Chapter 1 Exercises

1.0.1. Let \(f(x, y, z) \) be an irreducible homogeneous polynomial of degree greater than one. Prove that the locus \(f = 0 \) in \(\mathbb{P}^2 \) contains three points that do not lie on a line.

1.0.2. Prove that a plane curve contains infinitely many points.

1.0.3. (a) Classify conics in \(\mathbb{P}^2 \) by writing an irreducible quadratic polynomial in three variables in the form \(X^tAX \) where \(A \) is symmetric, and diagonalizing the quadratic form.
(b) Quadrics in \(\mathbb{P}^3 \) are zero sets of irreducible homogeneous quadratic polynomials in four variables. Classify quadrics in \(\mathbb{P}^3 \).

1.0.4. Prove that the path \(x(t) = t, y(t) = \sin t \) doesn’t lie on any plane algebraic curve in \(\mathbb{A}^2 \).

1.0.5. By counting constants, prove that most nonhomogeneous polynomials in two or more variables are irreducible.

1.0.6. Prove that the elementary symmetric functions \(s_1 = x_1 + \cdots + x_n, \ldots, s_n = x_1 \cdots x_n \) are algebraically independent.

1.0.7. Let \(L \supset K \supset F \) be fields, and let \(\text{tr}(K/F) \) denote the transcendence degree of a field extension \(K/F \). Prove that \(\text{tr}(L/F) = \text{tr}(L/K) + \text{tr}(L/F) \).

1.0.8. Let \(C \) be the plane curve defined by a homogeneous polynomial \(f(x_0, x_1, x_2) \) of degree \(d \). Use the following method to prove that the image of the set of smooth points in the dual plane is contained in a curve \(C^* \): Let \(N_r(k) \) be the dimension of the space of polynomials of degree \(\leq k \) in \(r \) variables. Determine \(N_r(k) \) for \(r = 3 \) and 4. Show that \(N_3(k) > N_3(kd) \) if \(k \) is large enough. Conclude that there has to be a polynomial \(G \) that maps to zero by the substitution of \(f_i \) for \(x_i \).

1.0.9. Compute the resultant of the polynomials \(x^m \) and \(x^n - 1 \).

1.0.10. Let \(C \) be a cubic curve with a node. Determine the degree of \(C^* \), and the numbers of flexes, bitangents, nodes, and cusps of \(C \) and of \(C^* \).

1.0.11. (i) Let \(f(t, y) = ty^2 - 4y + t \). Solve \(f = 0 \) for \(y \) by the quadratic formula, and sketch the real locus \(f = 0 \) in the \(t, y \) plane.
(ii) What does Hensel’s Lemma say tell us? Factor \(d \), modulo \(t^4 \).

1.0.12. Factor \(f(t, x) = x^3 + 2tx^2 + t^2x + x + t \), modulo \(t^2 \).

1.0.13. Prove that all affine conics can be put into one of the forms ?? by linear change of variable, translation, and scalar multiplication.

1.0.14. Let \(f \) and \(g \) be irreducible homogeneous polynomials in \(x, y, z \). Prove that if the loci \(\{ f = 0 \} \) and \(\{ g = 0 \} \) are equal, then \(g = cf \).

1.0.15. Compute \(\prod_{i \neq j} (\zeta^i - \zeta^j) \) when \(\zeta = e^{2\pi i/n} \).

1.0.16. Let \(F(x) = \prod (x - \alpha_i) \). Then \(\text{Discr}(F) = \pm \prod_{i < j} (\alpha_i - \alpha_j)^2 \). Determine the sign.

1.0.17. Let \(C \) be a smooth cubic curve in \(\mathbb{P}^2 \), and let \(p \) be a flex point of \(C \). Choose coordinates so that \(p \) is the point \((0, 1, 0) \) and the tangent line to \(C \) at \(p \) is the line \(\{ z = 0 \} \).
(a) Show that the coefficients of \(x^2y, xy^2, \) and \(y^3 \) in the defining polynomial \(f \) of \(C \) are zero.
(b) Show that with a suitable choice of coordinates, one can reduce the defining polynomial to the form \(f = y^2 z + x^3 + a x z^2 + b z^4 \), and that \(x^3 + a z + b \) will be a polynomial with distinct roots.

(c) Show that one of the coefficients \(a \) or \(b \) can be eliminated, and therefore that smooth cubic curves depend on just one parameter.

1.0.18. Let \(p(t, x) = x^3 + x^2 + t \). Then \(p(0, x) = x^2(x + 1) \). Since \(x^2 \) and \(x + 1 \) are relatively prime, Hensel’s Lemma predicts that \(p = f g \), where \(g \) and \(q \) are polynomials in \(x \) whose coefficients are analytic functions in \(t \), and \(f \) is monic, \(f(0, x) = x^2 \), and \(g(0, x) = x + 1 \). Determine this factorization up to degree 3 in \(t \). Do the same for the polynomial \(t x^4 + x^3 + x^2 + t \).

1.0.19. Let \(f \), \(g \), and \(h \) be polynomials. Prove that

(i) \(\text{Res}(f, gh) = \text{Res}(f, g) \text{Res}(f, h) \).

(ii) If the degree of \(gh \) is less than or equal to the degree of \(f \), then \(\text{Res}(f, g) = \text{Res}(f + gh, g) \).

1.0.20. Let \(f = a_0 x^m + a_1 x^{m-1} + \cdots + a_m \) and \(g = b_0 x^n + b_1 x^{n-1} + \cdots + b_n \), and let \(R = \text{Res}(f, g) \) be the resultant of these polynomials. Prove that \(R \) is a polynomial that is homogeneous in each of the sets of variables \(a \) and \(b \), and determine the degrees. Prove also that, if one assigns weighted degree \(i \) to the coefficients \(a_i \) and \(b_i \), then \(R \) is homogeneous, of weighted degree \(mn \).

1.0.21. Prove that a generic curve is ordinary.

1.0.22. Let coordinates in \(\mathbb{A}^4 \) be \(x, y, z, w \), let \(Y \) be the variety defined by \(z^2 = x^2 - y^2 \), \(w(z - x) = 1 \), and let \(\pi \) denote projection from \(Y \) to \((x, y) \)-space. Describe the fibres and the image of \(\pi \).

1.0.23. Prove that a plane curve \(X \) of degree 4 can have at most three singular points by showing that there is a conic \(C \) that passes through any five points of \(X \).

1.0.24. By parametrizing a conic \(C \), show that \(C \) meets a plane curve \(X \) of degree \(d \) and distinct from \(C \) in \(2d \) points, when counted with multiplicity.

1.0.25. Prove that a smooth point of a curve is a flex point if and only if the Hessian determinant is zero, in the following way: Given a smooth point \(p \) of \(X \), choose coordinates so that \(p = (0, 0, 1) \) and the tangent line \(\ell \) is the line \(\{ x_1 = 0 \} \). Then compute the Hessian.

1.0.26. Consider a change of coordinates of the form \((x, y)t = P(x', y')t\), where \(P \) is an invertible \(2 \times 2 \) matrix. Let \(f' \) denote the homogeneous polynomial in \((x', y')t\) obtained by substitution into \(f(x, y) \). Determine \(\text{Res}(f', g') \) in terms of \(\text{Res}(f, g) \). Do the same for \(\text{Discr}(f') \).

1.0.27. Let \(p \) be a cusp of the curve \(C \) defined by a homogeneous polynomial \(f \). Prove that there is just one line \(L \) through \(p \) such that the restriction of \(f \) to \(L \) has as zero of order \(> 2 \) at \(p \), and that the order of zero for that line is precisely 3.

1.0.28. Let \(f = x^3 + x z + y z \) and \(g = x^2 + y^2 \). Compute the resultant \(\text{Res}_{x}(f, g) \) with respect to the variable \(x \).

1.0.29. Let \(C \) be a smooth cubic curve in the plane \(\mathbb{P}^2 \), and let \(q \) be a generic point of \(\mathbb{P}^2 \). How many lines through \(q \) are tangent lines to \(C \)?

1.0.30. Let \(f(x, y) = a_0(x) y^n + \cdots + a_0(x) \) be an irreducible homogeneous polynomial, where \(a_i \) are polynomials in \(x \). Prove that for most values \(x = x^0 \), the polynomial \(f(x^0, y) \) has distinct roots.

1.0.31. Let \(f(x, y) = y^n + a_1(x) y^{n-1} + \cdots + a_n(x) \) be an irreducible monic polynomial. Show that the roots of the one-variable polynomial \(f(x_0, y) \) remain bounded as \(x_0 \) tends to 0.

1.0.32. Let \(C \) be the plane projective curve defined by the equation \(x_0 x_1 + x_1 x_2 + x_2 x_0 = 0 \), and let \(p \) be the point \((-1, 2, 2)\). What is the equation of the tangent line to \(C \) at \(p \)?
Chapter 2 Exercises

2.0.1. Prove that if \(f(x_0, x_1, x_2) \) is an irreducible homogeneous polynomial, not \(x_0 \), then its dehomogenization \(f(1, x_1, x_2) \) is also irreducible.

2.0.2. Prove that if a noetherian ring contains just one prime ideal, then that ideal is nilpotent.

2.0.3. Describe all prime ideals of the two-variable polynomial ring \(\mathbb{C}[x, y] \).

2.0.4. Derive version 1 of the Nullstellensatz from the Strong Nullstellensatz.

2.0.5. Let \(B \) be a finite type domain, and let \(p \) and \(q \) be points of the affine variety \(Y = \text{Spec} \ B \). Let \(A \) be the set of elements \(f \in B \) such that \(f(p) = f(q) \). Prove
(a) \(A \) is a finite type domain.
(b) \(B \) is a finite \(A \)-module.
(c) Let \(\varphi : \text{Spec} \ B \rightarrow \text{Spec} \ A \) be the morphism obtained from the inclusion \(A \subseteq B \). Show that \(\varphi(p) = \varphi(q) \), and that \(\varphi \) is bijective everywhere else.

2.0.6. The cyclic group \(G = \langle \sigma \rangle \) of order \(n \) operates on the polynomial algebra \(A = \mathbb{C}[x, y] \) by \(\sigma(x) = \zeta x \) and \(\sigma(y) = \zeta y \), where \(\zeta = e^{2\pi i/n} \).
(a) Describe the invariant ring \(A^G \) by exhibiting generators and defining relations.
(b) Prove that the inverse of \(\sigma \) is bijective everywhere else.
(c) Prove directly that the morphism \(\text{Spec} \ A = \mathbb{A}^2 \rightarrow \text{Spec} \ B \) defined by the inclusion \(B \subseteq A \) is surjective, and that its fibres are the \(G \)-orbits.

2.0.7. Let \(I_1, \ldots, I_k \) and \(J \) ideals of a finite-type domain, such that \(J \not\subseteq I_j \) if \(j \). Prove that there is an element \(x \in J \) that isn’t contained in \(I_j \) for any \(j \).

2.0.8. The equation \(y^2 = x^3 \) defines a plane curve \(X \) with a cusp at the origin, the spectrum of the algebra \(A = \mathbb{C}[x, y]/(y^2 - x^3) \). There is a homomorphism \(A \rightarrow \mathbb{C}[t] \), with \(\varphi(x) = t^2 \) and \(\varphi(y) = t^3 \), and the associated morphism \(\mathbb{A}^1 \rightarrow X \) sends a point \(t \) of \(\mathbb{A}^1 \) to the point \((x, y) = (t^2, t^3) \) of \(X \). Prove that \(u \) is a homeomorphism the Zariski topology and also in the classical topology.

2.0.9. Prove that, if an algebra \(A \) is a complex vector space of dimension \(d \), it contains at most \(d \) maximal ideals.

2.0.10. Let \(T \) denote the ring \(\mathbb{C}[\epsilon] \), with \(\epsilon^2 = 0 \). If \(A \) is the coordinate ring of an affine variety \(X \), a tangent vector to \(X \) is, by definition, given by an algebra homomorphism \(\varphi : A \rightarrow T \).
(a) Show that such a homomorphism can be written in the form \(\varphi(a) = f(a) + d(a) \epsilon \), where \(f \) and \(d \) are functions \(A \rightarrow \mathbb{C} \). Show that \(f \) is an algebra homomorphism, and that \(d \) is an \(f \)-derivation, a linear map that satisfies the identity \(d(ab) = f(a)d(b) + d(a)f(b) \).
(b) Show that, when \(A = \mathbb{C}[x_1, \ldots, x_n]/(f_1, \ldots, f_r) \) the tangent vectors are defined by the equations \(\nabla_f(p)x = 0 \).

2.0.11. The homomorphism \(\mathbb{C}[x, y] \rightarrow \mathbb{C}[x, z] \) by \(y \mapsto xz \) defines a morphism \(\mathbb{A}^2 \rightarrow \mathbb{A}^2 \). Describe the fibres of \(\pi \). (The inverse of \(\pi \) is called a blowing up, though it isn’t defined everywhere.)

2.0.12. Let \(A \) be a noetherian ring. Prove that a radical ideal \(I \) of \(A \) is the intersection of finitely many prime ideals.

2.0.13. A minimal prime ideal is an ideal that doesn’t properly contain any other prime ideal. Prove that a nonzero, finite-type algebra \(A \) (not necessarily a domain) contains at least one and only finitely many minimal prime ideals. Try to find a proof that doesn’t require much work.
2.0.14. Explain what a morphism $\text{Spec } B \to \text{Spec } A$ means in terms of polynomials, when $A = \mathbb{C}[x_1, \ldots, x_m]/(f_1, \ldots, f_r)$ and $B = \mathbb{C}[y_1, \ldots, y_n]/(g_1, \ldots, g_k)$.

2.0.15. Let $A = \mathbb{C}[x_1, \ldots, x_2]$, and let $B = A[\alpha]$, where α is an element of the fraction field $\mathbb{C}(x)$ of A. Describe the fibres of the morphism $Y = \text{Spec } B \to \text{Spec } A = X$.

2.0.16. Let X be the plane curve $y^2 = x(x - 1)^2$, let $A = \mathbb{C}[x, y]/(y^2 - x(x - 1)^2)$ be its coordinate algebra, and let x, y denote the residues of those elements in A too.
(a) Points of the curve can be parametrized by a variable t. Use the lines $y = t(x - 1)$ to determine such a parametrization.
(b) Let $B = \mathbb{C}[t]$ and let T be the affine line $\text{Spec } \mathbb{C}[t]$. The parametrization gives us an injective homomorphism $A \to B$. Describe the corresponding morphism $T \to X$.

2.0.17. Let coordinates in \mathbb{A}^4 be x, y, z, w, let Y be the variety defined by $z^2 = x^2 - y^2$, $w(z - x) = 1$, and let π denote projection to (x, y)-space. Describe the fibres and the image of π.

2.0.18. Classify algebras that are complex vector spaces of dimensions two and three.

2.0.19. Prove that, in the ring $\mathbb{C}[x_1, \ldots, x_n]$ of formal power series, an element whose constant term is nonzero is invertible.

2.0.20. Show that the algebra $A = \mathbb{C}[x, y]/(x^2 + y^2 - 1)$ is isomorphic to the Laurent Polynomial Ring $\mathbb{C}[t, t^{-1}]$, but that $\mathbb{R}[x, y]/(x^2 + y^2 - 1)$ is not isomorphic to $\mathbb{R}[t, t^{-1}]$.

2.0.21. Prove that there are varieties in the affine plane \mathbb{A}^2 are points, curves, and the affine plane \mathbb{A}^2 itself.

2.0.22. Find generators for the ideal of $\mathbb{C}[x, y]$ that vanish on the three points $(0, 0), (0, 1), (1, 0)$.

2.0.23. Let C and D be closed subsets of an affine variety $X = \text{Spec } A$. Suppose that no component of D is contained in C. Prove that there is a regular function f that vanishes on C and isn't identically zero on any component of D.

2.0.24. Let K be a field and let $R = K[x_1, \ldots, x_n]$ with $n > 0$. Prove that the field of fractions of R is not a finitely generated K-algebra.

2.0.25. Let $A = \mathbb{C}[u, v]/(v^2 - u(1 - u))$ and $B = \mathbb{C}[x, y]/(x^2 + y^2 - 1)$, and let $X = \text{Spec } A, Y = \text{Spec } B$. Show that the substitution $u = x^2, v = xy$ defines a morphism $Y \to X$.

2.0.26. Let X be the affine line $\text{Spec } \mathbb{C}[x]$. Considering $P = \text{Spec } \mathbb{C}[x_1, x_2]$ as the product $X \times X$, determine all morphisms $P \to X$ that define group laws on X.

4
Chapter 3 Exercises

3.0.1. Prove that every finite subset S of a projective variety X is contained in an affine open subset.

3.0.2. A pair f_0, f_1 of homogeneous polynomials in x_0, x_1 of the same degree d can be used to define a morphism $\mathbb{P}^1 \to \mathbb{P}^1$. At a point q, the morphism evaluates $(1, f_1/f_0)$ or $(f_0/f_1, 1)$ at q.
(a) The degree of such a morphism is the number of points in a generic fibre. Determine the degree.
(b) Describe the group of automorphisms of \mathbb{P}^1.

3.0.3. (a) What are the conditions that a triple of $f = (f_0, f_1, f_2)$ homogeneous polynomials in x_0, x_1, x_2 of the same degree d must satisfy in order to define a morphism $\mathbb{P}^2 \to \mathbb{P}^2$?
(b) If f does define a morphism, what is its degree?

3.0.4. Prove that relatively prime polynomials in F, G two variables x, y, not necessarily homogeneous, have finitely many common zeros in \mathbb{A}^2.

3.0.5. Let C be the projective plane curve $x^3 - y^2z = 0$.
(a) Show that the function field K of C is the field $\mathbb{C}(t)$ of rational functions in $t = y/x$.
(b) Show that the point $(t^2 - 1, t^3 - 1)$ of \mathbb{P}^1 with values in K defines a morphism $C \to \mathbb{P}^1$.

3.0.6. Let Y and Z be the zero sets in \mathbb{P} of relatively prime homogeneous polynomials g and h of the same degree r. Prove that the rational function $\alpha = g/h$ will tend to infinity as one approaches a point of Z that isn’t also a point of Y and that, at intersections of Y and Z, α is indeterminate in the sense that the limit depends on the path.

3.0.7. Describe the ideals that define closed subsets of $\mathbb{A}^m \times \mathbb{P}^n$.

3.0.8. Let V be a vector space of dimension 5, let G denote the Grassmanian $G(2, 5)$ of lines in \mathbb{P}^4, let $W = \bigwedge^2 V$, and let D denote the subset of decomposable vectors in the projective space $\mathbb{P}(W)$ of one-dimensional subspaces of W. Prove that there is a bijective correspondence between two-dimensional subspaces U of V and the points of D, and that a vector w in $\bigwedge^2 V$ is decomposable if and only if $ww = 0$. Exhibit defining equations for G in the space $\mathbb{P}(W)$.

3.0.9. Let $\mathbb{P} = \mathbb{P}^3$. The space of planes in \mathbb{P} is the dual projective space \mathbb{P}^*. The variety F that parametrizes triples (p, l, H) consisting of a point p, a line l, and a plane H in \mathbb{P}, with $p \in l \subset H$, is called a flag variety. Exhibit defining equations for F in $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^*$. The equations should be homogeneous in each of 3 sets of variables.

3.0.10. Describe all morphisms $\mathbb{P}^2 \to \mathbb{P}^1$.

3.0.11. Let f a homogeneous polynomial in x, y, z, not divisible by z. Prove that f is irreducible if and only if $f(x, y, 1)$ is irreducible.

3.0.12. (blowing up a point in \mathbb{P}^2) Consider the Veronese embedding of $\mathbb{P}^2_{yz} \to \mathbb{P}^5_{x^2}$ by monomials of degree 2 defined by $(u_0, u_1, u_2, u_3, u_4, u_5) = (s^2, y^2, x^2, yz, xz, xy)$. If we drop the coordinate u_0, we obtain a map $\mathbb{P}^2 \xrightarrow{\varphi} \mathbb{P}^4$. $\varphi(x, y, z) = (y^2, x^2, yz, xz, xy)$ that is defined at all points except the point $q = (0, 0, 1)$. Find defining equations for the closure of the image X. Prove that the inverse map $X \xrightarrow{\varphi^{-1}} \mathbb{P}^2$ is everywhere defined, and that the fibre of φ^{-1} over q is a projective line.

3.0.13. Let $K = \mathbb{C}(x)$ and $L = \mathbb{C}(y)$ be the fields of rational functions in one variable. Compare the tensor product $R = K \otimes_{\mathbb{C}} L$ with the field of fractions $\mathbb{C}(x, y)$ of $\mathbb{C}[x, y]$.
3.0.14. Let U be a nonempty open subset of \mathbb{P}^n. Prove that if a rational function is bounded on U, it is a constant.

3.0.15. Let Y be the cusp curve $\text{Spec} B$, where $B = \mathbb{C}[x, y]/(y^2 - x^3)$. This algebra embeds as subring into $\mathbb{C}[t]$, by $x = t^2$. $y = t^3$. Show that the two vectors $v_0 = (x-1, y-1)$ and $v_1 = (t+1, t^2 + t + 1)$ define the same point of \mathbb{P}^1 with values in the fraction field K of B, and that they define morphisms from Y to \mathbb{P}^1 wherever the entries are regular functions on Y. Prove that the two morphisms they define piece together to give a morphism $Y \to \mathbb{P}^1$.

3.0.16. Let \mathcal{P} be a homogeneous ideal in $\mathbb{C}[x_0, \ldots, x_n]$ whose dehomogenization P is a prime ideal. Is \mathcal{P} a prime ideal?

3.0.17. Let $f = x_0^2 - x_1 x_2$. Determine generators and defining relations for the ring \mathcal{R}_f of homogeneous fractions of degree zero whose denominator is a power of f.

3.0.18. Let f be an irreducible polynomial in $\mathbb{C}[x_1, \ldots, x_n]$, and let A finite-type domain. Prove that f an irreducible element of $A[x]$.

3.0.19. Let f and g be irreducible homogeneous polynomials in x, y, z. Prove that if the loci $\{f = 0\}$ and $\{g = 0\}$ are equal, then g is a constant multiple of f.

3.0.20. Let C be the curve defined by a homogeneous polynomial f of degree d. To prove that the images in the dual plane of the smooth points of C lie on a curve C^*, we used transcendence degree to conclude that there is a polynomial $G(t, s_0, s_1, s_2)$ such that $G(f, f_0, f_1, f_2)$ is identically zero. Use the following method to give an alternate proof: Determine the dimensions $N_r(k)$ of the spaces of polynomials of degree $\leq k$ in r variables, for $r = 3$ and $r = 4$. Show that $N_r(k) > N_3(kd)$ if k is large enough. Use counting constants to show that there has to be a polynomial G that maps to zero by the substitution.

Note: This method doesn’t give a good bound for the degree of C^*. One reason may be that f and its derivatives are related by Euler’s Formula. It is tempting try using Euler’s Formula to help compute the equation of C^*, but I haven’t succeeded in getting anywhere that way. If you have an idea, please let me know.

3.0.21. Show that the conic C in \mathbb{P}^2 defined by the polynomial $y_0^2 + y_1^2 + y_2^2 = 0$ and the twisted cubic V in \mathbb{P}^3, the zero locus of the polynomials $v_0 v_2 - v_1^2, v_0 v_3 - v_1 v_2, v_1 v_3 - v_2^2$ are isomorphic by exhibiting inverse morphisms between them.

3.0.22. Let C be a cubic curve, the locus of a homogeneous cubic polynomial $f(x, y, z)$ in \mathbb{P}^2. Suppose that (001) and (010) are flex points of C, that the tangent line to C at (001) is the line $\{y = 0\}$, and the tangent line at (010) is the line $\{z = 0\}$. What are the possible polynomials f? Disregard the question of whether f is irreducible.

3.0.23. How many real flex points can a real cubic curve have?

3.0.24. Let X be the affine plane with coordinates (x, y). Given a pair of polynomials $u(x, y), v(x, y)$ in x, y, one may try to define a morphism $f : X \to \mathbb{P}^1$ by $f(x, y) = (u, v)$. Under what circumstances is f a morphism?

3.0.25. Let X be the affine surface in \mathbb{A}^3 defined by the equation $x^3 + x_1 x_2 x_3 + x_1 x_3 + x_2^2 + x_3 = 0$, and let \overline{X} be its closure in \mathbb{P}^3. Describe the intersection of \overline{X} with the plane at infinity in \mathbb{P}^3.

3.0.26. With coordinates x_0, x_1, x_2 in the plane \mathbb{P} and s_0, s_1, s_2 in the dual plane \mathbb{P}^*, let C be a smooth projective plane curve $f = 0$ in \mathbb{P}, where f is an irreducible homogeneous polynomial in x. Let Γ be the locus of pairs (x, s) of $\mathbb{P} \times \mathbb{P}^*$ such that the line $s_0 x_0 + s_1 x_1 + s_2 x_2 = 0$ is the tangent line to C at x. Prove that Γ is a Zariski closed subset of the product $\mathbb{P} \times \mathbb{P}^*$.

3.0.27. Let x_0, x_1, x_2 be the coordinate variables in the projective plane X. The function field K of X is the field of rational functions in the variables $u_1, u_2, u_3 = x_3/x_0$. Let $f(u_1, u_2)$ and $g(u_1, u_2)$ be polynomials. Under what circumstances does the point $(1, f, g)$ with values in K define a morphism $X \to \mathbb{P}^2$?
Chapter 4 Exercises

4.0.1. Prove that the Fermat curve \(C : \{x^d + y^d + z^d = 0\} \) is connected by studying its projection to \(\mathbb{P}^1 \) from the point \((0, 0, 1)\).

4.0.2. Prove that \(\mathbb{P}^n > \mathbb{P}^{n-1} > \cdots > \mathbb{P}^0 \) is a maximal chain of closed subsets of \(\mathbb{P}^n \).

4.0.3. Let \(A \subset B \) be noetherian domains and suppose that \(B \) is a finite \(A \)-module. Prove that \(A \) is a field if and only if \(B \) is a field.

4.0.4. Use Noether Normalization to prove this alternate form of the Nullstellensatz: Let \(k \) be a field, and let \(B \) be a domain that is a finitely generated \(k \)-algebra. If \(B \) is a field, then \([B : k] < \infty\).

4.0.5. Let \(A \) be a domain with fraction field \(K \), and let \(\alpha \) and \(\beta \) be elements of \(K \) such that \(\alpha \beta = 1 \). Prove that if \(\alpha \) is integral over \(A[\beta] \), then it is an element of \(A[\beta] \), and it is integral over \(A \).

4.0.6. Prove every nonconstant morphism \(\mathbb{P}^2 \to \mathbb{P}^2 \) is a finite morphism.

4.0.7. A ring \(A \) is said to have the descending chain condition (dcc) if every strictly decreasing chain of ideals is finite. Let \(A \) be a finite type \(\mathbb{C} \)-algebra. Prove:
(a) \(A \) has dcc if and only if it is a finite dimensional complex vector space.
(b) If \(A \) has dcc, then it has finitely many maximal ideals, and every prime ideal is maximal.
(c) If a finite-type algebra \(A \) has finitely many maximal ideals, then \(A \) has dcc.
(d) (Strong Nakayama) Suppose that \(A \) has dcc, let \(M \) be an arbitrary \(A \)-module, and let \(I \) denote the intersection of the maximal ideals of \(A \). If \(IM = M \), then \(M = 0 \). (The usual Nakayama lemma requires that \(M \) be finitely generated.)

4.0.8. Let \(A \subset B \) be finite type domains with fraction fields \(K \subset L \), and let \(Y \to X \) be the corresponding morphism of affine varieties. Prove the following:
(a) There is a nonzero element \(s \in A \) such that \(A_s \) is integrally closed.
(b) There is a nonzero element \(s \in A \) such that \(B_s \) is a finite module over a polynomial ring \(A_s[y_1, \ldots, y_d] \).
(c) Suppose that \(L \) is a finite extension of \(K \) of degree \(d \). There is a nonzero element \(s \in A \) such that all fibres of the morphism \(Y \to X \) consist of \(d \) points.

4.0.9. Let \(A \) be a finite type domain, \(R = \mathbb{C}[t] \), \(X = \text{Spec} A \), and \(Y = \text{Spec} R \). Let \(\varphi : A \to R \) be a homomorphism whose image is not \(\mathbb{C} \), and let \(\pi : Y \to X \) be the corresponding morphism.
(a) Show that \(R \) is a finite \(A \)-module.
(b) Show that the image of \(\pi \) is a closed subset of \(X \).

4.0.10. A module \(M \) over a ring \(B \) is faithful if, for every nonzero element \(b \) of \(B \), scalar multiplication by \(b \) isn’t the zero operation on \(M \). Let \(A \) be a domain, let \(z \) be an element of its field of fractions, and let \(B \) be the ring generated by \(z \) over \(A \). Suppose there is a faithful \(B \)-module \(M \) that is finitely generated as an \(A \)-module. Prove that \(z \) is integral over \(A \).

4.0.11. Let \(A \subset B \) be an integral extension of finite-type algebras, and suppose that \(A \) and \(B \) are domains with fraction fields \(K \) and \(L \), respectively, and let \(P \) be a prime ideal of \(A \). Prove that the number of prime ideals of \(B \) that lie over \(P \) is at most equal to the degree \([L : K]\) of the field extension.

4.0.12. Let \(Y \) be a projective double plane with branch locus \(\Delta \) in \(X = \mathbb{P}^2 \), let \(C \) be a curve in \(X \), and let \(D \) be a curve in \(Y \) that lies over \(C \). The curve \(C \) will split in the double plane unless \(D \) is symmetric with respect
to the automorphism – unless $D = D\sigma$. Most curves in Y won’t be symmetric, so their images will split. On the other hand, most curves C in X intersect Δ transversally, and therefore they don’t split. Try to explain how this is possible.

4.0.13. Let K be the field of fractions of a normal finite-type domain A, let L be a Galois extension of K with Galois group G, and let B be the integral closure of A in L, a finite A-module. Let $X = \text{Spec } A$ and $Y = \text{Spec } B$. Show that A is the algebra of invariants B^G.

4.0.14. Let Y be a closed subvariety of projective space \mathbb{P}^n with coordinates $y_0, ..., y_n$, let d be a positive integer, and let $w_0, ..., w_k$ be homogeneous polynomials in y of degree d that have no common zeros on Y. Prove that sending a point q of Y to $(w_0(q), ..., w_k(q))$ defines a finite morphism $Y \rightarrow \mathbb{P}^k$. Consider the case that $w = u_1, ..., u_k$ first.

4.0.15. Let $Y \rightarrow X$ be a finite morphism of curves, and let K and L be the function fields of X and Y, respectively, and suppose $[L : K] = n$. Prove that all fibres have order at most n, and all but finitely many fibres of Y over X have order equal to n.

4.0.16. Let A be a finite type algebra that satisfies the descending chain condition: Every strictly decreasing chain $I_1 > I_2 > \cdots$ of ideals of A is finite. Prove that A has finite dimension as a complex vector space.

4.0.17. Let α be an element of a domain A, and let $\beta = \alpha^{-1}$. Prove that if β is integral over A, then β is an element of A.

8
Chapter 5 Exercises

5.0.1. Prove that the ring $k[[x, y]]$ of formal power series with coefficients in a field k is a local ring.

5.0.2. Prove that, if a variety X is covered by countably many constructible sets, a finite number of those sets will cover X.

5.0.3. Prove that a variety that is quasiprojective and proper is projective.

5.0.4. Prove that a proper curve is projective.

5.0.5. Let X be the subset obtained by deleting the origin from k^2. Prove that there is no injective morphism from an affine variety Y to k^2 whose image is X.

5.0.6. Show that if $f(x, y)$ is polynomial and if d divides f_x and f_y, then f is constant on the locus $d = 0$.

5.0.7. Let S be a multiplicative system in a finite-type domain R, and let A and B be finite-type domains that contain R as subring. Let R', A', B' be the rings of S-fractions of R, A, B, respectively. Prove: (i) If some elements $\alpha_1, ..., \alpha_k$ generate A as R-algebra, they also generate A' as R'-algebra.

(ii) Let $A' \xrightarrow{\varphi'} B'$ be a homomorphism. For suitable s in S, there is a homomorphism $A_s \xrightarrow{\varphi_s} B_s$ whose localization is φ'. If φ' is injective, so is φ_s. If φ' is surjective or bijective, there will be an s such that φ_s is surjective or bijective.

(iii) If A' is contained in B' and if B' is a finite A'-module, then for suitable s in S, A_s is contained in B_s, and B_s is a finite A_s-module.

5.0.8. Let $Y \xrightarrow{m} X$ be a surjective morphism, and let K and L be the function fields of X and Y, respectively. Show that if $\dim Y = \dim X$, there is a nonempty open subset X' of X such that all fibres over points of X' have the same order n, and that $n = [L : K]$.

5.0.9. Prove that fibre dimension is a semicontinuous function. I recommend this outline, but you may use any method you like.

(a) We may assume that Y and X are affine, $Y = \text{Spec } B$ and $X = \text{Spec } A$.

(b) The theorem is true when $A \subset B$ and B is an integral extension of a polynomial subring $A[y_1, ..., y_d]$.

(c) The fibre dimension is a constructible function.

(d) The theorem is true when X is a smooth curve.

(e) The theorem is true for all X.
Chapter 6 Exercises

6.0.1. Let $R = \mathbb{C}[x, y]$. Determine the limit of the directed set
\[R \xrightarrow{x} R \xrightarrow{x} R \xrightarrow{x} R \xrightarrow{x} \cdots. \]

6.0.2. Let V be the complement of a point in projective space \mathbb{P}^n. Prove that if $n > 1$, then $\mathcal{O}_p(V) = \mathbb{C}$.

6.0.3. Prove that if a variety is covered by two affine open sets, its cohomology is zero in dimensions greater than one.

6.0.4. Give an example of a finite \mathcal{O}-module \mathcal{M} and an open set U such that $\mathcal{M}(U)$ isn’t a finite $\mathcal{O}(U)$-module. Hint: The reason that this might occur is that there might not be rational functions that are regular on X, though \mathcal{M} has global sections.

6.0.5. Let s be an element of a domain A, and let M be an A-module. Prove that the limit of the directed set
\[M \xrightarrow{s} M \xrightarrow{s} \cdots \] is isomorphic to the localization M_s.

6.0.6. Prove that, to define an \mathcal{O}-module \mathcal{M} on \mathbb{P}^1, it is enough to give modules M_0, M_1, and M_{01} over the rings $\mathbb{C}[u]$, $\mathbb{C}[u^{-1}]$, and $\mathbb{C}[u, u^{-1}]$, respectively, together with isomorphisms $M_0[u^{-1}] \approx M_{01} \approx M_1[u]$.

6.0.7. Describe the kernel and cokernel of multiplication by a homogeneous polynomial f of degree d:
\[\mathcal{M}(k) \xrightarrow{f} \mathcal{M}(k + d) \]

6.0.8. What are the sections of $\mathcal{O}(nH)$ on an open set V?

6.0.9. Prove that a simple module over a finite type \mathbb{C}-algebra has dimension 1.

6.0.10. Let $X = \mathbb{P}^2$. What are the sections of the twisting module $\mathcal{O}_X(n)$ on the open complement of the line $\{x_1 + x_2 = 0\}$?

6.0.11. Let U be the complement of a finite set in \mathbb{P}^2. Prove that $H^0(U, \mathcal{O}_U) = \mathbb{C}$.
Chapter 7 Exercises

7.0.1. Prove that $m_1^{e_1} \cdot \cdots \cdot m_k^{e_k}$ is isomorphic to the tensor product $m_1^{\otimes e_1} \otimes \cdots \otimes m_k^{\otimes e_k}$.

7.0.2. The Cousin problem: Let $\{U_i\}$ be an open covering of projective space. Suppose that rational functions f_i are given such that $f_i - f_j$ is a regular function on $U_i \cap U_j$. The problem is to find a rational function f such that $f - f_i$ is a regular function on U_i for every i. Analyze this problem making use of the exact sequence $0 \to O \to F \to Q \to 0$, where F is the constant function field module and Q is the quotient F/O.

7.0.3. Let $Y \rightarrow \mathbb{P}^d$ be a finite morphism of varieties. Prove that Y is a projective variety. Do this by showing that the global sections of $\mathcal{O}_Y(nH) = \mathcal{O}_Y \otimes_{\mathcal{O}_X} \mathcal{O}_X(nH)$ define a map to projective space whose image is isomorphic to Y.

7.0.4. Prove that cohomology compatible with products
(a) of two modules
(b) of an arbitrary family of modules.

7.0.5. A hexagon in \mathbb{P}^2 is any collection $\ell_0, ..., \ell_5$ of six distinct lines. Let $p_i = \ell_i \cap \ell_{i+1}$ for $i = 1, ..., 5$ and $p_0 = \ell_5 \cap \ell_0$. Assuming that these intersections are distinct, they are the vertices of the hexagon. Pascal’s Theorem asserts that if the vertices of a hexagon lie on a conic C, then the three points $q_1 = \ell_1 \cap \ell_4$, $q_2 = \ell_2 \cap \ell_5$ and $q_3 = \ell_3 \cap \ell_0$ lie on a line. Let L be the line through q_1 and q_2. Let f_1, f_2, g be homogeneous cubics whose zero loci are $\ell_1 + \ell_3 + \ell_5$, $\ell_0 + \ell_2 + \ell_4$, and $C + L$, respectively, and let $h = f_1 + g$. Prove Pascal’s Theorem by applying Bézout’s theorem to the divisors of zeros of f_1, f_2, g and h.

7.0.6. Let N be a 3×2 matrix with variable entries (n_{ij}), and let $M = (m_1, m_2, m_3)$ be the 1×3 matrix of 2×2 minors of N:

$$m_1 = n_{21}n_{32} - n_{22}n_{31}, \quad m_2 = -n_{11}n_{32} + n_{12}n_{31}, \quad m_3 = n_{11}n_{22} - n_{12}n_{21}.$$

Let I be the ideal of the polynomial ring $P = \mathbb{C}[[n_{ij}]]$ generated by the minors.
(a) Show that the locus $V(I)$ in \mathbb{A}^6 is irreducible, and that it has dimension 4.
(b) Assume that the locus $X = V(I)$ in $Y = \text{Spec } P$ has scodimension at least 2. Prove that this sequence is exact:

$$0 \to B^2 \xrightarrow{N} B^3 \xrightarrow{M} B \to B/I \to 0.$$

(c) Suppose that the entries of N are homogeneous polynomials in x_0, x_1, x_2; that for some integers d_i, $i = 1, 2, 3$, the entries in row i have degree d_i. Suppose also that the locus $V(I)$ in \mathbb{P}^2 has dimension zero. Construct an exact sequence that allows you to bound the number of points of $V(I)$.
(d) Check your answer in a particular case, when $d_i = 1$.

7.0.7. Let A, B be 2×2 variable matrices, let P be the polynomial ring $\mathbb{C}[a_{ij}, b_{ij}]$, and let R be the algebra $P/(AB = BA)$. Show that R has a resolution as P-module of the form $0 \to P^2 \to P^3 \to P \to R \to 0$.
(Hint: Write the equations in terms of $a_{11} - a_{22}$ and $b_{11} - b_{22}$.)

7.0.8. (algebraic version of Bézout’s Theorem) Let f and g be homogeneous polynomials of degrees m and n, respectively, in x, y, z. The algebra $A = \mathbb{C}[x, y, z]/(f, g)$ inherits a grading by degree: $A = A_0 \oplus A_1 \oplus \cdots$, where A_n is the image of the space of homogeneous polynomials of degree n, together with 0. Prove that $\dim A_k = mn$ for all sufficiently large k.
7.0.9. Let \(f(x, y, z) \) and \(g(x, y, z) \) be homogeneous polynomials of degrees \(m \) and \(n \), and with no common factor. Let \(R \) be the polynomial ring \(\mathbb{C}[x, y, z] \), and let \(A = R/(f, g) \). Show that the sequence

\[
0 \to R \xrightarrow{(-g, f)} R^2 \xrightarrow{(f, g)} R \to A \to 0
\]

is exact.

7.0.10. Extend the Bézout theorem to count the intersections of three surfaces in \(\mathbb{P}^3 \). (The problem here comes down to finding a resolution of \(O/(f, g, h)/O \). When you have guessed one, you may be able to use the snake lemma to prove that it is exact.

7.0.11. Let \(f(x_0, x_1, x_2) \) be an irreducible homogeneous polynomial of degree \(2d \), and let \(Y \) be the projective double plane \(y^2 = f(x_0, x_1, x_2) \). Compute the cohomology \(H^i(Y, \mathcal{O}_Y) \).

7.0.12. Let \(Y \) be an affine variety with integrally closed coordinate ring \(B \). Let \(I \) be an ideal of \(B \) generated by two elements \(u, v \), and let \(X \) be the locus \(V(I) \) in \(Y \). Suppose that \(\dim X \leq \dim Y - 2 \). Use the fact that \(B = \bigcup B_Q \) where \(Q \) ranges over prime ideals of codimension 1 to prove that this sequence is exact:

\[
0 \to B \xrightarrow{(v, -u)} B^2 \xrightarrow{(a, v)} B \to B/I \to 0.
\]

7.0.13. Let \(I \) be the ideal of \(\mathbb{C}[x_0, x_1, x_2, x_3] \) generated by two homogeneous polynomials \(f, g \), of dimensions \(d, e \) respectively, and assume that the locus \(X = V(I) \) in \(\mathbb{P}^3 \) has dimension 1. Let \(O = \mathcal{O}_Y \).

(a) Construct an exact sequence

\[
0 \to O(-d - e) \to O(-d) \oplus O(-e) \to O \to O_X \to 0.
\]

(b) Show that \(X \) is a connected subset of \(\mathbb{P}^3 \) for the Zariski topology, i.e., that it is not the union of two proper disjoint Zariski-closed subsets.

(c) Determine the genus, assuming that \(X \) is a smooth algebraic curve.

7.0.14. A curve \(Y \) in \(\mathbb{P}^3 \) is a complete intersection if the homogeneous prime ideal of \(\mathbb{C}[y_0, y_1, y_2, y_3] \) that defines \(Y \) is generated by two elements, say \(P = (f, g) \). Suppose that this is the case, and that the homogeneous polynomials \(f \) and \(g \) have degrees \(r \) and \(s \), respectively.

(a) Construct an exact sequence

\[
0 \to \mathcal{O}_{\mathbb{P}^3}(-r - s) \to \mathcal{O}_{\mathbb{P}^3}(-r) \oplus \mathcal{O}_{\mathbb{P}^3}(-s) \to \mathcal{O}_{\mathbb{P}^3} \to i_* \mathcal{O}_Y \to 0
\]

(b) Determine the genus of \(Y \).

7.0.15. Let \(Y \) be an affine variety with integrally closed coordinate ring \(B \). Let \(I \) be an ideal of \(B \) generated by two elements \(u, v \), and let \(X \) be the locus \(V(I) \) in \(Y \). Suppose that \(\dim X \leq \dim Y - 2 \). Use the fact that \(B = \bigcup B_Q \) where \(Q \) ranges over prime ideals of codimension 1 to prove that this sequence is exact:

\[
0 \to B \xrightarrow{(v, -u)} B^2 \xrightarrow{(a, v)} B \to B/I \to 0.
\]

7.0.16. Let \(I \) be the ideal of \(\mathbb{C}[x_0, x_1, x_2, x_3] \) generated by two homogeneous polynomials \(f, g \), of degrees \(d, e \) respectively, and assume that the locus \(X = V(I) \) in \(\mathbb{P}^3 \) has dimension 1. Let \(O = \mathcal{O}_Y \).

(a) Construct an exact sequence

\[
0 \to O(-d - e) \to O(-d) \oplus O(-e) \to O \to O_X \to 0.
\]

(b) Show that \(X \) is a connected subset of \(\mathbb{P}^3 \) for the Zariski topology, i.e., that it is not the union of two proper Zariski-closed subsets.

(c) Determine the genus, when \(X \) is a smooth algebraic curve.
7.0.17. Let
\[N = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \\ y_{31} & y_{32} \end{pmatrix} \]
be a 3 × 2 matrix whose entries are homogeneous polynomials of degree \(d \) in \(R = \mathbb{C}[x_0, x_1, x_2] \), and let \(M = (m_1, m_2, m_3) \) be the 1 × 3 matrix of minors
\[m_1 = y_{21}y_{32} - y_{22}y_{31}, \quad m_2 = -y_{11}y_{32} + y_{12}y_{31}, \quad m_3 = y_{11}y_{22} - y_{12}y_{21}. \]
Let \(I \) be the ideal of \(R \) generated by the minors \(m_1, m_2, m_3 \).

(a) By counting dimensions, prove that if \(I \) is the unit ideal of \(R \), the sequence
\[0 \twoheadrightarrow R \xrightarrow{M} R^3 \xrightarrow{N} R^2 \xrightarrow{} 0 \]
is exact.

(b) Let \(X = \mathbb{P}^2 \), and suppose that the locus \(Y \) of zeros of \(I \) in \(X \) has dimension zero. Prove that the sequence
\[0 \twoheadrightarrow R/I \xrightarrow{} R \xrightarrow{M} R^3 \xrightarrow{N} R^2 \xrightarrow{} 0 \]
is exact.

(c) The sequence in (b) corresponds to the following sequence, in which the terms \(R \) are replaced by twisting modules:
\[0 \twoheadrightarrow \mathcal{O}_Y \leftarrow \mathcal{O}_X \xrightarrow{M} \mathcal{O}_X(-2d)^3 \xrightarrow{N} \mathcal{O}_X(-3d)^2 \leftarrow 0. \]
Use this sequence to determine \(h^0(Y, \mathcal{O}_Y) \). Check your work by counting points in some example in which \(y_{ij} \) are homogeneous linear polynomials.

7.0.18. Prove that a variety of any dimension contains no isolated point.

7.0.19. Prove that a regular function on a projective variety is constant.

7.0.20. Prove morphism from a curve \(Y \) to \(\mathbb{P}^1 \) is a finite morphism without appealing to Chevalley’s Theorem.

7.0.21. Let \(Y \) be the surface in \(\mathbb{P}^3 \) defined by an irreducible polynomial of degree 5. Determine the dimensions of the cohomology groups \(H^q(Y, \mathcal{O}_Y) \).
Chapter 8 Exercises

8.0.1. Determine the number of points of order 2 on an elliptic curve.

8.0.2. Let C be a smooth plane cubic curve. Show if origin is a flex point the other the flexes of C are the points of order 3. Therefore there are eight points of order 3.

8.0.3. Let Y be a smooth curve of genus $g > 0$, and let E be a divisor of degree $2g - 1$ on Y.

(i) Prove that $h^1(O(E)) = g$ and $h^1(O(D)) = 0$, and that if D is the divisor of degree g obtained by subtracting $g - 1$ generic points from E, then $h^0(O(D)) = 1$ and $h^1(O(D)) = 0$.

(ii) A basis $(1, y)$ of $h^0(O(D))$ defines a map $Y \to X = \mathbb{P}^1$ of degree g, and the direct image of O_Y becomes an O_X-module of rank g. Show that the direct image O_Y has the form $O_X \oplus \mathcal{L}$ for some locally free module \mathcal{L} of rank $g - 1$.

(iii) Prove that $\mathcal{L} \cong \mathcal{O}_X(-1)^{g-1}$.

8.0.4. (group law on an elliptic curve) Let o, p, and q be points of an elliptic curve Y. Show that $O_Y(p + q - o)$ has a nonzero global section that is unique up to scalar factor, and that has a unique zero. That zero is defined to be $p \oplus q$. Prove that, with the law of composition \oplus, Y becomes a commutative group.

8.0.5. Let C be a smooth curve of genus 1, with a chosen point o. The global sections of $O_C(2o)$ define a morphism π of degree 2 from C to \mathbb{P}^1. Describe all other morphisms $C \to \mathbb{P}^1$ of degree 2 in terms of π and the group law.

8.0.6. Let C and D be conics in \mathbb{P}^2 that meet in four distinct points, and let D^* be the dual conic of tangent lines to D. Let E be the locus of points (p, ℓ^*) in $\mathbb{P}^1 \times \mathbb{P}^1$ such that $\ell^* \in D^*$ and $p \in \ell$.

(a) Prove that E is a smooth elliptic curve.

(b) Show that, for most $p \in C$, there will be two tangent lines ℓ to D such that (p, ℓ^*) is in E, and that, for most $\ell^* \in D^*$, there will be two points p such that (p, ℓ^*) is in E. Identify the exceptional points.

(c) If (p_1, ℓ_1) is given, let p_2 denote the second intersection of C with ℓ_1^*, and let ℓ_2 denote the second tangent to D that contains p_2. Define a map, where possible, by sending $(p_1, \ell_1^*) \to (p_2, \ell_2^*) \to (p_2, \ell_2^*)$. Show that this map extends to a morphism $E \to E$ on E, and that this morphism is a translation $p \to p \oplus a$, for some point a of E.

(d) It might happen that for some point p of C and some n, $\gamma^n(p) = p$. Show that if this occurs, the same is true for every point of C. For example, if $\gamma^3(p) = p$, the lines ℓ_1, ℓ_2, ℓ_3 will form a triangle, and this will be true for all points p of C. This is Poncelet’s Theorem.

8.0.7. Let $Y \to X$ be a branched covering, and let p be a point of X whose inverse image in Y consists of one point q. Use a basis to prove the main theorem on the trace map for differentials locally at p.

8.0.8. Let D be a divisor of degree d on a smooth projective curve Y. Show that $h^0(O(D)) \leq d + 1$, and if $h^0(O(D)) = d + 1$, then Y is a smooth rational curve, isomorphic to \mathbb{P}^1.

8.0.9. Prove that if D is a divisor on a smooth curve Y, then $O(D)$ is an O-module.

8.0.10. Let A be a finite-type domain.

(a) Let $B = A[x]$ be the ring of polynomials in one variable with coefficients in A. Describe the module Ω_B in terms of Ω_A.

(b) Let s be a nonzero element of A and let A' be the localization $A[x]/(sx - 1)$. Describe the module $\Omega_{A'}$.

8.0.11. Prove that a projective curve Y such that $h^1(O_Y) = 0$, smooth or not, is isomorphic to the projective line \mathbb{P}^1. 17
8.0.12. The projective line $X = \mathbb{P}^1$ with coordinates x_0, x_1 is covered by the two standard affine open sets $U_0 = \text{Spec } R_0$ and $U_1 = \text{Spec } R_1$, $R_0 = \mathbb{C}[u]$ with $u = x_1/x_0$, and $R_1 = \mathbb{C}[v]$ with $v = x_0/x_1 = u^{-1}$. The intersection U_{01} is the spectrum of the Laurent polynomial ring $R_{01} = \mathbb{C}[u,v] = \mathbb{C}[u,u^{-1}]$. The units of R_{01} are the monomials cu^k, where k can be any integer.

(a) Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an invertible R_{01}-matrix. Prove that there is an invertible R_0-matrix Q and there is an invertible R_1-matrix P such that $Q^{-1}AP$ is diagonal.

(b) Use part (a) to prove the Birkhoff-Grothendieck Theorem for torsion-free O_X-modules of rank 2.

8.0.13. Let Y be a smooth projective curve of genus 2.

(a) Determine the possible dimensions of $H^q(Y, O(D))$, when D is an effective divisor of degree n.

(b) Let K be an effective canonical divisor. Then 1 is a global section of $O(K)$, and there is also a nonconstant global section x. Prove that the pair of functions $(1, x)$ defines a morphism $Y \to \mathbb{P}^1$ that represents Y as a double cover of the projective line.

8.0.14. Suppose that $g = 3$, an let K be an effective canonical divisor.

(a) Let $(1, x, y)$ be a basis for $H^0(Y, O(K))$. Use Riemann-Roch for multiples of K to show that x, y satisfy a polynomial relation of degree at most 4.

(b) Let f be the morphism from Y to \mathbb{P}^2 defined by the rational functions $(1, x, y)$. Show that the image C of f is a plane curve of degree at most 4, and that if its degree is 4, then C is a smooth curve.

8.0.15. Let C be a plane projective curve of degree d, with d genus of curve with δ nodes and κ cusps, and let C' be the normalization of C. Determine the Genus of C'.

8.0.16. Let M be a module over a finite-type domain A, and let α be an element of A. Prove that for all but finitely many complex numbers c, scalar multiplication by $s = \alpha - c$ is an injective map $M \xrightarrow{\alpha-c} M$.

8.0.17. Do Euler characteristic of complex.

8.0.18. On \mathbb{P}^1, when is $O(m) \oplus O(n)$ isomorphic to $O(r) \oplus O(s)$?

8.0.19. Prove that, on a smooth curve, any finite module is the direct sum of its torsion submodule and a locally free module.

8.0.20. Let Y be a curve of genus two, and let p be a point p of Y.

(a) Prove that there are two cases: Either $h^0(O_Y(2p)) = 1$ and $H^1(O_Y(2p)) = 0$, or else $h^0(O_Y(2p)) = 2$ and $h^1(O_Y(2p)) = 1$.

(b) Suppose we are in the first case. Show that then $h^0(O_Y(rp)) = r - 1$ and $H^1(O_Y(rp)) = 0$, for all $r \geq 2$.

(c) Show that when $r = 4$, there is a basis of global sections of $O_Y(4p)$ of the form $(1, x, y)$, where x and y have poles of orders 3 and 4 at p. This basis defines a morphism $Y \to \mathbb{P}^2$ whose image is a curve Y' of degree 4.

(d) Prove that Y' is a singular curve.

8.0.21. Prove that a finite O-module on a smooth curve is a direct sum of a torsion module and a locally free module.

8.0.22. Let Y be a smooth curve of genus 1. Use version 1 of Riemann-Roch to prove that, if $r \geq 1$, then $\dim H^0(Y, O_Y(rp)) = r$ and $H^1(Y, O_Y(rp)) = 0$.

8.0.23. Let $Y = \text{Spec } B$ a smooth affine curve, $y \in B$. At what points does dy generate Ω_Y locally?

8.0.24. Let Y be a smooth projective curve of genus two.

(a) Determine the possible dimensions of $H^q(Y, O(D))$, when D is an effective divisor of some given degree n.

(b) Let K be an effective canonical divisor. Then 1 is a global section of $O(K)$, and there is also a nonconstant global section x. Prove that the pair of functions $(1, x)$ defines a morphism $Y \to \mathbb{P}^1$ that represents Y as a double cover of the projective line.

8.0.25. Let Y be a smooth projective curve of genus three.
(a) Let \((1, x, y)\) be a basis for \(H^0(Y, \mathcal{O}(K))\). Use Riemann-Roch for multiples of \(K\) to show that \(x, y\) satisfy a polynomial relation of degree at most 4.

(b) Let \(f\) be the morphism from \(Y\) to \(\mathbb{P}^2\) defined by the rational functions \((1, x, y)\). Show that the image \(C\) of \(f\) is a plane curve of degree at most 4, and that if its degree is 4, then \(C\) is a smooth curve.

8.0.26. Let \(X = \mathbb{P}^1\). Are the \(\mathcal{O}_X\)-modules \(\mathcal{O} \oplus \mathcal{O}\) and \(\mathcal{O}(-1) \oplus \mathcal{O}(1)\) isomorphic?

=======================================

• A a domain, \(P_1, \ldots, P_r\) and \(Q_1, \ldots, Q_s\) prime ideals of \(A\). Assume that for all \(i, j\), \(P_i \not\supset Q_j\). There exists an element \(a \in A\) such that \(a \in P_i\) for all \(i\) but \(a \not\in Q_j\) for all \(j\).

• equations defining the degree part of \(k[x, y, z]_{z^2 = xy}\), and proof that \(\mathcal{O}(1)\) is not free there.