for all points of Y not in Y ′.

The next curve criterion for semicontinuous functions follows from the criterion for closed sets.

5.6.1. Proposition. (curve criterion for semicontinuity) uppercritLet Y be a variety. A function Y δ−→ Z is semicon-

tinuous if and only if it is a constructible function, and for every morphism C
f−→ Y from a smooth curve C

to Y , the composition δ ◦ f is a semicontinuous function on C. �

Let Y
f−→ X be a morphism of varieties, let q be a point of Y , and let Yp be the fibre of f over p = f(q).

The fibre dimension δ(q) of f at q is the maximum among the dimensions of the components of the fibre that
contain q.

5.6.2. Theorem. (semicontinuity of fibre dimension) uppersemiLet Y u−→ X be a morphism of varieties, and let δ(q)
denote the fibre dimension at a point q of Y .
(i) Suppose that X is a smooth curve, that Y has dimension n, and that u does not map Y to a single point.
Then δ is constant — the nonempty fibres have constant dimension: δ(q) = n− 1 for all q ∈ Y .
(ii) Suppose that the image of Y is dense in X . Then it contains a nonempty open subset of X . Let the
dimensions of X and Y be m and n, respectively. There is a nonempty open subset X ′ of X such that
δ(q) = n−m for every point q in the inverse image of X ′.
(iii) δ is a semicontinuous function on Y .

The proof of this theorem is left as a long exercise. When you have done it, you will have understood the
chapter.
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5.7 Exercises
chapfiveex 5.7.1.xcvalzero Prove that, if v is a (discrete) valuation on a fieldK that contains the complex numbers, every nonzero

complex number c has value zero.

5.7.2.xfinno Prove that a closed subset of dimension zero of a variety X is a finite set.

5.7.3.xblowups-
ing

Let X = SpecA be an affine curve, with A = C[x0, ..., xn]/P , and let xi also denote the residues
of the variables in A. Let p be a point of X . We adjust coordinates so that p is the origin (0, ..., 0), and are
otherwise generic. Let zi = xi/x0, i = 1, ..., n, let B = C[x0, z1, z2, ..., zn], and let Y = SpecB. The
inclusion A ⊂ B defines a morphism Y → X called the blowup of p in X . There will be finitely many points
of Y in the fibre over p, and there will be at least one such point. We choose a point p1 of the fibre, we replace
X by Y and p by p1 and repeat. Prove that this blowing up process yields a curve that is smooth above p in
finitely many steps.

5.7.4.fseries Prove that the ring k[[x, y]] of formal power series with coefficients in a field k is a local ring and a
unique factorization domain.

5.7.5.xlocval-
ring

Let A be a normal finite-type domain. Prove that the localization AP of A at a prime ideal P of
codimension 1 is a valuation ring.

5.7.6.xnormaliz Let X = SpecA, where A = C[x, y, z]/(y2 − xz2). Identify the normalization of X .

5.7.7. Let A be the polynomial ring C[x1, ..., xn], and let P be the principal ideal generated by an irreducible
polynomial f(x1, ..., xn). The local ring AP consists of fractions g/h of polynomials in which g is arbitrary,
and h can be any polynomial not divisible by f . Describe valuation v associated to this local ring.

5.7.8.xidemp-
matr

In the space An×n of n×n matrices, let X be the locus of idempotent matrices: P 2 = P . The general
linear group GLn operates on X by conjugation.
(i) Decompose X into orbits for the operation of GLn, and prove that the orbits are closed subsets of An×n.
(ii) Determine the dimensions of the orbits.

5.7.9.xcount-
cover

Prove that, when a variety X is covered by countably many constructible sets, a finite number of those
sets will cover X .

5.7.10.xfconst Let f(x, y) and d(x, y) be polynomials. Show that if d divides the partial derivatives fx and fy , then
f is constant on the locus d = 0.

5.7.11.xsimple-
loc

Let S be a multiplicative system in a finite-type domain R, and let A and B be finite-type domains
that contain R as subring. Let R′, A′, B′ be the rings of S-fractions of R,A,B, respectively. Prove:
(i) If a set of elements α1, ..., αk generates A as R-algebra, it also generates A′ as R′-algebra.

(ii) Let A′
ϕ′−→ B′ be a homomorphism. For suitable s in S, there is a homomorphism As

ϕs−→ Bs whose
localization is ϕ′. If ϕ′ is injective, so is ϕs. If ϕ′ is surjective or bijective, there will be an s such that ϕs is
surjective or bijective, respectively.
(iii) IfA′ ⊂ B′ and ifB′ is a finiteA′-module, then for suitable s in S,As ⊂ Bs, andBs is a finiteAs-module.

5.7.12.xclosed-
inGG

LetG denote the GrassmanianG(2, 4) of lines in P3, and let [`] denote the point ofG that corresponds
to the line `. In the product variety G×G of pairs of lines, let Z denote the set of pairs [`1], [`2] whose
intersection isn’t empty. Prove that Z is a closed subset of G×G.

5.7.13.exupper Is the constructibility hypothesis in 5.6.1 necessary?

5.7.14.singular-
closed

Prove Theorem 5.5.8 directly, without appealing to Theorem 5.5.5.

5.7.15.cantlift With reference to Note 5.5.6, let X = P1 and Z = A1 = SpecC[t]. Find a closed subset V of Z×X
whose image is Z, such that the identity map Z → Z can’t be lifted to a map Z → V .

5.7.16.xfibdim Let f : Y → X be a morphism of varieties. Suppose we know that the fibre dimension is a con-
structible function. Use the curve criterion to show that fibre dimension is semicontinuous. (This is a part of
Theorem 5.6.2.)
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5.7.17. xnum-
berof-
points

Let Y
f−→ X be a morphism with finite fibres, and for p in X , let N(p) be the number of points in

the fibre f−1(p). Prove that N is a constructible function on X .

5.7.18. xsemicontProve that fibre dimension is a semicontinuous function. I recommend this outline:
(i) We may assume that Y ane X are affine, Y = SpecB and X = SpecA.
(ii) The theorem is true when A ⊂ B and B is an integral extension of a polynomial subring A[y1, ..., yd].
(iii) The fibre dimension is a constructible function.
(iv) The theorem is true when X is a smooth curve.
(v) The theorem is true for all X .

5.7.19. xtwistcu-
bic

??? twisted cubic specializes to plane nodal cubic???

5.7.20. xpropprojProve that a (quasiprojective) variety X that is proper is projective.
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Chapter 6 MODULES

6.1 The Structure Sheaf
6.2 O-Modules
6.3 Some O-Modules
6.4 The Sheaf Property
6.5 Some More Modules
6.6 Direct Image
6.7 Support
6.8 Twisting
6.9 Extending a Module: proof
6.10 Exercises

A brief review:

localization.
If s is a nonzero element of a domain A, the symbol As stands for the simple localization A[s−1], and if

X = SpecA, then Xs = SpecAs. This is what we will mean by the word ’localization’.
• Let s be a nonzero element of a domain A and let M be an A-module. The localized module Ms is the
As-module whose elements are equivalence classes of fractions ms−k, with m in M . The localized module
Ms becomes an A-module by restriction of scalars. A homomorphism of A-modules N → Ms extends in a
natural way to a homomorphism of As-modules Ns →Ms.
• Let X = SpecA be an affine variety. The intersection of two localizations Xs = SpecAs and Xt =
SpecAt is the localization Xst = SpecAst.
• Let W ⊂ V ⊂ U be affine open subsets of a variety X . If V is a localization of U and W is a localization
of V , then W is a localization of U .
• The affine open subsets form a basis for the topology on a variety X , and the localizations of an affine
variety form a basis for its topology.
• If U and V are affine open subsets of X , the open sets W that are localizations of U as well as localizations
of V , form a basis for the topology on U ∩ V .

regular functions.
The function field of a variety X is the field of fractions of the coordinate algebra of any one of its affine

open subsets, and a rational function on X is an element of its function field. A rational function f is regular
on an affine open set U = SpecA if it is an element of A, and f is regular on any open set U that can be
covered by affine open sets on which it is regular. Thus the function field contains the regular functions on
every nonempty open subset, and the regular functions on an open subset are governed by the regular functions
on its affine open subsets.

See Chapters 2 and 3 for these assertions. We will use them without further comment. We will also need the
concepts of category and functor. If you aren’t familiar with these concepts, please read about them. You
won’t need to know much. Learn the definitions and look at a few examples.

6.1 The Structure Sheaf.
strsh
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We associate two categories to a variety X . The first is the category (opens). Its objects are the open subsets
of X , and its morphisms are inclusions. If U and V are open sets and if V ⊂ U , there is a unique morphism
V → U in (opens). If V 6⊂ U there is no morphism V → U .

The other category, (affines), is a subcategory of the category (opens), and it is the more important category.
Its objects are the affine open subsets of X , and its morphisms are localizations. A morphism V → U in
(opens) is a morphism in (affines) if U and V are affine and V is a localization of U — a subset of the form
Us, where s is a nonzero element of the coordinate algebra of U .

The structure sheaf OX on a variety X is the functor

(6.1.1) strshdef(affines)◦ OX−→ (algebras)

from affine open sets to algebras, that sends an affine open set U = SpecA to its coordinate algebra A. When
speaking of the structure sheaf, the coordinate algebra of U will be denoted by OX(U). If it is clear which
variety is being studied, we may write O for OX .

Let V ⊂ U be affine open subsets of a variety X , say U = SpecA and V = SpecB. Then A ⊂ B. If V
is the localization Us, then B = A[s−1]. But if B isn’t a localization of A, it won’t be clear how to construct
B from A., and The exact relationship between A and B will remain obscure.

A variety that isn’t affine won’t be determined by its regular functions. For instance, the only rational
functions that are regular at all points of the projective line are the constants, which are useless. Nevertheless,
the structure sheaf extends with little difficulty to all open sets (see Poposition 6.1.2 below). We will be
interested in regular functions on non-affine open sets, especially in regular functions on the whole variety, but
one should work with affine open sets and localizations, because the relation between the coordinate algebras
of an affine variety and a localization is easy to understand.

6.1.2. Proposition. exten-
dOone

Let X be a variety. Defining OX(U) to be the algebra of regular functions on the open
subset U extends the structure sheaf OX to a functor

(opens)◦ OX−→ (algebras) �

The regular functions on U , the elements of OX(U), are the sections of the structure sheaf OX on U . The
elements of OX(X), the rational functions that are regular everywhere, are the global sections.

Thus, if U is a nonempty open subset of a variety X , OX(U) will be a subring of the function field of
X , and when V → U is a morphism in (opens), OX(U) will be contained in OX(V ). This gives us the
homomorphism, an inclusion,

OX(U)→ OX(V )

that makes OX into a functor. Note that arrows are reversed by OX . If V → U , then OX(U) → OX(V ). A
functor that reverses arrows is a contravariant functor. The superscript ◦ in (6.1.1) and (6.1.2) is a customary
notation to indicate that a functor is contravariant.

If V ⊂ U ⊂ X , then OX(V ) = OU (V ) = OV (V ).

6.1.3. Proposition extendOThe extended structure sheaf has the following sheaf property:

• Let Y be an open subset of X , and let U i = SpecAi be affine open subsets that cover Y . Then

OX(Y ) =
⋂
OX(U i)

(
=
⋂
Ai
)

The fact that regular functions are elements of the function field makes the statement of the sheaf property
especially simple here.

By definition, f is a regular function on X if there is an affine covering U i, a covering by affine open sets,
such that f is in OX(U i) for every i. Therefore the next lemma proves the proposition.

6.1.4. Lemma. capsameLet Y be an open subset of a variety X . The intersection
⋂OX(U i) is the same for every

affine covering {U i} of Y .

We prove the lemma first in the case of a covering of an affine open set by localizations.
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6.1.5. Sublemma.sheaffor-
loc

Let U = SpecA be an affine variety, and let {U i} be a covering of U by localizations,
say U i = SpecAi, where Ai is a localization Asi of A. Then A =

⋂
Ai, i.e., O(U) =

⋂O(U i).

proof. It is clear that A ⊂ ⋂Asi . We prove the opposite inclusion. A finite subset of the set {U i} will cover
U , so we may assume that the index set is finite. Let α be an element of

⋂
Asi . So for every i, α = s−ri ai,

or sriα = ai with ai in A and r an integer. We can use the same r for every i. Because {U i} covers U ,
the elements si generate the unit ideal in A, and so do their powers sri . There are elements bi in A such that∑
bis

r
i = 1. Then α =

∑
bis

r
iα =

∑
biai is an element of A. �

proof of Lemma 6.1.4. Say that Y is covered by affine open sets {U i} and also by affine open sets {V j}.
We cover the intersections U i ∩ V j by open sets W ijν that are localizations of U i and also localizations of
V j . Fixing i and letting j and ν vary, the set {W ijν}j,ν will be a covering of U i by localizations, and the
sublemma shows that O(U i) =

⋂
j,ν O(W ijν). Then

⋂
iO(U i) =

⋂
i,j,ν O(W ijν). Similarly,

⋂
j O(V j) =⋂

i,j,ν O(W ijν). �

6.2 O–Modules
module On an affine variety SpecA, one can work with A-modules. There is no need to do anything else. However,

one can’t do this when a variety X isn’t affine. The best one can do is to work with modules on affine open
subsets. An OX -module associates a module to every affine open subset.

To define an O-module, we need notation for working when both the module and the ring are allowed to
vary. Let R and R′ be rings. A homomorphism from an R module M to an R′-module M ′ consists of a ring

homomorphism R
f−→ R′ and a homomorphism of abelian groups M

ϕ−→ M ′ that is compatible with f , in
the sense that, if m′ = ϕ(m) and r′ = f(r), then ϕ(rm) = r′m′.

We use the symbol (modules) for the category whose objects are modules over rings, and whose morphisms
are homomorphisms of modules, as defined above. Because the ring homomorphisms are usually clear from
context, we suppress notation for them, denoting a module M over R and a homomorphism ϕ to a module M ′

over a ring R′ by the symbols M and M
ϕ−→M ′.

6.2.1. Definition.defO-
modtwo

An O-moduleM on a variety X is a (contravariant) functor

(affines)◦ M−→ (modules)

such that, for every affine open set U ,M(U) is an O(U)-module, and when s is a nonzero element of O(U),
the moduleM(Us) is the localizationM(U)s ofM(U). The mapM(U) → M(Us) that makesM into a
functor is the canonical map from a module to a localization.

Thus if U is an affine open set,M(U) stands for a module over the ring O(U) of regular functions on U ,
and if U ′ → U , the mapM(U) → M(U ′) is compatible with the map O(U) → O(U ′). As was explained
above, the compatibility means that, if a ∈ O(U) has image a′ in O(U ′) and m ∈ M(U) has image m′ in
M(U ′), then the image of am in O(U ′) is a′m′.

6.2.2.isloc Note. To say that M(Us) is the localization of M(U), isn’t completely correct. One should say
that M(Us) and M(U)s are canonically isomorphic. The map M(U) → M(Us) induces a map from the
localizationM(U)s toM(Us), and that map should be an isomorphism. But let’s not worry about this point.
�

Though the definition of an O-module will seem complicated at first, perhaps too complicated for com-
fort, there is no need to worry. When a module has a natural definition, the data involved are taken care of
automatically. This will become clear as we go along.

Some terminology:

• A section of an O-moduleM on an affine open set U is an element ofM(U), and an element ofM(X) is
a global section . The module of sections on U isM(U).
• When Us is a localization of U , the image of a section m on U via the map M(U) → M(Us) is the
restriction of m to Us.
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• An O-moduleM is a finite O-module ifM(U) is a finite O(U)-module for every affine open set U .

• A homomorphismM ϕ−→ N of O-modules consists of homomorphisms of O(U)-modules

M(U)
ϕ(U)−→ N (U)

for each affine open subset U , such that, when s is a nonzero element of O(U), the homomorphism ϕ(Us) is
the localization of the homomorphism ϕ(U).
• A sequence of homomorphisms

(6.2.3) M→N → P exse-
qsheaves

ofO-modules on a varietyX is exact if, for every affine open subsetU ofX , the sequenceM(U)→ N (U)→
P(U) is exact. �

6.2.4. Lemma. homomis-
loc

Let M ϕ−→ N be a homomorphism of O-modules, and let U be an affine open set. The

homomorphismM(Us)
ϕ(Us)−→ N (Us) can be obtained by localizing the homomorphismM(U)

ϕ(U)−→ N (U).

proof. This follows from the fact that ϕ is a functor, which tells us that the diagram

M(Us) −−−−→ N (Us)x x
M(U) −−−−→ M(U)

commutes. �

6.3 Some O-Modules
moduleex-
amples

6.3.1. freemodThe free module Ok is an O-module. Its sections on an affine open set U are the elements of the free
O(U)-module O(U)k. In particular, O is an O-module.

6.3.2. kerimThe kernel, image, and cokernel of a homomorphismM ϕ−→ N are among the operations that can be

made on O-modules. The kernel K of ϕ is the O-module defined by K(U) = ker
(
M(U)

ϕ(U)−→ N (U)
)

for
every affine open set U , and the image and cokernel are defined analogously. The reason that we work with
localizations is that many operations, including these, are compatible with localization.

6.3.3. modules on a point sheafon-
pointLet’s denote the affine variety SpecC, a point, by p. The point has just one nonempty open set, the whole

space p. It is an affine open set, and Op(p) = C. To define an Op-moduleM, the vector spaceM(p) can be
assigned arbitrarily. One may say that a module on the point is a complex vector space.

6.3.4. refldmodthe residue field module κp.
Let p be a point of a variety X . The residue field module κp is defined as follows: If an affine open subset

U of X contains p, then O(U) has a residue field k(p) at p, and κp(U) = k(p). If U doesn’t contain p, then
κp(U) = 0.

For example, let p be the point at infinity of X = P1 and let U0 and U1 be the standard affine open sets.
Then κp(U0) = 0 and κp(U1) = C.

6.3.5. torsion modules.
An O-moduleM is a torsion module ifM(U) is a torsion O(U)-module for every affine open set U (see

(2.1.24)).

6.3.6. ideals.
A submodule N of an O-moduleM is an O-module such that N (U) is a submodule ofM(U) for every

affine open set U . An ideal I of the structure sheaf is an O-submodule of O. If Y is a closed subvariety of
a variety X , the ideal of Y is the submodule of O whose sections on an affine open subset U of X are the
rational functions on X that are regular on U and that vanish on Y ∩ U .
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Let p be a point of a variety X . The maximal ideal at p, which we denote by mp, is an ideal. If an affine
open subset U contains p, its coordinate algebra O(U) will have a maximal ideal whose elements are the
regular functions that vanish at p. That maximal ideal is the module of sections mp(U) on U . If U doesn’t
contain p, then mp(U) = O(U).

We use the notation V (I) for the zero set in a variety X of an ideal I in the structure sheaf OX . A point
p of X is in V (I) if, whenever U is an affine open subset of X that contains p, all elements of I(U) vanish at
p. When I is the ideal of functions that vanish on a closed subvariety Y , V (I) = Y .

6.3.7. some homomorphismsdefker
• Let κp be the residue field module at a point p of X . There is a homomorphism of O-modules O → κp
whose kernel is the maximal ideal mp.
• Homomorphisms On → Om of free O-modules correspond to m×n-matrices of global sections of O.

• Multiplication by a global section f of O defines a homomorphismM f−→M.

• Let M be an O-module. Homomorphisms of O-modules O ϕ−→ M correspond bijectively to global
sections ofM.

This last example is analogous to the fact that, when M is a module over a ring A, homomorphisms

A→M correspond to elements ofM . Ifm is a global section ofM, the homomorphismO(U)
ϕ(U)−→ M(U) is

multiplication by the restriction ofm to U . If we denote that restriction by the same letterm, then ϕ(f) = fm.
Similarly, (c) is analogoues to the fact that multipliexation by an element a of R defines a homomorphism
M →M .

6.4 The Sheaf Property
nonaffine-

sections
In this section, we extend an O-moduleM on a variety X to a functor (opens)◦ M̃−→ (modules) on all open
subsets of X with these properties:

• M̃(Y ) is an O(Y )-module for every open subset Y .

• When U is an affine open set, M̃(U) =M(U).

• M̃ has the sheaf property that is described below.
The tilde ∼ is used for clarity. When we have finished with the discussion, we will use the same notation

for the functor on (affines) and for its extension to (opens).

6.4.1.defsect Let (opens)◦ M̃−→ (modules) be a functor. If U is an open subset ofX , an element of M̃(U) is a section

of M̃ on U . If V
j−→ U is an inclusion of open subsets, the associated homomorphism M̃(U) → M̃(V ) is

the restriction from U to V .
When V

j−→ U is an inclusion of open sets, the restriction to V of a section m on U may be denoted by
j◦m. However, the restriction operation occurs very often. Because of this, we usually abbreviate, using the
same symbol m for a section and for its restriction. If an open set V is contained in two open sets U and U ′,
and if m and m′ are sections of M̃ on U and U ′, respectively, we may say that m and m′ are equal on V if
their restrictions to V are equal. For example, if the restriction of a setcion m to V is zero, we may say m = 0
on V . �

6.4.2. Theorem.extendO-
mod

An O-moduleM extends uniquely to a functor

(opens)◦ M̃−→ (modules)

that has the sheaf property (6.4.4) below. Moreover, for every open set U , M̃(U) is an O(U)-module, and
for every inclusion V → U of nonempty open sets, the map M̃(U) → M̃(V ) is compatible with the map
O(U)→ O(V ).

The proof of this theorem isn’t especially difficult, but it is lengthy because there are several things to check.
In order not to break up the discussion, we have put the proof into Section 6.9 at the end of the chapter.

Though the theorem describes the sections of an O-module on every affine open set, one always works
with the affine open sets. Sometimes, we will want to look at sections of an O-module on a non-affine open
set, but most of the time, the non-affine open sets are just along for the ride.
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(6.4.3) the sheaf property sheafprop

The sheaf property is the key requirement that determines the extension of an O-moduleM to a functor M̃
on (opens).

Let Y be an open subset of X , and let {U i} be an affine covering of Y . The intersections U ij = U i ∩ U j
are also affine open sets, soM(U i) andM(U ij) are defined. The sheaf property asserts that an element m of
M̃(Y ) corresponds to a set of elements mi inM(U i) such that the restrictions of mj andmi to U ij are equal.

If the affine open subsets U i are indexed by i = 1, ..., n, the sheaf property asserts that an element of
M̃(Y ) is determined by a vector (m1, ...,mn) with mi inM(U i), such that the restrictions of mi and mj to
U ij are equal. This means that M̃(Y ) is the kernel of the difference map β:

(6.4.4)
∏
i

M(U i)
β−→
∏
i,j

M(U ij) sheafker

that sends the vector (m1, ...,mn) to the n×n matrix (zij), where zij is the difference mj−mi of restrictions
of the sections mj and mi to U ij . The analogous description is true when the index set is infinite.

In short, the sheaf property tells us that sections of M̃ are determined locally: A section on an open set Y
is determined by its restrictions to the open subsets U i of any affine covering of Y .

Note. With notation as above, there is a morphism U ij → U i in (opens) because U ij is contained in U i.
However, this morphism needn’t be a localization, and if it isn’t a localization, it won’t be a morphism in
(affines). Then the restriction mapsM(U i) →M(U ij) won’t be a part of the structure of an O-module. We
need a definition of the restriction map for an arbitrary inclusion V → U of affine open subsets. This point
will be taken care of in the proof of Theorem 6.4.2. (See Step 2 in Section 6.9.) So we don’t need to worry
about it here. �

We drop the tilde now, and denote the extension of an O-moduleM to all open sets by the same symbol
M. The sheaf property for M is the statement that, when {U i} is an affine covering of an open set U , the
sequence

(6.4.5) sheaf-
proptwo

0→M(U)
α−→
∏
i

M(U i)
β−→
∏
i,j

M(U ij)

is exact, where α is the product of the restriction maps, and β is the difference map described in (6.4.4). So
M(U) is mapped isomorphically to the kernel of β. Elements of M(U) correspond bijectively to vectors
(m1, ...,mn), with mi inM(U i), such that the restrictions of mi and mj toM(U ij) are equal.

The next corollary follows from Theorem 6.4.2.

6.4.6. Corollary. injoncoverLet {U i} be an affine covering of a variety X .
(i) An O-moduleM is the zero module if and only if M(U i) = 0 for every i.

(ii) A homomorphism M ϕ−→ N of O-modules is injective, surjective, or bijective if and only if the maps

M(U i)
ϕ(Ui)−→ N (U i) are injective, surjective, or bijective, respectively, for every i.

proof. (i) Let V be an open subset of X . We cover each intersection V ∩ U i by affine open sets V iν that
are localizations of U i. These sets, taken together, cover V . IfM(U i) = 0, then the localizationsM(V iν)
are zero too. The sheaf property shows that the map M(V ) → ∏M(V iν) is injective, and therefore that
M(V ) = 0.

(ii) This follows from (i) because a homomorphism ϕ is injective or surjective if and only if its kernel or its
cokernel is zero. �

(6.4.7) families of open sets omod
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It is convenient to have a more compact notation for the sheaf property (6.4.5), and for this, one can
introduce symbols to represent families of open sets. Say that U and V represent families of open sets {U i}
and {V ν}, respectively. A morphism of families V → U consists of a morphism from each V ν to one of the
subsets U i. Such a morphism will be given by a map of index sets sending ν  iν , such that V ν ⊂ U iν .

There may be more than one morphism V → U, because a subset V ν may be contained in more than
one of the subsets U i. To define a morphism, one must make a choice among those subsets. For example, let
U = {U i} be a family of open sets, and let V be another open set. For each i such that V ⊂ U i, there is a
morphism V → U that sends V to U i. In the other direction, there is a unique morphism U → V provided
that U i ⊂ V for all i.

We extend a functor (opens)◦ M−→ (modules) to families U = {U i}, defining

(6.4.8) M(U) =
∏
M(U i).section-

sonfamily

Then a morphism of families U
f−→ V defines a map M(V)

f◦←− M(U) in a way that is fairly obvious,
though our notation for it is clumsy. Say that V = {V ν}, that U = {U i}, and that f is given by a map ν  iν
of index sets, such that V ν → U iν . A section ofM on U, an element ofM(U), can be thought of as a vector
u = (ui) with ui ∈ M(U i), and a section ofM(V) as a vector v = (vν) with vν ∈ M(V ν). If vν denotes
the restriction of uiν to V ν , the restriction f◦(u) of u = {ui} to V is v = {vν}.

We write the sheaf property in terms of families of open sets: Let U0 = {U i} be an affine covering of an
open set Y , and let U1 denote the family {U ij} of intersections: U ij = U i ∩ U j . The intersections are also
affine, and there are two sets of inclusions

U ij ⊂ U i and U ij ⊂ U j

They give us two morphisms of families U1
d0,d1−→ U0 of affine open sets: U ij d0−→ U j and U ij d1−→ U i. We

also have a morphism U0 → Y , and the composed morphisms U1
di−→ U0 → Y are equal. These maps form

what we all a covering diagram

(6.4.9)covdiagr Y ←− U0 ⇔ U1

When we apply a functor (opens) M−→ (modules) to this diagram, we obtain a sequence

(6.4.10) 0→M(Y )
αU−→M(U0)

βU−→M(U1)defbeta

where αU is the restriction map and βU is the difference d0 − d1 of the maps induced by the two morphisms
U1 ⇒ U0. The sheaf property for the covering U0 of Y (6.4.5) is the assertion that this sequence is exact,
which means that αU is injective, and that its image is the kernel of βU.

6.4.11.
twoopensets

Note. Let {U i} be an affine covering of Y . Then, with U ij = U i ∩ U j , we will have U ii = U i

and U ij = U ji. These coincidences lead to redundancy in the statement (6.4.10) of the sheaf property. If
the indices are i = 1, ..., k, we only need to look at intersections U ij with i < j. The product M(U1) =∏
i,jM(U ij) that appears in the sheaf property can be replaced by the product with increasing pairs of indices∏
i<jM(U ij). For instance, if an open set Y is covered by two affine open sets U and V , the sheaf property

for this covering is an exact sequence

0 → M(Y )
α−→
[
M(U)×M(V )

] β−→
[
M(U∩U)×M(U∩V )×M(V ∩U)×M(V ∩V )

]
The exact sequence

(6.4.12)twoopens 0 → M(Y )→
[
M(U)×M(V )

] −.+−→M(U ∩ V )

is equivalent. �
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6.4.13. Example. strsheafPn
Let A denote the polynomial ring C[x, y], and let V be the complement of a point p in the affine space X =
SpecA. This is an open set, but it isn’t affine. We cover V by two localizations of X: Xx = SpecA[x−1]
and Xy = SpecA[y−1]. The sheaf property (6.4.12) for OX and for this covering is equivalent to an exact
sequence

0→ OX(V )→ A[x−1]×A[y−1]→ A[(xy)−1]

It shows that a regular function on V is in the intersection A[x−1] ∩ A[y−1], which is equal to A. Therefore
the sections of the structure sheaf OX on V are the elements of A. They are the same as the sections on X . �

We have been working (tacitly) with nonempty open sets. This isn’t much of a problem, but when a module
M on (affines) is extended to a module on all open sets, the empty set should be included. The next lemma
takes care of the empty set.

6.4.14. Lemma. emptysetThe only section of an O-moduleM on the empty set is the zero section: M(∅) = {0}. In
particular, O(∅) is the zero ring.

proof. This follows from the sheaf property. The empty set ∅ is covered by the empty covering, the covering
indexed by the empty set. ThereforeM(∅) is contained in an empty product. We want the empty product to
be a module, and we have no choice but to define it to be zero. ThenM(∅) is zero too.

If you find this reasoning pedantic, you can takeM(∅) = {0} as an axiom. �

6.5 Some More Modules
moremod-
ules6.5.1. kerthmkernel

As we have noted, many operations that one makes on modules over a ring are compatible with localization,
and therefore can be made on O-modules. However, for sections over a non-affine open set one must use the
sheaf property. The sections over a non-affine open set are almost never determined by an operation. The
kernel of a homomorphism is among the few exceptions.

6.5.2. Proposition. leftexact-
section

Let X be a variety, and letK be the kernel of a homomorphism of O-modulesM→N ,
so that the there is an exact sequence 0 → K → M → N . For every open subset Y of X , the sequence of
sections

(6.5.3) 0→ K(Y )→M(Y )→ N (Y ) lexsect

is exact.

proof. We choose a covering diagram Y ←− U0 ⇔ U1, and inspect the diagram

0 −−−−→ K(U0) −−−−→ M(U0) −−−−→ N (U0)y y y
0 −−−−→ K(U1) −−−−→ M(U1) −−−−→ N (U1)

where the vertical maps are the difference maps βU described in (6.4.10). The rows are exact because U0

and U1 are families of affines, and the sheaf property asserts that the kernels of the vertical maps form the
sequence (6.5.3). The sequence of kernels is exact because taking kernels is a left exact operation (2.1.20). �

The section functor isn’t right exact. When M → N is a surjective homomorphism of O-modules and
Y is a non-affine open set, the mapM(Y ) → N (Y ) often fails to be surjective. There is an example below.
Cohomology, which will be discussed in the next chapter, is a substitute for right exactness.

6.5.4. coverponemodules on the projective line
The projective line P1 is covered by the standard open sets U0 and U1, and the intersection U01 = U0 ∩ U1

is a localization of U0 and of U1. The coordinate algebras of these affine open sets are O(U0) = A0 = C[u],
O(U1) = A1 = C[u−1], and O(U01) = A01 = C[u, u−1]. The form (6.4.12) of the sheaf property asserts
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that a global section of O is determined by polynomials f(x) and g(x) such that f(u) = g(u−1) in A01.
The only such polynomials are the constants. So the constants are the only rational functions that are regular
everywhere on P1. I think we knew this.

IfM is an O-module, then M0 = M(U0) and M1 = M(U1) will be modules over the algebras A0 and
A1, respectively. The A01-moduleM(U01) = M01 will be obtained by localizing M0 and also by localizing
M1. Let v = u−1. Then

M0[u−1] ≈M01 ≈M1[v−1]

As (6.4.12) tells us, a global section of M is determined by a pair of elements m1 and m2 in M1 and M2,
respectively, that become equal in the common localization M01. The next lemma shows that this data deter-
mines the moduleM.

6.5.5. Lemma.modon-
pone

With notation as above, let M0, M1, and M01 be modules over the algebras A0, A1, and
A01, respectively, and let M0[u−1]

ϕ0−→ M01 and M1[v−1]
ϕ1−→ M01 be A01-isomorphisms. There is an

OX -module M, unique up to isomorphism, such that M(U0) and M(U1) are isomorphic to M0 and M1,
respectively, and such that the diagram below commutes.

M(U0) −−−−→ M(U01) ←−−−− M(U1)y y y
M0

ϕ0−−−−→ M01
ϕ1←−−−− M1

The proof is at the end of this section.

Suppose that M0 and M1 are free modules over A0 and A1. The common localization M01 will be a free
A01-module. A basis B0 of the free A0-module M0 will also be a basis of the A01-module M01, and a basis
B1 of M1 will be a basis of M01. When regarded as bases of M01, B0 and B1 will be related by an invertible
A01-matrix P , and as Lemma 6.5.5 tells us, that matrix determines M up to isomorphism. When Mi have
rank one, P will be an invertible 1×1 matrix in the Laurent polynomial ring A01 = C[u, u−1], a unit of that
ring. The units in A01 are scalar multiples of powers of u. Since the scalar can be absorbed into one of the
bases, an O-module of rank 1 is determined, up to isomorphism, by a power of u. It is one of the twisting
modules that will be described below, in Section 6.8.

The Birkhoff-Grothendieck Theorem, which will be proved in Chapter 8, describes the O-modules on the
projective line whose sections on U0 and on U1 are free, as direct sums of free O-modules of rank one. This
means that by changing the bases B0 and B1, one can diagonalize the matrix P . The changes of basis will
be given by an invertible A0-matrix Q0 and an invertible A1-matrix Q1, respectively. In down-to-Earth terms,
the Birkhoff-Grothendieck Theorem asserts that, for any invertible A01-matrix P , there exist an invertible A0-
matrix Q0 and an invertible A1-matrix Q1 , such that Q−1

0 PQ1 is diagonal, and its diagonal entries are powers
of u. �

6.5.6. tensor productstensprod-
module Tensor products are compatible with localization. If M and N are modules over a domain A and s is a

nonzero element of A, the canonical map (M ⊗A N)s → Ms ⊗As Ns is an isomorphism (Corollary 2.1.32).
Therefore the tensor productM⊗O N ofO-modulesM andN is defined. On an affine open set U , [M⊗O
N ](U) is the tensor productM(U)⊗O(U)N (U).

LetM and N be O-modules, letM⊗O N be the tensor product module, and let V be an arbitrary open
subset of X . There is a canonical map

(6.5.7)ten-
sprodmap

M(V )⊗O(V )N (V )→ [M⊗O N ](V )

By definition of the tensor product module, this map is an equality when V is affine. To describe the map for
arbitrary V , we cover V by a family U0 of affine open sets and form a diagram

M(V )⊗O(V )N (V )
f−−−−→ M(U0)⊗O(U0)N (U0)

g−−−−→ M(U1)⊗O(U1)N (U1)ya yb yc
0 −−−−→ [M⊗O N ](V ) −−−−→ [M⊗O N ](U0)

g−−−−→ [M⊗O N ](U1)
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The family U1 of intersections consists of affine open sets, as does U0, so the vertical maps b and c are
equalities. The bottom row is exact, and the composition gf is zero. So f mapsM(V )⊗O(V )N (V ) to the
kernel of g, which is equal to [M⊗O N ](V ). The map a is (6.5.7). When V isn’t affine, this map needn’t be
either injective or surjective.

6.5.8. Examples. residue-
fieldmod-
ule

These examples illustrate the failure of bijectivity of (6.5.7).
(i) Let p and q be distinct points of the projective line X , and let κp and κq be the residue field modules on X .
Then κp(X) = κq(X) = C, so κp(X)⊗O(X)κq(X) = C⊗C C = C. But κp ⊗O κq = 0. The map (6.5.7)
with V = X ,

κp(X)⊗O(X) κq(X) → [κp ⊗O κq](X)

is the zero map. It isn’t injective.

(ii) Let p a point of a variety X , and let mp and κp be the maximal ideal and residue field modules at p. There
is an exact sequence of O-modules

(6.5.9) 0→ mp → O
πp−→ κp → 0 ideal-

sheafatp
In this case, the sequence of global sections is exact.

(iii) Let p and q be the points (1, 0) and (0, 1) of the projective line P1. We form a homomorphism

mp×mq ϕ−→ O

ϕ being the map (a, b)→ b−a. On the open set U0, mq → O is bijective and therefore surjective. Similarly,
mp → O is surjective on U1. Since U0 and U1 cover P1, ϕ is surjective (6.4.6)(ii). The only global section of
mp×mq is zero, while O has the nonzero global section 1. The map on global sections determined by ϕ isn’t
surjective. �

6.5.10. the function field module ffldmod
Let F be the function field of a variety X . The function field module F is defined as follows: The module

of sections F(U) on any nonempty open set U is the field F . It is called a constant O-module because F(U)
is the same for every nonempty U . It won’t be a finite module unless X is a point.

Tensoring with the function field module: LetM be an O-module on a variety X , and let F be the function
field module. We describe the tensor product moduleM⊗O F .

If U = SpecA is an affine open set and M = M(U), the module of sections of on U is the F -vector
space M ⊗A F . If S is the multipicative system of nonzero elements of A, then M ⊗A F is the localization
MS−1. On a simple localization Us, the module of sections will beMs⊗As F , which is the same asM ⊗AF ,
because s is invertible in F . The vector space M ⊗A F is independent of the affine open set U . SoM⊗O F
is a constant O-module. IfM is a torsion module, the tensor productM⊗O F will be zero.

(6.5.11) modaffO-modules on affine varieties

The next proposition shows that, on an affine variety SpecA, O-modules correspond to A-modules .

6.5.12. Proposition. moduleon-
affines

Let X = SpecA be an affine variety. Sending an O-module M to the A-module
M(X) of its global sections defines a bijective correspondence between O-modules and A-modules.

proof. We must invert the functorO−(modules)→ A−(modules) that sendsM toM(X). Given anA-module
M , the corresponding O-moduleM is defined as follows: Let U = SpecB be an affine open subset of X .
The inclusion U ⊂ X corresponds to an algebra homomorphism A → B. We define M(U) to be the B-
module B ⊗AM . If s is a nonzero element of B, then Bs ⊗AM is canonically isomorphic to the localization
(B ⊗AM)s of B ⊗AM . ThereforeM is an O-module, andM(X) = M .

Conversely, letM be an O-module such thatM(X) = M . Then, with notation as above, the map M =
M(X)→M(U) induces a homomorphism of B-modules M ⊗A B →M(U). When U is a localization Xs

of X , so that B = As, both M ⊗A As andM(Xs) are localizations of M , so they are isomorphic. Therefore
the moduleM is determined up to isomorphism. �
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6.5.13. Example.delete-
point This example shows that, when an open set isn’t affine, definingM(V ) = B ⊗A M , as in the proof of

Proposition 6.5.12, may be wrong. Let X be the affine plane SpecA, A = C[x, y], let V be the complement
of the origin in X , and let M be the A-module A/yA. This module can be identified with C[x], which
becomes an A-module when scalar multiplication by y is defined to be zero. Here O(V ) = O(X) = A
(6.4.13). If we followed the method used for affine open sets, we would setM(V ) = A ⊗A M = C[x]. To
identifyM(V ) correctly, we cover V by the two affine open setsXx = SpecA[x−1] andXy = SpecA[y−1].
ThenM(Xx) = M [x−1] = C[x, x−1], whileM(Xy) = 0. The sheaf property ofM shows thatM(V ) ≈
M(Xx) = C[x, x−1]. �

(6.5.14)omodlim limits of O-modules

A directed set M• of modules over a ring R is a sequence of homomorphisms M0 → M1 → M2 → · · · . Its
limit lim−→M• is the R-module whose elements are equivalence classes on the elements of the union

⋃
Mk, the

equivalence relation being that elements m in Mi and m′ in Mj are equivalent if they have the same image in
Mn when n is sufficiently large. An element of lim−→M• will be represented by an element of Mi for some i.

6.5.15. Example.limexam-
ple

Let R = C[x] and let m be the maximal ideal xR. Repeated multiplication by x defines a
directed set

R
x−→ R

x−→ R
x−→ R −→ · · ·

Its limit is isomorphic to the Laurent polynomial ring R[x−1] = C[x, x−1]. �

6.5.16.limits A directed set of O-modules on a variety X is an infinite sequenceM• = {M0 →M1 →M2 →
· · · } of homomorphisms of O-modules. For every affine open set U , the O(U)-modulesMn(U) will form a
directed set, as defined above. The direct limit lim−→M• is defined simply, by taking the limit for each affine
open set: [lim−→M•](U) = lim−→ [M•(U)]. This limit operation is compatible with localization, so lim−→M• is
an O-module. In fact, the equality [lim−→M•](U) = lim−→ [M•(U)] will be true for every open set, not only for
affine open sets.

A map of directed sets of O-modulesM• → N• is a diagram

M1 −−−−→ M2 −−−−→ · · ·y y
N1 −−−−→ N2 −−−−→ · · ·

A sequenceM• → N• → P• of maps of directed sets is exact if the sequencesMi → Ni → Pi are exact for
every i.

6.5.17. Lemma.jstarlimit (i) The limit operation is exact. IfM• → N• → P• is an exact sequence of directed sets
of O-modules, the limits form an exact sequence.
(ii) Tensor products are compatible with limits: If N• is a directed set of O-modules and M is another
O-module, then lim−→ [M⊗O N•] ≈M⊗O [lim−→N•]. �

(6.5.18) the module of homomorphismsmodule-
Hom

Let M and N be modules over a ring A. The set of homomorphisms M → N , which is often denoted
by HomA(M,N), becomes an A-module with some fairly obvious laws of composition: If ϕ and ψ are
homomorphisms and a is an element of A, then ϕ+ψ and aϕ are defined by

(6.5.19)homis-
module

[ϕ+ψ](m) = ϕ(m) + ψ(m) and [aϕ](m) = aϕ(m)

Because ϕ is a module homomorphism, it is also true that ϕ(m1 +m2) = ϕ(m1) + ϕ(m2), and that
aϕ(m) = ϕ(am).
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6.5.20. Lemma. Nequal-
sHom

(i) An A-module N is canonically isomorphic to the module HomA(A,N). The homomor-
phism A

ϕ−→ N that corresponds to an element v of N is multiplication by v: ϕ(a) = av. The element of N
that corresponds to a homomorphism A

ϕ−→ N is v = ϕ(1).
(ii) HomA(Ak, N) is isomorphic to Nk, and HomA(Ak, A`) is isomorphic to the module A ×̀k of k× `
A-matrices. �

6.5.21. Lemma. homfiniteAs a functor in two variables, HomA is left exact and contravariant in the first variable:

For any A-module N , an exact sequence M1
a−→M2

b−→M3 → 0 of A-modules induces an exact sequence

0→ HomA(M3, N)
◦b−→ HomA(M2, N)

◦a−→ HomA(M1, N)

HomA is left exact and covariant in the second variable. �

6.5.22. Corollary.
homfinitetwo

If M and N are finite A-modules over a notherian ring A, then HomA(M,N) is a finite
A-module.

proof. Because M is finitely generated, there is a surjective map Ak → M , which gives us an injective map
HomA(M,N)→ HomA(Ak, N) = Nk. So HomA(M,N) is isomorphic to a submodule of the finite module
Nk. Therefore it is a finite module. �

6.5.23. Lemma. localize-
Hom

Let M and N be modules over a noetherian domain A, and suppose that M is a finite
module. Let s be a nonzero element of A. The localization

(
HomA(M,N)

)
s

is canonically isomorphic to
HomAs(Ms, Ns). The analogous statement is true for localization by a multiplicative system S.

proof. Since HomA(A,M) ≈ M , it is true that (HomA(A,M))s ≈ Ms ≈ HomAs(As,Ms) and that
(HomA(Ak,M))s ≈Mk

s ≈ HomAs(A
k
s ,Ms).

We choose a presentationA` → Ak →M → 0 of theA-moduleM (2.1.21). Its localizationA`s → Aks →
Ms → 0, is a presentation of the As-module Ms. The sequence

0→ HomA(M,N)→ HomA(Ak, N)→ HomA(A`, N)

is exact, and so is its localization. So the lemma follows from the case that M = Ak. �

This lemma shows that, when M and N are finite O-modules on a variety X , an O-module of homo-
morphisms M → N is defined. This O-module may be denoted by HomO(M,N ). When U = SpecA
is an affine open set, M = M(U), and N = N (U), the module of sections of HomO(M,N ) on U is the
A-module HomA(M,N).

The analogues of Lemma 6.5.20 and lemma 6.5.21 are true for Hom:

6.5.24. Corollary. leftexco(i) An O-moduleM on a smooth curve Y is isomorphic to HomO(O,M).
(ii) The functor Hom is left exact and contravariant in the first variable, and it is left exact and covariant in
the second variable. �

6.5.25. Note. dropHomThe notations Hom and Hom are cumbersome as well as confusing. It seems permissible to
drop the symbol Hom, and to write A(M,N) for HomA(M,N). Similarly, ifM andM are O-modules on a
variety X , we may write O(M,N ) or X(M,N ) for HomO(M,N ).

(6.5.26) the dual module dualmod

Let M be a locally free O-modules on a variety X . The dual module M∗ is the O-module of homo-
morphisms M → O: M∗ = O(M,O). A section of M∗ on an affine open set U is an O(U)-module
homomorphismM(U) → O(U). The dualizing operation is contravariant. A homomorphismM → N of
locally free O-modules induces a homomorphismM∗ ← N ∗.

The dual O∗ of the structure sheaf O is O. IfM is a free module with basis v1, ..., vk, thenM∗ is also
free, with the dual basis v∗1 , ..., v

∗
k, defined by

v∗i (vi) = 1 and v∗i (vj) = 0 if i 6= j

WhenM is locally free,M∗ is also locally free.
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6.5.27. Corollary.bidualm (i) LetM and N be locally free O-modules. The module O(M,N ) of homomorphisms is
canonically isomorphic to the tensor productM∗ ⊗O N .
(ii) A locally free O-moduleM is canonically isomorphic to its bidual: (M∗)∗ ≈M.
(iii) IfM and N are locally free O-modules, the tensor productM∗⊗ON

′∗ is isomorphic to (M⊗ON )∗.

proof.(i) We identify N with the module O(O,N ) (6.5.24). Given sections ϕ ofM∗ = O(M,O) and γ of
N = O(O,N ), the composition γϕ is a homomorphismM→ N , a section of O(M,N ). This composition
is bilinear, so it defines a mapM∗ ⊗O N → O(M,N ). To show that this map is an isomorphism is a local
problem, so we may assume that Y = SpecA is affine and thatM and N are free modules of ranks k an `,
respectively. Then bothM∗ ⊗O N and O(M,N ) are the modules of k×` matrices with entries in A. �

6.5.28. Proposition.dualseq Let X be a variety.

(i) Let P f−→ N g−→ P be homomorphisms of O-modules such that the composition gf is the identity map
P → P . So f is injective and g is surjective. ThenN is the direct sum of the image of f , which is isomorphic
to P , and the kernel K of g: N ≈ P ⊕K.
(ii) Let 0→M→N → P → 0 be an exact sequence of O-modules. If P is locally free, the dual modules
form an exact sequence 0→ P∗ → N ∗ →M∗ → 0.

proof. (i) This follows from the analogous statement about modules over a ring.

(ii) The sequence 0 → P∗ → N ∗ → M∗ is exact whether or not the modules are locally free (6.5.21) (ii).
The zero on the right comes from the fact that, when P is locally free, there is an affine covering on which it
is free. When P is free, the given sequence splits: N is isomorphic toM⊕ P (2.1.22). Therefore the map
N ∗ →M∗ is locally surjective. �

6.5.29. proof of Proposition 6.5.5.
With notation as in the statement of the proposition, we suppose given modules M0, M1 and an isomor-

phism M0[u−1] → M1[v−1]. We are to show that this data comes from an O-moduleM. Proposition 6.5.12
shows that Mi defines O-modules Mi on Ui for i = 0, 1, and the restrictions of M0 and M1 to U01 are
isomorphic. Let’s denote all of these modules byM. ThenM is defined on any open set that is contained in
U0 or in U1.

Let V be an arbitrary open set V , and let V i = V ∩Ui, for i = 0, 1, 01. We defineM(V ) to be the kernel
of the map [M(V 0)×M(V 1)] → M(V 01). With this definition, M becomes a functor. We must verify
the sheaf property, and the notation gets confusing. We suppose given an affine covering {W ν} of V . We
denote this covering by W0, and we denote {W ν ∩Wµ} by W1, so that the corresponding covering diagram
is V ←W0 ⇔W1.

For i = 0, 1, 01, let Wi
0 = W0 ∩ Ui and Wi

1 = W1 ∩ Ui. We form a diagram

0 0 0y y y
0 −−−−→ M(V ) −−−−→ M(W0) −−−−→ M(W1)y y y
0 −−−−→ M(V 0)×M(V 1) −−−−→ M(W0

0)×M(W1
0) −−−−→ M(W0

1)×M(W1
1)y y y

0 −−−−→ M(V 01) −−−−→ M(W01
0 ) −−−−→ M(W01

1 )

The columns are exact by our definition ofM, and the second and third rows are exact because the open sets
involved are contained in U0 or U1. Since kernel is a left exact operation, the top row is exact too. This is the
sheaf property. �

6.6 Direct Image
directim-

age (6.6.1) affine morphisms
affinemorph
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6.6.2. Definition. de-
faffmorph

An affine morphism is a morphism Y
f−→ X of varieties with the property that the inverse

image f−1(U) of every affine open subset U of X is an affine open subset of Y . �

The following are examples of affine morphisms:

• the inclusion of an affine open subset Y into X ,
• the inclusion of a closed subvariety Y into X ,
• a finite morphism, an integral morphism.

However, if Y is the complement of a point of the projective plane X , the inclusion of Y into X isn’t an affine
morphism.
As one sees from these examples, affine morphisms form a rather miscellaneous collection. However, the
concept is convenient.

6.6.3. Definition. defdirimLet Y u−→ X be an affine morphism and let N be an OY -module. The direct image f∗N
of N is the OX -module such that if U is an affine open subset of X and V is its inverse image in Y , then
[f∗N ](U) = N (V ), or, [f∗N ](U) = N (f−1U), i.e., [f∗N ](U) = N (f−1U).

The direct image generalizes restriction of scalars in modules over rings. Recall that, if A
ϕ−→ B is an

algebra homomorphism and BN is a B-module, one can restrict scalars to make N into an A-module. Scalar
multiplication by an element a of A on the restricted module AN is defined to be scalar multiplication by the
image ϕ(a) of a.

6.6.4. Lemma. dirim-
restsc

Let Y
f−→ X , with X = SpecA and Y = SpecB, be the morphism defined by an algebra

homomorphism A
ϕ−→ B. If N is the OY -module determined by the B-module BN , its direct image f∗N is

the OX -module determined by the A-module AN . �

6.6.5. Lemma. fstarcohLet Y
f−→ X be an affine morphism of varieties, and letN be an OY -module. The direct

image f∗N is an OX -module.

proof. Let U ′ → U be an inclusion of affine open subsets of X , and let V = f−1U and V ′ = f−1U ′. These
inverse images are affine open subsets of Y . The inclusion V ′ → V gives us a homomorphism N (V ) →
N (V ′), and therefore a homomorphism f∗N (U)→ f∗N (U ′). Composition with f defines a homomorphism
OX(U) → OY (V ), and N (V ) is an OY (V )-module. Restriction of scalars to OX(U) makes [f∗N ](U) =
N (V ) into an OX(U)-module.

To verify that f∗N is an OX -module, one must show that if U is an affine open subset of X and s is a
nonzero element of OX(U), then [f∗N ](Us) is obtained by localizing [f∗N ](U). Let V be the inverse image
of U and let s′ be the image of s in OY (V ). Then [f∗N ](Us) = N (Vs′) = N (V )s′ , provided that s′ 6= 0. If
s′ = 0, then both f∗N ](Us) and N (Vs′) will be zero. �

It isn’t difficult to extend the definition of direct image to an arbitrary morphism of varieties, but since we
will use direct images only for affine morphisms, we leave the extension as an exercise.

6.6.6. Lemma. fs-
taraffmorph

Let Y
f−→ X be an affine morphism and let N → N ′ → N ′′ be an exact sequence of

OY -modules. The direct images form an exact sequence of OX -modules f∗N → f∗N ′ → f∗N ′′. �

6.6.7. Lemma. dirimlimDirect images are compatible with limits: If M• is a directed set of O-modules, then
lim−→ (f∗M•) ≈ f∗(lim−→M•). �

Two important cases of direct image will be that f is the inclusion of a closed subvariety or an affine open
subvariety. We discuss those special cases now.

(6.6.8) extension by zero – the inclusion of a closed subset extbyzero

When Y i−→ X is the inclusion of a closed subvariety into a varietyX andN is anOY -module, the direct
image i∗N is also called the extension of N by zero. If U is an affine open subset of X then, because i is an
inclusion map, i−1U = U ∩ Y . Therefore
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[i∗N ](U) = N (U ∩ Y )

The term “extension by zero” refers to the fact that, when an affine open set U of X doesn’t meet Y , the
intersectionU∩Y is empty, and the module of sections of [i∗N ](U) is zero. So i∗N is zero on the complement
of Y .

6.6.9. Examples.extfrom-
point (i) Let p i−→ X be the inclusion of a point into a variety. When we view the residue field k(p) as a module

on the point p, its extension by zero is the residue field module κp.

(ii) Let Y i−→ X be the inclusion of a closed subvariety, and let I be the ideal of Y in OY . The extension by
zero of the structure sheaf on Y fits into an exact sequence of OX -modules

0→ I → OX → i∗OY → 0

So i∗OY is isomorphic to the quotient module OX/I. �

6.6.10. Proposition.izero Let Y i−→ X be the inclusion of a closed subvariety Y into a variety X , and let I be
the ideal of Y . Let M denote the subcategory of the category of OX -modules s that are annihilated by I.
Extension by zero defines an equivalence of categories

OY −modules i∗−→M

proof. Let U be an affine open subset of X . The intersection U ∩ Y = V is a closed subvariety of U . Let α be
a section of i∗N (U)

(
= N (V )

)
. Scalar multiplication on i∗N is defined by restriction of scalars from OX

to it quotient OY . If f is a section of OX on U and f is its restriction to V , then fα = fα. If f is in I(U),
then f = 0 and therefore fα = fα = 0. So the extension by zero of an OY -module is annihilated by I. The
direct image i∗N is an object of M .

To complete the proof, we construct an inverse to the direct image. Starting with an OX -moduleM that
is annihilated by I, we construct an OY -module N such that i∗N is isomorphic toM.

Let V be an open subset of Y . The topology on Y is induced from the topology on X , so V = X1 ∩ Y
for some open subset X1 of X . We try to set N (V ) = M(X1). To show that this is well-defined, we show
that if X2 is another open subset of X and if V = X2 ∩ Y , then M(X2) is isomorphic to M(X1). Let
X3 = X1 ∩X2. Then it is also true that V = X3 ∩ Y . Since X3 ⊂ X1, we have a mapM(X1)→M(X3).
It suffices to show that this map is an isomorphism, because the same reasoning will give us an isomorphism
M(X2)→M(X3).

The complement U = X1−V of V in X1 is an open subset of X1 and of X , and U ∩ Y = ∅. We cover U
by a set {U i} of affine open sets. Then X1 is covered by the open sets {U i} together with X3. The restriction
of I to each of the sets U i is the unit ideal, and since I annihilates M, M(U i) = 0. The sheaf property
shows thatM(X1) is isomorphic toM(X3).

The rest of the proof, checking localization and verifying that N is determined up to isomorphism, is
boring. �

(6.6.11) inclusion of an affine open subsetin-
cludeopen

Let Y
j−→ X be the inclusion of an affine open subvariety Y into a variety X .

Before going to the direct image, we mention a rather trivial operation, the restriction of an OX - module
fromX to Y . By definition, the sections of the restricted module on a subset U of Y are simply the elements of
M(U). This makes sense because open subsets of Y are open subsets of X too. We can use subscript notation
for restriction, writingMY for the restriction of an OX -moduleM to Y , and denoting the given moduleM
by MX when that seems advisable for clarity. If U is an open subset of Y ,

(6.6.12)restr-
toopen

MY (U) =MX(U)

This subscript notation is permissible becuse the restriction of the structure sheaf OX to the open set Y is the
structure sheaf OY on Y .
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Now the direct image: Let Y
j−→ X be the inclusion of an affine open subvariety Y , and let N be an

OY -module. The inverse image of an open subset U of X is the intersection Y ∩ U , which is affine. So by
definition, the direct image j∗N s defined by

[j∗N ](U) = N (Y ∩ U)

For example, [j∗OY ](U) is the algebra of rational functions on X that are regular on Y ∩ U .

6.6.13. Example. exam-
pledirec-
timage

Let Xs
j−→ X be the inclusion of a localization Xs into an affine variety X = SpecA.

Modules onX correspond to their global sections, which areA-modules. Similarly, modules onXs correspond
to As-modules. When we restrict the OX -moduleMX that corresponds to an A-module M to the open set
Xs, we obtain the OXs -module MXs that corresponds to the As-module Ms. The module Ms is also the
module of global sections of j∗MXs on X:

[j∗MXs ](X)
def
= MXs(Xs) = Ms

The localization Ms is made into an A-module by restriction of scalars. �

6.6.14. Proposition. fstarexactLet Y
j−→ X be the inclusion of an affine open subvariety Y into a variety X .

(i) The restriction OX -modules→OY -modules is an exact operation.
(ii) The direct image functor j∗ is exact.
(iii) LetM =MX be anOX -module. There is a canonical homomorphism fromMX to the direct image of
its restriction:MX → j∗[MY ].
(iv) Let N be an OY -module. The restriction of the direct image j∗N to Y is equal to N : [j∗N ]Y = N .

proof. (ii) Let U be an affine open subset of X , and letM→N → P be an exact sequence of OY -modules.
The sequence j∗M(U) → j∗N (U) → j∗P(U) is the same as the sequenceM(U ∩ Y ) → N (U ∩ Y ) →
P(U ∩ Y ), though the scalars have changed. Since U and Y are affine, U ∩ Y is affine. By definition of
exactness, this sequence is exact.

(iii) Let U be open in X . Then j∗MY (U) =M(U ∩ Y ). Since U ∩ Y ⊂ U , M(U) maps toM(U ∩ Y ).

(iv) An open subset V of Y is also open in X , and [j∗N ]Y (V ) = [j∗N ](V ) = N (V ∩ Y ) = N (V ). �

6.6.15. Example. dirim-
standaffine

Let X = Pn, and let j denote the inclusion of the standard affine open subset U0 into X .
The direct image j∗OU0 is the algebra of rational functions that are allowed to have poles on the hyperplane at
infinity. The inverse image of an open subset W of X is its intersection with U0: j−1W = W ∩ U0, and the
sections of the direct image j∗OU0 on an open subset W of X are the regular functions on W ∩ U0:

[j∗OU0 ](W ) = OU0(W ∩ U0) = OX(W ∩ U0)

Say that we write a rational function α on X as a fraction g/h of relatively prime polynomials. Then α is a
section of OX on W if h doesn’t vanish at any point of W , and α is a section of [j∗OU0 ] on W if h doesn’t
vanish on W ∩ U0. Arbitrary powers of x0 can appear in the denominator of a section of j∗OU0 . �

6.7 Support
annand-
suppAnnihilators. Let M be a module over a ring A. The annihilator I of an element m of M is the set of

elements α of A such that αm = 0. It is an ideal of A that is often denoted by ann(m). The annihilator of
an A-module M is the set of elements of A such that aM = 0. It is an ideal too.

Support. LetA be a finite-type domain and letX = SpecA. The support of a finiteA-moduleM is the locus
C = V (I) of zeros in X of its annihilator I , the set of points p of X such that p ∈ C, or I ⊂ mp (2.4.2). The
support of a finite module is a closed subset of X .

The next lemma allows us to extend the concepts of annihilator and support to finite O-modules on a
variety X .
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6.7.1. Lemma.localize-
support

LetX = SpecA be an affine variety, let I be the annihilator of an elementm of anA-module
M , and let s be a nonzero element of A. The annihilator of m in the localized module Ms is the localized
ideal Is. If M is a finite module with support C, the support of Ms is the intersection C ∩Xs of C with Xs. �

If I is the annihilator of a finiteO-moduleM on a variety X , the support ofM is defined to be the closed
subset V (I) of zeros of the ideal. For example, the support of the residue field module κp is the point p. The
support of the maximal ideal mp at p is the whole variety X .

(6.7.2) O-modules with support of dimension zerosupport-
dimzero

6.7.3. Proposition.suppfinite Let X be a variety.
(i) Suppose that the support of a finite O-module M is a single point p, let M = M(X), and let U be an
affine open subset of X . If U contains p, thenM(U) = M , and if U doesn’t contain p, thenM(U) = 0.
(ii) (Chinese Remainder Theorem) If the support of a finite O-moduleM is a finite set {p1, ..., pk}, thenM is
the direct sumM1 ⊕ · · · ⊕Mk of O-modules supported at the points pi.

proof. (i) Let I be the annihilator of an O-moduleM with support p. The locus V (I) is the support p. If p
isn’t contained in U , then when we restrict M to U , we obtain an OU -module whose support is empty. So
I(U) is the unit ideal, and the restriction ofM to U is the zero module.

Next, suppose that p is contained in U , and let V denote the complement of p in X . We cover X by a finite
set {U i} of affine open sets such that U = U1, and such that U i ⊂ V if i > 1. By what has been shown,
M(U i) = 0 if i > 0. The sheaf axiom for this covering shows thatM(X) ≈M(U). �

Note. If i denotes the inclusion of a point p into a variety X , it is natural to suppose that an O-module M
supported at p will be the extension by zero of a module on the point p (a vector space). However, this won’t
be true unlessM is annihilated by the maximal ideal mp. �

6.8 Twisting
twisting-
modules

The twisting modules that we define here are among the most important modules on projective space.

As before, a homogeneous fraction of degree n in x0, ..., xn is a fraction g/h of homogeneous polynomials,
such that deg g−deg h = n. When g and h are relatively prime, the fraction g/h is regular on an open subset
V of Pnx if and only if h isn’t zero at any point of V .

The definition of the twisting module O(n) is this: The sections of O(n) on an open subset V of Pn are
the homogeneous fractions of degree n that are regular on V . In particular, O(0) = O.

6.8.1. Proposition.Odismod-
ule (i) Let V be an affine open subset of Pn that is contained in the standard affine open set U0. The sections of the

twisting module O(n) on V form a free module of rank one with basis xn0 , over the coordinate algebra O(V ).
(ii) The twisting module O(n) is an O-module.

proof. (i) Let V be an open set contained in U0, and let α = g/h be a section ofO(n) on V , with g, h relatively
prime. Then f = αx−n0 has degree zero. It is a rational function. Since V ⊂ U0, x0 doesn’t vanish at any
point of V . Since α is regular on V , f is a regular function on V , and α = fxn0 .

(ii) It is clear that O(n) is a contravariant functor. We verify compatibility with localization. Let V = SpecA
be an affine open subset of X and let s be a nonzero element of A. We must show that [O(n)](Vs) is the
localization of [O(n)](V ). We must show that, if β is a section of O(n) on Vs, then skβ is a section on V
when k is sufficiently large.

We cover V by the affine open sets V i = V ∩ Ui. It suffices to show that skβ is a section on V i for every
i. For the case i = 0, we apply (i). Since V 0

s is contained in U0, β can be written uniquely in the form fxn0 ,
where f is a regular function on V 0

s and n is an integer. Then skf is a regular function on V 0 when k is large,
and then skα = skfxn0 is a section of O(n) on V 0. The analogous statement is true for every index i. �

As part (i) of the proposition shows, O(n) is quite similar to the structure sheaf. However, O(n) is only
locally free.
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6.8.2. Proposition. sectionso-
fOn

When d ≥ 0, the global sections of the twisting moduleO(n) on Pn are the homogeneous
polynomials of degree n. When n < 0, the only global section of O(n) is the zero section.

proof. A nonzero global section u of O(n) will restrict to a section on the standard affine open set U0. Since
elements ofO(U0) are homogeneous fractions of degree zero whose denominators are powers of x0, and since
[O(n)](U0) is a free module over O(U0) with basis xd0, we will have u = g/xk0 for some some homogeneous
polynomial g0 not divisible by x0 and some k. Similarly, restriction to U1 shows that u has the form g1/x

`
1. It

follows that k = ` = 0 and that u = g0. Since u has degree n, so does g0. �

6.8.3. Examples. prodhomfr
(i) The product uv of homogeneous fractions of degrees r and s is a homogeneous fraction of degree r+s,
and if u and v are regular on an open set V , so is their product uv. Multiplication defines a homomorphism of
O-modules

(6.8.4) O(r)⊕O(s)→ O(r+s) oros

(ii) Multiplication by a homogeneous polynomial f of degree n defines an injective homomorphism

(6.8.5) O(k)
f−→ O(k+n) multby-

fone
�

The twisting modules O(n) on projective space Pd have a second interpretation. They are isomorphic to
the modules that we denote by O(nH), of rational functions with poles of order at most n on the hyperplane
H : {x0 = 0} at infinity.

By definition, the sections of O(nH) on an open set V are the rational functions f such that xn0f is a
section of O(n) on V . Thus multiplication by xn0 defines an isomorphism

(6.8.6) OnOnHO(nH)
xn0−→ O(n)

If f is a section of O(nH) on an open set V , and if we write f as a homogeneous fraction g/h of degree
zero, with g, h relatively prime, the denominator h may have xk0 , with k ≤ n, as factor. The other factors of h
cannot vanish anywhere on V . If f = g/h is a global section of O(nH), then the denominator h has the form
cxk0 , with c ∈ C and k ≤ n. A global section of O(nH) can be represented as a homogeneous fraction g/xk0
of degree zero.

Since x0 doesn’t vanish at any point of the standard open set U0, the sections ofO(nH) on an open subset
V of U0 are simply the regular functions on V . Using the subscript notation (6.6.11) for restriction to an open
set,

(6.8.7) jstarOHO(nH)U0 = OU0

Let V be an open subset of one of the other standard affine open sets, say of U1. The ideal of H ∩ U1 in
U1 is the principal ideal generated by v0 = x0/x1, and the element v0 generates the ideal of H ∩ V in V too.
If f is a rational function, then because x1 doesn’t vanish on U1, the function fvn0 will be regular on V if and
only if the homogeneous fraction fxn0 is regular there, i.e., if an only if f is a section ofO(nH) on V . We say
that such a function f has a pole of order at most n on H because v0 generates the ideal of H in V .

The isomorphic O-modules O(n) and O(nH) are interchangeable. The twisting module O(n) is often
better because its definition is independent of coordinates. On the other hand, O(nH) can be convenient
because its restriction to U0 is the structure sheaf.

6.8.8. Proposition. curveidealLet Y be a hypersurface of degree n in Pn, the zero locus of an irreducible homogeneous
polynomial f of degree n. Let I be the ideal of Y , and let O(−n) be the twisting module. Multiplication by

f defines an isomorphism O(−n)
f−→ I.
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proof. We choose coordinates so that f isn’t isn’t divisible by any of the coordinate variables xi.
If α is a section ofO(−n) on an open set V , then fαwill be a regular function on V that vanishes on Y ∩V .

Therefore the image of the multiplication map O(−n)
f−→ O is contained in the ideal I. The multiplication

map is injective because C[x0, ..., xn] is a domain. To show that it is an isomorphism, it suffices to show that
its restrictions to the standard affine open sets Ui are surjective (6.4.6). We work with U0, as usual.

Because x0 desn’t divide f , Y ∩ U0 will be a nonempty, and therefore dense, open subset of Y . The
sections of O on U0 are the homogeneous fractions g/xk0 of degree zero. Such a fraction is a section of I on
U0 if and only if g vanishes on Y ∩ U0. If so, then since Y ∩ U0 is dense in Y and since the zero set of g is
closed, g will vanish on Y , and therefore it will be divisible by f : g = fq. The sections of I on U0 have the

form fq/xk0 . They are in the image of the map O(−n)
f−→ I. �

The proposition has an interesting corollary:

6.8.9. Corollary.idealsisom When regarded as O-modules, the ideals of all hypersurfaces of degree n are isomorphic.

(6.8.10) twisting a moduletwistmod-
ule

6.8.11. Definitiondeftwistm Let M be an O-module on projective space Pd, and let O(n) be the twisting module.
The (nth) twist of M is defined to be the tensor product M(n) = M ⊗O O(n). Similarly, M(nH) =
M⊗O O(nH). If X is a closed subvariety of Pd andM is an OX -module,M(n) andM(nH) are obtained
by twisting the extension ofM by zero. (See the equivalence of categories (6.6.10).)

Since xn0 is a basis of O(n) on U0, a section ofM(n) on an open subset V of U0 can be written in the
form α = m ⊗ gxn0 , where g is a regular function on V and m is a section ofM on V (6.8.1). The function
g can be moved over to m, so α can also be written in the form α = m⊗ xn0 . This expression for α is unique
because the operation of tensoring with xn0 is injective.

The modules O(n) and O(nH) form directed sets that are related by a diagram

(6.8.12)

O ⊂−−−−→ O(H)
⊂−−−−→ O(2H)

⊂−−−−→ · · ·∥∥∥ x0

y x2
0

y
O x0−−−−→ O(1)

x0−−−−→ O(2) −−−−→ · · ·Oninclu-
sions

In this diagram, the vertical arrows are bijections and the horizontal arrows are injections. The limit of the
upper directed set is the module whose sections on an open set V are rational functions that can have arbitrary
poles on H ∩ V , and are otherwise regular. This is also the module j∗OU0 , where j denotes the inclusion of
the standard affine open set U0 into X (see (6.6.14) (iii)):

(6.8.13)limequal-
sjstar

lim−→nO(nH) = j∗OU0

Tensoring (6.8.12) withM give us the diagram

(6.8.14)

M −−−−→ M(H) −−−−→ M(2H) −−−−→ · · ·∥∥∥ x0

y x2
0

y
M 1⊗x0−−−−→ M(1)

1⊗x0−−−−→ M(2) −−−−→ · · ·

Mnmaps

The vertical maps here are bijective, but becauseMmay have torsion, the horizontal maps needn’t be injective.
Let U = U0. Since tensor products are compatible with limits,

(6.8.15)limjstar lim−→nM(nH)
(1)≈ M⊗O

(
lim−→nO(nH)

)
≈M⊗O j∗OU

(2)≈ j∗MU

The isomorphism (1) comes from the fact that tensor produts are compatible with limits, and (2) is part (ii) of
the next lemma.
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6.8.16. Lemma. Mjstare-
qualjs-
tarM

LetM be an O-module on Pn, and let j be the inclusion of U = U0.
(i) For every k, the restriction of M(kH) to U is the same as the restriction of M, which is MU, and the
restriction of j∗MU to U is alsoMU. The restriction of the mapM(kH)→ j∗(MU) to U is the identity map.
(ii) The direct image j∗MU is isomorphic toM⊗O j∗OU.

proof. (i) Because H ∩ U is empty, the restrictions of M(kH) and M to U are equal. The fact that the
restriction of j∗MU is also equal toMU is Proposition 6.6.14 (iv).

(ii) Suppose given a section ofM⊗O j∗OU of the form α ⊗ f on an open set V , where α is a section ofM
on V and and f is a section of j∗OU on V , a regular function on V ∩ U. We denote the restriction of α to
V ∩ U by the same symbol α. Then αf will be a section ofM on V ∩ U and therefore a section of j∗MU
on V . The map (α, f) → αf is O-bilinear, so it corresponds to a homomorphismM⊗O j∗OU → j∗MU.
To show that this homomorphism is an isomorphism, it suffices to verify that it restricts to an isomorphism
on each of the standard affine open sets Ui. The restrictions ofM⊗O j∗OU and j∗MU to U0 are both equal
to MU. So that case is trivial. We look at U1. On that open set, [j∗MU](U1) = M(U01), and with v0 =
x0/x1, [j∗OU](U1) = O(U01) = O(U1)[v−1

0 ]. By definition of the tensor product, [M⊗O j∗OU0 ](U1) =
M(U1)⊗O(U1)O(U01) and

M(U1)⊗O(U1)O(U01) =M(U1)[v−1
0 ] =M(U01) = [j∗MU](U1) �

(6.8.17) generatorsgenerating an O-module

A set of global sections m = (m1, ...,mk) of an O-module on a variety X defines a map

(6.8.18) Ok m−→M gen

that sends a section (α1, ..., αk) of Ok on an open set to the combination
∑
αimi. The global sections

m1, ...,mk are said to generateM if this map is surjective. If the sections generateM, then they (or to be
precise, their restrictions), generate theO(U)-moduleM(U) for every affine open set U . When U isn’t affine,
they may fail to generateM(U).

6.8.19. Example. generate-
example

Let X = P1. For n ≥ 0, the global sections of the twisting module O(n) are the polyno-

mials of degree n in the coordinate variables x0, x1 (6.8.2). Consider the map O ⊕ O (xn0 ,x
n
1 )−→ O(n). On U0,

O(n) has basis xn0 . Therefore the map is surjective on U0. Similarly, it is surjective on U1. So it is a surjective
map on all of X (6.4.6). The global sections xn0 , x

n
1 generate O(n). However, the global sections of O(n)

are the homogeneous polynomials of degree n. When n > 1, the two sections xn0 , x
n
1 don’t span the space of

global sections. �

The next theorem explains the importance of the twisting operation.

6.8.20. Theorem. gentwistLetM be a finite O-module on a projective variety X . For sufficiently large k, the twist
M(k) is generated by global sections.

proof. We may assume that X is the projective space Pn. We are to show that ifM is a finite O-module, and
k is sufficiently large,M(k) is generated by its global sections. It suffices to show that for each i = 0, ..., n,
the restrictions of the global sections generate theO(Ui)-module [M(k)](Ui) (6.4.6). We work with the index
i = 0.

We replace M(k) by the isomorphic module M(kH). Recall that the maps lim−→kM(kH) = j∗MU0

(6.8.15) and that theM(kH)→ j∗MU0 restrict to bijections on U0 for every k (6.8.16 (i)).

We have maps M 1⊗xk0−→ M(kH) → j∗MU0 , that are isomorphisms on U0. Let A0 = O(U0) and
M0 = M(U0). Then M0 is a finite A0-module becauseM is a finite O-module. We choose a finite set of
generatorsm1, ...,mr for theA0-moduleM0. The elements ofM0, and in particular, the chosen generators, are
global sections of j∗MU0 . Since lim−→kM(kH) = j∗MU0 , they are represented by global sections m′1, ...,m

′
r

ofM(kH) when k is large. The restrictions ofM(kH) andM to U0 are equal (6.8.16), and the restrictions
of m′i to U0 is equal to the restriction of mi. So the restrictions of m′1, ...,m

′
r generate M0 too. Therefore M0

is generated by global sections ofM(kH), as was to be shown. �

156



6.9 Extending a Module: proof
proveex-

tension We prove Theorem 6.4.2 here.
The statement to be proved is that an O-moduleM on a variety X has a unique extension to a functor

(opens) M̃−→ (modules)

with the sheaf property (6.4.5), and that a homomorphism of O-modulesM→N has a unique extension to a
homomorphism M̃ → Ñ .

The proof has the following steps:

1. Verification of the sheaf property for a covering of an affine open set by localizations.
2. Extension of the functorM to all morphisms between affine open sets.

3. Definition of M̃.

Step 1. the sheaf property for a covering of an affine open set by localizations
Suppose that an affine open subset Y = SpecA of X is covered by a family of localizations U0 =

{Usi}, and let M be an O-module. Let M,Mi, and Mij denote the modules of sections M(Y ),M(Usi),
andM(Usisj ), respectively. The exact sequence that expresses the sheaf property for the covering diagram
Y ←− U0 ⇔ U1 becomes

(6.9.1)localize-
module

0→M
α−→
∏

Mi
β−→
∏

Mij

where α sends an element m of M to the vector (m, ...,m) of its images in
∏
iMi, and the difference map β

sends a vector (m1, ...,mk) in
∏
iMi to the matrix (zij), with zij = mj −mi in Mij (6.4.5). We must show

that the sequence (6.9.1) is exact.

exactness at M : Since the open sets U i cover Y , the elements s1, ..., sk generate the unit ideal. Let m be
an element of M that maps to zero in every Mi. Then there exists an n such that snim = 0, and we can
use the same exponent n for all i. The elements sni generate the unit ideal. Writing

∑
ais

n
i = 1, we have

m =
∑
ais

n
im =

∑
ai0 = 0.

exactness at
∏
Mi: Let mi be elements of Mi such that mj = mi in Mij for all i, j. We must find an element

w in M that maps to mj in Mj for every j.
We write mi as a fraction: mi = s−ni xi, or xi = snimi, with xi in M , using the same integer n for all i.

The equation mj = mi in Mij tells us that sni xj = snj xi in Mij . Since Mij is the localization M [(sisj)
−1]

(sisj)
rsni xj = (sisj)

rsnj xi will be true in M , if r is large.

The exponents here confuse the argument, so we adjust the notation. Let x̃i = srixi, and s̃i = sr+ni . Then
in M , x̃i = s̃imi and s̃j x̃i = s̃ix̃j . The elements s̃i generate the unit ideal. So there is an equation in A, of
the form

∑
ais̃i = 1.

Let w =
∑
aix̃i. This is an element of M , and

x̃j =
(∑

i

ais̃i
)
x̃j =

∑
i

ais̃j x̃i = s̃jw

So x̃j = s̃jw and also x̃j = s̃jmj . Since s̃j is invertible on Uj , w = s̃−1
j x̃j = mj , in Mj . Since j is

arbitrary, w is the required element of M . �

Step 2. extending an O-module to all morphisms between affine open sets

TheO-moduleM comes with localization mapsM(U)→M(Us). It doesn’t come with homomorphisms
M(U)→M(V ) when V → U is an arbitrary inclusion of affine open sets. We define those maps here.

LetM be anO-module and let V → U be an inclusion of affine open sets. To describe the homomorphism
M(U) → M(V ), we cover V by a family V0 = {V 1, ..., V r} of open sets that are localizations of U and
therefore also localizations of V . Then V ij are localizations of V i and of V j . So we have a covering diagram
V1 ⇒ V0 → V . Composing with the map V → U gives us a map V0 → U such that the two maps
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V1 → U obtained by composition are equal. Therefore image of the mapM(U) → V0(U) is contained in

the kernel of the difference mapM(V0)
β−→ M(V1), and by Step 1, that kernel isM(V ). This defines the

mapM(U)→M(V ). We must show that it is independent of the choice of the covering V0.
One can go from one affine covering to another in a finite number of steps, each of which adds or deletes

a single affine open set. So to prove independence of the mapM(U) → M(V ) defined above, it suffices to
relate V0 to the family W0 = {V 1, ..., V r,W} obtained by adding one localization W of U to the covering
V. Let W1 be the family of intersections of pairs of elements of W0. The inclusion V0 ⊂W0 defines a map
M(V0)→M(W0), and similarly, we have a mapM(V1)→M(W1). This gives us a diagram

(6.9.2) compare-
covtwo

M(U) −−−−→ M(V0)
βV−−−−→ M(V1)∥∥∥ a

y b

y
M(U) −−−−→ M(W0)

βW−−−−→ M(W1)

in whichM(U) is mapped to the kernels of βV and βW, both of which are equal toM(V ). Looking at the
diagram, one sees that the mapsM(U)→M(V ) defined using the two coverings V0 and W0 are the same.

To show that this extended functor has the sheaf property for an arbitrary affine covering V0 = {V i} of an
affine variety U , we let W0 be the affine covering of U that is obtained by covering each V i by localizations
of U . We substitute the covrings Vi and Wi into the diagram (??), and add zeros on the left to each row of the
diagram. The sheaf property to be verified is that the top row of this diagram is exact. Since W0 is an affine
covering of the affine variety U , the bottom row is exact. Because W0 covers V0, W1 covers V1 as well. So
the maps a and b are injective. It follows that the top row is exact.

Step 3. definition of M̃

We introduce some temporary notation: Suppose that a covering diagram U ← U0 ⇔ U1 and an O-

moduleM are given, and letM(U0)
βU−→ M(U1) be the difference map (6.4.10). We denote the kernel of

βU by KU.

Let Y be an open subset of X . We define M̃(Y ) in a fairly obvious way: We choose an affine covering
V0 = {V 1, ...V r} of Y , and we define M̃(Y ) = KV. When we show that KV doesn’t depend on the
covering V0, it will follow that M̃ is well-defined, and that it has the sheaf property.

As explained in Step 2, it suffices to relate the covering V to a covering W0 = {V 1, ..., V r,W} that is
obtained by adding one affine open subset W of Y to V0. The inclusion V0 ⊂W0 defines a mapM(V0)→
M(W0), and a mapM(V1)→M(W1). It gives us a map KW → KV. We will show that, for any element
(v1, ..., vr) in the kernel KV, there is a unique element w inM(W ) such that (v1, ..., vr, w) is in the kernel
KW. This will show that KW and KV are isomorphic.

Let W i = V i ∩W , i = 1, ..., r. Since V0 is an affine covering of Y , W0 = {W i} is an affine covering
of W . Let wi denote the restriction of the section vi to W i. Since (v1, ..., vr) is in the kernel of βV, i.e.,
vi = vj on V ij . Then it is also true that wi = wj on the smaller open set W ij . So (w1, ..., wr) is in the kernel
KW, and since W0 is an affine covering of the affine variety W , Step 2 tells us that KW =M(W ). So there
is a unique element w inM(W ) that restricts to wi on W i for each i. We show that, with this element w,
(v1, ..., vr, w) is in the kernel of βW.

When the subsets in the family W1 are listed in the order

W1 = {V i ∩ V j}ij , {W ∩ V j}j , {V i ∩W}i, {W ∩W}

the difference map βW sends (v1, ..., vr, w) to
[
(vj−vi), (vj−w), (w − vi), 0

]
, the sections being restricted

appropriately. Here vi = vj on V i ∩ V j because (v1, ..., vr) is in the kernel KV. By definition, vj = wj = w
on V j ∩W = W j .

It remains to prove that M̃ is a functor. This proof has no interesting features, and we won’t use the
functorality, so we omit it. �
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6.10 Exercises
chapsixex 6.10.1.xsect-

snotfin
Let U be the complement of the origin in the affine plane X = SpecA, A = C[x, y].

(i) LetM be theOX-module that correponds to theA-moduleM = A/yA. Show thatM is a finiteO-module,
but thatM(U) isn’t a finite module over the ring O(U).

(ii) Show that, for any k ≥ 1, the homomorphism O× (x,y)t−→ O is surjective on U , but that the map of sections
on U isn’t surjective.

6.10.2.xsimple-
mod

An R-modue is simple if it is nonzero and if it has no proper submodules. Prove that a simple module
over a finite type C-algebra has dimension 1.

6.10.3.xcohprop-
sheaf

Prove that if an O-module has the coherence property for affine open sets, then it has the sheaf
property for affine coverings of affine open sets.

6.10.4.xcomplvin Let V be the complement of a finite set in Pd. Determine OP(V ).

6.10.5.xMisten-
sor

Let U ′ ⊂ U be affine open subsets of a variety X , and letM be anOX -module. Say thatO(U) = A,
O(U ′) = A′,M(U) = M , andM(U ′) = M ′. Prove that M ′ = M ⊗A A′.

6.10.6.xinterscoh Show that if I and J are ideals of O, so is I ∩ J .

6.10.7.xlimM Let s be an element of a domain A, and let M be an A-module. Identify the limit of the directed set
M

s−→M
s−→ · · · is isomorphic.

6.10.8.xgenrel Let R = C[x0, x1, x2], and let f = x2
0 − x1x2.

(i) Determine generators and defining relations for the ring R{f} of homogeneous fractions of degree zero
whose denominators are powers of f .
(ii) Prove that the twisting module O(1) isn’t a free module on the open subset U{f} of P2 at which f 6= 0.

6.10.9.xascchcd Let X be a variety. Prove that every strictly ascending chain of submodules of a finite O-moduleM
is finite.

6.10.10.notfree Let R = C[x, y, z], let X = P2, and let s = z2 − xy. Determine the degree one part of Rs, and
prove that O(1) is not free on Xs.

6.10.11.xsectOn What are the sections of O(nH) on an open set V that isn’t contained in any Ui?

6.10.12.xtwistsi-
som

In the description (6.5.4) of modules over the projective line, we considered the standard affine open
sets U0 and U1. Interchanging these open sets changes the variable t to t−1, and it changes the matrix P
accordingly. Does it follow, when the rank is 1, that the O-modules defined by tk and by t−k are isomorphic?

6.10.13.xmultf Describe the kernel and cokernel of the multiplication mmap M(k)
f−→ M(k + d) when f is a

homogeneous polynomial of degree d.

6.10.14.sectwist Let X = P2. What are the sections of the twisting module OX(n) on the open complement of the
line {x1 + x2 = 0}?

6.10.15.xmultin-
ject

Let M be a finite module over a finite-type domain A, and let α be a nonzero element of A. Prove
that for all but finitely many complex numbers c, scalar multiplication by s = α − c defines an injective map
M

s−→M .

6.10.16.coherprop Prove the following coherence property of an O-module: Let Y be an open subset of a variety X ,
let s be a nonzero regular function on Y , and let Ys be a localization. IfM is an OX -module, thenM(Ys) is
the localizationM(Y )s of M(Y ). In particular, OX(Us) is the localization OX(U)s. (This is a requirement
for an O-module, when Y is affine.)

6.10.17.gendirim Using Exercise 6.10.16, extend the definition of direct image to an arbitrary morphism of varieties.
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Chapter 7 COHOMOLOGY

cohomol-
ogy 7.1 Cohomology

7.2 Complexes
7.3 Characteristic Properties
7.4 Existence of Cohomology
7.5 Cohomology of the Twisting Modules
7.6 Cohomology of Hypersurfaces
7.7 Three Theorems about Cohomology
7.8 Bézout’s Theorem
7.9 Uniqueness of the Coboundary Maps
7.10 Exercises

7.1 Cohomology
cohqcoh

This chapter is adapted from Serre’s classic 1956 paper “Faisceaux Algébriques Cohérents”, in which Serre
showed how the Zariski topology could be used to define cohomology of O-modules.

To save time, we define cohomology only for O-modules. Anyway, the Zariski topology has limited use
for cohomology with other coefficients. For instance, the constant coefficient cohomology Hq(X,Z) is zero
for all q > 0, when X is given the Zariski topology.

LetM be an O-module on a variety X . The zero-dimensional cohomology ofM is the spaceM(X) of
its global sections. When speaking of cohomology, one denotes that space by H0(X,M).

The functor
(O-modules) H0

−→ (vector spaces)

that carries an O-moduleM to H0(X,M) is left exact: If

(7.1.1) 0→M→N → P → 0SS

is a short exact sequence of O-modules, the associated sequence of global sections

(7.1.2) 0→ H0(X,M)→ H0(X,N )→ H0(X,P)globalsec-
tions

is exact, but unless X is affine, the map H0(X,N )→ H0(X,P) needn’t be surjective (6.5.8). The cohomol-

ogy on X is a sequence of functors (O-modules) Hq−→ (vector spaces),

H0, H1, H2, . . .

beginning with H0, one for each dimension, that compensates for the lack of exactness in the way that is
explained in (a) and (b) below:

(a) To every short exact sequence (7.1.1) of O-modules, there is an associated long exact cohomology se-
quence

(7.1.3) 0→ H0(X,M)→ H0(X,N )→ H0(X,P)
δ0−→HSS
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δ0−→ H1(X,M)→ H1(X,N )→ H1(X,P)
δ1−→ . . .

. . .
δq−1

−→ Hq(X,M)→ Hq(X,N )→ Hq(X,P)
δq−→ · · ·

The maps δq in this sequence are called the coboundary maps.

(b) A map of exact sequences of O-modules, a diagram

0 −−−−→ M −−−−→ N −−−−→ P −−−−→ 0y y y
0 −−−−→ M′ −−−−→ N ′ −−−−→ P ′ −−−−→ 0

whose rows are short exact sequences of O-modules, induces a map of cohomology sequences

(7.1.4)

deltadia-
gram

· · · −−−−→ Hq(X,N ) −−−−→ Hq(X,P)
δq−−−−→ Hq+1(X,M) −−−−→ Hq+1(X,N ) −−−−→ · · ·y y y y

· · · −−−−→ Hq(X,N ′) −−−−→ Hq(X,P ′) δq−−−−→ Hq+1(X,M′) −−−−→ Hq+1(X,N ) −−−−→ · · ·

A sequence of functors Hq , q = 0, 1, 2, ... from O-modules to vector spaces that comes with long
cohomology sequences (a) for every short exact sequence of O-modules and that satisfies (b) is called a
cohomological functor. Cohomology is a cohomological functor.

Most of Diagram 7.1.4 comes from the fact that the Hq are functors. The only additional property is that
the squares

(7.1.5) deltadia-
gramtwo

Hq(X,P)
δq−→Hq+1(X,M)y y

Hq(X,P ′) δq−→Hq+1(X,M′)

that involve the coboundary maps δ commute.

Unfortunately, there is no canonical construction of cohomology. We present a construction in Section 7.4,
but it isn’t canonical. One needs to look at an explicit construction sometimes, but most of the time, it is best
to work with the characteristic properties of cohomology that are described below, in Section 7.3.

The one-dimensional cohomology H1 has an interesting interpretation that you can read about if you like.
We won’t use it. The cohomology in dimension greater than one has no useful direct interpretation.

7.2 Complexes
complexes

Complexes are used in the construction of cohomology, so we discuss them here.
A complex V • of vector spaces is a sequence of homomorphisms of vector spaces

(7.2.1) · · · → V n−1 dn−1

−→ V n
dn−→ V n+1 dn+1

−→ · · · complex-
one

indexed by the integers, such that the composition dndn−1 of adjacent maps is zero, which means that, for
every n, the image of dn−1 is contained in the kernel of dn. The q-dimensional cohomology of the complex
V • is the quotient

(7.2.2) Cq(V •) = (ker dq)/(im dq−1). cohcoplx-
one

A complex whose cohomology is zero is an exact sequence.
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A finite sequence of homomorphisms V k dk−→ V k+1 → · · · d
r−1

−→ V r such that the compositions didi−1 are
zero for i = k, ..., r−1, can be made into a complex, defining V n = 0 for all other integers n. For example, a

homomorphism of vector spaces V 0 d0−→ V 1 can be made into the complex

· · · → 0→ V 0 d0−→ V 1 → 0→ · · ·

For this complex, the cohomology C0 is the kernel of d0, C1 is its cokernel, and Cq is zero for all other q.
In the complexes that arise here, V q will be zero when q < 0.

A map V •
ϕ−→ V ′• of complexes is a collection of homomorphisms V n

ϕn−→ V ′n making a diagram

−−−−→ V n−1 dn−1

−−−−→ V n
dn−−−−→ V n+1 −−−−→ · · ·

ϕn−1

y ϕn
y ϕn+1

y
−−−−→ V ′n−1 d′n−1

−−−−→ V ′n
d′n−−−−→ V ′n+1 −−−−→ . . .

A map of complexes induces maps on the cohomology

Cq(V •)→ Cq(V ′
•
)

because ker dq maps to ker d′q and im dq maps to im d′q .
An exact sequence of complexes

(7.2.3) · · · → V •
ϕ−→ V ′

• ψ−→ V ′′
• → · · ·exseqcplx

is a sequence of maps in which the sequences

(7.2.4) · · · → V q
ϕq−→ V ′

q ψq−→ V ′′
q → · · ·

are exact for every q.

7.2.5. Proposition.cohcplx
Let 0 → V • → V ′• → V ′′• → 0 be a short exact sequence of complexes. For every q, there are maps
Cq(V ′′•)

δq−→ Cq+1(V •) such that the sequence

0→ C0(V •)→ C0(V ′
•
)→ C0(V ′′

•
)

δ0−→ C1(V •)→ C1(V ′
•
)→ C1(V ′′

•
)

δ1−→ C2(V •)→ · · ·

is exact.

The proof of the proposition is below.
This long exact sequence is the cohomology sequence associated to the short exact sequence of complexes.

The set of functors {Cq} is a cohomological functor on the category of complexes.

7.2.6. Example.snakeco-
homology

We make the Snake Lemma 2.1.20 into a cohomology sequence. Suppose given a diagram

V
u−−−−→ V ′ −−−−→ V ′′ −−−−→ 0

f

y f ′
y f ′′

y
0 −−−−→ W −−−−→ W ′ −−−−→

v
W ′′

with exact rows. We form the complex V • : 0 → V
f−→ W → 0 with V in degree zero, so that C0(V •) =

ker f and C1(V •) = coker f , and we do the analogous thing for the maps f ′ and f ′′. Having done that, the
Snake Lemma becomes an exact sequence

C0(V •)→ C0(V ′
•
)→ C0(V ′′

•
)→ C1(V •)→ C1(V ′

•
)→ C1(V ′′

•
) �
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proof of Proposition 7.2.5. Given a complex V •:

· · · → V q−1 dq−1

−→ V q
dq−→ V q+1 dq+1

−→ · · ·

let Bq be the image of dq−1, let Dq be the cokernel of dq−1, the quotient V q/Bq , and let Zq be the kernel of
dq . The cohomology Cq(V •) is is Zq/Bq .

7.2.7. Lemma. factordq(i) With the above notation, there is a map Dq fq−→ Zq+1 such that V q dq−→ V q+1 becomes a
composition of the three maps

V q
πq−→ Dq fq−→ Zq+1 iq+1

−→ V q+1

where πq is the projection from V q to its quotient Dq and iq+1 is the inclusion of Zq+1 into V q+1.
(ii) With fq as in (i),

Cq(V •) = ker fq and Cq+1(V •) = coker fq

proof. (i) The image Bq+1 of dq is contained in Zq+1, and the kernel Zq of dq contains Bq . So dq factors as
indicated.

(ii) Since the kernel Zq of dq contains Bq , and since Dq = V q/Bq , the kernel of fq is Zq/Bq = Cq . The
image Bq+1 of dq is also the image of fq in Zq+1. So the cokernel of fq is Zq+1/Bq+! = Cq+1. �

Let 0 → V • → V ′• → V ′′• → 0 be a short exact sequence of complexes, as in Proposition 7.2.5. We
apply Lemma 7.2.7. In the diagram below, the top row is exact because Dq , D′q , D′′q are cokernels, and
cokernel is a right exact operation. The bottom row is exact because Zq , Z ′q , Z ′′q are kernels, and kernel is
left exact:

Dq −−−−→ D′q −−−−→ D′′q −−−−→ 0

fq
y f ′q

y f ′′q
y

0 −−−−→ Zq+1 −−−−→ Z ′q+1 −−−−→ Z ′′q+1

The Snake Lemma gives us an exact sequence

Cq(V •)→ Cq(V ′
•
)→ Cq(V ′′

•
)

δq−→ Cq+1(V •)→ Cq+1(V ′
•
)→ Cq+1(V ′′

•
)

The cohomology sequence associated to the short exact sequence of complexes is obtained by splicing these
sequences together. �

The coboundary maps δq in cohomology sequences are related in a natural way. If

0 −−−−→ U• −−−−→ U ′• −−−−→ U ′′• −−−−→ 0y y y
0 −−−−→ V • −−−−→ V ′• −−−−→ V ′′• −−−−→ 0

is a diagram of maps of complexes whose rows are short exact sequences of complexes, the diagrams

Cq(U ′′•)
δq−→Cq+1(U•)y y

Cq(V ′′•)
δq−→Cq+1(V •)

commute. It isn’t difficult to check this. Thus a map of short exact sequences induces a map of cohomology
sequences.
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7.3 Characteristic Properties
charpropcharprop

The cohomology of O-modules, which is a sequence of functors H0, H1, H2, · · ·

(O-modules) Hq−→ (vector spaces)

is characterized by the three properties below. The first two have already been mentioned.

(7.3.1)charpro-
pone

Characteristic Properties of Cohomology

1. H0(X,M) is the spaceM(X) of global sections ofM.
2. The sequence H0, H1, H2, · · · is a cohomological functor on O-modules: A short exact sequence of
O-modules produces a long exact cohomology sequence.

3. Let Y
f−→ X be the inclusion of an affine open subset Y into X , letN be anOY -module, and let f∗N be

its direct image on X . The cohomology Hq(X, f∗N ) is zero for all q > 0.

Note. When X is an affine variety, the global section functor is exact: If 0 →M→ N → P → 0 is a short
exact sequence of O-modules on X , the sequence

0→ H0(X,M)→ H0(X,N )→ H0(X,P)→ 0

is exact (6.2.3). There is no need for the higher cohomology H1, H2, · · · when X is affine. One may as well
define Hq(X, ·) = 0 when X is affine and q > 0. This is the third characteristic property for the identity
map X → X , and the third property is based on this observation. Intuitively, the third property tells us that
allowing poles on the complement of an affine open set kills cohomology in positive dimension.

7.3.2. Theorem.existco-
hom

There exists a cohomology theory with the properties (7.3.1), and it is unique up to unique
isomorphism.

The proof is in the next section.

7.3.3. Corollary.cohze-
roaffine

If X is an affine variety, Hq(X,M) = 0 for all O-modulesM and all q > 0.

This follows when one applies the third characteristic property to the identity map X → X . �

We begin with an example, which shows how the third characteristic property can be used.

7.3.4. Example.thirdex let j be inclusion of the standard affine U0 into X = P. Then lim−→nO(nH) ≈ j∗OU0 , where
MU0 is the restriction ofM to U0 (6.8.13). The third property tells us that the cohomology Hq of the direct
image j∗O0

U is zero when q > 0. We will see below (7.4.24) that cohomology commutes with direct limits.
Therefore lim−→nH

q(X,OX(nH)) and lim−→nH
q(X,OX(n)) are zero when q > 0. �

7.3.5. Lemma.cohdirsum LetM and N be O-modules on a variety X . The cohomology of the direct sumM⊕N is
canonically isomorphic to the direct sum Hq(X,M)⊕Hq(X,N ).

In this statement, one could substitute just about any functor for Hq . And, since the direct sum and the direct
product are equal, one could substitute × for ⊕
proof. We have homomorphisms of O-modules M i1−→ M ⊕ N π1−→ M and analogous homomorphisms
N i2−→ M ⊕ N π2−→ N . The direct sum can be characterized by these maps, together with the relations
π1i1 = idM, π2i2 = idN , π2i1 = 0, π1i2 = 0, and i1π1 + i2π2 = idM⊕N . The proof of this is an exercise.
Applying the functor Hq gives analogous homomorphisms relating Hq(M), Hq(N ), and Hq(M ⊕ N ).
Therefore Hq(M⊕N ) ≈ Hq(M)⊕Hq(N ). �
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7.4 Existence of Cohomology
constrcoh

The proof of existence and uniqueness of cohomology are based on the following facts:

• The intersection of two affine open subsets of a variety is an affine open set.

• A sequence · · · → M → N → P → · · · of O-modules on a variety X is exact if and only if, for every
affine open subset U , the sequence of sections · · · → M(U) → N (U) → P(U) → · · · is exact. (This is the
definition of exactness.)

We begin by choosing an arbitrary affine covering U = {Uν} of our varietyX by finitely many affine open
sets Uν , and we use this covering to describe the cohomology. When we have shown that the cohomology is
unique, we will know that it doesn’t depend on our choice of covering.

Let U
j−→ X denote the family of inclusions Uν

jν−→ X of our chosen affine open sets into X . If M
is an O-module, RM will denote the O-module

∏
jν∗MUν , whereMUν denotes the restriction ofM to Uν

(6.6.12). We can also write
∏
jν∗MUν as j∗MU. As has been noted, there is a canonical mapM→ jν∗MUν ,

and therefore a canonical mapM→RM (6.6.14).

7.4.1. Lemma. defcalr(i) Let X ′ be an open subset of X . The module RM(X ′) of sections of RM on X ′ is
the product

∏
νM(X ′ ∩ Uν). The space of global sections RM(X), which is H0(X,RM), is the product∏

νM(Uν).
(ii) The canonical mapM→RM is injective. Thus, if SM denotes the cokernel of that map, there is a short
exact sequence of O-modules

(7.4.2) MRze-
roMone

0→M→RM → SM → 0

(iii) For any cohomology theory with the characteristic properties and for any q > 0, Hq(X,RM) = 0.

proof. (i) This is seen by going through the definitions:

R(X ′) =
∏
ν [jν∗MUν ](X ′) =

∏
νMUν (X ′ ∩ Uν) =

∏
νM(X ′ ∩ Uν).

(ii) Let X ′ be an open subset of X . The map M(X ′) → RM(X ′) is the product of the restriction maps
M(X ′)→M(X ′ ∩ Uν). Because the open sets Uν cover X , the intersections X ′ ∩ Uν cover X ′. The sheaf
property ofM tells us that the mapM(X ′)→∏

νM(X ′ ∩ Uν) is injective.

(iii) This follows from the third characteristic property. �

7.4.3. Lemma. Rcminjec-
tive

(i) A short exact sequence 0→M→N → P → 0 of O-modules embeds into a diagram

(7.4.4)

M −−−−→ N −−−−→ Py y y
RM −−−−→ RN −−−−→ RPy y y
SM −−−−→ SN −−−−→ SP

ttdiagr

whose rows and columns are short exact sequences. (We have suppressed the surrounding zeros.)
(ii) The sequence of global sections 0→ RM(X)→ RN (X)→ RP(X)→ 0 is exact.

proof. (i) We are given that the top row of the diagram is a short exact sequence, and we have seen that the
columns are short exact sequences. To show that the middle row

(7.4.5) 0→ RM → RN → RP → 0 Rsequence

is exact, we must show that ifX ′ is an affine open subset ofX , the sections onX ′ form a short exact sequence.
The sections are explained in Lemma 7.4.1 (i). Since products of exact sequences are exact, we must show
that the sequence

0→M(X ′ ∩ Uν)→ N (X ′ ∩ Uν)→ P(X ′ ∩ Uν)→ 0
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is exact. This is true because X ′ ∩ Uν is an intersection of affine opens, and is therefore affine.
Now that we know that the first two rows of the diagram are short exact sequences, the Snake Lemma tells

us that the bottom row is a short exact sequence.

(ii) The sequence of of global sections referred to in the statement is the product of the sequences

0→M(Uν)→ N (Uν)→ P(Uν)→ 0

These sequences are exact because the open sets Uν are affine. �

(7.4.6)uniquecoh uniqueness of cohomology

Suppose that a cohomology with the characteristic properties (7.3.1) is given, and letM be an O-module.
The cohomology sequence associated to the sequence 0→M→RM → SM → 0 is

0→ H0(X,M)→ H0(X,RM)→ H0(X,SM)
δ0−→ H1(X,M)→ H1(X,RM)→ · · ·

Lemma 7.4.1 (iii) tells us that Hq(X,RM) = 0 when q > 0. So this cohomology sequence breaks up into an
exact sequence

(7.4.7) 0→ H0(X,M)→ H0(X,RM)→ H0(X,SM)
δ0−→ H1(X,M)→ 0hone

and isomorphisms

(7.4.8) 0→ Hq(X,SM)
δq−→ Hq+1(X,M)→ 0hq

for every q > 0. The first three terms of the sequence (7.4.7), and the arrows connecting them, depend on
our choice of covering of X , but the important point is that they don’t depend on the cohomology. So that
sequence determines H1(X,M) up to unique isomorphism as the cokernel of a map that is independent of the
cohomology. This this is true for every O-moduleM, including for the module SM. Therefore it is also true
that H1(X,SM) is determined uniquely. This being so, H2(X,M) is determined uniquely for everyM, by
the isomorphism (7.4.8), with q = 1. The isomorphisms (7.4.8) determine the rest of the cohomology up to
unique isomorphism by induction on q. �

(7.4.9)existcoh construction of cohomology

One can use the sequence (7.4.2) and induction to construct cohomology, but it seems clearer to proceed
by iterating the construction ofRM.

LetM be an O-module. We rewrite the exact sequence (7.4.2), labelingRM asR0
M, and SM asM1:

(7.4.10)MtoR-
toMone

0→M→R0
M →M1 → 0

and we repeat the construction withM1. LetR1
M = R0

M1 (= j∗M1
U), so that there is an exact sequence

(7.4.11)cmonese-
quence

0→M1 → R1
M →M2 → 0

analogous to the sequence (7.4.10), withM2 = R1
M/M1. We combine the sequences (7.4.10) and (7.4.11)

into an exact sequence

(7.4.12) 0→M→R0
M → R1

M →M2 → 0RMone

and we letR2
M = R0

M2 . Continuing in this way, we construct modulesRkM that form an exact sequence

(7.4.13) 0→M→R0
M → R1

M → R2
M → · · ·RM

The next lemma follows by induction from Lemma 7.4.1 (iii) and Lemma 7.4.3 (i,ii).
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7.4.14. Lemma. Rcmexact
(i) Let 0→M→N → P → 0 be a short exact sequence of O-modules. For every n, the sequences

0→ RnM → RnN → RnP → 0

are exact, and so are the sequences of global sections

0→ RnM(X)→ RnN (X)→ RnP(X)→ 0

(ii) If H0, H1, . . . is a cohomology theory, then Hq(X,RnM) = 0 for all n and all q > 0. �

An exact sequence such as (7.4.13) is called a resolution ofM, and becauseHq(X,RnM) = 0 when q > 0,
it is an acyclic resolution.

Continuing with the proof of existence, we consider the complex ofO-modules that is obtained by omitting
the termM from (7.4.13). LetR•M denote that complex:

(7.4.15) R•M = 0→ R0
M → R1

M → R2
M → · · · Rse-

quencetwo
The complexR•M(X) of its global sections

(7.4.16) 0→ R0
M(X)→ R1

M(X)→ R2
M(X)→ · · · RMX

can also be written as

0→ H0(X,R0
M)→ H0(X,R1

M)→ H0(X,R2
M)→ · · ·

The complexR•M becomes the resolution (7.4.13) when the moduleM is inserted. So it is an exact sequence
except atR0

M. However, the global section functor is only left exact, and the sequence (7.4.16) of global sec-
tionsR•M(X) needn’t be exact anywhere. It is a complex though, becauseR•M is a complex. The composition
of adjacent maps is zero.

Recall that the cohomology of a complex 0 → V 0 d0−→ V 1 d1−→ · · · of vector spaces is Cq(V •) =
(ker dq)/(im dq−1), and that {Cq} is a cohomological functor on complexes (7.2.5).

7.4.17. Definition. definecohThe cohomology of an O-moduleM is the cohomology of the complexR•M(X):

Hq(X,M) = Cq(R•M(X))

Thus if we denote the maps in the complex (7.4.16) by dq:

0→ R0
M(X)

d0−→ R1
M(X)

d1−→ R2
M(X)→ · · ·

then Hq(X,M) = (ker dq)/(im dq−1).

7.4.18. Lemma. affineco-
hzero

Let X be an affine variety. With cohomology defined as above, Hq(X,M) = 0 for all
O-modulesM and all q > 0.

proof. When X is affine, the sequence of global sections of the exact sequence (7.4.13) is exact. �

To show that our definition gives the unique cohomology, we verify the three characteristic properties.
Since the sequence (7.4.13) is exact and since the global section functor is left exact,M(X) is the kernel of
the map R0

M(X) → R1
M(X). This kernel is also equal to C0(R•M(X)), so our cohomology has the first

property: H0(X,M) =M(X).

To show that we obtain a cohomological functor, we apply Lemma 7.4.14 to conclude that, for a short
exact sequence 0→M→N → P → 0, the spaces of global sections

(7.4.19) 0→ R•M(X)→ R•N (X)→ R•P(X)→ 0, crtwo

form an exact sequence of complexes. The cohomology Hq(X, · ) is a cohomological functor because coho-
mology of complexes is a cohomological functor. This is the second characteristic property.
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We make a digression before verifying the third characteristic property.

Let Y
f−→ X be a morphism of varieties. Let U

j−→ X be the inclusion of an open subvariety into X and
let V be the inverse image f−1U , which is an open subvariety of Y . These varieties and maps form a diagram

(7.4.20)jstarfstar

V
i−−−−→ Y

g

y f

y
U

j−−−−→ X

When we restrict the direct image f∗N of N to U , we obtain an OU -module [f∗N ]U . We can obtain an
OU -module in a second way: First restrict the module N to the open subset V of Y , and then take its direct
image. This gives us the OU -module g∗[NV ].

7.4.21. Lemma.jstarfs-
tartwo

The OU -modules g∗[NV ] and [f∗N ]U are equal.

proof. Let U ′ be an open subset of U , and let V ′ = g−1U ′. Then

[f∗N ]U (U ′) = [f∗N ](U ′) = N (V ′) = NV (V ′) = [g∗[NV ]](U ′) �

7.4.22. Proposition.affinedi-
rectimage

Let Y
f−→ X be an affine morphism, and letN be an OY -module. Let Hq(X, · ) be the

cohomology defined as in (7.4.17), and let Hq(Y, · ) be the cohomology that is defined in the analogous way,
using the covering V of Y . Then Hq(X, f∗N ) is isomorphic to Hq(Y,N ).

proof. This proof requires untangling the notation. Except for that, it is easy.
To compute the cohomology of f∗N on X , we substituteM = f∗N into (7.4.17):

Hq(X, f∗N ) = Cq(R•f∗N (X)).

To compute the cohomology of N on Y , we let

R′0N = i∗[NV]

where i is as in Diagram 7.4.20, and we continue, to construct a resolution 0 → N → R′0N → R′1N → · · · .
The prime is there to remind us thatR′ is defined using the covering V of Y . LetR′•N be the complex that is
obtained by replacing the term N by zero. Then

Hq(Y,N ) = Cq(R′•N (Y )).

It suffices to show that the complexes of global sectionsR•f∗N (X) andR′•N (Y ) are isomorphic. If so, we will
have

Hq(X, f∗N ) = Cq(R•f∗N (X)) ≈ Cq(R′•N (Y )) = Hq(Y,N )

as required.
By definition of the direct image, [f∗R′qN ](X) = R′qN (Y ). So we must show that [Rqf∗N ](X) is iso-

morphic to [f∗R′qN ](X), and it suffices to show that Rqf∗N ≈ f∗R′qN . We look back at the definition of the
modulesR0 in the form (7.4.10). On Y , the analogous sequence for N is

0→ N → R′0N → N 1 → 0

where R′0N = i∗[NV], i being the map V → Y . When f is an affine morphism, the direct image of this
sequence

0→ f∗N → f∗R′0N → f∗N 1 → 0

is exact. We substitute U = U nd V = V into Diagram 7.4.20. Then

f∗R′0N = f∗i∗[NV] = j∗g∗[NV]
(1)−→ j∗[f∗N ]U = R0

f∗N
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the equality (1) being Lemma 7.4.21. So f∗R′0N = R0
fN

. Now induction on q completes the proof. �

We go back to verify the third characteristic property of cohomology, which is that when Y
f−→ X is the

inclusion of an affine open subset, Hq(X, f∗N ) = 0 for all OY -modules N and all q > 0. The inclusion
of an affine open set is an affine morphism, so Hq(Y,N ) = Hq(X, f∗N ) (7.4.22), and since Y is affine,
Hq(Y,N ) = 0 for all q > 0 (7.4.18). �

7.4.23. Corollary. cohextbyOLet Y i−→ X be the inclusion of a closed subvariety Y into a variety X , and let N be an
OY -module. With cohomology defined as above, Hq(Y,N ) and Hq(X, i∗N ) are isomorphic for every q. �

Proposition 7.4.22 is one of the places where a specific construction of cohomology is used. The charac-
teristic properties don’t apply directly. The next proposition is another such place.

7.4.24. Lemma. cohlimitCohomology is compatible with limits of directed sets of O-modules: Hq(X, lim−→M•) ≈
lim−→Hq(X,M•) for all q.

proof. The direct and inverse image functors and the global section functor are all compatible with direct
limits, and lim−→ is exact (6.5.17). So the moduleRqlim−→M• that is used to compute the cohomology of lim−→M•
is isomorphic to lim−→ [RqM• ], and Rqlim−→M•(X) is isomorphic to lim−→ [RqM• ](X). �

7.5 Cohomology of the Twisting Modules
cohprojsp

As we will see, the cohomology Hq(Pn,O(d)) of the twisting modules O(d) on Pn is zero for most values of
q. This fact will help to determine the cohomology of other modules.

Lemma 7.4.18 about vanishing of cohomology on an affine variety, and Lemma 7.4.22 about the direct
image via an affine morphism, were stated using a particular affine covering. Since we know that cohomology
is unique, that particular covering is irrelevant. Though it isn’t strictly necessary, we restate those lemmas here
as a corollary:

7.5.1. Corollary. affineco-
hzerotwo

(i) On an affine variety X , Hq(X,M) = 0 for all O-modulesM and all q > 0.

(ii) Let Y
f−→ X be an affine morphism. If N is an OY -module, then Hq(X, f∗N ) and Hq(Y,N ) are

isomorphic. If Y is an affine variety, Hq(X, f∗N ) = 0 for all q > 0. �

One case to which (ii) applies is that f is the inclusion of a closed subvariety Y into a variety X:

7.5.2. Corollary. cohXcohPLet X i−→ Pn be the embedding of a projective variety into projective space, and let
M be an OX -module. For all q, the cohomology Hq(X,M) ofM on X is isomorphic to the cohomology
Hq(Pn, i∗M) of its extension by zero to Pn. �

Recall also that, on projective space,M(d) ≈M⊗OO(d). IfM is anOX -module on a projective variety
X , its twistM(d) is defined to be the OX -module that corresponds to the twist of its extension by zero i∗M,
which is [i∗M]⊗O O(d).

LetM be a finite O-module on projective space Pn. The twisting modules O(d) and the twistsM(d) =
M⊗O O(d) are isomorphic to O(dH) andM(dH), respectively (6.8.11) and there are maps of directed sets

O ⊂−−−−→ O(H)
⊂−−−−→ O(2H)

⊂−−−−→ · · ·

1

y x0

y x2
0

y
O x0−−−−→ O(1)

x0−−−−→ O(2)
x0−−−−→ · · ·

,

M −−−−→ M(H) −−−−→ M(2H) −−−−→ · · ·

1

y x0

y x2
0

y
M x0−−−−→ M(1)

x0−−−−→ M(2)
x0−−−−→ · · ·

The second diagram is obtained from the first one by tensoring withM.
Let U denote the standard affine open subset U0 of Pn, and let j be the inclusion of U into Pn. Then

lim−→dO(dH) ≈ j∗OU and lim−→dM(dH) ≈ j∗MU (6.8.15).
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7.5.3. Corollary.Onse-
quencetwo

(i) Let j denote the inclusion U j−→ Pn. For all q > 0, Hq(Pn, j∗OU) = 0 and
Hq(Pn, j∗MU) = 0.
(ii) For all projective varieties X , for all O-modules M and for all q > 0, lim−→dH

q(X,O(d)) = 0 and
lim−→dH

q(X,M(d)) = 0.

proof. (i) This follows from the facts that the inclusion j is an affine morphism and that U is affine.

(ii) This follows from (i) becauseM(d) is isomorphic toM(dH), and cohomology is compatible with direct
limits (7.4.24). �

7.5.4. Notation.dimnota-
tion

IfM is an O-module, we denote the dimension of Hq(X,M) by hqM, or by hq(X,M) if
there is ambiguity about the variety. We can write hqM =∞ if the dimension is infinite. However, in Section
7.7, we will see that, whenM is a finite O-module on a projective variety X , the dimension hq(X,M) will
be finite for every q. �

7.5.5. Theorem.cohOd

(i) For d ≥ 0, h0(Pn,O(d)) =
(
d+n
n

)
and hq(Pn,O(d)) = 0 if q 6= 0.

(ii) For r > 0, hn(Pn,O(−r)) =
(
r−1
n

)
and hq(Pn,O(−r)) = 0 if q 6= n.

Note that, in (i), the case d = 0 asserts that h0(Pn,O) = 1 and hq(Pn,O) = 0 for all q > 0, while (ii) asserts
that hq(Pn,O(−1)) = 0 for all q, if 1 ≤ q.

proof. We have described the global sections of O(d) before: If d ≥ 0, H0(X,O(d)) is the space of homoge-
neous polynomials of degree d in the coordinate variables. Its dimension is

(
d+n
n

)
, and H0(Pn,O(d)) = 0 if

d < 0. (See (6.8.2).)

Let X = Pn, and let Y be the hyperplane at infinity {x = 0}, and let Y i−→ X be the inclusion of Y into
X .

(i) the case d ≥ 0.
By induction on n, we may assume that the theorem has been proved for Y , which is a projective space of

dimension n−1. We consider the exact sequence

(7.5.6)basecase 0→ OX(−1)
x0−→ OX → i∗OY → 0

and its twists

(7.5.7) 0→ OX(d−1)
x0−→ OX(d)→ i∗OY (d)→ 0Od

The twisted sequences are exact because they are obtained by tensoring (7.5.6) with the invertible O-modules
O(d). Because the inclusion i is an affine morphism, Hq(X, i∗OY (d)) ≈ Hq(Y,OY (d)).

The monomials of degree d in n+1 variables form a basis of the space of global sections ofOX(d). Setting
x0 = 0 and deleting terms that become zero gives us a basis of OY (d). Every global section of OY (d) is the
restriction of a global section of OX(d). So the sequence of global sections

0→ H0(X,OX(d−1))
x0−→ H0(X,OX(d))→ H0(Y,OY (d))→ 0

is exact. The cohomology sequence associated to (7.5.7) tells us that the map H1(X,OX(d− 1)) −→
H1(X,OX(d)) is injective.

By induction on the dimension of X , Hq(Y,OY (d)) = 0 for d ≥ 0 and q > 0. When combined with
the injectivity noted above, the cohomology sequence of (7.5.7) shows that the maps Hq(X,OX(d−1)) →
Hq(X,OX(d)) are bijective for every q > 0. Since the limits are zero (7.5.3), Hq(X,OX(d)) = 0 for all
d ≥ 0 and all q > 0.

(ii) the case d < 0, or r > 0.
We use induction on the integers r and n. We suppose the theorem proved for a given r, and we substitute
d = −r into the sequence (7.5.7):

(7.5.8) 0→ OX(−(r+1))
x0−→ OX(−r)→ i∗OY (−r)→ 0Or
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For r = 0, the exact sequence is 0 → OX(−1) → OX → i∗OY → 0. In the cohomology sequence
associated to that sequence, the terms Hq(X,OX) and Hq(Y,OY ) are zero when q > 0, and H0(X,OX) =
H0(Y,OY ) = C. Therefore Hq(X,OX(−1)) = 0 for every q. This proves (ii) for r = 1.

Our induction hypothesis is that, hn(X,O(−r)) =
(
r−1
n

)
and hq = 0 if q 6= n. By induction on n, we

may suppose that hn−1(Y,O(−r)) =
(
r−1
n−1

)
and that hq = 0 if q 6= n− 1.

Instead of displaying the cohomology sequence associated to (7.5.8), we assemble the dimensions of co-
homology into a table, in which the asterisks stand for entries that are to be determined:

(7.5.9) co-
hdimstwo

OX(−(r+1)) OX(−r) i∗OY (−r)

h0 : ∗ 0 0
...

...
...

...

hn−2 : ∗ 0 0

hn−1 : ∗ 0
(
r−1
n−1

)
hn : ∗

(
r−1
n

)
0

The second column is our induction hypothesis, and the third column is determined by induction on n. The
exact cohomology sequence shows that that

hn(X,O(−(r+1))) =
(
r−1
n−1

)
+
(
r−1
n

)
and that the other entries labeled with an asterisk are zero. The right side of this equation is equal to

(
r
n

)
. �

7.6 Cohomology of Hypersurfaces
cohhyper

We begin with the cohomology of a plane projective curve. Let X be the projective plane P2 and let C i−→ X
denote the inclusion of a plane curve C of degree k. The ideal of functions that vanish on C is isomorphic to
the twisting module OX(−k) (6.8.8) so one has an exact sequence

(7.6.1) coh-
planecurvetwo

0→ OX(−k)→ OX → i∗OC → 0

The table below displays the dimensions of the cohomology. Theorem 7.5.5 determines the first two columns,
and the cohomology sequence determines the last column.

(7.6.2) cohdims

OX(−k) OX i∗OC
h0 : 0 1 1

h1 : 0 0
(
k−1

2

)
h2 :

(
k−1

2

)
0 0

Since the inclusion of C into X is an affine morphism, hq(C,OC) = hq(X, i∗OC). Therefore

(7.6.3) coh-
planecurvethree

h0(C,OC) = 1, h1(C,OC) =
(
k−1

2

)
, and hq = 0 when q > 1

The dimension of H1(C,OC), which is
(
k−1

2

)
, is called the arithmetic genus of C. It is usually denoted by pa

or pa(C). We will see later (8.8.2) that the arithmetic genus of smooth curve is equal to its topological genus:
pa = g. But the arithmetic genus of a plane curve of degree k is equal to

(
k−1

2

)
when the curve C is singular

too.
We restate the results as a corollary.

7.6.4. Corollary. coh-
planecurve

For a plane curveC of degree k, h0OC = 1, h1OC =
(
k−1

2

)
= pa, and hq = 0 if q 6= 0, 1.

�

The fact that h0OC = 1 tells us that the only rational functions that are regular everywhere on C are the
constants. It follows that a plane curve is connected in the Zariski topology, and it hints at a fact to be proved
later, that a plane curve is connected in the classical topology, but it isn’t a proof of that fact.
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In the next section we will see that the cohomology of anyO-module on a projective curve is zero except in
dimensions 0 and 1. To determine cohomology of a curve that is embedded in a higher dimensional projective
space, we will need to know that its cohomology is finite-dimensional, which is Theorem 7.7.3 below, and that
it is zero in dimension greater than one, which is Theorem 7.7.1, also below. The cohomology of projective
curves will be studied again, in Chapter 8.

One can make a similar computation for the hypersurface Y in X = Pn defined by an irreducible homo-
geneous polynomial f of degree k. The ideal of such a hypersurface Y is isomorphic to OX(−k) (6.8.8), so
there is an exact sequence

0→ OX(−k)
f−→ OX → i∗OY → 0

Since we know the cohomology of OX(−k) and of OX , and since Hq(X, i∗OY ) ≈ Hq(Y,OY ), we can use
this sequence to compute the dimensions of the cohomology of OY .

7.6.5. Corollary.cohhyper-
surface

Let Y be a hypersurface of dimension d and degree k in a projective space of dimension
d+ 1. Then h0(Y,OY ) = 1, hd(Y,OY ) =

(
k−1
d+1

)
, and hq(Y,OY ) = 0 for all other q. �

In particular, when S is the surface in P3 defined by an irreducible polynomial of degree k, h0(S,OS) = 1,
h1(S,OS) = 0, h2(S,OS) =

(
k−1

3

)
, and hq = 0 if q > 2. When a projective surface S is embedded into a

higher dimensional projective space, it is still true that hq = 0 if q > 2, but h1(S,OS) may be nonzero. The
dimensions h1(S,OS) and h2(S,OS) are invariants of a surface S that are somewhat analogous to the genus
of a curve. In classical terminology, h2(S,OS) is the geometric genus pg and h1(S,OS) is the irregularity
q . The arithmetic genus pa of S is defined to be

(7.6.6) pa = h2(S,OS)− h1(S,OS) = pg − qpatwo

Therefore the irregularity of S is q = pg− pa. When S is a surface in P3, the irregularity is zero, and pg = pa.

In modern terminology, it might seem more natural to replace the arithmetic genus by the Euler charac-
teristic of the structure sheaf χ(OS), which is defined to be

∑
q(−1)qhqOS (see (7.7.7) below). The Euler

characteristic of the structure sheaf on a curve is

χ(OC) = h0(C,OC)− h1(C,OC) = 1− pa

and on a surface S it is

χ(OS) = h0(S,OS)− h1(S,OS) + h2(S,OS) = 1 + pa

But because of tradition, the arithmetic genus is still used quite often.

7.7 Three Theorems about Cohomology
threethms 7.7.1. Theorem.cohsup-

port
Let X be a projective variety, and letM be a finite OX -module. If the support ofM has

dimension k, then Hq(X,M) = 0 for all q > k. In particular, if X has dimension n, then Hq(X,M) = 0
for all q > n.

See Section 6.7 for the definition of support.

7.7.2. Theorem.largetwist LetM(d) be the twist of a finite OX -moduleM on a projective variety X . For sufficiently
large d and for all q > 0, Hq(X,M(d)) = 0 .

7.7.3. Theorem.findim LetM be a finite O-module on a projective variety X . The cohomology Hq(X,M) is a
finite-dimensional vector space for every q.

7.7.4. Notes.descind (a) As the first theorem asserts, the highest dimension in which cohomology of an OX -module
on a projective variety X can be nonzero is the dimension of X . It is also true that, on a projective variety X
of dimension n, there will beOX -modulesM such thatHn(X,M) 6= 0. In contrast, in the classical topology
on a projective variety X of dimnsion n, the constant coefficient cohomology H2n(Xclass,Z) isn’t zero. As
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we have mentioned, in the Zariski topology, the cohomology Hq(Xzar,Z) with constant coefficients is zero
for every q > 0. When X is an affine variety, the cohomology of any OX -module is zero for all q > 0.
(b) The third theorem tells us that the space of global sections H0(X,M) of a finiteO-module on a projective
variety is finite-dimensional. This is one of the most important consequences of the theorem, and it isn’t easy
to prove directly. Cohomology needn’t be finite-dimensional on a variety that isn’t projective. For example,
on an affine variety X = SpecA, H0(X,O) = A isn’t finite-dimensional unless X is a point. When X is
the complement of a point in P2, H1(X,O) isn’t finite-dimensional.
(c) The proofs have an interesting structure. The first theorem allows us to use descending induction to
prove the second and third theorems, beginning with the fact that Hk(X,M) = 0 when k is greater than the
dimension of X . �

In these theorems, we are given that X is a closed subvariety of a projective space Pn. We can replace
an OX -module by its extension by zero to Pn, since this doesn’t change the cohomology or the dimension of
support. The twistM(d) of an OX -module that is referred to in the second theorem is defined in terms of the
extension by zero. So we may assume that X is a projective space.

The proofs are based on the cohomology of the twisting modules (7.5.5) and on the vanishing of the limit
lim−→dH

q(X,M(d)) for q > 0 (7.5.3).

proof of Theorem 7.7.1 (vanishing in large dimension)
HereM is a finite O-module whose support S has dimension at most k. We are to show that Hq(X,M) = 0
when q > k. We choose coordinates so that the hyperplane H : x0 = 0 doesn’t contain any component of the
support S. Then H ∩S has dimension at most k−1. We inspect the multiplication mapM(−1)

x0−→M. The
kernel K and cokernelQ are annihilated by x0, so the supports of K andQ are contained in H . Since they are
also in S, the supports have dimension at most k−1. We can apply induction on k to them. In the base case
k = 0, the supports of K and Q will be empty, and their cohomology will be zero.

We break the exact sequence 0 → K → M(−1) → M → Q → 0 into two short exact sequences by
introducing the kernel N of the mapM→Q:

(7.7.5) kercoker0→ K →M(−1)→ N → 0 and 0→ N →M→Q→ 0

The induction hypothesis applies to K and to Q. It tells us that Hq(X,K) = 0 and Hq(X,Q) = 0, when
q ≥ k. For q > k, the cohomology sequences associated to the two exact sequences give us bijections

Hq(X,M(−1))→ Hq(X,N ) and Hq(X,N )→ Hq(X,M)

Therefore the composed map Hq(X,M(−1))→ Hq(X,M) is bijective, and this is true for everyO-module
whose support has dimension ≤ k, including for the O-moduleM(d). For every O-module whose support
has dimension at most k, every d, and every q > k, the canonical map Hq(X,M(d−1))→ Hq(X,M(d)) is
bijective. According to (7.5.3), the limit lim−→dH

q(X,M(d)) is zero. It follows that Hq(X,M(d)) = 0 for all
d when q > 0, and in particular, Hq(X,M) = 0.

proof of Theorem 7.7.2 (vanishing for a large twist)
LetM be a finiteO-module on a projective varietyX . We recall thatM(r) is generated by global sections

when r is sufficiently large (6.8.20). Choosing generators gives us a surjective map On → M(r). Let N be
the kernel of this map. When we twist the exact sequence 0 → N → On → M(r) → 0, we obtain short
exact sequences

(7.7.6) 0→ N (d)→ O(d)n →M(d+r)→ 0 threetwos

for every d ≥ 0. These sequences are useful because Hq(X,O(d)) = 0 when d ≥ 0 and q > 0 (7.5.5).

To prove Theorem 7.7.2, we must show this:

(*) LetM be a finite O-module. For sufficiently large d and for all q > 0, Hq(X,M(d)) = 0.

Let n be the dimension of X . By Theorem 7.7.1, Hq(X,M) = 0 for any O-moduleM, when q > n, In
particular, Hq(X,M(d)) = 0 when q > n. This leaves a finite set of integers q = 1, ..., n to consider, and it
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suffices to consider them one at a time. If (*) is true for each individual q, there will be a sufficiently large d
such that it is true for each of the integers q = 1, ..., n at the same time, and therefore for all positive integers
q, as the theorem asserts.

We use descending induction on q, the base case being q = n + 1, for which (*) is true with d = 0. We
suppose that (*) is true for every finite O-moduleM when q = p+ 1, and that p > 0, and we show that (*) is
true for every finite O-moduleM when q = p.

We substitute q = p into the cohomology sequence associated to the sequence (7.7.6). The relevant part of
that sequence is

→ Hp(X,O(d)n)→ Hp(X,M(d+r))
δp−→ Hp+1(X,N (d))→

Since p is positive, Hp(X,O(d)) = 0 for all d ≥ 0. The map δp is injective. We note that N is a finite
O-module. So our induction hypothesis applies to it. The induction hypothesis tells us that, when d is large,
Hp+1(X,N (d)) = 0 and thereforeHp(X,M(d+r)) = 0. The particular form of the integer d+r isn’t useful.
Our conclusion is that, for every finite O-moduleM, Hp(X,M(d1)) = 0 when d1 is large enough. �

proof of Theorem 7.7.3 (finiteness of cohomology)
This proof uses ascending induction on the dimension of support and descending induction on the degree

d of a twist. As has been mentioned, it isn’t easy to prove directly that the space H0(X,M) of global sections
is finite-dimensional.

LetM be an O-module whose support has dimension at most k. We go back to the sequences (7.7.5) and
their cohomology sequences, in which the supports of K andQ have dimension ≤ k−1. Ascending induction
on the dimension of support allows us to assume that Hr(X,K) and Hr(X,Q) are finite-dimensional for all
r. Denoting finite-dimensional spaces ambiguously by finite, the two cohomology sequences become

· · · → finite→ Hq(X,M(−1))→ Hq(X,N )→ finite→ · · ·

and
· · · → finite→ Hq(X,N )→ Hq(X,M)→ finite→ · · ·

The first of these sequences shows that if Hq(X,M(−1)) has infinite dimension, then Hq(X,N ) has infinite
dimension, and the second sequence shows that if Hq(X,N ) has infinite dimension, then Hq(X,M) has
infinite dimenson. Therefore either Hq(X,M(−1)) and Hq(X,M) are both finite-dimensional, or else they
are both infinite-dimensional. This applies to the twisted modulesM(d) as well as toM: Hq(X,M(d−1))
and Hq(X,M(d)) are both finite-dimensional or both infinite-dimensional.

Suppose that q > 0. Then Hq(X,M(d)) = 0 when d is large enough (Theorem 7.7.2). Since the zero
space is finite-dimensional, we can use the sequence together with descending induction on d, to conclude
that Hq(X,M(d)) is finite-dimensional for every finite moduleM and every d. In particular, Hq(X,M) is
finite-dimensional.

This leaves the case that q = 0. To prove that H0(X,M) is finite-dimensional, we put d = −r with r > 0
into the sequence (7.7.6):

0→ N (−r)→ O(−r)m →M→ 0

The corresponding cohomology sequence is

0→ H0(X,N (−r))→ H0(X,O(−r))m → H0(X,M)
δ0−→ H1(X,N (−r))→ · · · .

Here H0(X,O(−r))m = 0, and we’ve shown that H1(X,N (−r)) is finite-dimensional. It follows that
H0(X,M) is finite-dimensional, and this completes the proof.

Notice that the finiteness of H0 comes out only at the end. The higher cohomology is essential for the
proof. �

(7.7.7) Euler characteristiceulerchar

Theorems 7.7.1 and 7.7.3 allow us to define the Euler characteristic of a finite module on projective variety.
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7.7.8. Definition. defeulerLet X be a projective variety. The Euler characteristic of a finite O-module M is the
alternating sum of the dimensions of its cohomology:

(7.7.9) χ(M) =
∑

(−1)qhq(X,M). chi

This makes sense because hq(X,M) is finite for every q, and is zero when q is large.
Try not to confuse the Euler characterstic of an O-module with the topological Euler characteristic of the

variety X .

7.7.10. Proposition. (i) If 0 → M → N → P → 0 is a short exact sequence of finite O-modules on a
projective variety X , then χ(M)− χ(N ) + χ(P) = 0.

(ii) If 0 →M0 →M1 → · · · → Mn → 0 is an exact sequence of finite O-modules on X , the alternating
sum

∑
(−1)iχ(Mi) is zero.

7.7.11. Lemma. altsumLet 0 → V 0 → V 1 → · · · → V n → 0 be an exact sequence of finite dimensional vector
spaces. The alternating sum

∑
(−1)qdimV q is zero. �

proof of Proposition 7.7.10. (i) Let n be the dimension of X . The cohomology sequence associated to the
given sequence is

0→ H0(M)→ H0(N )→ H0(P)→ H1(M)→ . . . → Hn(N )→ Hn(P)→ 0

and the lemma tells us that the alternating sum of its dimensions is zero. That alternating sum is also equal to
χ(M)− χ(N ) + χ(P).
(ii) Let’s denote the given sequence by S0 and the alternating sum

∑
i(−1)iχ(Mi) by χ(S0). Let N =

M1/M0. The sequence S0 decomposes into the two exact sequences

S1 : 0→M0 →M1 → N → 0 and S2 : 0→ N →M2 → · · · →Mk → 0

One sees directly that χ(S0) = χ(S1)− χ(S2), so the assertion follows from (i) by induction on n. �

7.8 Bézout’s Theorem
bezout

As an application of cohomology, we use it to prove Bézout’s Theorem. We restate it here:

7.8.1. Bézout’s Theorem. be-
zoutrestated

Let Y and Z be distinct curves, of degrees m and n, respectively, in the projective
plane X . The number of intersection points Y ∩Z, when counted with an appropriate multiplicity, is equal to
mn. Moreover, the multiplicity is 1 at a point at which Y and Z intersect transversally.

The definition of the multiplicity will emerge during the proof.

Note. intersect-
lines

Let f and g be relatively prime homogeneous polynomials. When one replaces Y and Z by their divi-
sors of zeros (1.3.13), the theorem remains true whether or not they are irreducible. The proof isn’t signifiantly
different from the one we give here, except that it requires setting up some notation. For example, suppose that
f and g are products of linear polynomials, so that Y is the union of m lines and Z is the union of n lines, and
suppose that those lines are distinct. Since distinct lines intersect transversally in a single point, there are mn
intersection points of multiplicity 1. �

proof of Bézout’s Theorem. We suppress notation for the extension by zero from Y or Z to the plane X ,
denoting the direct images of OY and OZ by the same symbols. Let f and g be the irreducible homogeneous
polynomials whose zero loci are Y and Z. Multiplication by f defines a short exact sequence

0→ OX(−m)
f−→ OX → OY → 0

This exact sequence describes OX(−m) as the ideal I of regular functions that vanish on Y , and there is a
similar sequence describing the module OX(−n) as the ideal J of Z. The zero locus of the ideal I+J is the
intersection Y ∩ Z, which is a finite set of points {p1, ..., pk}.
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LetO denote the quotientOX/(I+J ). Its support is the finite set Y ∩Z, and thereforeO is isomorphic to
a direct sum

⊕Oi, where eachOi is a finite-dimensional algebra whose support is pi (6.7.2). The intersection
multiplicity of Y and Z at pi is defined to be the dimension of Oi, which is also the dimension of the space
of its global sections. Let’s denote the intersection multiplicity by µi. The dimension of H0(X,O) is the sum
µ1 + · · ·+µk, and Hq(X,O) = 0 for all q > 0 (Theorem 7.7.1). The Euler characteristic χ(O) is equal to
h0(X,O). We’ll show that χ(O) = mn, and therefore that µ1 +· · ·+µk = mn. This will prove Bézout’s
Theorem.

We form a sequence, in which O stands for OX :

(7.8.2) 0→ O(−m−n)
(g,f)t−→ O(−m)×O(−n)

(−f,g)−→ O π−→ O → 0bezoutres-
olution

In order to interpret the maps in this sequence as matrix multiplication, with homomorphisms acting on the
left, a section ofO(−m)×O(−n) should be represented as a column vector (u, v)t, u and v being sections of
O(−m) and O(−n), respectively.

7.8.3. Lemma.bresolex-
act

The sequence (7.8.2) is exact.

proof. We suppose that coordinates have been chosen so that none of the points making up Y ∩ Z lie on the
coordinate axes.

To prove exactness, it suffices to show that the sequence of sections on each of the standard open sets is
exact. We look at the index 0 as usual, denoting U0 by U. Let A be the algebra of regular functions on U,
which is the polynomial algebra C[u1, u2], with ui = xi/x0. We identify O(k) with O(kH), H being the
hyperplane at infinity. The restriction of the module O(kH) to U is isomorphic to the restriction OU of O. Its
sections on U are the elements of A. Let A be the algebra of sections of O on U. Since f and g are relatively
prime, so are their dehomogenizations F = f(1, u1, u2) and G = g(1, u1, u2). The sequence of sections of
(7.8.2) on U is

0→ A
(G,F )t−→ A×A (−F,G)−→ A→ A → 0

and the only place at which exactness of this sequence isn’t obvious is at A×A. Suppose that (u, v)t is in the
kernel of the map (−F,G), i.e., that Fu = Gv. Since F and G are relatively prime, F divides v, G divides u,
and v/F = u/G. Let w = v/F = u/G. Then (u, v)t = (G,F )tw. So (u, v)t is the image of w. �

We go back to the proof of Bézout’s Theorem. Proposition 7.7.10 (ii), applied to the exact sequence (7.8.2),
tells us that the alternating sum

(7.8.4) χ(O(−m−n)) − χ(O(−m)) − χ(O(−n)) + O − χ(O)chiforbe-
zout

is zero. Since cohomology is compatible with products(7.3.5), χ(M×N ) = χ(M) + χ(N ). Solving for
χ(O) and applying Theorem 7.5.5,

χ(O) =
(
n+m−1

2

)
−
(
m−1

2

)
−
(
n−1
2

)
+ 1

The right side of this equation evaluates to mn. This completes the proof. �

We still need to explain the assertion that the multiplicity at a transversal intersection p is equal to 1. The
intersection at p will be transversal if and only if I+J generates the maximal ideal m of A = C[y, z] at p
locally. If so, then the component of O supported at p will have dimension 1, and the intersection multiplicity
at p will be 1.

When Y and Z are lines, we may choose affine coordinates so that p is the origin in the planeX = SpecA
and the curves are the coordinate axes {z = 0} and {y = 0}. The variables y, z generate the maximal ideal at
the origin.

Suppose that Y and Z intersect transverally at p, but that they aren’t lines. We choose affine coordinates so
that p is the origin and that the tangent directions of Y and Z at p are the coordinate axes. The affine equations
of Y and Z will have the form y1 = 0 and z1 = 0, where y1 = y + g(y, z) and z1 = z + h(y, z), g and h
being polynomials all of whose terms have degree at least 2. Because Y and Z may intersect at points other
than p, the elements y1 and z1 may fail to generate the maximal ideal m at p. However, they do generate the
maximal ideal locally. To show this, it suffices to show that they generate the maximal ideal M in the local
ring R at p. By Corollary 5.1.2, it suffices to show that y1 and z1 generate M/M2, and this is true because y1

and z1 are congruent to y and z modulo M2. �
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7.9 Uniqueness of the Coboundary Maps
unique-
coboundIn Section 7.4, we constructed a cohomology {Hq} that has the characteristic properties, and we showed that

the functors Hq are unique. We didn’t show that the coboundary maps δq that appear in the cohomology
sequences are unique. We go back to do this now.

To make it clear that there is something to show, we note that the cohomology sequence (7.1.3) remains
exact when a coboundary map δq is multiplied by −1. Why can’t we define a new collection of coboundary
maps by changing some signs? The reason we can’t do this is that we used the coboundary maps δq in (7.4.7)
and (7.4.8), to identify Hq(X,M). Having done that, we aren’t allowed to change δq for the particular short
exact sequences (7.4.2). We show that the coboundary maps for those sequences determine the coboundary
maps for every short exact sequence of O-modules

(A) 0→M−→ N −→ P → 0

The sequences (7.4.2) were rewritten as (7.4.10):

(B) 0→M−→ R0
M −→M1 → 0

To show that the coboundaries for the sequence (A) are determined uniquely, we relate it to the sequence
(B), for which the coboundary maps are fixed. We map the sequences (A) and (B) to a third exact sequence

(C) 0→M ψ−→ R0
N −→ Q → 0

where ψ is the composition of the injective mapsM→N → R0
N and Q is the cokernel of ψ.

First, we inspect the diagram

(A) M −−−−→ N −−−−→ P∥∥∥ y y
(C) M ψ−−−−→ R0

N −−−−→ Q
and its diagram of coboundary maps

(A) Hq(X,P)
δqA−−−−→ Hq+1(X,M)y ∥∥∥

(C) Hq(X,Q)
δqC−−−−→ Hq+1(X,M)

This diagram shows that the coboundary map δqA for the sequence (A) is determined by the coboundary map
δqC for (C).

Next, we inspect the diagram

(7.9.1) BtoC

(B) M −−−−→ R0
M −−−−→ M1∥∥∥ u

y v

y
(C) M ψ−−−−→ R0

N −−−−→ Q

and its diagram of coboundary maps

(B) Hq(X,M1)
δqB−−−−→ Hq+1(X,M)y ∥∥∥

(C) Hq(X,Q)
δqC−−−−→ Hq+1(X,M)

When q > 0, δqC and δqB are bijective because the cohomology of R0
M and R0

N is zero in positive dimension.
Then δqC is determined by δqB , and so is δqA.
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We have to look more closely to settle the case q = 0. The map labeled u in (7.9.1) is injective. The Snake
Lemma shows that v is injective, and that the cokernels of u and v are isomorphic. We denote both of those
cokernels by R0

P . When we add the cokernels to the diagram, and pass to cohomology, we obtain a diagram
whose relevant part is

(B) H0(X,R0
M) −−−−→ H0(X,M1)

δ0B−−−−→ H1(X,M)yu yv ∥∥∥
(C) H0(X,R0

N )
β−−−−→ H0(X,Q)

δ0C−−−−→ H1(X,M)yγ y
H0(X,R0

P) H0(X,R0
P)

Its rows and columns are exact. We want to show that the map δ0
C is determined uniquely by δ0

B . It is
determined by δ0

B on the image of v and it is zero on the image of β. To show that δ0
C is determined by δ0

B ,
it suffices to show that the images of v and β together span H0(X,Q). This follows from the fact that γ is
surjective (7.4.3). Thus δ0

C is determined by δ0
B , and so is δ0

A. �
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7.10 Exercises
chapsev-
enex

7.10.1. xcohcom-
plpt

Let X be the complement of the point (0, 0, 1) in P2. Use the covering of X by the two standard
affine open sets U0,U1 to compute the cohomology Hq(X,OX).

7.10.2. xeuler-
complex

Let 0 → V0 → · · · → Vn → 0 be a complex of finite-dimensional vector spaces. Prove that∑
i(−1)idimVi =

∑
(−1)qCq(V •}.

7.10.3. xglobsec-
sexact

Let 0 → M0 → · · · → Mk → 0 be an exact sequence of O-modules on a variety X . Prove that if
Hq(Mi) = 0 for all q > 0 and all i, the sequence of global sections is exact.

7.10.4. xcousinthe Cousin Problem. Let X be a projective variety.
(i) Detemine the cohomology of the function field module F (6.5.10).
(ii) Let X be a projective space, and let {V i}, i = 1, ..., k be an open covering of X . Suppose that rational
functions fi are given, such that fi − fj is a regular function on V i ∩ V j for all i and j. The Cousin Problem
asks for a rational function f̃ such that f̃ − fi is a regular function on V i for every i. Analyze this problem
making use of the exact sequence 0→ O → F → Q→ 0, where Q is the quotient F/O.
(iii) What can one say for other varieties X?

7.10.5. xcohdi-
mone

Prove that if a variety X is covered by two affine open sets, then Hq(X,M) = 0 for everyO-module
M and every q > 1.

7.10.6. nodes-
cusps

Let C be a plane curve of degree d with δ nodes and κ cusps, and let C ′ be its normalization.
Determine the genus of C ′.

7.10.7. xcohd-
blplane

Let f(x0, x1, x2) be an irreduible homogeneous polynomial of degree 2d, and let Y be the projective
double plane y2 = f(x0, x1, x2). Compute the cohomology Hq(Y,OY ).

7.10.8. xABBALet A,B be 2×2 variable matrices, let P be the polynomial ring C[aij , bij ]. and let R be the quotient
of P by the ideal that expresses the condition AB = BA. Show that R has a resolution as P -module of the
form 0→ P 2 → P 3 → P → R→ 0. (Hint: Write the equations in terms of a11−a22 and b11−b22.)

7.10.9. xregfn-
const

Prove that a regular function on a projective variety is constant.

7.10.10. xalgbezan algebraic version of Bézout’s Theorem. Let R = C[x, y, z], and let f and g be homogeneous
polynomials in R, of degrees m and n, respectively. The quotient falgebra A = R/(f, g) inherits a grading by
degree: A = A0 ⊕ A1 ⊕ · · · , where An is the image of the space of homogeneous polynomials of degree n,
together with 0.
(i) Show that the sequence

0→ R
(−g,f)−→ R2 (f,g)t−→ R→ A→ 0

is exact.
(ii) Prove that dimAk = mn for all sufficiently large k.
(iii) Explain in what way this is an algebraic version of Bézout’s Theorem.

7.10.11. xpascalLet p1, p2, p3 and q1, q2, q3 be distinct points on a conic C, and let Lij be the line through pi and qj .
(i) Let g and h be the homogeneous cubic polynomials whose zero loci areL12∪L13∪L23 andL21∪L31∪L32,
respectively, and let x be another point on C. Show that for some scalar c, the cubic f = g + ch vanishes at x
as well as at the six given points pi and qi. What does Bézout’s Theorem tell us about this cubic f?
(ii) Prove Pascal’s Theorem, which asserts that the three intersection points r1 = L23 ∩L32, r2 = L31 ∩L13,
and r3 = L12 ∩ L21 lie on a line.
(iii) Let six lines Z1, ..., Z6 be given, and suppose that a conic C is tangent to each of those lines. Let
p12 = Z1 ∩ Z2, p23 = Z2 ∩ Z3, p34 = Z3 ∩ Z4, p45 = Z4 ∩ Z5, p56 = Z5 ∩ Z6, and p61 = Z6 ∩ Z1.
We think of the six lines as sides of a ’hexagon’, whose vertices are pij = Li ∩ Lj for ij = 12, 23, 34, 45, 56,
and 61. The ’main diagonals’ are the lines D1 through p12 and p45, D2 through p23 and p56, and D3 through
p61 and p34. Brianchon’s Theorem asserts that the main diagonals have a common point. Prove this by studying
the dual configuration in P∗.

7.10.12. xfiniteprojLet X = Pd and let Y π−→ X be a finite morphism. Prove that Y is a projective variety. Do this by
showing that the global sections of OY (nH) = OY ⊗OX OX(nH) define a map to projective space whose
image is isomorphic to Y .
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7.10.13.xmod-
fandg

(i) LetR be the polynomial ring C[x, y, z], let f(x, y, z) and g(x, y, z) be homogeneous polynomials
of degrees m and n, and with no common factor, and let A = R/(f, g). Show that the sequence

0→ R
(−g,f)−→ R2 (f,g)t−→ R→ A→ 0

is exact.
(ii) Let Y be an affine variety with integrally closed coordinate ring B. Let I be an ideal of B generated by
two elements u, v, and let X be the locus V (I) in Y . Suppose that dimX ≤ dimY − 2. Use the fact that
B =

⋃
BQ where Q ranges over prime ideals of codimension 1 to prove that this sequence is exact:

0→ B
(v,−u)t−→ B2 (u,v)−→ B → B/I → 0.

7.10.14.xmodfg Let Ibe the ideal of C[x0, x1, x2, x3] generated by two homogeneous polynomials f, g, of dimensions
d, e respectively, and assume that the locus X = V (I) in P3 has dimension 1. Let O = OP. Multiplication by
f and g defines a map O(−d)⊕O(−e)→ O. Let A be the cokernel of this map.
(i) Construct an exact sequence

0→ O(−d− e)→ O(−d)⊕O(−e)→ O → A→ 0.

(ii) Show that X is a connected subset of P3 in the Zariski topology, i.e., that it is not the union of two proper
disjoint Zariski-closed subsets.
(iii) Determine the genus of X in the case that X is a smooth curve.

7.10.15.xcplt-
inttwo

A curve in P3 that is the zero locus of a homogeneous prime ideal generated by two elements is
a complete intersection. Determine the genus of a smooth complete intersection when the generators have
degrees r and s.

7.10.16.xafplusbg a theorem of Max Noether. (Max Noether was Emmy Noether’s father.) Let f and g be homogeneous
polynomials in x0, ..., xk, of degrees r and s, respectively, with k ≥ 2. Suppose that the locus X : {f = g =
0} in Pk consists of rs distinct points if k = 2, or is a closed subvariety of codimension 2 if k > 2. A theorem
that is called the AF+BG Theorem, asserts that, if a homogeneous polynomial p of degree n vanishes on X ,
there are homogeneous polynomials a and b such that p = af + bg. Prove this theorem.

7.10.17.xmi-
norstwo

Let

U =

u11 u12

u21 u22

u31 u32


be a 3× 2 matrix whose entries are homogeneous quadratic polynomials in four variables x0, ..., x3. Let
M = (m1,m2,m3) be the 1×3 matrix of minors

m1 = u21u32 − u22u31, m2 = −u11u32 + u12u31, m3 = u11u22 − u12u21

The matrices U and M give us a sequence

0→ O(−6)2 U−→ O(−4)3 M−→ O → O/I → 0

where I is the ideal generated by the minors.
(i) Suppose that the above sequence is exact, and that the locus of zeros of I in P3 is a curve. Determine the
genus of that curve.
(ii) Prove that, if the locus is a curve, the sequence is exact.
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Chapter 8 THE RIEMANN-ROCH THEOREM FOR CURVES

rrcurves
8.1 Divisors
8.2 The Riemann-Roch Theorem I
8.3 The Birkhoff-Grothendieck Theorem
8.4 Differentials
8.5 Branched Coverings
8.6 Trace of a Differential
8.7 The Riemann-Roch Theorem II
8.8 Using Riemann-Roch
8.9 Exercises

In this chapter, we investigate a classical problem of algebraic geometry, to determine the rational functions
with given poles on a smooth projective curve. This is often difficult. The rational functions whose poles have
orders at most ri at pi, for i = 1, ..., k, form a vector space, and one is happy when one can determine
the dimension of that space. The most important tool for determining the dimension is the Riemann-Roch
Theorem.

8.1 Divisors
divtwo Smooth affine curves were discussed in Chapter 5. An affine curve is smooth if its local rings are valuation

rings, or if its coordinate ring is a normal domain. An arbitrary curve is smooth if it has an open covering by
smooth affine curves.

We take a brief look at modules on a smooth curve. Recall that a module M over a domain A is said to be
torsion-free if its only torsion element is zero: If a ∈ A andm ∈M are nonzero, then am 6= 0. This definition
is extended to O-modules by applying it to the affine open subsets.

8.1.1. Lemma.lfree Let Y be a smooth curve.
(i) A finite OY -moduleM is locally free if and only if it is torsion-free.
(ii) An OY -moduleM that isn’t torsion-free has a nonzero global section.

proof. (i) We may assume that Y is affine, Y = SpecB, and that M is the O-module associated to a B-
module M . Let B̃ be the local ring of B at a point q, and let M̃ be the localization of M at q. It is isomorphic
to the tensor product M ⊗B B̃. If M is a torsion-free B-module, then M̃ is a torsion-free module over the ring
B̃, which is a valuation ring. It suffices to show that, for every point q of Y , M̃ is a free B̃-module (2.7.13).
The next sublemma does this.

8.1.2. Sublemma.vringpid A finite, torsion-free module M̃ over a valuation ring B̃ is a free module.

proof. It is easy to prove this directly. Or, one can use the fact that every finite, torsion-free module over
a principal ideal domain is free. A valuation ring is a principal ideal domain because its nonzero ideals are
powers of its maximal ideal, and the maximal ideal is a principal ideal. �

proof of Lemma 8.1.1 (ii) IfM isn’t torsion-free, then for some affine open subset U , there will be nonzero
elements m inM(U) and a in O(U), such that am = 0. Let Z be the finite set of zeros of a in U , and let
V = Y − Z be the open complement of Z in Y . Then a is invertible on the intersection W = U ∩ V , and
since am = 0, the restriction of m to W is zero.

183



The open setsU and V cover Y , and the sheaf property for this covering can be written as an exact sequence

0→M(Y )→M(U)×M(V )
−,+−→M(W )

(see Lemma 6.4.11). In this sequence, the section (m, 0) ofM(U)×M(V ) maps to zero inM(W ). Therefore
it is the image of a nonzero global section ofM. �

8.1.3. Lemma. idealprod-
max

Let Y be a smooth curve. Every nonzero ideal I of OY is a product of powers of maximal
ideals: me11 · · ·mekk .

proof. This follows for any smooth curve from the case that the curve is affine, which is Proposition 5.2.9. �

(8.1.4) divsectdivisors

A divisor on a smooth curve Y is a finite combination

D = r1q1 + · · ·+ rkqk

where ri are integers and qi are points. The terms whose integer coefficients ri are zero can be omitted or not,
as desired.

The degree of the divisor D is the sum r1+· · ·+rk of the coefficients. Its support the set of points qi of Y
such that ri 6= 0.

The restriction of a divisor D = r1q1 + · · · + rkqk to an open subset of Y ′ of Y is the divisor obtained
from D by deleting points of the support that aren’t in Y ′. For example, let D = q. The restriction to Y ′ is q
if q is in Y ′, and it is zero if q is not in Y ′.

A divisor D =
∑
riqi is effective if all of its coefficients ri are non-negative, and D is effective on an open

set Y ′ if its restriction to Y ′ is effective — if ri ≥ 0 for every i such that qi is a point of Y ′.
Let D =

∑
ripi and E =

∑
sipi be divisors. We my write E ≥ D if si ≥ ri for all i, or if E − D is

effctive. With this notation, D ≥ 0 means that D is effective.

(8.1.5) the divisor of a function divfn

The divisor of a nonzero rational function f on a smooth curve Y is

div(f) =
∑
q∈Y

vq(f) q

where, as usual, vq denotes the valuation of K that corresponds to the point q. The divisor of the zero function
is defined to be the zero divisor. The divisor of f is written here as a sum over all points q, but it becomes a
finite sum when we disregard terms with coefficient zero, because f has finitely many zeros and poles. The
coefficients will be zero at all other points.

The map

(8.1.6) K×
div−→ (divisors)+ Ktodiv

that sends a nonzero rational function to its divisor is a homomorphism from the multiplicative group K× of
nonzero elements of K to the additive group of divisors:

div(fg) = div(f)+div(g)

The divisor of a rational function is called a principal divisor. The image of the map (8.1.6) is the set of
principal divisors.

As before, if r is a positive integer, a nonzero rational function f has a zero of order r at q if vq(f) = r,
and it has a pole of order r at q if vq(f) = −r. Thus the divisor of f is the difference of two effective divisors:

div(f) = zeros(f)− poles(f)
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A rational function f is regular on Y if and only if div(f) is effective — if and only if poles(f) = 0.
Every divisor is locally principal: There is an affine covering {Y i} of Y such that the restriction of D is

a principal divisor on each Y i. This is true because the maximal ideals of Y are locally principal. If f is a
generator of the maximal ideal at a point q, then div(f) = q.

Two divisors D and E are linearly equivalent if their difference D−E is a principal divisor. For instance,
the divisors zeros(f) and poles(f) of a rational function f are linearly equivalent.

8.1.7. Lemma.levelsets Let f be a rational function on a smooth curve Y . For all complex numbers c, the divisors
zeros(f − c), the level sets of f , are linearly equivalent.

proof. The functions f−c have the same poles as f . �

(8.1.8) review of terminologydivterm

divisor: a (finite) integer combination of points: D = r1q1 + · · ·+ rkqk.

divisor of a function: The divisor of the rational function f is the sum
∑
q vq(f)q.

effective divisor: The divisor D is effective if ri ≥ 0 for all i.

linearly equivalent divisors: Two divisors D and E are linearly equivalent if D − E is a principal divisor.

principal divisor: The divisor of a rational function.

restriction of the divisor D to an open set: The restriction to the open set U is the sum of the terms riqi such
that qi is a point of U .

support of the divisor D: the points qi such that ri 6= 0.

zeros and poles of a divisor: The zeros of D are the points qi such that ri > 0. The poles are the points qi such
that ri < 0.

(8.1.9) the module O(D)mod-
uleOD

To analyze functions with given poles on a smooth curve Y , we associate an O-module O(D) to a divisor
D. The module O(D) is a submodule of the function field module F 6.5.10. Its nonzero sections on an open
subset V of Y are the nonzero rational functions f such that the the divisor div(f)+D is effective on V —
such that its restriction to V is effective.

(8.1.10)ODV [O(D)](V ) = {f | div(f)+D is effective on V } ∪ {0}

= {f | poles(f) ≤ D on V } ∪ {0}
When D is effective, the global sections of O(D) are the solutions of the classical problem, to determine

the rational functions whose poles are bounded by D.
Points that aren’t in an open set V impose no conditions on the sections of O(D) on V . A section on V

can have arbitrary zeros or poles at points not in V .

Let D be the divisor
∑
riqi. If qi is a point of an open set V and if ri > 0, a section of O(D) on V may

have a pole of order at most ri at qi, and if ri < 0 a section must have a zero of order at least −ri at qi. For
example, the sections of the module O(−q) on an open set V that contains q are the regular functions on V
that are zero at q. So O(−q) is the maximal ideal mq . Similarly, the sections of O(q) on an open set V that
contains q are the rational functions that have a pole of order at most 1 at q and are regular at every other point
of V . The sections of O(−q) and of O(q) on an open set V that doesn’t contain p are the regular functions on
V .

The fact that a section of O(D) is allowed to have a pole at qi when ri > 0 contrasts with the divisor of
a function. If div(f) =

∑
riqi, then ri > 0 means that f has a zero at qi. If div(f) = D, then f will be a

global section of O(−D).
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8.1.11. Lemma. ODinvert(i) If D is the principal divisor div(g), then O(D) is the free O-module g−1O of rank 1.
(ii) For any divisor D on a smooth curve, O(D) is a locally free module of rank one.

proof. (i) Let D be the divisor of a rational function g. The sections of O(D) on an open set U are the rational
functions f such that div(f) + D = div(f) + div(g) ≥ 0 on U . These are the functions f such that fg is a
section of O on U , or such that f is a section of g−1O.
(ii) This follows from (i) because every divisor is locally principal, �

8.1.12. Proposition. LisODLet D and E be divisors on a smooth curve Y .
(i) The map O(D)⊗OO(E)→ O(D+E) that sends f⊗g to the product fg is an isomorphism.
(ii) O(D) ⊂ O(E) if and only if E ≥ D.

proof. (i) It is enough to verify this locally, so we may assume that Y is affine and that the supports ofD and E
contain just one point, say D = rq and E = sq. We may also assume that the maximal ideal at q is a principal
ideal, generated by an element x. Then O(D), O(E), and O(D+E) are free modules with bases xr, xs and
xr+s, respectively. �

8.1.13. Proposition. idealODLet Y be a smooth curve.
(i) The nonzero ideals of OY are the modules O(−E), where E is an effective divisor.
(ii) The modules O(D) are the finite O-submodules of the function field module F of Y .
(iii) The function field module F is the union of the modules O(D).

proof. (i) Say that E = r1q1 + · · ·+ rkqk, with ri ≥ 0 for all i. A rational function f is a section ofO(−E) if
div(f)−E is effective, which happens when poles(f) = 0, and zeros(f) ≥ E. The same condition describes
the elements of the ideal I = mr11 · · ·mrkk .

(ii) First, if D1 and D2 are divisors, and if D1 6= D2, then O(D1) 6= O(D2). Let L be a finite O-submodule
of F . The local ring R of Y at a point q is a valuation ring. Since L is a finite O-module, it will be generated
by one element, a rational function f , in some open neighborhood U of q. (2.7.13). If D is the divisor of f−1

on U , then L = O(D) on U , and this determines the divisor D uniquely. So when L = O(D) on U and
L = O(D′) on U ′, then D and D′ agree on U ∩U ′. Therefore there is a divisor D on the whole curve Y such
that L = O(D) in a suitable neighbohood U of any point q. This implies that L = O(D). �

8.1.14. Proposition. mapOD-
toOE

Let D and E be divisors on a smooth curve Y . Multiplication by a rational func-
tion f such that div(f)+E−D ≥ 0 defines a homomorphism of O-modules O(D) → O(E), and every
homomorphism O(D)→ O(E) is multiplication by such a function.

proof. For anyO-moduleM, a homomorphismO →M is multiplication by a global section ofM (6.3.7) (b).
So a homomorphismO → O(E−D) will be multiplication by a rational function f such that div(f)+E−D ≥ 0.
If f is such a function, one obtains a homomorphism O(D)→ O(E) by tensoring with O(D). �

8.1.15. Corollary. ODOELet D and E be divisors on a smooth curve Y .
(i) The modules O(D) and O(E) are isomorphic if and only if D and E are linearly equivalent divisors.
(ii) Let f be a rational function on Y , and let D = div(f). Multiplication by f defines an isomorphism
O(D)→ O.

proof. If a rational function f defines an isomorphism, the inverse morphism is defined by f−1. Then div(f)+
E −D ≥ 0 and also div(f−1) +D−E = −div(f) +D−E ≥ 0, so div(f) = D−E. This proves (i), and
(ii) is the special case that E = 0. �

(8.1.16) invertible modules invertmod

An invertible O-module is a locally free module of rank one, a module that is isomorphic to the module O
in a neighborhood of any point.

The tensor product L⊗OM of invertible modules is invertible. The dual L∗ of an invertible module L is
invertible. If D is a divisor on a smooth curve Y , then O(D) is an invertible module. Its dual is the module
O(−D).
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8.1.17. Lemma.inverse-
mod

Let L be an invertible O-module.
(i) Let L∗ be the dual module. The canonical map L∗⊗OL → O defined by γ⊗α 7→ γ(α) is an isomorphism.
Thus L∗ may be thought of as an inverse to L. (This is the reason for the term ’invertible’.)
(ii) The map O → O(L,L)

(
= HomO(L,L)

)
that sends a regular function α to the operation of multiplica-

tion by α is an isomorphism.

(iii) Every nonzero homomorphism L ϕ−→M to a locally free moduleM is injective.

proof. (i,ii) It is enough to verify these assertions in the case that L is free, isomorphic to O, in which case
they are clear.

(iii) The problem is local, so we may assume that the variety is affine, say Y = SpecA, and that L andM are
free. Then ϕ becomes a nonzero homomorphism A→ Ak, which is injective because A is a domain. �

Lemma 8.1.11 shows that the only difference between an invertible module L and a module O(D) is that
O(D) is a submodule of the function field module F , while L ⊗O F can be any one-dimensional K-vector
space.

8.1.18. Corollary.Lequal-
sOD

Every invertible O-module L on a smooth curve Y is isomorphic to a module of the form
O(D). �

We will use the next lemma in the proof of Theorem 8.6.15 below.

8.1.19. Lemma.thetaspole Let L ⊂ M be an inclusion of invertible modules on a smooth curve Y , let q be a point in
the support ofM/L, and let V be an affine open subset of Y that contains q. Suppose that a rational function
f has a simple pole at q and is regular at all other points of V . If α is a section of L on V , then f−1α is a
section ofM on V .

proof. Working locally, we may assume that L = O. ThenM = O(D) for some effective divisor D. Since
q is in the support ofM/L, the coefficient of q in D is positive. Therefore L = O ⊂ O(q) ⊂ O(D) = M.
With this notation, α will be a section of O, while f−1 is a section of O(q). Then f−1α will be a section of
O(q), and therefore a section of O(D) =M. �

8.2 The Riemann-Roch Theorem I
rrone

Let Y be a smooth projective curve, and let M be a finite OY -module. In Chapter 7, we learned that the
cohomology Hq(Y,M) is a finite-dimensional vector space for q = 0, 1, and is zero when q > 1. As before,
we denote the dimension of Hq(Y,M) by hqM or by hq(Y,M).

The Euler characteristic (7.6.6) of a finite O-moduleM is

(8.2.1) χ(M) = h0M− h1Mchicurve

In particular,
χ(OY ) = h0OY − h1OY

The dimension h1OY is called the arithmetic genus of Y . It is denoted by pa. This is a notation that was used
before, for plane curves. We will see below, in (8.2.9)(iv), that h0OY = 1. So

(8.2.2)chi-
curvetwo

χ(O) = 1− pa

8.2.3. Riemann-Roch Theorem (version 1).RRcurve Let D =
∑
ripi be a divisor on a smooth projective curve Y .

Then
χ(O(D)) = χ(O) + deg D

(
= deg D + 1− pa

)
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proof. To analyze the effect on cohomology when a divisor is changed by adding or subtracting a point, we
inspect the inclusion O(D−p) ⊂ O(D). The cokernel ε of the inclusion map is a one-dimensional vector
space supported at p. So there is a short exact sequence

(8.2.4) addpoint0→ O(D−p)→ O(D)→ ε→ 0

Because mp = O(−p), this sequence can be obtained by tensoring the sequence

(8.2.5) kappaseq0→ mp → O → κp → 0

with the invertible module O(D).
Since ε is a one-dimensional module supported at p, h0ε = 1 and h1ε = 0. Let’s denote the one-

dimensional vector space H0(Y, ε) by [1]. Then the cohomology sequence associated to (8.2.4) is

(8.2.6) add-
pointtwo

0→ H0(Y,O(D−p))→ H0(Y,O(D))
γ−→ [1]

δ−→ H1(Y,O(D−p))→ H1(Y,O(D))→ 0

In this exact sequence, one of the two maps, γ or δ, must be zero. Either

(1) γ is zero and δ is injective. In this case

h0O(D−p) = h0O(D) and h1O(D−p) = h1O(D) + 1, or

(2) δ is zero and γ is surjective. In this case

h0O(D)−p) = h0O(D)− 1 and h1O(D−p) = h1O(D)

In either case,

(8.2.7) χ(O(D)) = χ(O(D−p)) + 1 chichange

The Riemann-Roch theorem follows, because deg D = deg (D − p) + 1, and because we can get from O to
O(D) by a finite number of operations, each of which changes the divisor by adding or subtracting a point. �

Because h0 ≥ h0 − h1 = χ, this version of the Riemann-Roch Theorem gives reasonably good control
of H0. It is less useful for controlling H1. For that, one wants the full Riemann-Roch Theorem (version 2),
which identifies H1. The full theorem requires some preparation, so we have put it into Section 8.7. However,
version 1 has important consequences:

8.2.8. Corollary. onepoleLet p be a point of a smooth projective curve Y . The dimension h0(Y,O(np)) tends to
infinity with n. Therefore there exist rational functions on Y that have a pole of sufficiently large order at a
single point p and no other poles.

proof. When we go from O(np) to O((n+1)p), either h0 increases or else h1 decreases. Since h1(Y,O(np))
is finite, the second possibility can occur only finitely many times, as x tends to∞. �

8.2.9. Corollary. RRcorLet Y be a smooth projective curve.
(i) The divisor of a rational function on Y has degree zero: The number of zeros is equal to the number of
poles.
(ii) Linearly equivalent divisors on Y have equal degrees.
(iii) A nonconstant rational function on Y takes every value, including infinity, the same number of times
(counted with multiplicity).
(iv) A rational function on Y that is regular at every point of Y is a constant: H0(Y,O) = C.

proof. (i) Let f be a nonzero rational function and letD = div(f). Multiplication by f defines an isomorphism
O(D) → O (8.1.15), so χ(O(D)) = χ(O). On the other hand, by Riemann-Roch, χ(O(D)) = χ(O) +
deg D. Therefore deg D = 0.

(ii) If D and E are linearly equivalent divisors, say D−E = div(f), then, according to (i), D−E has degree
zero, and deg D = deg E.

(iii) The divisor of zeros of the function f − c is linearly equivalent to the divisor of poles of f .

(iv) According to (iii), a nonconstant function must have a pole. �
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8.2.10. Corollary.RRcorwo Let D be a divisor on Y . If deg D ≥ pa, then h0O(D) > 0. If h0O(D) > 0, then
deg D ≥ 0.

proof. If deg D ≥ pa, then χ(O(D)) = deg D+ 1− pa ≥ 1, and h0 ≥ h0−h1 = χ. IfO(D) has a nonzero
global section f , a rational function such that div(f)+D is effective, then deg (div(f)+D) ≥ 0, and because
the degree of div(f) is zero, deg D ≥ 0. �

8.2.11. Theorem.curveconn With its classical topology, a smooth projective curve Y is a connected, compact, orientable
two-dimensional manifold.

proof. We prove connectedness here. The other points have been discussed before (see Theorem 1.8.20).
A nonempty topological space is connected if it isn’t the union of two disjoint, nonempty, closed subsets.

Suppose that, in the classical topology, Y is the union of disjoint, nonempty closed subsets Y1 and Y2. Both
Y1 and Y2 will be compact, two-dimensional manifolds. Let p be a point of of Y1. Corollary 8.2.8 shows that
there is a nonconstant rational function f whose only pole is at p. Then f will be a regular function on the
complement of p, and therefore a regular function on the entire compact manifold Y2.

For review: Any point q of the smooth curve Y has a neighborhood V that is analytically equivalent to
an open subset U of the affine line X . If a function g on V is analytic, the function on U that corresponds to
g is an analytic function of one variable on U . The maximum principle for analytic functions asserts that a
nonconstant analytic function on an open region of the complex plane has no maximal absolute value in the
region. This applies to the open set U and therefore also to the neighborhood V of q. Since q can be any point
of Y2, a nonconstant function g that is analytic on Y2 cannot have a maximum anywhere on Y2. On the other
hand, since Y2 is compact, a continuous function does have a maximum. So an analytic function g on Y2 must
be a constant.

Going back to the rational function f with a single pole p, the restriction of f to Y2 will be analytic, and
therefore constant. When we subtract that constant from f , we obtain a nonconstant rational function on Y
that is zero on Y2. But the zero locus of a rational function on a curve is a finite set. This is a contradiction. �

8.3 The Birkhoff-Grothendieck Theorem
birkgroth This theorem describes finite, torsion-free modules on the projective line X = P1.

8.3.1. Birkhoff-Grothendieck Theorem.BGtheo-
rem

A finite, torsion-freeO-module on the projective lineX is isomor-
phic to a direct sum of twisting modules:M≈⊕O(ni).

(Because X is a smooth curve, an O-moduleM is locally free if and only if it is torsion-free.)

This theorem was proved by Grothendieck in 1957 using cohomology. It had been proved by Birkhoff in
1909, in the following equivalent form:

Birkhoff Factorization Theorem. Let A0 = C[u] , A1 = C[u−1], and A01 = C[u, u−1]. Let P be an invert-
ible A01-matrix. There exist an invertible A0-matrix Q0 and an invertible A1-matrix Q1 such that Q−1

0 PQ1 is
diagonal, and its diagonal entries are integer powers of u.

proof of the Birkhoff-Grothendieck Theorem. This is Grothendieck’s proof.
According to Theorem 7.5.5, the cohomology of the twisting modules on X is h0O = 1, h1O = 0, and if

r is a positive integer,

h0O(r) = r+1, h1O(r) = 0, h0O(−r) = 0, and h1O(−r) = r−1

8.3.2. Lemma.map-
stoMbounded

LetM be a finite, torsion-free O-module on the projective line X . For sufficiently large r,
(i) the only homomorphism O(r)→M is the zero map, and
(ii) h0(X,M(−r)) = 0.

proof. (i) A nonzero homomorphism O(r)
ϕ−→M from the twisting module O(r) to the locally free module

M will be injective (8.1.17), and the associated map H0(X,O(r)) → H0(X,M) will be injective too, so
h0(X,O(r)) ≤ h0(X,M). Since h0(X,O(r)) = r+1, r is bounded by the integer h0(X,M)− 1.

(ii) A global section ofM(−r) defines a map O →M(−r). Its twist by r will be a map O(r)→M. By (i),
r is bounded. �
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We go to the proof now.
As Lemma 8.1.1 tells us,M is locally free. We use induction on its rank. We suppose thatM has rank

r, that r > 0, and that the theorem has been proved for locally free O-modules of rank less than r. The plan
is to show thatM has a twisting module as a direct summand, so thatM = W ⊕O(n) for someW . Then
induction on the rank, applied toW , will prove the theorem.

Twisting is compatible with direct sums, so we may replaceM by a twistM(n). Instead of showing that
M has a twisting module O(n) as a direct summand, we show that, after we replaceM by a suitable twist,
the structure sheaf O will be a direct summand.

The twistM(n) will have a nonzero global section when n is sufficiently large (6.8.20), and it will have
no nonzero global section when n is sufficiently negative (8.3.2) (ii)). Therefore, when we replace M by a
suitable twist, we will have H0(X,M) 6= 0 but H0(X,M(−1)) = 0. We assume that this is true forM.

We choose a nonzero global section m ofM and consider the injective multiplication mapO m−→M. Let
W be its cokernel, so that we have a short exact sequence

(8.3.3) 0→ O m−→M π−→W → 0 cvcwse-
quence

8.3.4. Lemma. sectionba-
sic

LetW be the O-module that appears in the sequence (8.3.3).
(i) H0(X,W(−1)) = 0.
(ii)W is torsion-free, and therefore locally free.
(iii)W is a direct sum

⊕r−1
i=1 O(ni) of twisting modules on P1, with ni ≤ 0.

proof. (i) This follows from the cohomology sequence associated to the twisted sequence

0→ O(−1)→M(−1)→W(−1)→ 0

because H0(X,M(−1)) = 0 and H1(X,O(−1)) = 0.

(ii) If the torsion submodule of W were nonzero, the torsion submodule of W(−1) would also be nonzero,
and thenW(−1) would have a nonzero global section (8.1.1).

(iii) The fact that W is a direct sum of twisting modules follows by induction on the rank: W ≈ ⊕O(ni).
Since H0(X,W(−1)) = 0, we must have H0(X,O(ni−1)) = 0. Therefore ni − 1 < 0, and ni ≤ 0. �

We go back to the proof of Theorem 8.3.1. Because O∗ = O, the dual of the sequence (8.3.3) is an exact
sequence

0←− O m∗←−M∗ π∗←−W∗ ←− 0

and W∗ ≈ ⊕O(−ni) with −ni ≥ 0. Therefore h1W∗ = 0. The map H0(M∗) → H0(O) is surjective.
Let α be a global section ofM∗ whose image in O is 1. Multiplication by α defines a map O α−→ M∗ that
splits the sequence: m∗α is the identity map on O, andM∗ is the direct sum im(α)⊕ ker(m∗) ≈ O ⊕W∗.
ThereforeM≈W ⊕O. �

8.4 Differentials
diff

We introduce some terminology, differentials and branched coverings, that will be used in version II of the
Riemann-Roch theorem. Why differentials enter into the Riemann-Roch Theorem is something of a mystery,
but one important fact is the Residue Theorem, which controls the poles of a rational differential. Proofs of
Reimann-Roch are often based on that theorem. We recommend reading about the Residue Theorem, though
we won’t use it. 1

Try not to get bogged down in the preliminary disussions. Give the next pages a quick read to learn the
terminology. You can look back as needed. Begin to read more carefully when you get to Section 8.6.

Let A be an algebra and let M be an A-module. A derivation A δ−→M is a C-linear map that satisfies the
product rule for differentiation, a map that has these properties:

1See one of the books by Fulton, Miranda, or Mumford in the bibliography, or for a general treatment, Tate, J., Residues of differentials
on curves, Ann Sci ENS 1968.
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(8.4.1)deriv δ(ab) = a δb+ b δa , δ(a+b) = δa+ δb , and δc = 0

for all a, b in A and all c in C. The fact that δ is C-linear, i.e., that it is a homomorphism of vector spaces,
follows: Since dc = 0, δ(cb) = c δb+ b δc = c δb.

For example, differentiation d
dt is a derivation C[t]→ C[t].

8.4.2. Lemma.compde (i) Let B be an algebra, let M
g−→ N be a homomorphism of B-modules, and let B δ−→ M

be a derivation. The composition B
gδ−→ N is a derivation.

(ii) LetA
ϕ−→ B be an algebra homomorphism, and letB δ−→M be a derivation. The compositionA

δϕ−→M
is a derivation.
(iii) Let A

ϕ−→ B be a surjective algebra homomorphism, let B h−→ M be a map to a B-module M , and let
d = hϕ. If A d−→M is a derivation, then h is a derivation. �

The module of differentials ΩA of an algebra A is an A-module generated by elements denoted by da, one
for each element a of A. The elements of ΩA are (finite) combinations

∑
bi dai, with ai and bi in A. The

defining relations among the generators da are the ones that make the map A d−→ ΩA that sends a to da a
derivation: For all a, b in A and all c in C,

(8.4.3)defdiff d(ab) = a db+ b da , d(a+b) = da+ db , and dc = 0

The elements of ΩA are called differentials.

8.4.4. Lemma.ho-
momderiv

(i) When we compose a homomorphism ΩA
f−→M of O-modules with the derivation A d→ ΩA, we obtain a

derivation A
fd−→M . Composition with d defines a bijection between module homomorphisms ΩA →M and

derivations A δ−→M .
(ii) Ω is a functor: An algebra homomorphism A

u−→ B induces a homomorphism ΩA
v−→ ΩB that is

compatible with the ring homomorphism u, and that makes a diagram

B
d−−−−→ ΩB

u

x xv
A

d−−−−→ ΩA

Recall that, when ω is an element of ΩA and α is an element of A, compatibility of v with u means that
v(αω) = u(α)v(ω).

proof. (ii) When ΩB is made into an A-module by restriction of scalars, the composed map A u→ B
d→ ΩB

will be a derivation to which (i) applies. �

8.4.5. Lemma.omegafree LetR be the polynomial ring C[x1, ..., xn]. The module of differentials ΩR is a freeR-module
with basis dx1, ..., dxn.

proof. The formula df =
∑ df

dxi
dxi follows from the defining relations. It shows that the elements dx1, ..., dxn

generate theR-module ΩR. Let V be a freeR-module with basis v1, ..., vn. The product rule for differentiation
shows that the map δ : R→ V defined by δ(f) = ∂f

∂xi
vi is a derivation. It induces a module homomorphism

ΩA
ϕ−→ V ssu that sends dxi to vib (8.4.4). Since dx1, ..., dxn generate ΩR and since v1, ..., vn is a basis of

V , ϕ is an isomorphism. �

8.4.6. Proposition.
omegafreetwo

Let I be an ideal of an algebra R, let A be the quotient algebra R/I , and let dI denote
the set of differentials df with f in I . The subset N = dI+IΩR of ΩR is a submodule, and ΩA is isomorphic
to the quotient ΩR/N .
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The proposition can be interpreted this way: Suppose that the ideal I is generated by elements f1, ..., fr of R.
Then ΩA is the quotient of ΩR that is obtained by introducing these two rules:
• dfi = 0, and
• multiplication by fi is zero.

8.4.7. Example. diffmod-
square

Let R be the polynomial ring C[y] in one variable. So ΩR is a free module with basis dy.
Let I be the principal ideal (y2), and let A be the quotient R/I . In this case, dI is an R-module generated by
te element 2y dy, and y2dy generates IΩA. The R-module N is generated by ydy. If y denotes the residue of
y in A, ΩA = ΩR/N is generated by an element dy, with the relation y dy = 0. It isn’t the zero module. �

proof of Proposition 8.4.6. First, IΩR is a submodule of ΩR, and dI is an additive subgroup of ΩR. To show
that N is a submodule, we must show that scalar multiplication by an element of R maps dI to N , i.e., that if
g is in R and f is in I , then g df is in N . By the product rule, g df = d(fg)− f dg. Since I is an ideal, fg is
in I . Then d(fg) is in dI , and f dg is in IΩR. So g df is in N .

The rules displayed above hold in ΩA because the generators fi of I are zero in A. Therefore N is
contained in the kernel of the surjective map ΩR

v−→ ΩA defined by the homomorphism R → A. Let Ω
denote the quotient module ΩR/N . This is an A-module, and because N ⊂ ker v, v defines a surjective map
of A-modules Ω

v−→ ΩA. We show that v is bijective. Let r be an element of R, let a be its image in A,
and let dr be its image in Ω. The composed map R d−→ ΩR

π−→ Ω is a derivation that sends r to dr, and I
is in its kernel. It defines a derivation R/I = A

δ−→ Ω that sends a to dr. This derivation corresponds to a
homomorphism of A-modules ΩA → Ω that sends da to dr, and that inverts v. �

8.4.8. Corollary. Omegafi-
nite

If A is a finite-type algebra, then ΩA is a finite A-module.

This follows from Proposition 8.4.6, because the module of differentials of the polynomial ring C[x1, ..., xn]
is a finite module. �

8.4.9. Lemma. local-
izeomega

Let S be a multiplicative system in a domain A. The module ΩS−1A of differentials of S−1A
is canonically isomorphic to the module of fractions S−1ΩA. In particular, if K is the field of fractions of A,
then K⊗AΩA ≈ ΩK .

We have moved the symbol S−1 to the left for clarity.

proof of Lemma 8.4.9. The composed map A → S−1A
d−→ ΩS−1A is a derivation. It defines an A-module

homomorphism ΩA → ΩS−1A which extends to an S−1A-homomorphism S−1ΩA
ϕ−→ ΩS−1A because scalar

multiplication by the elements of S is invertible in ΩS−1A. The relation ds−k = −ks−k−1ds follows from the
definition of a differential, and it shows that ϕ is surjective. The quotient rule

δ(s−ka) = −ks−k−1a ds+ s−kda

defines a derivation S−1A
δ−→ S−1ΩA, that corresponds to a homomorphism ΩS−1A → S−1ΩA and that

inverts ϕ. Here, one must show that δ is well-defined, that δ(s−k1 a1) = δ(s−`2 a2) if s−`1 a1 = s−k2 a2, and that
δ is a derivation. You will be able to do this. �

Lemma 8.4.9 shows that a finite O-module ΩY of differentials on a variety Y is defined such that, when
U = SpecA is an affine open subset of Y , ΩY (U) = ΩA.

8.4.10. Proposition. omega-
funct

Let y be a local generator for the maximal ideal at a point q of a smooth curve Y . In a
suitable neighborhood of q, the module ΩY of differentials is a free O-module with basis dy. Therefore ΩY is
an invertible module.

proof. We may assume that Y is affine, say Y = SpecB. Let q be a point of Y , and let y be an element
of B with vq(y) = 1. To show that dy generates ΩB locally, we may localize, so we may suppose that y
generates the maximal ideal m at q. We must show that after we localize B once more, every differential df
with f in B will be a multiple of dy. Let c = f(q), so that f = c+ yg for some g in B, and because dc = 0,
df = g dy + y dg. Here g dy is in B dy and y dy is in mΩB . This shows that

ΩB = B dy + mΩB
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An element β of ΩB can be written as β = b dy + γ, with b in B and γ in mΩB . If W denotes the quotient
module ΩB/(B dy), then W = mW . The Nakayama Lemma tells us that there is an element z in m such that
s = 1− z annihilates W . When we replace B by its localization Bs, we will have W = 0 and ΩB = B dy, as
required.

We must still verify that the generator dy of ΩB isn’t a torsion element. Suppose that b dy = 0, with b 6= 0,
then ΩB will be zero except at the finite set of zeros of b in Y . We replace the point q by a point at which ΩB
is zero, keeping the rest of the notation unchanged. Let and A = C[y]/(y2). As was noted in Example 8.4.7,
ΩA isn’t the zero module. Proposition 5.2.8 tells us that, at our point q, the algebra B/m2

q is isomorphic to A,
and Proposition 8.4.6 tells us that ΩA is a quotient of ΩB . Since ΩA isn’t zero, neither is ΩB . Therefore dy
isn’t a torsion element. �

8.5 Branched Coverings
cover-
curve

By a branched covering, we mean an integral morphism Y
π−→ X of smooth curves. Chevalley’s Finiteness

Theorem 4.6.8 shows that, when a smooth curve Y is projective, every nonconstant morphism Y → X will be
a branched covering, unless it maps Y to a point.

Let Y → X be a branched covering. The function field K of Y will be a finite extension of the function
field F of X . The degree [Y :X] of the covering is defined to be the degree [K :F ] of that field extension. If
X ′ = SpecA is an affine open subset of X , its inverse image Y ′ will be an affine open subset Y ′ = SpecB
of Y , and B will be a locally free A-module whose rank is [Y :X].

To describe the fibre of a branched covering Y π−→ X over a point p of X , we may localize. So we may
assume that X and Y are affine, say X = SpecA and Y = SpecB, and that the maximal ideal mp of A at a
point p is a principal ideal, generated by an element x of A.

If a point q of Y lies over p, the ramification index at q is defined to be vq(x), where vq is the valuation of
the function field K that corresponds to q. We usually denote the ramification index by e. Then, if y is a local
generator for the maximal ideal mq of B at q, we will have

x = uye

where u is a local unit — a rational function on Y that is regular and invertible on some open neighborhood
of q.

Points of Y whose ramification indices are greater than one are called branch points. We will also call a
point p of X a branch point of the covering Y if there is a branch point of Y that lies over p.

8.5.1. Lemma.mostpts (i) A branched covering Y → X has finitely many branch points.
(ii) Let n denote the degree [Y :X]. If a point p of X isn’t a branch point, the fibre over p consists of n
points with ramification indices equal to 1.

proof. This is very simple. We may delete finite sets of points, so we may suppose that X and Y are affine,
X = SpecA and Y = SpecB. Then B is a finite A-module of rank n. Let F and K be the fraction
fields of A and B, respectively, and let β be an element of B that generates the field extension K/F . Then
A[β] ⊂ B, and since these two rings have the same fraction field, there will be a nonzero element s in A such
that As[β] = Bs. We may replace A and B by As and Bs, so that B = A[β]. Let g be the monic irreducible
polynomial for β over A. The discriminant of g isn’t the zero ideal (1.7.22). So for all but finitely many points
p ofX , the discriminant will be nonzero, and there will be n points of Y over p with ramification indices equal
to 1. �

8.5.2. Corollary.degonei-
som

A branched covering Y π−→ X of degree one is an isomorphism.

proof. When [Y :X] = 1, the function fields of Y and X will be equal. Then, because Y → X is an integral
morphism and X is normal, Y = X . �

The next lemma follows from Lemma 8.1.3 and the Chinese Remainder Theorem.

8.5.3. Lemma.extende-
dideal-
isprod

Let Y π−→ X be a branched covering, with X = SpecA and Y = SpecB. Suppose that
the maximal ideal mp at p is a principal ideal, generated by an element x. Let q1, ..., qk be the points of Y that
lie over a point p of X and let mi and ei be the maximal ideal and ramification index at qi, respectively.
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(i) The extended ideal mpB = xB is the product ideal me11 · · ·mekk .
(ii) Let Bi = B/meii . The quotient B = B/xB is isomorphic to the product B1×· · ·×Bk.
(iii) The degree [Y :X] of the covering is the sum e1+· · ·+ek of the ramification indices at the points qi. �

(8.5.4) local analytic structure locanstr

The local analytic structure of a branched covering Y π−→ X in the classical topology is very simple. We
explain it here because it is useful and helpful for intuition.

8.5.5. Proposition. yeth-
roottwo

Locally in the classical topology, Y is analytically isomorphic to an e-th root covering
ye = x.

proof. Let q be a point of Y , let p be its image in X , let x and y be local generators for the maximal ideals mp
of OX and mq of OY , respectively. Let e be the ramification index at q. So x = uye, where u is a local unit at
q. In a neighborhood of q in the classical topology, u will have an analytic e-th root w. The element y1 = wy
also generates mq locally, and x = ye1. We replace y by y1. Then the implicit function theorem tells us that
that x and y are local analytic coordinate functions on X and Y (see (1.4.18)). �

8.5.6. Proposition. pprimeap-
proachesp

Let Y π−→ X be a branched covering, let {q1, ..., qk} be the fibre over a point p of X ,
and let ei be the ramification index at qi. As a point p′ of X approaches p, ei points that lie over p′ approach
qi. �

(8.5.7) suppressing notation for the direct image workonX

When considering a branched covering Y π−→ X of smooth curves, we will often pass between an OY -
moduleM and its direct image π∗M, and it will be convenient to work primarily on X . Recall that if X ′ is
an open subset X ′ of X and Y ′ is its invere image, then

[π∗M](X ′) =M(Y ′)

One can think of the direct image π∗M as working with M, but looking only at the open subsets Y ′ of Y
that are inverse images of open subsets of X . If we look only at such subsets, the only significant difference
betweenM and its direct image will be that, when X ′ is open in X and Y ′ = π−1X ′, the OY (Y ′)-module
M(Y ′) is made into an OX(X ′)-module by restriction of scalars.

To simplify notation, we will often drop the symbol π∗, and writeM instead of π∗M. If X ′ is an open
subset of X ,M(X ′) will stand forM(π−1X ′). When denoting the direct image of an OY -moduleM by the
same symbolM, we may refer to it as an OX -module. In accordance with this convention, we may also write
OY for π∗OY , but we must include the subscript Y .

This abbreviated terminology is analogous to the one used for restriction of scalars in a module. When
A → B is an algebra homomorphism and M is a B-module, the B-module BM and the A-module AM
obtained from it by restriction of scalars are usually denoted by the same letter M .

8.5.8. Lemma.
BrankArank

Let Y π−→ X be a branched covering of smooth curves, of degree n = [Y :X]. With notation
as above,
(i) The direct image of OY , which we may also denote by OY , is a locally free OX -module and of rank n.
(ii) A finite OY -moduleM is a torsion OY -module if and only if its direct image (also denoted byM) is a
torsion OX -module.
(iii) A finite OY -moduleM is a locally free OY -module if and only if its direct image is a locally free OX -
module. If M is a locally free OY -module of rank r, then its directc image is a locally free OX -module of
rank nr. �
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8.6 Trace of a Differential
tracediff

(8.6.1) trace of a functiontracefn

Let Y π−→ X be a branched covering of smooth curves, and let F andK be the function fields ofX and Y ,
respectively. The trace map K trace−→ F for a field extension of finite degree has been defined before (4.3.11). If
α is an element ofK, multiplication by α on the F -vector spaceK is a linear operator, and trace(k) is the trace
of that operator. The trace is F -linear: If fi are in F and αi are in K, then trace(

∑
fiαi) =

∑
fi trace(αi).

Moreover, the trace carries regular functions to regular functions: If X ′ = SpecA′ is an affine open subset of
X , with inverse image Y ′ = SpecB′, then because A′ is a normal algebra, the trace of an element of B′ will
be in A′ (4.3.7). Using our abbreviated notation OY for π∗OY (8.5.7), the trace defines a homomorphism of
OX -modules

(8.6.2)trace-
global

OY trace−→ OX

Analytically, this trace can be described as a sum over the sheets of the covering. Let n = [Y : X].
When a point p of X isn’t a branch point, there will be n points q1, ..., qn of Y lying over p. If U is a small
neighborhood of p in X in the classical topology, its inverse image V will consist of disjoint neighborhoods
Vi of qi, each of which maps bijectively to U . The ring of analytic functions on Vi will be isomorphic to
the ring A of analytic functions on U . So the ring of analytic functions on V is isomorphic to a direct sum
A1 ⊕ · · · ⊕ An of n copies of A. If a rational function g on Y is regular on V , its restriction to V can be
written as g = g1 ⊕ · · · ⊕ gn, with gi in Ai. The matrix of left multiplication by g on A1 ⊕ · · · ⊕ An is the
diagonal matrix with entries g1, ..., gn, and

(8.6.3)trsum trace(g) = g1 + · · ·+ gn

8.6.4. Lemma.tracesum Let Y π−→ X be a branched covering of smooth curves, let p be a point of X , let q1, ..., qk be
the fibre over p, and let ei be the ramification index at qi. If a rational function g on Y is regular at the points
q1, ..., qk, its trace is regular at p. Its value at p is [trace(g)](p) = e1g(q1) + · · ·+ ekg(qk).

proof. The regularity was discussed above. If p isn’t a branch point, we will have k = n and ei = 1 for all
i. In this case, the lemma follows by evaluating (8.6.3). It follows by continuity for any point p. As a point
p′ approaches p, ei points q′ of Y approach qi (8.5.6). For each point q′ that approaches qi, the limit of g(q′)
will be g(qi). �

(8.6.5) trace of a differentialtraced

The structure sheaf is naturally contravariant. A branched covering Y π−→ X corresponds to a homomor-
phism of OX -modules OX → OY . The trace map for functions is a homomorphism in the opposite direction:
OY trace−→ OX .

Differentials are also naturally contravariant. A morphism Y
π−→ X induces an OX -module homomor-

phism ΩX → ΩY that sends a differential dx onX to a differential on Y that we may also denote by dx (8.4.4)
(ii). As is true for functions, there is a trace map for differentials in the opposite direction. It is defined below,
in (8.6.7), and it will be denoted by τ :

ΩY
τ−→ ΩX

But first, a lemma about the natural contravariant map ΩX → ΩY :

8.6.6. Lemma.dxydy Let Y → X be a branched covering.
(i) Let p be the image in X of a point q of Y , let x and y be local generators for the maximal ideals of X
and Y at p and q, respectively, and let e be the ramification index at q. As a differential on Y , dx = vye−1dy,
where v is a local unit at q.
(ii) The canonical homomorphism ΩX → ΩY is injective.
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proof. (i) As we have noted before, x = uye, for some local unit u. Since dy generates ΩY locally, there is a
rational function z that is regular at q, such that du = zdy. Let v = yz + eu. Then

dx = d(uye) = yez dy + eye−1u dy = vye−1dy

Since yz is zero at q and eu is a local unit, v is a local unit.
See (8.1.17) (iv) for the proof of part (ii). �

To define the trace for differentials, we begin with differentials of the functions fields F andK ofX and Y ,
respectively. TheOY -module ΩY is invertible (8.4.10), and the module ΩK ofK-differentials is a localization
of ΩY . So ΩK is a free K-module of rank one. Any nonzero differential will form a K-basis. We choose as
basis a nonzero F -differential α. Its image in ΩK , which we denote by α too, will be a K-basis for ΩK . We
could take α = dx, where x is a local coordinate function on X , for instance.

Since α is a basis, any element β of ΩK can be written uniquely, as

β = gα

where g is an element of K. The trace ΩK
τ−→ ΩF is defined by

(8.6.7) deftrdifτ(β) = trace(g)α

where trace(g) is the trace of the function g. Since the trace for functions is F -linear, τ is also F -linear.
We need to check that τ is independent of the choice of α. Let α′ be another nonzero F -differential. Then

fα′ = α for some nonzero element f of F , and gfα′ = gα. Since trace is F -linear, trace(gf) = f trace(g).
Then

τ(gfα′) = trace(gf)α′ = f trace(g)α′ = trace(g)fα′ = trace(g)α = τ(gα)

Using α′ in place of α gives the same value for the trace.

A differenial of the function field K is called a rational differential. A rational differential β is regular at
a point q of Y if there is an affine open neighborhood Y ′ = SpecB of q such that β is an element of ΩB . If
y is a local generator for the maximal ideal mq and if β = g dy, the differential β is regular at q if and only if
the rational function g is regular at q.

LetX = SpecA and Y = SpecB be affine varieties, and let p be a point ofX . Suppose that the maximal
ideal at p is a principal ideal, generated by an element x of A, and that the differential dx generates ΩA. Let
q1, ..., qk be the points of Y that lie over p, and let ei be the ramification index at qi.

8.6.8. Corollary. poleorderWith notation as above,
(i) When viewed as a differential on Y , dx has a zero of order ei−1 at qi.
(ii) If a differential β on Y that is regular at qi is written as β = g dx, where g is a rational function on Y ,
then g has a pole of order at most ei−1 at qi.

This follows from Lemma 8.6.6 (i).

8.6.9. Main Lemma. traceregLet Y π−→ X be a branched covering, let p be a point of X , let q1, ..., qk be the points
of Y that lie over p, and let β be a rational differential on Y .
(i) If β is regular at the points q1, ..., qk, its trace τ(β) is regular at p.
(ii) If β has a simple pole at qi and is regular at qj for all j 6= i, then τ(β) is not regular at p.

proof. Let x be a local generator for the maximal ideal at p. We write β as g dx, where g is a rational function
on Y .

(i) Suppose that β is regular at the points qi. Corollary 8.6.8 tells us that g has poles of orders at most ei−1 at
the points qi. Since x has a zero of order ei at qi, the function xg is regular at qi, and its value there is zero.
Then trace(xg) is regular at p, and its value at p is zero (8.6.4). So x−1 trace(xg) is a regular function at p.
Since trace is F -linear and x is in F , x−1 trace(xg) = trace(g). Therefore trace(g) and τ(β) = trace(g)dx
are regular at p.

196



(ii) In this case, g has poles of orders at most ej−1 at the points qj when j 6= i, and it has a pole of order ei at
qi. So xg will be regular at the points qi. It will be zero at qj when j 6= i, and nonzero at qi. The function xg
will be regular at all of the points qj . Its value at qj will be zero when j 6= i, and not zero when j = i. Then
trace(xg) will be regular at p, but not zero there (8.6.4). Therefore τ(β) = x−1 trace(xg)dx won’t be regular
at p. �

8.6.10. Corollary.
omegaYandX

The trace map (8.6.7) defines a homomorphism of OX -modules ΩY
τ−→ ΩX . �

8.6.11. Example.sumroot-
cover

(i) Let x be a local generator for the maximal ideal mp at a point p of X . If the degree
[Y :X] of Y over X is n, then when we regard dx as a differential on Y ,

(8.6.12)tracedx τ(dx) = ndx

(ii) Let Y be the locus ye = x in A2
x,y . Multiplying y by ζ = e2πi/e permutes the sheets of Y over X . The

trace of an integer power yk is

(8.6.13)sumzeta trace(yk) =

e−1∑
j=0

ζjkyk

The sum
∑
j ζ

kj is zero unless k ≡ 0 modulo e. Then trace(dy) is not regular at x = 0, but dy/y is regular
there. �

Let Y π−→ X be a branched covering. As is true for any OY -module, ΩY is isomorphic to the module of
homomorphisms OY(OY ,ΩY ). The homomorphism OY → ΩY that corresponds to a section β of ΩY on an

open set U sends a regular function f on U to fβ. We denote that homomorphism by β too: OY β−→ ΩY .

8.6.14. Lemma.compwtau Composition with the trace ΩY
τ−→ ΩX defines a homomorphism of OX -modules

ΩY ≈ OY(OY ,ΩY )
τ−→ OX(OY ,ΩX)

proof. An OY -linear map becomes an OX -linear map by restriction of scalars. When we compose an OY -
linear map β with τ , then because τ is OX -linear, the result will be OX -linear. It will be a homomorphism of
OX -modules. �

8.6.15. Theorem.
traceomega

(i) The map (8.6.14) is bijective.
(ii) LetM be a locally free OY -module. Composition with the trace defines a bijection

(8.6.16)compw-
trace

OY(M,ΩOY )
τ◦−→ OX(M,ΩOX )

This theorem follows from the Main Lemma, when one looks carefully.

Note. The domain and range (8.6.16) are to be interpreted as modules on X . When we put the symbols Hom
and π∗ that we have suppressed into the notation, the map (8.6.16) becomes a bijection

π∗
(
HomOY(M,ΩY )

) τ◦−→ HomOX(π∗M,ΩX)

It suffices to verify the theorem locally, because it concerns modules on X . So we may suppose that X
and Y are affine, say X = SpecA and Y = SpecB. When the theorem is stated in terms of algebras and
modules, it becomes this:

8.6.17. Theorem.
traceomegaal-

gebra

Let Y → X be a branched covering, with Y = SpecB and X = SpecA.

(i) The trace map ΩB = B(B,ΩB)
τ ◦−→ A(B,ΩA) is bijective.

(ii) For any locally freeB-moduleM , composition with the trace defines a bijection B(M,ΩB)
τ◦−→ A(M,ΩA).

When we write A(M,ΩA) here, we are interpreting the B-module M as an A-module by restriction of
scalars.
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8.6.18. Lemma. homisB-
mod

Let A ⊂ B be rings, let M be a B-module, and let N be an A-module. Then the module
A(M,N) of homomorphisms has the structure of a B-module.

proof. We must define scalar multiplication of a homomorphism M
ϕ−→ N of A-modules by an element b of

B. The definition is: [bϕ](m) = ϕ(bm). One must show that the map bϕ is a homomorphism of A-modules
M → N , and that the axioms for a B-module are true. You will be able to check those things. �

proof of Theorem 8.6.15 (i). Since the theorem is local, we are still allowed to localize. We use the algebra
version 8.6.17 of the theorem. Both B and ΩB are torsion-free, and therefore locally free A-modules. Local-
izing as needed, we may assume that they are free A-modules, and that ΩA is a free module of rank one with
basis of the form dx. Then A(B,ΩA) will be a free A-module too.

Let’s denote A(B,ΩA) by Θ. Lemma 8.6.18 tells us that Θ is a B-module. Because B and ΩA are free
A-modules, Θ is a free A-module and a locally free B-module. Since ΩA has A-rank 1, the A-rank of Θ is the
same as the A-rank of B. Then the B-rank of Θ is 1, the same as the B-rank of B too (see (8.5.8)). Therefore
Θ is an invertible B-module.

If x is a local coordinate onX , then τ dx 6= 0 (8.6.12). The trace map ΩB
τ−→ Θ isn’t the zero map. Since

domain and range are invertible B-modules, it is an injective homomorphism. Its image, which is isomorphic
to ΩB , is an invertible submodule of the invertible B-module Θ.

To show that ΩB = Θ, we will apply Lemma 8.1.19 to show that the quotient Θ = Θ/ΩB is the zero
module. Suppose not, and let q be a point in the support of Θ. Let p be the image of q in X and let q1, ..., qk
be the fibre over p, with q = q1.

We choose a differential α that is regular at all of the points qi. If y is a local generator for the maximal
ideal at q1, then α = g dy, where g is a regular function at q1. We assume also that α has been chosen so that
that g(q1) 6= 0.

Let f be a rational function that is regular on an affine open set V of Y that contains the points q1, ..., qk,
and such that f(q1) = 0 and f(qi) 6= 0 when i > 1. Lemma 8.1.19 tells us that β = f−1α is a section of Θ
on V , but the Main Lemma 8.6.9 tells us that τ(β) isn’t regular at p. This contradicion proves the theorem. �

proof of Theorem 8.6.15 (ii). We are to show that if M is a locally free OY -module, composition with the
trace defines a bijective map OY(M,ΩOY ) → OX(M,ΩOX ). Part (i) of the theorem tells us that this is true
in whenM = OY . Therefore it is also true whenM is a free moduleOkY . And, since (ii) is a statement about
OX -modules, it suffices to prove it locally on X .

8.6.19. Lemma. local-
lyfreeonX

Let q1, ..., qk be points of a smooth curve Y , and letM be a locally free OY -module. There
is an open set V that contains the points q1, ..., qk, such thatM is free on V .

We assume the lemma and complete the proof of the theorem. Let {q1, ..., qk} be the fibre over a point p
of X and let be V as in the lemma. The complement D = Y − V is a finite set whose image Z in X is also
finite, and Z doesn’t contain p. If U is the complement of Z in X , its inverse image W will be a subset of V
that contains the points of the fibre, on whichM is free. �

proof of the lemma. We may assume that Y is affine, Y = SpecB, and that the O-moduleM corresponds to
a locally free B-module M .

With terminology as in Lemma 8.5.3, let mi be the maximal ideal of B at qi, and let Bi = B/meii . The
quotient B = B/xB is isomorphic to the product B1×· · ·×Bk. SinceM is locally free, M/miM = M i is a
free Bi-module. Its dimension is the rank r of the B-module M .

If M has rank r, there will be a set of elements m = (m1, ...,mr) in M whose residues form a basis of
M i for every i. This follows from the Chinese Remainder Theorem. Therefore m generates M locally at each
of the points. Let M ′ be the B-submodule of M generated by m. The cokernel of the map M ′ → M is zero
at the points q1, ..., qk, and therefore it’s support, which is a finite set, is disjoint from those points. When we
localize to delete this finite set from X , the set m becomes a basis for M . �

Note. Theorem 8.6.15 is subtle. Unfortunately the proof, though understandable, doesn’t give an intuitive
explanation of the fact that ΩB is isomorphic to A(B,ΩA). To get more insight into that, we would need a
better understanding of differentials. My father Emil Artin said: “One doesn’t really understand differentials,
but one can learn to work with them.”

198



8.7 The Riemann-Roch Theorem II
rroch

(8.7.1) the Serre dualserredual

Let Y be a smooth projective curve, and letM be a locally free OY -module. The Serre dual ofM, is the
module

(8.7.2) MS = Y (M,ΩY )
(

= HomOY (M,ΩY )
)

defSerred-
ual

Its sections on an open subset U are the homomorphisms of OY (U)-modulesM(U) → ΩY (U), and it can
also be written asMS = M∗ ⊗O ΩY , whereM∗ is the ordinary dual Y (M,OY ). Since the module ΩY is
invertible, it is locally isomorphic to OY . So the Serre dual MS is locally isomorphic to the ordinary dual
M∗. It is a locally free module of the same rank asM, and the Serre bidual (MS)S is isomorphic toM:

(MS)S ≈ (M∗ ⊗O ΩY )∗ ⊗O ΩY ≈M∗∗ ⊗O Ω∗Y ⊗O ΩY ≈M∗∗ ≈M

(See (8.1.17) (i).) For example, OSY = ΩY and ΩSY = OY .

8.7.3. Riemann-Roch Theorem, version 2.dualco-
hom

Let M be a locally free OY -module on a smooth projective
curve Y , and letMS be its Serre dual. Then h0M = h1MS and h1M = h0MS .

The two assertions are equivalent, becauseM and (MS)S are isomorphic. The second one follows from the
first when one replacesM byMS . For example, h1ΩY = h0OY = 1 and h0ΩY = h1OY is the arithmetic
genus pa.

IfM is a locally free OY -module, then

(8.7.4)chitwo χ(M) = h0M− h0MS

A more precise statement of the Riemann-Roch Theorem is that H1(Y,M) and H0(Y,MS) are dual vector
spaces. This becomes important when one wants to apply the theorem to a cohomology sequence, but we omit
the proof. The fact that the dimensions are equal is enough for many applications.

Our plan is to prove Theorem 8.7.3 directly for the projective line P1. This will be easy, because the
structure of locally free modules on P1 is very simple. We derive it for an arbitrary smooth projective curve Y
by projection to P1. Projection to projective space is the method that was used by Grothendieck in his proof
of the general Riemann-Roch Theorem.

Let X = P1, let Y be a smooth projective curve, and let Y π→ X be a branched covering. LetM be a
locally free OY -module, and let the Serre dual ofM, as defined in (8.7.2), be

MS
1 = Y(M,ΩY )

The direct image ofM is a locally freeOX -module that we are denoting byM too, and we can form the Serre
dual on X . Let

MS
2 = X(M,ΩX)

8.7.5. Corollary.abouthom The direct image π∗MS
1 , which we also denote byMS

1 , is isomorphic toMS
2 .

proof. This is Theorem 8.6.15. �

The corollary allows us to drop the subscripts from MS . Because a branched covering Y π−→ X is an
affine morphism, the cohomology ofM and of its Serre dualMS can be computed, either on Y or on X . If
M is a locally free OY -module, then Hq(Y,M) ≈ Hq(X,M) and Hq(Y,MS) ≈ Hq(X,MS) (7.4.22).

Thus it is enough to prove Riemann-Roch for the projective line.

(8.7.6)dualityfor
pone

Riemann-Roch for the projective line

The Riemann-Roch Theorem for the projective lineX = P1 is a consequence of the Birkhoff-Grothendieck
Theorem, which tells us that a locally freeOX -moduleM on X is a direct sum of twisting modules. To prove
Riemann-Roch for the projective line X , it suffices to prove it for the twisting modules OX(k).
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8.7.7. Lemma.
omegapone

The module of differentials ΩX on the projective line X is isomorphic to the twisting module
OX(−2).

proof. Let U0 = SpecC[x], and U1 = SpecC[z] be the standard open subsets of P1, with z = x−1. On
U0, the module of differentials is free, with basis dx, and dx = d(z−1) = −z−2dz describes the differential
dx on U1. Since the point p∞ at infinity is {z = 0}, dx has a pole of order 2 there. It is a global section of
ΩX(2p∞), and as a section of that module, it isn’t zero anywhere. Multiplication by dx defines an isomorphism
O → ΩX(2p∞) that sends 1 to dx. Tensoring with O(−2p∞) shows that O(−2p∞) is isomorphic to ΩX . �

8.7.8. Lemma. twisthomLet M and N be locally free O-modules on the projective line X . Then X(M(r),N ) is
canonically isomorphic to X(M,N (−r)).

proof. When we tensor a homomorphism M(r)
ϕ−→ N with O(−r), we obtain a homomorphism M →

N (−r), and tensoring with O(r) is the inverse operation. �

The Serre dual O(n)S of O(n) is therefore

O(n)S = X(O(n),O(−2)) ≈ O(−2−n)

To prove Riemann-Roch for X = P1, we must show that

h0O(n) = h1O(−2−n) and h1O(n) = h0O(−2−n)

This follows from Theorem 7.5.5, which computes the cohomology of the twisting modules. As we’ve noted
before, the two assertions are equivalent, so it suffices to verify the first one. If n < 0, then −2−n ≥ −1. In
this case h0O(n) and h1O(−2 − n) = 0 are both zero. If n ≥ 0, then −2 − n < −2, and then h0O(n) =
h1O(−2− n) = n+1.

8.8 Using Riemann-Roch
appl

(8.8.1) genus genussm-
curve

Three closely related numbers associated to a smooth projective curve Y are: the topological genus g, the
arithmetic genus pa = h1OY , and the degree δ of the module of differentials ΩY .

8.8.2. Theorem. genus-
genus

The topological genus g and the arithmetic genus pa of a smooth projective curve Y are
equal, and the degree δ of the module ΩY is 2g − 2, which is equal to 2pa − 2.

Thus the Riemann-Roch Theorem 8.2.3 can we written as

(8.8.3) dplusone-
minusg

χ(O(D)) = deg D + 1− g

We’ll write it this way when the theorem is proved.
###By the way, the fact that the genus is always ≥ 0 has applications. ###

proof. Let Y π−→ X be a branched covering withX = P1. The topological Euler characteristic e(Y ), which is
2−2g, can be computed in terms of the branching data for the covering, as in (1.8.23). Let qi be the ramification
points in Y , and let ei be the ramification index at qi. Then ei sheets of the covering come together at qi. (One
might say that ei−1 points are lacking.) If the degree of Y over X is n, then since e(X) = 2,

(8.8.4) degdelta2− 2g = e(Y ) = ne(X)−
∑

(ei−1) = 2n−
∑

(ei−1)

We compute the degree δ of ΩY in two ways. First, the Riemann-Roch Theorem tells us that h0ΩY =
h1OY = pa and h1ΩY = h0OY = 1. So χ(ΩY ) = −χ(OY ) = pa − 1. The Riemann-Roch Theorem also
tells us that χ(ΩY ) = δ + 1− pa. Therefore

(8.8.5) δ = 2pa − 2 delta
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Next, we compute δ by computing the divisor of the differential dx on Y , x being a coordinate on the
projective line X . Let qi be one of the ramification points in Y , and let ei be the ramification index at qi.
Then dx has a zero of order ei−1 at qi. At the point of X at infinity, dx has a pole of order 2. Let’s choose
coordinates so that the point at infinity isn’t a branch point. Then there will be n points of Y at which dx has
a pole of order 2, n being the degree of Y over X . The degree of ΩY is therefore

(8.8.6) δ = zeros− poles =
∑

(ei−1)− 2ndeltatwo

Combining (8.8.6) with (8.8.4), one sees that δ = 2g − 2. Since we also have δ = 2pa − 2, we conclude that
g = pa. �

(8.8.7) canonical divisorscanondiv

Because the module ΩY of differentials on a smooth curve Y is invertible, it is isomorphic to O(K) for
some divisor K that is called a canonical divisor (Proposition 8.1.13). The degree of a canonical divisor is
2g − 2, the same as the degree of ΩY . It is often convenient to represent ΩY as a module O(K), though the
canonical divisor K isn’t unique. It is determined only up to linear equivalence (8.1.15).

When written in terms of a canonical divisor K, the Serre dual of an invertible module O(D) will be

(8.8.8)degK O(D)S ≈ O(K−D)

(8.1.16), (8.1.12). With this notation, the Riemann-Roch Theorem for O(D) becomes

(8.8.9)RRforOD h0O(D) = h1O(K−D) and h1O(D) = h0O(K−D) �

(8.8.10)genuszero curves of genus zero

Let Y be a smooth projective curve Y of genus g = 0, and let p be a point of Y . The exact sequence

0→ OY → OY (p)→ ε→ 0

where ε is a one-dimensional module supported at p, gives us an exact cohomology sequence

0→ H0(Y,OY )→ H0(Y,OY (p))→ H0(Y, ε)→ 0

The zero on the right is due to the fact that h1OY = g = 0. We also have h0OY = 1 and h0ε = 1, so when
Y has genus zero, h0OY (p) = 2. We choose a basis (1, x) for H0(Y,OY (p)), 1 being the constant function
and x being a nonconstant function with a single pole of order 1 at p. This basis defines a point of P1 with
values in the function field K of Y , and therefore a morphism Y

ϕ−→ P1 (5.2.4). Because x has just one pole
of order 1, it takes every value exactly once (8.2.9)(iii). Therefore ϕ is bijective. It is a map of degree 1, and
therefore an isomorphism (8.5.2).

8.8.11. Corollary.gzero A smooth projective curve of genus zero is isomorphic to the projective line P1. �

A rational curve is a curve, smooth or not, whose function field is isomorphic to the field C(t) of rational
functions in one variable. A smooth projective curve of genus zero is a rational curve.

(8.8.12)genusone curves of genus one

A smooth projective curve of genus g = 1 is called an elliptic curve. The Riemann-Roch Theorem tells us that
on an elliptic curve Y ,

χ(O(D)) = deg D

Since h0ΩY = h1OY = 1, ΩY has a nonzero global section ω. Since ΩY has degree zero (8.8.2), ω doesn’t
vanish anywhere. Multiplication by ω defines an isomorphism O → ΩY . So ΩY is a free module of rank one.
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8.8.13. Lemma. hrpforel-
liptic

Let D be a divisor of degree r > 0 on an elliptic curve Y . Then h0O(D) = r, and
h1O(D) = 0.

This follows from Riemann-Roch. Since Ω)Y is free, isomorphic to co K = 0 is a canonical divisor, so the
Serre dual ofO(D) isO(−D), and h1O(D) = h0O(−D), which is zero when the degree of D is positive. �

Now, since H0(Y,OY ) ⊂ H0(Y,OY (p)), and since both spaces have dimension one, they are equal. So
(1) is a basis for H0(Y,OY (p)). We choose a basis (1, x) for the two-dimensional space H1(Y,OY (2p)).
Then x isn’t a section of O(p). It has a pole of order precisely 2 at p and no other pole. Next, we choose a
basis (1, x, y) for H1(Y,OY (3p)). So y has a pole of order 3 at p, and no other pole. The point (1, x, y) of P2

with values in K determines a morphism Y
ϕ−→ P2.

Let u, v, w be coordinates in P2. The map ϕ sends a point q distinct from p to (u, v, w) = (1, x(q), y(q)).
Since Y has dimension one, ϕ is a finite morphism. Its image Y ′ is closed (5.5.4). It is a plane curve.

To determine the image of the point p, we multiply (1, x, y) by λ = y−1, obtaining the equivalent vector
(y−1, xy−1, 1). The rational function y−1 has a zero of order 3 at p, and xy−1 has a simple zero there.
Evaluating at p, we see that the image of p is the point (0, 0, 1).

Let ` be a generic line {au+bv+cw = 0} in P2. The rational function a+bx+cy on Y has a pole of order
3 at p and no other pole. It takes every value, including zero, three times, and the three points of Y at which
a+ bx+ cy is zero form the inverse image of `. The only possibilities for the degree of Y ′ are 1 and 3. Since
1, x, y are independent, they don’t satisfy a homogeneous linear equation. So Y ′ isn’t a line. It is a cubic curve
(see Corollary 1.3.10).

To determine the image, we look for a cubic relation among the functions 1, x, y on Y . The seven mono-
mials 1, x, y, x2, xy, x3, y2 have poles at p, of orders 0, 2, 3, 4, 5, 6, 6, respectively, and no other poles. They
are sections of OY (6p). Riemann-Roch tells us that h0OY (6p) = 6. So those seven functions are linearly
dependent. The dependency relation gives us a cubic equation among x and y, which we may write in the form

cy2 + (a1x+a3)y + (a0x
3+a2x

2+a4x+a6) = 0

There can be no linear relation among functions whose orders of pole at p are distinct. So when we delete
either x3 or y2 from the list of monomials, we obtain an independent set of six functions — a basis for the
six-dimensional spaceH0(Y,O(6p)). In the cubic relation, the coefficients c and a0 aren’t zero. We normalize
c and a0 to 1. Next, we eliminate the linear term in y from the relation by substituting y − 1

2 (a1x+a3) for y,
and we eliminate the quadratic term in x in the resulting polynomial by substituting x − 1

3a2 for x. Bringing
the terms in x to the other side of the equation, we are left with a cubic relation of the form

y2 = x3 + a4x+ a6

The coefficients a4 and a6 have been changed, of course.
The cubic curve Y ′ defined by the homogenized equation y2z = x3 + a4xz

2 + a6z
3 is the image of Y .

This curve meets a generic line ax + by + cz = 0 in three points and, as we saw above, its inverse image
in Y consists of three points too. Therefore the morphism Y

ϕ−→ Y ′ is generically injective, and Y is the
normalization of Y ′. Let’s denote the direct image ϕ∗(OY ) by OY , and let F be the OY ′ -module OY /OY ′ .
Since Y is the normalization of Y ′, F is a torsion module, and H1(F) = 0. We assemble the dimensions of
cohomology into a table:

OY ′ OY F
h0 : 1 1 ∗

h1 : 1 1 0

The table shows that h0F = 0. So F is torsion module with no global sections. So F = 0, and Y ≈ Y ′.
8.8.14. Corollary. genu-

sonecubic
Every elliptic curve is isomorphic to a cubic curve in P2. �

(8.8.15) genusone-
group

the group law on an elliptic curve

The points of an elliptic curve Y form an abelian group, once one fixes a point as the identity element. We
choose a point and label it o. Let p and q be points of Y . We write the law of composition as p ⊕ q, to make
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a clear distinction between the product in the group, which is a point of Y , and the divisor p + q. To define
p ⊕ q, we compute the cohomology of OY (p+q− o). Lemma 8.8.13 shows that h0OY (p+q−o) = 1. So
there is a nonzero function f , unique up to scalar factor, with simple poles at p and q and a simple zero at o.
This function has exactly one additional zero. That zero is defined to be the sum p⊕ q in the group. In terms
of linearly equivalent divisors, p ⊕ q is the unique point s such that the divisor p + q is linearly equivalent to
o+ s.

8.8.16. Proposition.grplaw With the law of composition ⊕ defined above, an elliptic curve mibecomes an abelian
group.

The proof is left as an exercise. �

(8.8.17) maps to projective spacemaptoP

Let Y be a smooth projective curve. We have seen that any set (f0, ..., fn) of rational functions on Y , not
all zero, defines a morphism Y

ϕ−→ Pn (5.2.4). As a reminder, let q be a point of Y and let gj = fj/fi, where i
is an index such that the value vq(fi) is a minimum, for k = 0, ..., n. The rational functions gj are regular at q
for all j, and the morphism ϕ sends the point q to (g0(q), ..., gn(q)). For example, the inverse image ϕ−1(U0)
of the standard open set U0 is the set of points of Y at which the functions gj = fj/f0 are regular. If q is such
a point, then ϕ(q) = (1, g1(q), ..., gn(q)).

The degree d of a nonconstant morphism Y
ϕ−→ Pn from a projective curve Y (smooth or not) to projective

space is defined to be the number of points of the inverse image ϕ−1H of a generic hyperplane H in Pn.

8.8.18. Lemma.mapcurve Let Y be a smooth projective curve, and let Y
ϕ−→ Pn be the morphism to projective space

defined by a set (f0, ..., fn) of rational functions on Y .
(i) If the space spanned by {f0, ..., fn} has dimension at least two, then ϕ isn’t a constant morphism to a point.
(ii) If f0, ..., fn are linearly independent, the image of Y isn’t contained in a hyperplane. �

(8.8.19) base pointsbasept

Let D be a divisor on the smooth projective curve Y , and suppose that h0O(D) = k > 1. A basis
(f0, ..., fk) of global sections of O(D) defines a morphism Y → Pk−1. This is a common way to construct a
morphism to projective space, though one could use any set of rational functions that aren’t all zero.

If a global section ofO(D) vanishes at a point p of Y , it is also a global section ofO(D−p). A base point
of O(D) is a point of Y at which every global section of O(D) vanishes. A base point can be described in
terms of the usual exact sequence (8.2.4)

0→ O(D−p)→ O(D)→ ε→ 0

where ε is a one-dimensional module whose support is p. The point p is a base point if h0O(D−p) = h0O(D),
or if h1O(D−p) = h1O(D)− 1.

8.8.20. Lemma.deg-
nobasept

LetD be a divisor on a smooth projective curve Y with h0O(D) = n > 1, and let Y
ϕ−→ Pn

be the morphism defined by a basis of global sections.
(i) The image of ϕ isn’t contained in any hyperplane.
(ii) If O(D) has no base point, the degree of ϕ is equal to degree of D. If there are base points, the degree is
lower. �

8.8.21. Proposition.exbase-
points

Let K be a canonical divisor on a smooth projective curve Y of genus g > 0.
(i) O(K) has no base point.
(ii) Every point p of Y is a base point of O(K+p).
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proof. (i) Let p be a point of Y . We apply Riemann-Roch to the exact sequence

0→ O(K−p)→ O(K)→ ε→ 0

The Serre duals of O(K) and O(K−p) are O(K)S = O and O(K−p)S = O(p), respectively. They form an
exact sequence

0→ O → O(p)→ ε′ → 0

Because Y has positive genus, there is no rational function on Y with just one simple pole. So h0O =
h0O(p) = 1. Riemann-Roch tells us that h1O(K−p) = h1O(K) = 1. The cohomology sequence

0→ H0(O(K−p))→ H0(O(K))→ [1]→ H1(O(K−p))→ H1(O(K))→ 0

shows that h0O(K−p) = h0O(K)− 1. So p is not a base point.

(ii) Here, the relevant sequence is

0→ O(K)→ O(K+p)→ ε′′ → 0

The Serre dual of O(K+p) is O(−p), which has no global section. Therefore h1O(K+p) = 0, while
h1O(K) = h0O = 1. The cohomology sequence

0→ h0O(K)→ h0O(K+p)→ [1]→ h1O(K)→ h1O(K+p)→ 0

shows that H0(O(K+p)) = H0(O(K)). So p is a base point of O(K+p). �

(8.8.22) hyperelliptic curves hyper

A hyperelliptic curve Y is a smooth projective curve of genus g ≥ 2 that can be represented as a branched
double covering of the projective line — such that there exists a morphism Y

π−→ X = P1 of degree two. The
term ’hyperelliptic’ comes from the fact that every elliptic curve can be represented (not uniquely) as a double
cover of P1. The global sections ofO(2p), where p can be any point of an elliptic curve, define a map to P1 of
degree 2.

The topological Euler characteristic of a hyperelliptic curve Y can be computed in terms of the double
covering Y → X , which will be branched at a finite set, say of n points, of Y . Since π has degree two, the
ramification index at a branch point will be 2. The Euler characteristic is therefore e(Y ) = 2e(X)−n = 4−n.
Since we know that e(Y ) = 2− 2g, the number of branch points is n = 2g + 2. When g = 3, n = 8.

It would take some experimentation to guess that the next remarkable theorem might be true, and some
time to find a proof.

8.8.23. Theorem. hyper-
canon

Let Y be a hyperelliptic curve, let Y π−→ X = P1 be a branched covering of degree 2.

The morphism Y
ψ−→ Pg−1 defined by the global sections of ΩY = O(K) factors through π. There is a

unique morphism X
u−→ Pg−1 such that ψ is the composed map Y π−→ X

u−→ Pg−1:

Y
π−−−−→ X

ψ

y u

y
Pg−1 Pg−1

proof. Let x be an affine coordinate in X , so that the standard affine open subset U0 of X is SpecC[x]. We
suppose that the point of X at infinity isn’t a branch point of the covering π. The open set Y 0 = π−1U0 will
be described by an equation of the form y2 = f(x), where f is a polynomial of degree n = 2g + 2 with
simple roots, and there will be two points of Y above the point of X at infinity, that are interchanged by the
automorphism y → −y. Let’s call those points q1 and q2.

We start with the differential dx, which we view as a rational differential on Y . Then 2y dy = f ′(x)dx.
Since f has simple roots, f ′ doesn’t vanish at any of those roots. Solving for dx, we see that it has simple
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zeros on Y above the roots of f , which are the points at which y = 0. We also have a regular function on
Y 0 with simple roots at those points, namely the function y. Therefore the differential ω = dx

y is regular and
nowhere zero on Y 0. Because the degree of a differential on Y is 2g − 2, ω has a total of 2g − 2 zeros at
infinity. By symmetry, ω has zeros of order g − 1 at the points q1 and q2. Then K = (g−1)q1 + (g−1)q2 is a
canonical divisor on Y .

Since K has zeros of order g−1 at infinity, the rational functions 1, x, x2, ..., xg−1, viewed as functions
on Y , are among the global sections of OY (K). They are independent, and there are g of them. Since
h0OY (K) = g, they form a basis of H0(OY (K)). The map Y → Pg−1 defined by the global sections of
OY (K) evaluates these powers of x, so it factors through X . �

8.8.24. Corollary.oned-
blcover

A curve of genus g ≥ 2 can be presented as a branched covering of P1 of degree 2 in at
most one way. �

(8.8.25) canonical embeddingcanonemb

Let Y be a smooth projective curve of genus g ≥ 2, and let K be a canonical divisor on Y . Its global
sections define a morphism Y → Pg−1. This morphism is called the canonical map. We denote the canonical
map by ψ. Since O(K) has no base point, the degree of ψ is the degree 2g − 2 of the canonical divisor.
Theorem 8.8.23 shows that, when Y is hyperelliptic, the image of the canonical map is isomorphic to P1.

8.8.26. Theorem.canonem-
btwo

Let Y be a smooth projective curve of genus g at least two. If Y isn’t hyperelliptic, the
canonical map embeds Y as a closed subvariety of projective space Pg−1.

proof. We show first that, if the canonical map Y
ψ−→ Pg−1 isn’t injective, then Y is hyperelliptic.

Let p and q be distinct points of Y with the same image: ψ(p) = ψ(q). We choose an effective canonical
divisor K whose support doesn’t contain p or q, and we inspect the global sections of O(K−p−q). Since
ψ(p) = ψ(q), any global section of O(K) that vanishes at p vanishes at q too. Therefore O(K−p) and
O(K−p− q) have the same global sections, and so q is a base point of O(K−p). We’ve computed the
cohomology ofO(K−p) before: h0O(K−p) = g−1 and h1O(K−p) = 1. Therefore h0O(K−p−q) = g−1
and h1O(K−p−q) = 2. The Serre dual of O(K−p−q) is O(p+ q), so by Riemann-Roch, h0O(p+ q) = 2.
For any divisor D of degree one on a curve of positive genus, h0(O(D)) ≤ 1. So O(p+ q) has no base point,
and the global sections ofO(p+q) define a morphism Y → P1 of degree 2. This shows that Y is hyperelliptic.

If Y isn’t hyperelliptic, the canonical map is injective, so Y is mapped bijectively to its image Y ′ in Pg−1.

This almost proves the theorem. But: can Y ′ have a cusp? We must show that the bijective map Y
ψ−→ Y ′

is an isomorphism. We go over the computation made above for a pair of points p, q, this time taking q = p.
The computation is the same. Since Y isn’t hyperelliptic, p isn’t a base point of OY (K−p). Therefore
h0OY (K−2p) = h0OY (K−p)− 1. This tells us that there is a global section f of OY (K) that has a zero of
order exactly 1 at p. When properly interpreted, this fact shows that ψ doesn’t collapse any tangent vector at
p, and that ψ is an isomorphism. Since we haven’t discussed tangent vectors, we prove this directly.

Since ψ is bijective, the function fields of Y and its image Y ′ are equal, and Y is the normalization of Y ′.
Moreover, ψ is an isomorphism except on a finite set. We work locally at a point p′ of Y ′, and we denote the
unique point of Y that maps to Y ′ by p. When we restrict the global section f of OY (K) found above to the
image Y ′, we obtain an element of the maximal ideal mp′ ofOY ′ at p′, that we denote by x. On Y , this element
has a zero of order one at p, and therefore it is a local generator for the maximal ideal mp of OY . Let R′ and
R denote the local rings at p. We apply the Local Nakayama Lemma 5.1.1, regarding R as a finite R′-module.
We substitute V = R and M = m′p′ into the statement of that lemma. Since x is in mp′ , V/MV = R/mp′R
is the residue field k(p) ofR, which is spanned, asR′-module, by the element 1. The Local Nakayama Lemma
tells us that R is spanned, as R′-module, by 1, and this shows that R = R′. �

(8.8.27) some curves of low genuslowgenus

curves of genus 2
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When Y is a smooth projective curve of genus 2. The canonical map ψ is a map from Y to P1, of degree
2g − 2 = 2. Every smooth projective curve of genus 2 is hyperelliptic.

curves of genus 3

Let Y be a smooth projective curve of genus 3. The canonical map ψ is a morphism of degree 4 from Y to
P2. If Y isn’t hyperelliptic, its image will be a plane curve of degree 4 that is isomorphic to Y . The genus of a
smooth projective curve of degree 4 is

(
3
2

)
= 3 (1.8.25), which checks.

There is another way to arrive at the same result. We go through it because the method can be used for
curves of genus 4 or 5. Let K be a canonical divisor. Riemann-Roch determines the dimension of the space of
global sections of O(dK). When d > 1,

h1O(dK) = h0O((1−d)K) = 0

Then

(8.8.28) OdKh0O(dK) = deg(dK) + 1− g = d(2g − 2)− (g − 1) = (2d− 1)(g − 1)

In our case g = 3, so when d > 1, h0O(dK) = 4d− 2.

The number of monomials of degree d in n+ 1 variables x0, ..., xn is
(
n+d
d

)
. When n = 2, that number is(

d+2
2

)
.

We assemble this information into a table:

d 0 1 2 3 4 5
monos deg d 1 3 6 10 15 21
h0O(dK) 1 3 6 10 14 18

Now let (α0, α1, α2) be a basis of H0O(K). The products αi1 · · ·αid of length d of elements of the basis
are global sections of O(dK). It is a fact that they generate the space H0O(dK) of global sections. However,
this isn’t very important here, and the proof isn’t easy. So we omit it. What we see from the table is that there
is at least one nonzero homogeneous polynomial f(x0, ..., x2) of degree 4, such that f(α) = 0. This means
that the curve Y lies in the zero locus of that polynomial, which is a quartic curve. The table also shows that
Y isn’t in the zero locus of any curve of lower degree. So Y is a quartic curve, and f is, up to scalar factor, the
only homogeneous quartic that vanishes on Y . The monomials of degree 4 in α span a space of dimension 14,
and therefore they span H0O(4K). This is one case of the fact that was stated above.

The table also shows that there are (at least) three independent polynomials of degree 5 that vanish on Y .
They are x0f, x1f, x2f .

curves of genus 4

When Y is a smooth projective curve of genus 4 that isn’t hyperelliptic, the canonical map embeds Y as a
curve of degree 6 in P3. Let’s leave the analysis of this case as an exercise.

curves of genus 5

With genus 5, things become more complicated.
Let Y be a smooth projective curves of genus 5 that isn’t hyperelliptic. The canonical map embeds Y as

a curve of degree 8 in P4. We make a computation analogous to what was done for genus 3. For d > 1, the
dimension of the space of global sections of O(dK) is

h0O(dK) = (2d− 1)(g − 1) = 8d− 4

and the number of monomials of degree d in 5 variables is
(
d+4

4

)
.

We form a table:

d 0 1 2 3
monos deg d 1 5 15 35
h0O(dK) 1 5 12 20
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This table predicts that there are at least three independent homogeneous quadratic polynomials q1, q2, q3

that vanish on the curve Y . Let Qi be the quadric {qi = 0}. Then Y will be contained in the zero locus
Z = Q1 ∩Q2 ∩Q3.

Bézout’s Theorem has a generalization that applies here. LetQ1, Q2, Q3 be hypersurfaces in P4, of degrees
r1, r2, r3, respectively. Let Z1, , , , , Zk be the irreducible components of the zero locus Z : {q1 = q2 = q3 =
0}. If Z has dimension 1, then the sum deg Z1 + · · ·+deg Zk is at most equal to the product r1r2r3, and
is equal to that product when counted with a suitable multiplicity. We omit the proof, which is similar to the
proof of the usual Bézout’s Theorem.

When Qi are the quadrics {qi = 0}, i = 1, 2, 3, the intersection Z = Q1 ∩ Q2 ∩ Q3 will contain Y . If
Z has dimension one, the generalized Bézout’s Theorem shows that its degree is 8, the same as the degree of
the embedded curve Y . In this case, Y = Z, and Y is called a complete intersection of the three quadrics.
However, it is possible that the intersection Z has dimension 2.

A curve Y that can be represented as a three-sheeted covering of P1 is called a trigonal curve (another
peculiar term).

8.8.29. Proposition.trigonal A trigonal curve of genus 5 is not isomorphic to an intersection of three quadrics in P4.

proof. A trigonal curve Y has a morphism of degree 3 to the projective line: Y → X = P1. Let’s suppose
that the point at infinity of X isn’t a branch point. Let the fibre over the point at infinity be {p1, p2, p3}.
With coordinates (x0, x1) on X , the rational function u = x1/x0 on X has poles D = p1+p2+p3 on Y , so
H0(Y,O(D)) contains 1 and u, and therefore h0O(D) ≥ 2. By Riemann-Roch, χO(D) = 3 + 1− g = −1.
Therefore h1O(D) = h0O(K −D) ≥ 3. There are (at least) three independent global sections of O(K) that
vanish onD. Let them be α0, α1, α2. We extend this set to a basis (α0, ..., α4) ofO(K). When Y is embedded
into P4 by that basis, the three planes {xi = 0}, i = 0, 1, 2 contain the points p1, p2, p3. The intersection of
those planes is a line L that contains the three points.

We go back to the three quadrics Q1, Q2, Q3 that contain Y . Since they contain Y , they contain D. A
quadric Q intersects the line L in at most two points unless it contains L. Therefore each of the quadrics Qi
contains L, and then Q1 ∩Q2 ∩Q3 contains L as well as Y . Suppose that Z = Q1 ∩Q2 ∩Q3 has dimension
1. Then, according to Bézout, the sum 1 + 8 of the degrees of L and Y , must be at most 2 · 2 · 2 = 8. Nope:
Z = Q1 ∩Q2 ∩Q3 cannot have dimension 1. �

In fact, this is the only exceptional case. A curve of genus 5 is either hyperelliptic, or trigonal, or else it is a
complete intersection of three quadrics in P4. But we omit the proof. We have done enough.
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8.9 Exercises
chapeigh-
tex

8.9.1. Let D be a divisor on a smooth projective curve Y , and suppose that h0O(D) = k > 1. When Y is
mapped to projective space using a basis for H0(OY (D)), what is the inverse image in Y of a hyperplane?

8.9.2. degtwois-
conic

(i) Prove that every projective curve of degree 2 is a plane conic.
(ii) Classify projective curves of degree 3.

8.9.3. xhomco-
herent

LetM and N be O-modules. Prove that O(M,N ) = HomO(M,N ) is an O-module.

8.9.4. generic-
notbp

Let D be a divisor of degree d on a smooth projective curve Y , such that h0O(D) = k > 0.
(i) Prove that if p is a generic point of Y , then h0O(D − p) = k − 1.
(ii) Prove that h0O(D) ≤ d+ 1, and that if h0O(D) = d+ 1, then X is isomorphic to P1.

8.9.5. openaffineProve that every nonempty open subset of a smooth affine curve is affine.

8.9.6. xsmratLet D be a divisor of degree d on a smooth projective curve Y . Show that h0(O(D)) ≤ d + 1, and if
h0(O(D)) = d+ 1, then Y is a smooth rational curve, isomorphic to P1.

8.9.7.
xHonezero

Prove that a projective curve Y such that h1(OY ) = 0, smooth or not, is isomorphic to the projective
line P1.

8.9.8. xcohgenu-
sone

Use version 1 of the Riemann-Roch Theorem to compute hq(O(rp)) for a smooth projective curve of
genus 1

8.9.9. xnode-
sandcusps

Let C be a plane projective curve of degree d, with δ nodes and κ cusps. Determine the genus of the
normalization C# of C.

8.9.10. xgenustwoLet Y be a smooth projective curve of genus 2. Determine the possible dimensions of Hq(Y,O(D)),
when D is an effective divisor of degree n.

8.9.11. xgenust-
wotwo

Let Y be a curve of genus 2, and let p be a point of Y . Suppose that h1O(2p) = 0. Show that there
is a basis of global sections of O(4p) of the form (1, x, y), where x and y have poles of orders 3 and 4 at p.
Prove that this basis defines a morphism Y → P2 whose image is a singular curve Y ′ of degree 4.

8.9.12. xproveBGThe projective line X = P1 with coordinates x0, x1 is covered by the two standard affine open sets
U0 = SpecR0 and U1 = SpecR1, R0 = C[u] with u = x1/x0, and R1 = C[v] with v = x0/x1 = u−1.
The intersection U01 is the spectrum of the Laurent polynomial ring R01 = C[u, v] = C[u, u−1]. The units of
R01 are the monomials cuk, where k can be any integer.

(i) Let A =

(
a b
c d

)
be an invertible R01-matrix. Prove that there is an invertible R0-matrix Q, and there is

an invertible R1-matrix P , such that Q−1AP is diagonal.
(ii) Use part (i) to prove the Birkhoff-Grothendieck Theorem for torsion-free OX -modules of rank 2.

8.9.13. xOmplu-
sOn

On P1, when is O(m)⊕O(n) isomorphic to O(r)⊕O(s)?

8.9.14. xellgrplawLet Y be an elliptic curve.
(i) Prove that, with the law of composition ⊕ defined in (8.8.15), Y is an abelian group.
(ii) Let p be a point of Y . Describe the sum p⊕ p · · · ⊕ p of k copies of p.
(iii) Determine the number of points of order 2 on Y .
(iv) Suppose that Y is a plane curve. Show that, if origin is a flex point, the other the flexes of Y are the points
of order 3, and determine the number of points of Y of order 3.

8.9.15. xrealflexHow many real flex points can a real cubic curve have?

8.9.16. xmod-
dirsum

Prove that a finite O-module on a smooth curve is a direct sum of a torsion module and a locally free
module.

8.9.17. xde-
scomega

Let A be a finite-type domain.
(i) Let B = A[x] be the ring of polynomials in one variable with coefficients in A. Deascribe the module ΩB
in terms of ΩA.
(ii) Let s be a nonzero element of A and let A′ be the localization A[x]/(sx− 1). Describe the module ΩA′ .
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8.9.18.
xgenomega

Let Y = SpecB a smooth affine curve, and let y be an element ofB. At what points does dy generate
ΩY locally?

8.9.19.xtraced-
eriv

Let Y π−→ X be a branched covering of smooth affine curves,X = SpecA and Y = SpecB, and let

B
δ−→ A(B,ΩA) be the composition of the derivation B d−→ ΩB with the trace map ΩB ≈B (B,ΩB)

τ⊗−→A

(B,ΩA). Prove that δ is a derivation from B to the B-module A(B,ΩA).

8.9.20.xprove-
trace

Let Y → X be a branched covering, and let p be a point ofX whose inverse image in Y consists of one
point q. Prove a local analytic version of the main theorem on the trace map for differentials by computation.

8.9.21.xdegfive (i) Let Y be plane curve of degree 5 with a node. Show that the projection of the plane to X = P1

with the double point as center of projection represents Y as a trigonal curve of genus 5.
(ii) The canonical embedding of a trigonal genus 5 curve Y will have three colinear points D = p1 + p2 + p3,
Show that h0O(K−D) = 3 and that O(K−D) has no base point. Show that a basis of H0O(K−D) maps
Y to a curve of degree 5 in P2 with a double point.

8.9.22.bptfre the basepoint-free trick. Let D be an effective divisor on a smooth projective curve Y , and suppose
that O(D) has no base point, and that h1O(D) = 0. Choose global sections α, β of O(D) with no common
zeros. Prove the following:
(i) The sections α, β generate the O-module O(D), and there is an exact sequence

0→ O(−D)
(−β,α)−→ O2 (α,β)t−→ O(D)→ 0

.
(ii) The tensor product of this sequence with O(kD) is an exact sequence

0→ O((k−1)D)
(−β,α)−→ O(kD)2 (α,β)t−→ O((k+1)D)→ 0

(iii) If H1O((k−1)D) = 0, every global section of O((k+1)D) can be obtained as a combination αu + βv
with u, v ∈ H0O(kD)

8.9.23.xponcelet ???kill this??? Let C and D be conics that meet in four distinct points in the projective plane P, and
let D∗ be the dual conic of tangent lines to D. Let E be the locus of points (p, `∗) in P×P∗ such that `∗ ∈ D∗
and p ∈ `.
(i) Prove that E is a smooth elliptic curve.
(ii) Show that, for most p ∈ C, there will be two tangent lines ` to D such that (p, `∗) is in E, and that, for
most `∗ ∈ D∗, there will be two points p such that (p, `∗) is in E. Identify the exceptional points.
(iii) If (p1, `1) is given, let p2 denote the second intersection of C with `1, and let `2 denote the second tangent
to D that contains p2. Define a map, where possible, by sending (p1, `

∗
1) → (p2, `

∗
2). Show that this map

extends to a morphism E
γ−→ E on E, and that this morphism is a translation p→ p⊕ a, for some point a of

E.
(iv) It might happen that for some point p of C and some n, γn(p) = p. Show that if this occurs, the same is
true for every point of C. For example, if γ3(p) = p, the lines `1, `2, `3 will form a triangle whose vertices are
on C, and this will be true for all points p of C. This is Poncelet’s Theorem.

8.9.24.xOmn Let x0, x1 and y0, y1 be the coordinates in the two factors of the productX = P1×P1.A homogeneous
fraction of bidegree m,n on X is a fraction g/h of bihomogeneous polynomials in x, y such that, if the
bidegree of g is i, j an the bidegree of h is k, `, then m = i−k and n = j− `. Rational functions on X can be
represented as bihomogeneous fractions of bidegree 0, 0. A curve C in X of bidegree m,n is the zero locus
of a bihomogeneous polynomial f(x, y) of bidegree m,n.

Let OX(m,n) denote the O-module whose sections on an open subset W of X are the rational functions
f on X such that fxm0 y

n
0 is a regular function on W . We say that such a function f has poles of orders ≤ m

on V and ≤ n on H , where H is the ’horizontal’ line y0 = 0, and V is the ’vertical’ line x0 = 0.
(i) Determine the cohomology of OX(m,n).
(ii) Determine the genus of a smooth curve of bidegree m,n.
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8.9.25. xgminu-
sone

Let Y be a smooth projective curve Y of genus g, and let d be an integer. Prove that
(i) If d < g − 1, then h1O(D) > 0 for every divisor D of degree d on Y .
(ii) If d ≤ 2g − 2, there exist divisors D of degree d on Y such that h1O(D) > 0.
(iii) If d ≥ g − 1, there exist divisors D of degree d on Y such that h1O(D) = 0.
(iv) If d > 2g − 2, then h1O(D) = 0 for every divisor D of degree d on Y .

8.9.26. xOYdi-
rectsum

Let Y π−→ X be a branched covering of smooth curves. Use the trace from OY to OX to prove that
its direct image is isomorphic to the direct sum OX ⊕M for some locally free OX -moduleM.

8.9.27. decom-
poseOY

Let Y be a smooth projective curve of genus g > 1, and let D be an effective divisor of degree g + 1

on Y , such that h1O(D) = 0 and h0O(D) = 2. Let Y π−→ X be the morphism to the projective line X
defined by a basis (1, f) of H0O(D). TheOX -moduleOY is isomorphic to a direct sumOX ⊕M, whereM
is a locally free OX -module of rank g (Exercise ??).
(i) Let p be the point at infinity of X . Prove that OY (D) is isomorphic to OY ⊗OXOX(p).
(ii) Determine the dimensions of cohomology ofM and ofM(p).
(iii) According to the Birkhoff-Grothendieck Theorem,M is isomorphic to a sum of twisting modules

∑g
i=1OX(ri).

Determine the twists ri.

8.9.28. xs-
inggenus

(a) Let C be a plane curve of degree d with a node as its only singularity. Determine the genus of its
normalization C#. Do the same for a curve with a cusp.
(b) Let f(x0, x1, x2) be a homogeneous polynomial of degree d. Suppose that, when f(x, y, 1) is written as
a sum of its homogeneous parts f0 + f1 + f2 + · · · , f0 = f1 = f2 = 0, and that f3 has three distinct zeros,
so that the plane curve C : {f = 0} has an ordinary triple point at p = (0, 0, 1), and suppose that there are no
other singularities. Determine the genus of the normalization C#.
(c) A point p of curveC in P3 may be a triple point, in which three smooth points p1, p3, p3 of the normalization
C# lie over p. ####etcetc#####

8.9.29. xpolirredUse the results of Exercise 8.9.28 as an aid to factor the polynomial x3y2 − x3z2 + y3z2.

2. ## There is an error in the statement of this problem. See web page.##
Let f and g be homogeneous polynomials in C[x0, x1, x2, x3], of degrees d and e respectively, and with

no common factor. Let X be the locus of common zeros of f and g in the projective space P3 with coordinates
x, and let i be the inclusion X → P.

(a) Construct an exact sequence

0→ OP(−d− e)→ OP(−d)⊕OP(−e)→ OP → i∗OX → 0

(b) Prove that X is connected, i.e., that it is not the union of two proper disjoint Zariski-closed subsets of P.

(c) Determine the cohomology of OX .

1. Let

N =
y11 y12

y21 y22

y31 y32

be a 3 × 2 matrix whose entries are homogeneous polynomials of degree d in R = C[x0, x1, x2], and let
M = (m1,m2,m3) be the 1× 3 matrix of minors

m1 = y21y32 − y22y31, m2 = −y11y32 + y12y31, m3 = y11y22 − y12y21.

Let I be the ideal of R generated by the minors m1,m2,m3.

(a) Prove that if I is the unit ideal of R, the sequence

0@ <<< R@ < M << R3@ < N << R2@ <<< 0
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is exact.
(We’ve written the arrows from right to left here so that matrix multiplication by M on R3 and N on R2

are defined, when elements of R3 and R2 are represented as column vectors.)

(b) Let X = P2, and suppose that the locus Y of zeros of I in X has dimension zero. Prove that the sequence

0@ <<< R/I@ <<< R@ < M << R3@ < N << R2@ <<< 0

is exact.

(c) The sequence in (b) corresponds to the following sequence, in which the terms R are replaced by twisting
modules:

0@ <<< OY @ <<< OX@ < M << OX(−2d)3@ < N << OX(−3d)2@ <<< 0

Use this sequence to determine h0(Y,OY ). Check your work in some example in which yij are homogeneous
linear polynomials.

2. There are 10 monomials of degree 3 in x0, x1, x2, so the homogeneous polynomials of degree 3 form a
vector space of dimension 10. Let Z be the corresponding projective space of dimension 9, whose points are
classes of nonzero homogeneous cubic polynomials up to scalar factor. Prove that the subset of Z of classes
of reducible polynomials is (Zariski) closed.

2. With coordinates x0, x1, x2 in the plane P and s0, s1, s2 in the dual plane P∗, let C be a smooth projective
plane curve f = 0 in P, where f is an irreducible homogeneous polynomial in x. Let Γ be the locus of pairs
(x, s) of P× P∗ such that x ∈ C and the line s0x0 + s1x1 + s2x2 = 0 is the tangent line to C at x. Prove that
Γ is a (Zariski) closed subset of the product P× P∗.
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GLOSSARY

algebra: a ring that contains the complex numbers ??).
analytic function: A function that can be represented by a convergent power series (1.4.18).
annihilator: The annihilator of an elementm of anR-module is the ideal of elements a ofR such that am = 0
(6.7).
arithmetic genus: The arithmetic genus of a smooth projective curve is pa = 1−C1O (7.6.2).
basis for a topology: A basis B for a topology is a set of open subsets such that every open subset if a union
of members of B (2.7.2).
bitangent: a line that is tangent to a curve at two points (1.8.17).
branch point: a point at which the ramification index of a branched covering is greater than 1. (8.5).
branched covering: a finite morphism of curves (1.8.15), (8.5).
canonical: A mathematical construction is called canonical if it is the natural one in the context.
canonical divisor: a divisor K on a smooth projective curve X such that O(K) is isomorphic to ΩX (8.8.7).
canonical map: the map fom a curve to projective space defined by the regular differentials (8.8.26).
classical topology: the usual topology (1.3.17).
closure: The closure of a subset S of a topological space is the smallest closed subset that contains S.
coarser topology: A topology T ′ on a set X is coarser than another topology T if T ′ contains fewer closed
subsets than T .
cohomological functor: A sequence of functors H0, H1, H2, ... to vector spaces such that a short exact
sequence produces a long cohomology sequence (7.1.4).
cokernel: The cokernel of a homomorphism M → N is the quotient N/ im M (2.1.17).
commutative diagram: A diagram of maps is commutative if all maps from A to B that can be obtaind by
composition of the ones in the diagram are equal (2.1.5).
complement: The complement of a subset S of a set X is the set of elements of X that are not in S.

complex: A complex of vector spaces is a sequence · · · → V n−1 dn−→ V n → · · · of vector spaces such that
ker dn ⊂ im dn−1 (7.2).
constructible set: a finite union of locally closed sets (5.3).
cusp: a certain type of singular point of a curve (1.8).
dimension: The dimension of a variety is the transcendence degree of its field of rational functions, or the
length of a maximal chain of closed subvarieties (4.5).
discriminant: a polynomial in the coefficients of a polynomial f that vanishes if and only if f has a double
root (1.7.13).
divisor: A divisor on a smooth curve is an integer combination a1q1 + · · ·+ akqk of points (8.1).
domain: A nonzero ring with no zero divisors.
dual curve: The dual curve of a smooth plane curve is the locus of tangent lines as smooth points (1.6.3).
dual plane: the projective plane whose points correspond to lines in the given plane (1.6.1).
elliptic curve: a smooth projective curve of genus 1 (8.8.12).
Euler characteristic: The Euler characteristic of an O-module is the alternating sum of the dimensions of its
cohomology (7.7.7).

exact sequence: a sequence · · · → V n−1 dn−1

−→ V n
dn−→ V n+1 → · · · is exact if ker dn = im dn−1 (2.1.17).

exterior algebra: the graded algebra generated by the elements of a vector space, with the relations vv = 0
(3.7.2).
Fermat Curve: one of the plane curves xko + xk1 + xk2 = 0.

fibre of a map: The fibre of a map Y π−→ X over a point x is the number of points in its inverse image.
finer topology: A topology T ′ on a set X is finer than another topology T if T ′ contains more closed subsets
than T .
finite module: a module that can be generated by finitiely many of its elements (2.1).
finite-type algebra: an algebra that can be generated, as algbera, by finitely many elements (2.1).
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generic, general position: not in a special “bad” position (1.8.17).
genus: the genus of a compact two-dimensional manifold is the number of its handles (1.8.22).
Grassmanian: a variety that parametrizes subspaces of a given dimension of a vector space (3.7).
Hessian matrix: the matrix of second partial derivatives (1.4.10).
homogeneous parts: the homogeneous part of degree k of a polynomial is the sum of terms of degree k
(1.3.1).
hyperelliptic curve: a curve of genus at least two, that can be represented as a double cover of P1 (8.8.22).
hypersurface: a subvariety of projective space that is defined by one equation (2.3.3).
increasing sequence: a sequence Sn of sets is increasing if Sn ⊂ Sn+1 for all n, and it is strictly increasing
if if Sn < Sn+1 for all n (2.1.12).
integral morphism: a morphism Y → X such that OY becomes a finite OX -module (4.2.4).
invertible module: a locally free module of rank 1 (8.1.16).
irreducible polynomial: a polynomial of positive degree that isn’t the product of two polynomials of positive
degree.
irreducible space: a topological space that isn’t the union of two proper closed subsets (2.2.11).
isolated point: a point p of topological space such that both p and its complement are closed (1.3.18).
line at infinity: The line at infinity in the projective plane P2 is the locus {x0 = 0} (1.2.7).
local property: a property that is true in an open neighborhood of any point (5.1.3).
localization: the process of adjoining inverses (2.1.23).
locally closed set: the intersection of a closed set and an open set (5.3).
member: When a set is made up of subsets of another set, we call an element of that set a member to avoid
confusion (2.1.12).
module homomorphism: a homomorphism from an R-module M to an R′-module M ′ is defined in Section
(6.2).
morphism: one of the allowed maps between varieties (2.6),(3.5).
nilradical: the radical of the zero ideal (2.5.14).
node: a point at which two branches of a curve met transverslly (1.8).
noetherian space: a space that satisfies the descending chain condition on closed sets (2.2.8).
normal domain: an integrally closed domain (4.3).
Nullstellensatz: the theorem that identifies points with maximal ideals (2.4).
ordinary: a plane curve is ordinary if all flexes and bitangents are ordinary, and there are no accidents
(1.10.11).
Plücker formulas: the formulas that count flexes, bitangents, nodes and cusps of an ordinary curve (1.11).
quadric: the locus of an irreducible homogeneous quadratic equation in projective space (3.1.6).
quasicompact: A topological space is quasicompact if every open covering has a finite subcovering.
radical of an ideal: the radical of an ideal I is the set of elements such that some power is in I (2.2.20).
reducible curve: a union of finitely many irreducible curves.
resultant: a polynomial in the coefficients of two polynomials f and g that vanishes if and only if they have a
common root (1.7).
scalar: a complex number.
scaling: adjusting by scalar factors.
Segre embedding. a map that embeds a product of projective varieties into projective space (3.1.9).
Serre dual. The Serre dualMS of a locally free O-moduleM is the module HomO(M,Ω) (8.7.1).
smooth point, singular point: a point p of a plane curve {f = 0} is a smooth point if at least one partial
derivative is nonzero at p. Otherwise it is a singular point (1.4.4).
Special line: A line L through a singular point of a curve whose intersection multiplicity with C is greater
than the multiplicity of C. (1.8.4).
spectrum: the spectrum of a finite-tpe domain is the set of its maximal ideals (2.5).
structure sheaf: its sections on an open set are the regular functions on that set (6.1).
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tensor algebra: the graded algebra T such that Tn is the nth tensor power of a vector space V (3.7.21).
torsion: an element m of am R-module is a torsion element if there is a nonzero element r in R such that
rm = 0 (2.1.24).
transcendence basis: a maximal algebraically independent set of elements (1.5).
transcendence degree: the number of elements in a transcendnce basis (1.5).
transversal intersection: two curves intersect transvesally at a point p if they are smooth at p and their tangent
lines there are distinct (1.9.11).
trigonal curve: a curve that can be represented as a overing of P1 of degree 3 (8.8.29).
twisted cubic: the locus of points (x3

0, x
2
0x1, x

2
1x2, x

2
1) in P3 (3.1.15).

unit ideal: the unit ideal of a ring R is R.
valuation: a surjective homomorphism from the multiplicative group K× of nonzero elements of a field K to
the additive group Z+ of integers (5.1.4).
valuation ring: the set of elements with value greater than zero, together with the identity element.
variety: an irreducible subspace of affine or projective space (2.2.17),(3.0.1),(3.2.11 ).
Veronese embedding: the embeding of a projective space using the monomials of given degree (3.1.13).
weight: a variable may be assigned an integer called a weight (4.6.20).
weighted projective space: projective space when the variables have weights (4.6.20).
Zariski topology: the closed sets are the zero sets of families of polynomial equations (2.2).
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INDEX OF NOTATION

An affine space (1.1).
(affines) the category of affine open sets, morphism being localizations (6.1).
ann annihilator (6.7).
C∗ the dual of the curve C (1.6.6).
Cq the cohomology of a complex (7.2).
Discr(F ) the discriminant of f (1.7.14).
∆ the diagonal, or the branch locus (3.5.19), (4.6.14).
e the Euler characteristic, or the ramification index (1.8.21),(7.7.7),(8.5).
g often, the genus of a curve. (1.8.19)
H ; the Hessian matrix of second partial derivatives. (1.4.10)
Hp the evaluation of H at the point p.
Hq cohomology (7.1).
hq the dimension of Hq .
K× the multiplicative group of nonzero elements of the field K.
k(p) the residue field at a point (2.3.1),(2.5).
L∗ the point of P∗ that corresponds to the line L in the plane P (1.6.1).
M an O-module (6.2.1).
m a maximal ideal (2.3.1),(2.5).
O the structure sheaf on a variety (6.1.1).

O(M,N ),X(M,N ) abbreviated notations for the OX -module of homomorphisms HomO(M,N ).
(opens) the category whose objects are open subsets (6.1).
p∗ the line in the dual plane P∗ that corresponds to the point p of the plane P (1.6.1).
pa the arithmetic genus (8.7.4),(8.8.2).
P, Pn projective space (1.2).
P∗ the dual of the plane P (1.6.1).
πp the homomorphism to the residue field k(p) (2.3.1),(2.5).
rad I the radical of the ideal I (2.2.20).
Res(f, g) the resultant of f and g (1.7).
S MS is the Serre dual ofM (8.7.1).
SpecA the set of maximal ideals of a finite-type algebra A (2.5).
Ui the standard affine open subset {xi 6= 0} of projective space (1.2.7).
V (f) the locus of zeros of f (2.2),(3.2.4).∧
V the exterior algebra (3.7.2).
∇ the gradient vector of partial derivatives (1.4.10.
∇p the evaluation of∇ at the point p.
≈ an isomorphism.
⊗ tensor product (2.1.25).⋂

intersection.
< S < T means that the set S is a subset of T and is not equal to T (2.1.12).
# A# denotes the normalization of the algebra A.
[ ] square brackets are sometimes used in place of parentheses for clarity.
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affine cone, 81
affine covering, 104
affine hypersurface, 59
affine morphism, 150
affine open subset, 92
affine plane, 7
affine plane curve, 7
affine space, 7
affine variety, 58, 91
algebaic dimension, 8
algebra, 20
algebra generators, 47
algebraically dependent, independent, 20

analytic function, 19
annihilator, 152
arithmetic genus, 172, 173
ascending, descending chain conditions, 57

Bézout’s Theorem, 37, 176
basis, 47
basis for a topology, 68
bidual, 23, 149
bihomogeneous polynomial, 83
bilinear relations, 53
Birkhoff-Grothendieck Theorem, 189
bitangent, 33
blowup, 29, 91
branch locus, 116, 117
branch point, 32, 34, 193
branched covering, 32, 193
Brianchon’s Theorem, 180

canonical, 48
canonical divisor, 201
canonical map, 205
center of projection, 91
center of projection, 32
characteristic properties of cohomology, 165
Chevalley’s Finiteness Theorem, 112
Chinese Remainder Theorem, 49, 153
classical topology, 15
closed set, open set, 57
coarser topology, 56
coboundary map, 162
codimension, 111
cohomological functor, 162, 163
cohomology of O-modules, 161
cohomology of a complex, 162
cohomology sequence, 161, 163
cokernel, 50
comaximal ideals , 49
combinatorial dimension, 109
commutative diagram, 49
commutative ring, 47
commuting matrices, 62
compact space, 77
complement of a subset, 55
complete intersection, 181, 207
complex, 162
conic, 8, 12
connected space, 57
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constant O-module, 146
constructible function, 134
constructible set, 129
contracted ideal, 69
contravariant functor, 138
coordinate algebra, 59, 62
Correspondence Theorem, 49
covering diagram, 143
curve, 126
cusp, 30

decomposable element, 95
degree, 79
degree of a morphism to Pn, 203
degree of an affine plane curve, 7
derivation, 190
diagonal, 90
differential, 191
dimension, 109
direct limit, 147
directed set, 147
discrete valuation, 124
discriminant, 27
divisor, 184
divisor of a function, 184
divisor of a polynomial, 14
domain, 20
double plane, 116
double point, 30
dual curve, 21
dual module, 51, 148
dual plane, 21

effective divisor, 184
eigenvector, 101
elliptic curve, 201
Euler characteristic, 33, 187
Euler characteristic of an O-module, 176
exact sequence, 50, 140
extended ideal, 69
extension by zero, 150
extension of domains, 102
extension of scalars, 54
exterior algebra, 94

Fermat curve, 17
fibre dimension, 134
fibre of a map, 8
finer topology, 56
finite module, 48, 140
finite morphism, 112
finite-type algebra, 47
finitely generated ideal, 48
flex point, 17
formal power series, 74
fractions, 69
free module, 47

function field, 137
function field, 64, 85
function field module, 146

general position, 33
generators of an O-module, 156
generic, 33
genus, 34, 187, 200
geometric genus, 173
global section, 138, 139
good point, 87
graded algebra, 94
graph of a morphism, 90
Grassmanian, 93

Hausdorff space, 77
Heine-Borel Theorem, 77
Hensel’s Lemma, 35
Hessian deteminant, 18
Hessian divisor, 39
Hessian matrix, 18
Hilbert Basis Theorem, 49
Hilbert Nullstellensatz, 60
homogeneous fraction, 86, 153
homogeneous ideal, 80, 113
homogeneous parts, 12
homogeneous polynomial, 12, 113
homogenize, dehomogenize, 16
homomorphism, 140
homomorphism of modules, 139
hyperelliptic curve, 204
hypersurface, 79

ideal, 140
ideal generators, 48
ideal generators, 55
increasing, strictly increasing, 49
induced topology, 56
integral closure, 105
integral extension, 102
integral morphism, 103, 112
intersection multiplicity, 14, 177
invariant element, 70
invertible O-module, 186
irreducible space, 57
irreducible polynomial, 8
irregularity, 173
irrelevant ideal, 81
isolated point, 15, 129
isomorphism, 65, 89

left module, right module, 47
line, 8, 9, 56, 78
line at infinity, 10
linear subspace, 78
linear map, 47
linearly equivalent divisors, 185
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local domain of dimension one, 123
local property, 123
local ring, 123
local ring at a point, 124, 125
local unit, 193
localization, 52, 68
locally principal ideal, 124
locally closed set, 129
locally free module, 123
locus of zeros, 7, 55

matrix, 51
maximal ideal, 48, 141
maximal member, 50
member, 50
module, 139
module generators, 47
morphism, 88
morphism of affine varieties, 65
morphism of families, 143
multiplicative system, 69
multiplicity, 13

nilpotent ideal, 64
nilradical, 64
node, 30
Noether Normalization Theorem, 104
Noether’s AF+BG Theorem, 181
noetherian ring, 49
noetherian space, 57
normal domain, normal variety, 104
normalization, 104
Nullstellensatz, 60

open covering, 77
order of zero, pole, 124
ordinary bitangent, 40
ordinary curve, 40
ordinary flex, 17
orientability, 33

Pascal’s Theorem, 180
Plücker Formulas, 41
plane projective curve, 14
point at infinity, 9, 10
point with values in a field, 86
Poncelet’s Theorem, 209
power of an ideal, 48
presentation of a module, 51
presentation of an algebra, 60
prime ideal, 48
principal divisor, 184
product equations, 35
product ideal, 48
product topology, 82, 84
projection, 32, 91
projective double plane, 117

projective line, plane, 9
projective space, line, plane, 9
projective variety, 78
proper variety, 133
pullback, 92

quadric, 78
quasicompact, 57, 77

radical, 58
Rainich’s proof, 61
ramification index, 193
rank, 47, 123
rational curve, 201
rational function, 14, 64, 85
real projective plane, 10
reducible curve, 14
regular differential, 196
regular function, 64, 85, 137
regular function on an affine variety, 62
residue field, 59
residue field module, 140
residue field of a local ring, 123
resolution, acyclic resolution, 168
restriction, 139
restriction of a divisor to an open set, 184
restriction of a module to an open set, 151
restriction of a morphism, 112
restriction of scalars, 54
resultant, 26
resultant matrix, 26
Riemann-Roch Theorem, 187, 199

scaling, 12
section, 138, 139
sections equal on an open set, 141
Segre embedding, 79
semicontinuous function, 134
Serre dual, 199
short exact sequence, 50
simple localization, 69
smooth curve, singular curve, 17
smooth point, singular point, 17, 126
special line, 29
special linear group, 59
spectrum of an algebra, 62
split exact sequence, 50
square-free polynomial, 106
standard cusp, 30
standard open set, 10, 85
standard open subset, 82
Strong Nullstellensatz, 61
structure sheaf, 138
subspace, 56
support of a divisor, 184
support of a module, 152
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tacnode, 31
tangent line, 17
tensor product module, 52
tensoralgebra, 97
torsion, torsion-free, 52, 140
trace of a differential, 196
trace of a field extension, 106
trace of a function, 195
transcendence basis, 20
transcendental element, 20
transversal intersection, 36
trefoil knot, 31
triangulation, 33
trigonal curve, 207
twist of an O-module, 155
twisted cubic, 80
twisting module, 155

unit ideal, 14

valuation, 124
valuation ring, 124
value of a function, 62, 85
variety, 82
Veronese Embedding, 79

weight, 117
weighted degree, 26
weighted projective space, 117

Zariski closed, Zariski open, 55, 77
Zariski topology, 78
zero divisor, 20
zero of a polynomial, 13
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