This assignment is due Tuesday, May 12.

Instructions. Though collaboration on psets is encouraged, I’d like each of you to do this assignment by yourselves.

1. Let C be a plane curve of degree four with three nodes. Use projection to \mathbb{P}^1 from a generic point of the plane to determine the degree of the dual curve C^*.

2. Let X be the affine line $\text{Spec} \mathbb{C}[x]$. We may view $\text{Spec} \mathbb{C}[x_1, x_2]$ as the product $X \times X$. Then a homomorphism $\mathbb{C}[x] \to \mathbb{C}[x_1, x_2]$ defines a morphism $X \times X \to X$ – a law of composition on X. Determine the homomorphisms for which the point o: $x = 0$ becomes an identity element for that law. (Determining the laws that make X into a group makes a nice problem. In order to keep the pset short, I’m not assigning the rest.)

3. A pair (f_0, f_1) of relatively prime, homogeneous polynomials in x_0, x_1 of the same degree d defines a morphism $u : \mathbb{P}^1 \to \mathbb{P}^1$ that maps a point q to $(1, f_1(q)/f_0(q))$ if $f_0(q) \neq 0$ and to $(f_0(q)/f_1(q), 1)$ if $f_1(q) \neq 0$. By inspecting the inverse images of a few points, determine the maps that are injective, and use your result to describe the group of automorphisms of \mathbb{P}^1.

4. The complement X of the point $(0, 0, 1)$ in \mathbb{P}^2 is covered by the two standard affine open sets U^0, U^1. Use that covering to compute the cohomology $H^q(X, O_X)$.