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Chapter 1 PLANE CURVES

[L1 The Affine Plane

The Projective Plane
Plane Projective Curves
Tangent Lines

[[.3] Transcendence Degree
1.6 The Dual Curve
Resultants and Discriminants
Nodes and Cusps
Hensel’s Lemma

[LI0 Bézout’s Theorem
[L11] The Pliicker Formulas

Plane curves were the first algebraic varieties to be studied, so we begin with them. They provide helpful
examples, and we will see in Chapter ?? how they control higher dimensional varieties. We willcome back to
curves in Chapter[8] Chapters[2]-[7)are about varieties of arbitrary dimension.

1.1 The Affine Plane

The n-dimensional affine space A™ is the space of n-tuples of complex numbers. The affine plane A? is the
two-dimensional affine space.

Let f(x1,z2) be an irreducible polynomial in two variables with complex coefficients. The set of points
of the affine plane at which f vanishes, the locus of zeros of f, is called a plane affine curve. Let’s denote this
locus by X. Using vector notation x = (1, 23),

(1.1.1) X = {z|f(x) =0}
The degree of the curve X is the degree of its irreducible defining polynomial f.

1.1.2.

&

The Cubic Curve y2 = 22 + z (real locus)



1.1.3. Note. In contrast with comples polynomials in one variable, most polynomials in two or more variables
are irreducible — they cannot be factored. This can be shown by a method called “counting constants”. For
instance, quadratic polynomials in x1, 22 depend on the six coefficients of the monomials of degree at most
two. Linear polynomials az1 +bxs+c depend on three coefficients, but the product of two linear polynomials
depends on only five parameters, because a scalar factor can be moved from one of the linear polynomials to
the other. So the quadratic polynomials cannot all be written as products of linear polynomials. This reasoning
is fairly convincing. It can be justified formally in terms of dimension, which will be discussed in Chapter ??.
]

We will get an understanding of the geometry of a plane curve as we go along, and we mention just one
point here. A plane curve is called a curve because it is defined by one equation in two variables. Its algebraic
dimension is one. But because our scalars are complex numbers, it will be a surface, geometrically. This is
analogous to the fact that the affine line A' is the plane of complex numbers.

One can see that a plane curve X is a surface by inspecting its projection to the affine x;-line. One writes
the defining polynomial as a polynomial in 2, whose coefficients ¢; = ¢;(z1) are polynomials in z1:

f($17x2) = Col‘g —‘,—clngl + - +cg

Let’s suppose that d is positive, i.e., that f isn’t a polynomial in z; alone (in which case, since it is irreducible,
it would be linear).

The fibre of amap V' — U over a point p of U is the inverse image of p, the set of points of V' that map to
p. The fibre of the projection X — Al over the point 21 = a is the set of points (a, b) for which b is a root of
the one-variable polynomial

f(a7x2) :ong—FEl,jUg_l—F..._'_Ed

with ¢; = ¢;(a). There will be finitely many points in this fibre, and the fibre won’t be empty unless f(a, x2)
is a constant. So the curve X covers most of the x;-line, a complex plane, finitely often.

(1.1.4) changing coordinates

We allow linear changes of variable and translations in the affine plane A?. When a point x is written as
the column vector z = (21, z2)*, the coordinates ' = (x}, z5)* after such a change of variable will be related
to = by the formula

(1.1.5) r=Qx +a

where @ is an invertible 2x2 matrix with complex coefficients and a = (a1, az)* is a complex translation vector.
This changes a polynomial equation f(z) = 0,to f(Q2'+ a) = 0. One may also multiply a polynomial f by
a nonzero complex scalar without changing the locus {f = 0}. Using these operations, all lines, plane curves
of degree 1, become equivalent.

An dffine conic is a plane affine curve of degree two. Every affine conic is equivalent to one of the loci

(1.1.6) x?—x3=1 or xzp=a?

The proof of this is similar to the one used to classify real conics. The two loci might be called a complex
“hyperbola’ and ’parabola’, respectively. The complex ’ellipse’ 2% + 23 = 1 becomes the "hyperbola’ when
one multiplies x2 by 1.

On the other hand, there are infinitely many inequivalent cubic curves. Cubic polynomials in two variables
depend on the coefficients of the ten monomials 1,1, z2, 2%, 7122, 23, 23, 2329, 2122, 23 of degree at most
3 in x. Linear changes of variable, translations, and scalar multiplication give us only seven scalars to work
with, leaving three essential parameters.



1.2 The Projective Plane

The n-dimensional projective space P™ is the set of equivalence classes of nonzero vectors © = (xq, T1, ..., Tp),
the equivalence relation being

(1.2.1) (X s ) ~ (T ey ) 0 (TG ey @) = (AT0y ooy ATy

for some nonzero complex number . The equivalence classes are the points of P", and one often refers to a
point by a particular vector in its class.

Points of P" correspond bijectively to one-dimensional subspaces of C"1. When x is a nonzero vector,
the vectors Az, together with the zero vector, form the one-dimensional subspace of the complex vector space
C"*! spanned by x.

The projective plane P? is the two-dimensional projective space. Its points are equivalence classes of
nonzero vectors (zg, 1, Z2).

(1.2.2)  the projective line

Points of the projective line P* are equivalence classes of nonzero vectors (g, x1). If g isn’t zero, we
may multiply by A = x5 ! to normalize the first entry of (o, 1) to 1, and write the point it represents in a
unique way as (1, u), with u = 21 /x¢. There is one remaining point, the point represented by the vector (0, 1).
The projective line P! can be obtained by adding this point, called the point at infinity, to the affine u-line,
which is a complex plane. Topologically, P! is a two-dimensional sphere.

(1.2.3) lines in projective space

A line in projective space P” is determined by a pair of distinct points p and q. When p and ¢ are represented
by specific vectors, the set of points {rp + sq}, with r, s in C not both zero is a line. Points of this line
correspond bijectively to points of the projective line P, by

(1.2.4) rp+sq <«— (r,s)

A line in the projective plane P? can also be described as the locus of solutions of a homogeneous linear
equation

(1.2.5) SoTo + 5171 + s2x2 =0

1.2.6. Lemma. [In the projective plane, two distinct lines have exactly one point in common and, in a pro-
Jective space of any dimension, a pair of distinct points is contained in exactly one line. O

(1.2.7)  the standard covering of P2

If the first entry o of a point p = (z0, 21, x2) of the projective plane P? isn’t zero, we may normalize it to 1
without changing the point: (zg, 21, 2) ~ (1,u1,uz), where u; = x;/z0. We did the analogous thing for P!
above. The representative vector (1, w1, us) is uniquely determined by p, so points with 2y # 0 correspond
bijectively to points of an affine plane A? with coordinates (uy, us):

(o, 1, 22) ~ (Liug,ug) +—  (u1,uz)

We regard the affine plane as a subset of P2 by this correspondence, and we denote that subset by UY. The
points of U, those with o # 0, are the points at finite distance. The points at infinity of P2, those of the form
(0,1, x2), are on the line at infinity L, the locus {x¢ = 0}. The projective plane is the union of the two sets
U° and L°. When a point is given by a coordinate vector, we can assume that the first coordinate is either 1 or
0.



There is an analogous correspondence between points (g, 1, 22) and points of an affine plane A2, and
between points (zg, 1, 1) and points of A%, We denote the subsets {1 # 0} and {z5 # 0} by U and U?,
respectively. The three sets U°, U', U? form the standard covering of P? by three standard affine open sets.
Since the vector (0,0, 0) has been ruled out, every point of P2 lies in at least one of the standard affine open
sets. Points whose three coordinates are nonzero lie in all of them.

1.2.8. Note. Which points of P? are at infinity depends on which of the standard affine open sets is taken to
be the one at finite distance. When the coordinates are (zg, 1, 22), I like to normalize z to 1, as above. Then
the points at infinity are those of the form (0, 21, 22). But when coordinates are (x,y, z), I may normalize z
to 1. Then the points at infinity are the points (z, y,0). I hope this won’t cause too much confusion. U

(1.2.9)  digression: the real projective plane

The points of the real projective plane RP? are equivalence classes of nonzero real vectors © = (xq, 1, T2),
the equivalence relation being 2’ ~ x if ' = Az for some nonzero real number \. The real projective plane
can also be thought of as the set of one-dimensional subspaces of the real vector space V' = R3.

The plane U : {xo = 1} in V = R3 is analogous to the standard affine open subset U" in the complex
projective plane P2. We can project V' from the origin pg = (0,0,0) to U, sending a point = = (zg, ¥1, ¥2) of
V distinct from py to the point (1, w1, us), with u; = x; /. The fibres of this projection are the lines through
po and z, with p, omitted. Looking from the origin, U becomes a “picture plane”.

1.2.10.

Y

This illustration is from Diirer’s book on perspective

The projection to U is undefined at the points (0,21, x2), which are orthogonal to the zg-axis. The line
connecting such a point to po doesn’t meet U. Those points correspond to the points at infinity of RIP?.

The projection from 3-space to a picture plane goes back to the the 16th century, the time of Desargues
and Diirer. Projective coordinates were introduced by Md&bius, but not until 200 years later.



1.2.11.

(1 0 0

(0 0 1)

A Schematic Representation of the real Projective Plane, with a Conic

This figure shows the plane W: z+y+2z = 1 in the real vector space R3. If p = (x,y, 2) is a nonzero vector,
the one-dimensional subspace spanned by p will meet W in a single point, unless p is on the line x+y+z = 0.
So the plane is a faithful representation of most of RIP2.

(1.2.12)  changing coordinates in the projective plane

An invertible 3 x 3 matrix P determines a linear change of coordinates in P2. With # = (29,71, 72)" and
x' = (z, x}, x})" represented as column vectors, the coordinate change is given by

(1.2.13) P =2z
As the next proposition shows, four special points, the three points eg = (1,0,0)%,e; = (0,1,0)%, e =
(0,0, 1), together with the point € = (1,1, 1)%, determine the coordinates.

1.2.14. Proposition. Let pg, p1, 2, q be four points of P2, no three of which lie on a line. There is, up to
scalar factor, a unique linear coordinate change Px' = x such that Pp; = e; and Pq = e.

proof. The hypothesis that the points pg, p1, p2 don’t lie on a line means that the vectors that represent those
points are independent. They span C3. So ¢ will be a combination ¢ = cop + ¢1p1 + cap2, and because no
three of the points lie on a line, the coefficients ¢; will be nonzero. We can scale the vectors p; (multiply them
by nonzero scalars) to make ¢ = pg+p1 +p2 without changing the points. Next, the columns of P can be an
arbitrary set of independent vectors. We let them be pg, p1, p2. Then Pe; = p;, and Pe = ¢q. The matrix P is
unique up to scalar factor, as can be verified by looking the reasoning over. O

(1.2.15) conics

A polynomial f(zg,z1,22) is homogeneous , and of degree d, if all monomials that appear with nonzero
coefficient have (total) degree d. For example, 3 + 3 — xoz122 is a homogeneous cubic polynomial.

A homogeneous quadratic polynomal is a combination of the six monomials
2 2 2
Lo, L1, Ly, o1, L1L2, LoL2
A conic is the locus of zeros of an irreducible homogeneous quadratic polynomial.

1.2.16. Proposition. For any conic C, there is a choice of coordinates so that C' becomes the locus

Tox1 + xore + 129 =0

9



proof. Since the conic C'isn’t a line, it will contain three points that aren’t colinear. Let’s leave the verification
of this fact as an exercise. We choose three non-colinear points on C, and adjust coordinates so that they
become the points eg, €1, e2. Let f be the quadratic polynomial in those coordinates whose zero locus is C.
Because eq is a point of C, f(1,0,0) = 0, and therefore the coefficient of 22 in f is zero. Similarly, the
coefficients of 2 and x2 are zero. So f has the form

f=azxgr 4+ brors + CcT1T2

Since f is irreducible, a, b, ¢ aren’t zero. By scaling appropriately, we can make a = b = ¢ = 1. We will be
left with the polynomial zgx1 + zox2 + £122. U

1.3 Plane Projective Curves

The loci in projective space that are studied in algebraic geometry are the ones that can be defined by sys-
tems of homogeneous polynomial equations. The reason for homogeneity is that the vectors (ay, ..., a,,) and
(Aao, ..., Aay, ) represent the same point of P™.

To explain this, we write a polynomial f(x, ..., ;) as a sum of its homogeneous parts:
(1.3.1) f=fo+fi+ -+ fq

where fj is the constant term, f7 is the linear part, etc., and d is the degree of f.

1.3.2. Lemma. Let f be a polynomial of degree d, and let a = (ay, ..., a,) be a nonzero vector. Then
f(Aa) = 0 for every nonzero complex number X if and only if f;(a) is zero for every i = 0, ..., d.

Thus we may as well work with homogeneous equations.

proof of Lemma FOzo, s Axy) = fo + Mi(x) + N2 fo(z) + - + A fa(x). When we evaluate at
some given x, the right side of this equation becomes a polynomial of degree at most d in . Since a nonzero
polynomial of degree at most d has at most d roots, f(Az) won’t be zero for every A unless that polynomial is
ZEeTO0. (]

1.3.3. Lemma. If a homogeneous polynomial f is a product gh of polynomials, then g and h are homogeneous,
and the zero locus { f = 0} in projective space is the union of the two loci {g = 0} and {h = 0}. O

It is also true that relatively prime homogeneous polynomials f and g have only finitely many common
zeros. This isn’t obvious. It will be proved below, in Proposition|1.3.11

(1.3.4) loci in the projective line

Before going to plane curves, we describe the zero locus in the projective line P! of a homogeneous
polynomial in two variables.

1.3.5. Lemma. Every nonzero homogeneous polynomial f(x,y) = apz? + a1x? 'y + -+ + agy? with
complex coefficients is a product of homogeneous linear polynomials that are unique up to scalar factor.

To prove this, one uses the fact that the field of complex numbers is algebraically closed. A one-variable
complex polynomial factors into linear factors in the polynomial ring C[y]. To factor f(z,y), one may factor
the one-variable polynomial f(1,y) into linear factors, substitute 3/2 for y, and multiply the result by x¢.
When one adjusts scalar factors, one will obtain the expected factorization of f(z,y). For instance, to factor
flx,y) = 22 — 32y + 2y, substitute z = 1: 2y> — 3y +1 = 2(y — 1)(y — %) Substituting y = y/x and
multiplying by 2, f(z,y) = 2(y — z)(y — 3x). The scalar 2 can be distributed arbitrarily among the linear
factors. (]

Adjusting scalar factors, we may write a homogeneous polynomial as a product of the form
(1.3.6) fl@oy) = (e —wy)™ - (vex — ugy)™

10



where no factor v;z — u;y is a constant multiple of another, and where ry + - - - 4 7, is the degree of f. The
exponent r; is the multiplicity of the linear factor v,z — u;y.

A linear polynomial v — uy determines a point (u,v) in the projective line P!, the unique zero of that
polynomial, and changing the polynomial by a scalar factor doesn’t change its zero. Thus the linear factors of
the homogeneous polynomial determine points of P!, the zeros of f. The points (u;,v;) are zeros of
multiplicity r;. The total number of those points, counted with multiplicity, will be the degree of f.

The zero (u;,v;) of f corresponds to a root = w;/v; of multiplicity 7; of the one-variable polynomial
f(x, 1), except when the zero is the point (1,0). This happens when the coefficient aq of f is zero, and y is a
factor of f. One could say that f(z,y) has a zero at infinity in that case.

This sums up the information contained in an algebraic locus in the projective line. It will be a finite set of
points with multiplicities.

(1.3.7) intersections with a line

Let Z be the zero locus of a homogeneous polynomial f(xo, ..., z,,) of degree d in projective space P"*, and
let L be a line in P™ (1.2.4). Say that L is the set of points rp + sq, where p = (aq, ..., a,) and ¢ = (bo, ..., by,)
are represented by specific vectors, so that L corresponds to the projective line P! by 7p + sq <+ (r, s). Let’s
also assume that L isn’t entirely contained in the zero locus Z. The intersection Z N L corresponds to the zero
locus in P! of the polynomial in 7, s that is obtained by substituting rp + sq into f. This substitution yields
a homogeneous polynomial ?(r, s) in r, s, of degree d. For example, if f = xox1 +zox2+ 2122, then with
p = (ay,a1,az) and ¢ = (bg, by, bs), f is the following quadratic polynomial in r, s:

f(r,s) = f(rp+sq) = (rag + sbo)(ray + sb1) + (rag + sbo)(raz + sbz) + (rai + sby)(raz + sbs)
= (a0a1 +a0a2+a1a2)r2 + (Zi;ﬁj aibj)rs + (bObl +b0b2—|—b1b2)82

The zeros of f in P! correspond to the points of Z N L. There will be d zeros, when counted with multiplicity.

1.3.8. Definition. With notation as above, the intersection multiplicity of Z and L ata point p is the multiplicity
of zero of the polynomial f. O

1.3.9. Corollary. Let Z be the zero locus in P™ of a homogeneous polynomial f, and let L be a line in P™ that
isn’t contained in Z. The number of intersections of Z and L, counted with multiplicity, is equal to the degree

of f. 0

(1.3.10) loci in the projective plane

1.3.11. Proposition. Homogeneous polynomials f1, ..., f, in x,y, z with no common factor have finitely many
common zeros.

The proof of this proposition is below. It shows that the most interesting type of locus in the projective
plane is the zero set of a single equation.

The locus of zeros of an irreducible homogeneous polynomial f is called a plane projective curve. The
degree of a plane projective curve is the degree of its irreducible defining polynomial.

1.3.12. Note. Suppose that a homogeneous polynomial is reducible, say f = ¢; - - - gx, Where g; are irre-
ducible, and such that g; and g; don’t differ by a scalar factor when 7 # j. Then the zero locus C of f is the
union of the zero loci V; of the factors g;. In this case, C may be called a reducible curve.

When there are multiple factors, say f = g7* - - - g;* and some e; are greater than 1, it is still true that the
locus C' : {f = 0} will be the union of the loci V; : {g; = 0}, but the connection between the geometry of
C and the algebra is weakened. In this situation, the structure of a scheme becomes useful. We won’t discuss
schemes. The only situation in which we will need to keep track of multiple factors is when counting inter-
sections with another curve D. For this purpose, one can define the divisor of f to be the integer combination
etVi+---+epVi. O

11



We need a lemma for the proof of Proposition The ring C[z, y] embeds into its field of fractions
F, which is the field of rational functions C(z,y) in z,y. The polynomial ring C[z, y, 2] is a subring of the
one-variable polynomial ring F'[z]. It can be useful to study a problem in the principal ideal domain F[z] first
because its algebra is simpler.

Recall that the unit ideal of a ring R is the ring R itself.

1.3.13. Lemma. Let F' = C(x,y) be the field of rational functions in x,y.

() Let f1, ..., fr be homogeneous polynomials in x,y, z with no common factor. Their greatest common divisor
in Fz] is 1, and therefore f1, ..., fi, generate the unit ideal of F|z]. There is an equation of the form >, g f; =
1 with g} in Fz].

(i) Let f be an irreducible polynomial in Clx,y, z| of positive degree in z, but not divisible by z. Then f is
also an irreducible element of F[z]. irreducible element of F'[z].

proof. (i) Let b’ be an element of F[z] that isn’t a unit of F[2], i.e., that isn’t an element of F'. Suppose that,
for every i, b’ divides f; in F[z], say f; = w,h’. The coefficients of ' and u) have denominators that are
polynomials in x,y. We clear denominators from the coefficients, to obtain elements of C[z,y, z]. This will
give us equations of the form d; f; = u;h, where d; are polynomials in x, y and u;, h are polynomials in z, y, 2.

Since h isn’t in F, it will have positive degree in z. Let g be an irreducible factor of & of positive degree
in z. Then g divides d; f; but doesn’t divide d; which has degree zero in z. So g divides f;, and this is true for
every . This contradicts the hypothesis that f1, ..., fx have no common factor.

(ii) Say that f(x,y, z) factors in F'[z], f = ¢’h/, where ¢’ and I’ are polynomials of positive degree in z with
coefficients in F'. When we clear denominators from ¢’ and h’/, we obtain an equation of the form df = gh,
where ¢ and h are polynomials in x, y, z of positive degree in z and d is a polynomial in z, y. Then neither f
nor g divides d, so f must be reducible. O

proof of Proposition|l.3.11] We are to show that homogeneous polynomials f1, ..., f;- in x, y, z with no com-
mon factor have finitely many common zeros. Lemma|1.3.13|tells us that we may write Y _ g} f; = 1, with g/
in F'[z]. Clearing denominators from g} gives us an equation of the form

> afi=d

where d is a polynomial in z, y and g; are polynomials in z, y, z. Taking suitable homogeneous parts of d and
gi produces an equation Y g; f; = d in which all terms are homogeneous.

Lemma [1.3.5| asserts that d is a product of linear polynomials, say d = ¢;---{,.. A common zero of
f1s -y fr is also a zero of d, and therefore it is a zero of ¢; for some j. It suffices to show that, for every j,
fi, ..., fr and ¢; have finitely many common zeros.

Since f1, ..., fr have no common factor, there is at least one f; that isn’t divisible by ¢;. Corollary
shows that f; and ¢; have finitely many common zeros. Therefore f1, ..., fi and £; have finitely many common
zeros for every j. (]

1.3.14. Corollary. Every locus in the projective plane P2 that can be defined by a system of homogeneous
polynomial equations is a finite union of points and curves. U

The next corollary is a special case of the Strong Nullstellensatz, which will be proved in the next chapter.

1.3.15. Corollary. Let f be an irreducible homogeneous polynomial in three variables, that vanishes on an
infinite set S of points of P2. If another homogeneous polynomial g vanishes on S, then f divides g. Therefore,
if an irreducible polynomial vanishes on an infinite set S, that polynomial is unique up to scalar factor.

proof. If the irreducible polynomial f doesn’t divide g, then f and g have no common factor, and therefore
they have finitely many common zeros. O

(1.3.16)  the classical topology

The usual topology on the affine space A™ will be called the classical topology. A subset U of A™ is open in
the classical topology if, whenever U contains a point p, it contains all points sufficiently near to p. We call this

12



the classical topology to distinguish it from another topology, the Zariski topology, which will be discussed in
the next chapter.

The projective space P" also has a classical topology. A subset U of P is open if, whenever a point p of
U is represented by a vector (o, ..., &), all vectors ' = (zy, ..., 2, ) sufficiently near to = represent points of

U.

(1.3.17) isolated points

A point p of a topological space X is isolated if both {p} and its complement X —{p} are closed sets, or if
{p} is both open and closed. If X is a subset of A™ or P", a point p of X is isolated in the classical topology
if X doesn’t contain points p’ distinct from p, but arbitrarily close to p.

1.3.18. Proposition Let n be an integer greater than one. The zero locus of a polynomial in A™ or in P™
contains no points that are isolated in the classical topology.

1.3.19. Lemma. Let f be a polynomial of degree d in n variables. When coordinates x1, ..., x,, are chosen
suitably, f(x) will ge a monic polynomial of degree d in the variable x.,.

proof. We write f = fo + f1 + -+ + fq4, where f; is the homogeneous part of f of degree i, and we choose
a point p of A™ at which f,; isn’t zero. We change variables so that p becomes the point (0, ..., 0,1). We call
the new variables 1, .., .z,, and the new polynomial f. Then f4(0,...,0,z,) will be equal to cx? for some
nonzero constant c. When we adjust x,, by a scalar factor to make ¢ = 1, f will be monic. [l

proof of Proposition|l.3.18| The proposition is true for loci in affine space and also for loci in projective space.
We look at the affine case. Let f(z1, ..., 2,,) be a polynomial with zero locus Z, and let p be a point of Z. We
adjust coordinates so that p is the origin (0, ...,0) and f is monic in z,,. We relabel x,, as y, and write f as a

polynomial in y. Let’s write f(z,y) = f(y):

F@) = flz,y) =y + car(@)y?™ + - + co(2)

where ¢; is a polynomial in 21, ..., z,,_1. For fixed x, co(z) is the product of the roots of f(y). Since p is the
origin and f(p) = 0, ¢o(0) = 0. So ¢p(x) will tend to zero with 2. Then at least one root y of f(y) will tend
to zero. This gives us points (x,y) of Z that are arbitrarily close to p. ]

1.3.20. Corollary. Let C' be the complement of a finite set of points in a plane curve C. In the classical
topology, a continuous function g on C that is zero at every point of C' is identically zero. ]

1.4 Tangent Lines

(14.1) notation for working locally

We will often want to inspect a plane curve C : {f(xg,z1,22) = 0} in a neighborhood of a particular
point p. To do this we may adjust coordinates so that p becomes the point (1, 0,0), and look in the standard
affine open set U° : {xy # 0}. There, p becomes the origin in the affine 21, xo-plane, and C becomes the zero
locus of the non-homogeneous polynomial f(1,z1,x2).

Of course, it doesn’t matter which variable we set to 1. If the variables are x, y, z, we may prefer to take
for p the point (0,0, 1) and work with the polynomial f(z,y, 1).
This will be a standard notation for working locally.

1.4.2. Lemma. A homogeneous polynomial f(xo,x1,x2) not divisible by x is irreducible if and only if its
dehomogenization f(1,x1,x2) is irreducible. O

(14.3) homogenizing and dehomogenizing
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If f(xo,x1,22) is a polynomial, f(1,z1,22) is called the dehomogenization of f with respect to the
variable xg.

A simple procedure, homogenization, inverts dehomogenization. Suppose given a non-homogeneous poly-
nomial F'(z1, z2) of degree d. To homogenize F', we replace the variables z;, i = 1,2, by u; = x;/xo. Then
since u; have degree zero in , so does F'(u1,u2). When we multiply by x¢, the result will be a homogeneous
polynomial of degree d in xg, x1, x2 that isn’t divisible by z,

We will come back to homogenization in Chapter 2}

(1.4.4) smooth points and singular points

Let C be the plane curve deﬁned by an irreducible homogeneous polynomial f(zg,x1,22), and let f;
denote the partial derivative -2 8 , which can be computed by the usual calculus formula. A point of C' at which
the partial derivatives f; aren t all zero is called a smooth point of C'. A point at which all partial derivatives
are zero is a singular point. A curve is smooth, or nonsingular, if it contains no singular point; otherwise it is
a singular curve.

The Fermat curve
(1.4.5) zd 42428 =0

is smooth because the only common zero of the partial derivatives dacg_l, dx‘f_l, dxg_l, which is (0,0, 0),
doesn’t represent a point of P2, The cubic curve 3 + 3 — xoz122 = 0 is singular at the point (0,0, 1).

The Implicit Function Theorem explains the meaning of smoothness. Suppose that p = (1,0, 0) is a point
of C. We set 7y = 1 and inspect the locus (1,21, 22) = 0 in the standard affine open set U°. If fo(p) isn’t
zero, the Implicit Function Theorem tells us that we can solve the equation f(1, z1, z2) = 0 for x2 locally (for
small 21) as an analytic function ¢ of x7, with ©(0) = 0. Sending 1 to (1, z1, p(x1)) inverts the projection
from C to the affine z;-line, locally. So at a smooth point, C'is locally homeomorphic to the affine line.

1.4.6. Euler’s Formula. Let f be a homogeneous polynomial of degree d in the variables x, ..., x,,. Then
Sowdh—as

proof. It is enough to check this formula when f is a monomial. As an example, let f be the monomial 223>z,
then
efe +yfy + 2fo = 2(22y°2) + y(32°y?2) + 2(a?y’) = 62’2 =6 f O

1.4.7. Corollary. (i) If all partial derivatives of an irreducible homogeneous polynomial f are zero at a
point p of P2, then f is zero at p, and therefore p is a singular point of the curve { f = 0}.

(ii) At a smooth point of a plane curve, at least two partial derivatives will be nonzero.

(iii) The partial derivatives of an irreducible polynomial have no common (nonconstant) factor.

(iv) A plane curve has finitely many singular points. U

(1.4.8) tangent lines and flex points

Let C be the plane projective curve defined by an irreducible homogeneous polynomial f. A line L is
tangent to C' at a smooth point p if the intersection multiplicity of C' and L at p is at least 2. (See (1.3.8).)
There is a unique tangent line at a smooth point.

A smooth point p of C'is a flex point if the intersection multiplicity of C' and its tangent line at p is at least
3, and p is an ordinary flex point if the intersection multiplicity is equal to 3.

Let L be a line through a point p and let g be a point of L distinct from p. We represent p and g by specific
vectors (po, p1,p2) and (qo, ¢1, g2), to write a variable point of L as p + t¢, and we expand the restriction of f
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to L in a Taylor’s Series. The Taylor expansion carries over to complex polynomials because it is an identity.

2
Let f; = % and fij = % Then

(1.4.9) flp+tq) = f(p) + (Zfi(p)(h)t + é(ZQifij(p)Qj>t2 + 0(3)

where the symbol O(3) stands for a polynomial in which all terms have degree at least 3 in ¢. The point ¢ is
missing from this parametrization, but this won’t be important.

We will rewrite this equation twice. Let V be the gradient vector (fo, f1, f2), let H be the Hessian matrix
of f, the matrix of second partial derivatives:

Joo  for  Jfoz
(1.4.10) H = | fio fuu fi2
Jao far fa2

and let V,, and H), be the evaluations of V and H, respectively, at p. So p is a smooth point of C'if f(p) =0
and V), # 0. Regarding p and g as column vectors, Equation can be written as

(1.4.11) flo+ta) = fp) + (Vpa)t + 5(d"Hy )t + O(3)

in which V¢ and ¢" H,,q are to be computed as matrix products.

The intersection multiplicity of C' and L at p (1.3.8)) is the lowest power of ¢ that has nonzero coefficient
in f(p + tq). The intersection multiplicity is at least 1 if p lies on C, i.e., if f(p) = 0.

Suppose that p is a smooth point of C'. Then L is tangent to C' at p if the coefficient (V,q) of ¢ is zero, and
p is a flex point if (V,,q) and (¢" H,q) are both zero. The equation of the tangent line L at a smooth point p is
Vpx =0, or

(1.4.12) fo(p)zo + fi(p)z1 + fa(p)r2 =0

which tells us that a point ¢ lies on L if the linear term in ¢ of (1.4.11) is zero.

By the way, Taylor’s formula shows that the restriction of f to every line through a singular point has a
multiple zero. However, we will speak of tangent lines only at smooth points of the curve.

The next lemma is obtained by applying Euler’s Formula to the entries of H,, and V,.

1.4.13. Lemma.
p'H,=(d—1)V, and V,p=df(p)

O

We rewrite Equation one more time, using the notation (u, v) to represent the symmetric bilinear
form u'H, v on V = C3. It makes sense to say that this form vanishes on a pair of points of P2, because the
condition (u,v) = 0 doesn’t depend on the vectors that represent those points.

1.4.14. Proposition. With notation as above,
(i) Equation can be written as

fo+te) = gaopp) + 75@at + 56,9t + 0(3)
(i) A point p is a smooth point of C if and only if (p,p) = 0 but {p, v) is not identically zero.
proof. (i) This follows from the formulas
(1.4.15) p'H,=(d—1)V, and V,p=df(p)
which can be obtained by applying Euler’s formula to the entries of H, and V,,.

(i) (p,v) = (d — 1)V,v isn’t identically zero at a smooth point p because V,, won’t be zero. O
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1.4.16. Corollary. Let p be a smooth point of C, let q be a point of P? distinct from p. and let L be the line
through p and q. Then

(i) L is tangent to C at p if and only if {(p,p) = (p,q) =0, and

(ii) p is a flex point of C with tangent line L if and only if {p,p) = (p,q) = {q,q) = 0. O

1.4.17. Theorem. A smooth point p of the curve C' is a flex point if and only if the determinant det H, of
the Hessian matrix at p is zero.

proof. Let p be a smooth point of C, so that (p, p) = 0. If det H,, = 0, the form (u, v) is degenerate. There is
a nonzero null vector ¢, so that (p, ¢) = (g, ¢) = 0. But because (p, v) isn’t identically zero, ¢ is distinct from
p. So pis a flex point.

Conversely, suppose that p is a flex point and let ¢ be a point on the tangent line at p and distinct from p,
so that (p, p) = (p,q) = (g, q) = 0. The restriction of the form to the two-dimensional space W spanned by p
and ¢ is zero, and this implies that the form is degenerate. If (p, ¢, v) is a basis of V with p, ¢ in W, the matrix

of the form will look like this:
*

0 0
0 0 =
* ok % |

1.4.18. Proposition.

(i) Let f(x,y, z) be an irreducible homogeneous polynomial of degree at least two. The Hessian determinant
det H isn’t divisible by f. In particular, it isn’t identically zero.

(ii) A curve that isn’t a line has finitely many flex points.

proof. (i) Let C be the curve defined by f. If f divides the Hessian determinant, every smooth point of C' will
be a flex point. We set z = 1 and look on the standard affine U2, choosing coordinates so that the origin p is
a smooth point of C, and %ﬁ # 0 at p. The Implicit Function Theorem tells us that we can solve the equation
f(z,y,1) = 0 for y locally, say y = ¢(z). The graph T : {y = (z)} will be equal to C in a neighborhood
of p (see below). A point of I' is a flex point if and only if ‘;272’ is zero there. If this is true for all points near
to p, then fl%f will be identically zero, and this implies that ¢ is linear: y = ax. Then y = ax solves f = 0,
and therefore y —ax divides f(z,y,1). But f(z,y, 2) is irreducible, and so is f(z,y, 1). Therefore f(z,y,1)

is linear, contrary to hypothesis.

(ii) This follows from (i) and (1.3.11). The irreducible polynomial f and the Hessian determinant have finitely
many common Zzeros. O

1.4.19. Review. (about the Implicit Function Theorem)

Let f(z,y) be a polynomial such that f(0,0) = 0 and %(0, 0) # 0. The Implicit Function Theorem
asserts that there is a unique analytic function ¢(x), defined for small z, such that ¢(0) = 0 and f(z, p(x)) is
identically zero.

We make some further remarks. Let R be the ring of functions that are defined and analytic for small 2. In
the ring R [y] of polynomials in y with coefficients in R, the polynomial y—y(z), which is monic in y, divides
f(z,y). To see this, we do division with remainder of f by y — p(z):

(1.4.20) f(z,y) = (y — p(x))q(z,y) + r(x)

The quotient ¢(z, y) is in R[y], and the remainder 7(x) has degree zero in y, so it is in R. Setting y = ¢(z) in
the equation, one sees that 7(z) = 0.

Let T" be the graph of ¢ in a suitable neighborhood U of the origin in z, y-space. Since f(z,y) = (y —
o(x))g(x,y), the locus f(x,y) = 0 in U has the form ' U A, where T is the graph of ¢ and A is the zero
locus of ¢(z, y). Differentiating, we find that %(0, 0) = ¢(0,0). So ¢(0,0) # 0. Then A doesn’t contain the
origin, while I" does. This implies that A is disjoint from I', locally. A sufficiently small neighborhood U of
the origin won’t contain any of points A. In such a neighborhood, the locus of zeros of f will be T (]
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1.5 Transcendence degree

Let F' C K be a field extension. A set @ = {ay, ..., @, } of elements of K is algebraically dependent over F
if there is a nonzero polynomial f(z1, ..., 2,) with coefficients in F, such that f(a) = 0. If there is no such
polynomial, the set « is algebraically independent over F'.

An infinite set is called algebraically independent if every finite subset is algebraically independent — if
there is no polynomial relation among any finite set of its elements.

The set {1 } consisting of a single element of K will be algebraically dependent if «v; is algebraic over F.
Otherwise, it will be algebraically independent. In this case « is said to be transcendental over F'.

An algebraically independent set & = {a1, ..., o, } that isn’t contained in a larger algebraically indepen-
dent set is called a transcendence basis for K over F'. If there is a finite transcendence bases, its order is the
transcendence degree of the field extension K of F'. Lemmal[l.5.2]below shows that all transcendence basis for
K over F' have the same order, so the transcendence degree is well-defined. If there is no finite transcendence
basis, the transcendence degree of K over F' is infinite.

For example, let K = F(x1, ..., x,) be the field of rational functions in n variables. The variables form a
transcendence basis of K over F', and the transcendence degree of K over F'is n.

A domain is a nonzero ring with no zero divisors, and a domain that contains a field F' as a subring is
called an F-algebra. We use the customary notation F'[a, ..., ay,] or F[«] for the F-algebra generated by a set
a ={ay,...,a,}, and we may denote its field of fractions by F'(aq, ..., o, ) or by F/(«). The set {aq, ..., ap }
is algebraically independent over F' if and only if the surjective map from the polynomial algebra F'[z1, ..., 2]
to Flaq, ..., ay] that sends x; to «; is bijective.

1.5.1. Lemma. Let K/F be a field extension, let o = {aq,...,an} be a set of elements of K that is alge-
braically independent over F, and let F () be the field of fractions of F[a/.

(i) Every element of the field F () that isn’t in F is transcendental over F.
(ii) If B is another element of K, the set {c, ..., au,, B} is algebraically dependent if and only if 8 is algebraic
over F(a).

(iii) The algebraically independent set o is a transcendence basis if and only if every element of K is algebraic
over F(a).

proof. (i) We write an element z of F'(«) as a fraction p/q = p(«)/q(«), where p(z) and g(z) are relatively
prime polynomials. Suppose that z satisfies a nontrivial polynomial relation cpz™ + ¢z 1 +--- 4+ ¢, = 0
with ¢; in F. We may assume that ¢y = 1. Substituting z = p/q and multiplying by ¢™ gives us the equation

n

Pt =—glep" "+ e )
Because « is an algebraically independent set, this equation is equivalent with a polynomial equation in F'[z].
It shows that ¢ divides p™, which contradicts the hypothesis that p and q are relatively prime. (]

1.5.2. Lemma.

(i) Let K/F be a field extension. If K has a finite transcendence basis, then all algebraically independent
subsets of K are finite, and all transcendence bases have the same order.

(i) If L D K D F are fields and if the degree [L : K| of L over K is finite, then K and L have the same
transcendence degree over F.

proof. (i) Let « = {a1,...,a,.} and 8 = {S1,..., Bs}. Assume that K is algebraic over F'(«) and that the
set 3 is algebraically independent. We show that s < r. The fact that all transcendence bases have the same
order will follow: If both « and § are transcendence bases, then s < r, and since we can interchange « and 3,
r <s.

The proof that s < r proceeds by reducing to the trivial case that 3 is a subset of «. Suppose that some
element of j3, say S, isn’t in the set «. The set 8’ = {31, ..., Bs—1} is algebraically independent, but it isn’t
a transcendence basis. So K isn’t algebraic over F'(8’). Since K is algebraic over F'(«), there is at least one
element of «, say ., that isn’t algebraic over F/(8'). Then v = 8’ U{a,} will be an algebraically independent
set of order s, and it will contain more elements of the set o than 3 does. Induction shows that s < r. O
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1.6 The Dual Curve

(1.6.1)  the dual plane

Let IP denote the projective plane with coordinates xg, x1, X2, and let L be the line in P with the equation
(162) S0 + 8121 + S2x0 = 0

The solutions of this equation determine the coefficients s; only up to a common nonzero scalar factor, so the
line L determines a point (sg, 1, $2) in another projective plane P* called the dual plane. We denote that point
by L*. Moreover, a point p = (g, z1, z2) in P determines a line in the dual plane, the line with the equation
@, when s; are regarded as the variables and z; as the scalar coefficients. We denote that line by p*. The
equation exhibits a duality between P and P*. A point p of P lies on the line L if and only if the equation is
satisfied, and this means that, in P*, the point L* lies on the line p*.

(1.6.3) the dual curve

Let C be a plane projective curve of degree at least two, and let U be the set of its smooth points. This is
the complement of a finite subset of C'. We define a map

N

as follows: Let p be a point of U and let L be the tangent line to C' at p. Then ¢(p) = L*, where L* is the point
of IP* that corresponds to the line L.

Denoting the partial derivative % by f; as before, the tangent line L at a smooth point p = (z9, 1, 22)

of C has the equation fyzg + f1x1 +lf2x2 = 0(1.4.12). Therefore L* is the point
(164) (50781782) = (fO(x)afl(x)af2($>)

We’ll drop some parentheses, denoting the image ¢(U) of U in P* by tU. Points of tU correspond to
tangent lines at smooth points of C'. We assume that C' has degree at least two because, if C' were a line, tU
would be a point. Since the partial derivatives have no common factor, the tangent lines aren’t constant when
the degree is two or more.

7?7 figure??

1.6.5. Lemma. Let ¢(so, 51, S2) be a homogeneous polynomial, and let g(xq, 1, 22) = @(fo(x), f1(x), f2(x)).
Then (s) is identically zero on tU if and only if g(x) is identically zero on U. This is true if and only if f
divides g.

proof. The first assertion follows from the fact that (sg, s1, s2) and (fo(x), f1(x), f2(z)) represent the same
point of P*, and the last one follows from Corollary ]

1.6.6. Theorem. Let C' be the plane curve defined by an irreducible homogeneous polynomial f of degree d
at least two. With notation as above, the image tU is contained in a curve C* in the dual space P*.

The curve C* referred to in the theorem is the dual curve.
proof. If an irreducible homogeneous polynomial ¢(s) vanishes on tU, it will be unique up to scalar factor
(Corollary [T.3.T5).

Let’s use vector notation: x = (xg, z1,%2), $ = (S0, 51, $2), and Vf = (fo, f1, f2)-

. 'We show first that there is a nonzero polynomial ¢(s), not necessarily irreducible or homogeneous,
that vanishes on tU. The field C(xq,x1,x2) has transcendence degree three over C. Therefore the four
polynomials fo, f1, f2, and f are algebraically dependent. There is a nonzero polynomial ¥ (sg, s1, S2, t) such
that ¥ (fo(x), f1(x), f2(z), f(x)) = Y(Vf(z), f(z)) is the zero polynomial. We can cancel factors of ¢, so
we may assume that 1) isn’t divisible by ¢. Let ¢(s) = v¥(sg, s1, S2,0). This isn’t the zero polynomial when ¢
doesn’t divide 1.
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Let T = (T1, T2, T3) be a vector that represents a point of U. Then f(T) = 0, and therefore

(VI (@), (7)) = »(Vf(7),0) = o(Vf(T))

Since (VS (z), f(z)) is identically zero, ¢(Vf(Z)) = 0 for all T in U.

Next, because the vectors T and AT represent the same point of U, ¢(Vf(AZ)) = 0. Since f has degree
d, the derivatives f; are homogeneous of degree d — 1. Therefore p(Vf(AT)) = p(A4~1Vf(Z)) = 0 for all
. Because the scalar A~ can be any complex number, Lemma tells us that the homogeneous parts of
©(Vf(x)) vanish for all x € U. The homogeneous parts of degree r of ((s) correspond to the homogenous
parts of degree r(d — 1) of o(Vf(z)). So the homogeneous parts of ¢(s) vanish on tU. This shows that there
is a homogeneous polynomial ¢(s) that vanishes on tU. We choose such a polynomial ¢(s). Let its degree be
T

If f has degree d, the polynomial g(x) = ¢(Vf(z)) will be homogeneous, of degree r(d—1). It will vanish
on U, and therefore on C' (1.3.20). So f will divide g. Finally, if ¢(s) factors, then g(z) factors accordingly,
and because f is irreducible, it will divide one of the factors of g. The corresponding factor of ¢ will vanish
on tU (1.6.5). So we may replace the homogeneous polynomial ¢ by one of its irreducible factors. ]

In principle, the proof of Theorem gives a method for finding a polynomial that vanishes on the dual
curve. Namely, looks for a polynomial relation among f., fy, f-, f, and then sets f = 0. However, it is usually
painful to determine the defining polynomial of C'* explicitly. Most often, the degrees of C' and C* will be
different, and several points of the dual curve C* may correspond to a singular point of C, and vice versa.

The computation is easy for a conic.

1.6.7. Examples.
(i) (the dual of a conic) Let f = xox1 + x0Tz + 122 and let C be the conic f = 0. Let (sg, 51, $2) =
(fo, f1, f2) = (w1 +22, 2o +22, 20 +21). Then

(1.6.8)  s2+s2 +s2—2(x2+ax?+23) =2f and  sgs; + 81852 + sos2 — (22 4+ 23 +23) =3f
We eliminate (23 + #% + x3) from the two equations.

(1.6.9) (53 + s34 53) — 2(s051 + 5152 + 5082) = —Af

Setting f = 0 gives us the equation of the dual curve. It is another conic.

(ii) (the dual of a cuspidal cubic) The dual of a smooth cubic has degree 6. We compute the dual of a cubic
with a cusp instead. The curve C' defined by the irreducible polynomial f = 3?2 + 2® has a cusp at (0,0, 1).
The Hessian matrix of f is

6z 0 O
H=10 2z 2
0 2y O

and the Hessian determinant h = det H is —24xy?. The common zeros of f and h are the cusp point (0,0, 1)
and a single flex point (0, 1, 0).

We scale the partial derivatives of f to simplify notation. Letu = f,/3 = 22, v = f,/2 = yz, and
w = f, = y2. Then

vw —ud = yt2? —2b = (Y22 + 23 (P2 — 2®) = f(yPz — 2P)

The zero locus of the irreducible polynomial v?w — u? is the dual curve. It is another cuspidal cubic. (]

(1.6.10) alocal equation for the dual curve

We label the coordinates in P and P* as z, y, z and u, v, w, respectively, and we work in a neighborhood of
a smooth point py of the curve C' defined by a homogeneous polynomial f(x,y, z), choosing coordinates so
that po = (0,0, 1), and that the tangent line at py is the line Ly : {y = 0}. The image of p in the dual curve
C*is L§ : (u,v,w) = (0,1,0).
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Let f(x,y) = f(z,y,1). In the affine z, y-plane, the point py becomes the origin py = (0,0). So
f(po) = 0, and since the tangent line is Ly, g (po) = 0, while 8f (po) # 0. We solve the equatlon f = 0 for

y as an analytic function y(z) for small x, with y(0) = 0. Let y ( ) denote the derivative < %2 Differentiating
the equation f(z,y(z)) = 0 shows that y'(0) = 0.

Let p1 = (x1,y1) be a point of Cj near to py, so that y; = y(x1), and let y; = y'(x1). The tangent line
L4 at pp has the equation

(1.6.11) y—y1 =y (z—x1)

Putting z back, the homogeneous equation of the tangent line L, at the point p; = (1, y1, 1) is
(—yD)z+y+ iz1—y1)z =0

The point L7 of the dual plane that corresponds to Ly is (—y7, 1, yj21 —1). Let’s drop the subscript 1. As «
varies, and writing y = y(z) and ¢y’ = ¢/(x),

(1.6.12) (u,v,w) = (—y', 1,y'z—y),

There may be accidents: Lo might be tangent to C' at distinct smooth points gy and pg, or it might pass
through a singular point of C. If either of these accidents occurs, we can’t analyze the neighborhood of Lj in
C* by this method. But, provided that there are no accidents, the path (1.6.12)) will trace out the dual curve C"*

near to L = (0, 1,0). (See (1.4.19})

(1.6.13) the bidual

The bidual C** of a curve C'is the dual of the curve C*. It is a curve in the space P**, which is P.

1.6.14. Theorem. A plane curve of degree greater than one is equal to its bidual: C** = C.

As before, U will denote the set of smooth points of a curve C. Let V' be the set of smooth points pg of C'
such that ¢(pg) is a smooth point of C*. Thus V C U C C.

1.6.15. Lemma.
(i) The subset V' is the complement of a finite set of points of C.

(ii) Let py be a point near to a smooth point py of a curve C, let Ly and L be the tangent line to C at p, and

Do, respectively, and let q be intersection point Ly N Lg. Then lim ¢ = py.
P1—Ppo

(iii) If po is a point of V with tangent line Ly, the tangent line to C* at L is p}.

proof. (i) Let S and S* denote the finite sets of singular points of C', and C*, respectively, the set U of smooth
points of C'is the complement of S in C, and V is obtained from U by deleting points whose images are in
S*. The fibre of ¢ over a point L* of C* is the set of smooth points p of C' such that the tangent line at p is
L. Since L meets C'in finitely many points, the fibre is finite. So the inverse image of S* N U will be a finite
subset of U.

(ii) We work analytically in a neighborhood of py, choosing coordinates so that py = (0,0, 1) and that Ly is
the line {y = 0}. Let (x4, yq, 1) be the coordinates of ¢ = Lo N Ly. Since ¢ is a point of Ly, y, = 0. The
coordinate z, can be obtained by substituting z = x, and y = 0 into the equation (I.6.TT) of L;:

Ty = T —Y1/Y)-

Now, when a function has an nth order zero at the point = 0, i.e, when it has the form y = z"h(z),

where n > 0 and h(0) # 0, the order of zero of its derivative at that point is n— 1. This is verified by

differentiating 2™ h(z). Since the function y(z) has a zero of positive order at pg, lim y;/y; = 0. We also
P1—Po

have lim z; =0.So lim z,=0and lim 9= hm (acq,,yq7 1) =(0,0,1) = po

P1—DPo P1—po P1—DPo
figure
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(iii) Let p; be a point of C' near to pg, and let L; be the tangent line to C' at p;. The image of p; is L] =
(fo(p1), f1(p1), f2(p1)). Because the partial derivatives f; are continuous,

lim L] = (fo(po), f1(po), f2(po)) = Lg

P1—Po

With ¢ = Lo N Ly, ¢* is the line through the points L{ and Lj. As py approaches pg, L] approaches Lg, and
therefore ¢* approaches the tangent line to C* at L§. On the other hand, (ii) tells us that ¢* approaches pj.
Therefore the tangent line at Lg is pj. g

proof of theorem|[I.6.14] Let V' be the set of smooth points of C' whose images in C* are smooth, as in Lemma
Let U™ denote the set of smooth points of C*, and let U* L5 P = P be the map analogous to the
map U —Y5 P*. Recall that ¢ is defined by t(p) = L*. Since the tangent line to C* at L* is p*, the map t* is
t*(L*) = (p*)* = p. So for all points p of V, t*t(p) = ¢t*(L*) = p. It follows that the restriction of ¢ to V'
is injective, and that it defines a bijective map from V to its image ¢V, whose inverse function is t*. So V is
contained in the bidual C**. Since V is dense in C' and C** is a closed set, C' C C**. Since C and C** are
curves, C' = C**, O

1.6.16. Corollary. (i) Let U be the set of smooth points of a plane curve C, and let denote the map from U to
the dual curve C*. The image of U is the complement of a finite subset of C*.

(ii) If C' is smooth, the map C N C*, which is defined at all points of C, is surjective.

proof. (i) Let U and V be as above, and let U* be the set of smoorh points of C*. The image tV of V is
contained in U*. Then V' = t*tV C t*U* C C*x = C. Since V is the complement of a finite subset of C, so
is t*U*. The assertion to be proved follows when we switch C' and C*.

(ii) Let W denote the image of C' in C*. The map C* 7 " = (' is defined at the smooth points of C*, and
it inverts ¢ at those points. Therefore W contains the smooth points of C*. The complement S of W in C* is
a finite set. Since C'is compact, its image W is compact, and therefore closed in C*. Then its complement .S
is open, and since it is a finite set, S is also closed. So S consists of isolated points of C*. Since a plane curve

has no isolated point (1.3.18)), S is empty. O

1.7 Resultants and Discriminants

Let F" and G be monic polynomials in = with variable coefficients:

(1.7.1) Fz)=2"+a2z™ '+ +a, and Gz)=z"+bz" ' 4+...+b,

The resultant Res(F, G) of F' and G is a certain polynomial in the coefficients. Its important property is that,
when the coefficients of are in a field, the resultant is zero if and only if ' and G have a common factor.

As an example, suppose that the coefficients a; and b; in are polynomials in ¢, so that F' and G
become polynomials in two variables. Let C' and D be (possibly reducible) curves F' = 0 and G = 0 in the
affine plane A7 ,, and let S be the set of intersections: S = C N D. The resultant Res(F,G), computed
regarding x as the variable, will be a polynomial in ¢ whose roots are the ¢-coordinates of the set S.

figure

The analogous statement is true when there are more variables. For example, if " and G are polynomials in
2,9,z theloci C : {F =0} and D : {G = 0} in A® will be surfaces, and S = C N D will be a curve. The
resultant Res, (F, G), computed regarding z as the variable, is a polynomial in x,y whose zero locus in the
plane Aiy is the projection of .S to the plane.

The formula for the resultant is nicest when one allows leading coefficients different from 1. We work with
homogeneous polynomials in two variables to prevent the degrees from dropping when a leading coefficient
happens to be zero.
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Let f and g be homogeneous polynomials in z, y with complex coefficients:
(17.2)  flz,y) = ape™ +arz™ Y+ b amy™, g(z,y) = bor" + bty + o 4 buy”

Suppose that they have a common zero (z,y) = (u,v) in P}, . Then vz —uy divides both g and f. The
polynomial h = fg/(vax —uy) of degree m+n —1 will be divisible by f and by g, say h = pf = qg,
where p and g are homogeneous polynomials of degrees n—1 and m —1, respectively. Then & will be a linear
combination pf of the polynomials x*y’ f, with i+j = n—1, and it will also be a linear combination ¢g of the
polynomials 2*y‘g, with k+¢ = m—1. The equation pf = qg tells us that the m+n polynomials of degree
m+n—1,

(1.7.3) " " Py Ly 2™ g, 2 Pyg, e,y T g

will be dependent. For example, suppose that f has degree 3 and g has degree 2. If f and g have a common
zero, the polynomials

zf =  apx? + a1’y + asxy® + asry®

yf = aoxgy + a1x2y2 + a2$y3 + a3:‘/4
22g = boxt + biady + bax?y?

ryg = box?y + bia?y® + boay?

y?g = ba?y? + biay® + byt

will be dependent. Conversely, if the polynomials are dependent, there will be an equation of the form
pf = qg, with p of degree n—1 and q of degree m— 1. Then at least one zero of g must also be a zero of f.

Let r =m-+n—1. The polynomials have degree r. We form a square (r+1) x (r+1) matrix R, the
resultant matrix, whose columns are indexed by the monomials 2", 2" 1y, ..., y" of degree r, and whose rows
list the coefficients of the polynomials (I.7.3). The matrix is illustrated below for the cases m,n = 3,2 and
m,n = 1,2, with dots representing entries that are zero:

ap aip a2 ag

. ag a1 a2 as ap Qi
(174) R = bo bl b2 . . or R= . ap ap
. by by by - bo by by
. by by by

The resultant of f and g is defined to be the determinant of R.

(1.7.5) Res(f,g) = det R

The coefficients of f and g can be in any ring.

The resultant Res(F, G) of the monic, one-variable polynomials F(z) = 2™ +a;2™ ' +---+a,;, and
G(r) = 2" +byz" 1+ -+b, is the determinant of the matrix R, with ag = by = 1.

1.7.6. Corollary. Let f and g be homogeneous polynomials in two variables, or monic polynomials in one
variable, of degrees m and n, respectively, and with coefficients in a field. The resultant Res(f, g) is zero if
and only if f and g have a common factor. If so, there will be polynomials p and q of degrees n—1 and m—1
respectively, such that pf = qg.

If the coefficients are in C, the resultant is zero if and only if f and g have a common root. [l

When the leading coefficients ag and by of f and g are both zero, the point (1,0) of P}cy will be a zero of f
and of g. In this case, one could say that f and g have a common zero at infinity.

(1.7.7)  weighted degree
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When defining the degree of a polynomial, one may assign an integer called a weight to each variable. If
one assigns weight w; to the variable x;, the monomial 27" - - - x5~ gets the weighted degree

etwy + -+ e wy

For instance, it is natural to assign weight k to the coefficient a;, of the polynomial f(x) = 2" — ayz" ! +
asx™ 2 — .. £ a, because, if f factors into linear factors, f(z) = (x — ay) -+ - (x — v, ), then ay, will be the
kth elementary symmetric function in a4, ..., a,,. When written as a polynomial in «, the degree of a; will be
k.

We leave the proof of the next lemma as an exercise.

1.7.8. Lemma. Let f(x,y) and g(x,y) be homogeneous polynomials of degrees m and n respectively, with
variable coefficients a; and b;, as in . When one assigns weight i to a; and to b;, the resultant Res(f, g)
becomes a weighted homogeneous polynomial of degree mn in the variables {a;,b; }. O

1.7.9. Proposition. Let F' and G be products of monic linear polynomials, say F' = ]_L (r — ;) and G =
[I;(x — B;). Then
Res(F,G) = H(ai -85 = HG(ai)
i

(2]

Note. Since the resultant vanishes when a; = (3, it must be divisible by o; — ;. So its weighted degree,
though large, is as small as it could be.

proof. The equality of the second and third terms is obtained by substituting «; for x into the formula G =
[1(z — ;). We prove that the first and second terms are equal.

Let the elements «; and 3; be variables, let R denote the resultant Res(F, G) and let II denote the product
[1; ;(ci — Bj). When we write the coefficients of F" and G as symmetric functions in the roots a; and 3;,
R will be homogeneous. Its (unweighted) degree in «a;, 3; will be mn, the same as the degree of 11 (Lemma
. To show that R = II, we choose ¢, j and divide R by the polynomial o;; — §;, considered as a monic
polynomial in ay;:

R=(a; = Bj)g+m,

where  has degree zero in «;. The resultant R vanishes when we substitute a;; = ;. Looking at this equation,
we see that the remainder r also vanishes when a; = 3;. On the other hand, the remainder is independent of
;. It doesn’t change when we set o; = [3;. Therefore the remainder is zero, and o; — §; divides R. This is
true for all ¢ and all 7, so II divides R, and since these two polynomials have the same degree, R = cII for
some scalar c. To show that ¢ = 1, one computes R and II for some particular polynomials. We suggest using
F=gzx"and G =2" -1 (]

1.7.10. Corollary. Let F', G, H be monic polynomials and let c be a scalar. Then
(i) Res(F,GH) = Res(F,G)Res(F,H), and
(ii) Res(F(z—c),G(x—c)) = Res(F(x), G(x)). O

(1.7.11) the discriminant

The discriminant Discr(F) of a polynomial F' = agx™ + ajz" ! + - - - a,, is the resultant of F" and its
derivative F:

(1.7.12) Discr(F) = Res(F, F")

The computation of the discriminant is made using the formula for the resultant of a polynomial of degree m.
It will be a weighted polynomial of degree m(m—1). The definition makes sense when the leading coefficient
ay is zero, but the discriminant will be zero in that case.

When the coefficients of F' are complex numbers, the discriminant is zero if and only if either F' has a
multiple root, which happens when F' and F’ have a common factor, or else F has degree less than m.
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Note. The formula for the discriminant is often normalized by a factor j:ag. We won’t make this normalization,
so our formula of the discriminant is slightly different from the usual one.

Suppose that the coefficients a; of F' are polynomials in ¢, so that /” becomes a polynomial in two variables.
Let C' be the locus I’ = 0 in the affine plane Afﬁz. The discriminant Discr, (F"), computed regarding x as the
variable, will be a polynomial in ¢. At a root ¢, of the discriminant, the line Ly : {¢ = to} is tangent to, or
passes though a singular point, of C.

The discriminant of the quadratic polynomial F(z) = ax? + bx + ¢ is

a b c
(1.7.13) det |2a b -] = —a(b® — 4ac).
- 2a b

The discriminant of the monic cubic 23 4+ px + ¢ whose quadratic coefficient is zero is

I - p g
. 1 . P q
(1.7.14) det [3 - p - = 4p® + 274
-3 - p -
-3 - p

These are the negatives of the usual formulas. The signs are artifacts of our definition. Though it conflicts with
our definition, we’ll follow tradition and continue writing the discriminant of the polynomial ax? + bx + c as
b? — 4dac.

1.7.15. Proposition. Let K be a field of characteristic zero. The discriminant of an irreducible polynomial F’
with coefficients in K isn’t zero. Therefore an irreducible polynomial F with coefficients in K has no multiple
root.

proof. When F is irreducible, it cannot have a factor in common with the derivative F’, which has lower
degree. (|

This proposition is false when the characteristic of K isn’t zero. In characteristic p, the derivative F’ might be
the zero polynomial.

1.7.16. Proposition. Ler F' = [[(z — ;) be a polynomial that is a product of monic linear factors. Then

Discr(F) = HF/(O@) = H(Oéi — o) = iH(ai - ay)?

ij i<j

proof. The fact that Discr(F) = [ F'(«;) follows from Proposition We show that

F(a;) = ] (ai = ay) = [J(ai = an) -+ (a5 = ) -+ (s = )

537 i
where the hat ~ indicates that that term is deleted. By the product rule for differentiation,

-

Fllz)=> (w—a1)(z—ax) (z— an)
k
Substituting x = «y, all terms in the sum, except the one with ¢ = k, become zero. O
1.7.17. Corollary. Discr(F(x)) = Discr(F(z — ¢)). O

1.7.18. Proposition. Let F'(x) and G(x) be monic polynomials. Then

Discr(FG) = + Discr(F) Discr(G)Res(F, G)?
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proof. This proposition follows from Propositions and[1.7.16]for polynomials with complex coefficients.
It is true for polynomials with coefficients in any ring because it is an identity. ]

When f and g are polynomials in several variables including a variable z, Res.(f,g) and Discr,(f) de-
note the resultant and the discriminant, computed regarding f, g as polynomials in z. They will be polynomials
in the other variables.

1.7.19. Lemma. Let f be an irreducible polynomial in Clx,y, z| of positive degree in z, but not divisible by
z. The discriminant Discr, (f) of f with respect to the variable z is a nonzero polynomial in x,y.

proof. This follows from Lemma |1.3.13|(ii) and Proposition (]

(1.7.20) projection to a line

We denote by 7 the projection P> — P! that drops the last coordinate, sending a point (z,y, z) to (x, ).
This projection is defined at all points of P? except at the center of projection, the point ¢ = (0,0, 1).

The fibre of 7 over a point p = (z¢,yo) of P! is the line L, through p = (¢, y0,0) and ¢ = (0,0, 1),
with the point ¢ omitted — the set of points (xg, yo, 20)-

figure

When a curve C in the plane doesn’t contain the center of projection ¢, the projection P2 —— P! will
be defined at all points of C. Say that such a curve C' is defined by an irreducible homogeneous polynomial
f(x,y, z) of degree d. We write f as a polynomial in z,

(1.7.21) Fecort ez ety

with ¢; homogeneous, of degree 4 in z,y. Then ¢y = f(0,0,1) will be a nonzero constant that we normalize
to 1, so that f becomes a monic polynomial of degree d in z.

The fibre of C over a point p = (z¢,yo) of P! is the intersection of C' with the line L, described above.
It consists of the points (xg, Yo, ) such that « is a root of the one-variable polynomial

(1.7.22) F(z) = f(@o,0,2)

We call C' a branched covering of P of degree d. All but finitely many fibres of C' over P! consist of d points
(Lemma|1.7.19). The fibres with fewer than d points are those above the zeros of the discriminant. They are
the branch points of the covering.

(1.7.23) the genus of a plane curve

We use the discriminant to describe the topological structure of smooth plane curves in the classical topology.
1.7.24. Theorem. A smooth projective plane curve of degree d is a compact, orientable and connected

manifold of dimension two.

The fact that a smooth curve is a two-dimensional manifold follows from the Implicit Function Theorem. (See

the discussion at (T.4.4)).

orientability: A two-dimensional manifold is orientable if one can choose one of its two sides in a continuous,
consistent way. A smooth curve C' is orientable because its tangent space at a point is a one-dimensional
complex vector space — the affine line with the equation (T.4.1T). Multiplication by ¢ orients the tangent space
by defining the counterclockwise rotation. Then the right-hand rule tells us which side of C' is “up”.

compactness: A plane projective curve is compact because it is a closed subset of the compact space P2,

The connectedness of a plane curve is a subtle fact whose proof mixes topology and algebra. Unfortunately,
I don’t know a proof that fits into our discussion here. It will be proved later (see Theorem [8.4.9).
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The topological Euler characteristic e of a compact, orientable two-dimensional manifold M is the al-
ternating sum b° — b' + b2 of its Betti numbers. It can be computed using a topological triangulation, a
subdivision of M into topological triangles, called faces, by the formula

(1.7.25) e = |vertices| — |edges| + |faces|

For example, a sphere is homeomorphic to a tetrahedron, which has four vertices, six edges, and four faces.
Its Euler characteristic is 4 — 6 +4 = 2. Any other topological triangulation of a sphere, such as the one given
by the icosahedron, yields the same Euler characteristic.

Every compact, connected, orientable two-dimensional manifold is homeomorphic to a sphere with a finite
number of “handles”. Its genus is the number of handles. A torus has one handle. Its genus is one. The
projective line P!, which is a two-dimensional sphere, has genus zero.

Figure
The Euler characteristic and the genus are related by the formula
(1.7.26) e=2-—2g
The Euler characteristic of a torus is zero, and the Euler characteristic of P! is two.

To compute the the Euler characteristic of a smooth curve C' of degree d, we analyze a generic projection
to represent C' as a branched covering of the projective line: C' — P,

figure

We choose generic coordinates x,%, z in P? and project form the point ¢ = (0,0,1). When the defining
equation of C' is written as a monic polynomial in z: f = 2% + ¢;297! + .- + ¢4 where ¢; is a homo-
geneous polynomial of degree ¢ in the variables x,y, the discriminant Discr, (f) with respect to z will be a
homogeneous polynomial of degree d(d—1) = d>—d in z, y.

Let p be the image in P! of a point p of C. The covering C' — P* will be branched at 7 when the tangent
line at p is the line L,,, through p and the center of projection g. When ¢ is generic, such a point p will not
be a flex point, and then C' and L,,, will have one intersection p of multiplicity two, and d —2 intersections
of multiplicity one . It is intuitively plausible that the discriminant Discr, (f) will have a simple zero at
the image p of p. This will be proved below, in Proposition Assuming this is known, then since the
discriminant has degree d? — d, there will be d*> —d points p in P! at which the discriminant vanishes and the
fibre contains d—1 points. They are the branch points of the covering. All other fibres consist of d points.

We triangulate the sphere P! in such a way that the branch points are among the vertices, and we use the
inverse images of the vertices, edges, and faces to triangulate C'. Then C will have d faces and d edges lying
over each face and each edge of P!, respectively. There will also be d vertices of C lying over a vertex of P!,
except when it is one of the d? —d branch points. In that case the the fibre will contain only d — 1 vertices.
The Euler characteristic of C' is obtained by multiplying the Euler characteristic of P* by d and subtracting the
number of branch points.

(1.7.27) e(C) = de(P) — (d*—d) = 2d — (d*—d) = 3d — d*
This is the Euler characteristic of any smooth curve of degree d, so we denote it by eg:
(1.7.28) eq =3d—d?

Formula shows that the genus g4 of a smooth curve of degree d is

(1.7.29) 9¢ = $(d@-3d+2)= (")

Thus smooth curves of degrees 1,2,3,4,5,6, ... have genus 0,0, 1, 3, 6, 10, ..., respectively. A smooth plane
curve cannot have genus two.

The generic projection to P! also computes the degree of the dual curve C* of a smooth curve C' of degree
d. The degree of C'* is the number of intersections of C'* with the generic line ¢* in P*. The intersection points
have the form L*, where ¢ is a point of L, and L is tangent to C' at some point p. As we have seen, there are
d(d — 1) such points.
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1.7.30. Corollary. Let C be a plane curve of degree d.

(i) The degree d* of the dual curve C* is equal to the number of tangent lines at smooth points of C' that pass
through a generic point q of the plane.

(ii) If C is a smooth curve, the degree d* of the dual curve C* is d(d — 1). O

The formula d* = d(d — 1) is incorrect when C'is singular. If C' is a smooth curve of degree 3, C* will
have degree 6, and if C* were smooth its dual curve C**, would have degree 30. But C** = C.

1.8 Nodes and Cusps

Let C be the projective curve defined by an irreducible homogeneous polynomial f(x,y, z) of degree d, and
let p be a point of C. We choose coordinates so that p = (0,0, 1), and we set z = 1. This gives us an affine

curve Cy in A2, the zero set of the polynomial f(x,y) = f(z,y,1), and p becomes the origin (0,0). We
write

(1.8.1) Fay)=fot fitfot-+fa

where f; is the homogeneous part of fof degree i, which is also the coefficient of 24~ in f(z,v, 2).
If the origin p is a point of C, the constant term fy will be zero. Then the linear term f; will define the
tangent direction to Cy at p, If fy and f; are both zero, p will be a singular point of C'.

It seems permissible to drop the tilde and the subscript 0 in what follows, denoting f(x,y, 1) by f(z,v),
and Cy by C.

(1.8.2) the multiplicity of a singular point

Let f(x,y) be an analytic function, defined for small z, y, and let C' denote the locus of zeros of f in a
neighborhood of p = (0,0). To describe the singularity of C' at p, we expand f as a series in z, y and look
at the part of f of lowest degree. The smallest integer r such that f,.(x,y) isn’t zero is the mulriplicity of p.
When the multiplicity of p is , f will have the form

(1.8.3) f@y)=frt+ fraat--

Let L be a line {vz = uy} through p. The intersection multiplicity of C and L at p will be r unless f;.(u, v)
is zero. It will be greater than r if f,.(u,v) = 0. Such a line L is special. The special lines correspond to the
zeros of f,. in P!. Because f, has degree r, there will be at most r special lines.

1.8.4.

a Singular Point, with its Special Lines

(1.8.5)  double points
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Suppose that the origin p is a double point, a point of multiplicity 2. Let the quadratic part of f be
(1.8.6) fo = az? + bxy + cy?

We may adjust coordinates so that c isn’t zero, and we normalize c to 1.

To analyze the singularity at the origin p we blow up the plane. The blowup is the map W —— X from the
(z,w)-plane W to the (z,y)-plane X defined by 7(z, w) = (x, zw). It is called a “blowup” of X because the
fibre over the origin in X is the w-axis {x = 0} in W. (It might seem more appropriate to call the inverse of
7 the blowup, but the inverse isn’t a map.) The map 7 is bijective at points at which « # 0, and points (z, 0)
of X with z # 0 aren’t in its image.

Writing f(z,y) = az? + by + y? + daz® + - - -, we make the substitution y = zw and cancel x. This
gives us a polynomial

g(z,w) = f(z,zw)/2* = a+bw +w? +dx+ ---
in which the terms represented by - - - are divisible by x. Let D be the locus {g = 0} in W. The map 7
restricts to a map D —— C. Since 7 is bijective at points at which z # 0, so is 7.

Suppose first that the quadratic polynomial y? + by + a has distinct roots «, 3, so that ax? + bxy + y? =
(y — ax)(y — Bzx) and g(z,w) = (w — a)(w — ) + dx + ---. In this case, the fibre of D over the origin
p in X consists of the two points p; = (0,«) and ps = (0, ). The partial derivative % is nonzero at p;
and ps, so those are smooth points of D. We can solve g(z,w) = 0 for w as analytic functions of x near
zero, say w = u(x) and w = v(z) with ©(0) = « and v(0) = S. The image of w(D) is C, so C has two
analytic branches y = zu(x) and y = xv(x) through the origin with distinct tangent directions « and 3. This
singularity is called a node. A node is the simplest singularity that a curve can have.

When the discriminant b? — 4ac is zero, fo will be a square, and we will have f(z,y) = (y—ax)? +da® +
-+, The blowup substitution y = zw gives g(z,w) = f(z,zw)/2*> = (w — a)? + dx + - - -. Here the fibre
over (z,y) = (0, 0) is the point (z, w) = (0, &), and g, is zero there. However, if d # 0, then g, (0, &) # 0. In
this case, D is smooth at (0, 0), and the equation of C' has the form (y — ax)? = da3 + - - - . The singularity of
C at the origin is called a cusp. The standard cusp is the locus y? = x. All cusps are analytically equivalent
with the standard cusp.

Cusps have an interesting geometry. The intersection of the standard cusp X : {y? = 23} with a small
3-sphere S : {Zx + Yy = € in C? is a trefoil knot .

To explain this, we parametrize X by (z(t),y(t)) = (+3,t2), and we restrict to the unit circle t = €. The
locus of points of X of absolute value v/2 is (x(t),y(t)) = (3, e??). To visualize this locus, we embed
it in the product of the unit z-circle and the unit y-circle, a torus, and we distort that torus, representing it as
the usual torus 7" in R3. Let the circumference of T represent the x-coordinate, and let the loop through the
hole represent y. Then, as 6 runs from 0 to 27, (z(t), y(t)) goes around the circumference twice, and it loops
through the hole three times, as is illustrated below.

figure
1.8.7. Corollary. A double point p of a curve C is a node or a cusp if and only if the blowup of C' is smooth
at the points that lie over p. O

The simplest example of a double point that isn’t a node or cusp is a tacnode, a point at which two smooth
branches of a curve intersect with the same tangent direction.

s

a Node, a Cusp, and a Tacnode (real locus)

1.8.8.
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A note about figures. In algebraic geometry, the dimensions are too big to allow realistic figures. Even with
a plane curve, one is dealing with a locus in the space A2, whose dimension as a real vector space is four. In
some cases, such as in the figures above, depicting the real locus can be helpful, but in most cases, even the
real locus is too big, and one must make do with a schematic diagram. The figure below is an example. My
students have told me that all of my figures look more or less like this:

1.8.9.

A Typical Schematic Figure

1.9 Hensel’s Lemma

The resultant matrix (1.7.4)) arises in a second context that we explain here.
Suppose given a product P = F'G of two polynomials, say

(1.9.1) (coxm+" +epxmtrTl ~—|—cm+n) = (aoxm +az™ 4 —l—am) (box" +biz" 4 +bn)

We call the relations among the coefficients implied by this polynomial equation the product equations. They
are

¢ = ajbo + aj—1b1 + -+ + agb;

for ¢ = 0, ..., m+n. For instance, when m = 3 and n = 2, they are

1.9.2.
co = apbo
c1 = arbg + agby
co = agbg + a1b1 + agbs
c3 = asby + azby + a1bs
Cq = asby + azbs
c5 = azbs

Let J denote the Jacobian matrix of partial derivatives of ¢y, ..., ¢+, With respect to the variables by, ..., by,
and aq, ..., an, treating ag, by and cg as constants. When m,n = 3, 2,

Qo . bo .
) S ay Qo bl bo .
(1.9.3) J= ab& =las a1 b b1 b
( J ak) as ag . b2 bl
as . . b2
1.9.4. Lemma. The Jacobian matrix J is the transpose of the resultant matrix R . (]
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1.9.5. Corollary. Let F' and G be polynomials with complex coefficients. The Jacobian matrix is singular if
and only if, either F' and G have a common root, or ag = by = 0. ]

This corollary has an application to polynomials with analytic coefficients. Let
(1.9.6) P(t,x) = co(t)x? + e (t)z? 1 + - + eq(t)

be a polynomial in 2 whose coefficients ¢; are analytic functions, defined for small values of ¢, and let P =
P(0,z) = ¢oz? + e12¢71 4 -+ - + ¢4 be the evaluation of P at t = 0, so that ¢; = ¢;(0). Suppose given a
factorization P = F' G, where G = bz +b12" ' +- - -+b,, is a polynomial and F = 2™ +a;2™ ' +- - -4a,,
is a monic polynomial, both with complex coefficients. Are there polynomials F(t,z) = 2™ + a;2™ ! +
-+ @y, and G(t, ) = boax™ + byz™ ! + ... + b, with F monic, whose coefficients a; and b; are analytic
functions defined for small ¢, such that P = FG, F(0,z) = F,and G(0,2) = G?

1.9.7. Hensel’s Lemma. With notation as above, suppose that F and G have no common root. Then P
factors, as above.

proof. Since F is supposed to be monic, we set ag(t) = 1. The first product equation tells us that by (t) = co(t).
Corollary[1.9.3]tells us that the Jacobian matrix for the remaining product equations is nonsingular at ¢ = 0, so
according to the Implicit Function Theorem, the product equations have a unique solution in analytic functions
a;(t), b;(t) for small ¢. O

Note that P isn’t assumed to be monic. If ¢y = 0, the degree of P will be less than the degree of P. In that
case, G will have lower degree than G.

figure

1.9.8. Example. Let P = co(t)z? + c1(t)z + ca(t). The product equations for factoring P as a product
FG = (z + a1)(box + by) of linear polynomials, with F' monic, are

co=bg, cr=aibyp+b, co=aib

and the Jacobian matrix is d(c1, ¢a) 1 by
(b1, ap) (al b1>

Suppose that P = P(0,z) factors: cox? + ¢1 4 €2 = (¢ 4 @1)(boz + b1) = F G. The determinant of
the Jacobian matrix at ¢ = 0 is b — @1bp. It is nonzero if and only if the two factors are relatively prime, in
which case P factors too.

On the other hand, the one-variable Jacobian criterion allows us to solve the equation P(¢,z) = 0 for x as

function of ¢ with z(0) = —a;, provided that % = 2¢ox + ¢ isn’t zero at the point (¢,z) = (0,—ay). In
that case, P factors. Substituting ¢y = by and ¢, = @by + b1, shows that —2¢ya; + ¢; = by — aibg. Not
surprisingly, the two conditions for factoring are the same. (I

(1.9.9) general position

In algebraic geometry, the phrases general position and generic indicate an object, such as a point, has no
special *bad’ properties. Typically, the object will be parametrized somehow, and the word generic indicates
that the parameter representing that particular object avoids a proper closed subset of the parameter space that
may be described explicitly or not. Proposition[I.9.13|below refers to a generic point ¢. In this case we require
that ¢ shall not lie on any of these lines:

(1.9.10)
flex tangent lines and bitangent lines,
lines that contain more than one singular point,
special lines through singular points (see (1.8.2)),
tangent lines that contain a singular point of C.
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1.9.11. Lemma. This is a list of finitely many lines that q must avoid.

beginning of the proof. Proposition [I.4.18] shows that there are finitely many flex tangents. Since there are
finitely many singular points, there are finitely many special lines and finitely many lines through pairs of
singular points. To show that there are finitely many tangent lines that pass through singular points, we project
C from a singular point p and apply Lemma The discriminant isn’t identically zero, so it vanishes
finitely often. The proof that there are finitely many bitangents will be given later, in Corollary [T.T0.15]

(1.9.12)  order of vanishing of the discriminant

Let f(x,y, z) be a homogeneous polynomial with no multiple factors, and let C be the (possibly reducible)
plane curve {f = 0}. Suppose that ¢ = (0,0, 1) is in general position, in the sense described above.

1.9.13. Propeosition. (i) If p is a smooth point of C with tangent line Ly, the discriminant Discr,(f) has a
simple zero at p.

(ii) If p is a node of C, Discr. (f) has a double zero at p.

(iii) If p is a cusp, Discr, (f) has a triple zero at p.

(iv) If p is a an ordinary flex point of C ) with tangent line L,q, Discr,(f) has a double zero at p.

proof. (i)—(iii) There are several ways to proceed, none especially simple. We’ll use Hensel’s Lemma. We set
z = 1, to work in the standard affine open set U with coordinates y, z. In affine coordinates, the projection 7
is the map (y, z) — y. We may suppose that p is the origin in U. Its image p will be the point y = 0 of the
affine y-line, and the intersection of the line L, with U will be the line L: {y = 0}. We’ll denote the defining
polynomial of the curve C, restricted to U, by f(y, z) instead of f(1,y, ). Let f(z) = f(0, 2).

In each of the cases under discussion, the polynomial f(z) = f(0,2) will have a double zero at z = 0,
so we will have f(z) = 22h(z), with h(0) # 0. Then 22 and h(z) have no common root, so we may apply
Hensel’s Lemma to write f(y, z) = g(y, 2)h(y, z), where g and h are polynomials in z whose coefficients are
analytic functions of y, defined for small y, g is monic, ¢(0, z) = 22 and h(0,z) = h. Then

(1.9.14) Discr, (f) = + Discr, (g) Discr, (h) Res. (g, h)?

Since ¢ is in general position, i will have simple zeros. Then Discr, (h) doesn’t vanish at y = 0. Neither does
Res, (g, h). So the orders of vanishing of Discr,(f) and Discr, (g) are equal. We replace f by g.
Since g is a monic quadratic polynomial, it will have the form

9(y, z) = 22 + b(y)z + c(y)

The coefficients b and c are analytic functions of y, and g(0, z) = z2. The discriminant Discr, (g) = b — 4c
is unchanged when we complete the square by the substitution of z — %b for z, and if p is a node or a cusp,
that property isn’t affected by this change of coordinates (Lemma ??). So we may assume that g has the form
22 + ¢(y). The discriminant is D = 4c(y).

We write c(y) as a series in y:
cly) =co+c1y+cay® +esy’ + -

The constant coefficient ¢y is zero because p is a point of C'. If ¢; # 0, p is a smooth point with tangent line
L : {y =0}, and D has a simple zero. If pis a node, co = ¢; = 0 and co # 0. Then D has a double zero. If p
isacusp, cg = ¢; = ¢co =0, and ¢3 # 0. Then D has a triple zero at p.

(iv) In this case, the polynomial f(z) = f(0, z) will have a triple zero at z = 0. Proceding as above, we may
factor: f = gh where g and h are polynomials in z with analyic coefficients in y, and g(y, z) = 2 +a(y)z? +
b(y)z + c(y). We eliminate the quadratic coefficient a by substituting z — 5~ for z. With g = 2® + az + b, the
discriminant Discr, (g) is 4b® + 27¢? (1.7.14). We write ¢(y) = co + c1y + -+ and b(y) = bg + bry + - - -.
Since p is a point of C' with tangent line {y =0}, co = 0 and ¢; # 0. Since the intersection multiplicity of C'

with the line {y =0} at p is three, by = 0. The discriminant has a zero of order two. O
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1.9.15. Corollary. Let C : {g = 0} and D : {h = 0} be plane curves that intersect transversally at a point
p = (20, Yo, 20). With coordinates in general position, Res. (g, h) has a simple zero at (g, yo).

Two curves are said to intersect transversally at a point p if they are smooth at p and their tangent lines there
are distinct.

proof. Proposition (ii) applies to the product fg, whose zero locus is the union C' U D. It shows that
the discriminant Discr,(fg) has a double zero at p. We also have the formula with f = gh. Since
coordinates are in general position, Discr,(g) and Discr,(h) will not be zero at p. Then Res,(g,h) has a
simple zero there. (|

1.10 Bézout’s Theorem

Bézout’s Theorem counts intersections of plane curves. We state it here in a form that is ambiguous because it
contains a term “multiplicity” that hasn’t yet been defined.

1.10.1. Bézout’s Theorem. Let C' and D be distinct curves of degrees m and n, respectively. When inter-
sections are counted with the appropriate multiplicity, the number of intersections is equal to mn. Moreover,
the multiplicity at a point is 1 at a transversal intersection.

As before, C' and D intersect transversally at p if they are smooth at p and their tangent lines there are distinct.

1.10.2. Corollary. Bézout’s Theorem is true when one of the curves is a line.

See Corollary[I.3.9] The multiplicity of intersection of a curve and a line is the one that was defined there. [J

The proof in the general case requires some algebra that we would rather defer. It will be given later
(Theorem[7.9.T)). It is possible to determine the intersections by counting the zeros of the resultant with respect
to one of the variables. To do this, one chooses generic coordinates x, y, z, Then neither C nor D contains the
point (0,0, 1). One writes their defining polynomials f and g as polynomials in z with coefficients in Clz, y].
The resultant R with respect to z will be a homogeneous polynomial in z, y, of degree mn. It will have mn
zeros in P}, . counted with multiplicity. If p = (xo, yo) is a zero of R, f (o, yo, 2) and g(zo, Yo, z), which are
polynomials in z, have a common root z = zg, and then p = (xg, Yo, 20) Will be a point of CND. Itis a fact that
the multiplicity of the zero of the resultant R at the image p is the (as yet undefined) intersection multiplicity
of C and D at p. Unfortunately, this won’t be obvious, even when multiplicity is defined. However, one can

prove the next proposition using this approach.

1.10.3. Proposition. Let C and D be distinct plane curves of degrees m and n, respectively.

(i) The curves C' and D have at least one point of intersection, and the number of intersections is at most
mmn.

(ii) If all intersections are transversal, the number of intersections is precisely mn.

It isn’t obvious that two curves in the projective plane intersect. If two curves in the affine plane have no
intersection, if they are parallel lines, for instance, their closures in the projective plane meet on the line at
infinity.

1.10.4. Lemma. Let f and g be homogeneous polynomials in x,y, z of degrees m and n, respectively, and
suppose that the point (0,0, 1) isn’t a zero of f or g. If the resultant Res, (f, g) with respect to z is identically
zero, then f and g have a common factor.

proof. Let the degrees of f and g be m and n, respectively, and let F' denote the field of rational functions
C(z,y). If the resultant is zero, f and g have a common factor in F[z] (Corollary [1.7.6). There will be
polynomials p and ¢ in F'[z], of degrees at most n—1 and m—1 in z, respectively, such that pf = qg .
We may clear denominators, so we may assume that the coefficients of p and ¢ are in C[z, y]. Then pf = qg
is an equation in C[x, y, z]. Since p has degree at most n—1 in z, it isn’t divisible by g, which has degree n in
z. Since C[z, y, z] is a unique factorization domain, f and g have a common factor. (|

proof of Proposition[1.10.3] (i) Let f and g be irreducible polynomials whose zero sets C' and D, are distinct.
Proposition|1.3.11|{shows that there are finitely many intersections. We project to P! from a point g that doesn’t
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lie on any of the finitely many lines through pairs of intersection points. Then a line through g passes through
at most one intersection, and the zeros of the resultant Res,(f, g) that correspond to the intersection points
will be distinct. Since the resultant has degree mn , it has at least one zero, and at most mn of them.
Therefore C' and D have at least one and at most mn intersections.

(ii) Every zero of the resultant will be the image of an intersection of C' and D. To show that there are mn
intersections if all intersections are transversal, it suffices to show that the resultant has simple zeros. This is

Corollary[1.9.T3] O

1.10.5. Corollary. If the curve X defined by a homogeneous polynomial f(x,y, z) is smooth, then f is
irreducible, and therefore X is a smooth curve.

proof.  Suppose that f = gh, and let p be a point of intersection of the loci {g = 0} and {h = 0}. The
previous proposition shows that such a point exists. All partial derivatives of f vanish at p, so p is a singular
point of X. (]

1.10.6. Corollary. (i) Let d be an integer > 3. A smooth plane curve of degree d has at least one flex point,
and the number of flex points is at most 3d(d—2).

(ii) If all flex points are ordinary, the number of flex points is equal to 3d(d—2).

Thus smooth curves of degrees 2, 3,4, 5, ... have at most 0,9, 24,45, ... flex points, respectively.

proof. (i) The flex points are intersections of a smooth curve C' with its Hessian divisor D : {det H = 0}.
(The definition of divisor is given in (1.3.12}) Let C' : {f(xo,21,22) = 0} be a smooth curve of degree d.

2
The entries of the 3 x 3 Hessian matrix [ are the second partial derivatives a;?v afa: -. They are homogeneous
10T

polynomials of degree d—2, so the Hessian determinant is homogeneous, of degree 3(d —2). Propositions

1.4.18|and|1.10.3|tell us that there are at most 3d(d—2) intersections.

(ii) Recall that a flex point is ordinary if the multiplicity of intersection of the curve and its tangent line is 3.
Bézout’s Theorem asserts that the number of flex points is equal to 3d(d—2) if the intersections of C' with its
Hessian divisor D are transversal, and therefore have multiplicity 1. So the next lemma completes the proof.

1.10.7. Lemma. A curve C : {f = 0} intersects its Hessian divisor D transversally at a point p if and only
p is an ordinary flex point of C.

proof. We prove this by computation. There may be a conceptual proof, but I don’t know one.

Let L be the tangent line to C' at the flex point p, and let i denote the restriction of the Hessian determinant
to L. The Hessian divisor D will be transversal to C' at p if and only if it is transversal to L, and this will be
true if and only if the order of vanishing of h at p is 1.

We adjust coordinates x, y, z so that p = (0,0, 1) and L is the line {y = 0}, and we write the polynomial
f of degree d as

(1.10.8) flay,z) = Y aia'y’ 2",
itj+k=d
We set y = 0 and z = 1, to restrict f to L. The restricted polynomial is
f(z,0,1) = Z aiox’
i<d

Since p is a flex point with tangent line L, the coefficients agg, a19, and asg are zero, and p is an ordinary
flex point if and only if the coefficient a3 is nonzero.

Let h be the restiction of det H to L: h = det H(x,0,1). We must show that p is an ordinary flex point
if and only if h has a simple zero at x = 0.

To evaluate the restriction f,.(x,0, 1) of the partial derivative to L, the relevant terms in the sum (1.10.8))
have j = 0. Since agg = a19 =0,

frx(2,0,1) = 6aszp + 12a402% + - - - = 6azozx + O(2)

Similarly,
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fuz(2,0,1) =0+ O(2)
f2z(2,0,1) =04 O(2)

For the restriction of f, ., the relevant terms are those with j = 1:
fyZ(x7 0,1) = (d—1)ao1 + (d—2)an1z + O(2)

We don’t need fy, or fy,.
Let v = 6azpx and w = (d—1)ag; + (d—2)a;1x. The restricted Hessian matrix has the form

(1.10.9) H(z,0,1) = + 0(2)

o % <
S % x
o8 o

where * are entries that don’t affect terms of degree at most one in the determinant. The determinant is
h = —vw? +0(2) = —6(d — 1)%azpad, z + O(2)

It has a zero of order 1 at x = 0 if and only if agg and ag; aren’t zero. Since C' is smooth at p and a9 = 0,
the coefficient ag; isn’t zero. Thus the curve C and its Hessian divisor D intersect transversally, and C' and L
intersect with multiplicity 3, if and only if a3 is nonzero, which is true if and only if p is an ordinary flex. UJ

1.10.10. Corollary. A smooth cubic curve contains exactly 9 flex points.

proof. Let f be the irreducible cubic polynomial whose zero locus is a smooth cubic C. The degree of the
Hessian divisor D is also 3, so Bézout predicts at most 9 intersections of D with C'. To derive the corollary, we
show that C intersects D transversally. According to Proposition a nontransversal intersection would
correspond to a point at which the curve and its tangent line intersect with multiplicity greater than 3. This is
impossible when the curve is a cubic. ]

(1.10.11) singularities of the dual curve

Let C be a plane curve. As before, an ordinary flex point is a smooth point p such that the intersection
multiplicity of the curve and its tangent line L at p is precisely 3. A bitangent to C'is a line L that is tangent to
C at distinct smooth points p and ¢, and an ordinary bitangent is one such that neither p nor ¢ is a flex point.
A tangent line L at a smooth point p of C is an ordinary tangent if it isn’t a flex point or a bitangent.

The line L will have other intersections with C. Most often, these other intersections will be transversal.
However, it may happen that L is tangent to C' at such a point, or that it is a singular point of C. Let’s call such
occurences accidents.

1.10.12. Proposition. Let p be a smooth point of a curve C, and let L be the tangent line at p. Suppose that
there are no accidents.

(i) If L is an ordinary tangent at p, then L* is a smooth point of C*.
(i) If L is an ordinary bitangent, then L* is a node of C*.
(iii) If p is an ordinary flex point, then L* is a cusp of C"*.

proof. We refer to the map U Ly o from the set of smooth points of C' to the dual curve. We set
z = 1 and choose affine coordinates so that p is the origin, and the tangent line L at p is the line {y = 0}.
Let f(m, y) = f(z,y,1). We solve f=0fory = y(x) as analytic function of x near zero, as before. The
tangent line L; to C' at a nearby point p; = (z,y) has the equation (L.6.11), and L} is the point (u, v, w) =
(=y', 1,9’z — y) of P* . Since there are no accidents, this path traces out all points of C* near to L*.

If L is an ordinary tangent line, y () will have a zero of order 2 at x = 0. Then v = —y’ will have a simple
zero. So the path (—y’, 1,4’z — y) is smooth at z = 0, and therefore C*, is smooth at the origin.

If L is an ordinary bitangent, tangent to C' at two points p and p’, the reasoning given for an ordinary
tangent shows that the images in C* of small neighborhoods of p and p’ in C will be smooth at L*. Their
tangent lines p* and p’* will be distinct, so p is a node.
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The case that p is an ordinary flex point of C is trickier. Most probably, we won’t know the defining
equation f = 0 of C. We write the analytic function y(z) that solves f(z,y) = 0 as a power series. Since p is

a flex point, the coefficients of z* are zero when i < 3: y(z) = cz® + - - -. Since the flex is ordinary, we may
assume that ¢ = 1. In the local equation (u,v,w) = (=, 1,y’x — y) for the dual curve, u = —32% + - - - and
w = 223 + - - . The locus

(1.10.13) (u’ UJ) = (—y/7y/x — y) = (_33;2 + . ’2:(;3 + .. )

contains the points of C* near to L*.

Let X and U denote the x-line and the u-line, respectively. We substitute (1.10.13) for v and v: u =
—3x2 +--- and w = 223 + - - -. This gives us a diagram of maps

C%U

I

cr U
that are defined in small neighborhoods of the origins in the three spaces. The map ¢ is locally bijective, and
since the leading term of u(z) is 3z2, b has degree 2. Therefore c also has degree 2. This implies that the
origin in C* is a point of multiplicity 2, a double point.
Let g(u, w) = >, giju'w’ be the irreducible polynomial equation for C*. Substituting for u and w, the
series in x that we obtain evaluates to zero for all small x, and this implies that it is the zero series. The orders
of vanishing of the monomials u%w’ as functions of z are as follows:

1w w v ww w? ud® Pw vww? wd -

(1.10.14)
0234 5 6 6 7 8 9

Looking at these orders of vanishing, one sees that the coefficients goo, g10, go1, g20 and g11 in the series
g=> gijuiwj must be zero, and that ggo + gso = 0. Since the origin is a double point of C*, ggs # 0, and
therefore g39 # 0. The origin of C* is a cusp. O

figure

1.10.15. Corollary. A plane curve has finitely many bitangents.

This corollary is true whether or not the bitangents are ordinary. It follows from the fact that the dual curve
C* has finitely many singular points (1.4.7). If L is a bitangent, ordinary or not, L* will be a singular point of
C*. O

1.11 The Pliicker Formulas

A plane curve C is ordinary if it is smooth, if all of its bitangents and flex points are ordinary (see (I.10.11)),
and if there are no accidents. The Pliicker formulas compute the number of flexes and bitangents of an ordinary
plane curve.

For the next theorem, we refer back to the notation of Section[@} With coordinates in general position, let
7 : C'— X be the projection of a plane curve C' to the projective line X from g = (0,0, 1). If p = (z0, yo) is
a point of X, we denote by L; the line in P? such that the fibre of 7 over p is the complement of ¢ in L.

The covering 7 will be branched at the points p = (¢, yo) of X such that L; is the tangent line at some
point of C, or contains a singular point of C.

1.11.1. Theorem: Pliicker Formulas. Let C' be an ordinary curve of degree d at least two, and let C* be its
dual curve. Let f and b denote the numbers of flex points and bitangents of C, and let f*, §* and k* denote
the degree, the numbers of nodes, and the number of cusps of C*, respectively. Then:

(i) The dual curve C* has no flexes or bitangents. Its singularities are nodes and cusps.

(i) d*=d>—2 f=r"=3d(d—2), and b=5" = Ld(d—2)(d>-9).
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proof. (i) A bitangent or a flex on C* would produce a singularity on the bidual C**, which is the smooth
curve C'.

(ii) The degree d* was computed in Corollary|1.7.30] Bézout’s Theorem counts the flex points (see (1.10.6)).
The facts that k* = f and §* = b are dealt with in Proposition|1.10.12} Thus x* = f = 3d(d — 2).

We project C* to P! from a generic point s of P*. The number of branch points that correspond to tangent
lines through s at smooth points of C* is the degree of C** = C' (1.7.30), which is d.

Next, let F' be the defining polynomial for C*. The discriminant Discr, (F) has degree d*? — d*. Proposi-
tion|1.9.13|describes the order of vanishing of the discriminant at the images of the d tangent lines through s,
the 6 nodes of C*, and the x cusps of C*. It tells us that

d? —d* = d+ 26" + 3K*
Substituting the known values d* = d? —d, and k* = 3d(d — 2) into this formula gives us
(d*> —d)* = (d* —d) =d+26" +9d(d —2) or 26" =d*—2d*—9d*>+ 18d O

Note. It isn’t easy to count the number of bitangents directly.

1.11.2. Examples.

(i) All curves of degree 2 and all smooth curves of degree 3 are ordinary.

(ii) A curve of degree 2 has no flexes and no bitangents. Its dual curve has degree 2.

(iili) A smooth curve of degree 3 has 9 flexes and no bitangents. Its dual curve has degree 6.

(iv) An ordinary curve C of degree 4 has 24 flexes and 28 bitangents. Its dual curve has degree 12. (]

We will make use of the fact that a quartic curve has 28 bitangents in Chapter ?? (see (4.9.15)). The Pliicker
Formulas are rarely used for curves of degree greater than four.

1.11.3. Example. The dual of a cubic curve C with a cusp was computed in (I.6.8]). Let’s do this again, using
what we have learned. When we project to P! from a generic point, the discriminant will have degree 6. I will
have a triple zero at the image of the cusp, and three simple zeros. Therefore the dual curve C* has degree 3.
Since C' has genus zero, so does C*. Since C has degree 3, there are no bitangents, and therefore C* has no
nodes. So C* is another cuspidal cubic. (|
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Chapter 2 AFFINE ALGEBRAIC GEOMETRY

2.1 Rings and Modules

2] The Zariski Topology

Some Affine Varieties

The Nullstellensatz

The Spectrum

Localization

Morphisms of Affine Varieties

HE B E B
o0l [

Finite Group Actions

We study varieties of arbitrary dimension in the next chapters. We will use some of the basic terminology
that was introduced in Chapter [I] including the concepts of discriminant and transcendence degree, but most
of the results of Chapter[I]won’t be used again until Chapter 8]

We begin by reviewing some basic facts about rings and modules, omitting proofs. Please look up infor-
mation on the concepts that aren’t familiar, as needed.

2.1 Rings and Modules

By the word ‘ring’, we mean ’commutative ring’, ab = ba, unless when the contrary is stated explicitly. A
domain is a ring that has no zero divisors and isn’t the zero ring, An algebra is a ring that contains the field C
of complex numbers as subring.

A setof elements o = {«v, ..., v, } generates gnerates an algebra A if every element of A can be expressed
(usually not uniquely) as a polynomial in «y, ..., a,, with complex coefficients. Another way to state this is
that o generates A if the homomorphism C[z1, ..., 2,,] — A that evaluates a polynomial at « is surjective. If
« generates A, then A will be isomorphic to the quotient C[z]/T of the polynomial algebra C[z], where T is
the kernel of 7. A finite-type algebra is one that can be generated by a finite set of elements.

If I and J are ideals of a ring R, the product ideal, which is denoted by I.J, is the ideal whose elements
are finite sums of products > a;b;, with a; € I and b; € J. (This is not the product set, whose elements are
the products ab, with a € I and b € .J.) The power I* of I is the product of k copies of I, the ideal spanned
by products of k£ elements of I. The intersection I N J is also an ideal, and

(2.1.1) (INnJ)Y? cIJclInJ

Anideal M of aring R is maximal if it isn’t the unit ideal R, and if there is no ideal I such that M < I < R.
This is true if and only if the quotient ring R/M is a field.

An ideal P of aring R is a prime ideal if the quotient R/ P is a domain. A maximal ideal is a prime ideal.

2.1.2. Lemma. Let P be anideal of a ring R that isn’t the unit ideal. The following conditions are equivalent.
(i) P is a prime ideal.

(ii) If a and b are elements of R and if ab € P, thena € P orb € P.

(iii) If A and B are ideals of R, and if the product ideal AB is contained in P, then A C P or B C P. (]

It is sometimes convenient to state (iii) this way:

(iii”) If A and B are ideals that contain P, and if the product ideal AB is contained in P, then A = P or
B=P.
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2.1.3. Mapping Property of Quotient Rings. Ler R and S be rings, let K be an ideal of R, and let R —
R denote the canonical map from R to the quotient ring R = R/K. Homomorphisms R “5 8 correspond
bijectively to homomorphisms R —2 S whose kernels contain K, the correspondence being ¢ = p o T:

R -2 8

A

R—%55
If ker o =1, then ker p = I /K. d

(2.14) commutative diagrams

In the diagram displayed above, the maps @7 and ¢ from R to S are equal. This is referred to by saying
that the diagram is commutative. A commutative diagram is one in which every map that can be obtained by
composing its arrows depends only on the domain and range of the map. In these notes, all diagrams of maps
are commutative. We won’t mention commutativity most of the time. O

2.1.5. Correspondence Theorem.

() Let R 25 Sbea surjective ring homomorphism with kernel K. For instance, p might be the canonical
map from R to the quotient algebra R/ K. There is a bijective correspondence

{ideals of R that contain K} <— {ideals of S}

This correspondence associates an ideal I of R that contains K with its image (1) in S and it associates an
ideal J of S with its inverse image ¢~ *(J) in R.

If an ideal I of R that contains K corresponds to an ideal J of S, then ¢ induces an isomorphism of
quotient rings R/I — S/J. If one of the ideals, I or J, is prime or maximal, they both are.

(i) Let R be a ring, and let M —~“s Nbea surjective homomorphism of R-modules with kernel L. There is a
bijective correspondence

{submodules of M that contain L} <— {submodules of N}

This correspondence associates a submodule S of M that contains L with its image ¢(S) in N and it associates
a submodule T of N with its inverse image o~ (T) in M. O

2.1.6. Chinese Remainder Theorem. Let I1, ..., I, be comaximal ideals of a ring R.

(i) The product ideal 1, - - - Iy, is equal to the intersection Iy N --- N I.

(ii) The map R — R/I; X - --x R/I} that sends an element a of R to its vector of residues is a surjective
homomorphism whose kernel is Iy N --- NI, (=11 Ix).

(iii) Let M be an R-module. The canonical homomorphism M — M /Iy M x---x M /I;; M is surjective. [

Ideals I, ..., I}, of aring R are said to be comaximal if the sum of any two of them is the unit ideal.

2.1.7. Proposition. Let R be a product of rings, R = Ry X - X Ry, let I be an ideal of R, and let R=R/I
be the quotient ring. There are ideals I; of Rj such that I = Iy x---x I, and R = Ri/Ii %+ xRy /L. O

(2.1.8)  Noetherian rings

A finite module M over a ring R is a module that is spanned, or generated, by a finite set {my, ..., my} of
elements. To say that the set generates means that every element of M can be obtained as a combination
rymi + - -+ + rpmy, with coefficients r; in R, or that the homomorphism from the free R-module RFto M
that sends a vector (71, ...,r%) to the combination rymq + - - + rgmy, is surjective. An ideal of a ring R is
finitely generated if, when regarded as an R-module, it is a finite module.

Aring R is noetherian if all of its ideals are finitely generated. The ring Z of integers is noetherian. Fields
are notherian. If [ is an ideal of a noetherian ring R, the quotient ring R/I is noetherian.
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2.1.9. Hilbert Basis Theorem. If R is a noetherian ring, the ring R[x1, ..., x,,] of polynomials with coefficients
in R is noetherian. ]

Thus Z[x1, ..., 2,] and F|x,, ..., z,], F a field, are noetherian rings.

2.1.10. Corollary. Every finite-type algebra is noetherian. O

Note. It is important not to confuse the concept of a finite-type algebra with that of a finite module. A finite
R-module M is a module in which every element can be written as a (linear) combination rym1 + - - - +rgmg
of some finite set {my, ..., my } of elements of M, with coefficients in R. A finite-type algebra A is an algebra
in which every element can be written as a polynomial f(ay, ..., ay) in some finite set of elements {«, ..., a }
of A, with complex coefficients.

(2.1.11) the ascending chain condition

The condition that a ring R be noetherian can be rewritten in several ways that we review here.

Our convention is that if X’ and X are sets, the notation X’ C X means that X' is a subset of X, while
X’ < X means that X’ is a subset that is different from X. A proper subset X' of a set X is a nonempty
subset different from X — a set such that ) < X’ < X.

A sequence X7, Xo, ..., finite or infinite, of subsets of a set Z forms an increasing chain if X,, C X, 1
for all n, equality X,, = X, being permitted. If X,, < X, for all n, the chain is strictly increasing.

Let S be a set whose elements are subsets of a set Z. A member M of S is a maximal member if there is no
member M’ of S such that M < M’. For example, the set of proper subsets of a set of five elements contains
five maximal members, the subsets of order four. The set of finite subsets of the set of integers contains no
maximal member.

A maximal ideal of a ring R is a maximal member of the set of ideals of R different from the unit ideal.

2.1.12. Proposition. The following conditions on a ring R are equivalent:
(i) R is noetherian: Every ideal of R is finitely generated.
(ii) The ascending chain condition: Every strictly increasing chain 11 < Iy < --- of ideals of R is finite.

(iii) Every nonempty set of ideals of R contains a maximal member. O

The next corollary follows from the ascending chain condition, but the conclusions are true whether or not
R is noetherian.

2.1.13. Corollary. Let R be a noetherian ring.

(i) If R isn’t the zero ring, every ideal of R except the unit ideal is contained in a maximal ideal.

(i) A nonzero ring R contains at least one maximal ideal.

(iii) An element of a ring R that isn’t in any maximal ideal is a unit — an invertible element of R. t
2.1.14. Corollary. Let s1,...,S; be elements that generate the unit ideal of a noetherian ring R. For any
positive integer n, the powers s, ..., sp. generate the unit ideal. (I
2.1.15. Proposition. Let R be a noetherian ring, and let M be a finite R-module.

(i) Every submodule of M is a finite module.

(ii) The set of submodules of M satisfies the ascending chain condition.

(iii) Every nonempty set of submodules of M contains a maximal member. U

This concludes our review of rings and modules.

2.2 The Zariski Topology

As before, the affine space A™ is the space of n-tuples (ay, ..., a,) of complex numbers. Algebraic geome-
try studies polynomial equations in terms of their solutions in affine space. If fi, ..., fx are polynomials in
Z1,..., Ty, the set of points of A™ that solve the system of equations

2.2.1) f1=0,...., fu=0
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is a Zariski closed subset of A™. A Zariski open subset U is a subset whose complement, the set of points not
in U, is Zariski closed.

When it seems unlikely to cause confusion, we may abbreviate the notation for an indexed set, using a
single letter. The polynomial algebra C|x, ..., 2,,] may be denoted by C|x], and the system of equations
by f = 0. The locus of solutions of the equations f = 0 may be denoted by V' (f1, ..., fx) or by V(f).
Its points are called the zeros of the polynomials f.

We use analogous notation for infinite sets. If F is any set of polynomials, V' (F) denotes the set of points
of affine space at which all elements of F are zero. In particular, if I is an ideal of the polynomial ring, V' (I)
denotes the set of points at which all elements of I vanish.

The ideal I of C[x] that is generated by the polynomials f1, ..., fi is the set of combinations 1 f1 +- - -+ 7 f
with polynomial coefficients r;. Some notations for this ideal are (f1, ..., fx) and (f). All elements of I vanish
on the zero set V(f), so V(f) = V(I). The Zariski closed subsets of A™ are the sets V' (I), where I is an
ideal.

We note a few simple relations among ideals and their zero sets here. To begin with, we note that an ideal
I isn’t determined by its zero locus V (I). For any k > 0, the power f* has the same zeros as f.

The radical of an ideal I of a ring R, which will be denoted by rad I, is the set of elements o of R such
that some power o is in .

(2.2.2) radI = {a € R|a" € I for some r > 0}

The radical of [ is an ideal that contains /. An ideal that is equal to its radical is a radical ideal. A prime ideal
is a radical ideal.

The radical describes the ideals that define the same closed set.

2.2.3. Lemma. If I is an ideal of the polynomial ring Clz), then V(I) = V (rad I). O

Consequently, if I and J are ideals and if rad I = rad J, then V(I) = V(J). The converse of this statement
is also true: If V(I) = V(J), then rad I = rad J. This is a consequence of the Strong Nullstellensatz that
will be proved later in this chapter. (See ([2.4.9).)

Because (INJ)2 CcIJCINJ,
(2.2.4) rad(1.J) = rad(I N J)

and rad(I N J) = (rad I) N (rad J).

2.2.5. Lemma. Let I and J be ideals of the polynomial ring C[z].

@) IfI C J, thenV(I) DV(J).

i) V (I*) = V(I).

@) VInJ)=vV{IJ)=V({I)uV(J).

(iv) If I, are ideals, then V (>_ 1) = V(1)

proof. (iii) V(I N J) = V(IJ) because the two ideals have the same radical, and because I and J contain I.J,
V(IJ) > V({I)UV(J). To prove that V(IJ) C V(I) UV (J), we note that V(I.J) is the locus of common
zeros of the products fg with f in I and g in J. Suppose that a point p is a common zero: f(p)g(p) = 0 for
all fin 7 andall gin J. If f(p) # 0 for some f in I, we must have g(p) = 0 for every g in J, and then p is a
point of V/(J). If f(p) = 0 for all f in I, then p is a point of V'(I). In either case, p is a point of V(I) UV (J).
([l

Zariski closed sets are the closed sets in the Zariski topology on A™. This topology is very useful in
algebraic geometry, though it is very different from the classical topology.

To verify that the Zariski closed sets are the closed sets of a topology, one must show that

« the empty set and the whole space are Zariski closed,
« the intersection () C,, of an arbitrary family of Zariski closed sets is Zariski closed, and
« the union C'U D of two Zariski closed sets is Zariski closed.

The empty set and the whole space are the zero sets of the elements 1 and 0, respectively. The other conditions
follow from Lemma[2.2.3] O
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2.2.6. Example. The proper Zariski closed subsets of the affine line, or of a plane affine curve, are finite sets.
The proper Zariski closed subsets of the affine plane A? are finite unions of points and curves. Let’s omit the
proofs of these facts. The corresponding facts for loci in the projective line and the projective plane have been

noted before (see (1.3.4) and (1.3.14)). O
figure

(Caption: A Zariski closed subset of the affine plane (real locus).)

A subset .S of a topological space X becomes a topological space with its induced topology. The closed
(or open) subsets of .S in the induced topology are intersections S MY, where Y is closed (or open) in X.

The induced topology on a subset S of A™ will be called its Zariski topology too. A subset of S is closed
in the Zariski topology if it has the form S MY for some Zariski closed subset Y of A™. If S itself is a Zariski
closed subset of A™, a closed subset of .S will be a closed subset of A™ that is contained in S.

Affine space also has a classical topology. A subset U of A™ is open in the classical topology if, whenever
apoint pis in U, all points sufficently near to p are in U. Since polynomial functions are continuous, their zero
sets are closed in the classical topology. Therefore Zariski closed sets are closed in the classical topology too.

When two topologies 7" and T” on a set X are given, 7" is said to be coarser than T if it contains fewer
closed sets or fewer open sets, and finer than 7' if it contains more closed sets or more open sets. The Zariski
topology is coarser than the classical topology. As the next proposition shows, it is much coarser.

2.2.7. Proposition. Every nonempty Zariski open subset of A" is dense and path connected in the classical
topology.

proof. The (complex) line L through distinct points p and g of A” is a Zariski closed set whose points can be
written as p + (¢ — p), with ¢ in C. It corresponds bijectively to the one-dimensional affine t-space A!, and
the Zariski closed subsets of L correspond to Zariski closed subsets of A!. They are the finite subsets of L,
and L itself.

Let U be a nonempty Zariski open set, and let C be its Zariski closed complement. To show that U is dense
in the classical topology, we choose distinct points p and g of A™, with p in U. If L is the line through p and
g, C N L will be a Zariski closed subset of L that doesn’t contain p, a finite set. In the classical topology, the
closure of the complement of this finite set, which is U N L, will be the whole line L. Therefore the closure of
U contains ¢, and since q was arbitrary, the closure of U is A™.

Next, let L be the line through two points p and g of U. As before, C'N L will be a finite set. In the classical
topology, L is a complex plane. The points p and ¢ can be joined by a path in L that avoids a finite set. (]

Though we will refer to the classical topology from time to time, the Zariski topology will appear more
often. For this reason, we will refer to a Zariski closed subset simply as a closed set. Similarly, by an open set
we mean a Zariski open set. We will mention the adjective “Zariski” only for emphasis.

(2.2.8) irreducible closed sets

The fact that the polynomial algebra is a noetherian ring has important consequences for the Zariski topol-
ogy that we discuss here.

A topological space X satisfies the descending chain condition on closed subsets if there is no infinite,
strictly descending chain C; > C > --- of closed subsets of X. The descending chain condition on closed
subsets is equivalent with the ascending chain condition on open sets.

A topological space that satisfies the descending chain condition on closed sets is called a noetherian
space. In a noetherian space, every nonempty family S of closed subsets has a minimal member, one that
doesn’t contain any other member of S, and every nonempty family of open sets has a maximal member. (See

@.L11))

2.2.9. Lemma. A noetherian topological space is quasicompact: Every open covering has a finite subcover-
ing. ([l
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2.2.10. Proposition. With its Zariski topology, A™ is a noetherian space.

proof. Suppose that a strictly descending chain C; > Cy > - - - of closed subsets of A" is given. Let I; be the
ideal of all elements of C[z1, ..., z,,] that are identically zero on C;. Then C; = V' (I;), and V(I1) > V(I2) >
.-+ Therefore I; < I < ---. The ascending chain condition for ideals in C|z1, ..., x,,] shows that the given
chain is finite. (]

2.2.11. Definition. A topological space X is irreducible if it isn’t the union of two proper closed subsets. An
affine variety is an irreducible closed subset of affine space A".

Another way to say that X is irreducible is this:

If C and D are closed subsets of X, andif X =CUD, then X =C or X = D.

The concept of irreducibility is useful primarily for noetherian spaces. The only irreducible subsets of a
Hausdorff space are its points. In particular, with the classical topology, the only irreducible subsets of affine
space are points.

Irreducibility is somewhat analogous to connectedness. A topological space is connected if it isn’t the
union C'U D of two proper disjoint closed subsets. However, the condition that a space be irreducible is much
more restrictive because, in Definition 2.2.11] the closed sets C' and D aren’t required to be disjoint. In the
Zariski topology on the affine plane, the union of two intersecting lines is connected, but not irreducible.

2.2.12. Lemma. The following conditions on topological space X are equivalent.

o X is irreducible.

o The intersection U NV of two nonempty open subsets U and V' of X is nonempty.

o Every nonempty open subset U of X is dense — its closure is X. O

2.2.13. Theorem. In a noetherian topological space, every closed subset is the union of finitely many irre-
ducible closed sets.

proof. If a closed subset Cj of a topological space X isn’t a union of finitely many irreducible closed sets, then
it isn’t irreducible, so it is a union C; U D1, where C and D; are proper closed subsets of C, and therefore
closed subsets of X. Since Cj isn’t a finite union of irreducible closed sets, C; and D cannot both be finite
unions of irreducible closed sets. Say that C'; isn’t such a union. We have the beginning Cy, > C} of a chain
of closed subsets. We repeat the argument, replacing Cy by C, and we continue in this way, to construct an
infinite, strictly descending chain Cy > C7 > C5 > ---. So X isn’t a noetherian space. O

Theorem [2.2.13]|tells us that every closed subset of A™ is a finite union of affine varieties. Since an affine
variety is irreducible, it is connected in the Zariski topology. It is also connected in the classical topology, but
this isn’t very easy to prove. We may not get to it.

The closure of a subset S of a topological space X is the smallest closed subset that contains S. It is the
intersection of all closed subsets that contain S.

2.2.14. Lemma. (i) Let Z be a subspace of a topological space X, let S be a subset of Z, and let S denote
the closure of S in X. The closure of S in Z is the intersection S N Z.

(ii) The closure Z of a subspace Z of a topological space X is irreducible if and only if Z is irreducible.
(iii) A nonempty open subspace W of an irreducible space X is irreducible.

proof. (ii) Let Z be an irreducible subset of X, and suppose that its closure Z is the union C' U D of two
closed sets C and D. Then Z is the union of the sets C = C N Z and D = D N Z, and they are closed in
Z. Therefore Z is one of those two sets; say Z = C. Then Z C C, and since C is closed, Z C C. Because
C C Z as well, C = Z. Conversely, suppose that the closure Z of a subset Z of X is irreducible, and that
Z is a union C' U D of closed subsets. Then Z = C' U D, and therefore Z = C or Z = D, say Z =C So
7Z =CnNZ=C,and C is not a proper subset.

(iii) The closure of W is the irreducible space X. O

(2.2.15)  the coordinate algebra of a variety
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2.2.16. Proposition. The affine varieties in A™ are the sets V (P), where P is a prime ideal of the polynomial
algebra Clz] = Clxy, ..., 2, If P is a radical ideal, then V (P) is an affine variety if and only if P is a prime
ideal.

We will use this proposition in the next section, where we give a few examples of varieties, but we defer
the proof to Section[2.5]

As before, an algebra is a ring that contains the complex numbers.

2.2.17. Definition. Let P be a prime ideal of the polynomial ring C|x1, ..., 2,,], and let V be the affine variety
V(P) in A™. The coordinate algebra of V is the quotient algebra A = C[z]/P.

Geometric properties of the variety are reflected in algebraic properties of its coordinate algebra and vice
versa. In a primitive sense, one can regard the geometry of an affine variety V' as given by closed subsets and
incidence relations — the inclusion of one closed set into another, as when a point lies on a line. A finer study
of the geometry takes into account things such as tangency, but it is reasonable to begin by studying incidences
C' C C among closed subvarieties. Such incidences translate into inclusions P’ O P in the opposite direction
among prime ideals. This is one reason that prime ideals are important.

2.3 Some affine varieties

This section contains a few simple examples of varieties.

2.3.1. A pointp = (aq,...,ay) of affine space A" is the set of solutions of the n equations x; — a; =0, i =
1,...,n. A point is a variety because the polynomials x; — a; generate a maximal ideal in the polynomial
algebra Clz], and a maximal ideal is a prime ideal. We denote that maximal ideal by m,,. It is the kernel of
the substitution homomorphism 7, : C[z] — C that evaluates a polynomial g(x1, ..., z,) at p: m,(g(z)) =
g(a, ...,an) = g(p). As here, we denote that homomorphism by 7.

The coordinate algebra of a point p is the quotient algebra C[z]/m,,. It is also called the residue field at p,
and it will be denoted by k(p). The residue field at p is isomorphic to the image of 7, which is the field C of
complex numbers, but k(p) is a particular quotient of the polynomial ring.

2.3.2. The varieties in the affine line A' are points, and the whole line A'. The varieties in the affine plane A2
are points, plane affine curves, and the whole plane.

This is true because the varieties correspond to the prime ideals of the polynomial ring. The prime ideals of
Clz1, 2] are the maximal ideals, the principal ideals generated by irreducible polynomials, and the zero ideal.
The proof of this is a good exercise.

2.3.3. The set X of solutions of a single irreducible polynomial equation f; (1, ..., ,) = 0in A" is a variety,
called an affine hypersurface.

For instance, the special linear group S Lo, the group of complex 2 x 2 matrices with determinant 1, is a
hypersurface in A%, the locus of zeros of the irreducible polynomial x11 229 — 712721 — 1.

The reason that an affine hypersurface is a variety is that an irreducible element of a unique factorization
domain is a prime element, and a prime element generates a prime ideal. The polynomial ring C[z1, ..., z,] is
a unique factorization domain.

2.3.4. A hypersurface in the affine plane A? is a plane affine curve.

A line in the plane, the locus of a linear equation ax + by — ¢ = 0, is a plane affine curve. Its coordinate
algebra is isomorphic to a polynomial ring in one variable. Every line is isomorphic to the affine line A'.

2.3.5. Letp = (a1,...,a,) and ¢ = (by, ..., b,) be distinct points of A™. The point pair (p, q) is the closed
set defined by the system of n? equations (z; — a;)(z; — b;) =0, 1 <4,j < n. A point pair isn’t a variety
because the ideal I generated by the polynomials (x; — a;)(x; — b;) isn’t a prime ideal. The next proposition,
which follows from the Chinese Remainder Theorem [2.1.6] describes the ideal I.

2.3.6. Proposition. The ideal of polynomials that vanish on a point pair p,q is the product mpymg of the
maximal ideals at the points, and the quotient algebra C[x]/I is isomorphic to the product algebra CxC. O
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2.4 Hilbert’s Nullstellensatz

2.4.1. Nullstellensatz (version 1). Let Clz] be the polynomial algebra in the variables x1, . .., x,. There
are bijective correspondences between the following sets:

e points p of the affine space A",
o algebra homomorphisms m, : Clz] — C,
o maximal ideals m,, of C[z].

Ifp = (a1,...,a,) is a point of A", the corresponding homomorphism m, evaluates a polynomial at p:
mp(9) = g(a1, ....,an = g(p), and the maximal ideal my, is the kernel of 7, which is the ideal generated by
the linear polynomials t1—aq, ..., T, —0np. O

It is obvious that every algebra homomorphism C[z] — C is surjective and that its kernel is a maximal ideal. It
isn’t obvious that every maximal ideal of C|x] is the kernel of such a homomorphism. The proof can be found
manywhere[']

The Nullstellensatz gives us a way to describe the closed set V' (I) of zeros of an ideal I in affine space in
terms of maximal ideals. The points of V'(I) are those at which all elements of I vanish. Thus

(2.4.2) V(I)={peA”|ICm,}

2.4.3. Proposition. Let I be an ideal of the polynomial ring C[x]. If the zero locus V (I) is empty, then I is
the unit ideal.

proof. Every ideal [ that is not the unit ideal is contained in a maximal ideal (Corollary [2.1.13). (I

2.4.4. Nullstellensatz (version 2). Let A be a finite-type algebra. There are bijective correspondences
between the following sets:

o algebra homomorphisms 7w : A — C,
o maximal ideals ™ of A.
The maximal ideal m that corresponds to a homomorphism T is the kernel of T.

If A is presented as a quotient of a polynomial ring, say A =~ C|x1, ...,x,]|/1, then these sets also corre-
spond bijectively to points of the set V (I) of zeros of I in A™.

(We use the symbol =~ to indicate an isomorphism.) As before, a finite-type algebra is an algebra that can be
generated by a finite set of elements.

proof. We choose a presentation of A as a quotient of a polynomial ring to identify A with a quotient C[z]/I.
The Correspondence Theorem tells us that maximal ideals of A correspond to maximal ideals of C[x] that
contain /. Those maximal ideals correspond to points of V' (I) (see (2.4.2)).

Let 7 denote the canonical homomorphism C[z] — A. The Mapping Property [2.1.3] applied to 7, tells us

that homomorphisms A I cC correspond to homomorphisms C[z] — C whose kernels contain I. Those
homomorphisms also correspond to points of V(I).

(2.4.5) Tl H
A ¢

2.4.6. Strong Nullstellensatz. Let I be an ideal of the polynomial algebra Clxy, ..., x,), and let V be thd
locus of zeros of I in A™: V =V (I). If a polynomial g vanishes at every point of V, then I contains a power

of g.

proof. This beautiful proof is due to Rainich. Let g(x) be a polynomial that is identically zero on V. We are
to show that I contains a power of g. If g is the zero polynomial, it is in 7, so we may assume that g isn’t zero.

'While writing a paper, the mathematician Nagata decided that the English language needed this unusual word, and then he managed
to find it in a dictionary.
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The Hilbert Basis Theorem tells us that [ is a finitely generated ideal; let f = fi,..., fr be a set of
generators. In the n+ 1-dimensional affine space with coordinates (z1,...,Zn,y), let W be the locus of
solutions of the k+1 equations

(2.4.7) filg) == fo(2) =0 and gla)y—1=0

Suppose that we have a solution = of the equations f(z) = 0, say (z1,...,2,) = (a1,...,a,). Then a is a
point of V, and our hypothesis tells us that g(a) = 0 too. So there can be no b such that g(a)b = 1. There
is no point (ay, ..., an,b) that solves the equations : The locus W is empty. Proposition tells
us that the polynomials fi, ..., fx, gy — 1 generate the unit ideal of C[xz, ..., x,,y]. There are polynomials

pl(x7y)a s 7pk(x,y) and q(:E,y) such that

(2.4.8) pifitoFpefrtalgy—1)=1

The ring R = C[x,y]/(gy — 1) can be described as the one obtained by adjoining an inverse of ¢ to the
polynomial ring Clx]. The residue of y is the inverse of g. Since g isn’t zero, Clx] is a subring of R. In R,
gy — 1 = 0, and the equation becomes p1 f1 + -+ + prfr = 1. When we multiply both sides of this
equation by a large power g” of g, we can use the equation gy = 1, which is true in R, to cancel all occurences
of y in the polynomials p;(z, y). Let h;(z) denote the polynomial in 2 that is obtained by cancelling y in g™ p;.
Then

ha(2) fr(@) + -+ (@) (@) = g™ ()
is a polynomial equation that is true in R and in its subring C[z]. Since fi, ..., fx are in I, this equation shows
that ¢V is in 1. O

2.4.9. Corollary. Let C[x] denote the polynomial ring Clx1, ..., Zy,].

(i) Let P be a prime ideal of C[x], and let V. = V (P) be the variety of zeros of P in A™. If a polynomial g
vanishes at every point of V, then g is an element of P.

(ii) Let f be an irreducible polynomial in C|x]. If a polynomial g vanishes at every point of V(f), then f
divides g.

(iii) Let I and J be ideals of C[x]. Then V(I) D V(J) if and only if radI C rad J, and V(I) > V(J) if
and only ifrad I > rad J (see (2.2.2)). O

2.4.10. Examples.
(i) Let I be the ideal generated by y° and y?> — 2 in the polynomial algebra C[z,y] in two variables. The
origin y = x = 0 is the only common zero of these polynomials in the affine plane, and the polynomial x also
vanishes at the origin. The Strong Nullstellensatz predicts that I contains a power of z. This is verified by the
following equation:

vy’ = (' + 9?2’ +2%)(y? —2%) = 2

(i) We may regard pairs A, B of n x n matrices as points of an affine space A% with coordinates aij,bij,
1 < 4,57 < n. The pairs of commuting matrices (AB = BA) form a closed subset of A2"2, the locus of
common zeros of the n? polynomials ¢;; that compute the entries of the matrix AB — BA:

(2.4.11) cij(a, b) = Z Cli,,byj - b,»ua,,j

Let I denote the ideal of the polynomial algebra Cla, b] generated by the polynomials ¢;;. Then V(I) is the
set of pairs of commuting complex matrices. The Strong Nullstellensatz asserts that if a polynomial g(a, b)
vanishes on every pair of commuting matrices, some power of g isin I. Is g itself in I? It is a famous conjecture
that [ is a prime ideal. If so, g would be in I. Proving the conjecture would establish your reputation as a
mathematician, but I don’t recommend spending very much time on it right now. (]

2.5 The Spectrum

The Nullstellensatz allows us to associate a set of points to a finite-type domain A without reference to a
presentation. We can do this because the maximal ideals of A and the homomorphisms A — C don’t depend
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on the presentation. When a finite-type domain A is presented as a quotient C[z]/P of a polynomial ring,
where P is a prime ideal, it becomes the coordinate algebra of the variety V(P) in affine space. Then the
points of V(P) correspond to maximal ideals of A and also to homomorphisms A — C.

When a finite-type domain A is given without a presentation, we replace the variety V' (P) by an abstract
set of points, the spectrum of A, that we denote by Spec A and call an affine variety. We put one point
p into the spectrum for every maximal ideal of A, and then we turn around and denote the maximal ideal
that corresponds to a point p by m,,. The Nullstellensatz tells us that p also corresponds to a homomorphism
A — C whose kernel is m,,. We denote that homomorphism by 7. In analogy with (2.2.17), the domain A is
called the coordinate algebra of the affine variety Spec A. To work with Spec A, we may interpret its points
as maximal ideals or as homomorphisms to C, whichever is convenient.

When defined in this way, the variety Spec A isn’t embedded into affine space, but if we present A as a
quotient C[x]/ P, points of Spec A correspond to points of the subset V' (P) in A™. Even when the coordinate
ring A of an affine variety is presented as C[z]/ P, we may denote the variety by Spec A rather than by V' (P).

### Note about spec as prime ideals. Bijective correspondences between open or closed sets in maxspec
and in spec ###

H#H#
function determines element
H#H#

Let X = Spec A. The elements of A define (complex-valued) functions on X as follows: A point p of X
corresponds to a homomorphism A T2, C. If v is an element of A, the value of the function « at p is defined
to be 7, ():

2.5.1) alp) ¥ 7, ()

The kernel m,, of 7, is the set of elements « of the coordinate algebra A such that o(p) = 0:
m, = {a € A]a(p) = 0}
The functions defined by the elements of A are called regular functions on X . (See Proposition below.)

2.5.2. Lemma. The regular function determined by distinct elements o and 3 of A are distinct.

proof. We replace o by ae — 3. Then what is to be shown is that, if the function determined by an element « is
the zero function, then « is the zero element.

We present A as C[z]/P, x = 1, ...,x,, where P is a prime ideal. Then X is the locus of zeros of P in
A™, and P is also the ideal of all elements that are zero on X (??). Let g(x) be a polynomial that represents a.
If p is a point of X at which « is zero, then g(p) = 0. So if « is the zero function, then g is in P, and therefor
a=0. O

#HH#kIll this???##4# For example, the spectrum Spec C[z1, ..., z,] of the polynomial algebra is the affine
space A”. The homomorphism ,, : C[zx] — C that corresponds to a point p = (a1, ..., a,) of A™ is evaluation
at p. So mp(g) = g(a1, ...,an) = g(p). The function defined by a polynomial g(x) is simply the polynomial
function.

Note. In modern terminology, the word “spectrum” is usually used to denote the set of prime ideals of a ring.
This becomes important when one studies rings that aren’t finite-type algebras, but when working with finite-
type algebras, there are enough maximal ideals. The other prime ideals aren’t needed, so we have eliminated
them.

2.5.3. Lemma. Let A be a quotient Clx]/P of the polynomial ring Clxy, ..., ] modulo a prime ideal P,
so that Spec A becomes the closed subset V(P) of A™. Then a point p of Spec A becomes a point p =
(a1, ...,an) of A™. When an element o of A is represented by a polynomial g(x), the value of « at p is

a(p) = glai, ...,an) = g(p).

proof. The point p of Spec A gives us a diagram (2.4.5), with m = 7, and T = 7, and where 7 is the canonical
map C[z] — A. Then o = 7(p), and

(2.5.4) 9(p) =" mp(9) =Tp7(9) = Tp(a) =" a(p).



O

Thus the value a(p) at a point p of Spec A can be obtained by evaluating a polynomial g at p, though not in
a unique way. The polynomial g that represents the regular function o won’t be unique unless P is the zero
ideal.

(2.5.5) the Zariski topology on an affine variety

Let X = Spec A be an affine variety with coordinate algebra A. An ideal .J of A defines a locus in X, a

closed subset, that we denote by Vx (J):
(2.5.6) Vx(J) = {p€ SpecA|J Cm,}

When a presentation C[z]/P = A, is given, the ideal .J of A corresponds to an ideal .J of Clx] that contains

P. Then if Vi~ (J) denotes the zero locus of J in A", Vx (J) = V= (J).

The properties of closed sets in affine space that are given in Lemmas and are true for closed
subsets of an affine variety. In particular, Vx (J) = Vx(rad J),and Vx (IJ) = Vx(INJ) = Vx (1)U Vx (J).

2.5.7. Proposition. Let J be an ideal of a finite-type domain A, and let X = Spec A. The zero set Vx (J) is
empty if and only if J is the unit ideal of A. If X is empty, then A is the zero ring.

proof. The zero ring is the only ring with no maximal ideals. (]

2.5.8. Note. We have put bars on the symbols m and 7 here in order to distinguish maximal ideals of A from
maximal ideals of C[x] and homomorphisms A — C from homomorphisms C[z1, . .., z,] — C. In the future,
we will put bars over the letters only when there is a danger of confusion. O

(2.5.9) ideals whose zero sets are equal
2.5.10. Lemma. An ideal I of a noetherian ring R contains a power of its radical.

proof. Since R is noetherian, the ideal rad I is generated by a finite set of elements o = {a, ..., o }, and for
large r, o is in I. We can use the same large integer  for every 7. A monomial 3 = af' - -- o;* of sufficiently
large degree n in o will be divisible o] for at least one ¢, and therefore it will be in /. The monomials of degree
n generate (rad I)", so (rad )™ C I. And as has been remarked, I C rad I. O

2.5.11. Corollary. Let I and J be ideals of a finite-type domain A, and let X = Spec A. Then Vx(I) D
Vx (J) if and only if rad I C rad J.

This follows from Corollary [2.4.9] d

For example, there is a bijective correspondence between radical ideals in the polynomial ring C[z1, ..., 2]
and closed subsets of A™. ###77 74

The next proposition includes Proposition as a special case.

2.5.12. Proposition. Ler X = Spec A, where A is a finite-type domain. The closed subset Vx (P) defined by
a radical ideal P is irreducible if and only if P is a prime ideal.

proof. Let P be a radical ideal of A, and let Y = Vx(P). Let C and D be closed subsets of X such that
Y = CUD. Say C = Vx(I), D = Vx(J). We may suppose that I and J are radical ideals. Then the inclusion
C C Y implies that I D P. Similarly, J D P. Because Y = CUD, we alsohave Y = Vx(INJ) = Vx(1J).
So IJ C P (Corollary 2.5.TT)). If P is a prime ideal, then I = P or J = P, and therefore C =Y or D =Y.
So Y is irreducible. Conversely, suppose that P is not a prime ideal. Then there are ideals I, J strictly larger
than P, such that IJ C P . Then Y will be the union of the two proper closed subsets Vx (I) and

Vx (J), and is not irreducible (2.5.11). O
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(2.5.13) the nilradical

The nilradical of a ring is the set of its nilpotent elements. It is the radical of the zero ideal. If a ring
R is noetherian, its nilradical will be nilpotent: some power of will be the zero ideal (Lemma [2.5.10). The
nilradical of a domain is the zero ideal.

2.5.14. Proposition. The nilradical of a noetherian ring R is the intersection of the prime ideals of R.

proof. Let x be an element of the nilradical N. So some power of z is zero. Since the zero element is in every
prime ideal, x is in every prime ideal. Therefore IV is contained in every prime ideal. Conversely, let = be
an element not in /V, i.e., not nilpotent. We show that there is a prime ideal that doesn’t contain any power
of z. Let S be the set of ideals that don’t contain a power of z. The zero ideal is one such ideal, so S isn’t
empty. Since R is noetherian, S contains a maximal member P (2.1.11). We show that P is a prime ideal by
showing that, if two ideals A and B are strictly larger than P, their product AB isn’t contained in P. Since P
is a maximal member of S, A and B aren’t in S. They contain powers of x, say 2 € A and 2° € B. Then
x*+isin AB but not in P. Therefore AB ¢ P. O

The conclusion of this proposition is true whether or not the ring R is noetherian.

2.5.15. Corollary.
(i) Let A be a finite-type algebra. An element that is in every maximal ideal of A is nilpotent.
(ii) Let A be a finite-type domain. The intersection of the maximal ideals of A is the zero ideal.

proof. (i) Say that A is presented as C[x]/I. Let a be an element of A that is in every maximal ideal, and let
g(x) be a polynomial whose residue in A is . Then « is in every maximal ideal of A if and only if g = 0 at
all points of V3 (I). If so, the Strong Nullstellensatz asserts that some power g” is in I. Then a™ = 0. (]

2.5.16. Corollary. An element o of a finite-type domain A is determined by the function that it defines on
X = Spec A.

proof. It is enough to show that an element « that defines the zero function is the zero element. Such an
element is in every maximal ideal (2.5.7), so « is nilpotent, and since A is a domain, o = 0. O

2.6 Localization

Let s be a nonzero element of a domain A. The ring A[s~!], obtained by adjoining an inverse of s to A is
called a localization of A. It is isomorphic to the quotient A[z]/(sz — 1) of the polynomial ring A[z] by the
principal ideal generated by sz — 1. We will be denote this localization by A,. If A is a finite-type domain, so
is As. In that case, if X denotes the variety = Spec A, X will denote the variety Spec A, and X will be
called a localization of X too.

2.6.1. Proposition. (i) With terminology as above, points of the localization X, = Spec Ay correspond
bijectively to the open subset of X of points at which the function defined by s is nonzero.

(ii) When we identify a localization X ; with a subset of X, the Zariski topology on X is the induced topology
from X. So X is an open subspace of X.

proof. (i) Let p be a point of X, let A 2%, C be the corresponding homomorphism. If s isn’t zero at p, i.e.,
¢ = s(p) # 0, then 7, extends uniquely to a homomorphism A; — C that sends s~* to ¢~ 1. This gives us a
unique point of X; whose image in X is p. If ¢ = 0, then 7, doesn’t extend to A;.

(ii) Let C be a closed subset of X, say the zero set of a set of elements a1, ..., ax of A. Then C'N X is the zero
set in X of those same elements, so it is closed in Xs. Conversely, let D be a closed subset of X, say the
zero set in X of some elements bys—n, ..., bys~". We can use the same expoent n for each element. Since
s~ 1 doesn’t vanish on X, the elements b; and b;s~! have the same zeros on X . If we let C be the zero set of
b1, ...,by in X, we will have C N X, = D. O
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We usually identify X as an open subset of X . Then the effect of adjoining the inverse is to throw out the
points of X at which s vanishes. For example, the spectrum of the Laurent polynomial ring C[t,#~!] becomes
the complement of the origin in the affine line A’ = Spec C[t].

This illustrates the benefit of working with an affine variety without a fixing an embedding into affine
space. If X is embedded into A", the localization X, wants to be in A”*1,

As is true for many open sets, the complement X’ of the origin in the affine plane Spec C[z, 23] isn’t
a localization. Every polynomial that vanishes at the origin vanishes on an affine curve, which has points
different from the origin. Its inverse doesn’t define a function on X’. It may be hard to tell whether or not a
given open set is a localization.

Localizations are important for two reasons:
o The relation between an algebra A and a localization A; is easy to understand, and

o The localizations X of an affine variety X form a basis for the Zariski topology on X.

A basis for the topology on a topological space X is a family 3 of open sets such that every open set is a union
of open sets that are members of 3.

We verify the second statement marked with a bullet. We must show that if U is an open subset of X =
Spec A, then U can be covered by sets of the form X;. The complement of X in X, the set X — X, is the
zero set Vx (s) of s. Let C be the closed complement X — U of U in X. Since C is closed, it is the set of
common zeros of some elements sq, ..., sy of A. So C is the intersection [ Vx (s;) of zero sets. Then U is the
union of the sets X,. (]
2.6.2. Lemma. Let U and V be affine open subsets of an affine variety X.

() If V is a localization of U and U is a localization of X, then V' is a localization of X.
(i) IfV C U and if V is a localization of X, then V is a localization of U.

(iii) Let p be a point of U N V. There is an open set Z containing p that is a localization of U and also a
localization of V.

proof. (i) Say that X = Spec A, U = X, = Spec A; and V = U; = Spec(Ay);. Then ¢ is an element of
A, say t = s~%r with r in A. The localizations (A,);, (Ay), are equal, and (Ay), = A,.. So V = X,,.

(ii) Say that X = Spec A, U = Spec B, and V' = Spec A;, where ¢ is a nonzero element of A. The elements
of B are the fractions ¢t *a with a € A, and ¢ is an element of B. So B; = A;.

(iii) Since localizations form a basis for the topology, U N V' contains a localization X of X that contains p.
By (ii), X is a localization of U and of V. [l

(2.6.3) extension and contraction of ideals

Let A C B be the inclusion of a ring A as a subring of a ring B. The extension of an ideal I of A is the
ideal I B of B generated by I. Its elements are finite sums El z;b; with z; in I and b; in B. The contraction
of an ideal .J of B is the intersection J N A. It is an ideal of A.

The next lemma explains what happens when one combines extension and contraction.

2.6.4. Lemma. Let A C B be rings, and let I and J be ideals of A and B, respectively. Then I C (IB)N A,
and (JNA)B C J. O

If A, is a localization of A and I is an ideal of A, the elements of the extended ideal I A, are fractions of
the form zs—*, with z in I. We denote this extended ideal by I,.
2.6.5. Lemma.

(i) Let A C B be rings, let I be an ideal of A and let J be an ideal of B. Then I C (IB) N A and
(JNA)B C J.

(ii) Let A, be a localization of A, let I' be an ideal of As and let I = I' N A. Then I' = I A,. Every ideal of
A is the extension of an ideal of A.

(iii) Let P be a prime ideal of A. If s is an element of A that isn’t in P, the extended ideal P is a prime ideal
of As. If siis in P, the extended ideal is the unit ideal. O
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2.7 Morphisms of Affine Varieties

Morphisms are the allowed maps between varieties. Morphisms between affine varieties are defined below.
They correspond to algebra homomorphisms in the opposite direction between their coordinate algebras. Mor-
phisms of projective varieties require more thought. They will be defined in the next chapter.

2.7.1) regular functions

The function field K of an affine variety X = Spec A is the field of fractions of A. A rational function on
X is a nonzero element of the function field K.

As we have seen, (2.5.1) elements of the coordinate algebra A define functions on X, the rule being
a(p) = mp(a), where , is the homomorphism A — C that corresponds to p. A rational function f = a/s
with @ and s in A is an element of A, and it defines a function on the open subset X. A rational function f
is regular at a point p of X if it can be written as a fraction a/s such that s(p) # 0. A rational function is a
regular function on X if it is regular at every point of X.

2.7.2. Proposition. The regular functions on an affine variety X = Spec A are the elements of the coordinate
algebra A.

proof. Let f be a rational function that is regular on X. So for every point p of X, there is a localization
X, = Spec A that contains p, such that f is an element of A;. Because X is quasicompact, a finite set of
these localizations, say X, ,..., X, , will cover X. Then sy, ..., s have no common zeros on X, so they
generate the unit ideal of A . Since f is in A,,, we can write f = s; "b;, or s]'f = b;, with b; in A,
and we can use the same exponent n for each i. Since the elements s; generate the unit ideal of A, so do the
powers sI'. Say that > sl'c; = 1, with ¢; in A. Then f =) sPc¢;f = > ¢;b; is an element of A. O

(2.7.3) morphisms

Let X = Spec A and Y = Spec B be affine varieties, and let A - B be an algebra homomorphism.
A point g of Y corresponds to an algebra homomorphism B ~4, C. When we compose 7, ¢, we obtain a

homomorphism A =% . By the definition, points of Spec A correspond to homomorphisms A 7 C. So
there is a unique point p of X = Spec A such that 7, = mwg:

A—*23 B
(2.7.4) wpl l”q
C——=C

2.7.5. Definition. Let X = Spec A and Y = Spec B. A morphism Y —=+ X is a map defined, as above, by
an algebra homomorphism A — B: If ¢ is a point of Y, then ug is the point p of X such that Tp = Tqp.

Then if « is an element of A and 8 = ¢(«),

(2.7.6) Bq) = mq(B) = mq(pa) = my(a) = a(p)

The morphism Y — X is an isomorphism if and only if there is an inverse morphism. This will be true if
and only if A —~5 Bisan isomorphism of algebras. ]

The relationship between a homomorphism A —“5 B and the associated morphism Y — X can be
summed up by the next formula. If ¢ is a point of Y and « is an element of A, then

(2.7.7) afu(q)] = [pal(q)
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Thus the homomorphism ¢ is determined by the map u. But most maps Y — X aren’t morphisms.

The description of a morphism can be confusing because the direction of the arrow is reversed. It will become
clearer as we expand the discussion.

Morphisms to the affine line.

A morphism Y - A! from a variety Y = Spec B to the affine line Spec C[t] is defined by an algebra

homomorphism C|[z] % B, which substitutes an element /3 of B for z. The morphism w that corresponds to
 sends a point ¢ of Y to the point of the z-line at which = 3(q).

For example, let Y be the space of 2 x 2 matrices, so that B = (C[yij], 1 < 4,57 < 2. The determinant
b1 b2

defines a morphism Y — A! that sends a matrix 8 = (b b
21 D22

) to its determinant by1bss — by2bs1. The

corresponding algebra homomorphism C[x] 2 C[y;;] substitutes Y1122 —y12y21 for z. It sends a polynomial
f(z) to f(y11y22 — y12y21)-

In the other direction, a morphism from A to a variety Y is a (complex) polynomial path in Y. For
example, if Y is the space of matrices, a morphism A! — Y corresponds to a homomorphism Cly;;] — Clz],
which substitutes polynomials in 2 for the variables y;;.

Morphisms to affine space.

A morphism from an affine variety Y = Spec B to affine space A" will be defined by a homomorphism
Clz1, ..., Tn) %, B which substitutes elements 3; of B for z;: ®(f(x)) = f(B). The corresponding mor-
phism Y —%+ A" sends a point ¢ of Y to the point (31(q), ..., Bn(q)) of A™.

Morphisms to affine varieties.

Let X = SpecA and Y = Spec B be affine varieties. Say that we have chosen a presentation A =
Clx1, ooy zm]/(f1, -y fr) Of A, so that X becomes the closed subvariety V(f) of affine space A™. There
is no need to choose a presentation of B. A natural way to define a morphism from a variety ¥ to X is
as a morphism Y —— A" to affine space, whose image is contained in X. We check that this agrees with
Definition 2.7.3

As above, a morphism Y Ly A™ corresponds to a homomorphism Clx1, ..., Z,] i> B, and defined by
aset (81, ..., Bm) of elements of B. Since X is the locus of zeros of the polynomials f, the image of Y will
be contained in X if and only if f;(51(q), ..., Bm/(q)) = 0 for every point ¢ of Y and every i, i.e., f;(5) isin
every maximal ideal of B, in which case f;() = 0 for every i (i). Another way to say this is:

The image of Y is contained in X if and only if 8 = (1, ..., Bm) solves the equations f(z) = 0.

And, if g is a solution, the map ® defines a map A - B.

Clz) —>— B

| H

L}B

This is an elementary, but important, principle:

o Homomorphisms from an algebra A = Clz]/(f) to an algebra B correspond to solutions of the equa-
tions f =0in B.

### give examples here. ¢-line maps to cusp curve, maps to S L, and of course, the blowup map###

2.7.8. Corollary. Let X = Spec A and let Y = Spec B be affine varieties. Suppose that A is presented as
the quotient Clx1, ..., xm]/(f1, ..., [r) of a polynomial ring. There are bijective correspondences between the
following sets:

o algebra homomorphisms A — B, or morphisms Y — X,
o morphisms Y — A™ whose images are contained in X,
o solutions of the equations f;(x) = 0in B, O

The second and third sets refer to an embedding of the variety X into affine space, but the first one does not. It
shows that a morphism depends only on the varieties X and Y, not on the embedding of X into affine space.
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The geometry of a morphism will be described more completely in Chapters ?? and ??. We note a few
more facts about them here.

2.7.9. Proposition. Let X <— Y be the morphism of affine varieties that corresponds to a homomorphism of
coordinate algebras A 5 B.

() Let Y <~ Z be another morphism, that corresponds to another homomorphism B R of finite-type
domains. The the composition Z s X. is the morphism that corresponds to the composed homomorphism
A4 R

(ii) Suppose that B = A/P, where P is a prime ideal of A, and that ¢ is the canonical homomorphism
A — A/P. Then u is the inclusion of the closed subvariety Y = Vx (P) into X.

(iii) o is surjective if and only if w maps Y isomorphically to a closed subvariety of X. ([l

It is useful to rephrase the definition of the morphism ¥ — X that corresponds to a homomorphism
A %5 B in terms of maximal ideals. Let m, be the maximal ideal of B at a point q of Y. The inverse image
of my in A is the kernel of the composed homomorphism A 5 B X% C, so it is a maximal ideal of A:
¢~ 'm, = m,, for some point p of X. That point is the image of ¢: p = ug.

In the other direction, let m,, be the maximal ideal at a point p of X, and let J be the ideal generated by the
image of m,, in B. This ideal is called the extension of m, to B. Its elements are finite sums Y p(z;)b; with
z; in my, and b; in B. If ¢ is is a point of Y, then ug = p if and only if m,, = <p_1mq, and this will be true if
and only if J is contained in m,.

Recall that, if Y —% X is a map of sets, the fibre of Y over a point p of X is the set of points ¢ of Y that
map to p.

2.7.10. Corollary. Let X = Spec A and Y = Spec B, and let Y — X be the morphism corresponding to
a homomorphism A 5 B, let my, be the maximal ideal at a point p of X, and let J = m, B be the extended
ideal.

() The fibre of Y over p is the set Vy (J) of points q such that J C m.

(ii) The fibre of Y over p is empty if and only if J is the unit ideal of B. (]

2.7.11. Example. (blowing up the plane)

Let Z and Y be the affine planes with coordinates x, z and z, y, respectively. The map Z —— Y defined
by y = xz, the morphism that corresponds to the algebra homomorphism Cl[z,y] —= Clz, 2] defined by
p(r) =z, p(y) = 2.

The morphism 7 is bijective at points (x,y) with x # 0. At such a point, y = z~'2. The fibre of Z over
a point of Y of the form (0, y) is empty unless y = 0, and the fibre over the origin (0,0) in Y is the z-axis
{(0, 2)} in the plane Z Because the origin in Y is replaced by a line in Z, this morphism is called a blowup of
the affine plane Y. U

figure

2.7.12. Proposition. A morphismY —— X of affine varieties is a continuous map in the Zariski topology and
also in the classical topology.

proof. First, the Zariski topology: Let X = Spec A and Y = Spec B, so that u corresponds to an algebra
homomorphism A 2+ B. A closed subset C' of X will be the zero locus of a set o = {a1, ..., ay } of elements
of A. Let 8; = pa;. The inverse image u~'C is the set of points ¢ such that p = ugq is in C, i.e., such that
a;(ug) = 0, and a;; (uq) = Bi(q) 2.7.5). So u=1C is the zero locus in Y of the elements 3; = ¢(c;) of B. It
is a closed set.

Next, for the classical topology, we use the fact that polynomials are continuous functions. A morphism if

affine spaces A} 5 A" is defined by an algebra homomorphism C[z1, ..., Z,,] N Cly1, ---, Yn), and this
homomorphism is determined by the polynomials k1 (y), ..., h, (y) that are the images of the variables x. The
morphism @ sends the point (y1, ..., ¥, ) of A™ to the point (h1(y), ..., Am(y)) of A™. It is continuous.
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The morphism Y —= X is defined by a homomorphism A — B. We choose presentations A = Clz]/I
and B = C[y|/J, and we form a diagram of homomorphisms and the associated diagram of morphisms:

Clz] —2— Cly] AT 2 AT
| I [
A —*5 B X «* vy

Here o and 3 are the canonical maps of a ring to a quotient ring. The map « sends x1, ..., T, t0 1, ..., Q.
Then ® is obtained by choosing elements h; whose images in B are the same as the images off «;. In the
diagram of morphisms, u is continuous, and the vertical arrows are the embeddings of X and Y into their
affine spaces. Since the topologies on X and Y are induced from their embeddings, « is continuous. O

As we see here, every morphism of affine varieties can be obtained by restricting a morphism of affine
spaces. However, in the diagram above, the morphism w isn’t unique. It depends on the choice of the polyno-
mials ~;.

2.8 Finite Group Actions

Let G be a finite group of automorphisms of a finite-type domain B. An invariant element of B is an element
that is sent to itself by every element o of GG. For example, the product and the sum

28.1) [[ov . Sob

ceG ceG

are invariant elements. The invariant elements form a subalgebra of B that is often denoted by B“. Theorem
below asserts that B is a finite-type algebra, and that points of Spec B¢ correspond bijectively to
G-orbits in Spec B.

2.8.2. Examples.
(i) The symmetric group G = S, operates on the polynomial ring R = C|x,...,x,]| by permuting the
variables, and the Symmetric Functions Theorem asserts that the elementary symmetric functions

S1 = E T, So = E LTiTj 5y eny Sp =T1T2° T
%

1<j

generate the ring R of invariant polynomials. Moreover, s1, ..., s,, are algebraically independent, so R is
the polynomial algebra C|[sy, ..., 5,,]. The inclusion of R into R gives us a morphism from affine z-space A"
to affine s-space A? = Spec R®. If a = (a1, ..., a,,) is a point of A", the points b = (by, ..., b,) of A” that
map to a are those such that s;(b) = a;. They are the roots of the polynomial 2" — a;2"~! + - - - & a,,. Since
the roots form a G-orbit, the set of G-orbits of points of A” maps bijectively to A7.

(i) Let ¢ = €2>™/" let o be the automorphism of the polynomial ring B = Clyi,y2] defined by oy1 = (1
and oy, = ¢ lyz. Let G be the cyclic group of order n generated by o, and let A denote the algebra B¢
of invariant elements. A monomial m = yiyJ is invariant if and only if n divides i — 7, and an invariant
polynomial is a linear combination of invariant monomials. You will be able to show that the three monomials

(2.8.3) up =Yy, uz =Yy, and w = y1yo

generate A. We’ll use the same symbols g, us, w to denote variables in the polynomial ring Cluy, us, w]. Let
J be the kernel of the canonical homomorphism Cluy, ug, w] T A that sends w1, us, w to Y1, Ys s Y1Y2.

2.8.4. Lemma. With notation as above, the kernel J of T is the principal ideal of Cluy,us, w| generated by
the polynomial f = w™ — uius.
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proof. First, f is an element of J. Let g(uj,us,w) be an element of J. So gy}, y¥,y1y2) = 0. We
divide g by f, considered as a monic polynomial in w, say g = fq + r, where the remainder r has degree
< n in w. The remainder will be in J too: r(y},y%,y1y2) = 0. We write r as a polynomial in w: r =
ro(u, ug) + 71 (ut, ug)w —+ - - - + 1y _1 (u1, ug)w™ L. When we substitute y7, y%, y1y2, the term 7; (uq, ug)w®
becomes 7; (7, y%)(y1y2)?. The degree in y; of every monomial that appears here will be congruent to i
modulo n, and the same is true for yo. Since r(y}, y%,y1y2) = 0, and because the indices i are distinct,
r; (Y}, vy) will be zero for every i. And if r;(y}, y3) is zero, then r;(u1, u2) = 0. So r = 0, which means that
f divides g. O

We go back to the operation of the cyclic group on B. Let Y denote the affine plane Spec B, and let
X = Spec A. The group G operates on Y, and except for the origin, which is a fixed point, the orbit of a
point (y1,y2) consists of the n points (*y1,("y2),i = 0,...,n — 1. To show that G-orbits in Y correspond
bijectively to points of X, we fix complex numbers u1, us, w with w™ = ujus, and we look for solutions of
the equations . When u; # 0, the equation u; = y7 has n solutions for y;, and then ys is determined
by the equation w = y1y2. So the fibre has order n. Similarly, there are n points in the fibre if us £ 0. If
uy; = ug = 0, then y; = yo = w = 0. In all cases, the fibres are the G-orbits. U

2.8.5. Theorem. Let G be a finite group of automorphisms of a finite-type domain B, and let A denote the
algebra B of invariant elements. Let Y = Spec B and X = Spec A.

(i) A is a finite-type domain and B is a finite A-module.
(ii) G operates by automorphisms on'Y .

(iii) The morphism 'Y — X defined by the inclusion A C B is surjective, and its fibres are the G-orbits of
points of Y.

When a group G operates on a set Y, one often denotes the set of G-orbits of Y by Y/G. With that notation,
the theorem asserts that there is a bijective map Y/G — X.

proof of (i): The invariant algebra A = B is a finite-type algebra, and B is a finite A-module.
This is an interesting indirect proof. To show that A is a finite-type algebra, one constructs a finite-type
subalgebra R of A such that B is a finite R-module.

Let {z1,..., 2} be the G-orbit of an element z; of B. The orbit is the set of roots of the polynomial

ft) = (t—z1)(t—z) = tF—sith 1+ L5

whose coefficients are the elementary symmetric functions in {z1, ..., zx }. Let Ry denote the algebra generated
by those symmetric functions. Because the symmetric functions are invariant, Ry C A. Using the equation
f(z1) = 0, we can write any power of z; as a polynomial in z; of degree less than k, with coefficients in R;.

We choose a finite set of generators {y1, . .., y, } for the algebra B. If the order of the orbit of y; is k;, then
1; will be the root of a monic polynomial f; of degree k; with coefficients in A. Let R denote the finite-type
algebra generated by all of the coefficients of all of the polynomials f1, ..., f.. We can write any power of y;
as a polynomial in y; with coefficients in R, and of degree less than k;. Using such expressions, we can write
every monomial in y1, ..., ¥, as a polynomial ¥y, ..., y, with coefficients in R, whose degree in each variable
15 is less than k;. Since y1, ..., y, generate B, we can write every element of B as such a polynomial. Then the
finite set of monomials y7" - - - ¢ with e; < k; spans B as an R-module. Therefore B is a finite R-module.

Since R is a finite-type algebra, it is noetherian. The algebra A of invariants is a subalgebra of B that
contains R. So when regarded as an R-module, A is a submodule of the finite R-module B. Since R is
noetherian, A is also a finite R-module. When we put a finite set of algebra generators for R together with a
finite set of R-module generators for A, we obtain a finite set of algebra generators for A. So A is a finite-type
algebra. And, since B is a finite R-module, it is also a finite module over the larger ring A.

proof of 2.8.3(ii): The group G operates on'Y .
A group element ¢ is a homomorphism B —— B, which defines a morphism Y <= Y, as in Definition

Since o is an invertible homomorphism, i.e., an automorphism, u, is also an automorphism. Thus G
operates on Y. However, there is a point that should be mentioned.

Let’s write the operation of G on B on the left as usual, so that a group element o maps an element 3 of B
to ob. Then if o and 7 are two group elements, the product o7 acts as first do 7, then o= (o7)5 = o (7).

(2.8.6) B B-%B
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We substitute u = u, into Definition If ¢ is a point of Y, the morphism Y <*= Y sends ¢ to the
point p such that m, = m40o. It seems permissible to drop the symbol u, and to write the morphism simply as

Y <2~ Y. But since arrows are reversed when going from homomorphisms of algebras to morphisms of their
spectra, the maps displayed in (2.8.6)), give us morphisms

(2.8.7) Y- V<Y

On Y = Spec B, the product o7 acts as first do o, then T.
To get around this problem, we can put the symbol o on the right when it operates on Y, so that o sends a
point g to go. Then if ¢ is a point of Y, we will have ¢(o7) = (¢o)7, as required of an operation.

. If G operates on the left on B, it operates on the right on Spec B.

This is important only when one wants to compose morphisms. In Definition we followed custom
and wrote the morphism u that corresponds to an algebra homomorphism ¢ on the left. We will continue to
write morphisms on the left when possible, but not here.

as the value of 8 at qo: [08](q) “L" 74(08) = 740 (8) ‘2" B(qo)

(2.8.8) [08](q) = B(qo) 0

proof of R.8.3)(iii): The fibres of the morphismY — X are the G-orbits in'Y .

We go back to the subalgebra A = B¢, For o in G, we have a diagram of algebra homomorphisms and
the corresponding diagram of morphisms

Let 8 be an element of B and let ¢ be a point of Y. The value [0/ iqi of the function o3 at ¢ is the same
(2.7.6))

B—25 B Y «+ 72— Y
(2.8.9) T T l l
A—=-" A X —— X

The diagram of morphisms shows that the elements of Y forming a G-orbit have the same image in X, and
therefore that the set of G-orbits in Y, which we denote by Y/G, maps to X. We show that the map Y/G — X
is bijective.

2.8.10. Lemma. (i) Let p1,...,pr be distinct points of affine space A", and let cq,...,cr be complex
numbers. There is a polynomial f(x1,...,x,) such that f(p;) =c¢; for i=1,...,n.

(ii) Let B be a finite-type algebra, let q1, . . . , qi, be points of Spec B, and let ¢y, . . . , ¢, be complex numbers.
There is an element (3 in B such that B(q;) = ¢; fori =1,... k. O

injectivity of the map Y/G — X:

Let O and O be distinct G-orbits. Lemmatells us that there is an element 8 in B whose value is
0 at every point of O1, is 1 at every point of Oz. Since GG permutes the orbits, o3 will also be 0 at points
of O and 1 at points of O,. Then the product v = [[_ o3 will be 0 at points of O; and 1 at points of Oa,
and vy is invariant. If p; denotes the image in X of the orbit O;, the maximal ideal m,, of A is the intersection
A N mg, where ¢ is any point in O;. Therefore v is in the maximal ideal m,,,, but not in m,,,. The images of
the two orbits are distinct.

surjectivity of the map Y/G — X:
It suffices to show that the map Y — X is surjective.

2.8.11. Lemma. If [ is an ideal of the invariant algebra A, and if the extended ideal I B is the unit ideal of
B, then I is the unit ideal of A.

As before, the extended ideal I B is the ideal of B generated by I.

Let’s assume the lemma for the moment, and use it to prove surjectivity of the map ¥ — X. Let p be
a point of X. The lemma tells us that the extended ideal m,B isn’t the unit ideal. So it is contained in a
maximal ideal m, of B, where ¢ is a point of Y. Thenm,, C (m,B)NA C m,N A.
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The contraction my N A is an ideal of A, and it isn’t the unit ideal because 1 isn’t in m,. Since m,, is a
maximal ideal, m,, = m, N A. This means that ¢ maps to p in X. O

proof of the lemma. If IB = B, there will be an equation ZZ z;b; = 1, with z; in I and b; in B. The
sums o; = ZD, ob; are invariant, so they are elements of A, and the elements z; are invariant. Therefore
Yo 0(zib) = 2 >, ob; = z;oy isin I. Then

Zl = Za(l) = Zo(zibi) = Z 20

0,1 [

The right side is in I, and the left side is the order of the group which, because A contains the complex
numbers, is an invertible element of A. So I is the unit ideal. O
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Chapter 3 PROJECTIVE ALGEBRAIC GEOMETRY

Projective Varieties
Homogeneous Ideals

Product Varieties

Morphisms and Isomorphisms
Affine Varieties

Lines in Projective Three-Space

EEIEEEE

3.1 Projective Varieties

The projective space P™ of dimension n was defined in Chapter([I] Its points are equivalence classes of nonzero
vectors (zo, ..., T, ), the equivalence relation being that, for any nonzero complex number A,

(3.1.1) (T0y ey ) ~ (A0, .oy Ap).

A subset of P" is Zariski closed if it is the set of common zeros of a family of homogeneous polynomials
f1,---, fx in the coordinate variables xq, ..., T, or if it is the set of zeros of the ideal Z generated by such
a family. Homogeneity is required because the vectors () and (A\x) represent the same point of P". As
explained in , f(Az) = 0 for all A if and only if f is homogeneous. We usually refer to the Zariski
closed sets simply as closed sets. They are the closed sets in the Zariski topology on P™.

Because the polynomial ring C|zy, ..., x,,] is noetherian, P™ is a noetherian space: Every strictly increasing
family of ideals of C[x] is finite, and every strictly decreasing family of closed subsets of P" is finite. Therefore
every closed subset of P is a finite union of irreducible closed sets (2.2.13). The irreducible closed sets are
the the projective varieties, the closed subvarieties of P,

Thus a projective variety X is an irreducible closed subset of some projective space. We will also want to
know when two projective varieties are isomorphic. This will be explained in Section where morphisms
are defined.

The Zariski topology on a projective variety X is induced from the topology on the projective space that
contains it. Since a projective variety X is closed in P", a subset of X is closed in X if it is closed in P".

3.1.2. Lemma. The one-point sets in projective space are closed.

proof. This simple proof illustrates a general method. Let p be the point (aq, ..., a5, ). The first guess might be
that the one-point set {p} is defined by the equations x; = a;, but the polynomials z;; — a; aren’t homogeneous
in . This is reflected in the fact that, for any A # 0, the vector (Aay, ..., Aa,, ) represents the same point,
though it won’t satisfy those equations. The equations that define the set {p} are

3.1.3) a;T; = AT,
fori,j =0, ...,n, which show that the ratios a;/a; and x;/x; are equal. O

3.1.4. Lemma. The proper closed subsets of the projective line are the nonempty finite subsets, and the proper
closed subsets of the projective plane are finite unions of points and curves. (I

Though affine varieties are important, most of algebraic geometry concerns projective varieties. It isn’t
completely clear why this is so, but one property of projective space gives a hint of its importance: With its
classical topology, projective space is compact.
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A topological space is compact if it has these properties:

Hausdorff property: Distinct points p, ¢ of X have disjoint open neighborhoods, and
quasicompactness: If X is covered by a family {U*} of open sets, then a finite subfamily covers X.

By the way, when we say that the sets {U?} cover a topological space X, we mean that X is the union
JUU?. We don’t allow U® to contain elements that aren’t in X, though that would be a customary English
usage.

In the classical topology, affine space A™ isn’t quasicompact, and therefore it isn’t compact. The Heine-
Borel Theorem asserts that a subset of A™ is compact in the classical topology if and only if it is closed and
bounded.

We’ll show that P™ is compact, assuming that the Hausdorff property has been verified. The 2n + 1-
dimensional sphere S of unit length vectors in A" is a bounded set, and because it is the zero locus of the
equation Toxg + - + TpT, = 1, it is closed. The Heine-Borel Theorem tells us that S is compact. The
map S — P” that sends a vector (zy, ..., 2, ) to the point of projective space with that coordinate vector is
continuous and surjective. The next lemma of topology shows that P™ is compact.

3.1.5. Lemma. LetY Jox be a continuous map. Suppose that Y is compact and that X is a Hausdorff
space. Then the image Z = f(Y') is a closed and compact subset of X. O

The rest of this section contains a few examples of projective varieties.

(3.1.6) linear subspaces

If W is a subspace of dimension r+1 of the vector space V, the points of P™ that are represented by the
nonzero vectors in W form a linear subspace L of P", of dimension r. If (wy, ..., w,) is a basis of W, the
linear subspace L corresponds bijectively to a projective space of dimension 7, by

cowo + -+ cpw, < (co, ..., Cp)

For example, the set of points (xg, ..., Z, 0, ..., 0) is a linear subspace. (I

(3.1.7) a quadric surface

A quadric in P? is the locus of zeros of an irreducible homogeneous quadratic equation in four variables.

We describe a bijective map from the product P x P! of projective lines to a quadric. Let coordinates
in the two copies of P! be (xo,z1) and (yo, y1), respectively, and let the four coordinates in P? be w;;, with
0 <4,j < 1. The map is defined by w;; = z;y;. Its image is the quadric () whose equation is

3.1.8) WooW11 = Wo1W10

Let’s check that the map P* x P* — @ is bijective. If w is a point of @, one of the coordinates, say wqg, will
be nonzero. Then if (x,y) is a point of P! x P! whose image is w, so that w;j = x;Y;, the coordinates xo and
1o must be nonzero. When we normalize wqq, g, and yg to 1, there is a unique solution for z and y such that
W5 = TilYj, namely 1 = Wio and Y1 = Wo1.

The quadric with the equation (3.1.8) contains two families of lines (one dimensional linear subspaces),
the images of the subsets z x P! and P!xy of PxP.

Note. Equation (3.1.8)) can be diagonalized by the substitution wog = s+t, w11 = s — t, wog1 = u+v,
wig = u — v. This substitution changes the equation to s2 — 12 = u? —v2. When we look at the affine
open set {u = 1}, the equation becomes s +v% —t2 = 1. The real locus of this equation is a one-sheeted
hyerboloid in R3, and the two families of complex lines in the quadric correspond to the familiar rulings of
this hyboloid by real lines.
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(3.1.9) hypersurfaces

A hypersurface in p[rojective space P" is the locus of zeros of an irreducible homogeneous polynomial
f(zo, ..., x,). Plane projective curves and quadric surfaces are hypersurfaces.

(3.1.10) the Segre embedding of a product

The product ;" x P} of projective spaces can be embedded by its Segre embedding into a projective space
PV that has coordinates w;;, with i = 0,...,m and j = 0,...,n. So N = (m+1)(n+1)—1. The Segre
embedding is defined by

We call the coordinates w;; the Segre variables.
The map from P! x P! to P? that was described in (3.1.7) is the simplest case of a Segre embedding.

3.1.12. Proposition. The Segre embedding maps the product P™ x P™ bijectively to the locus S of the Segre
equations

(3.1.13) Wijwie — Wigwg; = 0.

proof. When one substitutes (3.1.11)) into the Segre equations, one obtains equations in {x;, y,} that are true.
So the image of the Segre embedding is contained in S.

Say that we have a point p of S that is the image of (z, y). Some coordinate of p, say wqg, will be nonzero,
and then z¢ and ¥, are also nonzero. We normalize wqq, To, and yg to 1. Then w;; = w;owo; for all ¢, j. The
unique solution of the Segre equations is x; = w;g and y; = wo;. (]

The Segre embedding is important because it makes the product of projective spaces into a projective
variety — the closed subvariety of PV defined by the Segre equations. However, to show that the product is a
variety, we need to show that the locus .S of the Segre equations is irreducible. This is less obvious than one
might expect, so we defer the discussion to Section [3.3](see Proposition [3.3.1).

(3.1.14) the Veronese embedding of projective space

Let the coordinates in P” be z;, and let those in PV be v, with 0<i<j<n. Then N = ("‘2”'2) — 1. The

Veronese embedding is the map P” L4 PN defined by v;; = x;2;. The Veronese embedding resembles the
Segre embedding, but in the Segre embedding, there are distinct sets of coordinates x and y, and there is no
requirement that ¢ < j.

The proof of the next proposition is similar to the proof of (3.1.12), once one has untangled the inequalities.

3.1.15. Proposition. The Veronese embedding f maps P™ bijectively to the locus X in P of the equations

VijVke = ViU for 0<i<E<j<l<n 0

For example, the Veronese embedding maps P! bijectively to the conic vgov1; = v3; in P2

(3.1.16) the twisted cubic

There are higher order Veronese embeddings, defined in an analogous way by the monomials of some
degree d > 2. The first example is the embedding of P! by the cubic monomials in two variables, which maps
PL to P3. Let the coordinates in P? be vy, ..., v3. The cubic Veronese embedding is defined by

3 2 2 3
Vo = Ty, U1 = Ty, Vg = X7, V3 = Iq
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Its image is a twisted cubic in P?, the locus (vo, vy, va, v3) = (23, 23z 1, ¥ox?, ¥3), which is the set of common
zeros of the three polynomials

(3.1.17) Vol — v% , V1U2 — VU3, V1U3 — v%

These polynomials are the 2 x 2 minors of the 2 x 3 matrix

(3.1.18) (“O U1 ”2)
V1 U2 U3

A 2 x 3 matrix has rank < 1 if and only if its 2 x 2 minors are zero. So a point (vg, v1, V2, v3) lies on
the twisted cubic if has rank one. This means that the vectors (vg, v, v2) and (v1, va,v3), if both are
nonzero, represent the same point of P2, Setting 7o = vg = 1 and z; = v; = t, the twisted cubic becomes the
locus of points (1,¢,¢2,3). There is also one point on the twisted cubic at which v = 0, the point (0, 0,0, 1).
(]

3.2 Homogeneous Ideals

We denote the polynomial algebra Clxy, ..., 2,,] by R here.

3.2.1. Lemma. Let T be an ideal of R. The following conditions are equivalent.
(i) Z can be generated by homogeneous polynomials.
(ii) A polynomial is in T if and only if its homogeneous parts are in I. O

An ideal 7 of R that satisfies these conditions is a homogeneous ideal.

3.2.2. Lemma. The radical of a homogeneous ideal is homogeneous.

proof. Let Z be a homogeneous ideal, and let f be an element of its radical radZ. So f” is in Z for some 7.
When f is written as a sum fy + - -- + fy of its homogeneous parts, the highest degree part of f is (fq)".
Since 7 is homogeneous, (f;)" isin Z and fg isin rad Z. Then fo + - - - + f4—1 is also in rad Z. By induction
on d, all of the homogeneous parts fy, ..., fg are in rad Z. O

If f is a set of homogeneous polynomials, the set of its zeros in P may be denoted by V' (f) or Vi~ (f),
and the set of zeros of a homogeneous ideal Z by V(Z) or Vpn (Z). We use the same notation as for closed
subsets of affine space.

The complement of the origin in the affine space A" is mapped to the projective space P" by sending a
vector (X, ..., T, ) to the point of P™ it defines. This map can be useful when one studies projective space.

A homogeneous ideal Z has a zero locus in projective space P" and also a zero locus in the affine space
A™*1 We can’t use the V/(Z) notation for both of them here, so let’s denote these two loci by V and W,
respectively. Unless Z is the unit ideal, the origin x = 0 will be a point of W, and the complement of the
origin will map surjectively to V. If a point = other than the origin is in W, then every point of the one-
dimensional subspace of A"*! spanned by x is in W, because a homogeneous polynomial f vanishes at z if
and only if it vanishes at Az. An affine variety that is the union of such lines through the origin is called an

affine cone. If the locus W contains a point x other than the origin, it is an affine cone.

The familiar locus 23 + 22 — 23 = 0 is a cone in A3. The zero locus of the polynomial =} + 25 — 23 is

also called a cone.

Note. The real locus 23 + 2% — 22 = 0 in R decomposes into two parts when the origin is removed. Because
of this, it is sometimes called a “double cone”. However, the complex locus doesn’t decompose.

3.2.3) the irrelevant ideal

In the polynomial algebra R = C|xo, ..., ], the maximal ideal M = (zo,...,2z,) generated by the
variables is called the irrelevant ideal because its zero locus in projective space is empty.
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3.2.4. Proposition. The zero locus in P™ of a homogeneous ideal T of R is empty if and only if T contains a
power of the irrelevant ideal.

Another way to say this is that the zero locus V(Z) in projective space of a homogeneous ideal Z is empty if
and only if either Z is the unit ideal R, or its radical is the irrelevant ideal.

proof of Proposition Let Z be the zero locus of Z in P™. If 7 contains a power of M, it contains a power
of each variable. Powers of the variables have no common zeros in projective space, so Z is empty.

Suppose that Z is empty, and let W be the locus of zeros of Z in the affine space A™*! with the same
coordinates g, ..., Zn, as above. Since the complement of the origin in W maps to the empty locus Z, it is
empty. The origin is the only point that might be in W. If W is the one point space consisting of the origin,
then rad Z is the irrelevant ideal M. If W is empty, Z is the unit ideal. (I

3.2.5. Lemma. Let P be a homogeneous ideal in the polynomial algebra R, not the unit ideal. The following
conditions are equivalent:

(i) P is aprime ideal.

(ii) If f and g are homogeneous polynomials, and if fg € P, then f € P or g € P.

(iii) If A and B are homogeneous ideals, and if AB C P, then A C P or B C P.

In other words, a homogeneous ideal is a prime ideal if the usual conditions for a prime ideal are satisfied
when the polynomials or ideals are homogeneous.

proof of the lemma. When the word homogeneous is omitted, (ii) and (iii) become the definition of a prime
ideal. So (i) implies (ii) and (iii). The fact that (iii) = (ii) is proved by considering the principal ideals
generated by f and g.

(ii) = (i) Suppose that a homogeneous ideal P satisfies the condition (ii), and that the product fg of two
polynomials, not necessarily homogeneous, is in P. If f has degree d and g has degree e, the highest degree
part of fg is the product f;g. of the homogeneous parts of f and g of maximal degree. Since P is a homoge-
neous ideal, it contains f;g.. Therefore one of the factors, say fg, isin P. Let h = f — fg. Then hg is in P,
and it has lower degree than fg. By induction on the degree of fg, h or g isin P, and if A isin P, sois f. [

3.2.6. Proposition. Let Y be the zero locus in P™ of a homogeneous radical ideal Z, that isn’t the irrelevant
ideal. Then'Y is a projective variety (an irreducible closed subset of P") if and only if T is a prime ideal.
Thus a subset Y of P™ is a projective variety if and only if it is the zero locus of a homogeneous prime ideal
that isn’t the irrelevant ideal.

proof. The locus W of zeros of T in the affine space A" *! is irreducible if and only if Y is irreducible. This is
easy to see. Proposition [2.2.16|tells us that T is irreducible if and only if the radical ideal Z is a prime ideal.
d

3.2.7. Strong Nullstellensatz, projective version.

(i) Let g be a nonconstant homogeneous polynomial in x, ..., T, and let T be a homogeneous ideal of C[x].
If g vanishes at every point of the zero locus V (I) in P™, then T contains a power of g.

(ii) Let f and g be homogeneous polynomials. If f is irreducible and if V() C V (g), then f divides g.

(iii) Let T and J be homogeneous ideals, and suppose that rad L isn’t the irrelevant ideal or the unit ideal.
Then V(I) =V (J) ifand only if radZ = rad J.

proof. (i) Let W be the locus of zeros of Z in the affine space A™*! with coordinates zg, ..., z,,. The
homogeneous polynomial ¢ vanishes at every point of W different from the origin, and since g isn’t a constant,
it vanishes at the origin too. So the affine Strong Nullstellensatz applies. (]

3.2.8) quasiprojective varieties

### 1 don’t like subsection quasiprojective. Too pompous. Just talk about nonempty open subsets of a
projective variety. Mention quasiprojective in passing. ###

61



A nonempty (Zariski) open subset X of a projective variety is called a quasiprojective variety. For instance,
a projective variety is quasiprojective. The complement of a point in a projective variety is a quasiprojective
variety. An affine variety X = Spec A may be regarded as a quasiprojective variety by embedding it as a
closed subvariety of the standard affine space U° : {x¢ # 0}. It becomes an open subvariety of its closure in
IP", which is a projective variety (Lemma[2.2.14] (ii)).

These days, it is customary to define varieties without reference to an embedding into projective space,
as we did for affine varieties in Chapter 2] (??). However, to do this requires work. Most operations that one
wants to make preserve the quasiprojective property, and though there are varieties that cannot be embedded
into any projective space, they aren’t very important. In fact, it is hard enough to find convincing examples
of such varieties that we won’t try to give one here. All varieties that we consider will be quasiprojective. In
order to simplify terminology, and because the word “quasiprojective” is ugly, we will henceforth use the word
“variety” to mean “quasiprojective variety”.

The topology on a (quasiprojective) variety is induced from the topology on projective space.

3.2.9. Lemma. The topology on the affine open subset U° : xy # 0 of P" that is induced from the Zariski
topology on P" is the Zariski topology obtained by viewing U as the affine space Spec Cluy, ..., u,], u; =
/. (I

Here is a description of a quasiprojective variety X in terms of equations:

3.2.10. Let X be the closure of X in projective space P, and let C = X — X be the (closed) complement of
X in X. The closed set X will be the zero set of a family fi, ..., f. of homogeneous polynomials, and C' will
be the zero set of another family g1, ..., g¢. A point p of X will be a point of projective space that solves the
equations f = 0 but doesn’t solve g = 0: All of the polynomials f; vanish at p, and at least one polynomial g;
doesn’t vanish there.

For example, suppose that an affine variety X is embedded as a closed subvariety of U° and that its closure
X in P™ is the locus f = 0. Then a point of X is the set of ponints at which f = 0, but zy # 0. O

3.3 Product Varieties

The properties of products of varieties seem intuitive, but some of the proofs aren’t obvious. As we will see,
the (Zariski) topology on a product of varieties isn’t the product topology.

The product topology on the product X x Y of topological spaces is the coarsest topology such that the
projection maps X xY — X and X xY — Y are continuous. So if C' and D are closed subset of X and Y,
then C'x D is a closed subset of X xY in the product topology. Every closed set in the product topology is a
finite union of such subsets.

So the first examples of closed subsets of P”* x P™ are products of the form C x D, where C is a closed
subset of P™ and D is a closed subset of P™. The product topology on P™ x P™ is much coarser than the
Zariski topology. For example, the proper (Zariski) closed subsets of P! are the nonempty finite subsets. In
the product topology, the proper closed subsets of P* x P! are finite unions of points and sets of the form P! x¢q
and px P! (Chorizontal’ and *vertical’ lines). Most Zariski closed subsets of P! x P! aren’t of this form.

3.3.1. Proposition. Let X and Y be irreducible topological spaces, and suppose that a topology is given on
the product 11 = X XY, with the following properties:

o The projections TI = X and 11 =% 'Y are continuous.

e Forallxin X andall yin'Y, the fibres x XY and X xy, with topologies induced from 11, are homeomorphic
toY and X, respectively.

Then 11 is an irreducible topological space.

The product of varieties has these two properties.

The first condition means that the topology on X x Y is at least as fine as the product topology, and the
second one assures us that the topology isn’t too fine. (We don’t want the discrete topology on II, for example.)

3.3.2. Lemma. Let X,Y, and 11 be as in the proposition. If W is an open subset of 11, its image U via the
projection Il — Y is an open subset of Y.
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proof. The intersection ,/W' = W N (zxY) is an open subset of the fibre 2 X Y, and its image ,U in the
homeomorphic space Y is also open. Since W is the union of the sets W, U is the union of the open sets
+U. So U is open. (]

proof of Proposition Let C' and C’ be closed subsets of the product II. Suppose that C' < II and
C' <M,andlet W =TI — C and W/ =TI — C’ be the open complements of C' and C” in TI. To show that TT
is irreducible, we must show that C' U C’ < II. We do this by showing that W N W’ isn’t the empty set.
Since C' < II, W isn’t empty, and similarly, W’ isn’t empty. The lemma tells us that the images U and U’
of W and W' via projection to Y are nonempty open subsets of Y. Since Y is irreducible, U NU’ is nonempty.
Let y be a point of U NU’. The intersection W, = W N (X xy) is an open subset of X xy, and since its image
U contains y, W, contains a point of the form p = (z,y), it is nonempty. Similarly, W, = W' N (X xy) is a
nonempty open subset of X xy. Since X Xy is homeomorphic to the irreducible space X, it is irreducible. So
Wy N W; is nonempty, and therefore W N W’ is nonempty, as was to be shown. (]

(3.3.3) products of affine varieties

We inspect the product X x Y of the affine varieties X = Spec A and Y = Spec B. Say that X is
embedded as a closed subvariety of A™, so that A = Clz1, ..., z,,]/ P for some prime ideal P, and that Y is
embedded similarly into A", and B = Cl[yy, ..., y»]/Q- Then in affine z, y-space A™T™, X xY is the locus
of the equations f(z) = 0 and g(y) = 0 with f € P and g € Q. Proposition [3.3.1] shows that X x Y is
irreducible. Therefore it is a variety.

3.3.4. Proposition. Let P and Q be prime ideals of C[z]| and Cly), respectively, and let X = V(P) and
Y = V(Q) be their zero sets in A™ and A™, respectively. The ideal I of all elements of C[x,y| that vanish on
the variety X XY is generated by the elements of P and Q. Therefore I is a prime ideal.

The fact that X x Y is a variety tells us only that the radical of [ is a prime ideal.

proof of PropositionThe ideal of C|[z, y] generated by P consists of combinations of elements of P with
polynomials in z, y as coefficients. Let’s denote that ideal by P’. Similarly, let Q" denote the ideal generated
by @ in Clz,y]. Then I = P’ + @Q'.

Let A = C[z]/P, B = C[y]/Q, and R = C[z,y]/I. Any polynomial in z,y can the written, in many
ways, as a sum of products of polynomials in one set of variables: p(x,y) = > a;(x)b;(y). Therefore any
element p of R can be written as a finite sum

k

(33.5) p=3 aib

i=1

with a; in A and b; in B. We show that if p vanishes identically on X x Y, then p = 0. To do this, we show
that the same element p can also be written as a sum of £ — 1 products.

If ay, is zero, then p = Zf;ll a;b;. Suppose that aj, # 0. Then the function defined by a;, isn’t identically
zero on X. We choose a point Z of X such that a(Z) # 0. Writing a;(Z) = @; and D(y) = p(Z, y), gives us

the equation p(y) = Zle a;b;. Since p vanishes on X XY, P vanishes on Y, and this implies that p = 0. Since

ay # 0, we can solve the equation Zle a;b; = 0 for by: by = Zf;ll ¢ib;, where ¢; = —a; /ay. Substituting
into p gives us an expression for p as a sum of k¥ — 1 terms. Finally, when k¥ = 1, @;b; = 0. Then b; = 0,
and p = 0. O

(3.3.6) the Zariski topology on P™ x P"

As mentioned above (3.1.10), the product of projective spaces P x P™ is made into a projective variety by
identifying it with its Segre image, the locus of the Segre equations w;;wye = wipwy;. Since P™x P", with its
Segre embedding, is a projective variety, we don’t really need a separate definition of its Zariski topology. Its
closed subsets are the zero sets of families of homogeneous polynomials in the Segre variables w;; including
the Segre equations.
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One can also describe the closed subsets of P x P™ directly, in terms of bihomogeneous polynomials. A
polynomial f(z,y) is bihomogeneous if it is homogeneous in the variables x and also in the variables y. For
example, the polynomial 22yy + zox1y; is bihomogeneous, of degree 2 in - and degree 1 in y.

Because (z,y) and (Azx, uy) represent the same point of P™ x P for all nonzero A and u, we want to know
that f(x,y) = 0 if and only if f(Az, uy) = 0, and this is true for all nonzero A and p if and only if f is
bihomogeneous.

3.3.7. Lemma. The (Zariski) topology on P™ xIP™ has the properties listed in Proposition|3.3.1
o The projections P™ x P™ — P™ and P™ x P™ — P™ are continuous maps.
o For all y in P™, the fibre P™ x y, with its topology induced from P™ x P", is homeomorphic to P™.

proof. We look at the projection P™ x P™ — P™. If X is the closed subset of P defined by a system of
homogeneous polynomials f;(x), its inverse image in P x P™ is the zero set of the same system, considered
as a family of bihomogeneous polynomials of degree zero in y. So the inverse image is closed.

Since the projections are continuous, it suffices, for the second proepryty, to show that the inclusion map
P™ — P x P" that sends P to P™ x y is continuous. If f(x, %) is a bihomogeneous polynomial and 3° is a
point of Y, the zero set of f in P™ x ¢ is the zero set of f(z,y°). This polynomial defines a closed subset of
P, (]

3.3.8. Proposition.

(i) A subset of P x P™ is closed if and only if it is the locus of zeros of a family of bihomogeneous polynomials.
(i) If X and Y are closed subsets of P™ and P™, respectively, then X XY is a closed subset of P™ xP™.

proof. (i) For the proof, we denote the Segre image of P™x P" by II. Let f(w) be a homogeneous polynomial
in the Segre variables w;;. When we substitute w;; = z;y, into into f, we obtain a polynomial f(x;y;) that is
bihomogeneous and that has the same degree as f in « and in y. Let’s denote that bihomogeneous polynomial
by f(x, y). The inverse image of the zero set of f in IT is the zero set of fin P™ x P™. Therefore the inverse
image of a closed subset of II is the zero set of a family of bihomogeneous polynomials in P x P™.

Conversely, let g(x,y) be a bihomogeneous polynomial, say of degreed r and s in y. If r = s, we may
collect variables that appear in g in pairs x;1; and replace each pair x;1; by w;;. We will obtain a homogeneous
polynomial G in w such that G(w) = g(z,y) when w;; = x;y;. The zero set of G in II is the image of the
zero set of g in P x P™.

Suppose that > s, and let kK = r —s. Because the variables y cannot all be zero at any point of P™, the
equation g = 0 on P™ x P™ is equivalent with the system of equations gy§ = gy¥ = --- = gy¥ = 0. The
polynomials gy¥ are bihomogeneous, of same degree in  and in y.

(ii) A polynomial f(x) can be viewed as a bihomogeneous polynomial of degree zero in y, and a polynomial
g(y) is bihomogeneous of degree zero in z. So X x Y, which is the locus f = g = 0 in A™"™, is a closed
subset of P x P, (]

3.3.9. Corollary. Let X and'Y be projective varieties, and let 11 denote the product X XY, a closed subset of
]P)’!n X ]P)n.
(i) The projections Il — X and 11 — Y are continuous.

(ii) Forall x in X and all y in'Y, the fibres xxY and X xy, with topologies induced from 11, are homeomorphic
toY and X, respectively. (I

The next corollary follows from Proposition [3.3.1]and Corollary [3.3.9]

3.3.10. Corollary. If X and Y are projective varieties, so is X XY . [l
We will come back to products in Chapter 2?.
3.4 Morphisms and Isomorphisms

(3.4.1) the function field
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Let X be a projective variety, and let X* be its intersection with the standard affine open subset U? of
projective space with coordinates xg, ..., x,,. If nonempty, X* will be an affine variety — an irreducible closed
subset of U’. Let’s omit the indices for which X? is empty. Then the intersection X = X% N X7 will be a
localization of X* and also a localization of X7. If X* = Spec A; and u;; = x;/x;, then X = Spec A;;,
and A;; = A; [u;l] =A; [uj_zl] Therefore the fraction fields of the coordinate algebras A; are equal for all ¢
such that X isn’t empty.

3.4.2. Definition. The function field K x of a projective variety X is the field of fractions of the coordinate
algebra A; of any one of its nonempty affine open subsets X = X N U’ If X’ is an open subvariety of a
projective variety X, the function field of X' is the function field of X. U

Thus all open subvarieties of a variety have the same function field. In particular, suppose that we regard
an affine variety X = Spec A asd as a closed subvariety of UY. The function field of X will be the field of
fractions of A.

A rational function on a variety X’ is an element of its function field of K.

A rational function can be evaluated at some points of X', but probably not all of them. Suppose that X’
is an open subvareity of a projective variety X, and that p is a point of the affine open set X* = Spec 4;, as
above. A rational function o on X is regular at p if it is a regular function at p on one X*. This means that one
can write « as a fraction a/b of elements of A;, with b(p) # 0. Then the value of « at p is a(p) = a(p)/b(p).

3.4.3. Lemma. a rational function « that is regular on an open subset U of X is determined by the function
it defines on U.

proof. We show that if the function is identically zero, then o = 0. For some i, the intersection U N X* will be
nonempty. We may replace U by a localization X! of X", so we may assume that U is affine, say U = Spec A.
Then what is to be proved is that if an element « of A defines the zero function, it is zero.

3.4.4. Lemma. Let A be a finite-type algebra. The intersection of the maximal ideals of A is the zero ideal.

proof. We present A as Clz1, ..., x,,]/P where P is a prime ideal. Then U becomes a closed subset of A™. Let
g(x) be a polynomial that represents «v. The function defined by alpha is restriction of the polynomial function
g to U. The Strong Nullstellensatz tells us that if g vanishes on U, it is in the prime ideal P, ans then o = 0.
O

(3.4.5) points with values in a field

Let K be a field that contains the complex numbers. A point of projective space P with values in K is an
equivalence class of nonzero vectors o = (ap, ..., &, ) With «; in K, the equivalence relation being analogous
to the one for ordinary points: « ~ o’ if &’ = Aa for some \ in K.

Let Y be a projective variety, defined by a system of polynomial equations f(y) = 0 in projective space
P". A point 3 of Y with values in K is a point of P" with values in K such that f(3) = 0. If Y is an open
subvariety with closure Y, and C' =Y — Y is the complement of Y in Y, then a point 3 of Y with values in
K is a point of Y that isn’t also a point of C.

In particular, if K is the function field of a variety X the embedding of X into projective space P"* defines
a point (o, ..., a, ) of with values in K.

(3.4.6) morphisms to projective space

For the rest of this section, it will be helpful to have a separate notation for the point with values in K
determined by a nonzero vector . We’ll denote that point by . Thus o = o if @’ = A for some nonzero A
in K. We’ll drop this notation later.

We will define a morphism from a variety Y to projective space using a point of P™ with values in the func-
tion field K of Y. When doing this, we must keep in mind that the points of projective space are equivalence
classes of vectors, not the vectors themselves. This complication turns out to be useful.

We begin with a simple example.
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3.4.7. Example. Let C be the conic in the projective plane P? defined by the poltnomial f(x¢,x1,z2) =
Tox +ToTa+2122. We project C to the projective line Lg : {xq = 0}, defining C — P! by 7(z¢, z1, x2) =
(21, x2). This formula is undefined at the point ¢ = (1,0, 0), though the map extends to the whole conic C.
The image of g is the point at which the tangent line L, to C at g intersects Ly.

Let’s write this projection using a point with values in the function field K of C. The affine open set
{zo # 0} of P? is the polynomial algebra Cluy,us], with u1 = 1 /x¢ and uz = z2/x9. We also denote
by u; the restriction of the function u; to C° = C'N U, The restricted functions are related by the equation
u1 + u2 + ujus = 0 obtained by dehomogenizing f. We solve for us:  ug = —uq /(1 + uq).

The projection is given by 7(xg, 1, z2) = m(1,ur,us) = (ur, —us /(1 +u1)) = (1 + u1,—1). The
formula (1 4 uy, —1) is defined at all points at which ¢ # 0, including g. Thus 7(q) = (1, —1).

To define 7 at the remaining points, we can look on another standard affine open set. Let v; = z;/x1,
1=0,2,and w; = x;/x2, j = 0, 1. Then (zg, 1, z2) = (vo, 1,v2) = (wg, w1, 1). The projection can also be
written as 7(x) = (1, va), which is valid provided that 21 # 0, or as w(x) = (w1, 1), which is valid provided
that x5 7é 0. U

Let & = («o, ..., ) be a nonzero vector with entries in the funcction field K of Y. We try to define a

morphism Y 2% P" from Y to projective space P™ using the point o with values in K that is defined by a.
To define the image a.(q) of a point ¢ of Y (an ordinary point), we look for a vector o = (ay), ..., al,), with
a' = a,ie., o = Ao, such that the rational functions o are all regular and not all zero at g. Such a vector
may exist or not. If it exists, we define

(3:4.8) a(q) = (ap(a), 0 (@) (=2 (a))
If such a vector o exists for every point ¢ of Y, we call « a good point.

3.4.9. Lemma. A point o of P™ with values in the function field Ky of Y is a good point if either one of the
two following conditions holds for every point q of Y :

o There is an element \ in Ky such that the rational functions ozg = Aoy, © = 0, ..., n, are regular and not
all zero at q.

o There is an index j, 0 < j < n, such that the rational functions c;/aj, j =0, ...,n, are regular at q.

proof. The first condition simply restates the definition. We show that it is equivalent with the second one.
Suppose that a;/cv; are regular at g for all 7. Let A = a7 !, and let o, = Aa; = ;/a;. The rational functions
af, are regular at g, and they aren’t all zero there because a;- =1

Conversely, suppose that o, = A are all regular at ¢ and that a;- isn’t zero there. Then 013»71 is a regular
function at g, so the rational functions ag / a;, which are equal to «;/ i, are regular at g for all 4. O

3.4.10. Lemma. With notation as in , the image «(q) of a point q is independent of the choice of the
vector o/ .

proof. Let o/ = Ao and o’ = piov. Suppose that o are all regular and not all zero at ¢, and that o} are also
regular and not all zero there. We need to show that o/ = o, and since we can replace o by pa and o’ by
=t Ao, we may assume that o’ = a, so that «’ = A« The rational functions «; and «/; are all regular at g,
and there are indices j, k such that aj(¢) and ), (¢) are nonzero. Then A = o /a; and A\~ = ay, /), are both

regular at ¢. So A(q) # 0, &/(q) = A(q)a(q), and o'(q) = a(q). O

3.4.11. Definition. Let Y be a variety with function field Ky . A morphism from Y to projective space P” is
a map that is defined, as in (3.4.8)

, by a good point o with values in Ky-. We denote that morphism by a.

3.4.12. Example. The identity map P! — P!,

Let X = P!, and let (xq, 1) be coordinates in X. The function field of X is the field K = C(t) of rational
functions in the variable ¢ = x1/xo. The identity map X — X is the map « defined by the point o = (1,¢)
with values in K. For every point p of X except the point (1,0), a(p) is defined an not zero, so a(p) = a(p).
At the point ¢ = (0,1), o’ = (t71,1) = t o defines a:  a(q) = (0,1). O
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(3.4.13) morphisms to quasiprojective varieties

3.4.14. Definition. Let Y be a variety, and let X be a subvariety of a projective space P". A morphism of
varieties Y —> X is the restriction of a morphism Y 5 P whose image is contained in X.

Thus if a projective variety X is the locus of zeros of a family f of homogeneous polynomials, a morphism
Y —=5 P" defines a morphism Y — X if f(«) = 0. This follows from Lemmam The image of Y will be
contained in X if and only if f(a(q)) = 0 for every point g of Y. If so, the lemma tells us that f(«) = 0.

A word of caution: A morphism Y —5 X won’t define a map of function fields Kx — Ky unless the
image of Y is dense in X.

3.4.15. Proposition. A morphism of varieties Y =5 X is a continuous map in the Zariski topology, and also
in the classical topology.

proof. This proposition is trivial, once one has unraveled the notation. Let U’ be the standard affine open
subset of P, and let Y be an affine open subset of the inverse image of U, If X = P™, the restriction
Y? — U’ of « is continuous in both topologies because it is a morphism of affine varieties. Since Y can be
covered by affine open sets such as Y, o is continuous. Continuity for a morphism to a subvariety X of P™
follows because the topology on X is the induced topology. U

B
3.4.16. Proposition. Let X,Y, and Z be varieties and let Z — Y and Y =5 X be morphisms. The

B
composed map 7 S Xisa morphism.

proof. Say that X is a subvariety of P”*. The morphism « is the restriction of a morphism Y — P whose
image is in X, and that is defined by a good point o, & = («, ..., @y, ) Of P™ with values in the function field
Ky of Y. Similarly, if Y is a subvariety of P”, the morphism [ is the restriction of a morphism Z — P"
whose image is contained in Y, and that is defined by a good point 3, 8 = (S, ..., B,) of P™ with values in
the function field K 7 of Z. B

Let z be a point (an ordinary point) of Z. Since 3 is a good point, we may adjust 3 by a factor in Kz
so that the rational functions 3; are regular and not all zero at z. Then () is the point (8¢(2), ..., Bn(2)) of
Y. Let’s denote that point by ¢ = (qo, ..., ¢n). S0 ¢; = f;(2). The elements «; are rational functions on Y.
We may adjust « by a factor in Ky, so that they are regular and not all zero at g. Then [af](z) = a(q) =
(0(q), -y am(q)), and a;(q) = a;j(Bo(2), .., Bu(2)) = a;(B(z)) are not all zero. When these adjustments
have been made, the point of P with values in Kz that defines a8 is (ag(8(2)), ..., am (B8(2))). O

This next is a lemma of topology.

3.4.17. Lemma. Let { X'} be a covering of a topological space X by open sets. A subsetY of X is open (or
closed) if and only if Y N X" is open (or closed) in X' for every i. In particular, if {U'} is the standard affine
cover of P, a subset Y of P™ is open (or closed) if and only if Y NU? is open (or closed) in U* for every i. O

3.4.18. Lemma.
(i) The inclusion of an open or a closed subvariety Y into a variety X is a morphism.

(ii) Let Y Jox be a map whose image lies in an open or a closed subvariety Z of X. Then f is a morphism
if and only if its restriction Y — Z is a morphism.

(iii) Let {Y''} be open an open covering of a variety Y, and let Y L X be morphisms. If the restrictions of
f"and fI to the intersections Y' NY7 are equal for all i, j, there is a unique morphism | whose restriction to
Yiis f.

Part (iii) is trivial because the points with vals in K are the same. We omit the proofs of (i) and ((ii). O

(3.4.19) isomorphisms

A bijective morphism Y — X of quasiprojective varieties is an isomorphism if its inverse function is
also a morphism. Isomorphisms are important because they allow us to identify different incarnations of the
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“same variety”, i.e., to describe an isomorphism class of varieties. The projective line P!, a conic in P2, and
the twisted cubic in P are isomorphic varieties, for example.

3.4.20. Example. Let Y denote the projective line, with coordinates g, 1. As before, the function field of
Y is the field K = C(t) of rational functions in ¢t = y; /9. The degree 3 Veronese map ¥ — P? (3.1.16)
defines an isomorphism of Y to its image, a twisted cubic X. The Veronese map is defined by the point
a = (1,t,t2,¢3) of P? with values in K. On the open set {yo # 0} of Y, the rational functions 1,¢,2,t3 are
regular and not all zero. Let A = ¢t =3 and o/ = Aa = (t73,¢t72,¢71, 1). The functions ¢t ~* are regular on the

open set {y1 # 0}. So « is a good point that defines a morphism Y = X.
The twisted cubic X is the locus of zeros of the equations (3.1.17).

VoV2 = U% ; V201 = VU3 , V1V3 = U%
To identify the function field F' of X, we put vy = 1, obtaining relations vy = v?,v3 = v§. Then F is the field
C(v1). The point of Y = IP* with values in F that defines the inverse of the morphism ais 8 = (1,v1). O
3421 Lemma. Ler Y L5 X be a morphism of varieties, let {X'} be an open covering of X, and let
Y? = f~1 X" Ifthe restrictions Y j—1> X' of f are isomorphisms, then f is an isomorphism.
prooi. Let g' denote the inverse of the morphism f?. Then g' = ¢ on X’ N X7 because fi = ffon Y N Y7,

By (3.4.18) (iii), there is a unique morphism X %5 Y whose restriction to Y is g¢. That morphism is the
inverse of f. O

(3.4.22) the diagonal

Let X be a variety. The diagonal X A is the set of points (p, p) in X x X. It is a subset of X x X that is closed
in the Zariski topology, but not in the product topology.

3.4.23. Proposition. Let X be a variety. The diagonal X is a closed subvariety of the product variety
X xX.

proof. Let P denote the projective space P™ that contains X, and let xg, ..., z,, and ¥, ..., Yy, be coordinates in
the two factors of P x P. The diagonal P in P x P is the closed subvariety defined by the bilinear equations
x;Y; = ;¥ or in the Segre variables, by the equations w;; = wj;, which show that the ratios ;/z; and
¥/ y; are equal.

Next, suppose that X is the closed subvariety of P defined by a system of homogeneous equations f(x) =
0. The diagonal X A can be identified as the intersection of the product X x X with the diagonal P in PxP, so
itis a closed subvariety of X x X. As a closed subvariety of PxIP, the diagonal X  is defined by the equations

(3.4.24) zy; =x;y; and f(z)=0
The equations f(y) = 0 are redundant. Finally, X s is irreducible because it is homeomorphic to X . O

It is interesting to compare Proposition [3.4.23] with the Hausdorff condition for a topological space. The
proof of the next lemma is often assigned as an exercise in topology.

3.4.25. Lemma. A topological space X is a Hausdorff space if and only if, when X x X is given the product
topology, the diagonal X A is a closed subset of X x X. O

Though a variety X with its Zariski topology isn’t a Hausdorff space unless it is a point, Lemma [3.4.23)
doesn’t contradict Proposition[3.4.23|because the Zariski topology on X x X is finer than the product topology.

(3.4.26)  the graph of a morphism

LetY L5 X bea morphism of varieties. The graph I" of f is the subset of Y x X of pairs (g, p) such that
p=f(q)
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3.4.27. Proposition. The graph I'y of a morphism Y i> X is a closed subvariety of Y x X, and it is
isomorphicto Y.

proof. We form a diagram of morphisms

I} —— YxX

(3.4.28) l lfxz’d
Xp — XxX

where v sends a point (g, p) of I'y with f(g) = pto (p,p). The graph I'; is the inverse image in Y x X of the
diagonal X A. Since the diagonal is closed in X x X, 'y is closedin ¥ x X.

Let 7, denote the projection from X x Y to Y. The composition of the morphisms Y’ WDy x ™y

is the identity map on Y, and the image of the map (id, f) is the graph I' ;. Therefore ¥ maps bijectively to
I'y. The twomaps Y — I'y and I'y — Y are inverses, so I'y is isomorphic to Y. O

(3.4.29)  projection
The map
(3.4.30) pr Ly prnl

that drops the last coordinate of a point: 7 (xo, ..., ) = (Zo, ..., T,—1) is called a projection. It is defined at
all points of P™ except at the point ¢ = (0, ...,0, 1). This point is called the center of projection. So = is a
morphism from the complement U = P" — {g} to P"~1.

Let the coordinates in P* and P"~! be x = x, ..., Z,, and y = yo, ..., Yn_1, respectively. The fibre 71 (y)
over a point (yo, ..., yn_1) is the set of points (2o, ..., Z,,) such that (zg,...,7n_1) = (Ayo, ..., \yn_1), While
Xy, is arbitrary. It is the line in P™ through the points (y1, ..., yn—1,0) and ¢ = (0, ..., 0, 1), with the center of
projection ¢ omitted.

The graph I of 7 in U><IP’Z_1 is the locus of solutions of the equations w;; = w;; for 0<7, j <n—1, which

imply that the vectors (2, ..., ,—1) and (Yo, ..., yn_1) are proportional.

3.4.31. Proposition. In P} x IP’Z_l, the locus T of the equations x;y; = z;yi, or w;; = wj;, with 0 < i,j <
n — 1, is the closure of the graph I of .

proof. The equations are true at points (x,y) of I' at which 2 # ¢, and also at all points (g, ). So the locus T,
a closed set, is the union of the graph I" and the set ¢ x P"~1. We must show that a homogeneous polynomial
g(w) that vanishes on I" vanishes at all points of ¢ x P*~1. Given y, let z = (tyo, ..., ty,_1,1). Forall t # 0,
the point (z,y) is in I" and therefore g(x, y) = 0. Since ¢ is a continuous function, ¢g(z,y) approaches g(q, y)
ast — 0. So g(q,y) = 0. O

The projection I' — P that sends a point (z,y) to x is bijective except when & = q. The fibre over g,
which is gx]P)”‘l, is a projective space of dimension n—1. Because the point g of P" is replaced by a projective
space in I, the map I' — P7} is called a blowup of the point q.

figure: projection with closure of graph??

o axp
3.4.32. Proposition. Let Y — X and Z ﬁ) W be morphisms of varieties. The product map Y X Z $

X xW that sends (y, z) to (a(y), B(2)) is a morphism

proof. Let p and ¢ be points of X and Y, respectively. We may assume that «; are regular and not all zero
at p and that /3; are regular and not all zero at g. Then, in the Segre coordinates w;;, [a X 3](p,q) is the
point w;; = a;(p)B;(q). The fact that a;3; are all regular at (p, ¢) and are not all zero there follows from the
analogous properties of a; and 3;. U

(3.4.33) digression: the function field of a product
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To define the function field of a product X XY of projective varieties, one can use the Segre embedding
P x PZS — PN, We use notation as in , and let’s denote the product X xY by II. So x;, y;, and
w;; are coordinates in the three projective spaces, and the Segre map is defined by w;; = z;y;. Let U*, V/,
and W% be the standard affine open sets z; # 0, y; # 0 and w;; # 0. The function field will be the field
of fractions of the nonempty intersections II N W4 = T1%, and TIY ~ X*x Y7, where X = X N U* and
Y7/ =Y NV, Since I1¥, X%, and Y7 are affine varieties, the function field of the product IT = X x Y is the
field of fractions of any one of the nonempty affine open sets IT°7.

Since IT¥ = X? N Y7, all that remains to do is to describe the field of fractions of a product of affine
varieties IT = X XY, when X = Spec A and Y = Spec B. If A = C[z]/P and B = CJ[y]/Q, the coordinate
algebra of II is the algebra C[z, y]/(P, Q). This is the tensor product algebra A ® B. We don’t need to know
much about the tensor product algebra here, but let’s use the tensor notation.

The function field K x of X is the field of fractions of the coordinate algebra A. Similarly, Ky is the field
of fractions of B and K x«y is the field of fractions of A ® B. The one important fact to note is that K xxy
isn’t generated by K x and Ky. For example, if A = C[z] and B = C[y] (one x and one y), then K xyy is
the field of rational functions in two variables C(z, y). The algebra generated by the fraction fields C(x) and
C(y) consists of the rational functions p(z, y)/q(x, y) in which g(z, y) is a product f(x)g(y) of a polynomial
in z and a polynomial in y. Most rational functions, 1/(z + y) for example, aren’t of this type.

But, K xyy is the fraction field of A ® B.

(3.4.34) digression: rational functions on projective space
Let R denote the polynomial ring C|xo, ..., 2,]. If f is a homogeneous polynomial of positive degree d, it

makes sense to say that f vanishes at a point of P™, because f(\z) = A?f(z). But f doesn’t define a function
on P". On the other hand, a fraction g/h of homogeneous polynomials of the same degree d does define a
function wherever h isn’t zero, because

g(\z)/h(Az) = Xg(x)/A*h(z) = g(x)/h()

A homogeneous fraction f is a fraction of homogeneous polynomials. The degree of a homogeneous
fraction f = g/h is the difference of degrees: deg f = deg g — deg h.

3.4.35. Definition. A homogeneous fraction f is regular at a point p of P™ if, when it is written as a fraction
g/h of relatively prime homogeneous polynomials, the denominator h isn’t zero at p, and f is regular on a
subset U if it is regular at every point of U. (]

This definition agrees with the one given above, in Definition[3.4.2]

3.4.36. Lemma. (i) Let h be a homogeneous polynomial of positive degree d, and let V' be the open subset of
P™, of points at which h isn’t zero. The nonzero rational functions that are regular on 'V are those of the form
g/h¥, where k > 0 and g is a homogeneous polynomial of degree dk.

(ii) The only rational functions that are regular at every point of P™ are the constant functions.

For example, the homogeneous polynomials that are nonzero at every point of the standard affine open set
UV are the scalar multiples of powers of zy. So the rational functions that are regular on U are those of the
form g/zf, g homogeneous of degree k. This agrees with the fact that the coordinate algebra of U° is the
polynomial ring Cluy, ..., u,,], with u; = x;/x0:  g(0, -, T )/k = g(Uo, ..., up) (With ug = 1).

proof of Lemma (i) Let a be a regular function on the open set U, say g1 /h1, where g1 and h; are
relatively prime homogeneous polynomials. Then h; doesn’t vanish on U, so its zero locus in P™ is contained
in the zero locus of h. According to the Strong Nullstellensatz [3.2.7| h; divides a power of h, say h* = fh;.

Then g1 /h1 = fg1/fh1 = fg1/h".

(ii) If a rational function f is regular at every point of P”, then it is regular on U°. It will have the form g/xf,
g has degree k and isn’t divisible by 9. And since f is also regular on U, it will have the form h/z!, where
x1 doesn’t divide h. Then gz{ = hzk. Since z¢ doesn’t divide g, k = 0. Then g is a constant, and f = g. [

It is also true that the only rational functions on a projective variety X that are regular at every point of X
are the constant functions. The proof of this will be given later (see Corollary [8.4.8). The constant functions
are useless, so one has to look at at regular functions on open subsets. One way that affine varieties appear in
projective algebraic geometry is as open subsets on which there are enough regular functions.
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3.5 Affine Varieties

We have used the term ’affine variety’ in several contexts:

A closed subset of affine space A is an affine variety, the set of zeros of a prime ideal P of C[z]. Its
coordinate algebra is A = C[z]/P.

The spectrum Spec A of a finite type domain A is an affine variety that becomes a closed subvariety of
affine space when one chooses a presentation A = C[z]/P.

An affine variety becomes a quasiprojective variety by identifying the ambient affine space A™ with the
open subset U° of projective space.

We combine these definitions now: An affine variety X is a variety that is isomorphic to a variety of the
form Spec A.

If X = Spec A is an affine variety with function field K, its coordinate algebra A will be the subalgebra of
K of regular functions on X. So A and therefore Spec A, are determined uniquely by X, and the isomorphism
Spec A — X is determined uniquely too. When X is affine, it seems permissible to identify X with Spec A.

3.5.1) regular functions on affine varieties

Let X = Spec A be an affine variety. Its function field K is the field of fractions of A. A rational function
« is regular at a point p of X if it can be written as a fraction a/s where a, s are in A and s(p) # 0, and « is
regular on X if it is regular at every point of X. On the other hand, in Chapter 2] 2.7.1)), « is defined to be a
regular function on X if and only if it is an element of the coordinate algebra A. The next lemma shows that
the two conditions are equivalent.

3.5.2. Lemma. The regular functions on an affine variety X = Spec A, as defined in (3.4.2), are the elements
of its coordinate algebra A.

proof. Let o be a regular function on X, as defined above. So for every point p of X, there is a localization
Xs = Spec A; that contains p, such that « is an element of A;. Because X is quasicompact, a finite set of
these localizations, say X, ,...,Xs,, will cover X. Then sy, ..., s; have no common zeros on X, so they
generate the unit ideal of A. Since o is in A,,, we can write o« = s; "b; with b; in A, and we can use the
same exponent n for all i. Since the elements s; generate the unit ideal of A, so do the powers s}'. Say that
> sta; =1, witha; in A. Then a = Y sPa;a = )~ a;b; is in A. O

3.5.3. Proposition.
(i) Let R be the algebra of regular functions on a variety Y, and let A be a finite-type domain. A homomor-

phism A — R defines a morphism'Y N Spec A.

(i) When X and Y are affine varieties, say X = Spec A and Y = Spec B, morphisms Y — X, as defined
in Definition[3.4.14| correspond bijectively to algebra homomorphisms A — B, as in Definition[2.7.5]

Note. Since Y isn’t affine, all that we know about the algebra R is that its elements are rational functions that
are regularon Y.

proof of Proposition (i) Let {Y*} be an affine open covering of Y, and let R; be the coordinate algebra

of Y. The inclusions A C R C R; define morphisms Y? = Spec R; AN Spec A. Itis true that f* = f7 on
YN Y7, so Lemmal3.4.18|(iii) applies. O

3.5.4. Lemma. Let X and Y be affine varieties, say X = Spec A and Y = Spec B. Morphisms Y — X,
as defined in (13.4.1 ]l) and (13.4.1 4[), correspond bijectively to algebra homomorphisms A 5 B.

proof. We choose a presentation of A, to embed X as a closed subvariety of affine space, and we identify
that affine space with the standard affine open set UY of P". Let K be the function field of Y — the field of
fractions of B. A morphism Y — X is determined by a good point o with values in K, and since o # 0,
we may suppose that this point has the form o = («p, ...., &, ). Then the rational functions «; /g = «; will
be regular at every point of Y. So they are elements of B. The coordinate algebra A of X is generated by
the residues of the coordinate variables 1, ..., x,, with zg = 1. Sending x; — «; defines a homomorphism
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A% B. Conversely, if ¢ is such a homomorphism, the good point that defines the morphism Y —= X is
(17g0(l'1),790($n)) O

3.5.5) affine open subsets

An affine open subset of a variety X is an open subset that is an affine variety. If V' is a nonempty open
subset of X and R is the algebra of rational functions that are regular on V/, then V' is an affine open subset if
and only if R is a finite-type domain, and V' is isomorphic to Spec R.

3.5.6. Proposition. The complement of a hypersurface is an affine open subvariety of P™.

proof. Let V be the complement of the hypersurface {f = 0}, where f is an irreducible homogeneous
polynomial of degree d, let R be the algebra of regular functions on V, and let K be its fraction de field.

The regular functions on V' are the homogeneous fractions of degree zero of the form g/ f* , and
the fractions m/ f, where m is a monomial of degree d, generate R. Since there are finitely many monomials
of degree d, R is a finite-type domain. Let w be an arbitrary monomial of degree d — 1, and let s; = x;w/ f.
The point (xg, ..., x,) of V can also be written as (sg, ..., S5, ), and the fractions s; are among the generators
for R. So (sg, ..., S,) is a point of W = Spec R with values in K that defines a morphism W =5 V. We
show that z is an isomorphism.

3.5.7. Lemma. Let U’ be the standard affine open subset of P™. With s; as above, the intersection V' = VU
is isomorphic to the localization W, of W.

proof. Say thati = 0, and let s = sp = xd/f and t = s~ = f/zd. Let A be the coordinate algebra of U°.
Then V0 = V N U is the set of points of U° at which ¢ isn’t zero. Its coordinate algebra is the localization
Ay, and V0 is the affine variety Spec A;.

It suffices to show that A, = R,. With coordinates u; = x; /xq for U°, a fraction m/f, where m =
xj, -+ xj,, can be written as (uj, - - - u;,)/t. These fractions generate R, so R C Ay, and since s~ = ¢ is
in A;, Ry C A,;. For the other inclusion, we write u; = (xjngl /1) s~1. This is an element of R, because
qu:g_l/f is in R. Therefore A C R, and A; C R,. So A; = Ry, as claimed. O

We go back to the proof of Proposition The sets Vi = V N U’ fori = 0,...,n cover V, and the
morphism 2 restricts to an isomorphism V¢ — Spec R,,. So the morphism z defined above is an isomorphism

@E.421). O
3.5.8. Lemma. The affine open subsets of a variety X form a basis for the topology on X. U

3.5.9. Theorem Let U and V' be affine open subvarieties of a variety X, say U =~ Spec A and V = Spec B.
The intersection U NV is an affine open subvariety. Its coordinate algebra is generated by the two algebras

A and B.

proof. We will denote the algebra generated by two subalgebras A and B of the function field K of X by
[A, B]. The elements of [A, B] are finite sums of products of elements of A and B. If A = C[a], a = a4, ..., ar,
and B = C[b], b = by, ..., bs, then [A, B] is the finite-type subalgebra of K generated by the set a U b.

Let R = [A, B] and let W = Spec R. We are to show that W is isomorphic to U N V. The inclusions of
coordinate algebras A — R and B — R give us morphisms W — U and W — V. We also have inclusions
U C X and V C X, and X is a subvariety of a projective space P".

Let o be the point of P with values in K that defines the projective embedding X —Z P". The varieties
U, V, W, X have the same function field K, and « also defines the morphisms U — P™ and V' — P obtained
by restricting the embedding ¢ of X.

The maps from U and V' to P” defined by « are restrictions of . The variety W also has function field
K, and « defines a morphism W %, P" that can be obtained either as the composition W — U — X, or as
W — V — X. Soits image is in U N V. This gives us a morphism W —— U N V. We show that € is an
isomorphism.

Let p be a point of U N V. We choose an affine open subset Z of U N V that is a localization of U and of
V, and that contains p (2.6.2))(ii). Let S be the coordinate ring of Z. So S = A, for some nonzero s in A and
also S = B, for some nonzero t in B. Then

R, =[A,Bls = [As, B = [B;, B = B; = §
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So e maps the localization W = Spec R, of W isomorphically to the open subset Z of U N V. Since we can
cover U NV by open sets such as Z, Lemma [3.4.18](ii) shows that € is an isomorphism. (]

3.6 Lines in Projective Three-Space

The Grassmanian G(m,n) is a variety whose points correspond to subspaces of dimension m of the vector
space C", and to linear subspaces of dimension m —1 of P"~1. One says that G(m,n) parametrizes those
subspaces. For example, the Grassmanian G(1,n+ 1) is the projective space P"*. Points of P parametrize
one-dimensional subspaces of C" 11,

The Grassmanian G/(2,4) parametrizes two-dimensional subspaces of C*, and lines in P2, In this section
we describe this Grassmanian, which we denote by G. The point of G that corresponds to a line £ in P3 will
be denoted by [¢].

One can get some insight into the structure of G using row reduction. Let V' = C*, let u, u» be a basis
of a two-dimensional subspace U of V and let M be the 2 x 4 matrix whose rows are ui,us. The rows of
the matrix M’ obtained from M by row reduction span the same space U, and the row-reduced matrix M’ is
uniquely determined by U. Provided that the left hand 2 x 2 submatrix of M is invertible, M’ will have the
form

, (1 0 *x =*
(3.6.1) M_(O 1« *>

So the Grassmanian G contains, as an open subset, a four-dimensional affine space whose coordinates are the
variable entries of M’.

In any 2 x4 matrix M with independent rows, some pair of columns will be independent. Those columns
can be used in place of the first two in a row reduction. So G is covered by six four-dimensional affine spaces
that we denote by Wi/, 1 <i < j <4, W% being the space of 2 x 4 matrices such that column; = (1,0)! and
column; = (0,1)%. Since P* and the Grassmanian are both covered by affine spaces of dimension four, they
may seem similar, but they aren’t the same.

(3.6.2) the exterior algebra

Let V be a complex vector space. The exterior algebra \ V (read ‘wedge V) is a noncommutative ring
that contains the complex numbers and is generated by the elements of V, with the relations

(3.6.3) vw = —wv forall v,w in V.
3.6.4. Lemma. The condition is equivalent with: vv = 0 for all v in V.

proof- To get vu = 0 from (3.6.3)), one sets w = v. Suppose that vv = 0 for all v in V. Then (v+w)(v+w)
vv = ww = 0, and since (v+w)(v+w) = Vv + vw + wWv + ww, Vw + wv = 0.

Ol

To familiarize yourself with computation in A V, verify that vovzvivs = v1vav3v4 and that vavzv4vy
—V1V20V3V4.

Let A" V denote the subspace of /\ V spanned by products of length  of elements of V. The exterior algebra
A\ 'V is the direct sum of the subspaces /\" V. An algebra A that is a direct sum of subspaces A?, and such that
multiplication maps A*x A7 to A"*7 is called a graded algebra. Since its multiplication law isn’t commutative,
the exterior algebra is a noncommutative graded algebra.

3.6.5. Proposition. If (v1,...,vy,) is a basis for V, the products v;, - - - v;,. of length r with increasing indices
iy <ig < -+ < i, forma basis for \" V.

The proof is at the end of the section.

3.6.6. Corollary. Let vy, ..., v, be elements of V. The product vy - --v, in \" V is zero if and only if the set
(v1, ..., v,.) is dependent. O

For the rest of the section, we let V' be a vector space of dimension four with basis (vy, ..., v4). Proposition
3.6.5[tells us that
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(3.6.7)
A’V = C is a space of dimension 1, with basis {1}
A'V = V is a space of dimension 4, with basis {vy, vy, v3, 04}
/\2 V is a space of dimension 6, with basis {v,v; | < j} = {v1ve, V103, V104, V2vs, V2V4, VU4 }
/\3 V is a space of dimension 4, with basis {v,v;v; |7 < j < k} = {v1v2v3, V10204, V1304, V2V3V4 }
/\4 V is a space of dimension 1, with basis {v;vav3v4}
A?V =0 when g > 4

The elements of /\2 V' are combinations

(368) w = Zaijvivj

i<j

We regard /\2 V' as an affine space of dimension 6, identifying the combination w with the vector whose
coordinates are the six coefficients a;; (¢ < j). We use the same symbol w to denote the point of the projective
space IP° with those coordinates: w = (a12, a13, @14, @23, a4, a34).

3.6.9. Definition. An element w of /\2 V' is decomposable if it is a product of two elements of V.

3.6.10. Proposition. The decomposable elements w =), _ j @ijviv; of /\2 V' are those such that ww = 0,
and the relation ww = 0 is given by the following equation in the coefficients a;;:

(3.6.11) (12034 — Q13024 + 14023 = 0

proof. If w is decomposable, say w = u1usz, then w? = ujusuius = —u3u3 is zero because u3 = 0. For the

converse, we compute w? when w = 2 _i<j @ijviv;. The answer is
ww = 2(a12a34 — A13024 + A14023) V1 V2V3V4

To show that w is decomposable if w? = 0, it seems simplest to factor w explictly. Since the assertion is
trivial when w = 0, we may suppose that some coefficient of w, say a9, is nonzero. Then if w? = 0, w is the
product

1
(3.6.12) W= — (a12v2 + a13v3 + a14vs) ( — a12v1 + az3v3 + azqvy) O
12

3.6.13. Corollary. (i) Let w be a nonzero decomposable element of /\2 V, say w = ujus, withu; in' V. Then
(u1,us2) is a basis for a two-dimensional subspace of V.

(i) If (u1, uz) and (u}, uh) are bases for the same subspace U of V, then w = ujug and w' = v} ul differ by
a scalar factor. Their coefficients represent the same point of P°.

(iii) Let u1,ug be a basis for a two-dimensional subspace U of V, and let w = ujus. The rule e(U) = w
defines a bijection € from G to the quadric Q in P> whose equation is (3.6.11)).

Thus G can be represented as the quadric (3.6.11)).

proof. (i) If an element w of /\2 V' is decomposable, say w = wujug, and if w is nonzero, then u; and us must
be independent (3.6.6). They span a two-dimensional subspace.

(ii) When we write the second basis in terms of the first one, say (u}, u}) = (aui+bua, cugtdus), the product
u)ub, becomes (ad—bc)ujug, and ad—be # 0.

(iii) In view of (i) and (ii), all that remains to show is that, if (u1,us) and (u},u}) are bases for distinct
two-dimensional subspaces U and U’, then ujug # u)uh in /\2 V.

Since U # U’, the intersection W = U N U’ has dimension at most 1, o at least three of the vecotrs
Uy, ug, uj, uh will be independent. Therefore ujus # u}ub. O

For the rest of this section, we use the algebraic dimension of a variety, a concept that will be studied in
the next chapter. We refer to the algebraic dimension simply as the dimension. The dimension of a variety X

can be defined as the length d of the longest chain Cy > C7 > --- > Cj of closed subvarieties of X.
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As was mentioned in Chapter|[T] the topological dimension of X its dimension in the classical topology, is
always twice the algebraic dimension. Because the Grassmanian G is covered by affine spaces of dimension
4, its algebraic dimension is 4 and its topological dimension is 8.

3.6.14. Proposition. Let P be the projective space associated to a four dimensional vector space V. In the
product P2 x G, the locus T of pairs p,[{] such that the point p of P? lies on the line { is a closed subset of
dimension 5.

proof. Let £ be the line in P? that corresponds to the subspace U with basis (u1, uz), and say that p represented
by the vector x in V. Let w = ujus. Then p € £ means x € U, which is true if and only if (x, uq, us) is a
dependent set, and this happens if and only if xw = 0 . So T is the closed subset of points (xz, w) of
IP3 x P® defined by the bihomogeneous equations w? = 0 and zw = 0.

When we project I" to G, The fibre over a point [¢] of G is the set of points p, [¢] such that p is a point of the
line . The fibre over the point [¢] of G is the line ¢. Thus I can be viewed as a family of lines, parametrized
by the four-dimensional variety G. Its dimension is dim ¢ + dimG =1+4 = 5. O

(3.6.15) lines on a surface

One may ask whether or not a given surface in P2 contains a line. One surface that contains lines is the quadric
Q in P with equation wg; w19 = woow11, the image of the Segre embedding P!x P! — P23 (3.1.7). It contains
two families of lines, corresponding to the two “rulings” p x P! and P! x q of P! x P!. There are surfaces of
arbitrary degree that contain lines, but, that a generic surface of degree four or more doesn’t contain any line.

We use coordinates x; with i = 1,2, 3,4 for P here. There are N = (dgs) monomials of degree d in four

variables, so homogeneous polynomials of degree d are parametrized by an affine space of dimension NV, and
surfaces of degree d in P? by a projective space of dimension N —1. Let S denote that projective space, and
let [S] denote the point of S that corresponds to a surface S. The coordinates of [S] are the coefficients of the
monomials in the defining polynomial f of S. Speaking infomally, we say that a point of S “is” a surface of
degree d in P3. (When f is reducible, its zero locus isn’t a variety. Let’s not worry about this.)

Consider the line ¢y defined by 235 = x4 = 0. Its points are those of the form (z1,x2,0,0), so a surface
S : {f = 0} will contain ¢ if and only if f(x1,z2,0,0) = 0 for all 1, 5. Substituting z3 = x4 = 0 into f
leaves us with a polynomial in two variables:

(3.6.16) f(z1,22,0,0) = coxl + clxl Ypg 4o cdxg,

where the coefficients ¢; are among the coefficients of the polynomial f. If f(z1,z2,0,0) is identically zero,
all of its coefficients must be zero. So the surfaces that contain ¢y correspond to the points of the linear
subspace L of S defined by the equations ¢y = - - - = ¢4 = 0. Its dimension is (N —1)—(d+1) = N—d—2.
This is a satisfactory answer to the question of which surfaces contain ¢j, and we can use it to make a guess
about lines in a generic surface of degree d.

3.6.17. Lemma. In the product variety G XS, the set T of pairs [(],]S] such that £ C S is a closed subset.

proof. Let W¥, 1 <i < j <4 denote the six affine spaces that cover the Grassmanian, as at the beginning of
this section. It suffices to show that the intersection '/ = T' N (W% x S) is closed in W x S (3.4.17). We
inspect the case ¢, 7 = 1, 2.

A line ¢ such that [¢] is in W12 corresponds to a subspace of C? with basis of the form u; = (1,0, az, a3),
ug = (0,1, bo, b3) and £ is the line {ruj + sus}. Let f(x1, 22, 23, 24) be the polynomial that defines a surface
S. The line ¢ is contained in S if and only if f(r,s,ras + sbe,ras + sbs) is zero for all r and s. This is a
homogeneous polynomial of degree din 7, s. Let’s call it f(r s). If we write f(r s) = zor?+ zlrd st

2459, the coefficients z, will be polynomials in a;, b; and in the coefficients of f. The locus zy = =29=0
is the closed set I''2 of W!2 x S. O

The set of surfaces that contain our special line ¢y corresponds to the linear space Ly of S of dimension
N—d—2, and £, can be carried to any other line £ by a linear map P> — P2. So the sufaces that contain another
line ¢ also form a linear subspace of S of dimension N —d—2. They are the fibres of I" over G. The dimension
of the Grassmanian G is 4. Therefore the dimension of ' is dimI" = dimLy +dimG = (N—-d—2) + 4.
Since S has dimension N —1,

(3.6.18) dimT = dimS —d + 3.
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We project the product G x S and its subvariety I" to S. The fibre of I" over a point [S] is the set of pairs
[],[S] such that £ is contained in S — the set of lines in S.

When the degree d of the surfaces we are studying is 1, dimI" = dim S+ 2. Every fibre of I" over S will
have dimension at least 2. In fact, every fibre has dimension equal to 2. Surfaces of degree 1 are planes, and
the lines in a plane form a two-dimensional family.

When d = 2, dim ' = dim S+ 1. We can expect that most fibres of I" over S will have dimension 1. This
is true: A smooth quadric contains two one-dimensional families of lines. (All smooth quadrics are equivalent
with the quadric .) But if a quadratic polynomial f(z1, 22, x3,24) is the product of linear polynomials,
its locus of zeros will be a union of planes. It will contain two-dimensional families of lines. Some fibres have
dimension 2.

When d > 4, dim " < dimS. The projection I' — S cannot be surjective. Most surfaces of degree 4 or
more contain no lines.

The most interesting case is that d = 3. In this case, dimI" = dim'S. Most fibres will have dimension
zero. They will be finite sets. In fact, a generic cubic surface contains 27 lines. We have to wait to see why the
number is precisely 27 (see Theorem[4.9.17).

Our conclusions are intuitively plausible, but to be sure about them, we need to study dimension carefully.
We do this in the next chapters.

proof of Proposition Let v = (v1, ..., v,) be a basis of the vector space V. The proposition asserts that
the products v;, - - - v; . of length r with increasing indices ¢; < i3 < --- < 4, form a basis for /\T V.

To prove this, we need to be more precise about the definition of the exterior algebra A\ V. We start with
the algebra 7'(V') of noncommutative polynomials in the basis v, which is also called the fensor algebra on
V. The part T"(V') of T(V') of degree r has as basis the n” noncommutative monomials of degree 7, products
v;, - -+ v;, of length r of elements of the basis v. Its dimension is n". When n = r = 2, T?(V) the basis is
(22, 2170, w271, T3).

The exterior algebra /\ V' is the quotient of 7'(V') obtained by forcing the relations vw+wv = 0 (3.6.3).
Using the distributive law, one sees that the relations v;v; +v;v; = 0, 1 <14, j <n, are sufficient to define this
quotient. The relations v;v; = 0 are included when 7 = j.

To obtain A" V, we multiply the relations v;v;+v;v; on left and right by arbitrary noncommutative mono-
mials p and ¢ in vy, ..., v, whose degrees add to r —2. The noncommutative polynomials

(3.6.19) p(vivj+v;v;)q

span the kernel of the linear map 7" (V) — A" V. Soin A" V, p(v;v;)g = —p(v;v;)q. Using these relations,
any product v;, ---v;, in /" V is, up to sign, equal to a product in which the elements v;, are listed in
increasing order. Thus the products with indices in increasing order span /\" V, and because v;v; = 0, such a
product will be zero unless the indices are strictly increasing.

We go to the proof now. Let v = (vy, ..., v, ) be a basis for V. We show first that the product w = vy - - - vy,
in increasing order of the basis elements of V' is a basis of A" V. We have shown that this product spans
A"V, and it remains to show that w # 0, or that A" V # 0.

Let’s use multi-index notation: (i) = (i1, ..., %), and vy = v;, - --v;,. We define a surjective linear map
T™(V) % C on the basis of 7"(V) of products vy = (i, -+~ vy, ) of length n. If there is no repetition
among the indices i1, ..., i,,, then (i) will be a permutation of the indices 1, ..., n. In that case, we set p(v(;)) =
@(vi, - -+ v;,) = sign(i). If there is a repetition, we set p(v(;)) = 0.

Let p and ¢ be noncommutative monomials whose degrees add to n—2. If the product p(v;v;)g has no
repeated index, the indices in p(v;v;)q and p(v;v;)g will be permutations of 1, ..., n, and those permutations
will have opposite signs. Then p(v;v; + v;v;)g will be in the kernel of . Since these elements span the space
of relations,  defines a surjective linear map A" V — C. Therefore A" V # 0.

To prove (3.6.5)), we must show that for r < n, the products v;, - - - v;, with iy < iy < --- < i, form a basis
for \" V, and we know that those products span A" V. We must show that they are independent. Suppose
that a combination z = ) ¢(;)v;) is zero, the sum being over sets of strictly increasing indices. We choose a
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set (41, ..., Jr) of strictly increasing indices, and we let (k) = (k1, ..., k,—.) be the set of indices not occuring
in (j), listed in arbitrary order. Then all terms in the sum zv ) = > C(i)V(i)V (k) Will be zero except the term
with (i) = (j). On the other hand, since z = 0, zv) = 0. Therefore c(jyv(;yv(x) = 0, and since v(;)v(x)
differs by sign from vy - - - v, it isn’t zero. It follows that c(;y = 0. This is true for all (j), so z = 0. O
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Chapter 4 INTEGRAL MORPHISMS OF AFFINE VARIETIES

The Nakayama Lemma

Integral Extensions
Normalization

Geometry of Integral Morphisms
Finite Group Actions IT
Chevalley’s Finiteness Theorem
Dimension
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Krull’s Theorem
Double Planes
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The concept of an algebraic integer was one of the most important ideas contributing to the development
of algebraic number theory in the 19th century. Then, largely through the work of Noether and Zariski, an
analog was seen to be essential in algebraic geometry. We study this analog here.

4.1 The Nakayama Lemma
4.1.1) eigenvectors

It won’t surprise you that eigenvectors are important, but the way that they are used to study modules may
be unfamiliar.

Let P be an n x n matrix with entries in a ring A. The concept of an eigenvector for P makes sense when
the entries of a vector are in an A-module. A column vector v = (v, ..., v,)" with entries in a module M is
an eigenvector of P with eigenvalue ) if Pv = Av.

When the entries of a vector are in a module, it becomes hard to adapt the usual requirement that an
eigenvector must be nonzero, so we drop it, though the zero eigenvector tells us nothing.

4.1.2. Lemma. Let p(t) be the characteristic polynomial det (tI — P) of a square matrix P. If v is an
eigenvector of P with eigenvalue ), then p(\)v = 0.

The usual proof, in which one multiplies the equation (A\]—P)v = 0 by the cofactor matrix of (A\[—P), carries
over. g

This lemma is a cornerstone of the theory of modules:

4.1.3. Nakayama Lemma. Let M be a finite module over a ring A, and let J be an ideal of A such that
M = JM. There is an element z in J such that m = zm for all m in M, or such that (1—z)M = 0.

It is always true that M/ D JM, so the hypothesis M = JM can be replaced by M C JM.
proof. By definition, JM denotes the set of (finite) sums > a;m; with a; in J and m; in M.

Let v1, ..., v, be generators for the finite A-module M, and let v be the vector (vy, ...,v,)t. The equation
M = JM tells us that there are elements p;; in J such that v; = 3 p;;v;. In matrix notation, v = Pv. So
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v is an eigenvector of P with eigenvalue 1, and if p(t) is the characteristic polynomial of P, then p(1)v = 0.
Since the entries of P are in J, inspection of the determinant of I — P shows that p(1) has the form 1—z, with
zin J. Then (1—z)v; = 0 for all 4. Since vy, ...., v, generate M, (1—z)M = 0. O

4.1.4. Corollary. With notation as in the Nakayama Lemma, let s = 1—z, so that sM = 0. The localized
module My is the zero module.

4.1.5. Corollary. (i) Let I and J be ideals of a noetherian domain A. If I = JI, then either I is the zero
ideal or J is the unit ideal.

(ii) Let A C B be rings, and suppose that B is a finite A-module. If J is an ideal of A, and if the extended
ideal J B is the unit ideal of B, then J is the unit ideal of A.

(iii) Let x be an element of a noetherian domain A, not a unit and let J be the ideal xA. The intersection
(J" is the zero ideal. Therefore, if y is a nonzero element of A, the integers k such that x* divides y in A are
bounded.

proof. (i) Since A is noetherian, [ is a finite A-module. If I = JI, the Nakayama Lemma tells us that there is
an element z of .J such that zx = z for all = in I. Suppose that I isn’t the zero ideal. We choose a nonzero
element = of . Because A is a domain, we can cancel x from the equation zx = z, obtaining z = 1. Then 1
isin J, and J is the unit ideal.

(ii) Suppose that B = JB. The Nakayama Lemma tells us that there is an element 2 in J such that zb = b for
all bin B. Setting b = 1 shows that z = 1. So J is the unit ideal.

(iii) Let I = () J™. The elements of I are the elements of A that are divisible by 2™ for every n. Let y be an
element of I. So for every n, there is an element a,, in A such that y = a,,z™. Then y/x = a,z"~*, which is
an element of J" 1. This is true for every n, so y/x isin I, and y is in JI. Since y can be any element of I,
I = JI. But since x isn’t a unit, J isn’t the unit ideal. So (i) tells us that I = 0. O

4.1.6. Corollary. Let I be a nonzero ideal of a noetherian domain A, and let B be a domain that contains A
as subring. If 3 is an element of B and if I C I, then (3 is integral over A.

proof. Because A is noetherian, I is finitely generated. Let v = (v1, ..., v, ) be a vector whose entries generate
I. The hypothesis I C I allows us to write Sv; = Y p;jv; with p;; in A, or in matrix notation, Pv = fv.
So v is an eigenvector, and p(8)v = 0. Since at least one v; is nonzero and since A is a domain, p(5) = 0.
The characteristic polynomial p(t) is a monic polynomial with coefficients in A, so 3 is integral over A. [

4.2 Integral Extensions

Let A be a domain. An extension B of A is a ring that contains A as a subring. An element 3 of an extension
B is integral over A if it is a root of a monic polynomial

4.2.1) f(z)=2" +apn_12" ' 4+ -+ ag,
with coefficients a; in A, and an extension B is an integral extension if all of its elements are integral over A.

4.2.2. Lemma. Let A C B be an extension of domains.

(i) An element b of B is integral over A if and only if the subring A[b] of B generated by b is a finite A-module.
(ii) The set of elements of B that are integral over A is a subring of B.

(iii) If B is generated as A-algebra by finitely many integral elements, it is a finite A-module.

(iv) Let R C A C B be rings, and suppose that A is an integral extension of R. An element of B is integral
over A if and only if it is integral over R. O

4.2.3. Corollary. An extension A C B of finite-type domains is an integral extension if and only if B is a
finite A-module. O

4.2.4. Definition. Let Y —= X be a morphism of affine varieties Y = Spec B and X = Spec 4, and let
A -5 B be the corresponding homomorphism of finite-type domains. If ¢ makes B into a finite A-module,
we call u a finite morphism of affine varieties. If A is a subring of B, and B is an integral extension of A, we
call u an integral morphism of affine varieties.
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An integral morphism is a finite morphism whose associated algebra homomorphism A 5 Bis injective.

4.2.5. Example. If G is a finite group of automorphisms of a finite-type domain B and A = B¢ is the algebra
of invariants, then B is an integral extension of A. (See Theorem )

The next example is helpful for an intuitive understanding of the geometric meaning of integrality.

4.2.6. Example. Let f(z,y) be an irreducible polynomial in C[z, y] (one = and one y), let B = C[z, y]/(f),
and let A = C[z]. So X = Spec A is the affine line AL, and Y = Spec B is an affine plane curve. The
canonical map A — B defines a morphism Y —%+ X, which can be described as the restriction to Y of the
projection A2 | — A].

We write f as a polynomial in y, whose coefficients a;(z) are polynomials in x:

(4.2.7) f(@,y) = ao(@)y™ + ar(@)y" " + - + an(x)

The fibre of Y over a point 2 = x of X is the set of points (g, o) such that yq is a root of the one-variable

polynomial f(xo,y) = f(y). Because f is irreducible, its discriminant with respect to the variable y isn’t

identically zero (1.7.19). For all but finitely many values of z, f(y) will have degree n and its discriminant

will be nonzero. Then f(y) will have n distinct roots.

When f(z,y) is a monic polynomial in y, wu will be an integral morphism. If so, the leading term 3™ of
f will be the dominant term, when y is large. Near to a point zy of X, there will be a positive real number B
such that
[y"| > lax(2)y" !+ + an(@)]

when |y| > B, and then f(y) # 0. Therefore the roots y of f(x,y) are bounded for all = near to z.

On the other hand, when the leading coefficient ag(x) isn’t a constant, B won’t be integral over A, and
when x is a root of ag, f (g, y) will have degree less than n. In this case, as a point 1 of X approaches xg,
at least one root of f(x1,y) tends to infinity. In calculus, one says that the locus f(z,y) = 0 has a vertical
asymptote at z.

To see this, we divide f by its leading coefficient. Let g(z,y) = f(z,y)/ao = y" +c1y™ * +- - +c, with
¢i(z) = a;i(x)/ag(x). For any x at which ag(x) isn’t zero, the roots of g are the same as those of f. However,
let xo be a root of ag. Because f is irreducible, there is at least one coefficient a;(x) doesn’t have x( as a root.
Then c;(x) is unbounded near ¢, and because the coefficient ¢; is an elementary symmetric function in the
roots, the roots aren’t all bounded.

This is the general picture: The roots of a polynomial remain bounded where the leading coefficient isn’t
zero. If the leading coefficient vanishes at a point, some roots are unbounded near that point. (]

figure : nonmonic polynomial, but compare with figure for Hensel’s Lemma

4.2.8. Noether Normalization Theorem. Let A be a finite-type algebra over an infinite field k. There exist
elements y1,...,y, in A that are algebraically independent over k, such that A is a finite module over its
polynomial subalgebra k[y1, . . ., yn]-

The Noether Normalization Theorem is also true when k is a finite field, though the proof given below
needs to be modified. When K = C, the theorem can be stated by saying that every affine variety X admits
an integral morphism to an affine space.

4.2.9. Lemma. Let k be an infinite field, and let f(x) be a nonzero polynomial of degree d in x1, ..., xp,
with coefficients in k. After a suitable linear change of variable, the coefficient of x% in f will be nonzero.

proof. Let fy; be the homogeneous part of f of maximal degree d. We regard f; as a polynomial function.
Since k is infinite, this function isn’t identically zero. We choose coordinates z1, ..., x, so that the point
q = (0,...,0,1) isn’t a zero of f;. Then £;4(0,...,0,z,) = czl, and the coefficient ¢, which is f4(0, ...,0,1),
will be nonzero. By scaling z,,, we can make ¢ = 1. O

proof of the Noether Normalization Theorem. Say that the finite-type algebra A is generated by elements
Z1,...,T,. If those elements are algebraically independent over k, A will be isomorphic to the polynomial
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algebra C|z], and we will be done. If not, they will satisfy a polynomial relation f(z) = 0 of some degree
d, with coefficients in k. The lemma tells us that, after a suitable change of variable, the coefficient of x‘fl
in f will be 1. Then f will be a monic polynomial in x,, with coefficients in the subalgebra R generated by
T1,.-.,Tn_1. SO x, Will be integral over R, and A will be a finite R-module. By induction on n, we may
assume that R is a finite module over a polynomial subalgebra P. Then A will be a finite module over P too.
O

The next proposition is an example of a general principle: A construction involving finitely many opera-
tions can be done in a simple localization.

4.2.10. Proposition. Let A C B be finite-type domains. There is a nonzero element s in A such that By is a
finite module over a polynomial subring As[y1, .., yr|-

proof. Let S be the set of nonzero elements of A, so that K = AS~! is the fraction field of A, and let
By = BS™! be the ring obtained from B by inverting all elements of S. Also, let 3 = (B, ..., Bx) be a
set of elements of the finite-type algebra B that generates B as algebra. Then By is a finite-type K -algebra,
generated as K -algebra by 5. (A K-algebra is a ring that contains K as subring. The Noether Normalization
Theorem tells us that B is a finite module over a polynomial subring P = K[y, ..., yr]. So By is an integral
extension of P. Any element of B will be in B, and therefore it will be the root of a monic polynomial, say

flx)=2a"+ cn,l(y)x"_1 +--4cy)=0

where the coefficients c;(y) are elements of P. Each coefficient is a combination of finitely many monomials
in y, with coefficients in K. If d € A is a common denominator for those coefficients, ¢;(x) will have
coefficients in A,[y|. Since the generators 3 of B are integral over P, we may choose a denominator s so that
all of the generators f31, ..., By are integral over A[y|. The algebra By is generated over A by f3, so it will be
an integral extension of A;[y]. O

4.3 Normalization

Let A be a domain with fraction field K. The normalization A% of A is the set of elements of K that are
integral over A. It follows from Lemma[@] (ii) that the normalization is a domain that contains A.

A domain A is normal if it is equal to its normalization, and a normal variety X is a variety that has an
affine covering {X® = Spec A, } in which the algebras A; are normal domains.

To justify the definition of normal variety, we need to show that if an affine variety X = Spec A has an
affine covering X i = Spec A;, in which A; are normal domains, then A is normal. This follows from Lemma

(iii) below.
Our goal here is the next theorem, whose proof is at the end of the section.

4.3.1. Theorem. Let A be a finite-type domain with fraction field K of characteristic zero. The normalization
of A is a finite A-module and a finite-type domain.

Thus, if A% is the normalization of A, there will be an integral morphism Spec A# — Spec A.

The proof given here makes use of the characteristic zero hypothesis, though the theorem is true for a finite-
type k-algebra when £ is a field of characteristic p.

4.3.2. Example. (normalization of a nodal cubic curve) The algebra A = C[u,v]/(v? —u® —u?) can be

embedded into the one-variable polynomial algebra B = C[x], by u = 22 — 1 and v = 2® — z. The fraction
fields of A and B are equal because & = v/u, and the equation 22 — (u+1) = 0 shows that x is integral over
A. Since B is normal, it is the normalization of A (see Lemmal[4.3.3|(i)).

In this example, Spec B is the affine line A, and the plane curve C' = Spec A has a node at the origin
p = (0,0). The inclusion A C B defines an integral morphism Al — C' whose fibre over p is the point pair
2 = 1. The morphism is bijective at all other points. I think of C' as the variety obtained by gluing the points
x = =£1 of the affine line together.

figure: curve, not quite glued

In this example, the effect of normalization can be visualized geometrically. This isn’t always so. Normaliza-
tion is an algebraic process, whose effect on geometry may be subtle. (]
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4.3.3. Lemma. (i) A unique factorization domain is normal. In particular, a polynomial algebra over a field
is normal.

(ii) If s is a nonzero element of a normal domain A. The localization A is normal.

(iii) Let s1, ..., s, be nonzero elements of a domain A that generate the unit ideal. If the localizations A, are
normal for all i, then A is normal.

proof. (i) Let A be a unique factorization domain, and let 5 be an element of its fraction field that is integral
over A. Say that

(4.3.4) B 4+ a B+ a1 fta,=0

with a; in A. We write 8 = /s, where r and s are relatively prime elements of A. Multiplying by s™ gives us

the equation

n 1

" = —s(ar" " 4 A aps™h)

This equation shows that if a prime element of A divides s, it also divides r. Since r and s are relatively prime,
there is no such element. So s is a unit, and (3 is in A.

(ii) Let 3 be an element of the fraction field of A that is integral over A. There will be a polynomial relation
of the form (4.3.4), except that the coefficients a; will be elements of A,. The element v = s¥3 satisfies the
polynomial equation

7”+(skal)'y”_l—|—-~-+(s("_1)kan,1)'y+(3”kan)=0

Since a; are in Ay, all coefficients of this polynomial will be in A when £ is sufficiently large, and then ~ will
be integral over A. Since A is normal,  will be in A, and 8 = s~*~ will be in A,.

(iii) This proof follows a common pattern. Suppose that A, is normal for every ¢. If an element 8 of K is
integral over A, it will be in A;, for all 7, and s}’ 3 will be an element of A if n is large. We can use the same
exponent n for all ¢. Since s1, ..., s;, generate the unit ideal, so do their powers s7, ..., sp. Say that Y r;s? = 1,
with r; in A. Then § =Y r;s?5 isin A. O

It is convenient to state Theorem[.3.T|more generally, especially for the proof. The more general statement
is essentially the same.

Let A be a finite type domain with fraction field K , and let L be a finite field extension of K. The integal
closure of A in L is the set of elements of L that are integral over A. As Lemma4.2.2](ii) shows, the integral
closure is a domain that contains A.

4.3.5. Theorem. Let A be a finite type domain with fraction field K , and let L be a finite field extension of
K. The integal closure B of A in L is a finite A-module.

4.3.6. Lemma. Let A be a normal noetherian domain with fraction field K of characteristic zero, and let L
be an algebraic field extension of K. An element 3 of L is integral over A if and only if the coefficients of the
monic irreducible polynomial f for B over K are in A.

proof. If the monic polynomial f has coefficients in A, then [ is integral over A. Suppose that 3 is integral
over A. Since we may replace L by any field extension that contains S, we may assume that L is a finite
extension of K. A finite extension embeds into a Galois extension, so we may assume that L/ K is a Galois
extension. Let G be its Galois group, and let {1, ..., 3, } be the G-orbit of /3, with 8 = /31. The irreducible
polynomial for 8 over K is

(4.3.7) f@)=(x—=p1)-(x—Br)
Its coefficients are symmetric functions of the roots. If /3 is integral over A, then all elements of the orbit are

integral over A. Therefore the symmetric functions are integral over A {#.2.2) (iii), and since A is normal, they
are in A. So f has coefficients in A. O
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4.3.8. Example. A polynomial in A = Clz, y| is square-free if it has no nonconstant square factors and isn’t a

constant. Let f(z,y) be a square-free polynomial, and let B denote the integral extension C[z, y, w]/(w? — f)

of A. Let K and L be the fraction fields of A and B, respectively. Then L = K[w]/(w? — f) is a Galois
extension of K. Its Galois group is generated by the automorphism o of order 2 defined by o(w) = —w. The
elements of L have the form 8 = a + bw witha,b € K,and ¢(8) = 8’ = a — bw.

We show that B is the integral closure of A in L. Suppose that 8 = a+ bw is integral over A. If b = 0, then
B = a. This is an element of A and therefore it is in B. If b # 0, the irreducible polynomial for § = a + bw
will be

(x — B)(x — B') = 2% — 2az + (a*—b%f)

Because /3 is integral over A, 2a and a? —b?f are in A. Because the characteristic isn’t 2, this is true if and
only if @ and b2 f are in A. We write b = u/v, with u, v relatively prime elements of A4, so b2 f = u?f /v, If
v weren’t a unit, then since f is square-free, it couldn’t cancel v2. So from b2 f in A we can conclude that b is
in A. Summing up, [ is integral if and only if a and b are in A, which means that S is in B. O

(4.3.9) trace

We will use the trace in the proof of Theorem [4.3.5]

Let L be a finite field extension of a field K and let 3 be an element of K. When L is viewed as a K -vector

space, multiplication by 3 becomes a linear operator L i> L. The trace of this operator will be denoted by
tr(f). The trace is a K-linear map L — K.

4.3.10. Lemma. Let L/K be a finite field extension, let 8 be an element of L of degree r over K, let
f(x) = 2" + a12" "t + - + a, be its irreducible polynomial over K, and let K([3) be the extension of K
generated by 3. Say that [L: K ()] = d and [L: K| = n (= rd). Then tr(8) = —day. If B is an element of
K, then tr(8) = ng.

proof. With r = [K(83) : K], the set (1,3,...,3"!) is a K-basis for K(/3). On this basis, the matrix M of
multiplication by [ has the form illustrated below for the case » = 3. Its trace is —a;.

0 0 —as
M=|1 0 —a
0 1 —Qaq

Next, let (u1, ..., uq) be a basis for L over K (). Then {Bu;}, withi =0,...,r —land j = 1,...,d, will
be a basis for L over K. When this basis is listed in the order

(uh ulﬂa ey ulﬁn_l; Uz, u2ﬂa s ’U/Qﬁn_l; <e- 5 U, ’U’d67 XX} udﬁn_1)7
the matrix of multiplication by 3 will be made up of d blocks of the matrix M. O

4.3.11. Corollary. Let A be a normal domain with fraction field K and let L be a finite field extension of K.
If an element 3 is integral over A, its trace is in A.

This follows from Lemmas and £.3.101 O

4.3.12. Lemma. Let A be a normal noetherian domain with fraction field K of characteristic zero, and let L
be a finite field extension of K. The form Lx L — K defined by {(«, 8) = tr(af) is K-bilinear, symmetric,
and nondegenerate. If o and 3 are integral over A, then («, ) is an element of A.

proof. The form is obviously symmetric, and it is /K -bilinear because multiplication is K -bilinear and trace
is K-linear. A form is nondegenerate if its nullspace is zero, which means that when « is a nonzero element,
there is an element 3 such that (o, 3) # 0. We let 3 = a~!. Then (a, 3) = tr(1), which, according to
, is the degree [L : K] of the field extension. It is here that the hypothesis on the characteristic of K
enters: The degree is a nonzero element of K.

If o and (8 are integral over A, so is their product a3 (4.2.2)) (ii). Corollary |4.3.11|shows that («, 8) is an
element of A. O
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4.3.13. Lemma. Let A be a domain with fraction field K, let L be a field extension of K, and let B be an
element of L that is algebraic over K. If B is a root of a polynomial f = anx™ + ap_12"" 1 + - + ag with
a; in A, then v = a, 3 is integral over A.

One finds a monic polynomial with root by substituting = y/a,, into f and multiplying by a”~*. (I

proof of Theorem[.3.1] Let A be a finite-type domain with fraction field K of characteristic zero, and let L be
a finite field extension of K. We are to show that the integral closure of A in L is a finite A-module.

Step 1. We may assume that A is normal.

We use the Noether Normalization Theorem to write A as a finite module over a polynomial subalgebra
R =Clyi,.-.,ya4) Let F be the fraction field of R. Then K and L are finite extensions of F'. An element of
L will be integral over A if and only if it is integral over R ({.2.2) (iv)). So the integral closure of A in L is
the same as the integral closure of R in L. We replace A by the normal algebra R and K by F.

Step 2. Bounding the integral extension.

We assume that A is normal. Let (vy,...,v,) be a K-basis for L whose elements are integral over A.
Such a basis exists because we can multiply any element of L by a nonzero element of K to make it integral

(Lemma[4.3.13)). Let

(4.3.14) T:L— K"

be the map T'(8) = ((v1,5), ..., (Un,8)), where ( , ) is the form defined in Lemma [4.3.12} This map is
K-linear. If (v;, ) = 0 for all ¢, then because (v1, ..., v,) is a basis for L, (y, 8) = 0 for all  in L, and since
the form is nondegenerate, 3 = 0. Therefore T’ is injective.

Let B be the integral closure of A in L. The basis elements v; are in B, and if S isin B, v;3 will be in B
too. Then (v;, B) will be in A, and T'(3) will be in A™ (4.3.12)). When we restrict 1" to B, we obtain an injective
map B — A™ that we denote by Tj. Since T is K-linear, Tj is a A-linear. It is an injective homomorphism
of A-modules. It maps B isomorphically to its image, a submodule of A™. Since A is noetherian, every
submodule of the finite A-module A™ is finitely generated. Therefore the image of T} is a finite A-module,
and so is the isomorphic A-module B. U

4.4 Geometry of Integral Morphisms

The main geometric properties of an integral morphism of affine varieties are summarized in the two theorems
below which show that the geometry is as nice as could be expected.

LetY —% X be an integral morphism. We say that a closed subvariety D of Y lies over a closed subvariety
C of X if C is the image of D.

4.4.1. Theorem. LetY — X be an integral morphism of affine varieties.
(i) The morphism w is surjective, and its fibres have bounded cardinality.

(ii) The image of a closed subvariety of Y is a closed subvariety of X, and the image of a closed subset of Y
is a closed subset of X.

(iii) The set of closed subvarieties of Y that lie over a closed subvariety of X is finite and nonempty.

The second theorem concerns inclusions among closed subvarieties. It refers to the diagram below:
D'cD Y
c'cc X

4.4.2. Theorem. Let Y — X be an integral morphism of affine varieties, and let C' C C' be closed
subvarieties of X.
(i) Every closed subvariety D of Y that lies over C' contains a closed subvariety D' that lies over C'.

(ii) Suppose that X normal. Every closed subvariety D' of Y that lies over C' is contained in a closed
subvariety D that lies over C.
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Property (ii) is more subtle than (i), as is indicated by the fact that X is assumed normal. There is an example
at the end of the section showing that the hypothesis of normality cannot be dropped.

4.4.3. Corollary. Let Y — X be an integral morphism of affine varieties with X normal, and let C be a
closed subvariety of X. The subvarieties of Y that lie over C' are the irreducible components of the inverse
image of C.

proof. Let Z be the inverse image of C, let D’ be a component of Z, and let C’ be its image in X. Then
C' C C, so by part (ii) of Theorem[d.4.2] D' is contained in a subvariety D of Y that lies over C. Because D
is contained in Z and D’ is a component of Z, D' = D. O

We will go to algebra to prove Theorems4.4.T]and .47

Let A C B be an extension of finite-type domains. As before, if I is an ideal of A, the extended ideal I B
is the ideal of B generated by I. Its elements are finite sums > u;b; with u; in I and b; in B. The contraction
of an ideal J of B is the ideal J N A of A. The contraction of a prime ideal is a prime ideal.

Closed subvarieties of the affine variety X = Spec A correspond bijectively to prime ideals of A. In
analogy with the terminology for closed subvarieties, we say that a prime ideal () of B lies over a prime ideal
P of A ifits contraction is P. For example, if a point y of Y = Spec B has image x in X, the maximal ideal
m,, lies over the maximal ideal m,;.

In commutative algebra books, Theorem [.4.2] is stated in terms of prime ideals. Suppose given prime
ideals P C P’ of A: Do there exist prime ideals ) C Q)" of B whose contractions are P and P’, respectively?

QCQ B
PcP A

The translation of Theorem [4.4.2]to prime ideals reads as follows:

4.4.4. Theorem. Let A C B be an integral extension of finite-type domains, and let P C P’ be prime ideals
of A.
(i) Every prime ideal ) that lies over P is contained in a prime ideal ()’ that lies over P’.

(ii) Suppose that A is normal. Then every prime ideal ()’ that lies over P’ contains a prime ideal Q that lies
over P.

The statements (i) and (ii) of this theorem are often called “going up”, and “going down”, respectively. Since
inclusions are reversed when one passes to closed subvarieties, those terms aren’t appropriate in Theorem
442 O
proof of Theorem LetY -5 X be an integral morphism, with Y = Spec B and X = Spec A.

(i) (bounding the fibres) Let m, be the maximal ideal at point = of X. Corollary (ii) shows that the
extended ideal m, B isn’t the unit ideal of B, so it is contained in a maximal ideal of B, say m,, where y is a
point of Y, and then z is the image of y. Therefore w is surjective.

Let y1, ..., y, be the points of Y in the fibre over a point x of X. Then for each 7, the maximal ideal m,, of
A is the contraction of the maximal ideal m,, of B. To bound the number r, we use the Chinese Remainder
Theorem to show that B cannot be spanned as A-module by fewer than r elements.

Let k; and k denote the residue fields B/m,,,, and A/m,, respectively, all of these fields being abstractly
isomorphic to C, and let B = k1 X - -+ X k,.. We form a diagram of algebra homomorphisms

[

A—— k

which we interpret as a diagram of A-modules. The minimal number of generators of the A-module B is equal
to its dimension as k-module, which is r. The Chinese Remainder Theorem asserts that ¢ is surjective, so B
cannot be spanned by fewer than r elements.
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(ii) (the image of a closed set is closed) It is obvious that the image of an irreducible set via continuous map is
irreducible, so it suffices to show that the image of a closed subvariety is closed. Let D be the closed subvariety
of Y that corresponds to a prime ideal () of B, and let P be the contraction of (). Then P is a prime ideal
of A. Let C be its variety of zeros. The coordinate rings of the affine varieties D and C are B = B/Q and
A = A/ P, respectively, and because B is an integral extension of A, B is an integral extension of A. By (i),
the map D — C'is surjective. Therefore the closed set C' is the image of D.

We use the next lemma for the proof of part (iii) of the theorem.

4.4.5. Lemma. Let Y — X be an integral morphism of affine varieties, and let D and D' be closed
subvarieties of Y that lie over closed subvarieties C and C' of X, respectively. Then D' < D if and only if
' <C.

proof. Since C and C” are images, it is clear that D’ < D if C" < C. For the other implication, we may replace
X and Y by C and D, respectively. Then what has to be shown is that D’ < Y if and only if C’ < X. We go
over to ideals. Say that @)’ and P’ are the prime ideals of B and A corresponding to D’ and C’, respectively.
So P’ is the contraction ' N A of Q’. What has to be shown is that if Q" is nonzero, then P’ is nonzero.

Let 3 be a nonzero element of )’. Then 3 is integral over A, say " + a,_1 8" ' + --- + ag = 0, with
a; € A. If ag = 0, then because B is a domain, we can cancel S from the equation. So we may assume
ag # 0. The equation shows that ag is in @', and since it is also in A4, it is in P’. O

proof of Theorem m (iii) (subvarieties that lie over a closed subvariety) The inverse image Z = u='C
of a closed subvariety C'is closed in Y. It is the union of finitely many irreducible closed subsets, say Z =
D} U---U Dj. Part (i) tells us that the image C/ of Dj is a closed subvariety of X. Since u is surjective,
C = U, and since C is irreducible, it is equal to at least one C,. The components D} such that C} = C
are the subvarieties that lie over C'. Moreover, a subvariety D that lies over C' will be contained in the inverse
image Z = |J D] of C. According to Lemma[4.4.5] there are no inclusions among subvarieties that lie over
C'. Therefore D must be one of the D}. So it is an element of a finite set. d

proof of Theorem (i). We are given ' C C in X and D in Y that lies over C, and we must find D’.
This follows from what has been done. We replace Y and X by D and C, respectively. Then what is to be
proved is that there is a closed subvariety D’ of Y that lies over a given closed subvariety C’. This is part (ii)
of Theorem [£.4.11

The proof of part (ii) of Theorem will be given at the end of Section4.5]

4.4.6. Example. In this example, B is the normalization of a finite-type domain A, A isn’t normal, and the
conclusion of Theorem [4.4.7] (ii) fails.

We add a variable to the rings R = C[u, v]/(v?>~u®—u?) and S = C[z] of Example[d.3.2] where u = 221
and v = 22 — z. Let A = R|y], and B = S[y]. Then A C B and B is the normalization of A. Let Y be
the affine z, y-plane, and let X be the locus v? — u® — u? = 0 in the affine 3-space with coordinates u, v, y.
So X is the product V x Al, where V' = Spec R. The integral morphism ¥ — X that corresponds to the
inclusion A C B sends a point (z,y) of Y to (z2 — 1,23 — z,y) in X. We noted before that V' is the nodal
curve obtained by identifying the points x = =1 of the affine z-line. So X can be obtained geometrically by
identifying the two lines ¢; : {x = 1} and ¢5 : {x = —1} in the affine plane Y. The image of these lines in X
is the line L : {u=v=0}.

Let C’ be the point (0,0,1) of Y, let D’ be the point (—1, 1) of X, and let C be the image of the diagonal
line Z : {y = z} in Y, a closed subvariety of X. The inverse image of C' is Z U (—1,1) U (1, —1). Then
C" C C, and D' lies over C’, but there is no subvariety D that lies over C' and contains D’. So the assertion
of Theorem [4.4.2](ii) is false. O

#ifigure##

4.5 Finite group actions II

Let G be a finite group of automorphisms of a normal, finite-type domain B, let A be the algebra of invariant
elements of B. According to Theorem [2.8.5] A is a finite-type domain, and B is a finite A-module. Let
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Y = Spec B and X = Spec A. Points of X correspond to G-orbits of points of Y. Theorem [4.5.2] below
extends these facts to closed subvarieties.

4.5.1. Lemma. Let G be a finite group of automorphisms of a normal, finite-type domain B and let A be the
subalgebra of invariant elements. Let L and K be the fraction fields of B and A, respectively.

(i) The algebra A is normal.
(ii) Every element of L can be written as a fraction b/s, with b in B, and s in A.
(iii) The operation of G on B induces an operation on L, and the ring of invariant elements of L is K. 0

Since B is a finite A-module, the results of Section apply to the integral morphism ¥ — X. Recall
that, since G operates on the left on B, it operates on the right on Y (2.8.9).

4.5.2. Theorem. Let G be a finite group of automorphisms of a normal, finite-type domain B, let A be the
algebra of invariant elements of B, and let Y — X be the integral morphism of varieties corresponding to
the inclusion A C B.
(i) There is a bijective correspondence between orbits of closed subvarieties of Y and closed subvarieties of
X:

{closed subvarieties of Y} /G <—  {closed subvarieties of X'}

in which the orbit that corresponds to a closed subvariety C of X is the set of closed subvarieties of Y that lie
over C.

(ii) Let { D, ..., D, } and { D1, ..., D.} be orbits of closed subvarieties Y that lie over C and C', respectively,
in X . If C O (', then every D; contains some D’;. Conversely, if D; D D for some i and j, then C' O C".

proof. (i) Let D be a closed subvariety of Y with image C in X. Because points of X correspond to o-orbits
in Y, the subvarieties Do in the orbit of D have the same image C. The fact that distinct orbits of closed
subvarieties of Y lie over distinct closed subvarieties of X will follow from (ii).

(i) It is clear that if D; D Dg-, then C O C’. We suppose that D; 2 D;- for all 7 and j, and we show that
C 2 C'. The lemma below, whose proof is an exercise, shows that there is an element S that is identically
zero on every D; and isn’t identically zero on any D; Then for all ¢ in G, o8 has the same property. So
a = [[ o is an element of A that is identically zero on every D; but not on any D;-. Then « is identically
zero on C but not on C’. So C doesn’t contain C”. O

4.5.3. Lemma. LetY = Spec B be an affine variety, let D1, ..., D, be distinct closed subvarieties of Y
and let V be a closed subset of Y. Assume that V doesn’t contain any of the sets D;. There is an element 3 of
B that vanishes on V, but isn’t identically zero on any Dj.

We now complete the proof of Theorem #.4.2]

proof of Theorem (ii). We are given an integral morphism SpecB = Y — X = Spec A with X
normal, and we are given closed subvarieties C O C” of X and a closed subvariety D’ of Y that lies over C".
We are to find a closed subvariety D that lies over C' and that contains D’. Let K and L denote the fraction
fields of A and B, respectively. Since B is a finite A-module, L is a finite extension of K.

Case 1: L is a Galois extension of K and B is normal. Then A and BS have the same fields of fractions,
A C B, and A is normal. So A = BS. This case follows from Theorem [4.5.2]

Case 2: the general case. We put L into a Galois extension I, and we let R be the integral closure of B in F'.
Then R is a finite B-module and a finite A-module. Let Z = Spec R and let E be a closed subvariety of Z
that lies over D. Then E also lies over C. By Case 1, there is a closed subvariety E’ of Z that lies over C’ and
is contained in E. The image D’ of E’ inY is the required closed subvariety of Y.

E'CE Z
D Y
c'ccC X
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4.6 Chevalley’s Finiteness Theorem

(4.6.1) finite morphisms

The concepts of a finite morphism and an integral morphism of affine varieties were defined in Section
A morphism Y —%+ X of affine varieties X = Spec A and Y = Spec B is a finite morphism if the
homomorphism A —25 B that corresponds to u makes B into a finite A-module. As was explained, the
difference between a finite morphism and an integral morphism of affine varieties is that for a finite morphism,
the homomorphism ( needn’t be injective. If ¢ is injective, B will be an integral extension of A, and u will be
an integral morphism. We extend the definitions to varieties that aren’t necessarily affine here.

By the restriction of a morphism Y — X to an open subset X’ of X, we mean the induced morphism
Y’ — X', where Y” is the inverse image of X'.

4.6.2. Definition. A morphism of varieties Y — X is a finite morphism if X can be covered by affine open
subsets to which the restriction of  is a finite morphism of affine varieties, as defined in (#.2.4). A morphism
w is an integral morphism if there is a covering of X by affine open sets to which the restriction of u is an
integral morphism of affine varieties.

4.6.3. Corollary. An integral morphism is a finite morphism. The composition of finite morphisms is a finite
morphism. The inclusion of a closed subvariety into a variety is a finite morphism. U

When X is affine, Definition [4.2.4] and Definition [4.6.2] both apply. The next proposition shows that the
two definitions are equivalent.

4.6.4. Proposition. Let Y —— X be a finite or an integral morphism, as in , and let X' be an affine
open subset of X. The restriction of u to X' is a finite or an integral morphism of affine varieties, as defined

in ([#24).

4.6.5. Lemma. (i) Ler A -2 B be a homomorphism of finite-type domains that makes B into a finite A-
module, and let s be a nonzero element of A. Then By is a finite As-module.

(ii) The restriction of a finite (or an integral) morphism Y —= X to an open subset of X is a finite (or an
integral) morphism, as in Definition

proof. (i) In the statement, B denotes the localization of B as A-module. This localization can also be
obtained by localizing the algebra B with respect to the image s’ = ¢(s), provided that it isn’t zero. If s’ is
zero, then s annihilates B, so B; = 0. In either case, a set of elements that spans B as A-module will span B
as A,-module, so B is a finite A;-module.

(ii) Say that X is covered by affine open sets to which the restriction of w is a finite morphism. The localiza-
tions of these open sets form a basis for the Zariski topology on X. So X’ can be covered by such localizations.
Part (i) shows that the restriction of u to X' is a finite morphism. U

proof of Proposition We’ll do the case of a finite morphism. The proof isn’t difficult, but there are
several things to check, and this makes the proof longer than one would like.

Step 1. Preliminaries.

We are given a morphism Y’ -2 X, X is covered by affine open sets X i and the restrictions of u to these
open sets are finite morphisms of affine varieties. We are to show that the restriction to any affine open set X’
is a finite morphism of affine varieties.

The affine open set X’ is covered by the affine open sets X’* = X’ N X*, and the restrictions fo X'* are
finite morphisms ( (ii)). So we may replace X by X'. Since the localizations of an affine variety form a
basis for its Zariski topology, we see that what is to be proved is this:

A morphism Y —%+ X is given in which X = Spec A is affine. There are elements s, ..., s, that generate
the unit ideal of A, such that for every 7, the inverse image Yiof X' = X, if nonempty, is affine, and its
coordinate algebra B; is a finite module over the localized algebra A; = A,,. We must show that Y is affine,
and that its coordinate algebra B is a finite A-module.

Step 2. The algebra B of regular functions on'Y .
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If Y is affine, its coordinate algebra B will be a finite-type domain, and Y will be its spectrum. Since Y
isn’t assumed to be affine, we don’t know very much about B other than that it is a subalgebra of the function
field L of Y. On the other hand, the inverse image Y of X4, if nonempty, is affine, the spectrum of a finite-
type domain B;. Since the localizations X? cover X, the affine varieties the Y cover Y. We throw out the
indices i such that Y is empty. Then a function is regular on Y if and only if it is regular on each Y, and

B:ﬂ&

the intersection being in the function field L.
Let’s denote the images in B of the elements s; of A by the same symbols.

Step 3. For any index j, Bj is the localization B[sj*l] of B.

The intersection Y7 N Y7 is an affine variety. It is the set of points of Y7 at which s; isn’t zero, and its
coordinate algebra is the localization B;[s; ']. Then

B[sj—l] ) ﬂ(Bl[Sj_l]) @ ﬂBj[Si_l} © Bj[sj_l] ©) ;

where the explanation of the numbered equalities is as follows:

(1) A rational function 3 is in B; [8;1] if s?ﬂ is in B; for large n, and we can use the same exponent n for all
i=1,..,r.So Bisin () (B[s;']) if and only if s7 8 is in () B; = B, i.e., if and only if 3 is in B[s;'].

(2) This is true because Y/ NY? = Y*iNY7.

(3) Foralli, B; C Bj[s; ']. Moreover, s; doesn’t vanish on Y. It is a unit in B;, and therefore B;[s; '] =
Bj: B; C(\Bj[s;'] € Bjs; '] C B;.

Step 4. B is a finite A-module.

We choose a finite set b = (b1, ..., by, ) of elements of B that generates the A;-module B; for every i. We
can do this because we can span the finite A;-module B; by finitely many elements of B, and there are finitely
many algebras B;. We show that the set b generates the A-module B.

Let 2 be an element of B. Since z is in B;, it is a combination of the elements b with coefficients in A;.
Then for large &, sf x will be a combination of b with coefficients in A, say

sfx = Z a;,uby
v
with a; , € A. We can use the same exponent & for all . Then with risf =1,
T = Znsfx = Zri Zai’yby
i 7 v
The right side is a combination of b with coefficients in A.

Step 5. Y is affine.

The algebra B of regular functions on Y is a finite-type domain because it is a finite module over the finite-
type domain A. Let Y = Spec B. The fact that B is the algebra of regular functions on Y gives us a morphism

Yy % lz (Corollary [3.5.3)). Restricting to the open subset X7 of X gives us a morphism Y7 <, ¥ in which
Y7 and Y7 are both equal to Spec B;. Therefore €/ is an isomorphism. Corollary [3.4.18|(ii) shows that € is an
isomorphism. So Y is affine and by Step 4, its coordinate algebra B is a finite A-module. ]

We come to Chevalley’s theorem now. Let [P denote the projective space P™ with coordinates yo, ..., Yr-

4.6.6. Chevalley’s Finiteness Theorem. Ler X be a variety, let Y be a closed subvariety of the product
Px X, and let 7 denote the projection Y — X. If all fibres of 7 are finite sets, then 7 is a finite morphism.

4.6.7. Corollary. LetY be a projective variety and let Y — X be a morphism whose fibres are finite sets.
Then  is a finite morphism. In particular, if Y is a projective curve, any nonconstant morphismY — X is
a finite morphism.
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This corollary follows from the theorem when one replaces Y by the graph of v in Y x X. If Y is embedded
as a closed subvariety of I, the graph will be a closed subvariety of P x X (Proposition [3.4.27). ]

In the next lemma, A denotes a finite-type domain, B denotes a quotient of the algebra A[u] of polynomials
in n variables uq, ..., u,, with coefficients in A, and A —25 B denotes the canonical homomorphism. We’ll use

capital letters for nonhomogeneous polynomials here. If G(u) is a polynomial in Afu], we denote its image in
B by G(u). too.

4.6.8. Lemma. Let k be a positive integer. Suppose that, for each i = 1,...,n, there is a polynomial
Gi(uy,...,up) of degree at most k—1 in n variables with coefficients in A, such that u¥ = G;(u) in B.
Then B is a finite A-module.

proof. Any monomial in w1, ..., u, of degree at least nk will be divisible by u¥ for at least one i. So if m
is a monomial of degree d > nk, the relation uf = G;(u) shows that, in B, m is equal to a polynomial in
uq, ..., Uy of degree less than d, with coefficients in A. By induction, it follows that the monomials of degree
at most nk—1 span B. O

Let 4o, .., Yn be coordinates in P", and let A[yo, ..., y»] be the algebra of polynomials in y with coefficients
in A. A homogeneous element of Aly] is an element that is a homogeneous polynomial in y with coefficients

in A. A homogeneous ideal of Aly] is an ideal that can be generated by homogeneous polynomials.

4.6.9. Lemma. Let Y be a closed subset of Px X, where X = Spec A is affine,
(i) The ideal T of elements of Aly| that vanish at every point of Y is a homogeneous ideal of Aly].
(i) If the zero locus of a homogeneous ideal T of Aly] is empty, then T contains a power of the irrelevant ideal

M = (y07 "'7y7l) OfA[y]

proof. (i) Let’s write a point of Px X as ¢ = (yo, ..., Yn, ), wWith x representing a point of X. So (y,z) =
(Ay, ). Then the proof for the case A = C that is given in (1.3.2)) carries over.

(ii) Let V' be the complement of the origin in the affine n 4+ 1-space with coordinates y. The complement of
the origin in V' x X maps to Px X (see[3.2.4). If the locus of zeros of Z in Px X is empty, its locus of zeros in
V' x X will be contained in o X X, o being the origin in P. Then the ideal of o x X, which is the radical ideal
generated by the elements vy, ..., ¥, Will contain Z. O

proof of Chevelley’s Finiteness Theorem. This proof is adapted from a proof by Schelter.
We abbreviate the notation for a product Z x X of a variety Z with X, denoting X x X by Z.

We are given a closed subvariety Y of P = Px X, and the fibres over X are finite sets. We are to prove
that the projection Y — X is a finite morphism. We may assume that X is affine, say X = Spec A, and by
induction on n, we may assume that the theorem is true when P is a projective space of dimension n—1.

Case 1. There is a hyperplane H in P such that 'Y is disjoint from H=HxXinP=PxX.
This is the main case. We adjust coordinates yj, ..., Y, in P so that H is the hyperplane {yo = 0}. Because

Y is a closed subvariety of P disjoint from H, Y is also a closed subvariety of U° = U° x X, U° being the
standard affine {yo # 0}. So Y is affine.

Let P and Q be the (homogeneous) prime ideals in A[y] that define Y and H , respectively, and let Z =
P + Q. So q is the principal ideal of A[y] generated by yo. A homogeneous element of Z of degree k has the
form f(y) -+ yog(y), where f is a homogeneous polynomial in A[y] of some degree k, and g is a homogeneous
polynomial of degree k—1.

The closed subsets Y and H are disjoint. Since Y N H is empty, the sum Z = P + Q contains contains
a power of the irrelevant ideal M = (yq, ..., Yn ), say M* C Z. Then y¥ isin Z for i = 0,...,n. So we may
write

(4.6.10) = fi(y) + yogi(y)

with f; of degree k in P and g; of degree k—1 in A[y]. We omit the index ¢ = 0. For that index, one can take
fo=0and gy = y(’f—l.

We dehomogenize these equations with respect to the variables y, substituting u; = y;/yo for y;, i =
1,...,n with ug = 1. Writing dehomogenizations with capital letters, the dehomogenized equations that
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correspoind to the equations y* = £;(y) + yog(y) have the form

(4.6.11) uf = Fi(u) + Gi(u)

3

The important point is that the degree of G; is at most k—1.

Recall that Y is also a closed subset of U°. Let P be its (nonhomogenous) ideal in A[u], which contains
the polynomials F1, ..., F},. The coordinate algebra of Y is B = A[u]/P. In the quotient algebra B, the terms
F;; drop out, leaving us with equations u¥ = G;(u). These equations are true in B. Since G; has degree at
most k—1, Lemma[4.6.8]tells us that B is a finite A-algebra, as was to be shown. This completes the proof of
Case 1.

Case 2. the general case.

We have taken care of the case in which there exists a hyperplane H such that Y is disjoint from H. The
next lemma shows that we can cover the given variety X by open subsets to which this special case applies.
Then Lemma[4.6.4) and Proposition .6.4] will complete the proof.

4.6.12. Lemma. Let Y be a closed subvariety of P=P"x X, and suppose that the projection Y — X has
finite fibres. Suppose also that Chevalley’s Theorem has been proved for closed subvarieties of P* ! x X. For
every point p of X, there is an open neighborhood X' of p in X, and there is a hyperplane H in P, such that
the inverse image Y' = n=1 X" is disjoint from H.

proof- Let p be a point of X, and let ¢ = (¢1, ..., G-) be the finite set of points of Y making up the fibre over p.
We project ¢ from Px X to IP, obtaining a finite set ¢ = (g1, ..., ¢,-) of points of IP, and we choose a hyperplane
H in P that avoids this finite set. Then H avoids the fibre q. Let W denote the closed set Y N H. Because
the fibres of Y over X are finite, so are the fibres of W over X. By hypothesis, Chevalley’s Theorem is true
for subvarieties of P"~! x X, and H is isomorphic to P"~! x X. It follows that, for every component W’
of W, the morphism W’ — X is a finite morphism, and therefore its image is closed in X (Theorem [4.4.1).
Thus the image Z of W is a closed subset of X, and it doesn’t contain p. Then X’ = X — Z is the required
neighborhood of p. O

figure: ??’m not sure

4.7 Dimension

Every variety has a dimension, and though it is a very coarse measure, the dimension is important, as is true
for the dimension of a vector space.

A chain of closed subvarieties of a variety X is a strictly decreasing sequence of closed subvarieties —
irreducible closed subsets

“4.7.1) Co>Ci1>Cog>--->C

The length of this chain is defined to be k. The chain is maximal if it cannot be lengthened by inserting another
closed subvariety, which means that Cy = X, that there is no closed subvariety C' with C; > C > C;4; for
i < k, and that C}, is a point. Theorem below shows that all maximal chains have the same length, and
the dimension of X, often denoted by dim X, is the length of a maximal chain.

When X is an affine variety, say X = Spec A, the decreasing chain (4.7.1)) corresponds to an increasing
chain

4.7.2) Po< P <P<- <P,

of prime ideals of A of length k, a prime chain. This prime chain is maximal if it cannot be lengthened
by inserting another prime ideal, which means that Fy is the zero ideal, that there is no prime ideal P with
P; < P < Py, fori < k, and that Py, is a maximal ideal. The dimension dim A of a finite-type domain A is
the length k of a maximal chain (4.7.2)) of prime ideals. Thus if X = Spec A, then dim X = dim A.

4.7.3. Theorem. (i) Let A be a finite-type domain whose fraction field K has transcendence degree n. All
prime chains in A have length at most n, and all maximal prime chains have length equal to n. Therefore the
dimension of A is the transcendence degree of A.
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(i) Let X be a variety whose function field K has transcencence degree n. All chains of closed subvarieties
of X have length at most n, and all maximal chains have length n. Therefore the dimension of X is equal to
the transcendence degree of K.

The proof is below.

For example, the transcendence degree of the polynomial algebra C[z1, . .., x,] in n variables is n, so the
polynomial algebra has dimension n. The chain of prime ideals

4.7.4) 0<(x1) < (x1,22) <+ < (X1,...,2n)
is a maximal prime chain. The corresponding chain
P*>pPrt > > PO

is a maximal chain of closed subvarieties of projective space P”.

The maximal chains of closed subvarieties of P? have the form P2 > C' > p, where C'is a plane curve and
p is a point.

If is a maximal chain in X, then
4.7.5) C; > C¢+1 > > O

will be a maximal chain in the variety C;. So when X has dimension k, the dimensign of C;is k—1i —J.
Similarly, let (4.7.2) be a maximal chain of prime ideals in a finite-type domain A, let A = A/P; and let P;
denote the image P;/P; of P; in A, for j > i. The Correspondence Theorem implies that

6:Pi<?i+1<"'<Pk

will be a maximal prime chain in A, and therefore that the dimension of the domain A is k—i— 1. There is
a bijective correspondence between maximal prime chains in A and maximal prime chains in A whose first
terms are Py < P < --- < P;_1.

One more term: A closed subvariety C' of a variety X has codimension k if dim X — dimC = k. In
particular, C' has codimension 1 if C' < X and if there is no closed set C' with C < C' < X. A prime ideal
P of a noetherian domain has codimension 1 if it is not the zero ideal, and if there is no prime ideal P with
(0) < P < P. In the polynomial algebra Clz1,...,x,], the prime ideals of codimension 1 are the principal
ideals generated by irreducible polynomials.

For the proof of the next proposition, see Lemmaf4.4.3] and Theorem [.4.2(i).

4.7.6. Proposition. LetY — X be an integral morphism of varieties. Every chain of closed subvarieties of
Y, lies over a chain in X, and every chain of closed subvarieties of X has chain in'Y lying over it. U

4.7.7. Lemma. Let A = Clxy,...,x,] be a polynomial algebra, let f be an irreducible element of A, and
let A= A/(f). The transcendence degree of A isn — 1.

proof. We may choose coordinates so that f becomes a monic polynomial in x, with coefficients in
Clr1, .. s Tp_1)say f = zF+ep_12b 14 4¢p (Lemma. Then A will be integral over C[x 1, . .., Zp—1],
so it will have the same transcendence degree. U

proof of theorem (i) Induction allows us to assume the theorem true for a finite-type domain whose
transcendence degree is less than n. Let A be a finite-type domain of transcendence degree is n.

Case 1: The case that A is a polynomial algebra Clx1, .. ., z,].

Let Py < P; < --+ < Py be a prime chain in A. We are to show that & < n, and that k = n if
the chain is maximal. We may assume that Py = 0 and that P, is a codimension 1 prime, generated by an
irreducible polynomial f. (If not, we can insert a prime ideal into the chain.) Let A=A /Py, and fori > 1,
let P; = P;/Py. Then P; < Py < --- < Py is a prime chain in A of length k¥ — 1, and if the chain {P;} is
maximal, the chain {P;} will be a maximal chain too. Lemmam shows that A has transcendence degree
n — 1. So by induction, the length of the chain {P;} is at most n — 1 and is equal to n — 1 if the chain {P;} is
maximal. Therefore the chain { P;} has length at most n and has length n if it is maximal.
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Case 2: The general case.

Let B be a finite-type domain of transcendence degree n, and let Qp < Q1 < -+ < @y be a prime chain
in B. Again, we are to show that £ < n and that if the chain is maximal, then k¥ = n. We apply the Noether
Normalization Theorem: B is a finite module over a polynomial subring A. The transcendence degree of A is
n, and the contractions P; = @); N A form a prime chain in A. This is the translation of Proposition i.7.6|to
prime ideals. Therefore k£ < n.

Next, suppose that the chain {@;} is maximal. Then Qo = 0 and therefore P, = 0. If P, were not a
codimension 1 prime, we could choose a nonzero prime ideal E contained in P;. Since A is normal, we could
apply Theorem there would be a nonzero prime ideal @) of B that lies over P and is contained in Q).
This would imply that the chain {Q); } wasn’t maximal, contrary to hypothesis. So P is a codimension 1 prime,
and by Lemma A = A/ Py has transcendence degree n — 1. Since B = B/Q) is a finite A-module, it
also has transcendence degree n — 1. Let Q; = @Q;/Q; fori > 1. By induction, the length of the maximal
chain Q; < --+ < Q in Bisn — 1, and therefore k = n.

Part (ii) of Theorem [4.7.3]follows from the next lemma.

4.7.8. Lemma. Let X' be an open subvariety of a variety X. There is a bijective correspondence between
chains Cy > --- > CY, of closed subvarieties of a variety X such that Cy N X' # 0 and chains Cjy > --- > C,
of closed subvarieties of X', defined by C! = C; N X'. Given a chain C} in X', the corresponding chain in X
consists of the closures C; in X of the varieties C/.

proof. Suppose given a chain C; and that Cy, N X’ # (). Then the intersections C] = C; N X' are dense
open subsets of the irreducible closed sets C; . So the closure of C/ is C;, and since C; > Cjy1, it
is also true that Cj > Cj ;. Therefore Cjy > --- > Cj is a chain of closed subsets of X’. Conversely, if
Cy > --- > C) is achain in X', the closures in X will form a chain in X. O

4.7.9. Corollary. (i) If X is a localization of an affine variety X, then dim Xy = dim X.
(i) If'Y is a proper closed subvariety of a variety X, then dimY < dim X.
(iii) If Y — X is an integral morphism of varieties, then dimY = dim X. (I

4.8 Krull’s Theorem

Krull’s Principal Ideal Theorem completes our discussion of dimension. It asserts that the zero set of a principal
ideal can’t have a low dimension. Though the statement is natural, the proof isn’t very easy.

4.8.1. Krull’s Theorem. Let X be an affine variety of dimension d, and let « be a nonzero element of its
coordinate ring A. Every irreducible component of the zero locus Vx («) of v in X has dimension d — 1.

proof. Let C be an irreducible component of Vx («). Since « isn’t zero, C' is a proper subset of X, and its
dimension is less than d. We must show that the dimension is d — 1, and we prove this by contradiction. So
we assume that dim C < d — 1.

Step 1: Reduction to the case that A is normal.

Let B be the normalization of A and let Y = Spec B. The dimension of Y is d. The integral morphism
Y — X is surjective, and it sends closed sets to closed sets @.4.1). So the zero locus of « in Y maps
surjectively to the zero locus in X, and at least one irreducible component of Vy («), call it D, will map
surjectively to C. The map D — C'is also an integral morphism, so the dimension of D is the same as that of
C. We may therefore replace X by Y and C' by D. Hence we may assume that A is normal.

Step 2: Reduction to the case that the zero locus of « is irreducible.

We do this by localizing. Say that the zero locus is C' U V, where C'is a closed subvariety of codimension
at least two, and V' is the union of the other irreducible components. We choose an element s of A that is
identically zero on V but not identically zero on C. Inverting s eliminates the points of V', but X, N C' = Cj
will be nonempty. If X is normal, so is X. Since localization doesn’t change dimensions, we may replace X
and C by X, and Cs.

Step 3: Completion of the proof.
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This is the main step: We assume that X is a normal affine variety, X = Spec A, and that the zero locus of
a in X is a closed subvariety C' of codimension at least two. Then C' is the zero locus of a prime ideal P, and
also the zero locus of a.. So P is the radical of the principal ideal A, and P C Ao if n is large (see[2.5.10).

By what we know about dimension, C' will be contained in a closed subvariety Z of codimension one. Let
@ be the prime ideal whose locus is Z. Then P D @ because C' C Z. On the other hand, a ¢ @ because «
vanishes only on C, and it follows that the principal ideal A« isn’t contained in ). Since P is the radical of
Aua, these two facts are in stress.

4.8.2. Lemma. With notation as above, There is an element y in A such that v ¢ oA but Py C Aa.

proof. Let 8 be an element of (). Corollary (iii) tells us that the powers of « that divide g are bounded.
Let o is the largest such power, and let v = 3/a”. Then + vanishes on the dense open subset Z' = Z — C of
Z, so it vanishes on Z. There is an element -y in () that isn’t in the principal ideal Ac.

Next, since P™ C A« for large n, it is also true that P"() C A« for large n. Let r be the largest integer
0 such that P"Q ¢ Aa. We replace v by an element of P"() thatisn’tin Aa. Then vy € A, but Py C Aca.

Y

Krull’s Theorem follows easily from this lemma. Let § = /c, where + is as in the lemma. Then ¢ & A,
but P C P. Since y vanishes on Z while « vanishes only on C, every element € of PJ vanishes on the dense
complement Z’ of C'in Z, and therefore on Z. So P§ C Q) C P. Corollary shows that ¢ is integral over
A, and since A is assumed normal, ¢ is in A. This is a contradiction that proves the theorem. O

4.8.3. Corollary. Let Z be a proper closed subset of a variety X of dimension d, and let p be a point of Z.
There is a maximal chain of closed subvarieties X = Xog > X1 > -+ > X4 = {p} such that X4—1 isn’t
contained in Z, and therefore X; isn’t contained in Z for any v < d.

proof. Lemma[4.7.8] shows that we may assume that X is affine, X = Spec A. Lemma[4.5.3] asserts that A
contains an element « that vanishes at p but doesn’t vanish identically on any component of Z. Then at least
one component of Vy («) contains p. Let X; be such a component. Krull’s Theorem tells us that X; has
dimension d — 1. Since « doesn’t vanish identically on any component of Z, X; doesn’t contain any of those
components. Therefore Z; = Z N X, is a proper closed subvariety of X;. We replace X by X;. Then the
corollary follows by induction on the dimension d. U

4.9 Double Planes

(4.9.1) affine double planes

Let A be the polynomial algebra Clz, y], and let X be the affine plane Spec A. An affine double plane is a
locus of the form w? = f(x,y) in affine 3-space with coordinates w, z,y, where f is a square-free polynomial
in z, y, as in Example Let B = C[w, z,y]/(w? — f). So the affine double plane is Y = Spec B.

We’ll denote by w, x, y both the variables and their residues in B.

4.9.2. Lemma The algebra B is a normal domain of dimension two, and a free A-module with basis (1, w).
It has an automorphism o of order 2, defined by o(a + bw) = a — bw. U

The fibres of Y over X are the o-orbits in Y. If f(zq,y0) # 0, the fibre consists of two points, and if
f(xo,y0) = 0, itconsists of one point. The reason that Y is called a double plane is that most points of the
plane X are covered by two points of Y. The branch locus of the covering, which will be denoted by A, is the
(possibly reducible) curve {f = 0} in X. The fibres over the branch points, points of A, are single points.

We study the closed subvarieties D of Y that lie over a curve C' in X. These subvarieties will have
dimension one, and we call them curves too. If D lies over C, and if D = Do, then D is the only curve lying
over C. Otherwise, there will be the two curves that lie over C, namely D and Do. In that case we say that C'
splitsin Y.

A curve C in X will be the zero set of a principal prime ideal P of A, and if D lies over C, it will be the
zero set of a prime ideal @ of B that lies over P (??). The prime ideal () isn’t always a principal ideal.

4.9.3. Example. Let f(z,y) = 22 + 3? — 1. The double plane Y = {w? = 22 +y%—1} is an affine quadric
in A3. In the affine plane, its branch locus A is the curve {22 +y? = 1}.
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The line C : {y = 0} in X meets the branch locus A transversally at the points (z,y) = (+1,0), and y
generates a prime ideal of B. When we set y = 0 in the equation for Y, we obtain the irreducible polynomial
w?—x2+1. On the other hand, the line Cy : {y = 1} is tangent to A at the point (0, 1), and it splits. When
we set y = 1 in the equation for Y, we obtain w? = z2. The locus {w? = 2} is the union of the two lines
{w = z} and {w = —x} that lie over C;. The prime ideals of B that correspond to these lines aren’t principal
ideals.

. . . (]
figure circle with two lines

This example illustrates a general principle: If a curve intersects the branch locus transversally, it doesn’t
split. We explain this now.

(4.9.4) local analysis

Suppose that a plane curve C' : {g = 0} and the branch locus A : {f = 0} of a double plane w? = f meet at
a point p. We adjust coordinates so that p becomes the origin (0, 0), and we write

fla,y) = Zaijffiyj = a107 + aq1y + agz® + - -

Since p is a point of A, the constant coefficient of f is zero. If the two linear coefficients aren’t both zero, p
will be a smooth point of A, and the tangent line to A at p will be the line {a102 + ag1y = 0}. Similarly,
writing g(z,y) = _ b;;x'y’, the tangent line to C, if defined, is the line {19z + bo1y = 0}.

Let’s suppose that the two tangent lines are defined and distinct — that A and C intersect transversally at
p. We change coordinates once more, to make the tangent lines the coordinate axes. After adjusting by scalar
factors, the polynomials f and g will have the form

flz,y) =z +u(z,y) and g(z,y) =y +ov(z,y),
where u and v are polynomials all of whose terms have degree at least 2.

Let X; = SpecC[xz1,y:] be another affine plane. We consider the map X; — X defined by the substi-
tution 1 = x + u, y; = y + v. In the classical topology, this map is invertible analytically near the origin,
because the Jacobian matrix

(w1,y1) )
4.9.5 —_—
( ) ( I(z,y) (0,0

at p is the identity matrix. When we make this substitution, A becomes the locus {x; = 0} and C becomes
the locus {y; = 0}. In this local analytic coordinate system, the equation w? = f that defines the double plane
becomes w? = z;. When we restrict it to C by setting y; = 0, x1 becomes a local coordinate function on C'.
The restriction of the equation remains w? = z. So the inverse image Z of C' doesn’t split analytically near
p. Therefore it doesn’t split globally either.

4.9.6. Corollary. A curve that meets the branch locus transversally at some point doesn’t split. O

This isn’t a complete analysis. When C and A are tangent at every point of intersection, C' may split or
not, and which possibility occurs cannot be decided locally in most cases. However, one case in which a local
analysis suffices to decide splitting is that C' is a line. Let ¢ be a coordinate in a line C, so that C' &~ Spec C[t].
Let’sassume that C' does’t intersect A at ¢ = oo. The restriction of the polynomial f to C will give us a
polynomial f(#) in ¢. A root of f corresponds to an intersection of C' with A, and a multiple root corresponds
to an intersection at which C' and A are tangent, or at which A is singular. The line C' will split if and only if
f is a square in C[t], and this will be true if and only if the multiplicity of every root of f is even.

A rational curve is a curve whose function field is a rational function field C(¢) in one variable. One can
make a similar analysis for any rational plane curve, a conic for example, but one needs to inspect its points at
infinity and its singular points as well as the smooth points at finite distance.

(4.9.7) projective double planes

96



Let X be the projective plane P2, with coordinates xq, 21, 23. A projective double plane is a locus of the form

4.9.8) y? = f(wo, 21, 22),

where f is a square-free, homogeneous polynomial of even degree 2d. To regard this as a homogeneous
equation, we must assign weight d to the variable y (see[I.7.7). Then, since we have weighted variables, we
must work in a weighted projective space WP with coordinates xg, x1, T2, ¥y, where x; have weight 1 and y
has weight d. A point of this weighted space WP is represented by a nonzero vector (g, 21, Z2,y) with the
relation that, for all A\ # 0, (xg, 1, 2,y) ~ (Azg, Ax1, Ax2, A%y). The points of the projective double plane
Y are the points of WP that solve the equation (4.9.8).

The projection WP — X that sends (x, y) to x is defined at all points except at (0,0, 0,1). If (z, y) solves
and if x = 0, then y = 0 too. So (0, 0,0, 1) isn’t a point of Y. The projection is defined at all points of
Y. The fibre of the morphism Y — X over a point 2 consists of points (z, y) and (z, —y), which will be equal
if and only if x lies on the branch locus of the double plane, the (possibly reducible) plane curve A : {f = 0}
in X. The map o : (z,y) ~ (x,—y) is an automorphism of Y, and points of X correspond bijectively to
o-orbits in Y.

Since the double plane Y is embedded into a weighted projective space, it isn’t presented to us as a pro-
jective variety in the usual sense. However, it can be embedded into a projective space in the following way:
The projective plane X can be embedded by a Veronese embedding of higher order, using as coordinates the
monomials m = (mj,ms,...) of degree d in the variables z. This embeds X into a projective space PV
where N = (d;rQ) — 1. When we add a coordinate y of weight d, we obtain an embedding of the weighted
projective space WP into PV +! that sends the point (z,y) to (m,y). The double plane can be realized as a
projective variety by this embedding.

If Y — X is a projective double plane, then, as happens with affine double planes, a curve C' in X may
split in Y or not. If C has a transversal intersection with the branch locus A, it will not split. On the other
hand, if C'is a line, and if C intersects the branch locus A with multiplicity 2 at every intersection point, it will
split. For example, when the branch locus A is a generic quartic curve, the lines that split will be the bitangent
lines (see Section[L.TT).

(4.9.9) homogenizing an affine double plane

To construct a projective double plane from an affine double plane, we write the affine double plane as
(4.9.10) w? = F(uy,us)

for some nonhomogeneous polynomial F'. We suppose that F' has even degree 2d, and we homogenize F’,
setting u; = x;/xo. We multiply both sides of this equation by z2¢ and set y = xdw. This produces an
equation of the form (4.9.8), where f is the homogenization of F.

If F has odd degree 2d — 1, one needs to multiply F' by x in order to make the substitution y = xfw

permissible. When we do this, the line at infinity {9 = 0} becomes a part of the branch locus.

(4.9.11) cubic surfaces and quartic double planes

We use coordinates zg, 21, T2, z for the (unweighted) projective 3-space P here, and X will denote the
projective z-plane P2. Let P> " X denote the projection that sends (z, z) to . It is defined at all points
except at the center of projection ¢ = (0,0, 0, 1), and its fibres are the lines through ¢, with ¢ omitted.

Let S be a cubic surface in P2, the locus of zeros of an irreducible homogeneous cubic polynomial g(x, 2).
We’ll denote the restriction of 7 to .S by the same symbol 7.

Let’s suppose that ¢ is a point of S. Then the coefficient of z* in g will be zero, and g will be quadratic
inz: g(z,2) = az® + bz + ¢, where the coefficienta a, b, ¢ are homogeneous polynomials in z, of degrees
1,2, 3, respectively. The equation for S becomes

4.9.12) az? +bz+c=0
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The discriminant f = b% — 4ac of g is a homogeneous polynomial of degree 4 in 2. Let Y be the projective
double plane

(4.9.13) y? = b% — dac

We denote by V' the affine space of polynomials a, b, ¢ of degrees 1,2, 3 in z, and by W the affine space
of homogeneous quartic polynomials in z. Sending g to its discriminant f defines a morphism V' —= W

@9.12).

4.9.14. Lemma. The image of the morphism w contains all quartic polynomials f such that the divisor
D : f = 0 has at least one bitangent line. Therefore the image of u is dense in W.

proof. Given such a quartic polynomial f, let a be a linear polynomial such that the line ¢; : {a = 0} is a
bitangent to D : {f = 0}. Then, as noted above, ¢; splits in the double plane y? = f. So f is congruent to a
square, modulo a. Let b be a quadratic polynomial such that f = b? modulo a. When we take this polynomial
as b, we will have f = b? — 4ac for some cubic polynomial c.

Conversely, if g(x,y) = az? + bz + ¢, the line £; : {a = 0} will be a bitangent to D provides that the
locus b = 0 meets ¢; in two distinct points. (]

It follows from the lemma that, if g(z,2) = az? + bz + ¢ is a polynomial in which a, b, ¢ are generic
homogeneous polynomials in , of degrees 1,2, 3, respectively, the discriminant b> — 4ac will be a generic
homogeneous quartic polynomial in x.

We go back to the generic cubic surface S : az? + bz + ¢ = 0 and the generic double plane Y : y? =
b? — 4ac.

4.9.15. Theorem. A generic cubic surface S in P contains precisely 27 lines.

This theorem follows from next lemma, which relates the 27 lines in S to the 28 bitangents of the generic
quartic curve A : {b? — dac = 0} in the plane X (1.11.2).
As noted above, the line ¢; defined by the linear equation a = 0 is a bitangent to the quartic curve A.

4.9.16. Lemma. Let S be a generic cubic surface. The 27 bitangent lines in X that are distinct from {1 are
the images of the lines in S, and distinct lines in S have distinct images.

proof. Because the cubic surface .S is generic, it contains finitely many lines (3.6). When we project to X from
a generic point ¢ of S, ¢ won’t lie on any of those lines. The fibres of the projection P> — X are lines through
q, and they aren’t contained in S. So a line in S projects bijectively to a line in X.

A line in X is defined by a homogeneous linear equation in the variables x. The same linear equation
defines a plane H in P3 that contains ¢, and the intersection C' = S N H will be a cubic curve in H. At least
one of the irreducible components of C' contains ¢, and that component isn’t a line. So if C is reducible, it
will be a union Q U L, where @ is a conic that contains g and L is a line in .S. Thus lines L in .S correspond
bijectively to lines in X such that the corresponding cubic C' is reducible.

Referring to (#.9.12)) and @.9.13), the quadratic formula solves for z in terms of y whenever a # 0:

b
(4.9.17) 2= ;y or y=2az+b
a

These equations define a bijection S’ +— Y’ between the open subsets S’ and Y of points of S and Y at
which a # 0.

If ¢ is a line in X, not the line /1, the intersection £ N £1 will be a point p. The bijection S” +— Y’ will be
defined at all points that lie over ¢ except those whose images are p. If £ is the image of a line in .S, the cubic
curve C' = SN H is reducible. Because £ splits in Y, it is a bitangent to the quartic curve A. Conversely, if ¢
splits in Y, then C' will be reducible. It will be the union of a line and a conic. So every bitangent line distinct
from ¢; is the image of a unique line in S.

The line ¢; : {a=0} is special. Its inverse image C in S is the locus of zeros of the two polynomials a and
az? +bz+e¢, or equivalently, the locus ¢ = 0 and bz + ¢ = 0.

Let’s adjust coordinates so that @ becomes the polynomial . The locus {z¢ = 0} in IP’% is the projective
plane P with coordinates z1, 2, 2, and in P C'is the locus g = 0 in that plane, where § = bz + ¢, b, € being
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the polynomials obtained from b, ¢ by substituting zo = 0. In P, the point ¢ becomes (0,0, 1), and C becomes
the cubic curve § = 0. The cubic curve C is singular at ¢ because g has no term of degree > 1in z. As we
have noted, C' cannot be the union Q U L, of a conic and a line that meet at q. Therefore C' is irreducible. It
doesn’t contain a line, so /1 doesn’t split. O

Summing up: The 27 bitangents distinct from ¢; are images of lines in .S, but ¢; is not the image of a line
in S.
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Chapter 5 STRUCTURE OF VARIETIES IN THE ZARISKI TOPOL-
0GY

Modules (a review)

Valuations

Smooth Curves

Constructible sets

Closed Sets

Fibred Products

Projective Varieties are Proper

HEEEBBR

Fibre Dimension

The goal of this chapter is to show how algebraic curves control the geometry of higher dimensional
varieties. We do this, beginning in Section[5.5]

5.1 Modules (a review)

We start with a brief review of modules over a ring, omitting proofs.

(5.1.1) exact sequences

A sequence
n—1 n n—+1
..._>an1(1_> vn d_>V”+1d_>
of homomorphisms of R-modules is exact if the image of d*~! is equal to the kernel of d*. For example, a

d . . . C d .
sequence 0 — V' — V" is exact if and only if the map d is injective, and a sequence V' — V’ — 0 is exact
if and only if d is surjective.

Any homomorphism V' ~%5 V7’ can be embedded into an exact sequence
05KV -5Sv 500,

where K and C' are the kernel and cokernel of d, respectively.
A short exact sequence is an exact sequence of the form
b
0=V -5V V' —o.
The statement that this sequence is exact asserts that the map « is injective, and that V"’ is isomorphic to the
quotient group V'/aV .

5.1.2. Proposition. (functorial property of the kernel and cokernel) Suppose given a (commutative) diagram
of R-modules

Vv 25 v V' ——5 0
fl f,l f”l
0 w w’ w”
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whose rows are exact sequences. Let K, K', K" and C,C", C" denote the kernels and cokernels of f, f’, and
f", respectively.
(i) (kernel is left exact) The kernels form an exact sequence K — K' — K. If u is injective, the sequence
0— K — K' — K" is exact.
(ii) (cokernel is right exact) The cokernels form an exact sequence C — C' — C". If v is surjective, the
sequence C' — C' — C" — 0 is exact.
(iii) (Snake Lemma) There is a canonical homomorphism K" i> C that combines with the above sequences
to form an exact sequence

K—K >K'-%0-0 =,

If u is injective and/or v is surjective, the sequence remains exact with zeros at the appropriate ends. (I

(5.1.3) tensor products

Let U and V' be modules over a ring R. The tensor product U @ gV is an R-module that is generated by
elements u ®v called tensors, one for each u in U and v in V. Its elements are combinations of tensors with
coefficients in R.

The defining relations among the tensors are the bilinear relations:
(5.1.4) (ur14u2) v =u1 Qvtus v, u (v1+v2) =u®v1+u® vy
and ru®wv) = (ru) @ v=u® (rv)
forall win U, vin V, and r in R. The tensor symbol ® is used as a reminder that the elements u ® v are to be

manipulated using these relations.

One can absorb a coefficient from R into either one of the factors of a tensor, so every element of U @ pV'
can be written as a finite sum » . u; ®v; with u; in U and v; in V.

5.1.5. Example. Let U be the space of m dimensional (complex) column vectors, and let V' be the space of
n-dimensional row vectors. Then U ®¢ V identifies naturally with the space of m x n-matrices. If U and V" are
free R-modules with bases {u; } and {v;}, respectively, then U ® gV is a free R-module with basis {u; ® v;}.

There is an obvious map of sets U x V i) U ® gV from the product set to the tensor product, that
sends (u,v) to w ® v. This map isn’t a module homomorphism. The defining relations (5.1.4) show that it is
R-bilinear, not linear. It is a universal bilinear map.

5.1.6. Corollary. Let U, V, and W be R-modules. Homomorphisms of R-modules U @ g V' — W correspond
bijectively to R-bilinear maps U xV — W. ]

Any R-bilinear map U x V L. W to a module W can be obtained from a module homomorphism

U®grV i> W by composition with the bilinear map [ defined above: U xV L U®grV i> w.
This follows from the defining relations. U

5.1.7. Proposition. There are canonical isomorphisms

e U®®r R=U,definedbyu@r «~ ur

UaU)@rV = UgrV)® (U ®rV), defined by (u1 + ug) @ v e~ 11 @ 0+ us @ v

e URRrV =V ®RrU,definedbyu®uv o~ vQu

(U@rV)QrWaxU®®g (Ver W), defined by (u®@v) @ w e u® (v® w) O

5.1.8. Proposition. Tensor product is right exact: Let U T U L U S 0 be an exact sequence of
R-modules. For any R-module V', the sequence below is exact:

UarV 8 U 0pV 25 U 02V — 0
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Tensor product isn’t left exact. For example, Let R = C[z]. Then R/xR =~ C, so there is an exact

sequence 0 — R — R — C — 0. When we tensor with C we get the sequence 0 — C SLUNY oY g 0, in
whihc the zero map isn’t injective.

5.1.9. Corollary. Let U and V be modules over a domain R and let s be a nonzero element of R. Let
R, Us, Vi be the (simple) localizations of R, U,V respectively.

(i) There is a canonical isomorphism Us =~ U Qg (R;).

(ii) Tensor product is compatible with localization: Us @p_ Vs ~ (U @r V), d

We note that the product module U x V' and the tensor product module U ®p V are very different. For
instance, when U and V are free modules of ranks » and s, U xV is free of rank r+ s, while U ®g V is free
of rank rs.

(5.1.10) extension of scalars in a module

LetR 2 R'bea ring homomorphism. Extension of scalars constructs an R’-module from an R-module.
Let’s write scalar multiplication on the right. So M will be a right R-module. Then M ®r R’ be comes an
R’-module, multiplication by s € R’ being (m ® a)r’ = m ® (ar’). This gives the functor

R—modules ®—R/> R’ —modules

that is called extension of scalars.

(5.1.11) localization, again

If s is a nonzero element of a domain A, the simple localization As, which is often referred to simply as a
localization, is the ring obtained by adjoining an inverse of s, and to work with the inverses of finitely many
nonzero elements, one may simply adjoin the inverse of their product. For working with an infinite set of
inverses, the concept of a multiplicative system is useful.

A multiplicative system S in a domain A is a subset that consists of nonzero elements, is closed under
multiplication, and contains 1. If S is a multiplicative system, the ring of S-fractions AS~! is the ring obtained
by adjoining inverses of all elements of S. Its elements are equivalence classes of fractions as~! with a in A
and s in S, the equivalence relation and the laws of composition being the usual ones for fractions. The ring
AS~1 called a localization too..

5.1.12. Examples. (i) The set consisting of the powers of a nonzero element s of a domain A is a multiplica-
tive system. Its ring of fractions is the simple localization A; = A[s™].

(ii) The set S of all nonzero elements of a domain A is a multiplicative system. Its ring of fractions is the field
of fractions of A.

(iii) An ideal P of a domain A is a prime ideal if and only if its complement, the set of elements of A not in
P, is a multiplicative system. (]

Let A C B be aring extension, and let I and J be ideals of A and B, respectively. Recall that the extension
of [ is the ideal I B of B generated by I, whose elements are finite sums Zi z;b; with z; in I and b; in B. The
contraction of J is the intersection J N A, which is an ideal of A.

5.1.13. Proposition. Let S be a multiplicative system in a domain A, and let A’ be the localization AS™1.
(i) Let I be an ideal of A. The extended ideal 1A' is the set IS~" whose elements are classes of fractions
xs~ Y, withx in I and s in S. The extended ideal is the unit ideal if and only if I contains an element of S.

(ii) Let J be an ideal of the localization A’ and let I denote its contraction J N A. The extended ideal T A’ is
equalto J: J = (JNAA'

(iii) If Q is a prime ideal of A and if Q N S is empty, the extended ideal Q' = QA’ is a prime ideal of A, and
the contraction Q' N A is equal to Q. If Q N S isn’t empty, the extended ideal is the unit ideal. Thus prime
ideals of AS™" correspond bijectively to prime ideals of A that don’t meet S. O
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5.1.14. Corollary. Every localization AS™" of a noetherian domain A is noetherian. O

(5.1.15) a general principle

An important, though elementary, principle for working with fractions is that any finite sequence of com-
putations in a localization AS~! will involve only finitely many denominators, and can therefore be done in a
simple localization A, where s is a common denominator for the fractions that occur. This principle has been
mentioned before, in Proposition [4.2.10}

For example, let A C B be finite-type domains, and let S be the multiplicative system of nonzero elemets
of A. Then AS~—! = K is the field of fractions of A, and Bx, = BS~! is a finite-type K -algebra. The Noether
Normalization Theorem tells us that B is a finite module over a polynomial subring K[y, ..., Y|, Therefore
there is a nonzero element s in A such that By is a finite module over the polynomial ring Ag[y1, ..., Yn)-

(5.1.16) module homomorphisms

Beginning in Chapterlgl, we will work with modules over various rings. Let R L5 R'bea ring homomor-
phism, let M be an R-module, and let M’ be an R’-module. A homomorphism M 25 M’ associated to the

ring homomorphism p is an additive group homomorphism M s M compatible with scalar multiplication.
If min M and a in R, then

(5.1.17) @(am) = p(a)p(m)

For example, if M is a module over a domain R and s is a nonzero element of R, the localization M is an
Rs-module. The canonical homomorphism M — M is compatible with the localization map R — R;.

IfA -2 Bisa ring homomorphism, a B-module N can be made into an A-module by restriction of
scalars, scalar multiplication by an element a of A being defined by the formula

(5.1.18) an = p(a)n

If it seems necessary in order to avoid confusion, we may denote a B-module N and the A-module obtained
from it by restriction of scalars by gV and 4V, respectively.

Let M —2s M’ be a homomorphism compatible with a ring homomorphism R —+ R’. When M’ is made
into an R-module by restriction of scalars, ¢ becomes a homomorphism of R-modules.

(5.1.19) localizing a module

Let S be a multiplicative system in a domain A. The localization M S of an A-module M is defined in
a natural way, as the AS~!-module whose elements are equivalence classes of fractions ms~! with m in M
and s in S, and there will be a homomorphism M — M S —1 that sends an element m to the fraction m /1.
The only complication comes from the fact that A/ may have S-torsion elements — nonzero elements m such
that ms = 0 for some s in S. If ms = 0 and s is in .S, then m must map to zero in M S~ because in MS—1,

we will have m = mss—!.

To define MS~1!, it suffices to modify the equivalence relation. Two fractions mlsfl and mosy L are
defined to be equal if there is an element 5 € S such that 11825 = mos15. Then msl_1 = 0 if and only if
ms = 0 for some 5 in S. This takes care of torsion, and M .S~! becomes an AS~!'-module.

This is also how one localizes a ring that isn’t a domain.

When S is the set of powers of an element s, the localized As-module will be denoted by M. Its elements

have the form ms—*, for some k& > 0, and m1s~ " = mgys~* if for sufficiently large n, mysketn =
ki+n
mos .

5.1.20. Proposition. Let S be a multiplicative system in a domain A.

104



(i) Localization is an exact functor: A homomorphism M <5 N of A-modules induces a homomorphism
MS—1 25 NS—! of AS~ -modules, and if M 2+ N Y Pis an exact sequence of A-modules, the
localized sequence MS~™ 5 NS—1 Y PSS is exact.

(ii) Let M be an A-module. and let N be an AS™'-module. Homomorphisms of AS ™ -modules MS~" — N
correspond bijectively to homomorphisms of A-modules M — N.

(iii) If multiplication by s is an injective map M — M for every s in S, then M C S~'M. If multiplication
by every s is a bijective map M — M, then M ~ S~'M. O

(5.1.21) local rings

A local ring is a noetherian ring that contains just one maximal ideal.

An element of a local ring R that isn’t in its maximal ideal M it isn’t in any maximal ideal, so it is a unit.
A local ring R will have a residue field R/M. The case that is most important for us is that the residue field is
the field of complex numbers.

We make a few general comments about local rings here though we will be interested mainly in some
special local rings, discrete valuation rings that are discussed below.

The Nakayama Lemma4.1.3|has a useful version for local rings:

5.1.22. Local Nakayama Lemma. Let R be a local ring with maximal ideal M, let V' be a finite R-module,
and let V' be the quotient V//MV, which is a vector space over the residue field k of R as well as an R-module.

(i)Isz 0, thenV = 0.
(i) Let v = (v1, ..., v,) be a set of elements of V, and let v = (vy, ..., D) be the residues of v in V. If U spans
V, then v spans V.

proof. () If V = 0, then V = MYV. The Nakayama Lemma tells us that A/ contains an element z such that
1— 2z annihilates V. Then 1—z isn’tin M, so it is a unit. A unit annihilates V', and therefore V' = 0.

(ii) Let V' be the submodule of V' spanned by v, let W = V/V", and EW = W/MW. To show that v spans
V', we show that W = 0, and according to (i), it suffices to show that W = 0.

We inspect the iagram

o
=
<
<l
o

! s

0 MW w

—
o

=

d

Its rows are exact, the maps labelled a, b, ¢, d are surjective, and thj kernel of b is V’. If v spans V, ie., if
aV’' =V, then caV' = W = dbV’. Since bV’ = 0, it follows that W = 0, as required. O

5.1.23. Corollary. Let R be a local ring with maximal ideal M and residue field k, and let m = {mq, ..., m,.}
be a set of elements of M. If the residues of m span the k-vector space M /M?, then m spans M. U

5.2 Valuations

A local domain R with maximal ideal M has dimension one if (0) and M are the only prime ideals of R,
and M # (0). In this section, we describe the normal local domains of dimension one. They are the discrete
valuation rings that are defined below.

Let K be a field. A discrete valuation v on K is a surjective homomorphism
(5.2.1) K* Lzt

from the multiplicative group of nonzero elements of K to the additive group of integers such that, if a, b are
elements of K and if a, b and a+b aren’t zero, then
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e v(a+b) > min{v(a),v(b)}.

The word “discrete” refers to the fact that Z* has the discrete topology. Other valuations exist. They
are interesting, but less important, and we won’t use them. To simplify terminology, we refer to a discrete
valuation simply as a valuation.

Let k be a positive integer. If v is a valuation and if v(a) = k, then k is the order of zero of a, and if
v(a) = —k, then k is the order of pole of a , with respect to the valuation.

5.2.2. Lemma. [fv is a valuation on a field K that contains the complex numbers, every nonzero complex
number has value zero.

proof. This is true because C contains n th roots. If v is an n th root of a nonzero complex number c¢, then
because v is a homomorphism, v(7) = v(c)/n. The only integer that is divisible by every positive integer n is
Zero. U

The valuation ring R associated to a valuation v on a field K is the subring of elements of K with non-
negative values, together with zero:

(5.2.3) R={a€ K*|v(a) >0} U {0}

Valuation rings are usually called “discrete valuation rings”, but since we have dropped the word discrete from
the valuation, we drop it from the valuation ring too.

5.2.4. Proposition. Valuations of the field C(t) of rational functions in one variable correspond bijectively
to points of the projective line P}. The valuation ring that corresponds to a point p # oc is the local ring of
the polynomial ring C[t] at p.

beginning of the proof. Let K denote the field C(t), and let a be a complex number. To define the valuation
v that corresponds to the point p : ¢ = a of P!, we write a nonzero polynomial f as (t — a)*h, where t — a
doesn’t divide h, and we define, v(f) = k. Then we define v(f/g) = v(f) — v(g). You will be able to check
that with this definition, v becomes a valuation whose valuation ring is the local ring at p. The valuation that
corresponds to the point at infinity of P! is obtained by working with ¢~! in place of ¢.

The proof that these are all of the valuations of C(t) will be given at the end of the section.

5.2.5. Proposition. Let v be a valuation on a field K, let R be its valuation ring, and let x be an element of
the multiplicative group K> with value v(x) = 1.
(i) The ring R is a normal local domain of dimension one. Its maximal ideal M is the principal ideal x R. The
elements of M are those that have positive value:

M ={ae K*|v(a) >0} U{0}

(ii) The units of R are the elements of K* with value zero. Every element z of K* has the form z = xz*u,

where u is a unit and k = v(z) is an integer.

(iii) The proper R-submodules of K are the sets x* R, where k is a positive or negative integer. The set x* R
consists of zero and the elements of K* with value > k. The nonzero ideals of R are the principal ideals =* R
with k > 0, the powers of the maximal ideal.

(iv) There is no ring properly between R and K: If R’ is a ring and if R C R’ C K, then either R = R' or
R =K.

proof. We prove (i) last.

(i) Since v is a homomorphism, v(u~!) = — v(u). So u and u~! are both in R, i.e., u is a unit, if and only if

v(u) = 0. If 2 is a nonzero element of K with v(z) = k, then u = 2% has value zero, so it is a unit, and
k

z = ux”.

(iii) The R-module z* R consists of the elements of K of value at least k. Suppose that an R-submodule N
of K contains an element z with value k. Then z = uz”, where  is a unit, and therefore N contains z* and

106



2P R. If k is the smallest integer such that N contains an element z with value k, then N = 2F R. If there is no
minimum value of the elements of N, then N contains 2* R for every k,and N = K.

(iv) This follows from (iii). The ring R’ will be an R-submodule of K. If R’ # K, then R’ = x* R for some
k, and since R’ contains R, k < 0. If k < 0 then 2* R isn’t closed under multiplication. So k = 0 and R’ = R.

(i) First, R is noetherian because (iii) tells us that it is a principal ideal domain, and it follows from (ii) that
the only prime ideals of R are {0} and M = zR. So R is a local ring of dimension 1. If the normalization of
R were larger than R, then according to (iv), it would be equal to K. Then 2~! would be integral over R. It
would satisfy a polynomial relation =" 4 ay2~("~Y) + ... + @, = 0 with a; in R. When one multiplies this
relation by =", one sees that 1 would be a multiple of . Then x would be a unit, which it is not. O

5.2.6. Theorem.
(i) A local domain whose maximal ideal is a nonzero principal ideal is a valuation ring.
(i) Every normal local domain of dimension 1 is a valuation ring.

proof. (i) Let R be a local domain whose maximal ideal M is a nonzero principal ideal, say M = xR, with
x # 0, and let y be a nonzero element of R. The integers k such that 2* divides y are bounded . Let
2" be the largest power that divides y. Then y = ux”, where k > 0 and w isn’t in M. It is a unit. Then any
nonzero element z of the fraction field K of R will have the form z = uz" where v is a unit and r is an integer,
possibly negative. This is shown by writing the numerator and denominator of a fraction in such a form and
dividing.

The valuation whose valuation ring is R is defined by v(z) = r when z = ua” as above. If z; = u;z",
i = 1,2, where u; are units and 1 < rg, then 21 + 29 = ax™, where a = u; + usx™ " is an element of
R. Therefore v(z1 + 2z2) > 1 = min{v(z1),v(22)}. We also have v(z122) = v(z1) + v(22). Thus v is a
surjective homomorphism. The requirements for a valuation are satisfied.

(ii) The fact that a valuation ring is a normal, one-dimensional local ring is Proposition (i). We show that
a normal local domain R of dimension 1 is a valuation ring by showing that its maximal ideal is a principal
ideal. The proof is a bit tricky.

Let z be a nonzero element of M. Because R is a local ring of dimension 1, M is the only prime ideal
that contains z, so M is the radical of the principal ideal zR, and M" C zR if r is large. Let r be the smallest
integer such that M" C zR. Then there is an element y in M"~! that isn’t in zR, but such that yM C zR.
We restate this by saying that w = y/z isn’t in R, but wM C R. Since M is an ideal, multiplication by an
element of R carries wM to wM. So wM is an ideal. Since M is the maximal ideal of the local ring R, either
wM C M, orwM = R. If wM C M, the lemma below shows that w is integral over R. This can’t happen
because R is normal and w isn’t in R. Therefore wM = R and M = w~!R. This implies that w~! is in R
and that M is a principal ideal. (]

5.2.7. Lemma. Let I be a nonzero ideal of a noetherian domain A, and let B be a domain that contains A.
An element w of B such that wl C I is integral over A.

proof. This is the Nakayama Lemma once more. Because A is noetherian, [ is finitely generated. Let v =
(v1, ..., v,)" be a vector whose entries generate I. The hypothesis wI C I allows us to write wv; = Y p;;v;
with p;; in A, or in matrix notation, wv = Pv. So w is an eigenvalue of P. If p(t) denotes the characteristic
polynomial of P, p(w)v = 0. Since I # 0, at least one v; is nonzero. Since A is a domain, p(w)v; = 0
implies that p(w) = 0. The characteristic polynomial is a monic polynomial with coefficients in A, so w is
integral over A. O

(5.2.8)  the local ring at a point

Let m be the maximal ideal at a point p of an affine variety X = Spec A. The complement S of m is
a multiplicative system (iii)), and the prime ideals P of the localization AS~! (the ring obtained by
inverting the elements of S) are extensions of the prime ideals Q of A that are contained inm: P = QS~!
. Thus AS~! is a local ring whose maximal ideal is mS~!. This ring is called the local ring of A at p,
and is often denoted by A,,.
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For example, let X = Spec A be the affine line, A = C[t], and let p be the point t = 0. The local ring A,
is the ring whose elements are fractions f(¢)/g(t) with g(0) # 0.

Any finite set a1, ..., o, of elements of the local ring A,, at p will be contained in a simple localization A,
for some s in S. It will be in the coordinate algebra of the affine open neighborhood X of p.

5.2.9. Lemma. A rational function o on a variety X is regular on X if it is in the local ring of X at every
point p.

This is true because a function « is in the local ring at p if and only if it is in the coordinate algebra of some
affine neighborhood of p. O

5.2.10. Corollary. Let X = Spec A be an affine variety.
(i) The coordinate algebra A is the intersection of the local rings A, at points of X.

A= ()4,

peEX
(ii) The coordinate algebra A is normal if and only if all of its local rings A, are normal.

See Lemma[4.3.3]for (ii). O

5.2.11. Note. (about the overused word local) A property is true locally on a topological space X if every
point p of X has an open neighborhood U such that the property is true on U.

The words localize and localization refer to the process of adjoining inverses. The localizations X of an
affine variety X = Spec A form a basis for the topology on X. So if some property is true locally on X, one
can cover X by localizations on which the property is true. There will be elements sq, ..., si of A that generate
the unit ideal, such that the property is true on each of the localizations X, .

An A-module M is locally free if there are elements s1, ..., s, that generate the unit ideal of A, such that
M, is a free A,-module for each i. If a locally free A-module U that is locally isomorphic to A¥, then U has
rank k.

An ideal I of A is locally principal if there are elements s; that generate the unit ideal, such that I, is a
principal ideal of A;;,. O

5.2.12. Corollary. Let M be a finite module over a finite-type domain A. If for some point p of X = Spec A
the localized module M), is a free module, there is an element s not in wm,, such that My is free.

proof. See the general principle (5.1.15). O
We finish the proof of Proposition now, by showing that every valuation v of the function field
K = C(t) of P! corresponds to a point of P*.

Let R be the valuation ring of v. If v(¢) < 0, we replace ¢ by t~1. So we may assume that v(t) > 0. Then
t is an element of R, and therefore C[¢t] C R. The maximal ideal M of R isn’t zero. It contains a nonzero
element of K, a fraction « = f/g of polynomials in ¢. The denominator g is in R, so M also contains the
nonzero polynomial f = ga. Since M is a prime ideal, it contains an irreducible factor of f. The irreducible
polynomials in ¢ are linear, so M contains ¢ — a for some complex number a. Then ¢ — ¢ isn’t in M when
¢ # a, because the scalar ¢ — a cannot be in M. Since R is a local ring, ¢t — ¢ is a unit of R for all ¢ # a. The
localization Ry of C[t] at the point ¢ = a is a valuation ring that is contained in the valuation ring R .
There is no ring properly containing Ry except K, so Ry = R. (]

5.3 Smooth Curves
A curve is a variety of dimension 1. The proper closed subsets of a curve are its nonempty finite subsets.

5.3.1. Definition. A point p of a curve X is a smooth point if the local ring at p is a valuation ring. Otherwise,
p is a singular point. A curve X is smooth if all of its points are smooth.

Let p be a smooth point of a curve X, and let v,, be the corresponding valuation. As with any valuation,
we say that a rational function o on X has a zero of order k > 0 at p if v,,(«) = k, and that it has a pole of
order k at pif vp(a) = —k.
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5.3.2. Lemma. (i) An affine curve X is smooth if and only if its coordinate algebra is a normal domain.
(ii) A curve has finitely many singular points.

(iii) The normalization X of a curve X is a smooth curve, and the canonical morphism X — X becomes an
isomorphism when the finite set of singular points of X and their inverse images are deleted.

proof. (i) This follows from Theorem|[5.2.6land Proposition

(iii),(iii) Any nonempty open subset of a curve X will be the complement of a finite set, so we may replace X
by an affine open subset, say Spec A. The normalization A of A will be a finite A-module, and therefore a
finite-type algebra with the same fraction field as A, and Spec A will be a smooth curve. It follows from the
principlethat A and A have a common localization, say A. The open subset X; = Spec A, of X will
be smooth. (]

5.3.3. Proposition. Let X be a smooth curve with function field K. Every point of P™ with values in K defines
a morphism X — P,

proof. A point (o, ..., ) of P with values in K determines a morphism X — P™ if and only if, for every
point p of X, there is an index j such that the functions «;/«; are regular at p for all ¢ = 0,...,n (3.4.11).
This will be true when j is chosen so that the order of zero v, (a;) of «; at p is the minimal integer among the
vp(a;),i=0,...,n. O

As the next example shows, this proposition can’t be extended to varieties X of dimension greater than
one.

5.3.4. Example. Let Y be the complement of the origin in the affine plane X = SpecCl[z,y], and let
K = C(x,y) be the function field of X. The vector (z, y) defines a point of IP, , with values in K. This point
can be written as (1.y/z) and also as (x/y,1). So (z,y) defines a morphism to P! wherever at least one of
the functions x/y or y/x is regular, which is true at all points of Y. However, there is no way to extend the
morphism to X. t

5.3.5. Proposition. Let X = Spec A be a smooth affine curve with function field K. The local rings of X are
the valuation rings of K that contain A. Therefore the maximal ideals of A are locally principal.

proof. Since A is a normal domain of dimension one, its local rings are valuation rings that contain A (Theorem
@. Let R be a valuation ring of K that contains A, let v be the associated valuation, and let M be the
maximal ideal of R. The intersection M N A is a prime ideal of A. Since A has dimension 1, the zero ideal
is the only prime ideal of A that isn’t a maximal ideal. We can clear the denominator of an element of M,
multiplying by an element of R, to obtain an element of A while staying in M. So M N A isn’t the zero ideal.
It is the maximal ideal m,, of A at a point p of X. The elements of A that aren’t in m,, aren’t in M either, so
they are invertible in R. Therefore the local ring A,, at p, a valuation ring, is contained in R. This implies that

Ap, = R (3.2.3) (iii). O
5.3.6. Proposition. Let X’ and X be smooth curves with the same function field K.

(i) Any morphism X' Ly X that is the identity on the function field K maps X' isomorphically to an open
subvariety of X.

(ii) If X is projective, every smooth curve X' with function field K is isomorphic to an open subvariety of X.
(iii) If X' and X are both projective, they are isomorphic.

(iv) If X is projective, every valuation ring of K is the local ring at a point of X.

proof. (i) Let g be a point of X’, let U be an affine open neighborhood of p = fq, and let V' be an affine open
neighborhood of ¢ in X' that is contained in the inverse image of U. Say U = Spec A and V' = Spec B.
The morphism f gives us a homomorphism A — B, and since g maps to p, this homomorphism extends to an
inclusion of local rings A, C B,. These rings are valuation rings with the same field of fractions, so they are
equal. Since B is a finite-type algebra, there is an element s in A, with s(g) # 0, such that A; = B,. Then
the open subsets Spec A, of X and Spec B, of X' are the same. Since ¢ is an arbitrary point of X', X’ is
covered by open subvarieties of X. So it is an open subvariety of X too.

(ii) The projective embedding X C P" is defined by a point («o, ..., a,) with values in K, and that same point
defines a morphism X’ — P™. If f(xg,...,z,) = 0 is a set of defining equations of X in P, then f(a) = 0
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in K, and therefore f vanishes on X’ too (??). So the image of X' is contained in the zero locus of f, which
is X. Then (i) shows that X’ is an open subvariety of X.

(iii) This follows from (ii).

(iv) The local rings of X are normal and of dimension one. They are valuation rings. We prove the converse.
Let 5 = (Bo, ..., Bn) be the point with values in K that defines the projective embedding of X, let R be
a valuation ring of K, and let v be the corresponding valuation. We order the coordinates so that v(/p)

is minimal. Then the ratios 7; = /B8y will be in R. The coordinate algebra A of the affine variety
X0 = X N1Y is generated by the coordinate functions ;. So 4y C R, and R is the local ring of X at some
point[5.3.5] O

5.3.7. Proposition. Let X = Spec A be an affine curve, and let m and v be the maximal ideal and valuation,
respectively, at a smooth point p. Let R be the valuation ring of v and let M be its maximal ideal.

(i) The power m* of m consists of the elements of A whose values are at least k. If I is an ideal of A whose
radical is wm, then I = m* for some k > 0.

(ii) The algebras A/m™ ! and R/M™*! are isomorphic to the truncated polynomial ring C[t]/(t" ).

(iii) If X is a smooth affine curve, every nonzero ideal I of A is a product mi* - --mi* of powers of maximal
ideals.

proof. (i) The nonzero ideals of R are powers of M. Let I be an ideal of A whose radical is m, and let k be the
minimal value v(z) of the nonzero elements = of . We will show that I is the set of all elements of A with
value > k, i.e., that I = M" N A. Since we can apply the same reasoning to m¥, it will follow that I = m*.

Let = be an element of I with value k, and let y be an element with value at least k. Then z divides y in R,
say y/x = u, with v in R. The element u will be a fraction a/s with s,a in A and s not in m, and sy = ax.
The element s will vanish at a finite set of points ¢, ..., ¢, but not at p. We choose an element z of A that
vanishes at p but not at any of the points ¢y, ..., g¢.. Then z is in m, and since the radical of I is m, some power
of z isin I. We replace z by that power. Then z is in I. By our choice, z and s have no common zeros in X.
They generate the unit ideal of A. We write 1 = ¢s+dz with cand d in A. Then y = csy + dzy = cax + dzy.
Since x and z are in [, so is y.

(ii) Since p is a smooth point, the local ring of A at p is the valuation ring R, and A contains an element ¢
with value v(t) = 1. Let P be the subring C[t] of A, and let Py, = P/(t)*, Ay = A/m*, and Ry, = R/M*.
Since m isn’t the zero ideal, m¥—1 < m* (Corollary ii)). It follows from (i) that tm*~1 = m¥. Therefore
mF~1 /m* has C-dimension 1. The map labelled g;,_; in the diagram below is bijective.

0 s (1F1)/(t%) 2 et — 0
gk—ll fk-l fk—lJ/
0 — s mh/mh a, A, — 0

Induction on & shows that the map labelled fj,_1 is bijective, so fy is bijective. A similar argument shows that
Py, and Ry, are isomorphic

(iii) Let I be a nonzero ideal of A. Because X has dimension one, the locus of zeros of I is a finite set
{p1,...,pr}. Therefore the radical of I is the intersection my N --- N my, of the maximal ideals m; at p;,
which, by the Chinese Remainder Theorem, is the product ideal m; - - - my, Moreover, I contains a power of
that product, say I D> my ---m¥ Let J = m{¥ - - - mJ. The quotient algebra A/.J is the product By X- - -x By,
with B; = A/m¥, and A/I is a quotient of A/.J. Propositiontells us that A/ is a product A;x- - -x Ay,
where Zj is a quotient of I3;. By part (ii), each B; is a truncated polynomial ring. Then the quotients Zj must
also be truncated polynomial rings. So the kernel I of the map A — A; x - - - x Ay, is a product of powers of
the maximal ideals m;. O

(5.3.8) isolated points

5.3.9. Proposition. A curve, smooth or not, contains no point that is isolated in the classical topology.
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This was proved before for plane curves (Proposition [I.3.T8).

5.3.10. Lemma.

(i) Let Y’ be an open subvariety of a variety Y. Then q is an isolated point of Y if and only if it is an isolated
point of Y.

/
u

(ii) Let Y/ — Y be a nonconstant morphism of curves and let ' be a point of Y'. If the image of ¢’ is an
isolated point of Y, then ¢’ is an isolated point of Y.

proof. (i) A point ¢ of Y is isolated if {q} is an open subset of Y. If {¢} is open in Y’ and Y’ is open in Y,
then {¢} is openin Y. If {¢} is open in Y, it is open in Y.

(ii) Because Y’ has dimension one, the fibre over ¢ will be a finite set, say {¢’} U F, where F is finite. Let
Y denote the (open) complement Y/ — F of F in Y, and let u” be the restriction of «’ to Y. The fibre of
Y over q is the point ¢’. If {q} is open in Y, then because v is continuous, {¢’'} will be open in Y, and
therefore open in Y. O

proof of Proposition Let ¢ be a point of a curve Y. Part (i) of Lemma[5.3.10]allows us to replace Y by
an affine neighborhood of q. Let Y’ be the normalization of Y. Part (ii) of the lemma allows us to replace Y
by Y’. So we may assume that Y is a smooth affine curve, say Y = Spec B. We can still replace Y by an
open neighborhood of ¢, so we may assume that the maximal ideal m,, is a principal ideal.

Say that B = Clx1, ..., )/ (f1, .-, f&). g is the origin (0, ...,0) in A7, and that the maximal ideal m, is
generated by the residue of a polynomial f in B. Then fy, ..., fx generate the maximal ideal (x1, ..., x,) in
Clx1, ..., zn). Let's write f; = D7 ¢;;x; + O(2), where O(2) denotes an undetermined polynomial, all of

whose terms have degree > 2 in x. The coefficient ¢;; is the partial derivative gﬁ: L, evaluated at g. If J denotes
J

(k-+1)xn Jacobian matrix (gj:) at g, we have (fo, ..., f)! = J(x1, ..., z,)* + O(2). Since fo, ..., f generate
the maximal ideal, there is a matrix P with polynomial entries such that P f¢ = z¢. Then 2 = PJz' + O(2).

If Py is the constant term of P, FyJ will be the identity matrix. So J has rank n.

Let J! be the matrix obtained by deleting the column with index 0 from J. This matrix has rank at least
n— 1, and we may assume that the submatrix with indices 1 < ¢, 7 < n — 1 is invertible. The Implicit Function
Theorem says that the equations f1, ..., f,,—1 can be solved for the variables 1, ..., ,_1 as analytic functions
of x,,, for small x,,. The locus Z of zeros of f1, ..., f,,—1 has dimension at most 1, it is locally homeomorphic
to the affine line (1.4.19), and it contains Y. Since Y has dimension 1, the component of Z that contains ¢
must be equal to Y. So Y is locally homeomorphic to A!, which has no isolated point. Therefore ¢ isn’t an
isolated point of Y.

5.4 Constructible Sets

In this section, X will denote a noetherian topological space. Every closed subset of X is a finite union
irreducible closed sets (2.2.13).

The intersection L = C'N U of a closed set C' and an open set U is a locally closed set. Open sets and
closed sets are examples of locally closed sets.

A constructible set is a set that is the union of finitely many locally closed sets.

5.4.1. Lemma. The following conditions on a subset L of A are equivalent.

o L is locally closed.

e L is a closed subset of an open subset U of X.

o L is an open subset of a closed subset C of X. U

5.4.2. Examples.

(i) A subset S of a curve X is constructible if and only if it is either a finite set or the complement of a finite
set. Thus S is constructible if and only if it is either closed or open.

(ii) Let C be the line {y = 0} in the affine plane X = SpecC[z,y],let U = X — C be its open complement,
and let p = (0,0). The union U U {p} is constructible, but not locally closed. O

We will use the following notation: L is a locally closed set, C'is a closed set, and U is an open set.
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5.4.3. Theorem. The family of constructible subsets of a noetherian topological space X, which we denote
by S, is the smallest family of subsets that contains the open sets and is closed under the three operations of
finite unions, finite intersections, and complementation.

proof. Let S; denote the family of subsets obtained from the open sets by the three operations mentioned in
the statement. Open sets are constructible, and with those three operations, one can produce any constructible
set from the open sets. So S C S;. To show that S = S;, we show that the family of constructible sets is closed
under the three operations.

It is obvious that a finite union of constructible sets is constructible. The intersection of two locally closed
sets Ly = Cy NU;p and Ly = Cy N Uy is locally closed because L1 N Ly = (C1 N Cy) N (U NU,). If
S=LiU---ULgand S’ = L} U---U L/ are constructible sets, the intersection S N S’ is the union of the
locally closed intersections (L; N L;) so it is constructible.

Let S be the constructible set L; U --- U L. Its complement is the intersection of the complements of
Lz 8¢ = L{Nn---N L We have shown that intersections of constructible sets are constructible. So to
show that the complement S¢ is constructible, it suffices to show that the complement of a locally closed set
is constructible. Let L be the locally closed set C' N U, and let C'° and U€ be the complements of C' and U,
respectively. Then C'¢ is open and U € is closed. The complement L€ of L is the union C°UU* of constructible
sets, so it is constructible. O

5.4.4. Proposition. Let X be a noetherian topological space. Every constructible subset S is a union L U
-+ U Ly, of locally closed sets L; = C; N Uj;, in which the closed sets C; are irreducible and distinct.

proof. Suppose that L = C'NU is a locally closed set, and let C' = C; U- - -UC),. be the decomposition of C' into
irreducible components. Then L = (C, NU) U ---U (C, N U), which is constructible. So every constructible
set S is a union of locally closed sets L; = C; N U; in which the C; are irreducible. Next, suppose that two of
the irreducible closed sets are equal, say C; = Cs. Then Ly U Ly = (C1NU;)U(C1NUR) = C1 N (U UT:)
is locally closed. So we can find an expression in which the closed sets are distinct as well. U

5.4.5. Lemma.

(i) Let X, be a closed subset of a variety X, and let X5 be its open complement. A subset S of X is con-
structible if and only if S N X1 and S N X5 are constructible.

(ii) Let X' be an open or a closed subvariety of a variety X.

a) If S is a constructible subset of X, then S' = S N X' is a constructible subset of X'.

b) If S’ is a constructible subset of X', then it is a constructible subset of X.

proof. (i) This follows from Theorem[5.4.3]

(iia) It suffices to prove that the intersection L' = L N X’ of a locally closed subset L of X is a locally closed
subset of X'. If L = C NU, then C' = C N X’ is closed in X', and U’ = U N X’ is open in X’. So
L' =C"'NU’ is locally closed.

(iib) It suffices to show that a locally closed subset L' = C'NU"’ of X" it is locally closed in X. If X’ is closed
in X, then C” is closed in X, and U’ = X N U for some open subset U of X. If X’ is open in X, then U’ is
open in X, and if C is the closure of C’ in X, then CNU’' = C'NU’. So L' = CNU’ is locally closed in X.
([l

The next theorem illustrates a general fact, that sets arising in algebraic geometry tend to be constructible.

5.4.6. Theorem. Let Y Jox be a morphism of varieties. The inverse image of a constructible subset of X
is a constructible subset of Y. The image of a constructible subset of Y is a constructible subset of X.

proof. The fact that a morphism is continuous implies that the inverse image of a constructible set is con-
structible. To prove that the image of a constructible set is constructible, one keeps reducing the problem until
there is nothing left to do.

Let S be a constructible subset of Y. Noetherian induction allows us to assume that the theorem is true
when S is contained in a proper closed subvariety of Y, and also when its image f(.5) is contained in a proper
closed subvariety of X.
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Suppose that Y is the union of a proper closed subvariety Y7 and its open complement Ys, and let .S; =
S NY;. It suffices to show that .S; is a constructible subset of Y;, i = 1,2, and induction applies to Y;. So we
may replace Y by any nonempty open subvariety.

Let X be a proper closed subvariety of X and let X, be its open complement. The inverse image
Y; = f~1(X;) will be closed in Y, and its open complement will be the inverse image Y = f~1(X>).
A constructible subset S of Y is the union of the constructible sets S1 = SN Y; and S, = SNYs So
it suffices to show that f(.S;) is constructible. To show this, it suffices to show that f(.S;) is a constructible
subset of X; fori = 1,2 (iib). Moreover, induction applies to X;. So we need only show that f(.S2)
is a constructible subset of X5. This means that we can replace X and Y by nonempty open subsets finitely
many times.

Since S is a finite union of locally closed sets, it suffices to treat the case that .S is locally closed. Moreover,
we may suppose that S = C N U, where C is irreducible. Then Y is the union of the closed subset C' = Y}
and its complement Y3. Since S N Y3 = (), it suffices to treat Y;. We may replace Y by C. So we may assume
that S =Y NU = U, and we may replace Y by U. We are thus reduced to the case that S =Y.

At this point, we may still replace X and Y by nonempty open subsets, so we may assume that they
are affine, say Y = Spec B and X = Spec A. Then the morphism ¥ — X corresponds to an algebra
homomorphism A 5 B. If the kernel of (o were nonzero, the image of Y would be contained in a proper
closed subset of X to which induction would apply. So we may assume that ¢ is injective.

Proposition f.2.10] tells us that, for suitable nonzero s in A, B, will be a finite module over a polynomial
subring Ag[y1, .., yx]. Then the maps Yy — Spec Asly] and Spec As[y] — X are both surjective, so Y
maps surjectively to X,. When we replace X and Y by X and Y, the map Y — X becomes surjective, and
we are done. (]

5.5 Closed Sets

Limits of sequences are often used to analyze subsets of a topological space. In the classical topology, a subset
Y of C" is closed if, whenever a sequence of points in Y has a limit in C™, the limit is in Y. In algebraic
geometry one uses curves as substitutes.

We use the following notation:

(5.5.1) C is a smooth affine curve, q is a point of C, and C' is the complement of q in C.

The closure of C’ will be C, and we think of ¢ as a limit point. Theorem [5.5.3] which is below, asserts that a
constructible subset of a variety is closed if it contains all such limit points.

The next theorem tells us that there are enough curves to do the job.

5.5.2. Theorem. (enough curves) Let Y be a constructible subset of a variety X, and let p be a point of its

closure Y. There exists a morphism C 1y x from a smooth affine curve to X, and a point q of C with
f(q) = p, such that the image of C' = C — {q} is contained in'Y.

proof. We use Krull’s Theorem to slice Y down to dimension 1. If X = p, then Y = p too. In this case, we
may take for f the constant morphism from any curve C' to p. So we may assume that X has dimension at
least one. Next, we may replace X by an affine open subset X' that contains p, and Y by Y/ =Y N X’. The
closure Y of Y’ in X’ will be the intersection Y N X”, and it will contain p. So we may assume that X is
affine, say X = Spec A.

Since Y is constructible, it is a union L; U - - - U Ly, of locally closed sets, say L; = Z; N U; where Z; are
irreducible closed sets and U; are open sets. (We use Z; in place of C; here to avoid confusion with a curve.)
The closure of Y is the union Z; U - - - U Zy, and p is in one of the closed sets Z;. We may replace X by Z;
and Y by L;, so we may assume that Y is a nonempty open subset of X.

Suppose that the dimension n of X is at least two. Let D = X — Y be the (closed) complement of the
open set Y. The components of D have dimension at most n — 1. We choose an element « of the coordinate
algebra A of X that is zero at p and isn’t identically zero on any component of D except p itself, if p happens
to be a component. Krull’s Theorem tells us that every component of the zero locus of « has dimension n — 1,
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and at least one of those components, call it V, contains p. If V' were contained in D, it would be a component
of D because dimV = n — 1 and dim D < n — 1. By our choice of «, this isn’t the case. So V ¢ D, and
therefore V NY # (). Because V is irreducible and Y is open, V' N'Y is an open dense subset of V, and p is a
point of its closure V. We replace X by V and Y by V NY. The dimension of X is thereby reduced to n — 1.

Thus it suffices to treat the case that X has dimension one. Then X will be a curve that contains p and Y
will be a nonempty open subset of X. The normalization of X will be a smooth curve x; that comes with an
integral and therefore surjective morphism to Y. Finitely many points of X; will map to p. We choose for C'
an affine open subvariety of X that contains just one of those points, and we call that point g. O

5.5.3. Theorem (curve criterion for a closed set) Let Y be a constructible subset of a variety X. The following
conditions are equivalent:

(@)Y is closed.
(b) For every morphism C T x from a smooth affine curve to X, the inverse image f~'Y is closed in C.

(c) Let q be a point of a smooth affine curve C, let C' = C —{q}, and let C Y X bea morphism. If
f(CY CY, then f(C)CY.

The hypothesis that Y be constructible is necessary. For example, let X be the affine line A'. The set Z
of points of X with integer coordinates isn’t constructible, but it satisfies the curve criterion. Any morphism
C’" — X whose image is in Z will map C’ to a single point, and therefore it will extend to C.
proof. The implications (a) = (b) = (c) are obvious. We prove the contrapositive of the implication (¢) =
(a). Suppose that Y isn’t closed. We choose a point p of the closure Y that isn’t in Y, and we apply Theorem

There exists a morphism C' I X from a smooth curve to X and a point ¢ of C such that f(q) = p
and f(C") C Y. Since ¢ ¢ Y, this morphism shows that (¢) doesn’t hold either. O

5.5.4. Theorem. A constructible subset Y of a variety X is closed in the Zariski topology if and only if it is
closed in the classical topology.

proof. A Zariski closed set is closed in the classical topology because the classical topology is finer than the
Zariski topology.

Suppose that Y is closed in the classical topology. Let ¢ be a point of the Zariski closure Y of Y, and
let C L Xbea morphism from a smooth affine curve to X that maps the complement C’ of ¢ to Y. Let
Y’ = f~1Y. Then Y” contains C’, so it is ieither C’ or C'. A morphism is a continuous map in the classical
topology. Since Y is closed in the classical topology, Y’ is closed in C. If Y’ were equal to C’, then {q}
would be open as well as closed. It would be an isolated point of C. Since a curve contains no isolated point,
the closure is C. Therefore the curve criterion (5.5.3)) is satisfied, and Y" is closed in the Zariski topology. [

5.6 Fibred Products

(5.6.1) the mapping property of a product

The product X XY of two sets X and Y has a mapping property that is easy to verify: Maps from a set 7" to

the product set X xY’, correspond bijectively to pairs of maps T’ Iy XandT %5 Y. The map T (f—’g>) XxY

defined by the pair of maps f, g sends a point ¢ to the point pair (f(t), g(t)).
Let XxY ™% X and X xY 25 Y denote the projection maps. If T —> X x Y is a map to the product,

To0h

. .. . Lo h
the corresponding maps to X and Y are the compositions with the projections: 7 == X and T =22 Y
The analogous statements are true for morphisms of varieties.

5.6.2. Proposition. Let X and Y be varieties, and let X XY be the product variety.
() The projections X xY ™% X and X xY =2 Y are morphisms.

(ii) Morphisms from a variety T to the product variety X XY correspond bijectively to pairs of morphisms
T — X andT — Y, the correspondence being the same as for maps of sets. (]

It was proved in Proposition [3.4.32that if X L ZandY % W are morphisms of varieties, the product
map X XY P9 7 x W defined by [f xg](x,y) = (f(x),9(y)) is a morphism.
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(5.6.3) fibred products of sets

If X i> ZandY - Z are maps of sets, the fibred product X x zY is the subset of the product X xY
consisting of pairs of points x, y such that f(x) = g(y). It fits into a diagram

XxzY —25Y

(5.6.4) ml gl

x 1.z

in which m; and 7o are the projections. Many important subsets of a product can be described as fibred
products. If amap Y — Z is given, and if p — 7 is the inclusion of a point into Z, then px 7Y is the fibre of
Y over p. The diagonal in X x X is the fibred product X x x X.

The reason for the term “fibred product” is that the fibre of X X zY over a point x of X maps bijectively
to the fibre of Y over the image z = f(x), and the analogous statement is true for fibres over points of Y.

(5.6.5) fibred products of varieties

Since we are working with varieties, not schemes, we have a small problem: The fibred product of varieties
will be a scheme, but it needn’t be a variety.

5.6.6. Example. Let X = SpecClz], Y = SpecC[y] and Z = Spec C[z] be affine lines, let X s Zand
X 25 Z be the maps defined by z = 22 and z = y?2, respectively. The fibred product X x 7Y is the closed
subset of the affine 2, y-plane consisting of points (z,y) such that 22 = y2. It is the union of the two lines
r=yand x = —y. O

The next proposition will be enough for our purposes.

5.6.7. Proposition. Ler X L Zandy %5 7 be morphisms of varieties. The fibred product X X zY is a
closed subset of the product variety X xY.

proof. The graph I'y of a morphism X L Z of varieties is a closed subvariety of X x Z isomorphic to X
(Proposition [3.4.27). Next, let v and v be two morphisms from a variety X to another variety: Z. We show
that the set W consisting of points = in X such that u(z) = v(x) is a closed subset of X. In X x Z, let W’ be
the intersection of the graphs of v and v: W/ =T, NT',. A point (z, z) is in W’ if z = ux = vz. This is an
intersection of closed sets, so it is closed in I';, (and in I';)). The projection I';, — X, which is an isomorphism,
carries W’ to W, so W is closed in X.

With reference to Diagram X x zY is the subset of the product X xY of points at which the maps
fmx and gmy to Z are equal, so it is closed in X x Y. O

5.7 Projective Varieties are Proper

As has been noted (3.T), an important property of projective space with the classical topology is that it is a
compact space. A variety isn’t compact in the Zariski topology unless it is a single point. Howver, in the
Zariski topology, projective varieties have a property closely related to compactness: They are proper.

Before defining the concept of a proper variety, we explain an analogous property of compact spaces.

5.7.1. Proposition. Let X be a compact space, let Z be a Hausdorff space, and let C be a closed subset of
Z x X. The image of C'in Z is a closed subset of Z.
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proof. Let D be the image of C. We show that if a sequence of points z; of D has a limit z in Z, then £z is in
D. For each i, we choose a point p; of C' that lies over z;. So p; is a pair (z;, x;), ; being a point of X. Since
X is compact, there is a subsequence of the sequence x; that has a limit  in X. Passing to subsequences, we
may suppose that x; has limit z. Then p; will have the limit p = (z,z). Since C is closed, p is in C, and
therefore z is in D. B B O

5.7.2. Definition. A variety X is proper if has the following property: Let Z x X be the product with
another variety Z, let m denote the projection Z x X — Z, and let C' be a closed subvariety of Z x X. The
image D = 7(C') of C'is a closed subvariety of Z.

C —S 5 7xX

(5.7.3) l lﬂ
D —S5 Zz

If X is proper, then because every closed set is a finite union of closed subvarieties, the image of any closed
subset of Z x X will be closed in Z.

5.7.4. Theorem. Projective varieties are proper.

This is the most important application of the use of curves to characterize closed sets.
proof. Let X be a projective variety. With notation as in Definition suppose we are given a closed
subvariety C' of the product Z x X. We must show that its image D is a closed subvariety of Z. If the image
is a closed set, it will be irreducible. So it suffices to show that D is closed, and to do this, it suffices to show
that D is closed in the classical topology (Theorem[5.5.4). Theorem [5.4.6tells us that D is a constructible set,
and since X is closed in projective space, it is compact in the classical topology. Proposition[5.7.1]tells us that
D is closed in the classical topology. U

The next examples show how the theorem can be used.

5.7.5. Example. (singular curves) We parametrize the plane curves of a given degree d. The number of
distinct monomials 2] % of degree d = i+j-+k is the binomial coefficient (*}?). We order those monomials
arbitrarily, and label them as my, ..., m,, with r = (‘“2'2) — 1. A homogeneous polynomial of degree d will
be a combination »_ z;m; of monomials with complex coefficients z;, so the homogeneous polynomials f
of degree d in z, taken up to scalar factors, are parametrized by the projective space of dimension r with
coordinates z. Let’s denote that projective space by Z. Points of Z correspond bijectively to divisors of degree
d in the projective plane.

The product variety Z x P2 represents pairs (D, p), where D is a divisor of degree d and p is a point of P2,
A variable homogeneous polynomial of degree d in x will be a bihomogeneous polynomial f(z, z) of degree
1 in z and degree d in x. So the locus I': {f(z,2) = 0} in Z x P? is a closed set. Its points are pairs (D, p)
such that D is the divisor of f and p is a point of D.

Let X be the set of pairs (D, p) such that p is a singular point of D. This is also a closed set. It is defined by
the system of equations fo(z,z) = fi(z,2) = fa(z,2) = 0, where f; are the partial derivatives ng:' Euler’s
Formula shows that then f(z,z) = 0. The partial derivatives f; are bihomogeneous, of degree 1 in z and
degree d—1 in x.

The next proposition isn’t very easy to prove directly, but the proof becomes easy when one uses the fact
that projective space is proper.

5.7.6. Proposition The singular divisors of degree d, the divisors containing at least one singular point, form
a closed subset S of the projective space Z of all divisors of degree d.

proof. The points of S are the images of points of the set ¥ via projection to Z. Theorem[5.7.4]tells us that the
image of X is closed. (]

5.7.7. Example. (surfaces that contain a line) We go back to the discussion of lines in a surface, as in (3.6).
Let S denote the projective space that parametrizes surfaces of degree d in IP3, as before.
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5.7.8. Proposition In P3, the surfaces of degree d that contain a line form a closed subset of the space S.

proof. Let G be the Grassmanian G/(2, 4) of lines in P, and let = be the subset of G xS of pairs of pairs [¢], []
such that £ C S. Lemma[3.6.17)tells us that = is a closed subset of G x S. Therefore its image in S is closed.(]

5.8 Fibre Dimension

A function Y -+ Z from a variety to the integers is constructible if, for every integer n, the set of points of
Y such that §(p) = n is constructible, and 0 is upper semicontinuous if for every n, the set of points such that
d(p) > n is closed. For brevity, we refer to an upper semicontinuous function as semicontinuous, though the
term is ambiguous. since a function might be lower semicontinuous.

A function § on a curve C'is semicontinuous if and only if for every integer n, there is a nonempty open
subset C” of C such that §(p) = n for all points p of C’ and §(p) > n for all points not in C”.

The next curve criterion for semicontinuous functions follows from the criterion for closed sets.

5.8.1. Proposition. (curve criterion for semicontinuity) LetY be a variety. A function Y — Z is semicon-

tinuous if and only if it is a constructible function, and for every morphism C Ly from a smooth curve C
to'Y, the composition § o f is a semicontinuous function on C. ]

LetY 5 X bea morphism of varieties, let g be a point of Y, and let Y}, be the fibre of f over p = f(q).
The fibre dimension 6(q) of f at ¢ is the maximum among the dimensions of the components of the fibre that
contain q.

5.8.2. Theorem. (semicontinuity of fibre dimension) LetY —— X be a morphism of varieties, and let §(q)
denote the fibre dimension at a point q of Y.

(i) Suppose that X is a smooth curve, that Y has dimension n, and that the image of u is a point. Then ¢ is
constant: Every nonempty fibre has constant dimension n — 1.

(ii) Suppose that the image of Y contains a nonempty open subset of X, and let the dimensions of X and' Y
be m and n, respectively. There is a nonempty open subset X' of X such that §(q) = n—m for every point q
in the inverse image of X'.

(iii) 0 is a semicontinuous function on'Y .

The proof of this theorem is left as a long exercise. When you have done it, you will have understood the
chapter.
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Chapter 6 MODULES

The Structure Sheaf
O-Modules

The Sheaf Property
Some O-Modules
Direct Image

[6.6) Twisting

Proof of Theorem [6.3.2]

This chapter explains how modules on a variety are defined. variety.

We will need few facts about localization. Recall that, if s is a nonzero element of a domain A, the symbol
A, stands for the localization A[s~!], and if Spec A = X, then Spec A, = X,.
e Let U = Spec A be an affine variety. The intersection of two localizations U; = Spec Ag and Uy =
Spec Ay is the localization Uy = Spec Ag;.
e Let W C V C U be affine open subsets of a variety X. If V is a localization of U and W is a localization
of V, then W is a localization of U (2.6.2).
o The affine open subsets of a variety X form a basis for the topology on a variety X. The localizations of
an affine variety form a basis for its topology (??).

e IfU and V are affine open subsets of X, the open sets W' that are localizations, both of U and of V, form
a basis for the topology on U N V. (2.6.2).

6.1 The Structure Sheaf.

We introduce two categories associated to a variety X . The first is the category (opens), whose objects are the
open subsets of X, and whose morphisms are inclusions: If U and V' are open sets and if V' C U, there is a
unique morphism V' — U in (opens), and if V' ¢ U there is no morphism V' — U.

We also introduce a subcategory (affines) of the category (opens). Its objects are the affine open subsets
of X, and its morphisms are localizations. A morphism V' — U in (opens) is a morphism in (affines) if U is
affine and V is a localization of U — if V' is an open subset of the form Uy, where s is a nonzero element of
the coordinate algebra of U.

The structure sheaf Ox on a variety X is the functor from affine open sets to algebras,

(6.1.1) (affines)° Ox (algebras)

that sends an affine open set U = Spec A to its coordinate algebra. The coordiante algebra A is then denoted

As has been noted before, inclusions V' — U of affine open subsets needn’t be localizations. We focus
attention on localizations because the relation between the coordinate algebras of an affine variety and a local-
ization is easy to understand. However, the structure sheaf can be extended with little difficulty to the category
(opens), (See Corollary [6.1.3|below.)

A brief review about regular functions: The function field of a variety X is the field of fractions of the
coordinate algebra of any one of its affine open subsets, and a rational function on X is a nonzero element of
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the function field. A rational function f is regular on an affine open set U = Spec A if it is an element A, and
f is regular on a nonempty open set U that can be covered by affine open sets on which it is regular. Thus the
function field of a variety X contains the regular functions on every nonempty open subset, and the regular
functions are governed by the regular functions on the affine open subsets.

An affine variety is determined by its regular functions, but the regular functions don’t suffice to determine
a variety that isn’t affine. For instance, the only rational functions that are regular everywhere on the projective
line P! are the constant functions, which are useless. We will be interested in regular functions on non-affine
open sets, especially in functions that are regular on the whole variety, but one should always work with the
affine open sets, where the definition of a regular function is clear.

6.1.2. Lemma. Let U and V' be open subsets of a variety X, with V C U. If a rational function is regular on
U, it is also regular on V. (]

Thus if U C V is an inclusion of affine open subsets, say U = Spec A and V = Spec B, then A C B.
However, it won’t be clear how to construct B from A unless B is a localization. If V' = U, then B = A[sil].
If B isn’t a localization, the exact relationship between A and B remains obscure.

6.1.3. Corollary. Let X be a variety. When Ox (U) is defined to be the algebra of regular functions on an
open subset U, the structure sheaf Ox on a variety X extends to a functor

(opens)° 9Ox, (algebras)

If it is clear which variety is being studied, we may write O for Ox.

For any open set U, the algebra of regular functions on U is denoted by Ox (U). Its elements are called
sections of the structure sheaf Ox on U.

When V' — U is a morphism in (opens). Lemma tells us that Ox (U) is contained in Ox (V). This
gives us the homomorphism, an inclusion,

Ox(U) — Ox(V)

that makes Ox into a functor. Note that arrows are reversed by Ox. If V. — U, then Ox(U) — Ox (V). A
functor that reverses arrows is a contravariant functor. The superscript o in (6.1.1) and (6.1.3) is a customary
notation to indicate that a functor is contravariant.

6.1.4. Proposition The (extended) structure sheaf has the following sheaf property:

o LetY be an open subset of X, and let U' = Spec A; be affine open subsets that cover Y. Then
Ox(Y)=(Ox(U") (=()A4)

This sheaf property is especially simple because regular functions are elements of the function field. It is more
complicated for O-modules, which will be defined in the next section.

By definition, if f is a regular function on X, there is a covering by affine open sets U® such that f is
regular on each of them, i.e., that f is in | J O(U?). Therefore the next lemma proves the proposition.

6.1.5. Lemma. Let Y be an open subset of a variety X. The intersection (\Ox (U?) is the same for every
affine open covering {U'} of Y.

We prove the lemma first in the case of a covering of an affine open set by localizations.

6.1.6. Sublemma. Let U = Spec A be an affine variety, and let {U*} be a covering of U by localizations,
say U" = Spec As,. Then A = () As,, i.e., O(U) = N OU?).

proof. A finite subset of the set {U*} will cover U, so we may assume that the index set is finite.

It is clear that A is a subset of (] As,. Let « be an element of () A;,. So a = s; "a;, or s} o = a; for some
a; in A and some integer 7, and we can use the same r for every ¢. Because {U"} covers U, the elements s;
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generate the unit ideal in A, and so do their powers s]. There are elements b; in A such that > b;s7 = 1. Then
a=> bisia=> ba;isin A. O

proof of Lemma Say that Y is covered by affine open sets {U’} and also by affine open sets {V7}.
We cover the intersections U’ N V7 by open sets W% that are localizations of U* and also localizations of
V3. Fixing ¢ and letting j and v vary, the set {W%"}; , will be a covering of U by localizations, and the
sublemma shows that O(U") = 1, , O(W*”). Then (), O(U") = (), ;, O(W*"). Similarly, (; O(V”?) =

ﬂi,j,u O(me) U
6.1.7. Example.

Let A denote the polynomial ring C[x,y], and let Y be the complement of a point p in affine space X =
Spec A. We cover Y by two localizations of X, X, = Spec Alz~'] and X, = Spec A[y~']. A regular
function on Y will be regular on X and on X, so it will be in the intersection of their coordinate algebras.
The intersection A[z~1] N A[y~!] is A. So the sections of the structure sheaf Ox on Y are the same as the
sections on X. They are the elements of A.

O

6.2 (O-Modules

An Ox-module on a variety X is a structure that associates a module to every affine open subset.

6.2.1. Definition. An O-module M on a variety X is a (contravariant) functor
o M
(affines)” — (modules)

such that M(U) is an O(U)-module for every affine open set U, and such that, if s is a nonzero element of
O(U), the module M (Us) is the localization of M(U):

M(Us) = M(U)s

If M(U) is a finite O(U)-module for every affine open set U, M is called a finite O-module.
A section of an O-module M on an affine open set U is an element of M(U).

A homomorphism M —£5 N of O-modules consists of homomorphisms of O(U)-modules

M) Y% vw)

for each affine open subset U of X such that, if s is a nonzero element of O(U), the homomorphism ¢(Us) is
the localization of p(U).

A sequence of homomorphisms
(62.2) MNP

of O-modules on a variety X is exact if the sequence of sections M(U) — N (U) — P(U) is exact for every
affine open subset U of X. O

At first glance, the definition of O-module will seem complicated. However, when a module has a natural
definition, the data involved in the definition take care of themselves. This will become clear as we go along.

Note. When stating that M(U,) is the localization of M(U), it would be more correct to say that M(U,)
and M(U), are canonically isomorphic. Let’s not worry about this.

One example of an O-module is the free module O%. The sections of the free module on an affine open set
U are the elements of the free O(U)-module O(U)*. In particular, O can be considered as an O-module.
The kernel, image, and cokernel of a homomorphism M 5 N are among the operations that can be

made on O-modules. The kernel K of ¢ is the O-module defined by K(U) = ker (M(U) 29 N (U)) for
every affine open set U, and the image and cokernel are defined analogously. Many operations, including
these, are compatible with localization.
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6.3 The Sheaf Property

In this section, we extend an O-module M on a variety X to a functor (opens)° M, (modules) on all open
subsets of X, such that M (Y) is an O(Y')-module for every open subset Y, and when U is an affine open set,
M(U) = M(U).

The tilde is used for clarity here. We will drop it when we have finished with the discussion, and use the
same notation M for the functor on (affines) and for its extension to (opens).

6.3.1. Terminology. If (opens)° M, (modules) is a functor and let U be an open subset, an element of
M (U) is a section of MonU. If V. —Ls U is an inclusion of open subsets, the associated homomorphism
M(U) = M(V) is called the restriction from U to V.

The restriction to V' of a section m on U may be denoted by j°m. However, the operation of restriction
occurs very often. Because of this, we often abbreviate, using the same symbol m for a section and for its

restriction. Also, if an open set V' is contained in two open sets U and U’, and if m, m’ are sections of M on
U and U’, respectively, we may say that m and m’ are equal on V' if their restrictions to V' are equal. O

6.3.2. Theorem. An O-module M extends uniquely to a functor

(opens)° M, (modules)

that has the sheaf property described below. Moreover, for every open set U, M (U) is an O(U)-module,
and for every inclusion V. — U of nonempty open sets, the map M(U) — M(V) is compatible with scalar
multiplication in this sense:

Let m be a section of M on U, let a be a regular function on U, and let m' and o denote the restrictions
to V. The restriction of am is o’'m/’.

In order not to break up the discussion, we have put the proof of this theorem into Section[6.7]at the end of the
chapter.

(6.3.3) the sheaf property

The sheaf property is the key requirement that determines the extension of an O-module M to a functor M
on (opens).

Let Y be an open subset of X, and let {U?} be a covering of Y by affine open sets. The intersections
U% = U* N U’ are also affine open sets, so M(U") and M(U") are defined. The sheaf property asserts that
an element m of M (Y') corresponds to a set of elements m; in M (U?) such that the restrictions of m and m;
to UY are equal.

If the affine open subsets U’ are indexed by i = 1,...,n, the sheaf property asserts that an element of
M(Y) is determined by a vector (my, ..., my ) with m; in M(U?), such that the restrictions of m; and m; to
U’ are equal. This means that M (Y') is the kernel of the map

(6.3.4) [[m@) 2 T mw™)

that sends the vector (mq,...,m,) to the n x n matrix (z;;), where z;; is the difference m; — m; of the
restrictions of m; and m; to U*. The analogous description is true when the index set is infinite.

In short, the sheaf property tells us that sections of M are determined locally: A section on an open set Y
is determined by its restrictions to the open subsets U* of an affine covering of Y.

Note. The morphisms U% — U? needn’t be localizations, and if not the restriction maps M(U?) — M(U%¥)
aren’t a part of the structure of an @-module. We need a definition of the restriction map for an arbitrary
inclusion V' — U of affine open subsets. This point will be taken care of by the proof of Theorem|[6.3.2} (See
Step 2 in Section[6.7]) Let’s not worry about it here. (]
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We drop the tilde now.
The next corollary follows from Theorem[6.3.2]

6.3.5. Corollary. Let {U*} be an affine open covering of a variety X.
(i) An O-module M is zero if and only if M(U?) = 0 for every i.
(i) A homomorphism M s N of O-modules is injective, surjective, or bijective if and only if the maps

, Ut .
M(UY) S0(—>) N (UY) are injective, surjective, or bijective, respectively, for every i.

proof. (i) Let V be any open subset of X. We can cover the intersections V N U? by affine open sets V%
that are localizations of U?, and these sets, taken together, cover V. If M(U Z) = 0, then the localizations
M(V®) are zero too. The sheaf property shows that the map M (V') — [ M (V%) is injective, and therefore
M((V)=0.

(ii) This follows from (i) because a homomorphism ¢ is injective or surjective if and only if its kernel or its
cokernel is zero. (]

(6.3.6) families of open sets

It is convenient to have a compact notation for the sheaf property. For this, one can use symbols to
represent families of open sets. Say that U and V represent families of open sets {U*} and {V"}, respectively.
A morphism of families V. — U consists of a morphism from each V' to one of the subsets U?. Such a
morphism will be given by a map v ~ i, of index sets, such that V¥ C U'».

There may be more than one morphism V — U, because a subset V¥ may be contained in more than one
of the subsets U*. To define a morphism, one must make a choice among those subsets. For example, let
U = {U"} be a family of open sets, and let V be another open set. There is a morphism V' — U that sends V'
to U whenever V' C U?. In the other direction, there is a unique morphism U — V provided that U? C V for
all 7.

A functor (opens)° M, (modules) can be extended to families U = {U*} by defining

(6.3.7) M) = [[m@).

Then a morphism of families V L U defines a map M(U) M (V) in a way that is fairly obvious, though

notation for it is clumsy. Say that f is given by a map v ~ i,, of index sets, with V¥ — U%. A section of M
on U, an element of M (U), can be thought of as a vector (u;) with u; € M(U?), and a section of M (V) as a
vector (v,) with v, € M(V?). If v, is the restriction of u;, to V¥, the map f° sends (u;) — (vy).

We can write the sheaf property in terms of families of open sets. Let Uy = {U"} be an affine open
covering of an open set Y, and let U; denote the family {U%} of intersections: U* = U? N U7, which are
also affine. . Then we have a morphism Uy — Y, and the two sets of inclusions

U9 cU" and UY c U’

define two morphisms of families U; D4 ) of affine open sets, Ul %% U7 and Uij - U'. The two

composed morphisms Uy A Uy — Y are equal. They form what we all a covering diagram

(6.3.8) Y+ Uy = Uy

When we apply a functor (opens) M, (modules) to this diagram, we obtain a sequence

(6.3.9) 0= M(Y) 2% M(Up) 2% M(Uy)

where «ay is the restriction map and Sy is the difference M(dy) — M(d;) of the maps induced by the two
morphisms U; = Uy. The sheaf property for the covering Uy of Y is the assertion that this sequence is exact,
which means that ay is injective, and that its image is the kernel of Gy.
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6.3.10. Note. One can suppose that the open sets U* that make a covering are distinct. However, the intersec-
tions won’t be distinct, because U¥ = UJt. Also, U? = U*. These coincidences lead to redundancy in the
statement (6.3.9) of the sheaf property. If the indices are i = 1, ..., k, we only need to look at intersections U'*/
with ¢ < j. The product M(U1) = [[, ; M(U iJ) that appears in the sheaf property can be replaced by the
product [, j M (U with increasing pairs of indices. For instance, suppose that an open set Y is covered
by two affine open sets U and V. Then, with Uy = {U, V'}, the sheaf property is the exact sequence

0= MY) -5 MU)xM(V) 25 MUNU)xMUNV)x MV AT)x MV NV)
is equivalent with the exact sequence
(6.3.11) 0 = M(= MU)xMV) =S MUNV) O

6.3.12. Example.

We go back to Proposition which describes the correspondence between an O-module M on an
affine variety X = Spec A and an A-module M. Namely, if U = Spec B is an affine open subset of X, then
M(U) = B®4 M. This example shows that, when a subset U isn’t affine, defining M(U) = B ® 4 M may
be wrong.

Let X be the affine plane Spec A, A = C[z,y], let U be the complement of the origin in X, and let M
be the A-module A/yA. This module can be identified with C[z], which becomes an A-module when scalar
multiplication by y is defined to be zero. Here O(U) = O(X) = A (6.1.7). If we followed the method used
for affine open sets, we would set M(U) = A®4 M = C|z].

To identify M (U ) correctly, we cover U by the two localizations U,, = Spec A[z~!]and U, = Spec A[y~1].
Then M(U,) = M[z~'] while M(U,) = 0. The sheaf property of M shows that M(U) ~ M(U,) =
M[z7' = Clz,271]. O

We have been working with nonempty open sets. The next lemma takes care of the empty set.
6.3.13. Lemma. The only section of an O-module M on the empty set is the zero section: M() = {0}. In

particular, O(D) is the zero ring.

proof. The empty set is covered by the empty covering, the covering indexed by the empty set. Since we want
the sheaf property to be true, M({)) will be contained in an empty product. We want both the empty product
and M () to be modules, so we have no choice but to set them equal to {0}.

If you find this reasoning pedantic, you can take M (()) = {0} as an axiom. O

(6.3.14) Interlude: a useful diagram

We consider a commutative diagram of abelian groups of the form

0 At .p 2.0
S
0 L g4,

6.3.15. Lemma. (i) Suppose that the rows of the diagram are exact. If 3 and ~y are bijective, so is a.

(ii) Suppose that the bottom row of the diagram is exact. If « is bijective and (5 and -y are injective, the top row
is exact.

It is customary to leave the proofs of such statements to the reader. Since this sort of reasoning may be
new, we’ll give the proof of the most interesting part of (ii), the exactness of the top row at B, which is the
statement that ker ¢ = im f. We show that if x is an element of B such that gz = 0, then x = fy for some
element y of A. The hypothesis that + is injective won’t be used here.
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Let ' = Bx. Then g'z’ = ¢'Sx = vgx = 0. Since the bottom row is exact, z' = 'y’ for some element
1y’ of A’. Let y be the element of A such that oy = 3. Then S8fy = f'ay = f'y = 2’ = Bz. Since B is
injective, fy = x. O

(6.3.16) the coherence property

In addition to the sheaf property, an O-module on a variety X has a property called coherence.

6.3.17. Proposition. (the coherence property) Let Y be an open subset of a variety X, let s be a nonzero
regular function on'Y, and let M be an Ox-module. Then M(Y) is the localization M(Y) s of M(Y).

Compatibility with localization is a requirement for an O-module when Y is affine. The coherence property is
the extension to all open subsets.

proof of Proposition Let Uy = {U"} be a family of affine open sets that covers the open set Y. The
intersections U% will be affine open sets too. We inspect the covering diagram Y «+ Uy & U;. If sis a
nonzero regular function on Y, the localization of this diagram forms a covering diagram Y <— Ug &= Uy ,
in which Up s = {U!} is an affine covering of Y;. Therefore M(Up)s ~ M(Uy s). The sheaf property gives
us exact sequences

0= MY)—> M(Uy) - M(U;) and 0— M(Ys) = M(Ups) = M(Uyps)

and the localization of the first sequence maps to the second one:

0 —— MY)y —— M(Up)s —— M(Uy)s,

‘| a |
0 —— M(Y,) —— M(Uos) —— M(Us;)
The bottom row is exact, and since localization is an exact operation, the top row of the diagram is exact too.

Since Uy and U; are families of affine open sets, the vertical arrows b and c are bijections. Therefore a is a
bijection. This is the coherence property. (]

6.4 Some O-Modules

6.4.1. modules on a point

Let’s denote a point, the affine variety Spec C, by p. The point has only one nonempty open set: the whole
space p, and O,(p) = C. Let M be an O,-module. The space of global sections M (p) is an O, (p)-module, a
complex vector space. To define M, that vector space can be assigned arbitrarily. One may say that a module
on the point is a complex vector space. U

6.4.2. the residue field module .

Let p be a point of a variety X. A residue field module «,, is defined as follows: If U is an affine open
subset of X that contains p, then O(U) has a residue field k(p) at p, and x,(U) = k(p). If U doesn’t contain
p, then k,(U) = 0.

6.4.3. ideals.
An ideal 7 of the structure sheaf is an @-submodule of O.

Let p be a point of a variety X. The maximal ideal at p, which we denote by m,, is an ideal. If an affine
open subset U contains p, its coordinate algebra O(U) will have a maximal ideal consisting of the elements that
vanish at p. That maximal ideal is the module of sections m,(U). If U doesn’t contain p, then m,,(U) = O(U).

When 7 is an ideal of O, we denote by Vx (Z) the closed set of points p such that Z C m,, — — the set of
points at which all elements of Z vanish at p.

6.4.4. examples of homomorphisms
(i) There is a homomorphism of O-modules O — &, whose kernel is the maximal ideal m,,.
(ii) Homomorphisms O™ — O™ of free O-modules correspond to m x n-matrices of global sections of O.
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(iii) Let M be an O-module. The @-module homomorphisms © —+ M correspond bijectively to global
sections of M. This is analogous to the fact that, when M is a module over a ring A, homomorphisms
A — M correspond to elements of M. To be explicit: If m is a global section of M, the homomorphism
O(U) <5 M(U) is multiplication by the restriction of m to U.

(iv) If f is a global section of O, scalar multiplication by f defines a homomorphism M N M.

6.4.5. kernel

As we have remarked, many operations that one makes on modules over a ring are compatible with local-
ization, and therefore can be made on O-modules. However, when applied to sections over non-affine open
sets the operations are almost never compatible with localization. One important exception is the kernel of a
homomorphism.

6.4.6. Proposition. Let X be a variety, and let 0 — K — M — P be an exact sequence of O-modules. For
every open subset Y of X, the sequence of sections

(6.4.7) 0= KY)—= MY) = NY)
is exact.

proof. We choose a covering diagram Y +— Uy & U;, and we inspect the diagram

0 —— K(Up) —— M(Uy) —— N (Up)

l l |

where the vertical maps are the maps Sy described in (6.3.9). The rows are exact because Uy and U; are
families of affines, and the sheaf property asserts that the kernels of the vertical maps form the sequence
(6.4.7). It is exact because taking kernels is a left exact operation. O

The section functor isn’t right exact. When
0-K=>M-o>N=0

is a short exact sequence of O-modules and Y is a non-affine open set, the sequence (6.4.7) may fail to be
exact when a zero is added on the right. There is an example below. Cohomology, which will be discussed in
the next chapter, is a substitute for right exactness.

6.4.8. modules on the projective line

The projective line P! is covered by the standard open sets U° and U?, and the intersection Ut = U° N Ut
is a localization of U° and of U'. The coordinate algebras of these affine open sets are Clu] = A and
C[v] = Ay, respectively, with v = =%, and O(U®') = Clu,u~!] = Ap;. The algebra Ag; is the Laurent
polynomial ring whose elements are (finite) combinations of powers of u, negative powers included. The sheaf
property asserts that a global section of O is determined by polynomials f(u) in Ag and g(v) in A; such that
f(u) = g(u=1) in Ag;. The only such polynomials f, g are the constants. The constants are the only rational
functions that are regular everywhere on P!, I think we knew this.

If M is an O-module, M(U°) = My and M(U') = M; will be modules over the algebras Ay and
Ay, and the Agi-module M(U®) = My, can be obtained by localizing M, and also by localizing M;:
Mo[u=1] ~ Moy ~ M;[v™!]. A global section of M is determined by a pair of elements m1, my in My, Mo
that become equal in the common localization M.

Suppose that My and M7 are free modules of rank r over Ay and A;,. Then My; will be a free Ap;-module
of rank . A basis By of the free Ag-module M will also be a basis of the Ag;-module Mj;, and a basis B;
of M7 will be a basis of My;. When regarded as bases of My1, Bg and By will be related by an rxr invertible
Api-matrix P, and that matrix determines M up to isomorphism. When r = 1, P will be an invertible 1 x 1
matrix in the Laurent polynomial ring Ag; — a unit of that ring. The units in Ay; are scalar multiples of
powers of u. Since the scalar can be absorbed into one of the bases, an O-module of rank 1 is determined, up
to isomorphism, by a power of w. It is one of the twisting modules that will be described in Section [6.6]
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The Birkhoff-Grothendieck Theorem, which will be proved in Chapter 8] describes the O-modules on the
projective line whose sections on UY and on U" are free, as direct sums of free O-modules of rank one. This
means that by changing the bases B;, one can diagonalize the matrix P. Such a change of basis is given by an
invertible Ap-matrix (g and an invertible A;-matrix )1, respectively. In down-to-Earth terms, the Birkhoff-
Grothendieck Theorem asserts that, for any invertible Ag;-matrix P, there exist an invertible Ag-matrix Qg
and an invertible A;-matrix ()1, such that Q) 1P, is diagonal. This can be proved by matrix operations. [J

6.4.9. tensor products

Tensor products are compatible with localization. If M and N are modules over a domain A and s is a
nonzero element of A, the canonical map (M ® 4 N)s — M;® 4, N, is an isomorphism. Therefore the tensor
product M ®o N of O-modules M and N can be defined.

Let M and N be O-modules, let M ®¢ N be the tensor product module, and let V' be an open subset of
X. For every open set V, there is a canonical map

(6.4.10) M(V) @0y N(V) = [M o N|(V)

By definition of the tensor product module, this map is an equality when V is affine. For arbitrary V', we cover
by a family Uy of affine open sets. The family U; of intersections also consists of affine open sets. We form a
diagram

M) @owyN(V) —— M(Up) ®ow,) N(Us) —— M(U1) @ow,) N (U1)

[ Js I
0 —— [MeoN|(V) —— M @0 N|(Up) —_— M@0 N|(Uy)
The composition of the two arrows in the top row is zero, the bottom row is exact, and the vertical maps b and

c are equalities. The canonical map a is induced by the diagram. It is bijective when V is affine, but when V'
isn’t affine, it may be neither injective nor surjective.

6.4.11. Examples. (i) Let p and g be distinct points of the projective line X, and let x,, and x4 be the residure
field modules on X. Then £, (X) = k4(X) = C, 50 £,(X) ®o(x) kq(X) ® CRcC = C. But k5, ®0 kg = 0.
The canonical map (6.4.10) is the zero map. It isn’t injective.

(ii) Let p a point of a variety X, and let m, and r,, be the maximal ideal and residue field modules at p. There
is an exact sequence of O-modules

(6.4.12) 0—-my,— 05k, —0
The sequence of global sections is exact too.

(iii) Let po and p; be the points (1, 0) and (0, 1) of the projective line P!. We define a homomorphism
my,, xm,, — O

by ¢(a,b) = b—a. On the open set UY, the inclusion m,,, — O is bijective and therefore surjective. Similarly,
m,, — O is surjective on U'. Therefore ¢ is surjective. The only global section of m,,, xm,,, is zero, while
O has the nonzero global section 1. So the map ¢ isn’t surjective on global sections. O

6.4.13. the function field module

Let F' be the function field of a variety X. The module of sections of the function field module F on any
nonempty open set is the field F'. This is an O-module. It is called a constant O-module because the modules
of sections F(U) are the same for every nonempty open set U. It isn’t a finite module unless X is a point.

Tensoring with the function field module: Let M be an O-module on a variety X, and let F be the function
field module. Then M ® F is a constant O-module whose sections on any affine open set U form an F'-vector
space (that might be zero).

(6.4.14) limits of O-modules
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6.4.15. A directed set M, is a sequence of maps of sets My — My — My — ---. Its limit li_n;M. is the set
of equivalence classes on the union | J M}, the equivalence relation being that elements m in M; and m/ in M;
are equivalent if they have the same image in M,, when n is sufficiently large. Any element of @ M, will be
represented by an element of M; for some 1.

6.4.16. Example. Let R = C[xz] and let m be the maximal ideal zR. Repeated multiplication by x defines a
directed set
R“R>RZR-

whose limit is isomorphic to the Laurent Polynomial Ring R[x~1] = C[z, 2~ !]. Proving this is an exercise. [J

A directed set of O-modules on a variety X is a sequence M, = {My - M; — My — ---} of
homomorphisms of O-modules. So, for every affine open set U, the O(U)-modules M., (U) form a directed
set, as defined in . The direct limit lig M is defined simply, by taking the limit for each affine open
set: [hﬂ M,](U) = lim [M4(U)]. This limit operation is compatible with localization, so lim M, is an
O-module. In fact,the equality [hﬂl M.,](U) = lim [M4(U)] is true for every open set.

6.4.17. Lemma. (i) The limit operation is exact. If Mo — Ny — Pa is an exact sequence of directed sets
of O-modules, the limits form an exact sequence.
(ii) Tensor products are compatible with limits: If Ny is a directed set of O-modules and M is another

O-module, then lim Mo Ne] = Mo [hﬂj\/.] O

6.4.18. Proposition. Ler X = Spec A be an affine variety. Sending an O-module M to the A-module
M(X) of its global sections defines a bijective correspondence between O-modules and A-modules.

proof. We must invert the functor O-(modules) — A-(modules) that sends M to M(X). Given an A-module
M, the corresponding O-module M is defined as follows: Let U = Spec B be an affine open subset of X.
The inclusion U C X corresponds to an algebra homomorphism A — B. We define M(U) to be the B-
module B ® 4 M. This gives us an O-module because, when s is a nonzero element of B, then B; ® 4 M is
the localization (B ®4 M); of B®4 M. O

6.5 Direct Image

LetY 5 X bea morphism of varieties, and let A" be an Oy-module. The direct image f.N is an Ox-
module that is defined as follows: Let U be an affine open subset of X. The sections of f,N on U are the
sections of A on f~1U.

and V = f~1U, then
[AN](U) =N (V)

In particular, the direct image f,.Oy of the structure sheaf Oy is the functor

Oy —modules L) Ox —modules
defined by [f.Oy|(U) = Oy (f~1U).

The direct image generalizes restriction of scalars in modules over rings. If A —+ B is an algebra homo-
morphism and N is a B-module, one can restrict scalars to make N into an A-module. Scalar multiplication
by an element a of A on the restricted module N is defined to be scalar multiplication by its image ¢(a) in B.
For clarity, we may sometimes denote the given B-module by Np and the A-module obtained by restriction
of scalars by N 4. The additive groups Np and N 4 are the same.

When one replaces the algebras A and B by their spectra X = Spec A and Y = Spec B, the algebra

homomorphism ¢ defines a morphism Y’ o X, An Oy-module A is determined by a B-module Np. Then
f+NV is the Ox-module determined by the A-module N .

6.5.1. Lemma. LerY L5 X bea morphism of varieties. The direct image f. N of an Oy -module N is an
Ox-module. Moreover, for all open subsets U of X, not only sfor affine open subsets, [f N](U) = N (f~1U).

128



proof. Let U’ — U be an inclusion of affine open subsets of X, and let V = f~1U and V' = f~1U’.
These inverse images are open subsets of X, but they aren’t necessarily affine. The inclusion V' — V gives
us a homomorphism N(V) — N(V’), and therefore a homomorphism f. N (U) — fN(U'). So f.N is
a functor. Its Ox-module structure is explained as follows: Composition with f defines a homomorphism
Ox(U) = Oy (V),and N (V) is an Oy (V')-module. Restriction of scalars makes [f.N](U) = N(V) into a
module over Ox (U).

To show that f.N is an Ox-module, we must show that if s is a nonzero element of Ox(U), then
[f«N](Us) is obtained by localizing [f.N](U). Let s’ be the image of s in Oy (V). Scalar multiplication
by s on [f.N](U) is given by restriction of scalars, so it is the same as scalar multiplication by s" on N (V).
If s’ # 0, the localization Vy is the inverse image of U;. So [f+N](Us) = N (Vi ). The coherence property
tells us that (V) = N(V) . Then [ N](Us) = N (V) = N (V) = [[fLN](U)]s.

If s = 0, then N'(V)s = 0. In this case, because scalar multiplication is defined by restricting scalars, s
annihilates [f.N](U), and therefore [f.N](U)s = 0 too. O

6.5.2. Lemma. Direct images are compatible with limits: If M, is a directed set of O-modules, then

lim (£ M) ~ f.(lig M) 0

(6.5.3) extension by zero

When Y — X is the inclusion of a closed subvariety into a variety X, the direct image i, of an Oy -
module N is also called the extension of N by zero. If U is an open subset of X then, because i is an inclusion
map, iU = U N'Y. Therefore

L N)(U) = N(UNY)

The term “extension by zero” refers to the fact that, when an open set U of X doesn’t meet Y, the intersection
U NY will be empty, and the module of sections of [¢,N](U) will be zero. One may say that i, A is zero
outside of the closed set Y.

6.5.4. Examples.

(i) Letp —5 X be the inclusion of a point into a variety. We may view the residue field k(p) as an O-module
on p. Its extension by zero i,.k(p) is the residue field module k.

(i) LetY —5 X be the inclusion of a closed subvariety, and let Z be the ideal of Y. The extension by zero
of the structure sheaf on Y fits into an exact sequence of O x-modules

0—-7Z—0x —i,0y =0

So the extension by zero i, Oy is isomorphic to the quotient module Ox /7. O

6.5.5. Proposition. Ler Y 5 X be the inclusion of a closed subvariety Y into a variety X, and let T be the
ideal of Y. Let Ml denote the the category of O x-modules that are annihilated by I. Extension by zero defines
an equivalence of categories

(Oy —modules) S M

proof. Let f be a section of Ox on an affine open set U, let ibe its restriction to U N'Y’, and let « be an
element of [i,N](U) ( = N(UNY)). If fisin Z(U), then f = 0 and therefore fo = for = 0. So the
extension by zero of an Oy -module is annihilated by Z. The direct image 7, is an object of M.

We construct a quasi-inverse to the direct image. Starting with an O x-module M that is annihilated by Z,
we construct an Oy -module A such that 7,/ is isomorphic to M.

Let Y’ be an open subset of Y. The topology on Y is induced from the topology on X,so0 Y’ = X; NY
for some open subset X; of X. We try to set N'(Y') = M(X;). To show that this is well-defined, we show
that if X5 is another open subset of X, and if Y/ = X5 NY, then M(X5) is isomorphic to M(X;). Let
X3 = X1 N Xs. Then it is also true that Y’ = X3 NY. Since X3 C X3, we have a map M(X;) = M(X3),
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and It suffices to show that this map is an isomorphism. The same reasoning will give us an isomorphism

The complement U = X; —Y” of Y’ in X is an open subset of X; and of X, and UNY = (). We cover U
by a set {U'} of affine open sets. Then X is covered by the open sets {U*} together with X3. The restriction
of Z to each of the sets U is the unit ideal, and since Z annihilates M, M(U*) = 0. The sheaf property shows
that M (X7) is isomorphic to M(X3). The rest of the proof is boring. O

(6.5.6) inclusion of an open set

Let Y -5 X be the inclusion of an open subvariety Y into a variety X.

First, let M be an O x-module. Since open subsets of Y are also open subsets of X, we can restrict M
from X to Y. By definition, the sections of the restricted module on a subset U of Y are simply the elements
of M(U). For example, the restriction of the structure sheaf O is the structure sheaf Oy on Y. We extend
the subscript notation to O-modules, writing My for the restriction of an O x-module M to Y and denoting
the given module M by M x. Then if U is an open subset of Y,

Mx(U) = My (U)

Now the direct image: Let Y 74 X be the inclusion of an open subvariety Y, and let N be an Oy -module.
The inverse image of an open subset U of X is the intersection Y N U, so

1NIU) = N(Y NU)

For example, [, Oy |(U) is the algebra of rational functions on X that are regular on Y N U. They needn’t be
regular on U.

6.5.7. Example. Let X, 5 X be the inclusion of a localization into an affine variety X = Spec A.
Modules on X correspond to their global sections, which are A-modules. Similarly, modules on X ; correspond
to As-modules. We can restrict an O x-module M x to the open set X, obtaining an O x_-module M x_. Then
if M denotes the A-module of global sections M x (X'), the module of sections of the restriction M x_ on X
is the localization My, and M is also the module of global sections of j, M x_:

[]*MXJ(X) = st (Xs‘) = M;
The localization My is made into an A-module by restriction of scalars. O

6.5.8. Proposition. Ler Y s X be the inclusion of an open subvariety Y into a variety X.
(i) The restriction O x-modules — Oy -modules is an exact operation.

(ii) IfY is an affine open subvariety of X, the direct image functor j, is exact.

(iii) Let M x be an O x-module. There is a canonical homomorphism Mx — j.[My].

proof. (il) Let U be an affine open subset of X, and let M — A — P be an exact sequence of Oy -modules.
The sequence 7. M(U) — 7N (U) — 7. P(U) is the same as the sequence M(UNY) - N({UNY) —
P(U NY), except that the scalars have changed. Since U and Y are affine, U NY is affine. By definition of
exactness, this last sequence is exact.

(iii) LetU beopenin X. Then j, My (U) = Mx(UNY). Since UNY C U, Mx(U) maps to M x(UNY).
O

6.5.9. Example. Let X = P" and let j denote the inclusion U’ C X of the standard affine open subset into X .
The direct image j.Oyo is the algebra of rational functions that are allowed to have poles on the hyperplane at
infinity.

The inverse image of an open subset W of X is its intersection with U%: ='W = W N U, The sections
of the direct image j,Oyo on an open subset W of X are the regular functions on W N UY:

[5: O] (W) = O (W NT°) = Ox(WNTY)

Say that we write a rational function « as a fraction g/h of relatively prime polynomials. Then « is an element
of Ox (W) if h doesn’t vanish at any point of W, and « is a section of [j.Opo](W) = Ox (W NUY) if h
doesn’t vanish on W N U°. Arbitrary powers of 2 can appear in the denominator h. (]
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6.6 Twisting
The twisting modules that we define here are among the most important modules on projective space.

Let X denote the projective space P™ with coordinates xy, ..., z,,. As before, a homogeneous fraction of
degree d is a fraction g/h of homogeneous polynomials with deg g — deg h = d. When g and h are relatively
prime, the fraction g/h is regular on an open set V' if h isn’t zero at any point of V.

The definition of the twisting module is this: The sections of O(d) on an open subset V' of P™ are the
homogeneous fractions of degree d that are regular on V.

6.6.1. Proposition.

(i) Let V be an affine open subset of P that is contained in the standard affine open set UY. The sections of
O(d) on'V form a free module of rank one with basis xd, over the coordinate algebra O(V').

(ii) The rwisting module O(d) is an O-module.

proof. (i) Let « be a section of O(d) on an affine open set V that is contained in U°. Then f = axg 4 has

degree zero. It is a rational function. Since V' C U°, ¢ doesn’t vanish at any point of V. Since « is regular
onV, f is a regular function on V, and o = fzg.

(ii) It is clear that O(d) is a contravariant functor. We verify compatibility with localization. Let V' = Spec A
be an affine open subset of X and let s be a nonzero element of A. We must show that [O(d)](V5) is the
localization of [O(d)](V'), and it is true that [O(d)](V) is a subset of [O(d)](V;). What has to be shown is that
if B is a section of O(d) on Vj, then sk B is a section on V, if k is sufficiently large.

We cover V by the affine open sets V? = V' N U’. To show that s¥3 is a section on V/, it suffices to show
that it is a section on V' N U? for every i. This is the sheaf property. We apply (i) to the open subset V.0 of V0,
Since V2 is contained in U°, 3 can be written (uniquely) in the form f xg, where f is a rational function that is
regular on V. We know already that O has the localization property. Therefore s f is a regular function on
VU if k is large, and then s*a = s* fod is a section of O(d) on VO. The analogous statement is true for every
index 1. (|

Part (i) of the proposition shows that O(d) is quite similar to the structure sheaf. However, O(d) is only
locally free. Its sections on the standard open set U* form a free O(U")-module with basis x¢. That basis is
related to the basis & on U° by the factor (z¢/z1)?, a rational function that isn’t invertible on on U° or on U™.

6.6.2. Proposition. When d > 0, the global sections of the twisting module O(d) on P™ (n > 0) are the
homogeneous polynomials of degree d. When d < 0, the only global section of O(d) is zero.

proof. A nonzero global section u of O(d) will restrict to a section on the standard affine open set U°.
Since [O(d)](TY) is a free module over O(UY) with basis ¢, and u = g/x* for some some homogeneous
polynomial g not divisible by zo and some m. Similarly, restriction to U! shows that u = h/z7. It follows
that m = n = 0 and that u = g¢. Since v has degree d, g will be a polynomial of degree d. (]

6.6.3. Examples.

The product uv of homogeneous fractions of degrees r and s is a homogeneous fraction of degree r+s, and if
u and v are regular on an open set V, so is their product uv. Therefore multiplication defines a homomorphism
of O-modules

(6.6.4) O(r) x O(s) = O(r+s)
Multiplication by a homogeneous polynomial f of degree d defines an injective homomorphism
(6.6.5) O(k) L5 O(k+d).

When k = —d, this becomes a homomorphism O(—d) RINGY O

The twisting modules O(n) have a second interpretation. They are isomorphic to the modules that we
denote by O(nH), of rational functions on projective space with poles of order at most n on the hyperplane
H : {xo = 0} at infinity.
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By definition, the nonzero sections of O(nH ) on an open set V' are the rational functions f such that 7 f
is a section of O(n) on V. Thus multiplication by z{} defines an isomorphism

(6.6.6) OmH) % O(n)

If f is a section of O(nH) on an open set V, and if we write f as a homogeneous fraction g/h of degree
zero, with g, h relatively prime, the denominator & may have a:’é, with £ < n, as factor. The other factors of
h cannot vanish anywhere on V. If f = g/h is a global section of O(nH ), then h = cxlg, with £k < n,soa
global section can be represented as a fraction g/zf.

Since x¢ doesn’t vanish at any point of the standard affine open set U?, the sections of O(nH ) on an open
subset V' of UY are simply the regular functions on V. The restrictions of O(nH) and O to U° are equal.
Using the subsctript notation for restriction to an open set,

(667) O(TLH)[UO = O[UU

Let V be an open subset of one of the other standard affine open sets, say of U'. The ideal of H NU! in U!
is principal, generated by vy = x¢/x1, and vy generates the ideal of HNV in V too. If f is a rational function,
then because x1 doesn’t vanish on U?, the function fvf will be regular on V if and only if the homogeneous
fraction fx is regular there. So f will be a section of O(nH) on V' if and only if fof is a regular function.
Because v, generates the ideal of H in V, we say that such a function f has a pole of order at most n on H.

The isomorphic O-modules O(n) and O(nH) are interchangeable. The twisting module O(n) is often
better because its definition is independent of coordinates. On the other hand, O(nH) can be convenient
because its restriction to U° is the structure sheaf Ogo.

6.6.8. Proposition. Let Y be the zero locus of an irreducible homogeneous polynomial f of degree d, a hyper-
surface of degree d in P, let T be the ideal of 'Y, and let O(—d) be the twisting module on X. Multiplication

by f defines an isomorphism O(—d) 11

proof. If « is a section of O(—d) on an open set V, then fa will be a rational function that is regular on V'
and vanishes on Y. Therefore the image of the multiplication map O(—d) L, 0 s contained in Z. This map
is injective because Clz, ..., z,] is a domain. To show that it is an isomorphism, it suffices to show that its
restrictions to the standard affine open sets U are isomorphisms . As usual, we work with U°.

We choose coordinates in X so that the coordinate variables x; don’t divide f. Then Y N U° will be a
dense open subset of Y. The sections of O on U® are the homogeneous fractions g/z% of degree zero. Such a
fraction is a section of Z on UC if and only if ¢ vanishes on Y N U°. If so, then since Y N U is dense in Y/,
it will vanish on Y, and therefore it will be divisible by f: ¢ = fq. The sections of Z on U have the form
fq/zf. They are in the image of O(—d). O

The proposition has an interesting corollary:

6.6.9. Corollary. The ideals of all hypersurfaces of degree d are isomorphic, when they are regarded as
O-modules. O

(6.6.10)  twisting a module

6.6.11. Definition Let M be an O-module on projective space P?, and let O(n) be the twisting module.
The nth twist of M is defined to be the tensor product M(n) = M ®o O(n), and similarly, M(nH) =
M R0 O(nH). Twisting is a functor on O-modules.

If X is a closed subvariety of P? and M is an Ox-module, M(n) and M(nH) are obtained by twisting
the extension of M by zero. (See the equivalence of categories (6.5.9)).

A section of M(n) on an open subset V of U can be written in the form s = m ® fx, where f is a
regular function on V' and m is a section of M on V (6.6.1). The function f can be moved over to m, so a
section can be written in the form s = m ® zj. This expression is unique.
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6.6.12. The modules O(n) and O(nH) form directed sets that are related by a diagram

O —— OH) —— O@2H) —— ..

(6.6.13) H I‘)l Igl
0o 25 o1 2= 02 —— -

In this diagram, the vertical arrows are bijections. The limit of the upper directed set is the module whose
sections are allowed to have arbitrary poles on H. This is also the module j, Oy, where j denotes the inclusion
of the standard affine open set U = UY into X (see (6.5.8) (iii)):

(6.6.14) lim O(nH) = j.Oy

The next diagram is obtained by tensoring Diagram[6.6.13| with M.

M— MH) — M2H) ——— -
(6.6.15) H Iol mgl
M LB 1) 22 M) ——

Because M may have torsion, the horizontal maps in these two directed sets needn’t be injective. However,
since tensor products are compatible with limits,

(6.6.16) lim M(nH) = lim M @0 O(nH) = M &0 j.0 = j. My

(6.6.17)  generating an O-module

A setm = (myq, ..., my) of global sections of an O-module M defines a map
(6.6.18) oF = M

that sends a section (o, ..., ay ) of O on an open set to the combination >~ a;m;. The set of global sections
{ma,...,my} generates M if this map is surjective. If the sections generate M, then they (more precisely,
their restrictions to U) generate the O (U )-module M (U) for every affine open set U. They may fail to generate
M(U) when U isn’t affine.

6.6.19. Example. Let X = P!. For n > 0, the global sections of the twisting module O(n) are the polyno-

mials of degree n in the coordinate variables zq, z1 . Consider the map O? (752 O(n). On U, O(n)
has basis x§}. Therefore this map is surjective on U°. Similarly, it is surjective on U'. So it is a surjective map
on all of X (6.3.5). The global sections zf}, 27 generate O(n). However, the global sections of O(n) are the
homogeneous polynomials of degree n. When n > 1, the two sections z§, ] don’t span the space of global

sections, and the map O2 (%—’xf) O(n) isn’t surjective. O
The next theorem explains the importance of the twisting operation.

6.6.20. Theorem. Let M be a finite O-module on a projective variety X. For large k, the twist M (k) is
generated by global sections.

proof- We may assume that X is projective space P".

We are to show that if M is a finite O-module, the global sections generate M (k) when k is large, and it
suffices to show that for each i = 0, ..., n, the restrictions of those global sections to U’ generate the O(U?)-
module [M (k)](U?) (6.3.5). We work with the index 0 as usual.

Let U = UY. We replace M(k) by the isomorphic module M (kH). We recall that the restrictions of
M(E) to U are equal to My. and that lim M(k) = j. My.
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Let Ag = O(U), and My = M(U).

The global sections of j,. My are the sections of M on U, which we are denoting by M. We choose
a finite set of generators my, ..., m, for the finite Ap-module My. These generators are global sections of
J« My, and therefore they are represented by global sections m/, ..., m.. of M(k) if k is large. The restrictions
of m; and m/, to U are equal, so the restrictions of m/, ..., m/. generate My too, and M, is generated by global
sections of M (k), as was to be shown. O

6.7 Proof of Theorem @.

The statement to be proved is that an O-module M on a variety X has a unique extension to a functor

(opens) M, (modules)

having the sheaf property, and that a homomorphism M — A of O-modules has a unique extension to a
homomorphism M — A.

The proof has the following steps:

1. Verification of the sheaf property for a covering of an affine open set by localizations.
. Extension of the functor M to all morphisms between affine open sets.
3. Definition of M.

Step 1. (the sheaf property for a covering of an affine open set by localizations)

Suppose that an affine open set Y = Spec A is covered by a family of localizations Uy = {U®?}. Then if
M is an Oy -module and if we let M = M(Y'), M; = M(U®") and M;; = M(U®*7) the sequence (6.3.9)
for the covering diagram Y +— Uy & U, that we obtain is

6.7.1) 0— M -5 [[ M 2 T My

In this sequence, the map « sends an element m of M to the vector (m, ..., m) of its images in [ [, M;, and
sends a vector (my, ..., my) in [ [, M; to the matrix (z;;), with z;; = m; —m, in M;; To be precise, M; and
M map to M;,;, and z;; is the difference of their images.

We must show that the sequence (6.7.1) is exact. Since U’ cover Y, the elements s, ..., s generate the
unit ideal.

exactness at M: Let m be an element of M that maps to zero in every M;. Then there exists an n such that
sim = 0, and we can use the same exponent n for all <. The elements s} generate the unit ideal. Writing
>oais? =1, wehavem =) a;s?m=>a;0=0.

exactness at [ [ M;: Let m; be elements of M, such that m; = m; in M;; for all ¢, j. We must find an element
w in M that maps to m; in M; for every j.

We write m; as a fraction: m; = si_":zz,;, or x; = s;'m;, with x; in M, using the same integer n for all s.
The equation m; = m; in M;; tells us that s/ x; = sj'z; is true in M;;, and then (sisj)’"s?xi = (s;85)"s7x;
will be true in M, if 7 is large (see[5.1.19).

We adjust the notation. Let z; = s]z;, and 5; = S’ﬁ”. Thenin M, z; = s;m; and5;z; = 5;2;. Since the
elements s; generate the unit ideal, so do their powers 3;. There is an equation in A, of the form >_ a;5; = 1.
Let w = ) a;Z;. This is an element of M, and

XTj = ( E aisi)zj = E ;ST = S;W
4 )

Since m; = fs'j_lfj, m; = w is true in M. Since j is arbitrary, w is the required element of M. O

Step 2. (extending an O-module to all morphisms between affine open sets)

The O-module M comes with localization maps M(U) — M(Us). It doesn’t come with homomorphisms
M(U) = M(V) when V' — U is an arbitrary inclusion of affine open sets. We define those maps here.
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Let M be an O-module and let V' — U be an inclusion of affine open sets. To describe the canonical
homomorphism M(U) — M(V), we cover V by a family Vo = {V?} of open sets that are localizations
of U and therefore also localizations of V', and we inspect the covering diagram V' < V, & V; and the
corresponding exact sequence 0 — M (V) - M(Vy) N M(V7). The two maps V; — U obtained by
composition from the maps

U~V VoV

are equal. Since V' are localizations of U and V' are localizations of V¢ and of V7, the O-module M comes
with maps M(U) N M(Vy) = M(Vy). The two composed maps M(U) — M(V;) are equal, so their
difference v is zero. Therefore ¢ maps M (U) to the kernel of S which, according to Step 1, is M (V). This
defines a map M(U) —- M(V') making a diagram

MU) —L— M(Vo)

Both 1 and A are compatible with multiplication by a regular function f on U, and A is injective. So 7 is also
compatible with multiplication by f.

We must check that 7 is independent of the covering V. Let V{j = {V"/} be another covering of V by
localizations of U. We cover each of the open sets V¢ N V"7 by localizations W% of U. Taken together, these
open sets form a covering W of V. We have a map W, —— Vj that gives us a diagram

v Vo Vi
H | |
v Wo Wy

and therefore a diagram

0 —— M(V) —— M(Vy) —Zs M(V)

(6.7.2) H l J

0 —— M(V) —— M(Wo) —2 M(Wy)

whose rows are exact sequences. Here M (U) maps to the kernels of Sy and S, both of which are equal to
M(V'). Looking at the diagram, one sees that the map M(U) — M (W) is the composition of the maps
MU) - M(Vy) = M(Wy). Therefore the two maps M(U) — M(V') are equal, and they are also equal
to the map defined by the covering V|,

We show that this extended functor has the sheaf property for an affine covering Uy = {U?} of an affine
variety U. We let Vj be the covering of U obtained by covering each U by localizations of U. This gives us
a diagram

| d d
0 —— MU) —— M(Vy) —— M(Vy)
Because V covers Uy, V7 covers U; as well. So the maps 3 and ~y are injective. Step 1 tells us that the bottom
row is exact. Then Lemma|[6.3.15] (ii) shows that the top row is exact too.
Step 3. (definition of Mv)
Let Y be an open subset of X. We use the sheaf property to define M (Y'). We choose a (finite) covering

Uy = {U'} of Y by affine open sets, and we define M(Y") to be the kernel Ky of the map M (Up) Bo,
M(Uy), where By is the map described in (??). When we show that this kernel is independent of the covering

Uy, it will follow that M is well-defined, and that it has the sheaf property.

135



Let Wy = {W"} be another covering of Y by affine open sets. We can go from Uy to V( and back in a
finite number of steps, each of which consists in adding or deleting one affine open set.

We consider a family Wy = {U?, V'} obtained by adding one affine open subset V of Y to Uy, and we let
W be the family of intersections of pairs of elements of W,. Then we have a map Kw — Ky. We show that,
for any element (u;) in the kernel K7, there is a unique element v in M(V") such that ((u;), v) is in the kernel
Kyy. This will show that Kyw = K.

To define the element v, we let Vi = U N V. Since Uy = {U'} is a covering of Y, Vo = {Vi}isa
covering of V' by affine open sets. Let v; be the restriction of the section u; to V. Since (u;) is in the kernel
of By, u; = uj on UY. Then it is also true that v; = v; on the smaller open set V. So (v;) is in the kernel

of the map M (Vy) B, M (V1), and since V| is a covering of the affine variety V' by affine open sets, Step 2

tells us that the kernel is M (V). So there is a unique element v in M (V') that restricts fo v; on V. With this
element V, (u;,v),is in the kernel of By, as is easily verified.

When the subsets in the family W, are listed in the order
W, ={U'NnUL{VnUL{U'nV}L{VNV}

the map Sw sends ((u;),v) to ((u; — u;), (u; — v), (v — w;),0), restricted appropriately. Here u; = u; on
U' N U’ because (u;) is in the kernel of By, and u; = v; = v on U/ N'V = V* by definition.

This completes the proof of Theorem[6.3.2} O
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Chapter 7 COHOMOLOGY

Cohomology

Complexes

Characteristic Properties of Cohomology
Existence of Cohomology

Cohomology of the Twisting Modules
Cohomology of Hypersurfaces
Annihilators and Support

Three Theorems about Cohomology

HEHEREEEE
| O ENEISS RS

Bézout’s Theorem

7.1 Cohomology

To simplify the construction, we define cohomology only for O-modules. Anyway, the Zariski topology has
limited use for cohomology with other coefficients.

Let M be an O-module on a variety X. The zero-dimensional cohomology of M is the space M(X) of
its global sections. When speaking of cohomology, one denotes this space by H°(X, M).

The functor
0
(O-modules) 7, (vector spaces)

that carries an O-module M to H°(X, M) is left exact: If

(7.1.1) 0O M—->N—-P =0

is an exact sequence of O-modules, the associated sequence of global sections
(7.1.2) 0— H(X,M) - H°(X,N) - H°(X,P)

is exact. But unless X is affine, the map H°(X, ') — HY(X,P) needn’t be surjective. The cohomology of

M is a sequence of functors (O-modules) LA (vector spaces),
HY(X, M), HY(X, M), H* (X, M), ...

beginning with H, one for each dimension, that compensates for the lack of exactness in the following way:
Every short exact sequence (7.1.1) of O-modules has an associated long exact cohomology sequence

0

(7.1.3) 0— HY(X, M) = H(X,N) = H(X,P) >
2, HY(X,M) = H (X,N) = H'(X,P) N

" HU(X, M) — HYX,N) — HI(X,P) s ..
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And, given a diagram

0 M N P 0
! L
0 M N’ P’ 0

whose rows are short exact sequences of @-modules, the diagrams

HIY(X,P) 25 HIt1 (X, M)

(7.1.4) l l

HU(X, P2 Hat (X, M)

that are obtained from the map of cohomology sequences commute. The other diagrams commute because H?
are functors. Thus a map of short exact sequences induces a map of cohomology sequences. The maps §9 are
the coboundary maps.

A sequence H?, g = 0, 1, ... of functors from O-modules to vector spaces that comes with long cohomol-
ogy sequences for every short exact sequence ([7.1.1)) is called a cohomological functor .

Unfortunately, there is no really natural construction of the cohomology. Sometimes one needs to look at
an explicit construction, but it is usually best to work with the characteristic properties that are described in
the Section[7.3] We present a construction in Section [7.4] but it isn’t canonical.

The one-dimensional cohomology H' has an interesting interpretation that you can read about if you like.
We won’t use it. The higher cohomology H? has no useful direct interpretation.

7.2 Complexes

We need complexes because they are used in the definition of cohomology.
A complex V'* of vector spaces is a sequence of homomorphisms of vector spaces

dn+1

1—1 n
(7.2.1) BRI v S BN VAN 7o 15 S AN

indexed by the integers, such that the composition d"d™~! of adjacent maps is zero — the image of d"~! is
contained in the kernel of d”. The g-dimensional cohomology of a complex V'* is the quotient

(72.2) CY(V*) = (ker d?)/(im d971).

An exact sequence is a complex whose cohomology is zero.

If a finite sequence of homomorphisms (7.2.1)) is given, say V* — V*+1... — V¢ it can be made into a
complex by defining V" = 0 for all other integers n. In our applications V¢ will be zero when ¢ < 0.

. d° .
A homomorphism of vector spaces V? — V! can be made into the complex

0
0oV Y S0

For this complex, C° = ker d°, C! = coker d°, and C? = 0 for all other q.

A map V* 5 V' of complexes is a collection of homomorphisms V" i) V'™ making a diagram

B an—1 dr
vn 1 vn Vn+1 s

o o o |

d/n—l am 1
v | A ——

V/nfl

A map of complexes induces maps on the cohomology
CYUV*®) = C1V'*)
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because ker d? maps to ker d’? and im d? maps to imd'“.
A sequence

(7.2.3) R /LN AR L N
of maps of complexes is exact if the sequences
o ye oy Yoy
are exact for every q.
7.2.4. Proposition.
Let 0 — V* = V'®* = V"* — 0 be a short exact sequence of complexes. For every q, there are maps
Ccay(v"*) AN CITL(V'*) such that the sequence
0/1/® 011 om0y 9% ~1vse 1170 1y ey O 20
- C' (V) -C (V") - CY (V") —C(V*) - C (V") - C (V") — C*(V*) —
is exact.

The exact sequence displayed above is the cohomology sequence associated to the short exact sequence of
complexes. This property makes the set of functors {C?} into a cohomological functor on the category of
complexes.

7.2.5. Example. We make the Snake Lemma into a cohomology sequence. Suppose given a diagram

Vv 25V V' — 0
fJ{ f/J/ f//J/
0 w w’ w”

v

with exact rows. We form the complex 0 — V' L W — 0 with V in degree zero, and we do the anal-
ogous thing for the maps f’ and f”, so that the diagram becomes a short exact sequence of complexes. Its
cohomology sequence is the one given by the Snake Lemma. U

proof of Proposition Let
V’:{..._>Vq*1dq_7ivq AN VS AN S

be a complex, let BY be the image of d?~ ' in V9, and let Z9 be the kernel of d?. So BY C Z? C V9, and the
cohomology of the comples is C4(V*®) = Z%/B4. Also, let D? be the cokernel of d?~. So D¢ = V4/BY,
and there is an exact sequence
0—+BT—>VI—D?T—0
Again since BY C Z4, the map d? can be written as the composition of three maps
ig+1

ve = pr L et B yet

where 79 is the projection from V¢ to its quotient DY and i9+! is the inclusion of Z9+! into V97!, Studying
these maps, one sees that

(7.2.6) CY{(V*) =ker f? and CIT(V*®) = coker f1.

Suppose given a short exact sequence of complexes 0 — V* — V'® — V”* — ( as in the proposition.
In the diagram below, the rows are exact because cokernel is a right exact functor and kernel is a left exact

functor.
D4 D! q D" q 0

fql £ fre

q+1 q+1

0 —— 290 —— 2/ g
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When we apply and the Snake Lemma to this diagram, we obtain an exact sequence
CUV*) — CUV'*) - CUV"*) 25 cotl(Ve) — Corl(V'®) — Cati(v”'®)
The cohomology sequence is obtained by splicing these sequences together. ]

The coboundary maps 49 in cohomology sequences are related in a natural way. If

0 U* U Ut —— 0
L !
0 ve v vt —— 0

is a diagram of maps of complexes whose rows are short exact sequences, the diagrams

cu(u"*) 2L crt(Ue)

l l

cu(v7*) oot (ve)

commute. Thus a map of short exact sequences induces a map of cohomology sequences.

7.3 Characteristic Properties of Cohomology

The cohomology H?(X, -) of O-modules, the sequence of functors H°(X, -), HY(X, -), H*(X, -),---
from (O-modules) to (vector spaces), is characterized by the three properties below, the first two of which
have already been mentioned.

(7.3.1) characteristic properties

e H(X, M) is the space M(X) of global sections of M.
o The sequence H®, H', H?,--- is a cohomological functor on O-modules: A short exact sequence of
O-modules produces a long exact cohomology sequence.

e LetY i) X be the inclusion of an affine open subset Y into X, let V' be an Oy -module, and let f,N be
its direct image on X. The cohomology H4(X, f./N) is zero for all ¢ > 0.

7.3.2. Example. Let j be the inclusion of the standard affine open set U° into projective space X. The third
property tells us that the cohomology H?(X, j.Opo) of the direct image j,OU° is zero when ¢ > 0. The
direct image is isomorphic to the limit hﬂ Ox(nH) (6.6.13). We will see below (7.4.28) that cohomology

commutes with direct limits. Therefore the limits of H9(X, Ox(nH)) and of H%(X, Ox(n)) are zero when
X is projective space and g > 0. This will be useful.

Intuitively, the third property tells us that allowing poles on the complement of an affine open set kills
cohomology in positive dimension. (]

7.3.3. Theorem. There exists a cohomology theory with the properties (7.3.1)), and it is unique up to unique
isomorphism.

The proof is in the next section.

7.3.4. Corollary. If X is an affine variety, H1(X, M) = 0 for all O-modules M and all g > 0.
This follows when one applies the third characteristic property to the identity map X — X. (]
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7.4 Existence of Cohomology

The proof of existence of cohomology and its uniqueness are based on tthe following facts:
« The intersection of two affine open subsets of a variety is an affine open set.

e A sequence -+ - M — N — P — ... of O-modules on a variety X is exact if and only if, for every
affine open subset U, the sequence of sections - - - — M(U) — N (U) — P(U) — --- is exact. (This is the
definition of exactness of a sequence of O-modules.)

We begin by choosing an arbitrary affine covering U = {U"} of our variety X by finitely many affine open
sets U", and we use this covering to describe the cohomology. When we have shown that the cohomology is
unique, we will know that it doesn’t depend on our choice of covering.

Let U denote our chosen covering of X, and let U 24 X denote the family of inclusions U” JyXIf
M is an O-module, R » will denote the O-module j, My = []j¥ Myv, where My is the restriction of
M to the open set U”. As has been noted (6.5.8), there is a canonical map M — ;Y My, and therefore a
canonical map M — R 4.

7.4.1. Lemma. (i) Let X' be an open subset of X. The module of sections Ry (X') of Raq on X' is is the
product [ [, M(X' N UY). In particular, the space of global sections R ap(X) is the product T[, M(U").

(i) The canonical map M — R nq is injective. Thus, if Spq denotes the cokernel of that map, there is a short
exact sequence of O-modules

(7.4.2) 0> M—->Rpy —>Sm—0
(iii) For any cohomology theory with the characteristic properties and for any ¢ > 0, H1(X, R n) = 0.
proof. (i) This is seen by going through the definitions:

R(X") = [ i*Mo|(X") = [[,L Mo (X' NU") = [, M(X' nU").

(ii) Let X’ be an open subset of X. The map M(X’) — Ra(X') is the product of the restriction maps
M(X') = M(X’'NU"). Because the open sets U” cover X, the intersections X' N U" cover X'. The sheaf
property of M tells us that the map M(X") — [[, M (X' NUY) is injective.

(iii) This follows from the third characteristic property. (]
7.4.3. Lemma. (i) A short exact sequence 0 — M — N — P — 0 of O-modules embeds into a diagram
M — N — P

! | l

(7.4.4) Rm —— Ry —— Rp
| | |
Sy —— Sy —— Sp

whose rows and columns are short exact sequences. (We have suppressed the surrounding zeros.)
(ii) The sequence of global sections 0 — Ry (X) = Ra(X) = Rp(X) — 0 is exact.

proof. (i) We are given that the top row of the diagram is a short exact sequence, and we have seen that the
columns are short exact sequences. To show that the middle row

(7.4.5) 0—=Rm >Ry —>Rp—0

is exact, we must show that if X" is an affine open subset, the sections on X’ form a short exact sequence. The
sections are explained in Lemma([7.4.1|(i). Since products of exact sequences are exact, we must show that the
sequence

0> MX'NUY) = NX'NUY) = P(X' NUY) =0
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is exact. This is true because X’ N U" is an intersection of affine opens, and is therefore affine.

Now that we know that the first two rows of the diagram are short exact sequences, the Snake Lemma tells
us that the bottom row of the diagram is a short exact sequence.

(i) The sequence of of global sections is the product of the sequences
0= MU") > NU")—-PU") =0

These sequences are exact because the open sets U" are affine. U

(7.4.6) uniqueness of cohomology

Suppose that a cohomology with the characteristic properties (7.3.1) is given, and let M be an O-module.
Then HY(X,Rr) = 0if ¢ > 0 (Lemma (iii)). The cohomology sequence associated to the sequence
0> M—>Rpm—>Sm—0 s

0 = HO(X, M) = HO(X,Raq) — HO(X,Sn0) 25 HY(X, M) = H' (X, Rps) — -

Since HY(X, R r) = 0 when ¢ > 0, this sequence breaks up into an exact sequence

(7.4.7) 0 = HO(X, M) = HO(X,Rat) — HO(X,Sm) 25 HY (X, M) = 0
and isomorphisms
(7.4.8) 0— HY(X,Sm) o HTH(X, M) — 0

for every ¢ > 0. The first three terms of the sequence (7.4.7), and the arrows connecting them, depend on
our choice of covering of X, but the important point is that they don’t depend on the cohomology. So that
sequence determines H' (X, M) up to unique isomorphism as the cokernel of a map that is independent of the
cohomology, and this is true for every O-module M, including for the module Sp4. Therefore it is also true
that H' (X, Spq) is determined uniquely. This being so, H?(X, M) is determined uniquely for every M, by
the isomorphism (7.4.8), with ¢ = 1. The isomorphisms determine the rest of the cohomology up to
unique isomorphism by induction on gq.

(7.4.9) construction of cohomology

One can use the sequence (/.4.2)) and induction to construct cohomology as well as to prove uniqueness,
but it will be clearer to proceed by iterating the construction of R 4.

Let M be an O-module. We rewrite the exact sequence (7.4.2), labeling R o¢ as RY, and Sy as M?:

(7.4.10) 0> M—=RYy =M =0
and we repeat the construction with M*. Let R}, = R% 1 (= j. M), so that there is an exact sequence

(7.4.11) 0 M =Ry — M =0

analogous to the sequence (7.4.10), with M? = R}, /M*. We combine the sequences (7.4.10) and (7.4.11)
into an exact sequence

(7.4.12) 0> M—=RY =Ry = M =0
Then we let Rf\,l = R?MQ. We continue in this way, to construct modules R’j\,[ that form an exact sequence
(7.4.13) 0—-M—=RY =Ry = R~

The next lemma follows by induction from Lemmas and[7.4.3]
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7.4.14. Lemma.
(i) Let0 - M — N — P — 0 be a short exact sequence of O-modules. For every n, the sequences

0—=RYy >Ry —>Rp—0
are exact, and so are the sequences of global sections
00— RU(X)—=>RYy(X) > Rp(X)—0

() IfHY q=0,1,2,... is a cohomology theory, then H4(X, R’ () = 0 for all n and all ¢ > 0. O
An exact sequence such as ((7.4.13)) is called a resolution of M, and because H¢(X, R’;,) = 0 when g > 0,
it is an acyclic resolution.

Continuing with the proof of existence, we consider the complex of OJ-modules R that is obtained by

omitting the first term from (7.4.13):
(7.4.15) 0—RY = Ry — R —
and the complex R% (X)) of its global sections:
(7.4.16) 0 — ROYU(X) = RI(X) = RI(X) — -
which we could also write as
0— H°(X,R%) — H°(X,R}\) — H(X,R3) — -

The sequence R%, becomes the resolution when the module M is inserted. So the complex
is exact except at R ;, but because the global section functor is only left exact, the sequence (7.4.16) of global
sections R ((X') needn’t be exact anywhere. However, R ((X) is a complex because R %, is a complex. The
composition of adjacent maps is zero.

0 1
Recall that the cohomology of a complex 0 — V° Lyt Ly of vector spaces is defined to be
Ci4(V*) = (ker d?)/(im d?~'), and that {C?} is a cohomological functor on complexes (7.2.4).

7.4.17. Definition. The cohomology of an O-module M is the cohomology of the complex R, (X):
H(X, M) = C(R, (X))

Thus if we denote the maps in the complex (7.4.16) by d?,

0= RY(X) L5 RE,(X) L5 R, (X) = -
then H9(X, M) = (ker d?)/(im d?1).

7.4.18. Lemma. Let X be an affine variety. With cohomology defined as above, H1(X, M) = 0 for all
O-modules M and all q > 0.

proof. When X is affine, the sequence of global sections of the exact sequence is exact. O

To show that our definition gives the (unique) cohomology, we verify the characteristic properties. Since

the sequence ([7.4.13)) is exact and since the global section functor is left exact, M (X) is the kernel of the map
RS (X) — R},4(X), and this kernel is also equal to C®(R%((X)). So our cohomology has the first property:
HY(X, M) = M(X).

To show that we obtain a cohomological functor, we apply Lemma to conclude that, for a short
exact sequence 0 -+ M — N — P — 0, the global sections

(7.4.19) 0— RUX) = Ry (X) = Rp(X) =0,

form an exact sequence of complexes. Cohomology HY(X, -) is a cohomological functor because cohomol-
ogy of complexes is a cohomological functor.

143



We make a digression before verifying the third characteristic property.

(7.4.20) affine morphisms

LetY i> X be a morphism of varieties. Let U 4 X be the inclusion of an open subvariety into X and
let V be the inverse image f~1U, which is an open subvariety of Y. These varieties and maps form a diagram

V ——vY
(7.4.21) gl fl
U—1 5 X

We use the notation My for the restriction of M to an open subset U 0f(6.5.6).

7.4.22. Lemma. With notation as above, let N be an Oy -module. The Oy -modules g.[Nv| and [f Ny are
canonically isomorphic.

proof. Let U’ be an open subset of U, and let V/ = g~ 'U’. Then
[N (U') = [FNU) = N (V') = Ny (V') = [g: MV ]](T7) O

7.4.23. Definition. An affine morphism is a morphism Y’ L X of varieties with the property that the inverse
image f~!(U) of every affine open subset U of X is an affine open subset of Y. O

The following are examples of affine morphisms:

o the inclusion of an affine open subset Y into X,
e the inclusion of a closed subvariety Y into X,
e a finite morphism, or an integral morphism.

But, if Y is a closed subset of P x X, the projection Y — X will not be an affine morphism unless its fibres

are finite, in which case Chevalley’s Finitenss Theorem tells us that it is a finite morphism.

7.4.24. Lemma. IfY s Cisan affine morphism and if N — N’ — N is an exact sequence of Oy -
modules, the sequence of direct images f N — fuN' — f.N" is exact. O

Let Y —X5 X be an affine morphism, let j be the map from our chosen affine covering U = {U"} to X,
and let V denote the family {V*} = {f~1U"} of inverse images. Then V is an affine covering of Y, and

there is a morphism V — U. We form a diagram analogous to (7.4.21)), in which V and U replace V and U,
respectively:

U— X

7.4.25. Proposition. Let Y Ly X be an affine morphism, and let N' be an Oy -module. Let H1(X, -)
be cohomology defined in , and let H1(Y, - ) be cohomology defined in the analogous way, using the
covering V of Y. Then H1(X, f.N) is isomorphic to H1(Y,N').

proof. To compute the cohomology of f. N on X, we substitute M = f, N into (7.4.17):
HYX, fiN) = CUR} (X))
To compute the cohomology of A on Y, we let
R/ = i [NV]
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and we continue, to construct a resolution R’ ;\/ =0->N R 9\/ — R le — -+ and the complex of its
global sections R'}/(Y'). (The prime is there to remind us that R is defined using the covering V of Y".) Then

HY(Y,N) = C*(R'}(Y)).

It suffices to show that the complexes R$ ,-(X) and R'}/(Y) are isomorphic, and because R'{(Y) =
[« R')(X), it suffices to show that R, ~ f.R'S.
#reread this##

We look back at the definition (7.4.11) of the @ x-modules R°. We have R’ ]?\/ = i,Ny. So the sequence
for A/ analogous to (7.4.10) can be written as

0N =i Ny =N =0
and since fi = jg, its direct image can be written as
(7.4.26) 0= fiN = JuguN] = f N = 0
The sequence for f, N analogous to is
0= f N = 5[fN]y = [N =0
According to Lemma [f+Nu is isomorphic to g.[Ay]. So this sequence can also be written as
(7.4.27) 0= fulN = GugulNo] = [fN]' =0

Combining reffstarN) and (7.4.27), one sees that R?* N~ LR ?\[ and that f,[N!] ~ [f.N]. Then induction
applies. (]

We go back to the proof of existence of cohomology to verify the third characteristic property, that when
Y —£5 X is the inclusion of an affine open subset, H4(X, f,N') = 0 for all Oy-modules N and all ¢ > 0.
The inclusion of an affine open set is an affine morphism, so H4(Y, N') = HY(X, f.N') (7.4.23), and since Y’
is affine, HY(Y,N') = 0 for all ¢ > 0 (7.4.18). O

Proposition is one of the places where a specific construction of cohomology is used. The charac-
teristic properties don’t apply directly. The next proposition is another such place.

7.4.28. Lemma. Cohomology is compatible with limits of directed sets of O-modules: H%(X, hgl./\/l.) =~
lim H(X, M,) for all q.

proof. The direct and inverse image functors and the global section functor are all compatible with lig, and
H_Ir; is exact (2?). So the module R{ M, thatis used to compute the cohomology of @M. is isomorphic
—

to lim [R%,, ] and R{, 14, (X) is isomorphic to ling [R%,, ](X). O
iy

(7.4.29) uniqueness of the coboundary maps

We have constructed a cohomology { H?} that has the characteristic properties, and we have shown that
the functors H? are unique. We haven’t shown that the coboundary maps 07 that appear in the cohomology
sequences are unique. To make it clear that there is something to show, we note that the cohomology
sequence remains exact when some of the coboundary maps 09 are multiplied by —1. Why can’t we
define a new collection of coboundary maps by changing some signs? The reason we can’t do this is that
we used the coboundary maps 67 in and to identify H?(X, M). Having done that, we aren’t
allowed to change 9 for the particular short exact sequences (7.4.2)). We show that the coboundary maps for
those particular sequences determine the coboundary maps for every short exact sequence of O-modules

(A) 0->M-—=N-—P—=0
The sequences were rewritten as (7.4.10). We will use that form.
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To show that the coboundaries for the sequence (A) are determined uniquely, we relate it to a sequence
(B) for which the coboundary maps are fixed:

(B) 0-M-—RY — M -0
We map (A) and (B) to a third short exact sequence
(C) 05 M-SRy — Q-0

where 1 is the composition of the injective maps M — ROM — R?\/ and Q is the cokernel of 1.
First, we inspect the diagram

(4 M N P
| | |
) M- RY Q

and its diagram of coboundary maps
6‘1
(A) HY(X,P) —>— HIT(X M)

l H

(©)  HIX,Q) —2£ HIT(X, M)

This diagram shows that the coboundary map % for the sequence (A) is determined by the coboundary map
¢ for (C).
Next, we inspect the diagram

(B) M R, M!
(7.4.30) H “l l
) M5 RY o)

and its diagram of coboundary maps
6‘2
(B) Hq(XaMl) — Hq+l(X7M)

‘| H

(©)  HUX,Q) —t HeH(X,M)

When ¢ > 0, 6% and 6% are bijective because the cohomology of RS, and RY, is zero in positive dimension.
Then 6/, is uniquely determined by 6%, and so is §%.

We have to look more closely to settle the case ¢ = 0. The maps labeled v and v in (7.4.30) are injective,
and the Snake Lemma shows that their cokernels are isomorphic. We write both of them as R%. When we add
the cokernels to the diagram, we obtain a cohomology diagram whose relevant part is

(B)  HOX,RY,) —— HOX,.M') —2 s HY(X, M)

50
b I
HY(X,R%) —— H°X,R%)
The rows and columns in the diagram are exact. We want to show that the map J2 is determined uniquely by
6%. It is determined by 6% on the image of v and it is zero on the image of 3. To show that 2 is determined

by 8%, it suffices to show that the images of v and 3 together span H°(X, Q). This follows from the fact that
7 is surjective. Thus 82 is determined unigely by 6%, and so is 09. O
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7.5 Cohomology of the Twisting Modules

We determine the cohomology of the twisting modules O(d) on P™ here. As we will see, H?(P", O(d)) is
zero for most values of ¢. This will help to determine the cohomology of other modules.

Lemma [7.4.18] about vanishing of cohomology on an affine variety, and Lemma [7.4.25] about the direct
image via an affine morphism, were stated using a particular affine covering. Since we know that cohomology
is unique, that particular covering is irrelevant. Though it isn’t necessary, we restate the lemmas here as a
corollary:

7.5.1. Corollary. (i) On an affine variety X, H1(X, M) = 0 for all O-modules M and all q > 0.
(i) LetY Iy X be an affine morphism. If N is an Oy -module, then HY(X, f.N') and H1(Y,N') are
isomorphic. If Y is an affine variety, H1(X, f.N') = 0 for all ¢ > 0. O

One case in which (ii) applies is that f is the inclusion of a closed subvariety Y into X.

Let M be a finite O-module on projective space P™. The twisting modules O(d) and the twists M(d) =
M ®0 O(d) are isomorphic to the modules O(dH) and M(dH) = M ®0 O(dH), respectively. They form
maps of directed sets

O S5 OoH) -5 0@QH) —S% ... M —— MH) —— M@2H) —— -
T | S
024 01 -2 002 —25.. M—"—5 M1l —— M2 —— -

(See (??)). The second diagram is obtained from the first one by tensoring with M. Let U denote the stanard
affine open subset U° of P”, and let j be the inclusion of U into P™. Then li_rr}O(dH ) = 5.0y (??) and

because h_n} is compatible with tensor products, h_ng/\/l(dH ) &~ j.My. Since j is an affine morphism and
UY is an affine open set, H?(P", j,Oy) = 0 and H4(P", j,My) = 0 for all ¢ > 0.

The next corollary follows from the facts that M(d) is isomorphic to M(dH), and that cohomology is
compatible with direct limits (7.4.28).
7.5.2. Corollary. For all projective varieties X and all O-modules M, lim HY(X,0(d)) =0and lim HYX, M(d)) =
0 when g > 0. (]

7.5.3. Notation. If M is an O-module, we denote the dimension of H?(X, M) by h?(M) or by h?(X, M).
We can write h?(M) = oo if the dimension is infinite. However, in Section[7.8] we will see that when M is a
finite O-module on a projective variety X, H?(X, M) has finite dimension for every q.

7.5.4. Theorem.

(i) Ford >0, h°(P",0(d)) = (*I") and hi(P",O(d)) =0 ifq# 0.

(ii) For r > 0, h"(P", O(— = (">") and h1(P",O(-r)) =0 ifq#n.
In particular, part (ii) implies that h?(P™, O(—1)) = 0 for all q.

proof. We have described the global sections of O(d) before: If d > 0, H?(X, O(d)) is the space of homoge-
neous polynomials of degree d in the coordinate variables, and if d < 0, H°(X, O(d)) = 0 (see (6.6.2) )

(i) (the case d > 0)

Let X =P" andletY —*5 X be the inclusion of the hyperplane at infinity into X. By induction on n,
we may assume that the theorem has been proved for Y, which is a projective space of dimension n—1. We
consider the exact sequence

(7.5.5) 0= Ox(-1) 2% 0x = i,0y =0
and its twists

(7.5.6) 0— Ox(d—1) 2% Ox(d) = i.Oy(d) = 0
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The twisted sequences are exact because they are obtained by tensoring with the invertible O-modules
O(d). Because the inclusion ¢ of Y into X is an affine morphism, H9(X, .0y (d)) =~ HI(Y, Oy (d)).

The monomials of degree d in n+ 1 variables form a basis of the space of global sections of Ox (d).
Setting xp = 0 and deleting terms that become zero gives us a basis of Oy (d). Therefore every global section
of Oy (d) is the restriction of a global section of Ox (d). The sequence of global sections

0— HY(X,0x(d—1)) =% HY(X,0x(d)) = H°(Y,Oy(d))
is exact, and it remains exact when a zero is added on the right. This tells us that the map

is injective. By induction on n, H4(Y, Oy (d)) = 0 for d > 0 and ¢ > 0. When combined with the injectivity
noted above, the cohomology sequence of (7.5.6) gives us bijections H4(X,Ox(d—1)) — HY(X,Ox(d))
for every ¢ > 0. Since the limits are zero (7.5.2), H4(X,Ox(d)) = 0 forall d > 0 and all ¢ > 0.

(ii) (the case d < 0)

We use induction on the integers r and n. We suppose the theorem proved for r, and we substitute d = —r
into the sequence ([7.5.6):
(7.5.7) 0 = Ox(—(r+1)) = Ox(-1) = i.0y (1) = 0

The base case = 0 is the exact sequence (7.5.5)). In the cohomology sequence associated to that sequence,
the terms H%(X, Ox ) and H4(Y, Oy ) are zero when ¢ > 0, and H°(X,Ox) = H°(Y, Oy) = C. Therefore

(7.5.8) HY(X,0x(—1)) =0 forevery gq.

This proves (ii) for r = 1.

Our induction hypothesis is that, h"(P",O(—r)) = ("-') and h? = 0 if ¢ # n. By induction on n,
we may suppose that h"~1(P"~1 O(—r)) = (;:i) and h? = 0if ¢ # n — 1. Instead of displaying the
cohomology sequence associated to ([/.5.7), we assemble the dimensions of cohomology into a table in which
the asterisks stand for entries that are to be determined:

Ox(—(r-f—l)) Ox(—T) i*Oy(—T)

ho * 0 0
(7.5.9)

h"=2 * 0 0

bt * 0 (1)

h" : h"(O-@r+1) (1) 0

The second column is determined by induction on 7 and the third by induction on n. The cohomology sequence
shows that the entries labeled with an asterisk are zero, and that

h"(P", O((r+1))) = (23 + (1)

n—1 n

The right side of this equation is equal to (). O

7.6 Cohomology of Hypersurfaces

We determine the cohomology of a plane projective curve first. Let X = P2 and let C —'4 X denote the
inclusion of a plane curve of degree k. The ideal Z of functions that vanish on C' is isomorphic to the twisting
module Ox (—k) (6.6.8), so one has an exact sequence

(7.6.1) 0— Ox(—k) > Ox = i.0c — 0
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We form a table showing dimensions of the cohomology. Theorem|[7.5.4]determines the first two columns, and
the cohomology sequence determines the last column.

Ox(=k) Ox i,0¢
ho . 0 1 1

(7.6.2)

hr: (%)) o 0

Since the inclusion of the curve C' into the projective plane X is an affine morphism, h?(X,i,0¢) =
h?(C, O¢). Therefore

h’(C,0¢) =1, h'(C,0¢) = (*"), and h? =0 when ¢ > 1.

The dimension h'(C, O¢), which is (kgl), is called the arithmetic genus of C. It is denoted by p,. We
will see later (8.9.2) that when C' is a smooth curve, its arithmetic genus is equal to its topological genus:
Pa = g, but the arithmetic genus of a plane curve of degree k is (kgl) also when C' is singular.

We restate the results as a corollary.

7.6.3. Corollary. Let C be a plane curve of degree k. Then h°(C,O¢) = 1, h}(C,0¢) = (kgl) = Da

andh? =0ifq# 0,1 O

The fact that h®(C, O¢) = 1 tells us that the only rational functions that are regular everywhere on C' are the
constants. This reflects a fact that will be proved later: A plane curve is compact and connected in the classical
topology. However, it isn’t a proof of that fact.

We will need more technique in order to compute cohomology for curves in higher dimensional projective
spaces. In the next section we will see that the cohomology on any projective curve is zero except in dimensions
0 and 1. Cohomology of projective curves is the topic of Chapter[§]

One can make a similar computation for the hypersurface Y in X = P" defined by an irreducible homo-
geneous polynomial f of degree k. The ideal of Y is isomorphic to O x (—k), and there is an exact sequence

0= Ox(—k) L 0x 5.0y =0

Since we know the cohomology of Ox (—k) and Ox , and since H%(X,i.0y) =~ HI(Y,Oy), we can use
this sequence to compute the dimensions of the cohomology of Oy .

7.6.4. Corollary. Let Y be a hypersurface of dimension d and degree k in a projective space of dimension
d+ 1. Then h°(Y,Oy) = 1, h(Y, Oy) = (}};}), and h(Y,Oy) = 0 for all other q. O

If S is a surface in P defined by an irreducible polynomial of degree k, then h®(S, Os) = 1, h'(S,0g) =
0, h? (S,05) = (kgl), and h? = 0 if ¢ > 2. When a projective surface .S isn’t embedded into P3, it is still
true that h? = 0 when ¢ > 2, but h'(S, Og) may be nonzero. The dimensions h'(S, Og) and h?(S, Og) are
invariants of the surface somewhat analogous to the genus of a curve. In classical terminology, h?(S, Og) is
the geometric genus p, and h'(S, Og) is the irregularity q. The arithmetic genus p, is

(7.6.5) Pa = h*(S,05) —h'(S,05) =py —q
Therefore the irregularity is ¢ = py — po. When S is a surface in P3, ¢ =0and Dg = Da-

In modern terminology, it is more natural to replace the arithmetic genus by the Euler characteristic
x(Os) = >_,(=1)7h?(Os). The Euler characteristic of a curve is

x(Oc) =h’%(C,00) —h (C,0c) =1 —p,
and the Euler characteristic of a surface S is
X(0s) = h°(S, 0s) — h' (S, 0g) + h*(S,05) = 1+ ps

But because of tradition, the arithmetic genus is still used quite often.
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7.7 Annihilators and Support

(7.7.1) annihilators

Let A be aring, and let m be an element of an A-module M. The annihilator I of an element m of M is
the set of elements « of A such that am = 0. This is an ideal of A that we may denote by ann(m).

The annihilator of the A-module M is the set of elements of A such that aM = 0. This annihilator is also
an ideal. We will use the annihilator of a module only in the definition of support, which is below.

7.7.2. Lemma. Let I be the annihilator of an element m of M, and let s be a nonzero element of A. The
annihilator of the image of m in the localized module M is the localized ideal I O

This allows us to extend the concept of annihilator to sections of a finite @-module on a variety X.

(7.7.3) maximal annihilators

Let m be an element of a module M over a noetherian ring A, and let I = ann(m): I ={a € A|am =
0}. The same ideal I will annihilate every element of the submodule Am spanned by m.

Let S be the set whose members are the annihilators of nonzero elements of M. A maximal annihilator is
a maximal member of S. Because A is noetherian, the annihilator of any nonzero element will be contained in
a maximal annihilator.

7.7.4. Proposition. Let M be a finite, module over a noetherian ring A, not the zero module..

(i) Let m be a nonzero element of M whose annihilator P is a maximal annihilator, and let b be an element of
A. Then P is also the annihilator of bm, if bm # 0.

(ii) The maximal annihilators are prime ideals.

(iii) Let P; be distinct maximal annihilators, let m; be elements of M whose annihilators are P;, and let

N; = Amy. The submodules N; of M are independent, i.e., their sum >, N; is the direct sum @ N;.
(iv) The set of maximal annihilators is finite and nonempty.

proof. Let’s denote by ann(m) the annihilator of an element m of M.

(i) An element a that annihilates m also annihilates bmn. So ann(m) C ann(bm). If ann(m) is maximal and
bm # 0, then ann(m) = ann(bm).

(ii) Let P = ann(m) be a maximal annihilator, and let a, b be elementsof A such that ab € P. If b ¢ P, then
bm # 0 but abm = 0. So a € ann(bm) = P.

(iii) We must show that if n; are elements of N, such that nq + --- 4+ n, = 0, then n; = 0 or all i.. We use
induction on k. Let a be a nonzero element of the annihilator P, of N. Thenany +---+ang_1 +0 = 0. By
induction an; = 0 for all 4. Therefore a is in P; for all 7. Unless k = 1, this contradicts the assumption that P;
are distinct maximal annihilators.

(iv) The submodules IV; are nonzero and independent. Since € N; is a submodule of the finite module A and
since A is noetherian, @ N; is a finite module. So there can be only finitely many indices i. (]

7.7.5. Corollary. Let M be a finite module over a noetherian domain A, and let s be an element of A that
isn’t contained in any of the maximal annihilators of M. The multiplication map M — M is injective, and
therefore the map from M to its localization M is injective. U

7.7.6. Support Let M be a finite module over a finite-type domain A and X = Spec A. The support of M is
the locus C' = Vx (I) of zeros of its annihilator I in X. The support is a closed subset of X.

and the support of the localization M is the intersection Cs = C'N Xj.

Let A be a finite-type domain and let X = Spec A. The support of a finite A-module M is the locus of
zeros Vx (I) of its annihilator J in X. It is the set of ponits p of X such that I C m,,.

The annihilator of a localized module M is the localization I, of the annihilator I of M, and the support
of the localization M, is the intersection Cs = C' N X,.
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The support of a finite O x-module is the closed subset Vx (Z) of points such that 7 C my,.

For example, the support of the residue field module &, is the point p. The support of the maximal ideal
m,, at p is the whole variety X.

(7.7.7)  O-modules with support of dimension zero

7.7.8. Proposition. Let M be a finite O-module on a variety X.

(i) Suppose that the support of M is a single point p, let M = M(X), and let U be an affine open subset of
X. If U contains p, then M(U) = M, and if U doesn’t contain p, then M(U) = 0.

(ii) (Chinese Remainder Theorem) If the support of M is a finite set {p1, ..., pr}, then M is the direct sum
My @ - & My, of O-modules supported at the points p;.

proof. (i) Let Z be the annihilator of M. The locus Vx (Z) is p. If p isn’t contained in U, then when we restrict
M to U, we obtain an Oy -module whose support is empty. Therefore the restriction to U is the zero module.

Next, suppose that p is contained in U, and let V' denote the complement of p in X. We cover X by a set
{U"} of affine open sets with U = U, and such that U* C V if i > 1. By what has been shown, M(U?) = 0if
i > 0and M(U%) = 0if j # i. The sheaf axiom for this covering shows that M(X) ~ M(U).

(ii) This follows from the ordinary Chinese Remainder Theorem. Il

7.8 Three Theorems about Cohomology

We will use the concept of the support of an O-module M, the zero set of its annihilator.

7.8.1. Theorem. Let X be a projective variety, and let M be a finite O x -module.

(i) If the support of M has dimension k, then H1(X, M) = 0 for all ¢ > k. In particular, if the dimension
of X isn, then H1(X, M) = 0 for all ¢ > n.

(ii) Let M(d) be the twist of the finite O x-module M. For sufficiently large d, H1(X, M(d)) = 0 for all
q > 0.

(iii) For every q, the cohomology H1(X, M) is a finite-dimensional vector space.

7.8.2. Notes. (a) The structure of the proofs is interesting. The first part allows us to use descending induction
to prove the second and third parts, beginning with the fact that h*(M) = 0 when k is larger dim X. The
descending induction step is to prove that if a statement Sy, is true when k = r + 1, then it is true when k = 7.

The third part of the theorem tells us that, when M is a finite O-module, the space H°(X, M) of global
sections is finite-dimensional. This is one of the most important consequences of the theorem, and it isn’t easy
to prove directly.

(b) Let X be a projective variety. The highest dimension in which cohomology of an O x-module can be
nonzero is called the cohomological dimension of X . Theorem [7.8.1|shows that its cohomological dimension
is at most its algebraic dimension. In fact, it is equal to the algebraic dimension. On the other hand, X has
dimension 2n in the classical topology, and the constant coefficient cohomology H%" . (X, Z) in the classical
topology will be nonzero. In the classical topology, the cohomological dimension of a projective variety X is
its topological dimension 2n. In the Zariski topology, H?(X,Z) is zero for every ¢ > 0. O

In the theorem, we are given that X is a closed subvariety of a projective space P". We can replace an
Ox-module by its extension by zero (7.5.1). This doesn’t change the cohomology. So we may assume that X
is a projective space.

The proofs are based on the cohomology of the twisting modules (7.5.4), the vanishing of the limit
limg H 19X, M(d)) forg > 0 li and on two exact sequences. As we know, M (r) is generated by global
sections if r is sufficiently large (6.6.20). Choosing generators gives us a surjective map O™ — M(r). Let N/
be the kernel of this map. When we twist the sequence 0 - N — O™ — M(r) — 0, we obtain short exact
sequences

(7.8.3) 0— N(d) = O(d)™ = M(d+r) =0
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for every d > 0. These sequences are useful because we know that H9(X, O(d)) = 0 when ¢ > 0.

Next, Lemma ?? tells us that, with coordinates in general position, there will be an exact sequence
0— M(-1) =% M — M — 0, where M is the quotient M /xq M (—1). Twisting this sequence gives us
exact sequences

(7.8.4) 0— M(d—1) 2% M(d) — M(d) — 0

Since the zero locus of z is the hyperplane H at infinity, the support S of M will be contained in S N H. If
S has dimension k and x¢ is generic, the support of M will have dimension less than k. This will allow us to
use induction on k and d.

proof of Theorem (i) (vanishing in large dimension)

We inspect the sequence (7.8.4). Let k be the dimension of the support of M. If k = 0, then M =0 and
H(X, M(d)) = 0 for all g. With coordinates in general position, the support of M will have dimension at
most k—1, if & > 0. So by induction on k, we may assume that H%(X, M(d)) = 0 for all ¢ > k—1 and all d.

The cohomology sequence associated to the sequence is

(7185 - — HTYX, M(d)) A HY(X, M(d—1)) 2 HY(X, M(d)) — HU(X, M(d)) 2> -

When ¢ > k, the terms on the left and right of this display are zero, and therefore the map

HY (X, M(d—1)) =% HY(X, M(d))

is an isomorphism. According to (7.5.2), lim H(X, M(d)) = 0. It follows that H(X, M(d)) = 0 for all d,
and in particular, H4(X, M) = 0 when ¢ > k.

proof of Theorem (i) (vanishing for a large twist)
We must show this:

(*)  Let M be a finite O-module. For every q > 0 and for sufficiently large d, H1(X, M(d)) = 0.

By part (i), we know that (*) is true for every ¢ > n = dim X, because all cohomology in dimension g is
zero when ¢ > n. This leaves a finite set of integers ¢ = 1, ..., n to consider, and it suffices to consider them
one at a time. If (*) is true for each individual ¢ there will be a single d such that it is true for¢ = 1, ..., n, and
therefore for all positive integers ¢, as the theorem asserts.

We use descending induction on ¢, the base case being ¢ = n + 1, for which (¥) is true. We suppose that
(*) is true for every finite O-module M when ¢ = p+ 1, and that p > 0, and we show that (*) is true for every
finite O-module M when g = p.

We substitute ¢ = p into the cohomology sequence associated to the sequence (7.8.3). The relevant part of
that sequence is

HP(X,0(d))™ — HP (X, M(d+7)) 2 HPPL(X, N (d))

Since p is positive, H?(X,O(d)) = 0 for all d > 0, and therefore the map 67 is injective. Our induction
hypothesis, applied to the O-module N, shows that HP*1(X, N(d)) = 0 for large d, and then

HP (X, M(d+7)) =0

The particular integer d+r isn’t useful. Our conclusion is that, for every finite O-module M, H? (X, M(k)) =
0 when £ is large enough. (|

proof of Theorem (iii) (finiteness of cohomology)

This proof also uses descending induction on q. As was mentioned above, it isn’t easy to prove directly
that the space H°(X, M) of global sections is finite-dimensional.

We go back to the sequence and its cohomology sequence (7.8.3). Induction on the dimension
of the support of M allows us to assume that H” (X, M(d)) is finite-dimensional for all . So, in the part
of the cohomology sequence that is depicted in (7.8.5), the terms on the left and right are finite-dimensional.
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Therefore H9(X, M(d-1)) and H?(X, M(d)) are either both finite-dimensional, or else they are both infinite-
dimensional, and this is true for every d.

Suppose that ¢ > 0. Then H9(X, M(d)) = 0 when d is large enough. Since the zero space is finite-
dimensional, we can use the sequence together with descending induction, to conclude that H?(X, M(d)) is
finite-dimensional for every finite module M and every d. In particular, H?(X, M) is finite-dimensional.

This leaves the case that ¢ = 0. To prove that H°(X, M) is finite-dimensional, we set d = —r in the
sequence (7.8.3):
0> N(=r)—=0(=r)"—>M=0

The corresponding cohomology sequence is

0— H(X,N(-r)) = H(X,O(—r))™ = H°(X, M) AN HY X, N(=r)) = ---

Here H%(X,O(—7r))™ = 0, and we’ve shown that H'(X, N(—r)) is finite-dimensional. It follows that
H°(X, M) is finite-dimensional, and this completes the proof. O

Notice that the finiteness of H° comes out only at the end. The higher cohomology is essential for the
proof.

(7.8.6)  Euler characteristic

Theorem [7.8.T]allows us to define the Euler characteristic of a finite module on projective variety.

7.8.7. Definition. Let X be a projective variety. The Euler characteristic of a finite O-module M is the
alternating sum of the dimensions of the cohomology:

(7.8.8) X(M) =3 (~1)7h?(X, M).

This makes sense because h?(X, M) finite for every ¢, and is zero when ¢ is large.

7.8.9. Proposition. (i) If0 — M — N — P — 0 is a short exact sequence of finite O-modules on a
projective variety X, then x(M) — x(N) + x(P) = 0.

) If0—- My — My — -+ = M, — 0is an exact sequence of finite O-modules on X, the alternating
sum > (=1)%x(M,) is zero.

7.8.10. Lemma. Let 0 — V? — V! — ... — V™ — 0 be an exact sequence of finite dimensional vector
spaces. The alternating sum »_(—1)?dim V< is zero. O

proof of Proposition (i) Since the cohomology sequence associated to the given sequence is exact,
the lemma tells us that the alternating sum of its dimensions is zero. That alternating sum is also equal to
X(M) = x(NV) + x(P).
(ii) Let s denote the given sequence by Sy and the alternating sum ) -, x (M;) by x(So).

Let N' = M;/M,. The sequence Sy decomposes into the two exact sequences

Si: 0=-Myg—-M; =-N =0 and Sy: 0N >My— - = M -0—

Then x(So) = x(S1) — x(S2), so the assertion follows from (i) by induction on n. O

7.9 Bézout’s Theorem

As an application of cohomology, we use it to prove Bézout’s Theorem.

Recall that, if f(x) = p1(x)® - - - pr(2)°* is a factorization of a homogeneous polyomial in x = g, z1, Z2
into irreducible polynomials, the divisor of f is defined to be the integer combination e;Cy + - - - + e;Cl,
where C; is the curve of zeros of p;.

We restate the theorem to be proved.
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7.9.1. Bézout’s Theorem. LetY and Z be the divisors in the projective plane X defined by relatively prime
homogeneous polynomials f and g of degrees m and n, respectively. The number of intersection points Y N Z,
counted with an appropriate multiplicity, is equal to mn. Moreover, the multiplicity is 1 at a point at which' Y
and Z intersect transversally.

The definition of the multiplicity will emerge during the proof.

7.9.2. Example. Suppose that f and g are products of linear polynomials, so that Y is the union of m lines
and Z is the union of n lines, and suppose that those lines are distinct. Since two distinct lines intersect
transversally in a single point, there are mn intersection points of multiplicity 1. |

proof of Bézout’s Theorem. We will suppress the notation for the extension by zero from a closed subset.
Multiplication by f defines a short exact sequence

O%OX(—TTL)LOX—)OY_)O

where Oy stands for i, Oy, i being the inclusion Y — X. This sequence describes Ox (—m) as the ideal
of Y, and there is a similar sequence describing the module Ox (—n) as the ideal [ of Z. The zero locus of
the ideal Z+ 7 is the intersection Y N Z.

We denote the quotient Ox /(Z+ ) by O. Since f and g have no common factor, Y N Z is a finite set
of points {p1, ..., pr}, and O is isomorphic to a direct sum €@ O;, where O; is a finite-dimensional algebra
whose support is p; (7.7.7). We define the intersection multiplicity of Y and Z at p; to be the dimension of
O;, which is also equal to h®(X, O;), and we denote the multiplicity by y;. The dimension of H(X, O) is
the sum piq+- - -+, and H4(X,O) = 0 for all ¢ > 0 (Theorem(i)). So the Euler characteristic x (O)
is equal to h®(X, O). We’ll show that x(O) = mn, and therefore that y1; +- - -+ = mn. This will prove
Bézout’s Theorem.

We form an exact sequence of O-modules, in which O = Ox:

(7.9.3) 0— OFm—n) (ﬂt O(—m)xO(—n) A O N, BN

In order to interpret the maps in this sequence as matrix multiplication with homomorphisms acting on the
left, sections of O(—m) x O(—n) should be represented as column vectors (u, v)*, u and v being sections of
O(—m) and O(—n), respectively.

7.9.4. Lemma. The sequence is exact.

proof. To prove exactness, it suffices to show that the sequence of sections on each of the standard affine
open sets is exact. We look at U°, as usual. Let’s suppose s coordinates are chosen so that none of the points
making up Y N Z lie on the coordinate axes. Let A be the algebra of regular functions on U°, the polynomial
algebra Cluy, ug], with u; = x;/xq. We identify O(k) with O(kH ), H being the hyperplane at infinity. The
restriction of the module O(kH) to U° is isomorphic to Oyo. Its sections on U are the elements of A. Let
A be the algebra of sections of O on U°. Since f and g are relatively prime, so are their dehomogenizations
F = f(1,u1,ug) and G = g(1,u1, us). The sequence of sections of on U is

05A4% Axa "= 45 7a S0

and the only place at which exactness of this sequence isn’t obvious is at A x A. Suppose that (u, v)¢ is in the
kernel of the map (F, —G), i.e., that Fu = G Since F and G are relatively prime, F' divides v, G divides v,
andv/F = u/G. Letw = v/F = u/G. Then (u,v)! = (G, F)'w. O

Since cohomology is compatible with products, x (MxN) = x (M) -+ x(N). Proposition ii), applied
to the exact sequence (7.9.3), tells us that the alternating sum

(1.9.5) X(O(=m=n)) = (x(O(=m))+x(O(-n))) + x(O) — x(0)
is zero. Solving for x(O) and applying Theorem
x(©0) = ("7 = (") -
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This equation shows that the term x(QO) depends only on the integers m and n. Since we know that the answer
is mn when Y and Z are unions of distinct lines, it is mn in every case. This completes the proof.

If you are suspicious of this reasoning, you can evaluate the right side of the equation. (]

We still need to explain the assertion that the mutiplicity at a transversal intersection p is equal to 1. This
will be true if and only if Z+ 7 generates the maximal ideal at p locally, and it is obvious when Y and Z are
lines. In that case we may choose affine coordinates so that p is the origin in A2 = Spec A, A = C[y, 2] and
the curves are the coordinate axes {z = 0} and {y = 0}. The variables u, v generate the maximal ideal at the
origin, so the quotient algebra A/(y, z) has dimension 1.

Suppose that Y and Z intersect transverally at p, but that they aren’t lines. We choose affine coordinates
so that p is the origin and that the tangent directions are the coordinate axes. The affine equations of Y and Z
will have the form ¢’ = 0 and 2’ = 0, where y' = y+g(y, z) and 2’ = z + h(y, 2), g and h being polynomials
all of whose terms have degree at least 2. Because Y and Z may intersect at points other than p, the elements
y’ and 2’ may not generate the maximal ideal at p. However, it suffices to show that they generate the maximal
ideal locally.

Let A be the local ring of the polynomial ring C[y, z] at the origin, and let @ and k be the maximal ideal
and residue field of A, respectively. To show that 3/, 2’ generate @ = (y, z) A, the Local Nakayama Lemma
5.1.22|tells us that it suffices to show that their images generate m/m?. The images of g and h in m? are zero,
so 3’ and 2’ are congruent to i and z modulo m?. They do generate m/m?, so they generate m. O
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The Riemann-Roch Theorem IT
Using Riemann-Roch
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The topic of this chapter is a classical problem of algebraic geometry, to determine the rational functions
on a smooth projective curve with given poles. This can be difficult, and one is usually happy if one can
determine the dimension of the space of such functions. The most important tool for this is the Riemann-Roch
Theorem.

8.1 Branched Coverings

Smooth affine curves were discussed in Chapter ??. An affine curve is smooth if its local rings are valuation
rings, or if its coordinate ring is a normal domain. An arbitrary curve is smooth if it has an open covering by
smooth affine curves.

An integral morphism Y —— X of smooth curves will be called a branched covering. It follows from
Chevalley’s Finiteness Theorem that every nonconstant morphism of smooth projective curves is a branched
covering.

If Y — X is a branched covering, the function field K of Y will be a finite extension of the function field
F of X. he degree of the covering is the degree [K : F|| of the field extension. It will be denoted by [Y : X

If a branched covering Y — X is given, and if X’ = Spec A is an affine open subset of X, its inverse
image Y’ will be a smooth affine curve, Y’ = Spec B, and if the degree [Y : X] of the covering is n, B will
be a locally free A-module of rank [Y : X].

To describe the fibre of a branched covering Y — X over a point p of X, we may localize. So we may
assume that X and Y are affine, say X = Spec A and Y = Spec B, and that the maximal ideal m,, of A ata
point p is a principal ideal, generated by an element x of A. If a point g of Y lies over p, the ramification index
at ¢ is defined to be e = vq(x), where v is the valuation of the function field K corresponding to g. Then, if
y is a local generator for the maximal ideal m, of B at ¢, we will have

T =uy
where u is a local unit.

The next lemma follows from Lemma[8.2.2] and the Chinese Remainder Theorem.

8.1.1. Lemma. Let Y - X be a branched covering, with X = Spec A and Y = Spec B. Let q1, ..., qi, be
the points of Y that lie over a point p of X, let x be a generator for the the maximal ideal my, at p, and let m;
and e; be the maximal ideal and ramification index at q;, respectively.
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(i) The extended ideal m), B = xB is the product ideal m{" - - - m;* of B.

(i) Let B; = B/mS'. The quotient B = B/xB is isomorphic to the product By X - - - X B,

(iii) The degree [Y : X| of the covering is the sum ey + - - - + ey, of the ramification indices at the points q; in
the fibre over p. (|

Points g of Y whose ramification indices are greater than one are called branch points. We also call a point
p of X a branch point of the covering if there is a branch point ¢ that lies over p.

8.1.2. Lemma. A branched covering Y — X has finitely many branch points. If a point p is not a branch
point, the fibre over p consists of n = [Y : X| points with ramification indices equal to 1.

proof. We can delete finite sets of points, so we may suppose that X and Y are affine, X = Spec A and
Y = SpecB. Then B is a finite A-module of rank n. Let F' and K be the fraction fields of A and B,
respectively, and let 5 be an element of B that generates the field extension K/F'. Then A[3] C B, and since
these two rings have the same fraction field, there will be a nonzero element s € A such that A,[3] = B. We
may suppose that B = A[f]. Let g be the monic irreducible polynomial for 8 over A. The discriminant of g is
nonzero (I.7.19), so for all but finitely many points p of X, there will be n points of Y over p with ramification
indices equal to 1. (|

8.1.3. Corollary. A branched covering Y — X of degree one is an isomorphism.

proof. When [Y: X]| = 1, the function fields of Y and X are equal. Then, because Y — X is an integral
morphism and X is normal, Y = X. O

figure: a branched covering

(8.1.4) local analytic structure

The local analytic structure of a branched covering Y — X in the classical topology is very simple. We
e explain it there because it is useful and helpful for intuition.

Let g be a point of Y, let p be its image in X, and let = be a local generator for the maximal ideal of X at
p. Also, let e = v, (z) be the ramification index at g.

8.1.5. Proposition. In the classical topology, Y is locally isomorphic to the e-th root covering y° = .

proof. Let z be a local generator for the maximal ideal m, of Oy . If the ramification index is e, then x has the
form uwz®, where w is a local unit at g. In a neighborhood of ¢ in the classical topology, v will have an analytic
e-throot w. Then y = wz also generates m,, locally, and = = y°. It follows from the implicit function theorem
that « and y are local analytic coordinate functions on X and Y (see (2?)). U

8.1.6. Corollary. Let Y — X be a branched covering, let {qi, ..., qi. } be the fibre over a point p of X, and
let e; be the ramification index at ¢;. As a point p' of X approaches p, e; points of the fibre over p' approach
gi- U

8.2 Modules on a Smooth Curve

A torsion element of a module M over a domain A is an element that is annihilated by some nonzero element
a of A: am = 0. The set of torsion elements of M is its forsion submodule, and a module whose torsion
submodule is zero is forsion-free. These definitions are extended to O-modules by applying them to affine
open sets.

8.2.1. Lemma. Let Y be a smooth curve.
(i) A finite O-module M is locally free if and only if it is torsion-free.
(ii) If an O-module M swe isn’t torsion-free, it has a nonzero global section.

proof. (1) We may assume that Y is affine, Y = Spec B, and that M is the O-module associated to a B-module
M. Let B and M be the localizations of B and M at a point g, respectively. Then M is a finite, torsion-free
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module over the local ring B. It suffices to show that, for every point g of Y, M is a free B-module .
The local ring B is a valuation ring. A valuation ring is a principal ideal domain because the nonzero ideals
of B are powers of the maximal ideal m, which is a principal ideal. Every finite, torsion-free module over a
principal ideal domain is free.

(ii) If the torsion submodule of M isn’t zero, there will be an affine open set U, and there will be nonzero
elements m in M(U) and a in O(U), such that am = 0. Let C be the finite set of zeros of a in U, and let
V =Y — C be the complement of C' in Y. Then q is invertible on the intersection W = U NV, and since
am = 0, the restriction of m to W is zero.

The open sets U and V' cover Y, and the sheaf property for this covering can be written as an exact sequence
0= M) = MU)xM(V) E5 M(W)

(Lemma|6.3.10). In this sequence, the section (m, 0) of M (U )xM (V') is mapped to zero in M(W). Therefore
it is the image of a nonzero global section of M. O

8.2.2. Lemma. Let Y be a smooth curve. Every nonzero ideal T of Oy is a product of powers of maximal
ideals of Oy: I =m{'---mg*.

proof. This follows for any smooth curve from the case that Y is affine, which is Proposition (]

8.2.3. Notation. When considering a branched covering ¥ —— X of smooth curves, we will often pass
between an Oy-module M and its direct image 7, M, and it will be convenient to work primarily on X.
Recall that if Y is the inverse image of an open subset X’ of X, then

[ MI(X') = M(Y")

One can think of the direct image 7, M as working with M, but looking only at open subsets Y’ of Y that are
inverse images of open subsets X’ of X. If we look only at such open subsets, the only significant difference
between M and its direct image will be that the Oy (Y”)-module M (Y”) is made into an Ox (X’)-module by
restriction of scalars. To simplify notation, we will often drop the symbol 7,, and write M instead of m, M.
If X' is an open subset of X, M(X’) will stand for M (7~ X"). When thinking of an Oy -module M as the
direct image, we may refer to it as an O x-module. In accordance with this convention, we may also write Oy
for 7, Oy, but we must be careful to include the subscript Y.

If you find this abbreviation confusing, you can put the symbol 7, into the text where appropriate. U

8.2.4. Lemma. Let Y — X be a branched covering of smooth curves.
(i) A finite Oy -module N is a torsion Oy -module if and only if it is a torsion O x-module.

(ii) A finite Oy -module N is a locally free Oy -module if and only if it is a locally free O x-module. If N is a
locally free Oy -module of rank r, then it is a locally free O x -module of rank nr, where n is the degree [Y : X]
of the covering. O

(8.2.5) the module Hom

Let M and N be modules over a ring A. We are going to need the A-module that is usually denoted by
Hom 4 (M, N), of homomorphisms M — N. The set of such homomorphisms becomes an A-module with
some fairly obvious laws of composition: If ¢ and 1) are homomorphisms and « is an element of A, then ¢+
and ay are defined by

(8.2.6) [p+9](m) = o(m) +¢(m) and [ap](m) = ap(m)
If ¢ is a module homomorphism, we also have p(mi+mz) = ¢(m1) + ¢(m2), and ap(m) = p(am).

8.2.7. Lemma. An A-module N is canonically isomorphic to Hom (A, N). The homomorphism A —*+ N
that corresponds to an element n of N is multiplication by n: ¢(a) = an. Conversely, the element of N that

corresponds to a homomorphism A s Nisn= o(1).
Similarly, an O-module M on a smooth curve Y is isomorphic to Hom (O, M). O
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Thus Hom 4 (A*, N) is isomorphic to N*, and Hom 4 (A?, A*) is isomorphic to the module A®* of k x £
A-matrices.

8.2.8. Lemma. Let A be a noetherian ring.
(i) For every finite A-module M, there is an exact sequence A — A* — M — 0.
(ii) If M and N are finite A-modules, then o(M, N) is a finite A-module. O

An exact sequence of the form A* — A*¥ — M — 0is called a presentation of module M.
The module Hom is compatible with localization:

8.2.9. Lemma. Let M and N be modules over a noetherian domain A, and suppose that M is a finite
module. Let S be a multiplicative system in A. The localization S~ Hom 4 (M, N) is canonically isomorphic
to Homg-1,4(S~tM,S7IN).

proof. We choose a presentation A — AF — M — 0. Its localization (S7!A)! — (S7!A)* — S~I1M — 0
is a presentation of S ~1 M. Because Hom A(+, -) is aleft exact, contravariant functor of the first variable, the
sequence

0 — Hom (M, N) — Hom 4 (A*, N) — Hom4 (A", N)

is exact, as is its localization. This it suffices to prove the lemma in the case that M/ = A. It is true in that case.
O

This lemma shows that when M and N are finite O-modules on a variety X, there is an O-module of
homomorphisms M — A/, which will be denoted by Hom, (M, ). If U = Spec A is an affine open set,
M = M(U) and N = N(U), the module of sections of Homy (M, N') on U is Hom4 (M, N). We use a
new symbol Hom here because the vector space of homomorphisms M — N defined on all of X, which is
the space of global sections of Hom, (M, N), is customarily denoted by Home (M, N).

8.2.10. Notation. The notation Hom 4 (M, N) is cumbersome. It seems permissible to drop the symbol Hom,
and to write 4(M, N) for Hom4 (M, N). Similarly, if M and M are O-modules on a variety X, we will
write o (M, N) or x (M, N) for Hom, (M, N).

8.2.11. Lemma. Let A C B be rings, let M be an A-module, and let N be a B-module. Then o(M,N)
becomes a B-module.

When we write 4 (M, N), we are interpreting the B-module N as an A-module by restriction of scalars.

proof. Let M s Nbea homomorphism of A-modules, and let b be an element of B. Then multiplication
by b is defined by the rule [by](m) = ¢(bm). There are several things to check. We list here as a reminder:

The map [by] is a homomorphism of A-modules M — N:
[bel(m1 4+ m2) = [be(ma) + [bel(ms) and [bg](am) = albp](m)
The A-module 4 (M, N) has the structure of a B-module:
[b(e1+p2]) = [bp] + [bpa] , [(b1+b2)] = [b1] + [b2g] , [1] =, and [b1[bag]] = [brba] O

8.2.12. Lemma.

(i) The functor Hom 4 is a left exact and contravariant in the first variable. An exact sequence My — My —
Mz — 0 of A-modules induces, for any A-module N, an exact sequence

0— a(Ms,N) = a(Mz,N) = a(M;,N)

(ii) The funcctor Hom 4 is a left exact and covariant in the second variable. An exact sequence 0 — N1 —
N1 — Ns of A-modules induces, for any A-module M, an exact squence

0 — a(M,Ny) — a(M,N3) — s(M,Ns)

The analogous statements are true for Hom . (I

(8.2.13) the dual module
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The dual module M* of a locally free O-module M is the O-module (M, O). A section of M* on an
open set U is a homomorphism M(U) — O(U). The dual is contravariant. A homomorphism M — N of
locally free O-modules induces a homomorphism M* <+ A

If M is a free module with basis vy, ..., vx, then M* will also be free, with the dual basis v defined by
v} (v;) = 1 and v](vj) = 0if i # j. Therefore, when M is locally free, M* is also locally free. The dual
O* of the structure sheaf O is O itself. If M and N are locally free O-modules, the dual (M ®o N)* is
isomorphic to the tensor product M*®@o N *.

There is a canonical O-bilinear map M* x M — O. If a and m are sections of M™* and M, respectively,
the bilinear map evaluates « at m: (o, m) = a(m).

8.2.14. Corollary. A locally free O-module M is canonically isomorphic to its bidual: (M*)* ~ M.
O

8.2.15. Proposition. Let 0 - M — N — P — 0 be an exact sequence of O-modules on a variety X.

() If P is a free O-module, and if the map of global sections H*(N') — H°(P) is surjective, the sequence
splits: N is isomorphic to the direct sum M @ P.

(ii) If P is locally free, the dual modules form an exact sequence 0 — P* — N* — M* — 0.

proof. (i) Let {p;} be a basis of global sections of P, let p; be global sections of N that map to p;, and let P’
be the free O-submodule of N spanned by {p’}. So P’ is isomorphic to P, and N ~ M & P’.

(ii) The sequence 0 — P* — M* — N* is exact whether or not the modules are locally free (8.2.12(ii)).
The zero on the right comes from the fact that, when P is locally free, it is free on some affine covering. Thus
the given sequence splits locally. (|

(8.2.16) invertible modules

An invertible O-module is a locally free module of rank one — a module that is isomorphic to the free
module O in a neighborhood of any point.

The tensor product L& M of invertible modules is invertible. The dual £* of an invertible module L is
invertible. Part (i) of the next lemma explains the adjective ’invertible’.
8.2.17. Lemma. Let L be an invertible O-module.
(i) Let L* be the dual module. The canonical map L*®@o L — O defined by yQa — () is an isomorphism.
(ii) The map O — (L, L) that sends a regular function « to multiplication by o is an isomorphism.

(iii) Every nonzero homomorphism L “s Mioa locally free module M is injective.

proof. (i),(ii) It is enough to verify these assertions in the case that L is free, isomorphic to O, in which case
they are clear.

(iii) The problem is local, so we may assume that the variety is affine, say Y = Spec A, and that £ and M are
free. Then ¢ becomes a nonzero homomorphism A! — A*. Such a homomorphism is injective because A is
a domain. O

8.3 Divisors

A divisor on a smooth curve Y is a finite integer combination of points:
D=rq+ - +7reqk

with r; € Z. The terms r;q; whose integer coefficients r; are zero can be omitted or not, as desired.

The support of D is the set of points ¢; of Y such that r; # 0. The degree of D is the sum ry + - - - + 71, of
the coefficients.

Let Y’/ be an open subset of Y. The restriction of a divisor D = r1p; + - - - + rgpg to Y is the divisor on
Y’ obtained from D by deleting points that aren’t in Y. Thus, if D = ¢, the restriction of D to Y is ¢ when
g €Y', and is zero whan ¢ € Y.
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A divisor D = Y r;q; is effective if all of its coefficients r; are non-negative, and D is effective on an open
subset Y if its restriction to Y is effective — if r; > 0 for every ¢ such that ¢; is a point of Y.

(8.3.1) the divisor of a function

Let f be a rational function on a smooth curve Y. The divisor of f is

div(f) =) va(fg
qeyY
where v, denotes the valuation of K that corresponds to the point g of Y.
This divisor is written here as a sum over all points g, but it becomes a finite sum when we disregard terms
with coefficient zero, because f has finitely many zeros and poles. The coefficients will be zero at all other
points.
The map

K* — (divisors)*t
that sends a rational function to its divisor is a homomorphism from the multiplicative group K * of nonzero
elements of K to the additive group of divisors:

div(fg) = div(f)+div(g)

As before, a rational function f has a zero of order r at g if v,(f) = r with » > 0, and it has a pole of
order r at ¢ if v, (f) = —r. Thus the divisor of f is the difference of two effective divisors:

div(f) = zeros(f) — poles(f)

A rational function f is regular on Y if and only if its divisor is effective — if and only if poles(f) = 0.

The divisor of a rational function is called a principal divisor, and two divisors D and E are linearly
equivalent if their difference D — E is a principal divisor. For instance, the divisors zeros(f) and poles(f)
of a rational function f are linearly equivalent.

8.3.2. Lemma. Let f be a rational function on a smooth curve Y. For all complex numbers c, the divisors of
zeros of f — ¢, the level sets of f, are linearly equivalent.

proof. The functions f —c have the same poles as f. O

(8.3.3) the module O(D)

To analyze the space of functions with given poles on a smooth curve Y, we associate an O-module O(D)
to a divisor D. The nonzero sections of O(D) on an open subset V of Y are the rational functions f such that
the the divisor div(f)+ D is effective on V' — such that its restriction to V' is effective.

(8.3.4) [O(D))(V) = {f] div(f)+D is effective on V} U {0}

Points that aren’t in the open set V' impose no conditions on the sections on V.
When D is an effective divisor, a rational function f is a global section of O(D) if poles(f) < D.

Say that D = > r;q;. If ¢; is a point of an open set V and if r; > 0, a section of O(D) on V may have a
pole of order at most r; at g;, and if r; < 0 a section must have a zero of order at least —r; at ¢;. For example,
the module O(—¢) is the maximal ideal m,. The sections of O(—¢) on an open set V' that contains ¢ are the
regular functions on V' that are zero at ¢. Similarly, the sections of O(gq) on an open set V' that contains q are
the rational functions that have a pole of order at most 1 at ¢ and are regular at every other point of V. The
sections of O(—¢q) and of O(g) on an open set V' that doesn’t contain p are the regular functions on V. For
any D, sections of O(D) on V can have arbitrary zeros or poles at points that aren’tin V.

The fact that a section of O(D) is allowed to have a pole at ¢; if r; > 0 contrasts with the divisor of a
function. If div(f) = > r;q;, then r; > 0 means that f has a zero at ¢;. If div(f) = D, then f will be a
global section of O(—D).
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8.3.5. Lemma. (i) If D and F are divisors and if E— D is effective, then O(D) C O(E).
(ii) The function field module K of a smooth curve Y is the union of the modules O(D). O

The next lemma follows from Lemma|8.2.2]

8.3.6. Lemma. Let Y be a smooth curve. The product ideal T = mi* - --m;* of Oy is isomorphic to the O-
module Oy (—D), where D is the effective divisor Y r;p;. Thus nonzero ideals of Oy correspond bijectively
to divisors — D, where D is effective. U
8.3.7. Proposition. Let D and E be divisors on a smooth curve Y.

(i) The O-module O(D) is invertible.

(ii) The map O(D)®@0 O(E) — O(D+E) that sends f®g to the product fg is an isomorphism.

(iii) The dual module O(D)* is O(—D).

(iv) Every invertible O-module L is isomorphic to a module of the form O(D).

The only difference between an invertible module £ and a module of the form O(D) is that O(D)Re K is
equal to K, whereas Lx can be a one-dimensional K -vector space without chosen basis.

It is important to note that, though every invertible module M is isomorphic to one of the form O(D), the
divisor D isn’t uniquely determined by M. (See (8.3.11) below.)

8.3.8. Definition. Let £ be an invertible O-module on a smooth projective curve Y. If £ is isomorphic to
O(D), we call the degree of D the degree of L. With this definition, x(£) = deg £ + 1 — p,.

proof of Proposition (i) We may assume that Y is affine and that the support of D contains at most one
point: D = rp. We may also assume that the maximal ideal at p is a principal ideal, generated by an element
x. In that case, O(D) will be the free module with basis 2"

(ii),(iii) Proceeding as in the proof of (i), we may assume that D = rp and E = sp. Then O(D), O(—D),
O(E), and O(D + E) have bases ", ", 2* and 2" 7%, respectively.

(iv) Let K be the function field of Y, and let KC be the function field module. When L is an invertible O-
module, Lx = L& K will be a one-dimensional K -vector space (see (??)). Since the function field module
K of Y is the union K = |J O(D), we also have L = |JL(D), where £(D) denotes the tensor product
L®oO(D). A nonzero global section a of Ly will be a global section of L(D) for some D. It will define
amap O — L(D). Passing to duals, £(D)* = L*®c O(D)* ~ L*(—D). The dual of the map « is a
nonzero and therefore injective map £*(—D) — O whose image is an ideal of O. So £*(—D) is isomorphic
to O(—FE) for some effective divisor F, and therefore £* is isomorphic to O(D — F). Dualizing once more,
L is isomorphic to O(E — D). O

If C'L is an invertible module, we denote by £(D) the invertible module £ ®» O(D).

8.3.9. Proposition. Let £ C M be an inclusion of invertible O-modules. Then M = L(E) for some effective
divisor E.

proof. L is isomorphic to O(D) for some D. Then L(—D) C O so L(—D) is an ideal, isomorphic to O(—FE)
for some effective divisor E. Then L(E) ~ O(D) ~ M. O

If D and E are divisors, O(D) is a submodule of O(F) only when E — D is effective. But as the next
proposition explains. there may be homomorphisms from O(D) to O(E) that aren’t inclusions.

8.3.10. Proposition. Let D and E be divisors on a smooth curve Y. Multiplication by a rational function f
such that div(f)+E—D > 0 defines a homomorphism of O-modules O(D) — O(FE), and every homomor-
phism O(D) — O(E) is multiplication by such a function.

proof. For any O-module M, a homomorphism @ — M is multiplication by a global section of M (6.4.4).
Then a homomorphism O — O(E—D) will be multiplication by a rational function f such that div(f HE—D >
0. If f is such a function, one obtains a homomorphism O(D) — O(E) by tensoring with O(D). O
8.3.11. Corollary.

(i) The modules O(D) and O(E) are isomorphic if and only if the divisors D and E are linearly equivalent.

(ii) Let f be a rational function on'Y, and let D = div(f). Multiplication by f defines an isomorphism
O(D) — 0. O
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8.4 The Riemann-Roch Theorem I

Let Y be a smooth projective curve. In Chapter [7] we learned that when M is a finite Oy-module, the
cohomology H?(Y, M) is a finite-dimensional vector space for all ¢, and is zero if ¢ # 0,1. As before,
we denote the dimension of the space H4(Y, M) by h?(M) or, if there is ambiguity about the variety, by
h?(Y, M).

The Euler characteristic of a finite O-module M is

(8.4.1) x(M) =h%(M) — h'(M)

In particular,

x(Oy) = h’(Oy) —h'(Oy)

The dimension h'(Oy) is the arithmetic genus of Y. It denoted by p,. We will see below, in (8.4.8))(iv), that
hO(Oy) =1. So

(8.4.2) X(Oy) = 1-pa

8.4.3. Riemann-Roch Theorem (version 1). Ler D = _ r;p; be a divisor on a smooth projective curve Y.
Then
x(OD)) = x(O)+deg D (=deg D+1—p,)

proof. We analyze the effect on cohomology when a divisor is changed by adding or subtracting a point by
inspecting the inclusion O(D—p) C O(D). Let € be the cokernel of the inclusion map, so that there is a short
exact sequence in which ¢ is a one-dimensional vector space supported at p, with h%(¢) = 1, and h'(¢) = 0.

(8.4.4) 0—-0(D-p) = 0OD)—e—0
Since m,, is isomorphic to O(—p), this sequence can be obtained by tensoring the sequence
(8.4.5) 0—=mp, >0 =k, —=0

with the invertible module O(D).
Let’s denote the one-dimensional vector space H°(Y, ¢) by [1]. The cohomology sequence associated to

(B44) is
84.6) 0— H(Y,O(D—p)) = H(Y,O(D)) 2 [1] - H'(Y,0(D—p)) = H'(Y,0(D)) = 0
In this exact sequence, one of the two maps, 7y or 4, must be zero. Either
(1) ~yiszero and ¢ is injective. In this case
h’(O(D—-p)) =h%°(O(D)) and h'(O(D—p)) =h'(O(D))+1, or
(2) ¢ is zero and + is surjective. In this case

h(O(D-p)) = h%(O(D)) ~ 1 and h'(O(D—p)) = h'(O(D))

In either case,
(8.4.7) x(O(D)) = x(O(D—p)) +1

The Riemann-Roch theorem follows from this, because we can get from O to O(D) by a finite number of
operations, each of which changes the divisor by adding or subtracting a point. (]

Because h® > h” — h'! = v, this version of the Riemann-Roch Theorem gives reasonably good control of
HPO. Tt is less useful for controlling H L To do that, one wants the full Riemann-Roch Theorem. That theorem
requires some preparation, so we have put it into Section[8.8] However, version 1 has important consequences:
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8.4.8. Corollary. Let Y be a smooth projective curve.

(i) The divisor of a rational function has degree zero: The number of zeros is equal to the number of poles.
(ii) Linearly equivalent divisors have equal degrees.

(iii) A nonconstant rational function takes every value, including infinity, the same number of times.

(iv) A rational function that is regular at every point is a constant: H°(Y, O) = C.

(v) Let D be a divisor. If deg D > p,, then h®(O(D)) > 0.

(vi) Ifh°(O(D)) > 0, then deg D > 0.

proof. (i) Let D = div(f). Multiplication by the rational function f defines an isomorphism O(D) — O, so
x(O(D)) = x(O). On the other hand, by Riemann-Roch, x(O(D)) = x(O)+deg D. Therefore deg D = 0.

(ii) If two divisors D and F are linearly equivalent, say D — E = div(f), then D — E has degree zero, and
deg D =deg FE.

(iii) The zeros of the functions f — c are linearly equivalent to the poles of f (8.3.2).
(iv) According to (iii), a nonconstant function must have a pole.
VM h°>h?—h'!=y=deg D+1—p,.

(vi) Suppose that O(D) has a nonzero global section f, a rational function such that div(f)+D = F is
effective. Then deg FE > 0. Since the degree of div(f) is zero, deg D > 0. O

8.4.9. Theorem. With its classical topology, a smooth projective curve Y is a connected, compact, orientable
two-dimensional manifold.

proof. All points except connectedness have been discussed before (Theorem[I.7.24). A nonempty topological
space is connected if it isn’t the union of two disjoint, nonempty, closed subsets. We argue by contradiction.
Suppose that, in the classical topology, Y is the union of disjoint, nonempty closed subsets Y; and Y. Both
Y) and Y, will be compact manifolds. Let ¢ be a point of of Y;. Part (v) of Corollary @] shows that
h%(O(nq)) > 1 when n is large. A nonconstant global section f of O(nq) will be a regular function on the
complement Y — g of ¢. Then f is analytic, and it has no pole on the compact manifold Y5. It will map Y5 to
a compact subset of the complex plane. A nonconstant analytic function maps open sets to open sets. So if f
weren’t constant on Y», its image would be open. A compact subset of C can’t be open, so f must be constant
on Y5. When we subtract that constant from f, we obtain a nonconstant rational function g that is zero on Y5.
But since Y has dimension 1, the zero locus of a rational function is finite. This is a contradiction. O

8.5 The Birkhoff-Grothendieck Theorem

This theorem describes finite, torsion-free modules on the projective line.

8.5.1. Birkhoff-Grothendieck Theorem. A finite, torsion-free O-module M on the projective line P! is
isomorphic to a direct sum of twisting modules: M ~ @ O(n;).

We recall the cohomology of the twisting modules on P*: If n > 0, then h’(O(n)) = n+l and h' (O(n)) =
0,andif r > 0, then h®(O(—r)) = 0 and h'(O(—r)) = r—1 (Theorem|7.5.4).

8.5.2. Lemma. Let X denote the projective line, and let M be a finite, torsion-free O-module on X.
(i) The integers r for which there exists a nonzero map O(r) — M are bounded above.
(i) For large v, h(X, M(—r)) = 0.

proof. (i) Since M is torsion-free, any nonzero map O — M, which is multiplication by a global section of
M, will be injective. Since O(r) is locally isomorphic to O, a nonzero map O(r) — M will be injective
too, and the associated map H°(X, O(r)) — H°(X, M) will be injective. Then h®(X, O(r)) < h°(X, M).
Since h(X, O(r)) = r+1 and h°(X, M) is finite, r is bounded.

(if) A global section of M (—r) defines a map O — M(—r). Its twist by r will be a map O(r) — M. O
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By the way, the conclusions of the lemma are true for any projective variety X.

proof of the Birkhoff-Grothendieck Theorem. This is Grothendieck’s proof. A version of Birkhoff’s proof,
which uses matrices, is suggested as an exercise.

Lemma [8.2.T] tells us that M is locally free. We use induction on the rank of M. We suppose that the
theorem has been proved for locally free O-modules of rank less than r, that M has rank r, and that » > 0.
The plan is to show that M has a twisting module as a direct summand, so that M = W @& O(n) for some W.
Then we can apply induction on the rank to V.

Since twisting is compatible with direct sums, we may replace M by a twist M(n). Instead of showing
that M has a twisting module O(n) as a direct summand, we show that, after we replace M by a suitable
twist, the structure sheaf O will be a direct summand.

As we know , the twist M (n) will have a nonzero global section when 7 is sufficiently large, and
by Lemma [8.5.2] (ii), it will have no nonzero global section when n is sufficiently negative. Therefore, when
we replace M by a suitable twist, we will have H°(X, M) # 0 but H°(X, M(—1)) = 0. We assume that
this is true for M.

We choose a nonzero global section s of M and consider the injective multiplication map © —+ M. Let
W be the cokernel of this map, so that we have a short exact sequence

(8.5.3) 00 M—-W—=0

8.5.4. Lemma. Let W be the O-module that appears in the sequence (8.5.3).
i) HO(X, W(~1)) = 0.

(ii) W is torsion-free, and therefore locally free.

(iii) W is a direct sum @::_11 O(n;) of twisting modules on P*, with n; < 0.

proof. (i) This follows from the cohomology sequence associated to the twisted sequence
0—0(-1) > M(-1) > W(-1) =0
because H°(X, M(—1)) =0 and H*(X,0O(-1)) = 0.

(ii) If W had a nonzero torsion submodule, so would WW(—1), and then W(—1) would have a nonzero global

section (8.2.1).

(iii) The fact that WV is a direct sum of twisting modules follows by induction on the rank: W ~ € O(n;).
Since HY(X,W(—1)) = 0, we must have H%(X, O(n;—1)) = 0 too. Therefore n; — 1 < 0,andn; < 0. O

We go back to the proof of Theorem [8.5.1] Lemma [8.2.15]tells us that the dual of the sequence (8.5.3) is
an exact sequence

0O—-W — M —0O0"—=0

and W* ~ @ O(—n;) with —n; > 0. Therefore h'(W*) = 0. The map H°(M) — H°(O*) is surjective.
Lemma tells us that M™ is isomorphic to W* & O*. Then M is isomorphic to W & O. d

8.6 Differentials

Why differentials enter into the Riemann-Roch Theorem is a mystery, but they do, so we introduce them here.
Let A be an algebra and let M be an A-module. A derivation A % M is a C-linear map that satisfies the

product rule for differentiation — a map with these properties:

(8.6.1) d(ab) =adb+bda, d(a+b)=0da+db, and dc=0

for all a,b in A and all ¢ in C. The fact that ¢ is C-linear, i.e., that 6(cb) = ¢ b, follows.
For example, differentiation % is a derivation C[t] — C[t].
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The module of differentials €4 of an algebra A is an A-module generated by elements denoted by da, one
for each element a of A. Its elements are (finite) combinations > b; da;, with a; and b; in A. The defining

relations among the generators da are the ones that make the map A 40 4 that sends a to da a derivation:
For all a,bin A and all ¢cin C,

(8.6.2) d(ab) = adb+bda, d(a+b)=da+db, and dc=0

The elements of 24 are called differentials.

8.6.3. Lemma.

(i) Let Q24 25 M bea homomorphism of O-modules. When we compose @ with the derivation A $ Oy, we
obtain a derivation A £°% M. Composition with d defines a bijection between homomorphisms Q04 — M
and derivations A 25 M.

(ii) Q is a functor: An algebra homomorphism A —~ B induces a homomorphism Q4 — Qp that is
compatible with the ring homomorphism u, and that makes a diagram

BLQB

A% 0,

proof. (i) When we compose the derivation d with a homomorphism ¢, we do get a derivation A 2 M. In
the other direction, given a derivation A %5 M, we define a map Q4 —+ M by o(rda) = rd(a). It follows
from the defining relations for {24 that ¢ is a homomorphism of A-modules.

(ii) When Qp is made into an A-module by restriction of scalars, the composed map A “B4Q p will be a
derivation to which (i) applies. (]

8.6.4. Lemma. Ler R be the polynomial ring Clzy, ..., x,]. The R-module of differentials Qg is free, with
basis dx+, ..., dx,,.

proof. The formuladf = d%dmi follows from the defining relations. It shows that the elements dz 1, ..., dx,
generate the R-module Q.

Let V be a free R-module with basis v1,...,v,. The map R %% V defined by 0(f) = %Ui is a
derivation. It induces a surjective module homomorphism Q2 24 V that sends dx; to v;. Since dx1, ..., dx,
generate {2 and since v, ..., v, is a basis, ¢ is an isomorphism. U

8.6.5. Proposition. Let I be an ideal of an algebra R, let A be the quotient algebra R/, and let dI denote
the set of differentials df with f in I. The subset N = dI+1g is a submodule of Q) g, and S 4 is isomorphic
to the quotient module Qr /N.

The proposition can be interpreted this way: Suppose that the ideal I is generated by elements fi, ..., f, of R.
Then 2 4 is the quotient of 2 obtained from 2z by introducing these two rules:

. dfl = 0, and
« multiplication by f; is zero.

For example, let A be the quotient C[z]/(z™) of a polynomial ring in one variable and let T be the residue of
x in A. Then Q4 is generated by an element dz, with the relation nz"~'dz = 0.

proof of Proposition First, IQ)g is a submodule of {1y, and dI is an additive subgroup of Q2. To show
that IV is a submodule, we must show that scalar multiplication by an element of R carries dI to N, i.e., that
if gisin R and f isin I, then g df is in N. By the product rule, g df = d(fg) — f dg. Since I is an ideal, fg
isin I. Then d(fg) isindl and f dgisin IQg. So gdf isin N.

The two rules shown above hold in 24 because the generators f; of I are zero in A. Therefore N is in
the kernel of the surjective map Qr — Q4 defined by the homomorphism R — A. The quotient module
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Q= Qg /N, is an A-module, and v defines a surjective map of A-modlk:s Q-5 0 4. We showi that v
is bijective. Let x be an element of R, let a be its image in A, and let dx be the image of dx in ). The

d = . -— S .
composed map R — Qr — §Q is a derivation that sends x to dzx, and [ is in its kernel. It defines a derivation

R/I=A 20 ) that sends a to dzx. This derivation corresponds to a homomorphism of A-modules 4 — Q
that sends da to dz, and that inverts v (8.6.3)). O

8.6.6. Corollary. If A is a finite-type algebra, then Q4 is a finite A-module.

This follows from Proposition because the module of differentials on the polynomial ring C[z1, ..., Z,]
is a finite module. U

8.6.7. Lemma. Let S be a multiplicative system in a domain A, and let S~ 4 be the module of fractions of
Q4. The modules S™'Q 4 and Qg1 4 are canonically isomorphic. In particular, if K is the field of fractions
of A, then K®40 4 ~ Q.

We have moved the symbol S~ to the left for clarity.

proof of Lemma The composition A — S~1A SNYo) g-14 is a derivation that defines an A-module
homomorphism 4 — Qg-1 4. This map extends to an S~ A-homomorphism S~1Q, —2+ Qg-1 4 because
scalar multiplication by the elements of .S is invertible in Qg1 4. The relation ds—* = —ks*~1ds follows
from the definition of a differential, and it shows that ¢ is surjective. We use the quotient rule

8(s7%a) = —ks " lads 4+ s *da

to define a derivation S—1A —>5 S-1Q 4. That derivation will correspond to a homomorphism Qg-1 4 —
S—1Q 4 that inverts . However, we must show that § is well-defined, that §(sy *a1) = 8(s; ‘ap) if s7%a; =
Sy *ay, and that ¢ is a derivation. You will be able to do this. |

Lemma [8.6.7| shows that a finite O-module 2y of differentials on a variety Y is defined, such that, when
U = Spec A is an affine open subset of Y, Qy (U) = Q4.

8.6.8. Proposition. The module )y of differentials on a smooth curve Y is invertible. If y is a local generator
for the maximal ideal at a point q, then in a suitable neighborhood of q, Q0y will be a free O-module with basis
dy.

proof. We may assume that Y is affine, say Y = Spec B. Let ¢ be a point of Y, and let y be an element of B
with v, (y) = 1. To show that dy generates {2 locally, we may localize, so we may suppose that y generates
the maximal ideal m at g. We must show that after we localize B once more, every differential df with f in
B will be a multiple of dy. Let ¢ be the value of the function f at g: Then f = ¢ + yg for some g in B, and
because dc = 0, df = gdy + y dg. Here gdy is in B dy and y dy is in m{2g. So

QB:de+mQB

Let M denote the quotient module Qp /(B dy). Then M = mM. The Nakayama Lemma applies. It tells us
that there is an element z in m such that s = 1 — z annihilates M. When we replace B by its localization By,
we will have M = 0 and Q2 = B dy, as required.

#H#Hugh##

We must still verify that dy isn’t a torsion element. If it were, say bdy = 0, then because dy is a local
generator, (25 would be the zero module except at the finite set of zeros of b. Since we can take for ¢ an
arbitrary point of Y, it suffices to show that the local generator dy for Qg isn’t zero. Let R = Cly] and
A = C[y]/(y?). The module Qp, is free, with basis dy, and as noted above, if 7 is the residue of y in A, the
A-module Q 4 is generated by dy, with the relation 27 dy = 0. It isn’t the zero module. Proposition[5.3.7]tells
us that, at our point g, the algebra B/ mi is isomorphic to A, and Propositiontells us that 24 is a quotient
of Qp. Since 24 isn’t zero, neither is Q3. O

8.7 Trace

(8.7.1) trace of a function
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Let Y —— X be a branched covering of smooth curves, and let ' and K be the function fields of X and
Y, respectively.

The trace map K %, F for a field extension of finite degree has been defined before . If ais an
element of K, multiplication by « on the F'-vector space K is an F'-linear operator, and tr(k) is the trace of
that operator. The trace is F-linear: If f; are in F' and ; are in K, then tr(>_ fia,;) = Y f; tr(oy). Moreover,
the trace carries regular functions to regular functions: If X’ = Spec A’ is an affine open subset of X whose
inverse image is Y’ = Spec B’, then because A’ is a normal algebra, the trace of an element of B’ will be in
A’ . Using our abbreviated notation Oy for 7, Oy, the trace defines a homomorphism of O x-modules

(8.7.2) Oy 5 Ox

Analytically, the trace can be described as a sum over the sheets of the covering. Let n = [Y : X]. Over
a point p of X that isn’t a branch point, there will be n points ¢y, ..., g, of Y. If U is a small neighborhood
of p in X in the classical topology, its inverse image V' will consist of disjoint neighborhoods V; of g;, each
of which maps bijectively to U. On V;, the ring B of analytic functions will be isomorphic to the ring A of
analytic functions on U. So B is the direct sum A; @ --- ® A, of n copies of A. If a rational function g on
Y is regular on V/, its restriction to V' can be written as g = g1 ® - - - @ gy, with g; in A;. The matrix of left
multiplication by g on A; & - - - & A, is the diagonal matrix with entries g;, so

8.7.4. Lemma. Let Y — X be a branched covering of smooth curves, let p be a point of X, let q1, ..., qi; be
the fibre over p, and let e; be the ramification index at q;. If a rational function g on'Y is regular at the points
q1, --- Gk, its trace is regular at p, and its value at p is [tr(g)](p) = e19(q1) + - - - + erg(qr)-

proof. The regularity was discussed above. If p isn’t a branch point, we will have k = n and e; = 1 for all <.
In this case, the lemma follows by evaluating (8.7.3). It follows by continuity for any point p. As a point p’
approaches p, e; points ¢’ of Y approach g; (8.1.6). For each such point, the limit of g(¢’) will be g(¢;). O

(8.7.5) trace of a differential

The structure sheaf is naturally contravariant. A branched covering Y —— X gives us an O x-module
homomorphism Ox — Oy. The trace map for functions is a homomorphism of O x-modules in the opposite
direction: Oy A Ox.

Differentials are also naturally contravariant. A morphism ¥ — X induces an Ox-module homomor-
phism 2x — Qy that sends a differential dx on X to a differential on Y that we denote by dx too (ii).
As is true for functions, there is a trace map for differentials in the opposite direction. It is defined below, in

lb and will be denoted by 7 : Qy — Qx.
First, a lemma about the contravariant map Qx — Qy-:

8.7.6. Lemma. (i) Let p be the image in X of a point q of Y, let x and y be local generators for the maximal
ideals of X and Y at p and q, respectively, and let e be the ramification index of the covering at q. Then
dx = vy~ 'dy, where v is a local unit at q.

(ii) The canonical homomorphism Qx — CQy is injective.

proof. (i) As we have noted before, x has the form uy®, where u is a local unit. Since dy generates {2y locally,
there is a rational function z that is regular at ¢ such that du = zdy. Let v = yz 4 eu. Since eu is a local unit
and yz is zero at ¢, v is a local unit, and

de = d(uy®) = y°zdy +ey* tudy = vy dy
(ii) See (8:2.17). O

To define the trace for differentials, we begin with differentials of the functions fields. Let F' and K be
the function fields of X and Y, respectively. Because the Oy -module Qy is invertible, the module Qf of
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K -differentials, which is the localization 2y ®» K, is a free K-module of rank one. Any nonzero differential
will form a K -basis. We choose a nonzero F-differential «.. Its image in {25, which we also denote by «, will
be a K -basis for Q5. We can, for example, take « = dx, where z is a local coordinate function on X.

An element S of Qx can be written uniquely in the form
B =ga
where ¢ is an element of K. The trace Qx - Qp is defined by

(8.7.7) 7(8) = tr(g)a

where tr(g) is the trace of the function g. Since the trace for functions is F-linear, 7 is also an F-linear map.

We need to check that 7 is independent of the choice of . If o/ is another nonzero F-differential, then
fa’ = a for some nonzero element f of F, and gao = g fa’. Since tr is F-linear,

tr(gf)e’ = tr(g)fo’ = tr(g)

Using o’ in place of « gives the same value for the trace.

A differenial of the function field K will be called a rational differential. A rational differential 3 is regular
at a point g of Y if there is an affine open neighborhood Y/ = Spec B of ¢ such that 3 is an element of 3.
If y is a local generator for the maximal ideal m, and 3 = g dy, then (3 is regular at g if the rational function g
is regular at q.

Let p be a point of X. Working locally at p, we may suppose that X and Y are affine, X = Spec A and
Y = Spec B, that the maximal ideal at p is a principal ideal, generated by an element = of A, and that the
differential dx generates €24. Let q1, ..., qi be the points of Y that lie over p, and let e; be the ramification
index at g;.

8.7.8. Corollary. (i) When viewed as a differential on Y, dx has zeros of orders e;—1 at g;.

(ii) If a differential 3 on Y is regular at the points q;, ..., qx, it will have the form 8 = gdx, where g is a
rational function with poles of orders at most e; — 1 at q;.

This follows from Lemma (8.7.6] (i). O

8.7.9. Main Lemma. Let Y — X be a branched covering. Let p be a point of X, let q1, ..., qi, be the points
of Y that lie over p, and let (3 be a rational differential on'Y .

(i) If B is regular at the points q1, ..., qx, then its trace T(3) is regular at p.
(ii) If 5 has a simple pole at q; and is regular at q; when j # i, then T(f3) is not regular at p.

proof. (i) Corollary tells us that 8 = g dx, where g has poles of orders at most e; — 1 at the points g;.
Since x has a zero of order e; at g;, the function xg is regular at ¢;, and its value there is zero. Then tr(zg) is
regular at p, and its value at p is zero . So 27! tr(xg) is a regular function at p. Since tr is F-linear and
xisin F, x~1tr(zg) = tr(g). Therefore tr(g) and 7(3) = tr(g)dx are regular at p.

(i) With 5 = g dz, the function xg will be regular at p. Its value at ¢; will be zero when j # 4, and not zero
when j = i. Then tr(xg) will be regular at p, but not zero there (8.7.4). Therefore 7(3) = x~ ! tr(xg)dx
won’t be regular at p. 0

8.7.10. Corollary. The trace map defines a homomorphism of O x -modules Qy — Qx. O

8.7.11. Example. Let Y be the locus y® = z in A%yy. Multiplication by ¢ = €2™"/¢ permutes the sheets of ¥’
over X. The trace of a power y* is

(8.7.12) tr(y*) = > Myt
J

The sum > ¢*7 is zero unless k = 0 modulo e. Then 7(y"dy) = 7(y"+1=¢)dx = 0 if r # —1 modulo e, but
T(y~tdy) = tr(e 12~ 1)dx = 2~ 'dz isn’t regular at & = 0. O
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Let Y — X be a branched covering, and suppose that Y = Spec B and X = Spec A are affine. Both
B and Qp are torsion-free, and therefore locally free A-modules. Let’s assume that they are free A-modules,
that the maximal ideal of A at p is generated by an element x, and that €2 4 is a free module of rank one with
basis dz. Then 4(B,Q4) will be a free A-module too.

As is true for any B-module, Q5 is isomorphic to g(B,Q5). The map B — Qp that corresponds to an
element 5 of (2 is multiplication by 5. It sends an element z of B to z[.

## rethink wording##

If £ is a B-linear map B — ()p, then because 7 is A-linear, the composed map B EINYo) B — Q4 will
be A-linear — a homomorphism of A-modules. Thus composition with the trace 7 defines a map

(8.7.13) Qp ~ p(B,Q5) —— A(B,Q4)
8.7.14. Theorem. The map (|8.7.13)) is an isomorphism of B-modules.

proof. This theorem follows from the Main Lemma[8.7.9] when one looks closely.

Let’s denote 4(B,€24) by H. This is an A-module, but it becomes a B-module because B is a B-module
. Scalar multiplication by an element b of B is defined as follows: Let B — 4 be an A-linear map.
Then bu is the map [bu](z) = u(zb) for z in B.

Next, because B and ()4 are locally free A-modules, # is a locally free A-module and a locally free B-
module. Since Q4 has A-rank 1, the A-rank of # is the same as the A-rank of B. Therefore the B-rank of H
is 1 (8:2.4)(ii). So H is an invertible B-module.

The trace map Q03 — H isn’t the zero map because 7 dz # 0. Since domain and range are invertible B-
modules, 7 is an injective homomorphism. Its image, which is isomorphic to {1y, is an invertible submodule
of the B-module #. Therefore # is isomorphic to the invertible module Q5 (D) for some effective divisor D
(8:3.7). To complete the proof of the theorem, we show that the divisor D is zero.

Suppose that D > 0 and let g be a point in the support of D. We may suppose that ¢ lies over our chosen
point p. Then Q5(q) C Qp(D) ~ H. We choose a rational differential § in Q that has a simple pole at ¢,
and is regular at the other points of Y in the fibre over p. The Chinese Remainder Theorem allows us to do
this. According to Lemma (ii), the trace 7(3) isn’t regular at p. It isn’t in H. O

Note. This is a subtle theorem, and I don’t like the proof. It is understandable, but it doesn’t give much insight
as to why the theorem is true. To get more insight, we would need a better understanding of differentials. My
father Emil Artin said “One doesn’t really understand differentials, but one can learn to work with them.”

8.7.15. Theorem. Let Y — X be a branched covering of affine varieties X = Spec A and Y = Spec B,
and let M be a finite B-module. Composition with the trace Qg —s 04 defines a bijection

(8.7.16) B(M,Qp) > A(M,Q24)
proof. We choose a resolution
B™ —-B"—=M—=0
of M and form a diagram
0 —— p(M,Qp) —— 5(B,0B)" —— B(B,Qp)™
| | |
0 —— A(M,Q4) —— A(A,Q4)" —— A(A,Q4)™

in which the maps a, b, ¢ are the compositions with the trace 7, as was described above. Because the functor
Hom is left exact and contravariant in the first variable, the rows of this diagram are exact. Theorem
Shows that b and c are bijective. Therefore a is bijective too. O

Extension of this theorem to branched coverings ¥ — X in which Y and X aren’t affine presents no
problem.

8.7.17. Corollary. Let Y " X be a branched covering of smooth curves, and let M be a finite Oy -module.
The map v(M,Qy) AN x(M, Qx) obtained by composition with the trace Qy — Qx is an isomorphism
of O x-modules. O
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When written without dropping the symbol Hom or suppressing the notation for the direct image, this isomor-
phism becomes an isomorphism

7 (Homy (M, Qy)) - Homg, (7. M, Qx)
8.8 The Riemann-Roch Theorem II

(8.8.1) the Serre dual

Let Y be a smooth projective curve, and let M be a locally free Oy -module. The Serre dual of M, which
we will denote by M7 is the module

(8.8.2) M# = y(M,Qy) = Hom,, (M, Qy)

For example, O;% = Qy and Qi = Oy.

Since the invertible module 2y is locally isomorphic to Oy, the Serre dual M7 will be locally isomorphic
to the ordinary dual M*. Tt will be a locally free module with the same rank as M, and the bidual (M#)#
will be isomorphic to M.

8.8.3. Riemann-Roch Theorem, version 2. Let M be a locally free Oy -module on a smooth projective curve
Y, and let M be its Serre dual. Then h®(M) = h*(M#) and h*(M) = h®(M#).

Because M and (M#)# are isomorphic, the two assertions of the theorem are equivalent.

For example, h!(Qy) = h"Oy) =1and h(Qy) = h'(Oy) = p,.
If M is a locally free Oy -module on a smooth projective curve Y, then

(8.8.4) x(M) = h®(M) — h®(M#)

A more precise statement of the Riemann-Roch Theorem is that H'(Y, M) and H°(Y, M#) are dual
vector spaces in a canonical way. We omit the proof of this. The fact that their dimensions are equal is enough
for many applications. The canonical isomorphism becomes important only when one wants to apply the
theorem to a cohomology sequence. And of course, any complex vector spaces V' and W whose dimensions
are equal can be made into dual spaces by the choice of a nondegenerate bilinear form V' x W — C.

Our plan is to prove Theorem directly for the projective line. The structure of locally free modules on
P! is very simple, so this will be easy. Following Grothendieck, swe derive it for an arbitrary smooth projective
curve Y by projection to P!,

Let Y be a smooth projective curve, let X = P!, and let Y = X be a branched covering. Let M be a
locally free Oy -module, and let the Serre dual of M, as defined in (8.8.2), be M¥:

MY = y(M,Qy)

The direct image of M is a locally free O x-module that we are denoting by M too, and we can form the Serre
dual on X. Let

8.8.5. Corollary. The direct image W*M#, which we also denote by ./\/lf’E is isomorphic to ./\/l;#E
proof. This is Theorem [8.7.17] O

The corollary allows us to drop the subscripts from M#. Because a branched covering is an affine mor-
phism, the cohomology of M and of its Serre dual M# can be computed, either on Y or on X. (See (7.4.25).)

IfY 5 X is a branched covering of projective curves and M is a locally free Oy -module, then H?(Y, M) ~
H(X, M) and H1(Y, M#) ~ H1(X, M#).
Thus it is enough to prove Riemann-Roch for the projective line.
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(8.8.6) Riemann-Roch for the projective line

The Riemann-Roch Theorem for the projective line X = P! is a simple consequence of the Birkhoff-
Grothendieck Theorem, which tells us that every locally free O x-module M on X is a direct sum of twisting
modules Ox (k). To prove Riemann-Roch for the projective line X = P!, it suffices to the theorem for the
twisting modules.

8.8.7. Lemma. The module of differentials Qx on X is isomorphic to the twisting module Ox (—2).

proof. Since Q x is invertible, the Birkhoff-Grothendieck Theorem tells us that it is a twisting module Ox (k).
We only need to identify the integer k. On the standard open subset U = Spec C|x], the module of differen-
tials is free, with basis dz, and 2 = 1 is the coordinate on U* = Spec C[z]. Then dz = d(271) = —z~2d>
describes the differential dz on U. Since the point p at infinity is {z = 0}, dz has a pole of order 2 there.
It is a global section of 2 x (2p), and as a section of that module, it isn’t zero anywhere. So multiplication by
dx defines an isomorphism O — Qx(2p) that sends 1 to dz. Tensoring with O(—2p), we find that Qx is
isomorphic to O(—2p). O

8.8.8. Lemma. Let let M and N be locally free O-modules on the projective line X. Then x (M(r),N) is
canonically isomorphic to x (M, N (—r)).

proof. When we tensor a homomorphism M(r) 5 N with O(—r), we obtain a homomorphism M —
N (=), and tensoring with O(r) is the inverse operation. O

The Serre dual O(n)# of O(n) is therefore
O(n)# = x(O(n), 2x) ~ O(=2—n)
To prove Riemann-Roch for X = P!, we must show that
h’(X,0(n)) = h'(X,0(-2-n)) and h'(X,0(n)) = h®(X,O0(-2-n))

This follows from the computation of cohomology of the twisting modules (Theorem [7.5.4). O
8.9 Using Riemann-Roch

(8.9.1) genus

Three closely related numbers associated to a smooth projective curve Y are: its fopological genus g, its
arithmetic genus p, = h'(Oy ), and the degree § of the module of differentials 2y

8.9.2. Theorem. Let Y be a smooth projective curve. The topological genus g and the arithmetic genus p, of
Y are equal, and the degree & of the module Qy is 2p, — 2, which is equal to 2g — 2.

proof. Let Y —— X be a branched covering of X = P!. The topological Euler characteristic e(Y), which is
2—2g, can be computed in terms of the branching data for the covering (see ). Let g; be the ramification
points in Y, and let e; be the ramification index at ¢;. Then e; sheets of the covering come together at ¢;. If
the degree of Y over X is n, then since e(X) = 2,

(8.9.3) 2-29=¢(Y) = ne(X) = (e;i—=1) = 2n— > (e;—1)
We compute the degree & of 2y in two ways. First, the Riemann-Roch Theorem tells us that h®(Q2y) =

h'(Oy) = p, and h'(Qy) = h°(Oy) = 1. So x(Qy) = —x(Oy) = pa — 1. The Riemann-Roch Theorem
also tells us that x(Qy') = 6 + 1 — p, (8.3.8). Therefore

(8.9.4) 5= 2py — 2
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Next, we compute d by computing the divisor of the differential dx on Y, = being a coordinate in X. Let
q; be one of the ramification points in Y, and let e; be the ramification index at ¢;. Then dx has a zero of order
e;—1at ¢;. On X, dx has a pole of order 2 at co. Let’s suppose that the point at infinity isn’t a branch point.
Then there will be n points of Y~ at which dx has a pole of order 2, n being the degree of Y over X. The
degree of (y is therefore

(8.9.5) 6 = zeros — poles = 2(61'*1) —2n

Combining (8.9.5) with (8.9.3), one sees that § = 2¢g — 2. Since we also have § = 2p, — 2, g = p,. O

8.9.6. Corollary. Let D be a divisor on a smooth projective curve Y of genus g. If deg D > 2g — 2 then
h'(O(D)) = 0. Ifdeg D < g — 2, then h'(O(D)) > 0.

proof. This follows from Corollary (v) and (vi). g
(8.9.7) curves of genus zero

Let Y be a smooth projective curve Y of genus zero, and let p be a point of Y. The exact sequence
0= 0y = Oy(p) > e—0
where € is a one-dimensional module supported at p (8.4.6), gives us an exact cohomology sequence
0 — H°(Y,0y) = H°(Y,Oy(p)) = H°(Y,e) = 0

The zero on the right is due to the fact that, because p, = 0, H*(Y,Oy) = 0. We also have h®(Oy) =
h%(e) = 1, s0 h’(Oy (p)) = 2. We choose a basis (1, x) for H°(Y, Oy (p)), 1 being the constant function and
x being a nonconstant function with a single pole of order 1 at p. This basis defines a point of P! with values

in the function field K of Y, and therefore a morphism Y 5 P'. Because « has just one pole of order 1, it
takes every value exactly once. Therefore ¢ is bijective. It is a map of degree 1, and therefore an isomorphism
(8.1.3).

8.9.8. Corollary. Every smooth projective curve of genus zero is isomorphic to the projective line P!, U

A rational curve is a curve (smooth or not) whose function field is isomorphic to the field C(¢) of rational
functions in one variable. A smooth projective curve of genus zero is a rational curve.

(8.9.9) curves of genus one

A smooth projective curve of genus 1 is called an elliptic curve. The Riemann-Roch Theorem tells us that on
an elliptic curve Y,
x(O(D)) = deg D

Since h%(Qy) = h'(Oy) = 1, Qy has a nonzero global section w. Since 0y has degree zero (8.9.2), w
doesn’t vanish anywhere. Multiplication by w defines an isomorphism O — y. So Qy is a free module of
rank one. It follows that the Serre dual M# of an @-module M is isomorphic to the ordinary dual M*.

The next lemma follows from Riemann-Roch.

8.9.10. Lemma. Let p be a point of an elliptic curve Y. For any r > 0, h°(O(rp) = r, and h' (O(rp)) = 0.
([

Since H°(Y, Oy) € H°(Y, Oy (p)), and since both spaces have dimension one, they are equal. So (1) is a
basis for H(Y, Oy (p)). We choose a basis (1, z) for the two-dimensional space H'(Y, Oy (2p)). Then z isn’t
a section of O(p). It has a pole of order precisely 2 at p. Next, we choose a basis (1, x,y) for H (Y, Oy (3p)).
So x and y are functions with poles of orders 2 and 3, respectively, at p, and no other poles. The point (1, z, y)

of P? with values in K determines a morphism Y’ 5 P2, Let u, v, w be coordinates in P2. The map ¢ sends
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a point ¢ distinct from p to (u,v,w) = (1,2(q),y(q)). Since Y has dimension one, ¢ is a finite morphism.
Its image will be a closed subvariety of P? of dimension one. Since (1, z,y) are independent, the image isn’t
contained in a line.

To determine the image of the point p, we multiply (1, x,%) by A = y~! to normalize the second coordinate
to 1, obtaining the equivalent vector (y~*, 2y =1, 1). The rational function y~* has a zero of order 3 at p, and
2y~ ! has a simple zero there. Evaluating at p, we see that the image of p is the point (0,0, 1).

Let Y’ be the image of Y, which is a curve in P2, The map Y — IP? restricts to a finite morphism Y — Y.
Let ¢ be a generic line {au+bv+cw = 0} in P2. The rational function a+bz+cy on Y has a pole of order 3
at p and no other pole. It takes every value, including zero, three times, and the set of points g of Y at which
a + bx + cy is zero is the inverse image of the intersection Y/ N £. The only possibilities for the degree of Y’
are 1 and 3. Since 1, z, y are independent, Y isn’t a line. So the image Y is a cubic curve (Corollary[1.3.9).

To determine the image, we look for a cubic relation among the functions 1, z, y on Y. The seven monomi-
als 1, z,y, 2%, 2y, 23, y? have poles at p of orders 0,2, 3,4, 5, 6, 6, respectively, and no other poles. They are
sections of Oy (6p). Riemann-Roch tells us that h’(Oy (6p)) = 6. So those seven functions are dependent.
The linear dependency relation gives us a cubic equation among x and y, which we write in the form

cy? + (a1x + as)y + (a0x3 + asa® + agx + ag) =0

There can be no linear relation among functions whose orders of pole at p are distinct. So when we delete
either 2% or y? from the list of monomials, we obtain an independent set of six functions that form a basis for
the six-dimensional space H°(Y, O(6p)). In the cubic relation, the coefficients ¢ and ag aren’t zero. We can
scale y and x to normalize ¢ and a( to 1. We eliminate the linear term in y from this relation by substituting
Yy — %(alx + ag) for y. Next, we eliminate the quadratic term in x. by substituting  — %ag for x. Bringing
the terms in x to the other side of the equation, we are left with a cubic relation

y2:x3+a4x+a6

The coefficients a4 and ag have changed, of course.

The cubic curve Y’ defined by the homogenized equation 32z = 23 + asx2? + agz> is the image of Y.
This curve Y’ meets a generic line ax + by + cz = 0 in three points and, as we saw above, its inverse image
in Y consists of three points too. Therefore the morphism ¥ —25 Y is generically injective, and Y is the
normalization of Y”. Corollary [7.6.3|computes the cohomology of Y”: h°(Oy-) = h'(Oy/) = 1. This tells
us that h?(Qy~) = h%(Oy) for all ¢q. Let’s denote the direct image of Oy by the same symbol Oy. The
quotient 7 = Oy /Oy is a torsion module with no global sections, so it is zero (ii).

8.9.11. Corollary. Every elliptic curve is isomorphic to a cubic curve in P2 O

(8.9.12) the group law on an elliptic curve

The points of an elliptic curve form an abelian group, once one chooses a point to be the identity element.

We choose a point of Y, and label it 0. We’ll write the law of composition in the group as p & ¢, using the
symbol @ to distinguish this sum, which is a point of Y, from the divisor p + g.

Let p and ¢ be points of Y. To define p @ g, we compute the cohomology of Oy (p+ ¢ — o). It follows from
Riemann-Roch that h®(Oy (p + ¢ — 0)) = 1 and that h'(Oy (p + q¢ — 0)) = 0. There is a nonzero function
f, unique up to scalar factor, with simple poles at p and ¢ and a zero at o. This function has exactly one other
zero. That zero is defined to be the sum p @ ¢ in the group. In terms of linearly equivalent divisors, s = p & ¢
is the unique point such that s is linearly equivalent to p + ¢ — o, or such that p + ¢ is linearly equivalent to
o+ s.

8.9.13. Proposition. The law of composition @ defined above makes an ellipic curve into an abelian group.

The proof is an exercise. O

(8.9.14) interlude: maps to projective space
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Let Y be a smooth projective curve. We have seen that any set (fy, ..., f,) of rational functions on Y

defines a morphism Y 5 pn . As a reminder, let ¢ be a point of Y and let g; = f;/fi, where i is
an index such that f; has the minimum value v4(f;). Then g; are regular at ¢ for all j, and the morphism
¢ sends the point ¢ to is (go(q), ..., gn(q)). For example, the inverse image Y° = ¢~1(UY) of the standard
open set U° is the set of points at which the functions g; = f;/fo are regular. If ¢ is such a point, then

o(q) = (1,91(9), - gn(q))-

8.9.15. Lemma. Let Y 25 P" be the morphism of a smooth projective curve Y to projective space that is
defined by a set (fo, ..., fn) of rational functions on'Y .

(i) If the space spanned by { fo, ..., fn} has dimension at least two, then @ is not a constant function.
@) If { fo, ..., fn} are linearly independent, the image isn’t contained in any hyperplane. O

The degree d of a nonconstant morphism ¢ from a projective curve Y, smooth or not, to projective space
IP", is the number of points of the inverse image ¢~ !(H) of a generic hyperplane H in P". We check that
this number is well-defined. Say that H is the locus h(x) = 0, where h = > a;x;, and that another generic
hyperplane G is the locus g(x) = 0, where g =: > b;z;. Let f(x) = h/g. The divisor of the rational function
f=foponYise 'H— o lH.

(8.9.16)  base points

If D is a divisor on the smooth projective curve Y, a basis (fo, ..., fx) of global sections of O(D) defines
a morphism Y — P*~1. This is the most common way to construct such a morphism, though one could use
any set of rational functions.

If a global section of O(D) vanishes at a point p of Y, it is a section of O(D — p). A point p is a base
point of O(D) if every global section of O(D) vanishes at p. A base point can be described in terms of the
usual exact sequence

0= O0OD-p) = 0OD)—e—0
The point p is a base point if h°(O(D —p)) = h°(O(D)), or if h*(O(D—p)) = h}(O(D)) — 1.

Let Y - P™ is a morphism. The degree . of 7 is the number of points in the inverse image of a generic
hyperplane.

8.9.17. Lemma. Let D be a divisor on a smooth projective curve Y, and suppose that H°(O(D)) # 0. Let
Y -2 P be the morphism defined by a basis of global sections.

(i) The image of @ isn’t contained in any hyperplane.

(ii) If O(D) has no base points, the degree r of the morphism ¢ is equal to degree of D. If there are base
points, the degree is lower. U

(8.9.18) canonical divisors

Because the module 2y of differentials on a smooth curve Y is invertible, it is isomorphic to O(K) for
some divisor K. Such a divisor K is called a canonical divisor. It is often convenient to represent 2y as a
module O(K), though the canonical divisor K isn’t unique. It is determined only up to linear equivalence (see

@3.11)).

When written in terms of a canonical divisor K, the Serre dual of an invertible module O(D) will be
O(D)* = o(O(D), O(K)) ~ O(K—D). With this notation, the Riemann-Roch Theorem for O(D) becomes

(8.9.19) h’(O(D)) =h!(O(K—-D)) and h'(O(D))=h’°(O(K-D))
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8.9.20. Proposition. Let K be a canonical divisor on a smooth projective curve Y of genus g > 0.
(i) O(K) has no base point.
(ii) Every point p of Y is a base point of O(K +p).

proof. (i) Let p be a point of Y. We apply Riemann-Roch to the exact sequence
0= OK-p)—OK)—>¢ —0

where €; denotes a one-dimensional module supported on a point p. The Serre duals O and O(p) of O(K)
and O(K —p), respectively, form an exact sequence

0>0—=0(p) —>e—0

When Y has positive genus, there is no rational function on Y with just one simple pole. So h’(O(p)) =
h%(0) = 1. Riemann-Roch tells us that h! (O(K —p)) = h'(O(K)) = 1. The cohomology sequence

0 — H°(O(K—-p)) = H°(O(K)) = [1] = H' (O(K —p)) = H' (O(K)) =0
shows that h®(O(K —p)) = h°(O(K)) — 1. So p is not a base point.
(ii) Here, the relevant sequence is
0= OK)— O(K+p) —>e3—0

The Serre dual of O(K +p) is O(—p), which has no global section. Therefore h'(O(K +p)) = 0, while
h'(O(K)) = h°(O) = 1. The cohomology sequence

0 — h%(O(K)) = h°(O(k+p)) — [1] = h}(O(K)) = h}(O(k+p)) — 0

shows that H(O(K)) = H°(O(K +p)). So p is a base point of O(K +p). O

(8.9.21) hyperelliptic curves

A hyperelliptic curve Y is a smooth projective curve of genus g > 1 that can be represented as a branched
double covering of the projective line. So Y is hyperelliptic if there is a morphism ¥ — X of degree two,
with X = P

The topological Euler characteristic of a hyperelliptic curve Y can be computed in terms of the covering
Y — X, which will be branched at a finite set p1, ..., p,, of n points. Since 7 has degree two, the multiplicity
of a branch point will be ¢ = 2. The Euler characteristic is therefore e(Y) = 2¢(X) — n = 4 — n. Since
e(Y) = 2 — 2g, the number of branch points is n = 2g + 2. So when g = 3, n = 8.

It would take some experimentation to guess that the next remarkable theorem might be true, and some
time to find a proof.

8.9.22. Theorem. Let K be a canonical divisor on a hyperelliptic curve Y, and let Y —» X = P! be
the associated branched covering of degree 2. The morphism Y — P9~ defined by the global sections of
Oy = O(K) factors through X. There is a morphism X 5 P9~ such that m = kou: ¥ -+ X — P9~ 1,

8.9.23. Corollary. A curve of genus g > 2 can be presented as a branched covering of P! of degree 2 in at
most one way. [l

proof of Theorem|[8.9.22}

Let z be an affine coordinate in X, so that the standard affine open subset U° of X is Spec C[z]. We may
suppose that the point p., at infinity isn’t a branch point of the covering. Let Y° = 7=1U°. Then Y will
have an equation of the form

y* = f(z)
where f is a polynomial with n = 2g + 2 simple roots. There will be two points of Y above the point p..
They are interchanged by the automorphism y — —y. Let’s call those points ¢; and ¢o.
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We start with the differential dz, which we view as a differential on Y. Then 2y dy = f'(z)dz. Since f
has simple roots, f’ doesn’t vanish at any of them. Therefore dz has simple zeros on Y above the roots of f.
We also have a regular function on Y with simple roots at those points, namely the function y. Therefore the
differential w = %’3 is regular and nowhere zero on 3°. Because the degree of a differential on Y is 2g — 2
(??), w has a total of 2g — 2 zeros at infinity. By symmetry, w has zeros of order g — 1 at the eah of two points
g1 and g2. So K = (g—1)q1 + (g—1)qo is a canonical divisor on Y, i.e., Qy =~ Oy (K).

Since K has zeros of order g — 1 at infinity, the rational functions 1, z, 22, ..., 297!, viewed as functions
on Y, are among the global sections of Oy (K). They are independent, and there are g of them. Since
h?(Oy (K)) = g, they form a basis of H°(Oy (K)). The map Y — P91 defined by the global sections of

Oy (K) evaluates these powers of , so it factors through the double covering Y —— X. (]

(8.9.24) canonical embedding

Let Y be a smooth projective curve of genus g > 2, and let K be a canonical divisor on Y. Since O(K)

has no base point (2?), its global sections define a morphism Y —“+ P9~ the canonical map whose degree is
equal to the degree 2g — 2 of the canonical divisor.

8.9.25. LetY be a smooth projective curve of genus g at least two. If Y is not hyperelliptic, the canonical map
embeds Y as a closed subvariety of projective space P91,

proof. We show first that, if x isn’t an injective map, then Y is hyperelliptic. Let p and ¢ be distinct points
such that k(p) = k(g). We may assume that the canonical divisor K is effective, and that p and ¢ are not in
its support. We inspect the global sections of O(K —p—gq). Since x(p) = k(q), any global section of O(K)
that vanishes at p vanishes at ¢ too. Therefore O(K —p) and O(K —p—q) have the same global sections, and
q is a base point of O(K —p). We’ve computed the cohomology of O(K —p): h®(O(K —p)) = g—1 and
h'(O(K—p)) = 1. Then h®(O(K —p—q)) = g—1 and h'O(K —p—q)) = 2. The Serre dual of O(K —p—q)
is O(p + q), so by Riemann-Roch, h®(O(p + ¢)) = 2. If D is a divisor of degree one on a curve of positive
genus, then h®(O(D)) < 1 (Proposition ??). Therefore O(p + ¢) has no base point. Its global sections define
a morphism Y — P! of degree 2. So Y is hyperelliptic. Conversely, if Y is hyperelliptic, Theorem
shows that x has degree 2.

If Y isn’t hyperelliptic, the canonical map is injective, so Y is mapped bijectively to its image Y in P91,
This almost proves the theorem, but: Can Y’ have a cusp? We must show that the bijective map Y —— Y is
an isomorphism.

We go over the computation made above for a pair of points p, g, this time taking ¢ = p. The computation
is the same. It shows that, since Y isn’t hyperelliptic, p isn’t a base point of Oy (K—p). Therefore h®(Oy (K—
2p)) = h%(Oy (K —p)) — 1. This tells us that there is a global section f of Oy (K) that has a zero of order
exactly 1 at p. When properly interpreted, this fact shows that x doesn’t collapse any tangent vectors to Y, and
therefore that « is an isomorphism. Since we haven’t discussed tangent vectors, we prove this directly.

Since « is a bijective, finite morphism, it is an integral morphism. The function fields of Y and its image
Y are equal, and Y is the normalization of Y”. Moreover, & is an isomorphism except on a finite set.

We work locally at a point p of Y’. When we restrict the global section f of Oy (K) found above to the
image Y, we obtain an element of the maximal ideal m’ of Oy at p, that we denote by x. On Y, this element
has a zero of order one at p, and therefore it is a local generator fot the maximal ideal m, of Oy. We may
assume that = generates m,,, and that the quotient 7 = Oy /Oy is a finite-dimensional vector space supported
at p.

We multiply the short exact sequence 0 — Oy~ SN Oy -~ F — 0 by z. The cokernels of the
multiplication maps form an exact sequence

Oy//IOy/ —;> Oy/x@y i)]-"/x}"% 0

Since x generates M, Oy /xOy is the residue field x(p), which has dimension one. The map 7 isn’t zero
because it sends the residue of 1 in Oy /xOy to the residue of 1 in x(p). Therefore i is surjective. This
shows that F/xF = 0. But since F is a finite Oy~ -module and z is in the maximal ideal m’, the quotient
F/xF can’t be zero unless F is zero (5.1.22). Therefore Oy = Oy-. O
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8.9.26. Examples. Let Y be a smooth projective curve of genus g.

(i) When g = 2, the canonical morphism « is a map of degree 2g — 2 = 2 from Y to P!. Every smooth
projective curve of genus 2 is hyperelliptic.

(ii) When g = 3, x is a morphism of degree 4 from Y to P2, If Y isn’t hyperelliptic, its image will be a plane
curve of degree 4, isomorphic to Y. The genus of a smooth projective curve of degree 4 is (g) =3
which checks.

The number of moduli of curves of degree 3 (the number of essential parameters) is obtained this way:
There are 15 monomials of degree 4 in three variables. The group GG L3 of dimension 9 operates by coordinate
changes. So the number of moduli is 15 — 9 = 6. When a hyperelliptic curve of genus 3 is represented as a
branched double covering of P!, there will be 8 branch points. The group G Lo of dimension 4 operates on the
branch points, but scalars don’t move them. So the number of moduli of hyperelliptic curves of genus three is
8 —3 = 5. Since 5 < 6, this agrees with the fact that not all curves of genus three are hyperelliptic.

(iii) When g = 4, « is a morphism of degree 6 from Y to P2, and it becomes harder to count moduli. It is a fact
that the number of moduli of curves of any genus g is 3g — 3. The number of moduli of hyperelliptic curves
of genus g is easy to compute. Itis 2g — 1. U
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