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Chapter 1 PLANE CURVES

planecurves
july19

1.1 The Affine Plane
1.2 The Projective Plane
1.3 Plane Projective Curves
1.4 Tangent Lines
1.5 Transcendence Degree
1.6 The Dual Curve
1.7 Resultants and Discriminants
1.8 Nodes and Cusps
1.9 Hensel’s Lemma
1.10 Bézout’s Theorem
1.11 The Plücker Formulas

Plane curves were the first algebraic varieties to be studied, so we begin with them. They provide helpful
examples, and we will see in Chapter ?? how they control higher dimensional varieties. Chapters 2 - 7 are
about varieties of arbitrary dimension. We will come back to curves in Chapter 8.

1.1 The Affine Plane
affine-
plane The n-dimensional affine space An is the space of n-tuples of complex numbers. The affine plane A2 is the

two-dimensional affine space.
Let f(x1, x2) be an irreducible polynomial in two variables with complex coefficients. The set of points

of the affine plane at which f vanishes, the locus of zeros of f , is called a plane affine curve. Let’s denote this
locus by X . Using vector notation x = (x1, x2),

(1.1.1) X = {x | f(x) = 0}affcurve

The degree of the curve X is the degree of its irreducible defining polynomial f .

1.1.2.goober8
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The Cubic Curve y2 = x3 + x (real locus)
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##What is the equation of this curve??##

1.1.3. Note. polyirredIn contrast with comples polynomials in one variable, most polynomials in two or more variables
are irreducible – they cannot be factored. This can be shown by a method called “counting constants”. For
instance, quadratic polynomials in x1, x2 depend on the six coefficients of the monomials of degree at most
two. Linear polynomials ax1+bx2+c depend on three coefficients, but the product of two linear polynomials
depends on only five parameters, because a scalar factor can be moved from one of the linear polynomials to
the other. So the quadratic polynomials cannot all be written as products of linear polynomials. This reasoning
is fairly convincing. It can be justified formally in terms of dimension, which will be discussed in Chapter ??.
�

We will get an understanding of the geometry of a plane curve as we go along, and we mention just one
point here. A plane curve is called a curve because it is defined by one equation in two variables. Its algebraic
dimension is one. But because our scalars are complex numbers, it will be a surface, geometrically. This is
analogous to the fact that the affine line A1 is the plane of complex numbers.

One can see that a plane curve X is a surface by inspecting its projection to the affine x1-line. One writes
the defining polynomial as a polynomial in x2, whose coefficients ci = ci(x1) are polynomials in x1:

f(x1, x2) = c0x
d
2 + c1x

d−1
2 + · · ·+ cd

Let’s suppose that d is positive, i.e., that f isn’t a polynomial in x1 alone (in which case, since it is irreducible,
it would be linear).

The fibre of a map V → U over a point p of U is the inverse image of p, the set of points of V that map to
p. The fibre of the projection X → A1 over the point x1 = a is the set of points (a, b) for which b is a root of
the one-variable polynomial

f(a, x2) = c0x
d
2 + c1x

d−1
2 + · · ·+ cd

with ci = ci(a). There will be finitely many points in this fibre, and the fibre won’t be empty unless f(a, x2)
is a constant. So the curve X covers most of the x1-line, a complex plane, finitely often.

(1.1.4) planeco-
ords

changing coordinates

We allow linear changes of variable and translations in the affine plane A2. When a point x is written as
the column vector x = (x1, x2)t, the coordinates x′ = (x′1, x

′
2)t after such a change of variable will be related

to x by the formula

(1.1.5) x = Qx′ + a chgcoord

whereQ is an invertible 2×2 matrix with complex coefficients and a = (a1, a2)t is a complex translation vector.
This changes a polynomial equation f(x) = 0, to f(Qx′ + a) = 0. One may also multiply a polynomial f by
a nonzero complex scalar without changing the locus {f = 0}. Using these operations, all lines, plane curves
of degree 1, become equivalent.

An affine conic is a plane affine curve of degree two. Every affine conic is equivalent to one of the loci

(1.1.6) x2
1 − x2

2 = 1 or x2 = x2
1

The proof of this is similar to the one used to classify real conics. The two loci might be called a complex
’hyperbola’ and ’parabola’, respectively. The complex ’ellipse’ x2

1 + x2
2 = 1 becomes the ’hyperbola’ when

one multiplies x2 by i.
On the other hand, there are infinitely many inequivalent cubic curves. Cubic polynomials in two variables

depend on the coefficients of the ten monomials 1, x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2 of degree at most

3 in x. Linear changes of variable, translations, and scalar multiplication give us only seven scalars to work
with, leaving three essential parameters.
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1.2 The Projective Plane
projplane

The n-dimensional projective space Pn is the set of equivalence classes of nonzero vectors x = (x0, x1, ..., xn),
the equivalence relation being

(1.2.1) (x′0, ..., x
′
n) ∼ (x0, ..., xn) if (x′0, ..., x

′
n) = (λx0, ..., λxn)equivrel

or x′ = λx, for some nonzero complex number λ. The equivalence classes are the points of Pn, and one often
refers to a point by a particular vector in its class.

Points of Pn correspond bijectively to one-dimensional subspaces of Cn+1. When x is a nonzero vector,
the vectors λx, together with the zero vector, form the one-dimensional subspace of the complex vector space
Cn+1 spanned by x.

The projective plane P2 is the two-dimensional projective space. Its points are equivalence classes of
nonzero vectors (x0, x1, x2).

(1.2.2)projline the projective line

Points of the projective line P1 are equivalence classes of nonzero vectors (x0, x1). If x0 isn’t zero, we
may multiply by λ = x−1

0 to normalize the first entry of (x0, x1) to 1, and write the point it represents in a
unique way as (1, u), with u = x1/x0. There is one remaining point, the point represented by the vector (0, 1).
The projective line P1 can be obtained by adding this point, called the point at infinity, to the affine u-line,
which is a complex plane. Topologically, P1 is a two-dimensional sphere.

(1.2.3)projpl lines in projective space

A line in projective space Pn is determined by a pair of distinct points p and q. When p and q are represented
by specific vectors, the set of points {rp + sq}, with r, s in C not both zero is a line. Its points correspond
bijectively to points of the projective line P1, by

(1.2.4) rp+ sq ←→ (r, s)pline

A line in the projective plane P2 can also be described as the locus of solutions of a homogeneous linear
equation

(1.2.5) s0x0 + s1x1 + s2x2 = 0eqline

1.2.6. Lemma.linesmeet In the projective plane, two distinct lines have exactly one point in common and, in a pro-
jective space of any dimension, a pair of distinct points is contained in exactly one line. �

(1.2.7) the standard covering of P2standcov

If the first entry x0 of a point p = (x0, x1, x2) of the projective plane P2 isn’t zero, we may normalize it to 1
without changing the point: (x0, x1, x2) ∼ (1, u1, u2), where ui = xi/x0. We did the analogous thing for P1

above. The representative vector (1, u1, u2) is uniquely determined by p, so points with x0 6= 0 correspond
bijectively to points of an affine plane A2 with coordinates (u1, u2):

(x0, x1, x2) ∼ (1, u1, u2) ←→ (u1, u2)

We regard the affine plane as a subset of P2 by this correspondence, and we denote that subset by U0. The
points of U0, those with x0 6= 0, are the points at finite distance. The points at infinity of P2, those of the form
(0, x1, x2), are on the line at infinity L0, the locus {x0 = 0}. The projective plane is the union of the two sets
U0 and L0. When a point is given by a coordinate vector, we can assume that the first coordinate is either 1 or
0.
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There is an analogous correspondence between points (x0, 1, x2) and points of an affine plane A2, and
between points (x0, x1, 1) and points of A2. We denote the subsets {x1 6= 0} and {x2 6= 0} by U1 and U2,
respectively. The three sets U0,U1,U2 form the standard covering of P2 by three standard affine open sets.
Since the vector (0, 0, 0) has been ruled out, every point of P2 lies in at least one of the standard affine open
sets. Points whose three coordinates are nonzero lie in all of them.

1.2.8. Note. pointatin-
finity

Which points of P2 are at infinity depends on which of the standard affine open sets is taken to
be the one at finite distance. When the coordinates are (x0, x1, x2), I like to normalize x0 to 1, as above. Then
the points at infinity are those of the form (0, x1, x2). But when coordinates are (x, y, z), I may normalize z
to 1. Then the points at infinity are the points (x, y, 0). I hope this won’t cause too much confusion. �

(1.2.9) digression: the real projective plane realproj-
plane

The points of the real projective plane RP2 are equivalence classes of nonzero real vectors x = (x0, x1, x2),
the equivalence relation being x′ ∼ x if x′ = λx for some nonzero real number λ. The real projective plane
can also be thought of as the set of one-dimensional subspaces of the real vector space V = R3.

The plane U : {x0 = 1} in V = R3 is analogous to the standard affine open subset U0 in the complex
projective plane P2. We can project V from the origin p0 = (0, 0, 0) to U , sending a point x = (x0, x1, x2) of
V distinct from p0 to the point (1, u1, u2), with ui = xi/x0. The fibres of this projection are the lines through
p0 and x, with p0 omitted. The projection to U is undefined at the points (0, x1, x2), which are orthogonal to
the x0-axis. The line connecting such a point to p0 doesn’t meet U . The points (0, x1, x2) correspond to the
points at infinity of RP2.

Looking from the origin, U becomes a “picture plane”.

1.2.10. goober8

This illustration is from Dürer’s book on perspective

The projection from 3-space to a picture plane goes back to the the 16th century, the time of Desargues
and Dürer. Projective coordinates were introduced by Möbius, but not until 200 years later.
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1.2.11.goober4
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A Schematic Representation of the real Projective Plane, with a Conic

This figure shows the planeW : x+y+z = 1 in the real vector space R3. If p = (x, y, z) is a nonzero vector, the
one-dimensional subspace spanned by p will meet W in a single point, unless p is on the line L : x+y+z = 0.
The plane W is a faithful representation of most of RP2. It contains all points except those on the line L.

(1.2.12) changing coordinates in the projective planechgco-
ordssec

An invertible 3×3 matrix P determines a linear change of coordinates in P2. With x = (x0, x1, x2)t and
x′ = (x′0, x

′
1, x
′
2)t represented as column vectors, the coordinate change is given by

(1.2.13) Px′ = xchg

As the next proposition shows, four special points, the three points e0 = (1, 0, 0)t, e1 = (0, 1, 0)t, e2 =
(0, 0, 1)t, together with the point ε = (1, 1, 1)t, determine the coordinates.

1.2.14. Proposition.fourpoints Let p0, p1, p2, q be four points of P2, no three of which lie on a line. There is, up to
scalar factor, a unique linear coordinate change Px′ = x such that Ppi = ei and Pq = ε.

proof. The hypothesis that the points p0, p1, p2 don’t lie on a line means that the vectors that represent those
points are independent. They span C3. So q will be a combination q = c0p0 + c1p1 + c2p2, and because no
three of the points lie on a line, the coefficients ci will be nonzero. We can scale the vectors pi (multiply them
by nonzero scalars) to make q = p0+p1+p2 without changing the points. Next, the columns of P can be an
arbitrary set of independent vectors. We let them be p0, p1, p2. Then Pei = pi, and Pε = q. The matrix P is
unique up to scalar factor, as can be verified by looking the reasoning over. �

(1.2.15) conicsprojconics

A polynomial f(x0, x1, x2) is homogeneous , and of degree d, if all monomials that appear with nonzero
coefficient have (total) degree d. For example, x3

0 + x3
1 − x0x1x2 is a homogeneous cubic polynomial. A

homogeneous quadratic polynomal is a combination of the six monomials

x2
0, x

2
1, x

2
2, x0x1, x1x2, x0x2

A conic is the locus of zeros of an irreducible homogeneous quadratic polynomial.

1.2.16. Proposition.classify-
conic

For any conic C, there is a choice of coordinates so that C becomes the locus

x0x1 + x0x2 + x1x2 = 0

9



proof. Since the conic C isn’t a line, it will contain three points that aren’t colinear. Let’s leave the verification
of this fact as an exercise. We choose three non-colinear points on C, and adjust coordinates so that they
become the points e0, e1, e2. Let f be the quadratic polynomial in those coordinates whose zero locus is C.
Because e0 is a point of C, f(1, 0, 0) = 0, and therefore the coefficient of x2

0 in f is zero. Similarly, the
coefficients of x2

1 and x2
2 are zero. So f has the form

f = ax0x1 + bx0x2 + cx1x2

Since f is irreducible, a, b, c aren’t zero. By scaling appropriately, we can make a = b = c = 1. We will be
left with the polynomial x0x1 + x0x2 + x1x2. �

1.3 Plane Projective Curves
projcurve

The loci in projective space that are studied in algebraic geometry are those that can be defined by sys-
tems of homogeneous polynomial equations. The reason for homogeneity is that the vectors (a0, ..., an) and
(λa0, ..., λan) represent the same point of Pn.

To explain this, we write a polynomial f(x0, ..., xn) as a sum of its homogeneous parts:

(1.3.1) f = f0 + f1 + · · ·+ fd homparts

where f0 is the constant term, f1 is the linear part, etc., and d is the degree of f .

1.3.2. Lemma. hompart-
szero

Let f be a polynomial of degree d, and let a = (a0, ..., an) be a nonzero vector. Then
f(λa) = 0 for every nonzero complex number λ if and only if fi(a) is zero for every i = 0, ..., d.

proof. We have f(λx0, ..., λxn) = f0 + λf1(x) + λ2f2(x) + · + λdfd(x). When we evaluate at some given
x, the right side of this equation becomes a polynomial of degree at most d in λ. Since a nonzero polynomial
of degree at most d has at most d roots, f(λx) won’t be zero for every λ unless that polynomial is zero. �

Thus we may as well work with homogeneous equations.

1.3.3. Lemma. fequalsghIf a homogeneous polynomial f is a product gh of polynomials, then g and h are homogeneous,
and the zero locus {f = 0} in projective space is the union of the two loci {g = 0} and {h = 0}. �

It is also true that relatively prime homogeneous polynomials f and g have only finitely many common
zeros. But this isn’t obvious. It will be proved below, in Proposition 1.3.11.

(1.3.4) loci in the projective line locipone

Before going to plane curves, we describe the zero locus in the projective line P1 of a homogeneous
polynomial in two variables.

1.3.5. Lemma. fac-
torhom-
poly

Every nonzero homogeneous polynomial f(x, y) = a0x
d + a1x

d−1y + · · · + ady
d with

complex coefficients is a product of homogeneous linear polynomials that are unique up to scalar factor.

To prove this, one uses the fact that the field of complex numbers is algebraically closed. A one-variable
complex polynomial factors into linear factors in the polynomial ring C[y]. To factor f(x, y), one may factor
the one-variable polynomial f(1, y) into linear factors, substitute y/x for y, and multiply the result by xd.
When one adjusts scalar factors, one will obtain the expected factorization of f(x, y). For instance, to factor
f(x, y) = x2 − 3xy + 2y2, substitute x = 1: 2y2 − 3y + 1 = 2(y − 1)(y − 1

2 ). Substituting y = y/x and
multiplying by x2, f(x, y) = 2(y − x)(y − 1

2x). The scalar 2 can be distributed arbitrarily among the linear
factors. �

Adjusting scalar factors, we may write a homogeneous polynomial as a product of the form

(1.3.6) factor-
polytwo

f(x, y) = (v1x− u1y)r1 · · · (vkx− uky)rk

where no factor vix − uiy is a constant multiple of another, and where r1 + · · · + rk is the degree of f . The
exponent ri is the multiplicity of the linear factor vix− uiy.
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A linear polynomial vx − uy determines a point (u, v) in the projective line P1, the unique zero of that
polynomial, and changing the polynomial by a scalar factor doesn’t change its zero. Thus the linear factors of
the homogeneous polynomial (1.3.6) determine points of P1, the zeros of f . The points (ui, vi) are zeros of
multiplicity ri. The total number of those points, counted with multiplicity, will be the degree of f .

The zero (ui, vi) of f corresponds to a root x = ui/vi of multiplicity ri of the one-variable polynomial
f(x, 1), except when the zero is the point (1, 0). This happens when the coefficient a0 of f is zero, and y is a
factor of f . One could say that f(x, y) has a zero at infinity in that case.

This sums up the information contained in an algebraic locus in the projective line. It will be a finite set of
points with multiplicities.

(1.3.7) intersections with a lineintersect-
line

LetZ be the zero locus of a homogeneous polynomial f(x0, ..., xn) of degree d in projective space Pn, and
let L be a line in Pn (1.2.4). Say that L is the set of points rp+ sq, where p = (a0, ..., an) and q = (b0, ..., bn)
are represented by specific vectors, so that L corresponds to the projective line P1 by rp+ sq ↔ (r, s). Let’s
also assume that L isn’t entirely contained in the zero locus Z. The intersection Z ∩ L corresponds in P1 to
the zero locus of the polynomial in r, s that is obtained by substituting rp+ sq into f . This substitution yields
a homogeneous polynomial f(r, s) in r, s, of degree d. For example, if f = x0x1 +x0x2 +x1x2, then with
p = (ao, a1, a2) and q = (b0, b1, b2), f is the following quadratic polynomial in r, s:

f(r, s) = f(rp+ sq) = (ra0 + sb0)(ra1 + sb1) + (ra0 + sb0)(ra2 + sb2) + (ra1 + sb1)(ra2 + sb2)

= (a0a1+a0a2+a1a2)r2 +
(∑

i 6=j aibj
)
rs+ (b0b1+b0b2+b1b2)s2

The zeros of f in P1 correspond to the points of Z ∩L. There will be d zeros, when counted with multiplicity.

1.3.8. Definition.intersect-
linetwo

With notation as above, the intersection multiplicity of Z and L at a point p is the multi-
plicity of zero of the polynomial f . �

1.3.9. Corollary.XcapL Let Z be the zero locus in Pn of a homogeneous polynomial f , and let L be a line in Pn that
isn’t contained in Z. The number of intersections of Z and L, counted with multiplicity, is equal to the degree
of f . �

(1.3.10) loci in the projective planelociptwo

1.3.11. Proposition.fgzerofi-
nite

Homogeneous polynomials f1, ..., fr in x, y, z with no common factor have finitely
many common zeros in P2.

The proof of this proposition is below. It shows that the most interesting type of locus in the projective
plane is the zero set of a single equation.

The locus of zeros of an irreducible homogeneous polynomial f is called a plane projective curve. The
degree of a plane projective curve is the degree of its irreducible defining polynomial.

1.3.12. Note.redcurve Suppose that a homogeneous polynomial is reducible, say f = g1 · · · gk, where gi are irre-
ducible, and such that gi and gj don’t differ by a scalar factor when i 6= j. Then the zero locus C of f is the
union of the zero loci Vi of the factors gi. In this case, C may be called a reducible curve.

When there are multiple factors, say f = ge11 · · · g
ek
k and some ei are greater than 1, it is still true that the

locus C : {f = 0} will be the union of the loci Vi : {gi = 0}, but the connection between the geometry of
C and the algebra is weakened. In this situation, the structure of a scheme becomes useful. We won’t discuss
schemes. The only situation in which we will need to keep track of multiple factors is when counting inter-
sections with another curve D. For this purpose, one can define the divisor of f to be the integer combination
e1V1 + · · ·+ ekVk. �
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We need a lemma for the proof of Proposition 1.3.11. The ring C[x, y] embeds into its field of fractions F ,
which is the field of rational functions C(x, y) in x, y, and the polynomial ring C[x, y, z] is a subring of the
one-variable polynomial ring F [z]. It can be useful to study a problem in the principal ideal domain F [z] first
because its algebra is simpler.

Recall that the unit ideal of a ring R is the ring R itself.

1.3.13. Lemma. relprimeLet F = C(x, y) be the field of rational functions in x, y.
(i) Let f1, ..., fk be homogeneous polynomials in x, y, z with no common factor. Their greatest common divisor
in F [z] is 1, and therefore f1, ..., fk generate the unit ideal of F [z]. There is an equation of the form

∑
g′ifi =

1 with g′i in F [z].
(ii) Let f be an irreducible polynomial in C[x, y, z] of positive degree in z, but not divisible by z. Then f is
also an irreducible element of F [z].

proof. (i) L̇et h′ be an element of F [z] that isn’t a unit of F [z], i.e., that isn’t an element of F . Suppose that,
for every i, h′ divides fi in F [z], say fi = u′ih

′. The coefficients of h′ and u′i have denominators that are
polynomials in x, y. We clear denominators from the coefficients, to obtain elements of C[x, y, z]. This will
give us equations of the form difi = uih, where di are polynomials in x, y and ui, h are polynomials in x, y, z.

Since h isn’t in F , it will have positive degree in z. Let g be an irreducible factor of h of positive degree
in z. Then g divides difi but doesn’t divide di which has degree zero in z. So g divides fi, and this is true for
every i. This contradicts the hypothesis that f1, ..., fk have no common factor.

(ii) Say that f(x, y, z) factors in F [z], f = g′h′, where g′ and h′ are polynomials of positive degree in z with
coefficients in F . When we clear denominators from g′ and h′, we obtain an equation of the form df = gh,
where g and h are polynomials in x, y, z of positive degree in z and d is a polynomial in x, y. Neither g nor h
divides d, so f must be reducible. �

proof of Proposition 1.3.11. We are to show that homogeneous polynomials f1, ..., fr in x, y, z with no com-
mon factor have finitely many common zeros. Lemma 1.3.13 tells us that we may write

∑
g′ifi = 1, with g′i

in F [z]. Clearing denominators from g′i gives us an equation of the form∑
gifi = d

where gi are polynomials in x, y, z and d is a polynomial in x, y. Taking suitable homogeneous parts of gi and
d produces an equation

∑
gifi = d in which all terms are homogeneous.

Lemma 1.3.5 asserts that d is a product of linear polynomials, say d = `1 · · · `r. A common zero of
f1, ..., fk is also a zero of d, and therefore it is a zero of `j for some j. It suffices to show that, for every j,
f1, ..., fr and `j have finitely many common zeros.

Since f1, ..., fk have no common factor, there is at least one fi that isn’t divisible by `j . Corollary 1.3.9
shows that fi and `j have finitely many common zeros. Therefore f1, ..., fk and `j have finitely many common
zeros for every j. �

1.3.14. Corollary.
pointscurves

Every locus in the projective plane P2 that can be defined by a system of homogeneous
polynomial equations is a finite union of points and curves. �

The next corollary is a special case of the Strong Nullstellensatz, which will be proved in the next chapter.

1.3.15. Corollary. idealprin-
cipal

Let f be an irreducible homogeneous polynomial in three variables, that vanishes on an
infinite set S of points of P2. If another homogeneous polynomial g vanishes on S, then f divides g. Therefore,
if an irreducible polynomial vanishes on an infinite set S, that polynomial is unique up to scalar factor.

proof. If the irreducible polynomial f doesn’t divide g, then f and g have no common factor, and therefore
they have finitely many common zeros. �

(1.3.16) the classical topology classical-
topology

The usual topology on the affine space An will be called the classical topology. A subset U of An is open in
the classical topology if, whenever U contains a point p, it contains all points sufficiently near to p. We call this

12



the classical topology to distinguish it from another topology, the Zariski topology, which will be discussed in
the next chapter.

The projective space Pn also has a classical topology. A subset U of Pn is open if, whenever a point p of
U is represented by a vector (x0, ..., xn), all vectors x′ = (x′0, ..., x

′
n) sufficiently near to x represent points of

U .

(1.3.17)isopts isolated points

A point p of a topological space X is isolated if both {p} and its complement X−{p} are closed sets, or if
{p} is both open and closed. If X is a subset of An or Pn, a point p of X is isolated in the classical topology
if X doesn’t contain points p′ distinct from p, but arbitrarily close to p.

1.3.18. Propositionnoisolat-
edpoint

Let n be an integer greater than one. The zero locus of a polynomial in An or in Pn
contains no points that are isolated in the classical topology.

1.3.19. Lemma.polymonic Let f be a polynomial of degree d in n variables. When coordinates x1, ..., xn are chosen
suitably, f(x) will ge a monic polynomial of degree d in the variable xn.

proof. We write f = f0 + f1 + · · · + fd, where fi is the homogeneous part of f of degree i, and we choose
a point p of An at which fd isn’t zero. We change variables so that p becomes the point (0, ..., 0, 1). We call
the new variables x1, .., .xn and the new polynomial f . Then fd(0, ..., 0, xn) will be equal to cxdn for some
nonzero constant c. When we adjust xn by a scalar factor to make c = 1, f will be monic. �

proof of Proposition 1.3.18. The proposition is true for loci in affine space and also for loci in projective space.
We look at the affine case. Let f(x1, ..., xn) be a polynomial with zero locus Z, and let p be a point of Z. We
adjust coordinates so that p is the origin (0, ..., 0) and f is monic in xn. We relabel xn as y, and write f as a
polynomial in y. Let’s write f(x, y) = f̃(y):

f̃(y) = f(x, y) = yd + cd−1(x)yd−1 + · · ·+ c0(x)

where ci is a polynomial in x1, ..., xn−1. For fixed x, c0(x) is the product of the roots of f̃(y). Since p is the
origin and f(p) = 0, c0(0) = 0. So c0(x) will tend to zero with x. Then at least one root y of f̃(y) will tend
to zero. This gives us points (x, y) of Z that are arbitrarily close to p. �

1.3.20. Corollary.function-
iszero

Let C ′ be the complement of a finite set of points in a plane curve C. In the classical
topology, a continuous function g on C that is zero at every point of C ′ is identically zero. �

1.4 Tangent Lines
tanlines

(1.4.1) notation for working locallystandnot

We will often want to inspect a plane curve C : {f(x0, x1, x2) = 0} in a neighborhood of a particular
point p. To do this we may adjust coordinates so that p becomes the point (1, 0, 0), and look in the standard
affine open set U0 : {x0 6= 0}. There, p becomes the origin in the affine x1, x2-plane, and C becomes the zero
locus of the non-homogeneous polynomial f(1, x1, x2). This will be a standard notation for working locally.

Of course, it doesn’t matter which variable we set to 1. If the variables are x, y, z, we may prefer to take
for p the point (0, 0, 1) and work with the polynomial f(x, y, 1).

1.4.2. Lemma.foneirred A homogeneous polynomial f(x0, x1, x2) not divisible by x0 is irreducible if and only if its
dehomogenization f(1, x1, x2) is irreducible. �

(1.4.3) homogenizing and dehomogenizinghomde-
homone

If f(x0, x1, x2) is a polynomial, f(1, x1, x2) is called the dehomogenization of f with respect to the
variable x0.
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A simple procedure, homogenization, inverts dehomogenization. Suppose given a non-homogeneous poly-
nomial F (x1, x2) of degree d. To homogenize F , we replace the variables xi, i = 1, 2, by ui = xi/x0. Then
since ui have degree zero in x, so does F (u1, u2). When we multiply by xd0, the result will be a homogeneous
polynomial of degree d in x0, x1, x2 that isn’t divisible by x0,

We will come back to homogenization in Chapter 3.

(1.4.4) smsingptssmooth points and singular points

Let C be the plane curve defined by an irreducible homogeneous polynomial f(x0, x1, x2), and let fi
denote the partial derivative ∂f

∂xi
, which can be computed by the usual calculus formula. A point of C at which

the partial derivatives fi aren’t all zero is called a smooth point of C. A point at which all partial derivatives
are zero is a singular point. A curve is smooth, or nonsingular, if it contains no singular point; otherwise it is
a singular curve.

The Fermat curve fer-
matcurve

(1.4.5) xd0 + xd1 + xd2 = 0

is smooth because the only common zero of the partial derivatives dxd−1
0 , dxd−1

1 , dxd−1
2 , which is (0, 0, 0),

doesn’t represent a point of P2. The cubic curve x3
0 + x3

1 − x0x1x2 = 0 is singular at the point (0, 0, 1).

The Implicit Function Theorem explains the meaning of smoothness. Suppose that p = (1, 0, 0) is a point
of C. We set x0 = 1 and inspect the locus f(1, x1, x2) = 0 in the standard affine open set U0. If f2(p) isn’t
zero, the Implicit Function Theorem tells us that we can solve the equation f(1, x1, x2) = 0 for x2 locally
(i.e., for small x1) as an analytic function ϕ of x1, with ϕ(0) = 0. Sending x1 to (1, x1, ϕ(x1)) inverts the
projection from C to the affine x1-line, locally. So at a smooth point, C is locally homeomorphic to the affine
line.

1.4.6. Euler’s Formula. eulerfor-
mula

Let f be a homogeneous polynomial of degree d in the variables x0, ..., xn. Then∑
i

xi
∂f
∂xi

= d f.

proof. It is enough to check this formula when f is a monomial. As an example, let f be the monomial x2y3z,
then

xfx + yfy + zfz = x(2xy3z) + y(3x2y2z) + z(x2y3) = 6x2y3z = 6 f �

1.4.7. Corollary. sing-
pointon-
curve

(i) If all partial derivatives of an irreducible homogeneous polynomial f are zero at a
point p of P2, then f is zero at p, and therefore p is a singular point of the curve {f = 0}.
(ii) At a smooth point of a plane curve, at least two partial derivatives will be nonzero.
(iii) The partial derivatives of an irreducible polynomial have no common (nonconstant) factor.
(iv) A plane curve has finitely many singular points. �

(1.4.8) tangenttangent lines and flex points

Let C be the plane projective curve defined by an irreducible homogeneous polynomial f . A line L is
tangent to C at a smooth point p if the intersection multiplicity of C and L at p is at least 2. (See (1.3.8).)
There is a unique tangent line at a smooth point.

A smooth point p of C is a flex point if the intersection multiplicity of C and its tangent line at p is at least
3, and p is an ordinary flex point if the intersection multiplicity is equal to 3.

Let L be a line through a point p and let q be a point of L distinct from p. We represent p and q by specific
vectors (p0, p1, p2) and (q0, q1, q2), to write a variable point of L as p+ tq, and we expand the restriction of f
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to L in a Taylor’s Series. The Taylor expansion carries over to complex polynomials because it is an identity.
Let fi = ∂f

∂xi
and fij = ∂2f

∂xi∂xj
. Then

(1.4.9) f(p+ tq) = f(p) +

(∑
i

fi(p) qi

)
t + 1

2

(∑
i,j

qi fij(p) qj

)
t2 + O(3)taylor

where the symbol O(3) stands for a polynomial in which all terms have degree at least 3 in t. (The point q is
missing from this parametrization, but this won’t be important.)

We rewrite this equation: Let ∇ be the gradient vector (f0, f1, f2), let H be the Hessian matrix of f , the
matrix of second partial derivatives:

(1.4.10) H =

f00 f01 f02

f10 f11 f12

f20 f21 f22

hessian-
matrix

and let ∇p and Hp be the evaluations of ∇ and H , respectively, at p. So p is a smooth point of C if f(p) = 0
and ∇p 6= 0. Regarding p and q as column vectors, Equation 1.4.9 can be written as

(1.4.11) f(p+ tq) = f(p) +
(
∇p q

)
t + 1

2 (qtHp q)t
2 + O(3)texp

in which ∇pq and qtHpq are to be computed as matrix products.
The intersection multiplicity of C and L at p (1.3.8) is the lowest power of t that has nonzero coefficient

in f(p+ tq). The intersection multiplicity is at least 1 if p lies on C, i.e., if f(p) = 0. If p is a smooth point of
C, then L is tangent to C at p if the coefficient (∇pq) of t is zero, and p is a flex point if (∇pq) and (qtHpq)
are both zero.

The equation of the tangent line L at a smooth point p is∇px = 0, or

(1.4.12)tanlineeq f0(p)x0 + f1(p)x1 + f2(p)x2 = 0

which tells us that a point q lies on L if the linear term in t of (1.4.11) is zero.
Taylor’s formula shows that the restriction of f to every line through a singular point has a multiple zero.

However, we will speak of tangent lines only at smooth points of the curve.
The next lemma is obtained by applying Euler’s Formula to the entries of Hp and ∇p.

1.4.13. Lemma.applyeuler ptHp = (d− 1)∇p and ∇p p = d f(p). �

We rewrite Equation 1.4.9 one more time, using the notation 〈u, v〉 to represent the symmetric bilinear
form utHp v on V = C3. It makes sense to say that this form vanishes on a pair of points of P2, because the
condition 〈u, v〉 = 0 doesn’t depend on the vectors that represent those points.

1.4.14. Proposition.linewith-
form

With notation as above,
(i) Equation (1.4.9) can be written as

f(p+ tq) = 1
d(d−1) 〈p, p〉 + 1

d−1 〈p, q〉t + 1
2 〈q, q〉t

2 + O(3)

(ii) A point p is a smooth point of C if and only if 〈p, p〉 = 0 but 〈p, v〉 is not identically zero.

proof. (i) This follows from Lemma 1.4.13.

(ii) 〈p, v〉 = (d− 1)∇pv isn’t identically zero at a smooth point p because∇p won’t be zero. �

1.4.15. Corollary.bilinform Let p be a smooth point of C, let q be a point of P2 distinct from p. and let L be the line
through p and q. Then
(i) L is tangent to C at p if and only if 〈p, p〉 = 〈p, q〉 = 0, and
(ii) p is a flex point of C with tangent line L if and only if 〈p, p〉 = 〈p, q〉 = 〈q, q〉 = 0. �
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1.4.16. Theorem. tangent-
line

A smooth point p of the curve C is a flex point if and only if the determinant detHp of the
Hessian matrix at p is zero.

proof. Let p be a smooth point of C, so that 〈p, p〉 = 0. If detHp = 0, the form 〈u, v〉 is degenerate. There is
a nonzero null vector q, so that 〈p, q〉 = 〈q, q〉 = 0. But because 〈p, v〉 isn’t identically zero, q is distinct from
p. So p is a flex point.

Conversely, suppose that p is a flex point and let q be a point on the tangent line at p and distinct from p,
so that 〈p, p〉 = 〈p, q〉 = 〈q, q〉 = 0. The restriction of the form to the two-dimensional space W spanned by p
and q is zero, and this implies that the form is degenerate. If (p, q, v) is a basis of V with p, q in W , the matrix
of the form will look like this: 0 0 ∗

0 0 ∗
∗ ∗ ∗


�

1.4.17. Proposition. hess-
notzero(i) Let f(x, y, z) be an irreducible homogeneous polynomial of degree at least two. The Hessian determinant

detH isn’t divisible by f . In particular, the Hessian determinant isn’t identically zero.
(ii) A curve that isn’t a line has finitely many flex points.

proof. (i) Let C be the curve defined by f . If f divides the Hessian determinant, every smooth point of C will
be a flex point. We set z = 1 and look on the standard affine U2, choosing coordinates so that the origin p is
a smooth point of C, and ∂f

∂y 6= 0 at p. The Implicit Function Theorem tells us that we can solve the equation
f(x, y, 1) = 0 for y locally, say y = ϕ(x). The graph Γ : {y = ϕ(x)} will be equal to C in a neighborhood
of p (see below). A point of Γ is a flex point if and only if d2ϕ

dx2 is zero there. If this is true for all points near

to p, then d2ϕ
dx2 will be identically zero, and this implies that ϕ is linear: y = ax. Then y = ax solves f = 0,

and therefore y−ax divides f(x, y, 1). But f(x, y, z) is irreducible, and so is f(x, y, 1). Therefore f(x, y, 1)
is linear, contrary to hypothesis.

(ii) This follows from (i) and (1.3.11). The irreducible polynomial f and the Hessian determinant have finitely
many common zeros. �

1.4.18. Review. ifthm(about the Implicit Function Theorem)

Let f(x, y) be a polynomial such that f(0, 0) = 0 and df
dy (0, 0) 6= 0. The Implicit Function Theorem

asserts that there is a unique analytic function ϕ(x), defined for small x, such that ϕ(0) = 0 and f(x, ϕ(x)) is
identically zero.

We make some further remarks. LetR be the ring of functions that are defined and analytic for small x. In
the ringR[y] of polynomials in y with coefficients inR, the polynomial y−ϕ(x), which is monic in y, divides
f(x, y). To see this, we do division with remainder of f by y − ϕ(x):

(1.4.19) divremf(x, y) = (y − ϕ(x))q(x, y) + r(x)

The quotient q and remainder r are in R[y], and r(x) has degree zero in y, so it is in R. Setting y = ϕ(x) in
the equation, one sees that r(x) = 0.

Let Γ be the graph of ϕ in a suitable neighborhood U of the origin in x, y-space. Since f(x, y) = (y −
ϕ(x))q(x, y), the locus f(x, y) = 0 in U has the form Γ∪∆, where Γ, the zero lous of y−ϕ(x), is the graph
of ϕ and ∆ is the zero locus of q(x, y). Differentiating, we find that ∂f∂y (0, 0) = q(0, 0). So q(0, 0) 6= 0. Then
∆ doesn’t contain the origin, while Γ does. This implies that ∆ is disjoint from Γ, locally. A sufficiently small
neighborhood U of the origin won’t contain any of points ∆. In such a neighborhood, the locus of zeros of f
will be Γ. �

1.5 Transcendence Degree
transcdeg

Let F ⊂ K be a field extension. A set α = {α1, ..., αn} of elements of K is algebraically dependent over F
if there is a nonzero polynomial f(x1, ..., xn) with coefficients in F , such that f(α) = 0. If there is no such
polynomial, the set α is algebraically independent over F .
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An infinite set is called algebraically independent if every finite subset is algebraically independent, in
other words, if there is no polynomial relation among any finite set of its elements.

The set {α1} consisting of a single element of K will be algebraically dependent if α1 is algebraic over F .
Otherwise, it will be algebraically independent, and then α1 is said to be transcendental over F .

An algebraically independent set α = {α1, ..., αn} that isn’t contained in a larger algebraically indepen-
dent set is a transcendence basis for K over F . If there is a finite transcendence basis, its order is the tran-
scendence degree of the field extension K of F . Lemma 1.5.2 below shows that all transcendence bases for
K over F have the same order, so the transcendence degree is well-defined. If there is no finite transcendence
basis, the transcendence degree of K over F is infinite.

For example, let K = F (x1, ..., xn) be the field of rational functions in n variables. The variables xi form
a transcendence basis of K over F , and the transcendence degree of K over F is n.

A domain is a nonzero ring with no zero divisors, and a domain that contains a field F as a subring is
called an F -algebra. We use the customary notation F [α1, ..., αn] or F [α] for the F -algebra generated by
a set α = {α1, ..., αn}, and we may denote its field of fractions by F (α1, ..., αn) or by F (α). The set
{α1, ..., αn} is algebraically independent over F if and only if the surjective map from the polynomial algebra
F [x1, ..., xn] to F [α1, ..., αn] that sends xi to αi is bijective.

1.5.1. Lemma.algindtriv-
ialities

Let K/F be a field extension, let α = {α1, ..., αn} be a set of elements of K that is alge-
braically independent over F , and let F (α) be the field of fractions of F [α].
(i) Every element of the field F (α) that isn’t in F is transcendental over F .
(ii) If β is another element ofK, the set {α1, ..., αn, β} is algebraically dependent if and only if β is algebraic
over F (α).
(iii) The algebraically independent set α is a transcendence basis if and only if every element ofK is algebraic
over F (α).

proof. (i) We an write an element z of F (α) as a fraction p/q = p(α)/q(α), where p(x) and q(x) are relatively
prime polynomials. Suppose that z satisfies a nontrivial polynomial relation c0zn + c1z

n−1 + · · · + cn = 0
with ci in F . We may assume that c0 = 1. Substituting z = p/q and multiplying by qn gives us the equation

pn = −q(c1pn−1 + · · ·+ cnq
n−1)

By hypothesis, α is an algebraically independent set, so this equation is equivalent with a polynomial equation
in F [x]. It shows that q divides pn, which contradicts the hypothesis that p and q are relatively prime. So z
satisfies no polynomial relation, and therefore it is transcendental.

The other assertions are left as an exercise. �

1.5.2. Lemma.trdeg
(i) Let K/F be a field extension. If K has a finite transcendence basis, then all algebraically independent
subsets of K are finite, and all transcendence bases have the same order.
(ii) If L ⊃ K ⊃ F are fields and if the degree [L :K] of L over K is finite, then K and L have the same
transcendence degree over F .

proof. (i) Let α = {α1, ..., αr} and β = {β1, ..., βs}. Assume that K is algebraic over F (α) and that the
set β is algebraically independent. We show that s ≤ r. The fact that all transcendence bases have the same
order will follow: If both α and β are transcendence bases, then s ≤ r, and since we can interchange α and β,
r ≤ s.

The proof that s ≤ r proceeds by reducing to the trivial case that β is a subset of α. Suppose that some
element of β, say βs, isn’t in the set α. The set β′ = {β1, ..., βs−1} is algebraically independent, but it isn’t
a transcendence basis. So K isn’t algebraic over F (β′). Since K is algebraic over F (α), there is at least one
element of α, say αr, that isn’t algebraic over F (β′). Then γ = β′∪{αs} will be an algebraically independent
set of order s, and it contains more elements of the set α than β does. Induction shows that s ≤ r. �

1.6 The Dual Curve
dualcurve

(1.6.1)dualplane-
sect

the dual plane
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Let P denote the projective plane with coordinates x0, x1, x2, and let L be the line in P with the equation

(1.6.2) s0x0 + s1x1 + s2x2 = 0 lineequa-
tion

The solutions of this equation determine the coefficients si only up to a common nonzero scalar factor, so L
determines a point (s0, s1, s2) in another projective plane P∗ called the dual plane. We denote that point by
L∗. Moreover, a point p = (x0, x1, x2) in P determines a line in the dual plane, the line with the equation
(1.6.2), when si are regarded as the variables and xi as the scalar coefficients. We denote that line by p∗. The
equation exhibits a duality between P and P∗. A point p of P lies on the line L if and only if the equation is
satisfied, and this means that, in P∗, the point L∗ lies on the line p∗.

(1.6.3) dual-
curvetwo

the dual curve

Let C be a plane projective curve of degree at least two, and let U be the set of its smooth points. Corollary
1.4.7) tells us that U is the complement of a finite subset of C. We define a map

U
t−→ P∗

as follows: Let p be a point of U and let L be the tangent line to C at p. Then t(p) = L∗, where L∗ is the point
of P∗ that corresponds to the line L.

Denoting the partial derivative ∂f
∂xi

by fi as before, the tangent line L at a smooth point p = (x0, x1, x2)
of C has the equation f0x0 + f1x1 + f2x2 = 0 (1.4.12). Therefore L∗ is the point

(1.6.4) (s0, s1, s2) =
(
f0(x), f1(x), f2(x)

)
ellstare-
quation

We’ll drop some parentheses, denoting the image t(U) of U in P∗ by tU . Points of tU correspond to
tangent lines at smooth points of C. We assume that C has degree at least two because, if C were a line, tU
would be a point. Since the partial derivatives have no common factor, the tangent lines aren’t constant when
the degree is two or more.

??figure??

1.6.5. Lemma. phize-
rogzero

Letϕ(s0, s1, s2) be a homogeneous polynomial, and let g(x0, x1, x2) = ϕ(f0(x), f1(x), f2(x)).
Then ϕ(s) is identically zero on tU if and only if g(x) is identically zero on U . This is true if and only if f
divides g.

proof. The first assertion follows from the fact that (s0, s1, s2) and (f0(x), f1(x), f2(x)) represent the same
point of P∗, and the last one follows from Corollary 1.3.15. �

1.6.6. Theorem. dual-
curvethm

Let C be the plane curve defined by an irreducible homogeneous polynomial f of degree d
at least two. With notation as above, the image tU is contained in a curve C∗ in the dual space P∗.

The curve C∗ referred to in the theorem is the dual curve.
proof. If an irreducible homogeneous polynomial ϕ(s) vanishes on tU , it will be unique up to scalar factor
(Corollary 1.3.15).

Let’s use vector notation: x = (x0, x1, x2), s = (s0, s1, s2), and ∇f = (f0, f1, f2). We show first that
there is a nonzero polynomial ϕ(s), not necessarily irreducible or homogeneous, that vanishes on tU . The field
C(x0, x1, x2) has transcendence degree three over C. Therefore the four polynomials f0, f1, f2, and f are alge-
braically dependent. There is a nonzero polynomial ψ(s0, s1, s2, t) such that ψ(f0(x), f1(x), f2(x), f(x)) =
ψ(∇f(x), f(x)) is the zero polynomial. We can cancel factors of t, so we may assume that ψ isn’t divisible by
t. Let ϕ(s) = ψ(s0, s1, s2, 0). This isn’t the zero polynomial because t doesn’t divide ψ.

Let x = (x1, x2, x3) be a vector that represents a point of U . Then f(x) = 0, and therefore

ψ(∇f(x), f(x)) = ψ(∇f(x), 0) = ϕ(∇f(x))

Since ψ(∇f(x), f(x)) is identically zero, ϕ(∇f(x)) = 0 for all x in U .
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Next, because the vectors x and λx represent the same point of U , ϕ(∇f(λx)) = 0. Since f has degree
d, the derivatives fi are homogeneous of degree d − 1. Therefore ϕ(∇f(λx)) = ϕ(λd−1∇f(x)) = 0 for all
λ. Because the scalar λd−1 can be any complex number, Lemma 1.3.2 tells us that the homogeneous parts of
ϕ(∇f(x)) vanish for all x ∈ U . The homogeneous parts of degree r of ϕ(s) correspond to the homogenous
parts of degree r(d− 1) of ϕ(∇f(x)). So the homogeneous parts of ϕ(s) vanish on tU . This shows that there
is a homogeneous polynomial ϕ(s) that vanishes on tU . We choose such a polynomial ϕ(s). Let its degree be
r.

If f has degree d, the polynomial g(x) = ϕ(∇f(x)) will be homogeneous, of degree r(d−1). It will vanish
on U , and therefore on C (1.3.20). So f will divide g. Finally, if ϕ(s) factors, then g(x) factors accordingly,
and because f is irreducible, it will divide one of the factors of g. The corresponding factor of ϕ will vanish
on tU (1.6.5). So we may replace the homogeneous polynomial ϕ by one of its irreducible factors. �

In principle, the proof of Theorem 1.6.6 gives a method for finding a polynomial that vanishes on the dual
curve. One looks for a polynomial relation among fx, fy, fz, f , and then sets f = 0. But it is usually painful
to determine the defining polynomial of C∗ explicitly. Most often, the degrees of C and C∗ will be different,
and several points of the dual curve C∗ may correspond to a singular point of C, and vice versa.

However, computation is easy for a conic.

1.6.7. Examples.exampled-
ualone (i) (the dual of a conic) Let f = x0x1 + x0x2 + x1x2 and let C be the conic f = 0. Let (s0, s1, s2) =

(f0, f1, f2) = (x1+x2, x0+x2, x0+x1). Then

(1.6.8) s2
0 + s2

1 + s2
2 − 2(x2

0 + x2
1 + x2

2) = 2f and s0s1 + s1s2 + s0s2 − (x2
0 + x2

1 + x2
2) = 3fexampled-

ualtwo
We eliminate (x2

0 + x2
1 + x2

2) from the two equations.

(1.6.9) (s2
0 + s2

1 + s2
2)− 2(s0s1 + s1s2 + s0s2) = −4fequationd-

ualthree
Setting f = 0 gives us the equation of the dual curve. It is another conic.

(ii) (the dual of a cuspidal cubic) It is too much work to computethe dual of a smooth cubic, which is a
curve of degree 6. We compute the dual of a cubic with a cusp instead. The curve C defined by the irreducible
polynomial f = y2z + x3 has a cusp at (0, 0, 1). The Hessian matrix of f is

H =

6x 0 0
0 2z 2y
0 2y 0


and the Hessian determinant h = detH is −24xy2. The common zeros of f and h are the cusp point (0, 0, 1)
and a single flex point (0, 1, 0).

We scale the partial derivatives of f to simplify notation. Let u = fx/3 = x2, v = fy/2 = yz, and
w = fz = y2. Then

v2w − u3 = y4z2 − x6 = (y2z + x3)(y2z − x3) = f(y2z − x3)

The zero locus of the irreducible polynomial v2w − u3 is the dual curve. It is another cuspidal cubic. �

(1.6.10)equa-
tionofcstar

a local equation for the dual curve

We label the coordinates in P and P∗ as x, y, z and u, v, w, respectively, and we work in a neighborhood of
a smooth point p0 of the curve C defined by a homogeneous polynomial f(x, y, z), choosing coordinates so
that p0 = (0, 0, 1), and that the tangent line at p0 is the line L0 : {y = 0}. The image of p0 in the dual curve
C∗ is L∗0 : (u, v, w) = (0, 1, 0).

Let f̃(x, y) = f(x, y, 1). In the affine x, y-plane, the point p0 becomes the origin p0 = (0, 0). So
f̃(p0) = 0, and since the tangent line is L0, ∂f̃∂x (p0) = 0, while ∂f̃

∂y (p0) 6= 0. We solve the equation f̃ = 0 for

y as an analytic function y(x) for small x, with y(0) = 0. Let y′(x) denote the derivative dy
dx . Differentiating

the equation f(x, y(x)) = 0 shows that y′(0) = 0.
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Let p̃1 = (x1, y1) be a point of C0 near to p̃0, so that y1 = y(x1), and let y′1 = y′(x1). The tangent line
L1 at p̃1 has the equation

(1.6.11) y − y1 = y′1(x− x1) localtan-
gent

Putting z back, the homogeneous equation of the tangent line L1 at the point p1 = (x1, y1, 1) is

−y′1x+ y + (y′1x1−y1)z = 0

The point L∗1 of the dual plane that corresponds to L1 is (−y′1, 1, y′1x1−y1).
Let’s drop the subscript 1. As x varies, and writing y = y(x) and y′ = y′(x),

(1.6.12) (u, v, w) = (−y′, 1, y′x−y), projlocal-
tangent

There may be accidents: L0 might be tangent to C at distinct smooth points q0 and p0, or it might pass
through a singular point of C. If either of these accidents occurs, we can’t analyze the neighborhood of L∗0 in
C∗ by this method. But, provided that there are no accidents, the path (1.6.12) will trace out the dual curve C∗

near to L∗0 = (0, 1, 0). (See (1.4.18).)

(1.6.13) bidualonethe bidual

The bidual C∗∗ of a curve C is the dual of the curve C∗. It is a curve in the space P∗∗, which is P.

1.6.14. Theorem. bidualCA plane curve of degree greater than one is equal to its bidual: C∗∗ = C.

Let C be a plane curve. Weuse the following notation:

• U is the set of smooth points of C, as above, and U∗ is the set of smooth points of C∗.

• U∗
t∗−→ P∗∗ = P is the map analogous to the map U t−→ P∗.

• V is the set of smooth points p of C such that t(p) is a smooth point of C∗, and V ∗ is the image t(V ) of
V .

Thus V ⊂ U ⊂ C and V ∗ ⊂ U∗ ⊂ C∗.

1.6.15. Lemma. vopen
(i) V is the complement of a finite set of points of C.
(ii) Let p1 be a point near to a smooth point p of a curve C, let L1 and L be the tangent line to C at p1 and p,
respectively, and let q be intersection point L1 ∩ L. Then lim

p1→p0
q = p.

(iii) If p is a point of V with tangent line L, the tangent line to C∗ at L∗ is p∗.
(iv) If L is the tangent line at a point p of V , then t(p) = L∗ ∈ V ∗ and t∗(L∗) = p.

proof. (i) Let S and S∗ denote the finite sets of singular points of C, and C∗, respectively, the set U of smooth
points of C is the complement of S in C, and V is obtained from U by deleting points whose images are in
S∗. The fibre of t over a point L∗ of C∗ is the set of smooth points p of C such that the tangent line at p is
L. Since L meets C in finitely many points, the fibre is finite. So the inverse image of S∗ ∩ U will be a finite
subset of U .

(ii) We work analytically in a neighborhood of p, choosing coordinates so that p = (0, 0, 1) and that L is the
line {y = 0}. Let (xq, yq, 1) be the coordinates of q = L∩L1. Since q is a point of L, yq = 0. The coordinate
xq can be obtained by substituting x = xq and y = 0 into the equation (1.6.11) of L1:

xq = x1 − y1/y
′
1.

When a function has an nth order zero at the point x = 0, i.e, when it has the form y = xnh(x), where
n > 0 and h(0) 6= 0, the order of zero of its derivative at that point is n−1. This is verified by differentiating

20



xnh(x). Since the function y(x) has a zero of positive order at p, lim
p1→p0

y1/y
′
1 = 0. We also have lim

p1→p0
x1 =

0. So lim
p1→p0

xq = 0 and lim
p1→p0

q = lim
p1→p0

(xq, yq, 1) = (0, 0, 1) = p.

figure

(iii) Let p1 be a point of C near to p, and let L1 be the tangent line to C at p1. The image of p1 is L∗1 =
(f0(p1), f1(p1), f2(p1)). Because the partial derivatives fi are continuous,

lim
p1→p0

L∗1 = (f0(p), f1(p), f2(p)) = L∗

Let q = L ∩ L1. Then q∗ is the line through the points L∗ and L∗1. As p1 approaches p, L∗1 approaches L∗,
and therefore q∗ approaches the tangent line to C∗ at L∗. On the other hand, (ii) tells us that q∗ approaches p∗.
Therefore the tangent line at L∗ is p∗.

(iv) Since V ⊂ U , t(p) = L∗ by definition of t, and if p ∈ V , then t(p) ∈ V ∗ by definition of V ∗. Since L∗ is
a point of V ∗, and since the definition of t∗ is analogous to t, t∗(L∗) is the tangent line to C∗ at L∗, which,
by (iii), is p∗. �

proof of theorem 1.6.14. Let V be the subset of C defined above, let U∗ be the set of smooth points of C∗,

and let U∗ t∗−→ P∗∗ = P be the map analogous to the map U t−→ P∗. For all points p of V , the map t∗ is
t∗(L∗) = (p∗)∗ = p. Thus t∗t(p) = p. It follows that the restriction of t to V is injective, and that it defines
a bijective map from V to its image tV , whose inverse function is t∗. So V is contained in the bidual C∗∗.
Since V is dense in C and C∗∗ is a closed set, C ⊂ C∗∗. Since C and C∗∗ are curves, C = C∗∗. �

1.6.16. Corollary.cstarisim-
age

(i) Let U be the set of smooth points of a plane curve C, and let denote the map from U to
the dual curve C∗. The image tU of U is the complement of a finite subset of C∗.

(ii) If C is smooth, the map C t−→ C∗, which is defined at all points of C, is surjective.

proof. (i) Let U and V be as above, and let U∗ be the set of smooth points of C∗. The image tV of V is
contained in U∗. Then V = t∗tV ⊂ t∗U∗ ⊂ C∗∗ = C. Since V is the complement of a finite subset of C,
t∗U∗ is q a finite subset of C too. The assertion to be proved follows when we switch C and C∗.

(ii) The map t is continuous, so its image tC is a commpact subset of C∗, and by (i), its complement S is a
finite set. Therefore S is both open and closed. It consists of isolated points of C∗. Since a plane curve has no
isolated point (1.3.18), S is empty. �

1.7 Resultants and Discriminants
resultant

Let F and G be monic polynomials in x with variable coefficients:

(1.7.1) F (x) = xm + a1x
m−1 + · · ·+ am and G(x) = xn + b1x

n−1 + · · ·+ bnpolys

The resultant Res(F,G) of F and G is a certain polynomial in the coefficients. Its important property is that,
when the coefficients of are in a field, the resultant is zero if and only if F and G have a common factor.

As an example, suppose that the coefficients ai and bi in (1.7.1) are polynomials in t, so that F and G
become polynomials in two variables. Let C and D be (possibly reducible) curves F = 0 and G = 0 in the
affine plane A2

t,x, and let S be the set of intersections: S = C ∩ D. The resultant Res(F,G) , computed
regarding x as the variable, will be a polynomial in t whose roots are the t-coordinates of the set S.

figure

The analogous statement is true when there are more variables. For example, if F and G are polynomials in
x, y, z, the loci C : {F = 0} and D : {G = 0} in A3 will be surfaces, and S = C ∩D will be a curve. The
resultant Resz(F,G), computed regarding z as the variable, is a polynomial in x, y. Its zero locus in the plane
A2
xy is the projection of S to the plane.
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The formula for the resultant is nicest when one allows leading coefficients different from 1. We work with
homogeneous polynomials in two variables to prevent the degrees from dropping when a leading coefficient
happens to be zero.

Let f and g be homogeneous polynomials in x, y with complex coefficients:

(1.7.2) f(x, y) = a0x
m + a1x

m−1y + · · ·+ amy
m, g(x, y) = b0x

n + b1x
n−1y + · · ·+ bny

n hompolys

Suppose that they have a common zero (x, y) = (u, v) in P1
xy . Then vx−uy divides both g and f . The

polynomial h = fg/(vx−uy) has degree r = m+n−1, and it will be divisible by f and by g, say h = pf = qg,
where p and q are homogeneous polynomials of degrees n−1 and m−1, respectively. Then h will be a linear
combination pf of the polynomials xiyjf , with i+j = n−1, and it will also be a linear combination qg of the
polynomials xky`g, with k+` = m−1. The equation pf = qg tells us that the r+1 polynomials of degree r,

(1.7.3) xn−1f, xn−2yf, ..., yn−1f ; xm−1g, xm−2yg, ..., ym−1g mplus-
npolys

will be dependent. For example, suppose that f has degree 3 and g has degree 2. If f and g have a common
zero, the polynomials

xf = a0x
4 + a1x

3y + a2x
2y2 + a3xy

3

yf = a0x
3y + a1x

2y2 + a2xy
3 + a3y

4

x2g = b0x
4 + b1x

3y + b2x
2y2

xyg = b0x
3y + b1x

2y2 + b2xy
3

y2g = bx2y2 + b1xy
3 + b2y

4

will be dependent. Conversely, if the polynomials (1.7.3) are dependent, there will be an equation of the form
pf = qg, with p of degree n−1 and q of degree m−1. Then at least one zero of g must also be a zero of f .

The polynomials (1.7.3) have degree r (= m+n−1). We form a square (r+1)×(r+1) matrix R, the
resultant matrix, whose columns are indexed by the monomials xr, xr−1y, ..., yr of degree r, and whose rows
list the coefficients of the polynomials (1.7.3). The matrix is illustrated below for the cases m,n = 3, 2 and
m,n = 1, 2, with dots representing entries that are zero:

(1.7.4) R =


a0 a1 a2 a3 ·
· a0 a1 a2 a3

b0 b1 b2 · ·
· b0 b1 b2 ·
· · b0 b1 b2

 or R =

a0 a1 ·
· a0 a1

b0 b1 b2

 resmatrix

The resultant of f and g is defined to be the determinant ofR.

(1.7.5) Res(f, g) = detR resequals-
det

Here, the coefficients of f and g can be in any ring.
The resultant Res(F,G) of the monic, one-variable polynomials F (x) = xm+a1x

m−1 + · · ·+am and
G(x) = xn+b1x

n−1+· · ·+bn is the determinant of the matrixR, with a0 = b0 = 1.

1.7.6. Corollary. homogre-
sult

Let f and g be homogeneous polynomials in two variables, or monic polynomials in one
variable, of degrees m and n, respectively, and with coefficients in a field. The resultant Res(f, g) is zero if
and only if f and g have a common factor. If so, there will be polynomials p and q of degrees n−1 and m−1
respectively, such that pf = qg. If the coefficients are complex numbers, the resultant is zero if and only if f
and g have a common root. �

When the leading coefficients a0 and b0 of f and g are both zero, the point (1, 0) of P1
xy will be a zero of f

and of g. In this case, one could say that f and g have a common zero at infinity.

(1.7.7) weightsweighted degree
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When defining the degree of a polynomial, one may assign an integer called a weight to each variable. If
one assigns weight wi to the variable xi, the monomial xe11 · · ·xenn gets the weighted degree

e1w1 + · · ·+ enwn

For instance, it is natural to assign weight k to the coefficient ak of the polynomial f(x) = xn − a1x
n−1 +

a2x
n−2 − · · · ± an because, if f factors into linear factors, f(x) = (x− α1) · · · (x− αn), then ak will be the

kth elementary symmetric function in α1, ..., αn. When written as a polynomial in α, the degree of ak will be
k.

We leave the proof of the next lemma as an exercise.

1.7.8. Lemma.degresult Let f(x, y) and g(x, y) be homogeneous polynomials of degrees m and n respectively, with
variable coefficients ai and bi, as in (1.7.2). When one assigns weight i to ai and to bi, the resultant Res(f, g)
becomes a weighted homogeneous polynomial of degree mn in the variables {ai, bj}. �

1.7.9. Proposition.resroots Let F and G be products of monic linear polynomials, say F =
∏
i(x − αi) and G =∏

j(x− βj). Then

Res(F,G) =
∏
i,j

(αi − βj) =
∏
i

G(αi)

Note. Since the resultant vanishes when αi = βj , it must be divisible by αi − βj . So its weighted degree,
though rather large, is as small as it could be.
proof. The equality of the second and third terms is obtained by substituting αi for x into the formula G =∏

(x− βj). We prove that the first and second terms are equal.
Let the elements αi and βj be variables, let R denote the resultant Res(F,G) and let Π denote the product∏

i.j(αi − βj). When we write the coefficients of F and G as symmetric functions in the roots αi and βj , R
will be homogeneous. Its (unweighted) degree in {αi, βj} will be mn, the same as the degree of Π (Lemma
1.7.8). To show that R = Π, we choose i, j and divide R by the polynomial αi − βj , considered as a monic
polynomial in αi:

R = (αi − βj)q + r,

where r has degree zero in αi. The resultantR vanishes when we substitute αi = βj . Looking at this equation,
we see that the remainder r also vanishes when αi = βj . On the other hand, the remainder is independent of
αi. It doesn’t change when we set αi = βj . Therefore the remainder is zero, and αi − βj divides R. This is
true for all i and all j, so Π divides R, and since these two polynomials have the same degree, R = cΠ for
some scalar c. To show that c = 1, one computes R and Π for some particular polynomials. We suggest doing
the computation with F = xm and G = xn − 1. �

1.7.10. Corollary.restriviali-
ties

Let F,G,H be monic polynomials and let c be a scalar. Then
(i) Res(F,GH) = Res(F,G) Res(F,H), and
(ii) Res(F (x−c), G(x−c)) = Res(F (x), G(x)). �

(1.7.11)discrim-
sect

the discriminant

The discriminant Discr(F ) of a polynomial F = a0x
m + a1x

n−1 + · · · am is the resultant of F and its
derivative F ′:

(1.7.12) Discr(F ) = Res(F, F ′)discrdef

The computation of the discriminant is made using the formula for the resultant of a polynomial of degree m.
It will be a weighted polynomial of degree m(m−1). The definition makes sense when the leading coefficient
a0 is zero, but the discriminant will be zero in that case.

When the coefficients of F are complex numbers, the discriminant is zero if and only if either F has a
multiple root, which happens when F and F ′ have a common factor, or else F has degree less than m.
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Note. The formula for the discriminant is often normalized by a factor±ak0 . We won’t make this normalization,
so our formula is slightly different from the usual one.

Suppose that the coefficients ai of F are polynomials in t, so that F becomes a polynomial in two variables.
Let C be the locus F = 0 in the affine plane A2

t,x. The discriminant Discrx(F ), computed regarding x as the
variable, will be a polynomial in t. At a root t0 of the discriminant, the line L0 : {t = t0} is tangent to C, or
passes though a singular point of C.

The discriminant of the quadratic polynomial F (x) = ax2 + bx+ c is

(1.7.13) det

 a b c
2a b ·
· 2a b

 = −a(b2 − 4ac). discrquadr

The discriminant of the monic cubic x3 + px+ q whose quadratic coefficient is zero is

(1.7.14) discrcubicdet


1 · p q ·
· 1 · p q
3 · p · ·
· 3 · p ·
· · 3 · p

 = 4p3 + 27q2

These are the negatives of the usual formulas. The signs are artifacts of our definition. Though it conflicts with
our definition, we’ll follow tradition and continue writing the discriminant of the polynomial ax2 + bx+ c as
b2 − 4ac.

1.7.15. Proposition. dis-
crnotzero

LetK be a field of characteristic zero. The discriminant of an irreducible polynomial F
with coefficients in K isn’t zero. Therefore an irreducible polynomial F with coefficients in K has no multiple
root.

proof. When F is irreducible, it cannot have a factor in common with the derivative F ′, which has lower
degree. �

This proposition is false when the characteristic of K isn’t zero. In characteristic p, the derivative F ′ might be
the zero polynomial.

1.7.16. Proposition. discrfor-
mulas

Let F =
∏

(x− αi) be a polynomial that is a product of monic linear factors. Then

Discr(F ) =
∏
i

F ′(αi) =
∏
i6=j

(αi − αj) = ±
∏
i<j

(αi − αj)2

proof. The fact that Discr(F ) =
∏
F ′(αi) follows from Proposition 1.7.9. We show thatF ′(αi) =

∏
j,j 6=i(αi−

αj), noting that ∏
j,j 6=i

(αi − αj) =
∏
i

(αi − α1) · · · ̂(αi − αi) · · · (αi − αn)

where the hat ̂ indicates that that term is deleted. By the product rule for differentiation,

F ′(x) =
∑
k

(x− α1) · · · ̂(x− αk) · · · (x− αn)

Substituting x = αi, all terms in the sum, except the one with i = k, become zero. �

1.7.17. Corollary. translate-
discr

Discr(F (x)) = Discr(F (x− c)). �

1.7.18. Proposition. discrpropLet F (x) and G(x) be monic polynomials. Then

Discr(FG) = ±Discr(F ) Discr(G)Res(F,G)2
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proof. This proposition follows from Propositions 1.7.9 and 1.7.16 for polynomials with complex coefficients.
It is true for polynomials with coefficients in any ring because it is an identity. For the same reason, Corollary
1.7.10 remains true with coefficients in any ring. �

When f and g are polynomials in several variables including a variable z, Resz(f, g) and Discrz(f) de-
note the resultant and the discriminant, computed regarding f, g as polynomials in z. They will be polynomials
in the other variables.

1.7.19. Lemma.firroverK Let f be an irreducible polynomial in C[x, y, z] of positive degree in z, but not divisible by
z. The discriminant Discrz(f) of f with respect to the variable z is a nonzero polynomial in x, y.

proof. This follows from Lemma 1.3.13 (ii) and Proposition 1.7.15. �

(1.7.20)coverline projection to a line

We denote by π the projection P2 −→ P1 that drops the last coordinate, sending a point (x, y, z) to (x, y).
This projection is defined at all points of P2 except at the center of projection, the point q = (0, 0, 1).

The fibre of π over a point p̃ = (x0, y0) of P1 is the line through p = (x0, y0, 0) and q = (0, 0, 1), with the
point q omitted – the set of points (x0, y0, z0). We’ll denote that line by Lpq .

figure

When a curve C in the plane doesn’t contain the center of projection q, the projection P2 π−→ P1 will
be defined at all points of C. Say that such a curve C is defined by an irreducible homogeneous polynomial
f(x, y, z) of degree d. We write f as a polynomial in z,

(1.7.21) f = c0z
d + c1z

d−1 + · · ·+ cdpoly-
inztwo

with ci homogeneous, of degree i in x, y. Then c0 = f(0, 0, 1) will be a nonzero constant that we normalize
to 1, so that f becomes a monic polynomial of degree d in z.

The fibre of C over a point p̃ = (x0, y0) of P1 is the intersection of C with the line Lpq described above.
It consists of the points (x0, y0, α) such that α is a root of the one-variable polynomial

(1.7.22) f̃(z) = f(x0, y0, z)effp

We call C a branched covering of P1 of degree d. All but finitely many fibres of C over P1 consist of d points
(Lemma 1.7.19). The fibres with fewer than d points are those above the zeros of the discriminant. They are
the branch points of the covering.

(1.7.23)genus the genus of a plane curve

We use the discriminant to describe the topological structure of smooth plane curves in the classical topology.

1.7.24. Theorem.
curveshome-

omorphic

A smooth projective plane curve of degree d is a compact, orientable and connected
manifold of dimension two.

The fact that a smooth curve is a two-dimensional manifold follows from the Implicit Function Theorem. (See
the discussion at (1.4.4)).

orientability: A two-dimensional manifold is orientable if one can choose one of its two sides in a continuous,
consistent way. A smooth curve C is orientable because its tangent space at a point is a one-dimensional
complex vector space – the affine line with the equation (1.4.11). Multiplication by i orients the tangent space
by defining the counterclockwise rotation. Then the right-hand rule tells us which side of C is “up”.

compactness: A plane projective curve is compact because it is a closed subset of the compact space P2.

The connectedness of a plane curve is a subtle fact whose proof mixes topology and algebra. Unfortunately,
I don’t know a proof that fits into our discussion here. It will be proved later (see Theorem 8.3.11).
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The topological Euler characteristic e of a compact, orientable two-dimensional manifold M is the al-
ternating sum b0 − b1 + b2 of its Betti numbers. It can be computed using a topological triangulation, a
subdivision of M into topological triangles, called faces, by the formula

(1.7.25) e = |vertices| − |edges|+ |faces| vef

For example, a sphere is homeomorphic to a tetrahedron, which has four vertices, six edges, and four faces. Its
Euler characteristic is 4− 6 + 4 = 2. Any other topological triangulation of a sphere, including the one given
by the icosahedron, yields the same Euler characteristic.

Every compact, connected, orientable two-dimensional manifold is homeomorphic to a sphere with a finite
number of “handles”. Its genus is the number of handles. A torus has one handle. Its genus is one. The
projective line P1, which is a two-dimensional sphere, has genus zero.

Figure

The Euler characteristic and the genus are related by the formula

(1.7.26) e = 2− 2g genuseuler

The Euler characteristic of a torus is zero, and the Euler characteristic of P1 is two.

To compute the the Euler characteristic of a smooth curve C of degree d, we analyze a generic projection
to represent C as a branched covering of the projective line: C π−→ P1.

figure

We choose generic coordinates x, y, z in P2 and project form the point q = (0, 0, 1). When the defining
equation of C is written as a monic polynomial in z: f = zd + c1z

d−1 + · · · + cd where ci is a homo-
geneous polynomial of degree i in the variables x, y, the discriminant Discrz(f) with respect to z will be a
homogeneous polynomial of degree d(d−1) = d2−d in x, y.

Let p̃ be the image in P1 of a point p of C. The covering C π−→ P1 will be branched at p̃ when the tangent
line at p is the line Lpq through p and the center of projection q. When q is generic, such a point p will not
be a flex point, and then C and Lpq will have one intersection p of multiplicity two, and d−2 intersections of
multiplicity one (1.9). It is intuitively plausible that the discriminant Discrz(f) will have a simple zero at the
image p̃ of p. This will be proved below, in Proposition 1.9.13. Leet’s assume that this is known. Since the
discriminant has degree d2−d, there will be d2−d points p̃ in P1 at which the discriminant vanishes and the
fibre contains d−1 points. They are the branch points of the covering. All other fibres consist of d points.

We triangulate the sphere P1 in such a way that the branch points are among the vertices, and we use the
inverse images of the vertices, edges, and faces to triangulate C. Then C will have d faces and d edges lying
over each face and each edge of P1, respectively. There will also be d vertices of C lying over a vertex of P1,
except when it is one of the d2−d branch points. In that case the the fibre will contain only d−1 vertices.
The Euler characteristic of C is obtained by multiplying the Euler characteristic of P1 by d and subtracting the
number of branch points.

(1.7.27) eulercovere(C) = d e(P1)− (d2−d) = 2d− (d2−d) = 3d− d2

This is the Euler characteristic of any smooth curve of degree d, so we denote it by ed:

(1.7.28) ed = 3d− d2 equatione

Formula (1.7.26) shows that the genus gd of a smooth curve of degree d is

(1.7.29) gd = 1
2 (d2 − 3d+ 2) =

(
d−1

2

)
equationg

Thus smooth curves of degrees 1, 2, 3, 4, 5, 6, ... have genus 0, 0, 1, 3, 6, 10, ..., respectively. A smooth plane
curve cannot have genus two.

The generic projection to P1 also computes the degree of the dual curve C∗ of a smooth curve C of degree
d. The degree of C∗ is the number of intersections of C∗ with the generic line q∗ in P∗. The intersection points
have the form L∗, where q is a point of L, and L is tangent to C at some point p. As we have seen, there are
d(d− 1) such points.
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1.7.30. Corollary.degdual Let C be a plane curve of degree d.
(i) The degree d∗ of the dual curve C∗ is equal to the number of tangent lines at smooth points of C that pass
through a generic point q of the plane.
(ii) If C smooth, the degree d∗ of the dual curve C∗ is d(d− 1). �

The formula d∗ = d(d − 1) is incorrect when C is singular. If C is a smooth curve of degree 3, C∗ will
have degree 6, and if C∗ were smooth its dual curve C∗∗, would have degree 30. Since C∗∗ = C, the dual
curve is singular.

1.8 Nodes and Cusps
nodes

Let C be the projective curve defined by an irreducible homogeneous polynomial f(x, y, z) of degree d, and
let p be a point of C. We choose coordinates so that p = (0, 0, 1), and we set z = 1. This gives us an affine
curve C0 in A2

x,y , the zero set of the polynomial f̃(x, y) = f(x, y, 1), and p becomes the origin (0, 0). We
write

(1.8.1) f̃(x, y) = f0 + f1 + f2 + · · ·+ fd,seriesf

where fi is the homogeneous part of f̃ of degree i. Then fi is also the coefficient of zd−i in f(x, y, z).
If the origin p is a point of C0, the constant term f0 will be zero. Then the linear term f1 will define the

tangent direction to C0 at p, If f0 and f1 are both zero, p will be a singular point of C.
It seems permissible to drop the tilde and the subscript 0 in what follows, denoting f(x, y, 1) by f(x, y),

and C0 by C.

(1.8.2)singmult the multiplicity of a singular point

Let f(x, y) be an analytic function, defined for small x, y, and let C denote the locus of zeros of f in a
neighborhood of p = (0, 0). To describe the singularity of C at p, we expand f as a series in x, y and look at
the part of f of lowest degree. The smallest integer r such that fr(x, y) isn’t zero is called the multiplicity of
p. When the multiplicity of p is r, f will have the form

(1.8.3) f(x, y) = fr + fr+1 + · · ·+ fdmultr

Let L be a line {vx = uy} through p. The intersection multiplicity of C and L at p will be r unless
fr(u, v) is zero. It will be greater than r if fr(u, v) = 0. Such a line L is called a special line. The special
lines correspond to the zeros of fr in P1. Because fr has degree r, there will be at most r special lines.

1.8.4.goober14

a Singular Point, with its Special Lines

(1.8.5)dpt double points
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To analyze a singularity at the origin p, we blow up the plane. The blowup is the map W π−→ X from the
(x,w)-plane W to the (x, y)-plane X defined by π(x,w) = (x, xw). It is called a “blowup” of X because the
fibre over the origin in X is the w-axis {x = 0} in W . The map π is bijective at points at which x 6= 0, and
points (x, 0) of X with x 6= 0 aren’t in its image. (It might seem more appropriate to call the inverse of π the
blowup, but the inverse isn’t a map.)

Suppose that the origin p is a double point, a point of multiplicity 2. Let the quadratic part of f be

(1.8.6) f2 = ax2 + bxy + cy2 quadrat-
icterm

We may adjust coordinates so that c isn’t zero, and we normalize c to 1. Writing f(x, y) = ax2 + bxy + y2 +
dx3 + · · · , we make the substitution y = xw and cancel x2. This gives us a polynomial

g(x,w) = f(x, xw)/x2 = a+ bw + w2 + dx+ · · ·

in which the terms represented by · · · are divisible by x. Let D be the locus {g = 0} in W . The map π
restricts to a map D π−→ C. Since π is bijective at points at which x 6= 0, so is π.

Suppose first that the quadratic polynomial y2 + by + a has distinct roots α, β, so that ax2 + bxy + y2 =
(y − αx)(y − βx) and g(x,w) = (w − α)(w − β) + dx + · · · . In this case, the fibre of D over the origin
p in X consists of the two points p1 = (0, α) and p2 = (0, β). The partial derivative ∂g

∂t is nonzero at p1

and p2, so those are smooth points of D. We can solve g(x,w) = 0 for w as analytic functions of x near
zero, say w = u(x) and w = v(x) with u(0) = α and v(0) = β. The image of π(D) is C, so C has two
analytic branches y = xu(x) and y = xv(x) through the origin with distinct tangent directions α and β. This
singularity is called a node. A node is the simplest singularity that a curve can have.

When the discriminant b2 − 4ac is zero, f2 will be a square, and we will have

f(x, y) = (y − αx)2 + dx3 + · · ·

The singularity of C at the origin is called a cusp. The standard cusp is the locus y2 = x3.
The blowup substitution y = xw gives g(x,w) = (w−α)2 +dx+ · · · . Here the fibre over (x, y) = (0, 0)

is the point (x,w) = (0, α), and gw(0, α) = 0. However, if d 6= 0, then gx(0, α) 6= 0. In this case, D
is smooth at (0, 0), and the equation of C has the form (y − αx)2 = dx3 + · · · . All cusps are analytically
equivalent with the standard cusp.

Cusps have an interesting geometry. The intersection of the standard cusp X : {y2 = x3} with a small
3-sphere S : {xx+ yy = ε in C2 is a trefoil knot .

To explain this, we parametrize X by (x(t), y(t)) = (t3, t2), and we restrict to the unit circle t = eiθ. The
locus of points of X of absolute value

√
2 is (x(t), y(t)) = (e3iθ, e2iθ). To visualize this locus, we embed

it in the product of the unit x-circle and the unit y-circle, a torus, and we distort that torus, representing it as
the usual torus T in R3. Let the circumference of T represent the x-coordinate, and let the loop through the
hole represent y. Then, as θ runs from 0 to 2π, (x(t), y(t)) goes around the circumference twice, and it loops
through the hole three times, as is illustrated below.

trefoil2.png trefoil2

figure

1.8.7. Corollary. nodeor-
cusp

A double point p of a curve C is a node or a cusp if and only if the blowup of C is smooth
at the points that lie over p. �

The simplest example of a double point that isn’t a node or cusp is a tacnode, a point at which two smooth
branches of a curve intersect with the same tangent direction.
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1.8.8. a Node, a Cusp, and a Tacnode (real locus)

A note about figures. In algebraic geometry, the dimensions are too big to allow realistic figures. Even with
an affine plane curve, one is dealing with a locus in the space A2, whose dimension as a real vector space is
four. In some cases, such as in the figures above, depicting the real locus can be helpful, but in most cases,
even the real locus is too big, and one must make do with a schematic diagram. The figure below is an example
of such a diagram. My students have told me that all of my figures look more or less like this:

1.8.9.goober15

Y

X

f

p q

a singular 

point

a section
a fibre

a fibre

A Typical Schematic Figure

1.9 Hensel’s Lemma
hensel The resultant matrix (1.7.4) arises in a second context that we explain here.

Suppose given a product P = FG of two polynomials, say

(1.9.1)
(
c0x

m+n+ c1x
m+n−1 + · · ·+ cm+n

)
=
(
a0x

m+a1x
m−1 + · · ·+am

)(
b0x

n+ b1x
n−1 + · · ·+ bn

)
multiply-

polys
We call the relations among the coefficients implied by this polynomial equation the product equations. They
are

ci = aib0 + ai−1b1 + · · ·+ a0bi

for i = 0, ...,m+n. For instance, when m = 3 and n = 2, they are

1.9.2.prodeqns
c0 = a0b0

c1 = a1b0 + a0b1

c2 = a2b0 + a1b1 + a0b2

c3 = a3b0 + a2b1 + a1b2

c4 = a3b1 + a2b2

c5 = a3b2
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Let J denote the Jacobian matrix of partial derivatives of c1, ..., cm+n with respect to the variables b1, ..., bn
and a1, ..., am, treating a0, b0 and c0 as constants. When m,n = 3, 2,

(1.9.3) J =
∂(ci)

∂(bj , ak)
=


a0 . b0 . .
a1 a0 b1 b0 .
a2 a1 b2 b1 b0
a3 a2 . b2 b1
. a3 . . b2

 prodjacob

1.9.4. Lemma. jacresThe Jacobian matrix J is the transpose of the resultant matrixR (1.7.4). �

1.9.5. Corollary. jacobian-
notzero

Let F and G be polynomials with complex coefficients. The Jacobian matrix is singular if
and only if F and G have a common root, or else a0 = b0 = 0. �

This corollary has an application to polynomials with analytic coefficients. Let

(1.9.6) P (t, x) = c0(t)xd + c1(t)xd−1 + · · ·+ cd(t) poly-
forhensel

be a polynomial in x whose coefficients ci are analytic functions, defined for small values of t, and let P =
P (0, x) = c0x

d + c1x
d−1 + · · · + cd be the evaluation of P at t = 0, so that ci = ci(0). Suppose given a

factorization P = F G, whereG = b0x
n+b1x

n−1+· · ·+bn is a polynomial and F = xm+a1x
m−1+· · ·+am

is a monic polynomial, both with complex coefficients. Are there polynomials F (t, x) = xm + a1x
m−1 +

· · · + am and G(t, x) = b0x
n + b1x

n−1 + · · · + bn, with F monic, whose coefficients ai and bi are analytic
functions defined for small t, such that F (0, x) = F , G(0, x) = G and P = FG?

1.9.7. Hensel’s Lemma.
hensellemma

With notation as above, suppose that F and G have no common root. Then P
factors, as above.

proof. Since F is supposed to be monic, we set a0(t) = 1. The first product equation tells us that b0(t) = c0(t).
Corollary 1.9.5 tells us that the Jacobian matrix for the remaining product equations is nonsingular at t = 0, so
according to the Implicit Function Theorem, the product equations have a unique solution in analytic functions
ai(t), bj(t) for small t. �

Note that P isn’t assumed to be monic. If c0 = 0, the degree of P will be less than the degree of P . In that
case, G will have lower degree than G.

figure

1.9.8. Example. henselexLet P = c0(t)x2 + c1(t)x + c2(t). The product equations for factoring P as a product
FG = (x+ a1)(b0x+ b1) of linear polynomials, with F monic, are

c0 = b0 , c1 = a1b0 + b1 , c2 = a1b1

and the Jacobian matrix is ∂(c1, c2)

∂(b1, a1)
=

(
1 b0
a1 b1

)
Suppose that P = P (0, x) factors: c0x

2 + c1x + c2 = (x + a1)(b0x + b1) = F G. The determinant of
the Jacobian matrix at t = 0 is b1 − a1b0. It is nonzero if and only if the two factors are relatively prime, in
which case P factors too.

On the other hand, the one-variable Jacobian criterion allows us to solve the equation P (t, x) = 0 for x
as function of t with x(0) = −a1, provided that ∂P∂x = 2c0x + c1 isn’t zero at the point (t, x) = (0,−a1).
Evaluating, ∂P∂x (0,−a1) = −2c0a1 + c1. Substituting c0 = b0 and c1 = a1b0 + b1, shows that ∂P∂x (0,−a1) =

−2c0a1 + c1 = b1 − a1b0. Not surprisingly, the two conditions for factoring are the same. �

(1.9.9) genposgeneral position

In algebraic geometry, the phrases general position and generic indicate an object, such as a point, has no
special ’bad’ properties. Typically, the object will be parametrized somehow, and the word generic indicates
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that the parameter representing that particular object avoids a proper closed subset of the parameter space that
may be described explicitly or not. Proposition 1.9.13 below refers to a generic point q. To be precise about
the requirement in this case, q shall not lie on any of these lines:generic-

cond
(1.9.10)

flex tangent lines and bitangent lines,
lines that contain more than one singular point,
special lines through singular points (see (1.8.2)),
tangent lines that contain a singular point of C.

1.9.11. Lemma.finlines This is a list of finitely many lines that q must avoid.

beginning of the proof. Proposition 1.4.17 shows that there are finitely many flex tangents. Since there are
finitely many singular points, there are finitely many special lines and finitely many lines through pairs of
singular points. To show that there are finitely many tangent lines that pass through singular points, we project
C from a singular point p and apply Lemma 1.7.19. The discriminant isn’t identically zero, so it vanishes
finitely often. The proof that there are finitely many bitangents will be given later, in Corollary 1.10.15.

(1.9.12)vandisc order of vanishing of the discriminant

Let f(x, y, z) be a homogeneous polynomial with no multiple factors, and let C be the (possibly reducible)
plane curve {f = 0}. Suppose that q = (0, 0, 1) is in general position, in the sense described above. Let Lpq
be the line through a point p = s(x0, y0, 0) and q, the set of points (x0, y0, z0),n, as before.

1.9.13. Proposition.discrim-
vanishing

(i) If p is a smooth point of C with tangent line Lpq , the discriminant Discrz(f) has a
simple zero at p̃.
(ii) If p is a node of C, Discrz(f) has a double zero at p̃.
(iii) If p is a cusp, Discrz(f) has a triple zero at p̃.
(iv) If p is a an ordinary flex point of C (1.4.8 ) with tangent line Lpq , Discrz(f) has a double zero at p̃.

proof. (i)–(iii) There are several ways to proceed, none especially simple. We’ll use Hensel’s Lemma. We set
x = 1, to work in the standard affine open set U with coordinates y, z. In affine coordinates, the projection π
is the map (y, z) → y. We may suppose that p is the origin in U. Its image p̃ will be the point y = 0 of the
affine y-line, and the intersection of the line Lpq with U will be the line L̃ : {y = 0}. We’ll denote the defining
polynomial of the curve C, restricted to U, by f(y, z) instead of f(1, y, z). Let f̃(z) = f(0, z).

In each of the cases (i),(ii),(iii), the polynomial f(z) = f(0, z) will have a double zero at z = 0, so we
will have f(z) = z2h(z), with h(0) 6= 0. Then z2 and h(z) have no common root, so we may apply Hensel’s
Lemma to write f(y, z) = g(y, z)h(y, z), where g and h are polynomials in z whose coefficients are analytic
functions of y, defined for small y, g is monic, g(0, z) = z2, and h(0, z) = h. Then

(1.9.14)discrfg Discrz(f) = ±Discrz(g) Discrz(h) Resz(g, h)2

(1.7.18). Since q is in general position, h will have simple zeros. Then Discrz(h) doesn’t vanish at y = 0.
Neither does Resz(g, h). So the orders of vanishing of Discrz(f) and Discrz(g) are equal. We replace f by g.

Since g is a monic quadratic polynomial, it will have the form

g(y, z) = z2 + b(y)z + c(y)

The coefficients b and c are analytic functions of y, and g(0, z) = z2. The discriminant Discrz(g) = b2 − 4c
is unchanged when we complete the square by the substitution of z − 1

2b for z, and if p̃ is a node or a cusp,
that property isn’t affected by this change of coordinates. So we may assume that g has the form z2 + c(y).
The discriminant is D = 4c(y).

We write c(y) as a series in y:

c(y) = c0 + c1y + c2y
2 + c3y

3 + · · ·
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The constant coefficient c0 is zero because p̃ is a point of C. If c1 6= 0, p̃ is a smooth point with tangent line
L̃ : {y = 0}, and D has a simple zero. If p̃ is a node, c0 = c1 = 0 and c2 6= 0. Then D has a double zero. If p̃
is a cusp, c0 = c1 = c2 = 0, and c3 6= 0. Then D has a triple zero at p̃.

(iv) In this case, the polynomial f̃(z) = f(0, z) will have a triple zero at z= 0. Proceding as above, we may
factor: f = gh where g and h are polynomials in z with analyic coefficients in y, and g(y, z) = z3 +a(y)z2 +
b(y)z + c(y). We eliminate the quadratic coefficient a by substituting z − 1

3a for z. With g = z3 + bz + c
in the new coordinates, the discriminant Discrz(g) is 4b3 + 27c2 (1.7.14). We write c(y) = c0 + c1y + · · ·
and b(y) = b0 + b1y + · · · . Since p is a point of C with tangent line {y= 0}, c0 = 0 and c1 6= 0. Since the
intersection multiplicity of C with the line {y= 0} at p̃ is three, b0 = 0. The discriminant has a zero of order
two. �

1.9.15. Corollary. transresLet C : {g = 0} and D : {h = 0} be plane curves that intersect transversally at a point
p = (x0, y0, z0). With coordinates in general position, Resz(g, h) has a simple zero at (x0, y0).

Two curves are said to intersect transversally at a point p if they are smooth at p and their tangent lines there
are distinct.
proof. Proposition 1.9.13 (ii) applies to the product gh, whose zero locus is the union C ∪ D. It shows that
the discriminant Discrz(gh) has a double zero at p̃. We also have the formula (1.9.14) with f = gh. When
coordinates are in general position, Discrz(g) and Discrz(h) will not be zero at p̃. Then Resz(g, h) has a
simple zero there. �

1.10 Bézout’s Theorem
bezoutthm

Bézout’s Theorem counts intersections of plane curves. We state it here in a form that is ambiguous because it
contains a term “multiplicity” that hasn’t yet been defined.

1.10.1. Bézout’s Theorem. bezoutoneLet C and D be distinct curves of degrees m and n, respectively. When inter-
sections are counted with the appropriate multiplicity, the number of intersections is equal to mn. Moreover,
the multiplicity at a point is 1 at a transversal intersection.

As before, C and D intersect transversally at p if they are smooth at p and their tangent lines there are distinct.

1.10.2. Corollary. bezoutlineBézout’s Theorem is true when one of the curves is a line.

See Corollary 1.3.9. The multiplicity of intersection of a curve and a line is the one that was defined there. �

The proof in the general case requires some algebra that we would rather defer. It will be given later
(Theorem 7.8.1). It is possible to determine the intersections by counting the zeros of the resultant with respect
to one of the variables. To do this, one chooses generic coordinates x, y, z, Then neither C nor D contains the
point (0, 0, 1). One writes their defining polynomials f and g as polynomials in z with coefficients in C[x, y].
The resultant R with respect to z will be a homogeneous polynomial in x, y, of degree mn. It will have mn
zeros in P1

x,y , counted with multiplicity. If p̃ = (x0, y0) is a zero of R, f(x0, y0, z) and g(x0, y0, z), which are
polynomials in z, have a common root z = z0, and then p = (x0, y0, z0) will be a point ofC∩D. It is a fact that
the multiplicity of the zero of the resultant R at the image p̃ is the (as yet undefined) intersection multiplicity
of C and D at p. Unfortunately, this won’t be obvious, even when multiplicity is defined. However, one can
prove the next proposition using this approach.

1.10.3. Proposition. nocom-
monfactor

Let C and D be distinct plane curves of degrees m and n, respectively.
(i) The curves C and D have at least one point of intersection, and the number of intersections is at most
mn.
(ii) If all intersections are transversal, the number of intersections is precisely mn.

It isn’t obvious that two curves in the projective plane intersect. If two curves in the affine plane have no
intersection, if they are parallel lines, for instance, their closures in the projective plane meet on the line at
infinity.

1.10.4. Lemma. resnotzeroLet f and g be homogeneous polynomials in x, y, z of degrees m and n, respectively, and
suppose that the point (0, 0, 1) isn’t a zero of f or g. If the resultant Resz(f, g) with respect to z is identically
zero, then f and g have a common factor.

32



proof. Let the degrees of f and g be m and n, respectively, and let F denote the field of rational functions
C(x, y). If the resultant is zero, f and g have a common factor in F [z] (Corollary 1.7.6). There will be
polynomials p and q in F [z], of degrees at most n−1 and m−1 in z, respectively, such that pf = qg (1.7.2).
We may clear denominators, so we may assume that the coefficients of p and q are in C[x, y]. Then pf = qg
is an equation in C[x, y, z]. Since p has degree at most n−1 in z, it isn’t divisible by g, which has degree n in
z. Since C[x, y, z] is a unique factorization domain, f and g have a common factor. �

proof of Proposition 1.10.3. (i) Let f and g be irreducible polynomials whose zero sets C and D, are distinct.
Proposition 1.3.11 shows that there are finitely many intersections. We project to P1 from a point q that doesn’t
lie on any of the finitely many lines through pairs of intersection points. Then a line through q passes through
at most one intersection, and the zeros of the resultant Resz(f, g) that correspond to the intersection points
will be distinct. Since the resultant has degree mn (1.7.8), it has at least one zero, and at most mn of them.
Therefore C and D have at least one and at most mn intersections.

(ii) Every zero of the resultant will be the image of an intersection of C and D. To show that there are mn
intersections if all intersections are transversal, it suffices to show that the resultant has simple zeros. This is
Corollary 1.9.15. �

1.10.5. Corollary.
smoothirred

If the curve X defined by a homogeneous polynomial f(x, y, z) is smooth, then f is
irreducible, and therefore X is a smooth curve.

proof. Suppose that f = gh, and let p be a point of intersection of the loci {g = 0} and {h = 0}. The
previous proposition shows that such a point exists. All partial derivatives of f vanish at p, so p is a singular
point of X . �

1.10.6. Corollary.numberof-
flexes

(i) Let d be an integer ≥ 3. A smooth plane curve of degree d has at least one flex point,
and the number of flex points is at most 3d(d−2).
(ii) If all flex points are ordinary, the number of flex points is equal to 3d(d−2).

Thus smooth curves of degrees 2, 3, 4, 5, ... have at most 0, 9, 24, 45, ... flex points, respectively.
proof. (i) The flex points are intersections of a smooth curve C with its Hessian divisorD : {detH = 0}. (We
use the definition of divisor that is given in (1.3.12.) Let C : {f(x0, x1, x2) = 0} be a smooth curve of degree
d. The entries of the 3×3 Hessian matrix H are the second partial derivatives ∂2f

∂xi∂xj
. They are homogeneous

polynomials of degree d−2, so the Hessian determinant is homogeneous, of degree 3(d−2). Propositions
1.4.17 and 1.10.3 tell us that there are at most 3d(d−2) intersections.

(ii) Recall that a flex point is ordinary if the multiplicity of intersection of the curve and its tangent line is 3.
Bézout’s Theorem asserts that the number of flex points is equal to 3d(d−2) if the intersections of C with its
Hessian divisor D are transversal, and therefore have multiplicity 1. So the next lemma completes the proof.

1.10.7. Lemma.transver-
salH

A curve C : {f = 0} intersects its Hessian divisor D transversally at a point p if and only
p is an ordinary flex point of C.

proof. We prove this by computation. There may be a conceptual proof, but I don’t know one.
Let L be the tangent line to C at the flex point p, and let h denote the restriction of the Hessian determinant

to L. The Hessian divisor D will be transversal to C at p if and only if it is transversal to L, and this will be
true if and only if the order of vanishing of h at p is 1.

We adjust coordinates x, y, z so that p = (0, 0, 1) and L is the line {y = 0}, and we write the polynomial
f of degree d as

(1.10.8) f(x, y, z) =
∑

i+j+k=d

aijx
iyjzk,fwithco-

effs

We set y = 0 and z = 1, to restrict f to L. The restriction of the polynomial f is

f(x, 0, 1) =
∑
i≤d

ai0x
i

Since p is a flex point with tangent line L, the coefficients a00, a10, and a20 are zero, and p is an ordinary
flex point if and only if the coefficient a30 is nonzero.
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Let h be the restiction of detH to L: h = detH(x, 0, 1). We must show that p is an ordinary flex point
if and only if h has a simple zero at x = 0.

To evaluate the restriction fxx(x, 0, 1) of the partial derivative to L, the relevant terms in the sum (1.10.8)
have j = 0. Since a00 = a10 = 0,

fxx(x, 0, 1) = 6a30 + 12a40x
2 + · · · = 6a30x+O(2)

Similarly,

fxz(x, 0, 1) = 0 +O(2)

fzz(x, 0, 1) = 0 +O(2)

For the restriction of fyz , the relevant terms are those with j = 1:

fyz(x, 0, 1) = (d−1)a01 + (d−2)a11x+O(2)

We don’t need fxy or fyy.
Let v = 6a30x and w = (d−1)a01 + (d−2)a11x. The restricted Hessian matrix has the form

(1.10.9) H(x, 0, 1) =

v ∗ 0
∗ ∗ w
0 w 0

 + O(2)

where ∗ are entries that don’t affect terms of degree at most one in the determinant. The determinant is

h = −vw2 +O(2) = −6(d− 1)2a30a
2
01x+O(2)

It has a zero of order 1 at x = 0 if and only if a30 and a01 aren’t zero. Since C is smooth at p and a10 = 0,
the coefficient a01 isn’t zero. Thus the curve C and its Hessian divisor D intersect transversally, and C and L
intersect with multiplicity 3, if and only if a30 is nonzero, which is true if and only if p is an ordinary flex. �

1.10.10. Corollary. nineflexesA smooth cubic curve contains exactly 9 flex points.

proof. Let f be the irreducible cubic polynomial whose zero locus is a smooth cubic C. The degree of the
Hessian divisorD is also 3, so Bézout predicts at most 9 intersections ofD with C. To derive the corollary, we
show that C intersects D transversally. According to Proposition 1.10.7, a nontransversal intersection would
correspond to a point at which the curve and its tangent line intersect with multiplicity greater than 3. This is
impossible when the curve is a cubic. �

(1.10.11) singdualsingularities of the dual curve

Let C be a plane curve. As before, an ordinary flex point is a smooth point p such that the intersection
multiplicity of the curve and its tangent line L at p is precisely 3. A bitangent to C is a line L that is tangent to
C at distinct smooth points p and q, and an ordinary bitangent is one such that neither p nor q is a flex point.
A tangent line L at a smooth point p of C is an ordinary tangent if it isn’t a flex point or a bitangent.

The line L will have other intersections with C. Most often, these other intersections will be transversal.
However, it may happen that L is tangent to C at such a point, or that it is a singular point of C. Let’s call such
occurences accidents.

1.10.12. Proposition. dualcuspLet p be a smooth point of a curve C, and let L be the tangent line at p. Suppose that
there are no accidents.
(i) If L is an ordinary tangent at p, then L∗ is a smooth point of C∗.
(ii) If L is an ordinary bitangent, then L∗ is a node of C∗.
(iii) If p is an ordinary flex point, then L∗ is a cusp of C∗.

proof. We refer to the map U t−→ C∗ (1.6.3) from the set of smooth points of C to the dual curve. We set
z = 1 and choose affine coordinates so that p is the origin, and the tangent line L at p is the line {y = 0}.
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Let f̃(x, y) = f(x, y, 1). We solve f̃ = 0 for y = y(x) as analytic function of x near zero, as before. The
tangent line L1 to C at a nearby point p1 = (x, y) has the equation (1.6.11), and L∗1 is the point (u, v, w) =
(−y′, 1, y′x− y) of P∗ (1.6.12). Since there are no accidents, this path traces out all points of C∗ near to L∗.

If L is an ordinary tangent line, y(x) will have a zero of order 2 at x = 0. Then u = −y′ will have a simple
zero. So the path (−y′, 1, y′x− y) is smooth at x = 0, and therefore C∗, is smooth at the origin.

If L is an ordinary bitangent, tangent to C at two points p and p′, the reasoning given for an ordinary
tangent shows that the images in C∗ of small neighborhoods of p and p′ in C will be smooth at L∗. Their
tangent lines p∗ and p′∗ will be distinct, so p is a node.

The case that p is an ordinary flex point of C is trickier. Most probably, we won’t know the defining
equation f = 0 of C. We write the analytic function y(x) that solves f(x, y) = 0 as a power series. Since p
is a flex point, the coefficients of xi are zero when i < 3, so y(x) = cx3 + · · · . Since the flex is ordinary, we
may assume that c = 1. In the local equation (u, v, w) = (−y′, 1, y′x−y) for the dual curve, u = −3x2 + · · ·
and w = 2x3 + · · · . In affine u,w-space, the locus

(1.10.13) (u,w) = (−y′, y′x− y) = (−3x2 + · · · , 2x3 + · · · )flexdual

contains the points of C∗ near to L∗.
Let X and U denote the x-line and the u-line, respectively. We substitute (1.10.13) for u and v: u =

−3x2 + · · · and w = 2x3 + · · · . This gives us a diagram of maps

C
b−−−−→ U

t

y ∥∥∥
C∗

c−−−−→ U

that are defined in small neighborhoods of the origins in the three spaces. The map t is locally bijective, and
since the leading term of u(x) is 3x2, b has degree 2. Therefore c also has degree 2. The origin in C∗ is a point
of multiplicity 2, a double point.

Let g(u,w) =
∑
ij giju

iwj be the irreducible polynomial equation for C∗. Substituting for u and w, the
series in x that we obtain evaluates to zero for all small x, and this implies that it is the zero series. The orders
of vanishing of the monomials uiwj as functions of x are as follows:

(1.10.14)uiwj
1 u w u2 uw w2 u3 u2w uw2 w3 · · ·

0 2 3 4 5 6 6 7 8 9 · · ·

Looking at these orders of vanishing, one sees that in the series g =
∑
giju

iwj , the coefficients g00, g10, g01, g20

and g11 must be zero, and that g02 + g30 = 0. Since the origin is a double point of C∗, g02 6= 0, and therefore
g30 6= 0. The origin of C∗ is a cusp. �

figure

1.10.15. Corollary.finitebi-
tangents

A plane curve has finitely many bitangents.

This corollary is true whether or not the bitangents are ordinary. It follows from the fact that the dual curve
C∗ has finitely many singular points (1.4.7). If L is a bitangent, ordinary or not, L∗ will be a singular point of
C∗. �

1.11 The Plücker Formulas
plucker A plane curve C is ordinary if it is smooth, all of its bitangents and flex points are ordinary (see (1.10.11),

and there are no accidents. The Plücker formulas compute the number of flexes and bitangents of an ordinary
plane curve.

For the next proposition, we refer back to the notation of Section 1.7.20. With coordinates in general position,
let π : C → X be the projection of a plane curve C to the projective line X from q = (0, 0, 1). If p̃ = (x0, y0)
is a point of X , we denote by Lp̃ the line in P2 such that the fibre of π over p̃ is the complement of q in Lp̃.
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The covering π will be branched at the points p̃ = (x0, y0) of X such that Lp̃ tangent line to C at some
point. It will also be branched the images of singular points of C.

1.11.1. Theorem: Plücker Formulas. plformLet C be an ordinary curve of degree d at least two, and let C∗ be its
dual curve. Let f and b denote the numbers of flex points and bitangents of C, and let f∗, δ∗ and κ∗ denote
the degree, the numbers of nodes, and the number of cusps of C∗, respectively. Then:

(i) The dual curve C∗ has no flexes or bitangents. Its singularities are nodes and cusps.

(ii) d∗ = d2 − 2, f = κ∗ = 3d(d− 2), and b = δ∗ = 1
2d(d− 2)(d2 − 9).

proof. (i) A bitangent or a flex on C∗ would produce a singularity on the bidual C∗∗, which is the smooth
curve C.

(ii) The degree d∗ was computed in Corollary 1.7.30. Bézout’s Theorem counts the flex points (see (1.10.6)).
The facts that κ∗ = f and δ∗ = b are dealt with in Proposition 1.10.12. Thus κ∗ = f = 3d(d− 2).

We project C∗ to P1 from a generic point s of P∗. The number of branch points that correspond to tangent
lines through s at smooth points of C∗ is the degree of C∗∗ = C (1.7.30), which is d.

Next, let F be the defining polynomial for C∗. The discriminant Discrz(F ) has degree d∗2 − d∗. Proposi-
tion 1.9.13 describes the order of vanishing of the discriminant at the images of the d tangent lines through s,
the δ nodes of C∗, and the κ cusps of C∗. It tells us that

d∗2 − d∗ = d+ 2δ∗ + 3κ∗

Substituting the known values d∗ = d2−d, and κ∗ = 3d(d−2) into this formula gives us

(d2 − d)2 − (d2 − d) = d+ 2δ∗ + 9d(d− 2) or 2δ∗ = d4 − 2d3 − 9d2 + 18d �

Note. It isn’t easy to count the number of bitangents directly.

1.11.2. Examples. some-
plucker-
formulas

(i) All curves of degree 2 and all smooth curves of degree 3 are ordinary.
(ii) A curve of degree 2 has no flexes and no bitangents. Its dual curve has degree 2.
(iii) A smooth curve of degree 3 has 9 flexes and no bitangents. Its dual curve has degree 6.
(iv) An ordinary curve C of degree 4 has 24 flexes and 28 bitangents. Its dual curve has degree 12. �

We will make use of the fact that a quartic curve has 28 bitangents in Chapter 4 (see (4.8.14)). The Plücker
Formulas are rarely used for curves of degree greater than four.

1.11.3. Example. cuspcubic
We describe the dual of a plane cubic curve C with a cusp again.
Projecting generically to X = P1, C becomes a triple cover of X . The discriminant has degree 6, and it

has a triple zero at the image of the cusp (1.9.13), and it will also have three simple zeros. The degree of C∗ is
three.
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Chapter 2 AFFINE ALGEBRAIC GEOMETRY

affine july17

2.1 Rings and Modules
2.2 The Zariski Topology
2.3 Some Affine Varieties
2.4 The Nullstellensatz
2.5 The Spectrum
2.6 Localization
2.7 Morphisms of Affine Varieties
2.8 Finite Group Actions

In the next chapters, we study varieties of arbitrary dimension. We will use some of the basic terminology
that was introduced in Chapter 1, including the concepts of discriminant and transcendence degree, but most
of the results of Chapter 1 won’t be used again until Chapter 8.

To begin, we review some basic facts about rings and modules, omitting proofs. Please look up information
on the concepts that aren’t familiar, as needed.

2.1 Rings and Modules
ringreview

By the word ‘ring’, we mean ’commutative ring’, ab = ba, unless the contrary is stated explicitly. A domain
is a ring that has no zero divisors and isn’t the zero ring.

An algebra is a ring that contains the field C of complex numbers as a subring. A set of elements
α = {α1, ..., αn} generates an algebra A if every element of A can be expressed (usually not uniquely)
as a polynomial in α1, ..., αn, with complex coefficients. Another way to state this is that α generates A if the
homomorphism C[x1, ..., xn]

τ−→ A that evaluates a polynomial at x = α is surjective. If α generates A, then
A will be isomorphic to the quotient C[x]/I of the polynomial algebra C[x], where I is the kernel of τ . A
finite-type algebra is one that can be generated by a finite set of elements.

If I and J are ideals of a ring R, the product ideal, which is denoted by IJ , is the ideal whose elements
are finite sums of products

∑
aibi, with ai ∈ I and bi ∈ J . (The product ideal is not the product set, whose

elements are the products ab, with a ∈ I and b ∈ J .) The power Ik of I is the product of k copies of I , the
ideal spanned by products of k elements of I . The intersection I ∩ J is also an ideal, and

(2.1.1) (I ∩ J)2 ⊂ IJ ⊂ I ∩ Jintersect-
product

An ideal M of a ring R is maximal if it isn’t the unit ideal R, and there is no ideal I such that M < I < R.
This is true if and only if the quotient ring R/M is a field. An ideal P of a ring R is a prime ideal if the
quotient R/P is a domain. A maximal ideal is a prime ideal.

2.1.2. Lemma.defprime Let P be an ideal of a ring R, not the unit ideal. The following conditions are equivalent.
(i) P is a prime ideal.
(ii) If a and b are elements of R and if ab ∈ P , then a ∈ P or b ∈ P .
(iii) If A and B are ideals of R, and if the product ideal AB is contained in P , then A ⊂ P or B ⊂ P . �

It is sometimes convenient to state (iii) this way:

(iii’) If A and B are ideals that contain P , and if the product ideal AB is contained in P , then A = P or
B = P .
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2.1.3. Mapping Property of Quotient Rings. mappropLetR and S be rings, letK be an ideal ofR, and letR τ−→ R

denote the canonical map from R to the quotient ring R = R/K. Homomorphisms R
ϕ−→ S correspond

bijectively to homomorphisms R
ϕ−→ S whose kernels contain K, the correspondence being ϕ = ϕ ◦ τ :

R
ϕ−−−−→ S

τ

y ∥∥∥
R

ϕ−−−−→ S

If ker ϕ = I, then ker ϕ = I/K. �

(2.1.4) commutative diagrams commdiag

In the diagram displayed above, the maps ϕτ and ϕ from R to S are equal. This is referred to by saying
that the diagram is commutative. A commutative diagram is one in which every map that can be obtained by
composing its arrows depends only on the domain and range of the map. In these notes, all diagrams of maps
are commutative. We won’t mention commutativity most of the time. �

2.1.5. Correspondence Theorem. corrthm

(i) Let R
ϕ−→ S be a surjective ring homomorphism with kernel K. For instance, ϕ might be the canonical

map from R to the quotient ring R/K. (In any case, S will be isomoprhic to R/K.) There is a bijective
correspondence

{ideals of R that contain K} ←→ {ideals of S}

This correspondence associates an ideal I of R that contains K with its image ϕ(I) in S and it associates an
ideal J of S with its inverse image ϕ−1(J) in R.

If an ideal I of R that contains K corresponds to an ideal J of S, then ϕ induces an isomorphism of
quotient rings R/I → S/J . If one of the ideals, I or J , is prime or maximal, they both are.

(ii) Let R be a ring, and let M
ϕ−→ N be a surjective homomorphism of R-modules with kernel L. There is a

bijective correspondence

{submodules of M that contain L} ←→ {submodules of N}

This correspondence associates a submodule S ofM that containsLwith its imageϕ(S) inN and it associates
a submodule T of N with its inverse image ϕ−1(T ) in M . �

Ideals I1, ..., Ik of a ring R are said to be comaximal if the sum of any two of them is the unit ideal.

2.1.6. Chinese Remainder Theorem. comaxLet I1, ..., Ik be comaximal ideals of a ring R.
(i) The product ideal I1 · · · Ik is equal to the intersection I1 ∩ · · · ∩ Ik.
(ii) The map R −→ R/I1×· · ·×R/Ik that sends an element a of R to its vector of residues is a surjective
homomorphism whose kernel is I1 ∩ · · · ∩ Ik (= I1 · · · Ik).
(iii) Let M be an R-module. The canonical homomorphism M → (M/I1M)×· · ·×(M/IkM) is surjective.
�

2.1.7. Proposition. quotof-
prod

Let R be a product of rings, R = R1×· · ·×Rk, let I be an ideal of R, and let R = R/I

be the quotient ring. There are ideals Ij of Rj such that I = I1×· · ·×Ik and R = R1/I1×· · ·×Rk/Ik. �

(2.1.8) Noetherian rings noethr

Let M and N be modules over a ring R. By an R-linear map M → N we simply mean a homomorphism of
R-modules. When we refer to a map as being linear without mentioning a ring, we mean a C-linear map.
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A finite module M over a ring R is a module that is spanned, or generated, by a finite set {m1, ...,mk} of
elements. To say that the set generates means that every element of M can be obtained as a combination
r1m1 + · · · + rkmk with coefficients ri in R, or that the homomorphism from the free R-module Rk to M
that sends a vector (r1, ..., rk) to the combination r1m1 + · · ·+ rkmk is surjective.

An ideal of a ring R is finitely generated if, when regarded as an R-module, it is a finite module.
A ring R is noetherian if all of its ideals are finitely generated. The ring Z of integers is noetherian. Fields

are notherian. If I is an ideal of a noetherian ring R, the quotient ring R/I is noetherian.

2.1.9. Hilbert Basis Theorem.basisthm Let R be a noetherian ring. The ring R[x1, ..., xn] of polynomials with
coefficients in R is noetherian. �

Thus Z[x1, ..., xn] and F [xa, ..., xn], F a field, are noetherian rings.

2.1.10. Corollary.qnoeth Every finite-type algebra is noetherian. �

Note. It is important not to confuse the concept of a finite-type algebra with that of a finite module. A finite
R-module M is a module in which every element can be written as a (linear) combination r1m1 + · · ·+ rkmk

of some finite set {m1, ...,mk} of elements of M , with coefficients in R. A finite-type algebra A is an algebra
which contains a finite set of elements {α1, ..., αk}, such that every element can be written as a polynomial
f(α1, ..., αk), with complex coefficients.

(2.1.11)ascchcond the ascending chain condition

The condition that a ring R be noetherian can be rewritten in several ways that we review here.
Our convention is that if X ′ and X are sets, the notation X ′ ⊂ X means that X ′ is a subset of X , while

X ′ < X means that X ′ is a subset that is different from X . A proper subset X ′ of a set X is a nonempty
subset different from X – a set such that ∅ < X ′ < X .

A sequence X1, X2, ... , finite or infinite, of subsets of a set Z forms an increasing chain if Xn ⊂ Xn+1

for all n, equality Xn = Xn+1 being permitted. If Xn < Xn+1 for all n, the chain is strictly increasing.
Let S be a set whose elements are subsets of a set Z. A memberM of S is a maximal member if there is no

member M ′ of S such that M < M ′. For example, the set of proper subsets of a set of five elements contains
five maximal members, the subsets of order four. The set of finite subsets of the set of integers contains no
maximal member.

A maximal ideal of a ring R is a maximal member of the set of ideals of R different from the unit ideal.

2.1.12. Proposition.noether-
conds

The following conditions on a ring R are equivalent:
(i) R is noetherian: Every ideal of R is finitely generated.
(ii) The ascending chain condition: Every strictly increasing chain I1 < I2 < · · · of ideals of R is finite.
(iii) Every nonempty set of ideals of R contains a maximal member. �

The next corollary follows from the ascending chain condition, but the conclusions are true whether or not
R is noetherian.

2.1.13. Corollary.idealin-
maximal

Let R be a noetherian ring.
(i) If R isn’t the zero ring, every ideal of R except the unit ideal is contained in a maximal ideal.
(ii) A nonzero ring R contains at least one maximal ideal.
(iii) An element of a ring R that isn’t in any maximal ideal is a unit – an invertible element of R. �

2.1.14. Corollary.powers-
generate

Let s1, ..., sk be elements that generate the unit ideal of a noetherian ring R. For any
positive integer n, the powers sn1 , ..., s

n
k generate the unit ideal.

proof. When s1, ..., sk generate the unit ideal, there will be an equation of the form 1 =
∑
risi, and for any

N , 1 = 1N = (
∑
risi)

N . If N ≥ nk, then when the right side is expanded, every term will be divisible by
sni for some n. �

39



2.1.15. Proposition. noetheri-
anmodule

Let R be a noetherian ring, and let M be a finite R-module.
(i) Every submodule of M is a finite module.
(ii) The set of submodules of M satisfies the ascending chain condition.
(iii) Every nonempty set of submodules of M contains a maximal member. �

This concludes our review of rings and modules.

2.2 The Zariski Topology
zartop

As before, the affine space An is the space of n-tuples (a1, ..., an) of complex numbers. Algebraic geometry
studies polynomial equations in terms of their solutions in affine space. Let f1, ..., fk be polynomials in
x1, ..., xn. The set of points of An that solve the system of equations

(2.2.1) fequatf1 = 0 , . . . , fk = 0

(the locus of zeros of f ) is a Zariski closed subset of An. A Zariski open subset U is a subset whose comple-
ment, which is the set of points not in U , is Zariski closed.

When it seems unlikely to cause confusion, we may abbreviate the notation for an indexed set, using a
single letter. The polynomial algebra C[x1, ..., xn] may be denoted by C[x], and the system of equations
(2.2.1) by f = 0. The locus of solutions of the equations f = 0 may be denoted by V (f1, ..., fk) or by V (f).
Its points are called the zeros of the polynomials f .

We use analogous notation for infinite sets. If F is any set of polynomials, V (F) denotes the set of points
of affine space at which all elements of F are zero. In particular, if I is an ideal of the polynomial ring, V (I)
denotes the set of points at which all elements of I vanish.

The ideal I of C[x] that is generated by the polynomials f1, ..., fk is the set of combinations r1f1+· · ·+rkfk
with polynomial coefficients ri. Some notations for this ideal are (f1, ..., fk) and (f). All elements of I vanish
on the zero set V (f), so V (f) = V (I). So the Zariski closed subsets of An can be described as the sets V (I),
where I is an ideal.

We note a few simple relations among ideals and their zero sets here. To begin with, we note that an ideal
I isn’t determined by its zero locus V (I). For any k > 0, the power fk has the same zeros as f .

The radical of an ideal I of a ring R, which will be denoted by rad I , is the set of elements α of R such
that some power αr is in I .

(2.2.2) rad I = {α ∈ R |αr ∈ I for some r > 0} raddef

The radical of I is an ideal that contains I . An ideal that is equal to its radical is a radical ideal. A prime ideal
is a radical ideal.

2.2.3. Lemma. VradIIf I is an ideal of the polynomial ring C[x], then V (I) = V (rad I). �

Consequently, if I and J are ideals and if rad I = rad J , then V (I) = V (J). The converse of this statement
is also true: If V (I) = V (J), then rad I = rad J . This is a consequence of the Strong Nullstellensatz that
will be proved later in this chapter. (See (??).)

Because (I ∩ J)2 ⊂ IJ ⊂ I ∩ J ,

(2.2.4) radIJrad(IJ) = rad(I ∩ J)

Also, rad(I ∩ J) = (rad I) ∩ (rad J).

2.2.5. Lemma. IinJLet I and J be ideals of the polynomial ring C[x].
(i) If I ⊂ J , then V (I) ⊃ V (J).
(ii) V (Ik) = V (I).
(iii) V (I ∩ J) = V (IJ) = V (I) ∪ V (J).
(iv) If Iν are ideals, then V (

∑
Iν) =

⋂
V (Iν).
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proof. (iii) V (I ∩ J) = V (IJ) because the two ideals have the same radical, and because I and J contain IJ ,
V (IJ) ⊃ V (I) ∪ V (J). To prove that V (IJ) ⊂ V (I) ∪ V (J), we note that V (IJ) is the locus of common
zeros of the products fg with f in I and g in J . Suppose that a point p is a common zero: f(p)g(p) = 0 for
all f in I and all g in J . If f(p) 6= 0 for some f in I , we must have g(p) = 0 for every g in J , and then p is a
point of V (J). If f(p) = 0 for all f in I , then p is a point of V (I). In either case, p is a point of V (I)∪V (J).
�

Zariski closed sets are the closed sets in the Zariski topology on An. The Zariski topology is very useful in
algebraic geometry, though it is very different from the classical topology.

To verify that the Zariski closed sets are the closed sets of a topology, one must show that

• the empty set and the whole space are Zariski closed,
• the intersection

⋂
Cν of an arbitrary family of Zariski closed sets is Zariski closed, and

• the union C ∪D of two Zariski closed sets is Zariski closed.

The empty set and the whole space are the zero sets of the elements 1 and 0, respectively. The other conditions
follow from Lemma 2.2.5. �

2.2.6. Example.ztopdi-
mone

The proper Zariski closed subsets of the affine line, or of a plane affine curve, are finite sets.
The proper Zariski closed subsets of the affine plane are finite unions of points and curves. Let’s omit the
proofs of these facts. The corresponding facts for loci in the projective line and the projective plane have been
noted before. (See (1.3.4) and (1.3.14).) �

figure
(Caption: A Zariski closed subset of the affine plane (real locus).)

A subset S of a topological space X becomes a topological space with the induced topology. The closed
(or open) subsets of S in the induced topology are intersections S ∩ Y , where Y is closed (or open) in X .

The induced topology on a subset S of An is called the Zariski topology too. A subset of S is closed in the
Zariski topology if it has the form S ∩Y for some Zariski closed subset Y of An. If S itself is a Zariski closed
subset of An, a closed subset of S will be a closed subset of An that is contained in S.

Affine space also has a classical topology. A subset U of An is open in the classical topology if, whenever
a point p is in U , all points sufficently near to p are in U . Since polynomial functions are continuous, their zero
sets are closed in the classical topology. Therefore Zariski closed sets are closed in the classical topology too.

When two topologies T and T ′ on a set X are given, T ′ is said to be coarser than T if T ′ contains fewer
closed sets or fewer open sets than T , and T ′ finer than T if it contains more closed sets or more open sets
than T . The Zariski topology is coarser than the classical topology. As the next proposition shows, it is much
coarser.

2.2.7. Proposition.opendense Every nonempty Zariski open subset of An is dense and path connected in the classical
topology.

proof. The (complex) line L through distinct points p and q of An is a Zariski closed set whose points can be
written as p + t(q − p), with t in C. It corresponds bijectively to the one-dimensional affine t-space A1, and
the Zariski closed subsets of L correspond to Zariski closed subsets of A1. They are the finite subsets, and L
itself.

Let U be a nonempty Zariski open set, and let C be its Zariski closed complement. To show that U is
dense in the classical topology, we choose distinct points p and q of An, with p in U . If L is the line through p
and q, C ∩L will be a Zariski closed subset of L, a finite set, that doesn’t contain p. Its complement is U×L.
In the classical topology, the closure of U ∩ L, will be the whole line L. It contains q. Then the closure of U
contains q, and since q was arbitrary, the closure of U is An.

Next, let L be the line through two points p and q of U . As before, C ∩ L will be a finite set of pints. In
the classical topology, L is a complex plane. The points p and q can be joined by a path in L that avoids this
finite set. �
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Though we will use the classical topology from time to time, the Zariski topology will appear more often.
For this reason, we will refer to a Zariski closed subset simply as a closed set. Similarly, by an open set we
mean a Zariski open set. We will mention the adjective “Zariski” only for emphasis.

(2.2.8) irreducible closed sets irrclosed

The fact that the polynomial algebra is a noetherian ring has important consequences for the Zariski topol-
ogy that we discuss here.

A topological space X satisfies the descending chain condition on closed subsets if there is no infinite,
strictly descending chain C1 > C2 > · · · of closed subsets of X . The descending chain condition on closed
subsets is equivalent with the ascending chain condition on open sets.

A topological space that satisfies the descending chain condition on closed sets is called a noetherian
space. In a noetherian space, every nonempty family S of closed subsets has a minimal member, one that
doesn’t contain any other member of S, and every nonempty family of open sets has a maximal member. (See
(2.1.11).)

2.2.9. Lemma. noethq-
comp

A noetherian topological space is quasicompact, that is, every open covering has a finite
subcovering. �

2.2.10. Proposition. deschainWith its Zariski topology, An is a noetherian space.

proof. Suppose that a strictly descending chain C1 > C2 > · · · of closed subsets of An is given. Let Ij be the
ideal of all elements of the polynomial ring C[x1, ..., xn] that are identically zero on Cj . Then Cj = V (Ij).
Since Cj > Cj+1, V (Ij) > V (Ij+1). Therefore Ij < Ij+1. The ideals Ij form a strictly increasing chain.
Since C[x1, ..., xn] is noetherian, this chain is finite. Therefore the strictly decreasing chain Cj is finite too.�

2.2.11. Definition. de-
firrspace

A topological space X is irreducible if it isn’t the union of two proper closed subsets.

Another way to say that a topological space X is irreducible is this:

2.2.12. ir-
redspacetwo

If C and D are closed subsets of X , and if X = C ∪D, then X = C or X = D.

The concept of irreducibility is useful primarily for noetherian spaces. The only irreducible subsets of a
Hausdorff space are its points. In particular, with the classical topology, the only irreducible subsets of affine
space are points.

Irreducibility is somewhat analogous to connectedness. A topological space is connected if it isn’t the
union C ∪D of two proper disjoint closed subsets. However, the condition that a space be irreducible is much
more restrictive because, in Definition 2.2.11, the closed sets C and D aren’t required to be disjoint. In the
Zariski topology on the affine plane, lines are irreducible closed sets. The union of two intersecting lines is
connected, but not irreducible.

2.2.13. Lemma. ir-
redlemma

The following conditions on topological space X are equivalent.
• X is irreducible.
• The intersection U ∩ V of two nonempty open subsets U and V of X is nonempty.
• Every nonempty open subset U of X is dense (its closure is X). �

2.2.14. Theorem. unionirredIn a noetherian topological space, every closed subset is the union of finitely many irre-
ducible closed sets.

proof. If a closed subset C0 of a topological spaceX isn’t a union of finitely many irreducible closed sets, then
it isn’t irreducible, so it is a union C1 ∪D1, where C1 and D1 are proper closed subsets of C0, and therefore
closed subsets of X . Since C0 isn’t a finite union of irreducible closed sets, C1 and D1 cannot both be finite
unions of irreducible closed sets. Say that C1 isn’t such a union. We have the beginning C0 > C1 of a chain
of closed subsets. We repeat the argument, replacing C0 by C1, and we continue in this way, to construct an
infinite, strictly descending chain C0 > C1 > C2 > · · · . So X isn’t a noetherian space. �

2.2.15. Definition. defadffvarAn affine variety is an irreducible closed subset of affine space An.

42



Theorem 2.2.14 tells us that every closed subset of An is a finite union of affine varieties. Since an affine
variety is irreducible, it is connected in the Zariski topology. It is also connected in the classical topology, but
this isn’t very easy to prove. We may not get to the proof.

The closure of a subset S of a topological space X is the smallest closed subset that contains S. The
closure exists because it is the intersection of all closed subsets that contain S.

2.2.16. Lemma.quasicom-
pact

(i) Let Z be a subspace of a topological space X , let S be a subset of Z, and let S denote
the closure of S in X . The closure of S in Z is the intersection S ∩ Z.
(ii) Let Z be the closure of a subspace Z of a topological space X . Then Z is irreducible if and only if Z is
irreducible.
(iii) A nonempty open subspace W of an irreducible space X is irreducible.

proof. (ii) Let Z be an irreducible subset of X , and suppose that its closure Z is the union C ∪ D of two
closed sets C and D. Then Z is the union of the sets C = C ∩ Z and D = D ∩ Z, and they are closed in
Z. Therefore Z is one of those two sets; say Z = C. Then Z ⊂ C, and since C is closed, Z ⊂ C. Because
C ⊂ Z as well, C = Z. Conversely, suppose that the closure Z of a subset Z of X is irreducible, and that
Z is a union C ∪ D of closed subsets. Then Z = C ∪ D, and therefore Z = C or Z = D, say Z = C So
Z = C ∩ Z = C. Then C is not a proper subset.

(iii) The closure of W is the irreducible space X . �

(2.2.17) noetherian inductionnoethind

In a noetherian spaceX one may be able to use noetherian induction in proofs. Suppose that a statement S
is to be proved for every nonempty closed subset of X . Then it suffices to prove it for X under the assumption
that S is true for every proper closed subset of X .

Or, to prove a statement S for every affine variety X , it is permissible prove it for X under the assumption
that S is true for every proper closed subvariety of X .

The justification of noetherian induction is similar to the justification of complete induction. �

(2.2.18) the coordinate algebra of a varietycoordi-
nateagebra

2.2.19. Proposition.irredprime The affine varieties in An are the sets V (P ), where P is a prime ideal of the polynomial
algebra C[x] = C[x1, ..., xn]. If P is a radical ideal, then V (P ) is an affine variety if and only if P is a prime
ideal.

We will use this proposition in the next section, where we give a few examples of varieties, but we defer the
proof to Section 2.5, where the proposition will be proved in a more general form. (See Proposition 2.5.13).)

As before, an algebra is a ring that contains the complex numbers.

2.2.20. Definition.defco-
ordalg

Let P be a prime ideal of the polynomial ring C[x1, ..., xn], and let V be the affine variety
V (P ) in An. The coordinate algebra of V is the quotient algebra A = C[x]/P .

Geometric properties of the variety are reflected in algebraic properties of its coordinate algebra and vice versa.
In a primitive sense, one can regard the geometry of an affine variety V as given by closed subsets and

incidence relations – the inclusion of one closed set into another, as when a point lies on a line. A finer
study of the geometry takes into account other things tangency for instance, but it is reasonable to begin by
studying incidences C ′ ⊂ C among closed subvarieties. Such incidences translate into inclusions P ′ ⊃ P in
the opposite direction among prime ideals.

2.3 Some affine varieties
somevari-

eties
This section contains a few simple examples of varieties.
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2.3.1. ptvarA point p = (a1, . . . , an) of affine space An is the set of solutions of the n equations xi−ai = 0, i =
1, . . . , n. A point is a variety because the polynomials xi − ai generate a maximal ideal in the polynomial
algebra C[x], and a maximal ideal is a prime ideal. We denote the maximal ideal that corresponds to the point
p by mp. It is the kernel of the substitution homomorphism πp : C[x] → C that evaluates a polynomial
g(x1, ..., xn) at p: πp(g(x)) = g(a1, ..., an) = g(p). As here, we denote the homomorphism that evaluates a
polynomial at p by πp.

The coordinate algebra of a point p is the quotient algebra C[x]/mp. It is also called the residue field at p,
and it will be denoted by k(p). The residue field k(p) is isomorphic to the image of πp, which is the field C of
complex numbers, but it is a particular quotient of the polynomial ring.

2.3.2. varinlineThe varieties in the affine line A1 are points, and the whole line A1. The varieties in the affine plane
A2 are points, plane affine curves, and the whole plane.

This is true because the varieties correspond to the prime ideals of the polynomial ring. The prime ideals of
C[x1, x2] are the maximal ideals, the principal ideals generated by irreducible polynomials, and the zero ideal.
The proof of this is an exercise.

2.3.3. hsurfThe set X of solutions of a single irreducible polynomial equation f1(x1, ..., xn) = 0 in An is a
variety that is called an affine hypersurface.

For instance, the special linear group SL2, the group of complex 2 × 2 matrices with determinant 1, is a
hypersurface in A4. It is the locus of zeros of the irreducible polynomial x11x22 − x12x21 − 1.

The reason that an affine hypersurface is a variety is that an irreducible element of a unique factorization
domain is a prime element, and a prime element generates a prime ideal. The polynomial ring C[x1, ..., xn] is
a unique factorization domain.

2.3.4. apcA hypersurface in the affine plane A2 is a plane affine curve.

A line in the plane, the locus of a linear equation ax + by − c = 0, is a plane affine curve. Its coordinate
algebra is isomorphic to a polynomial ring in one variable. Every line is isomorphic to the affine line A1.

2.3.5. pointprLet p = (a1, . . . , an) and q = (b1, . . . , bn) be distinct points of An. The point pair (p, q) is the closed
set defined by the system of n2 equations (xi − ai)(xj − bj) = 0, 1 ≤ i, j ≤ n. A point pair isn’t a variety
because the ideal I generated by the polynomials (xi − ai)(xj − bj) isn’t a prime ideal. The next proposition,
which follows from the Chinese Remainder Theorem 2.1.6, describes the ideal I .

2.3.6. Proposition. pointpairThe ideal of polynomials that vanish on a point pair p, q is the product mpmq of the
maximal ideals at the points, and the quotient algebra C[x]/I is isomorphic to the product algebra C×C. �

2.4 Hilbert’s Nullstellensatz
null2.4.1. Nullstellensatz (version 1). nulloneLet C[x] be the polynomial algebra in the variables x1, . . . , xn. There

are bijective correspondences between the following sets:

• points p of the affine space An,
• algebra homomorphisms πp : C[x]→ C,
• maximal ideals mp of C[x].

If p = (a1, ..., an) is a point of An, the homomorphism πp evaluates a polynomial at p: πp(g) = g(a1, ...., an) =
g(p). The maximal ideal mp is the kernel of πp, which is the ideal generated by the linear polynomials
x1−a1, . . . , xn−an. �

It is obvious that every algebra homomorphism C[x]→ C is surjective and that its kernel is a maximal ideal. It
isn’t obvious that every maximal ideal of C[x] is the kernel of such a homomorphism. The proof can be found
manywhere.1

The Nullstellensatz gives us a way to describe the closed set V (I) of zeros of an ideal I in affine space in
terms of maximal ideals. The points of V (I) are those at which all elements of I vanish. They are the points
p such that the ideal I is contained in mp.

1While writing a paper, the mathematician Nagata decided that the English language needed this unusual word, and he managed to
find it in a dictionary.
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Thus

(2.4.2)maxide-
alscheme

V (I) = {p ∈ An | I ⊂ mp}

2.4.3. Proposition.Vempty Let I be an ideal of the polynomial ring C[x]. If the zero locus V (I) is empty, then I is
the unit ideal.

proof. Every ideal I that is not the unit ideal is contained in a maximal ideal (Corollary 2.1.13). �

2.4.4.nulltwo Nullstellensatz (version 2). Let A be a finite-type algebra. There are bijective correspondences
between the following sets:
• algebra homomorphisms π : A→ C,
• maximal ideals m of A.
The maximal ideal m that corresponds to a homomorphism π is the kernel of π.

If A is presented as a quotient of a polynomial ring, say A ≈ C[x1, ..., xn]/I , then these sets also corre-
spond bijectively to points of the set V (I) of zeros of I in An.

The symbol ≈ indicates an isomorphism here. As before, a finite-type algebra is an algebra that can be
generated by a finite set of elements.
proof. We choose a presentation of A as a quotient of a polynomial ring to identify A with a quotient C[x]/I .
The Correspondence Theorem tells us that maximal ideals of A correspond to maximal ideals of C[x] that
contain I . Those maximal ideals correspond to points of V (I).

Let τ denote the canonical homomorphism C[x] → A. The Mapping Property 2.1.3, applied to τ , tells us
that homomorphisms A π−→ C correspond to homomorphisms C[x]

π−→ C whose kernels contain I . Those
homomorphisms also correspond to points of V (I).

(2.4.5)

C[x]
π−−−−→ C

τ

y ∥∥∥
A

π−−−−→ C

polyring-
toA

�

2.4.6. Strong Nullstellensatz.strongnull Let I be an ideal of the polynomial algebra C[x1, . . . , xn], and let V be the
locus of zeros of I in An: V = V (I). If a polynomial g(x) vanishes at every point of V , then I contains a
power of g.

proof. This beautiful proof is due to Rainich. Let g(x) be a polynomial that is identically zero on V . We are
to show that I contains a power of g. If g is the zero polynomial, it is in I , so we may assume that g isn’t zero.

The Hilbert Basis Theorem tells us that I is a finitely generated ideal. Let f = {f1, . . . , fk} be a set of
generators. We introduce an new variable y. Let W be the locus of solutions of the k+1 equations

(2.4.7)fgy f1(x) = · · · = fk(x) = 0 and g(x)y − 1 = 0

in the n+1–dimensional affine space with coordinates (x1, . . . , xn, y). Suppose that we have a solution x of
the equations f(x) = 0, say (x1, ..., xn) = (a1, ..., an). Then a is a point of V , and our hypothesis tells us
that g(a) = 0 too. So there can be no b such that g(a)b = 1. There is no point (a1, ..., an, b) that solves
the equations (2.4.7): The locus W is empty. Proposition 2.4.3 tells us that the polynomials f1, ..., fk, gy − 1
generate the unit ideal of C[x1, ..., xn, y]. There are polynomials p1(x, y), . . . , pk(x, y) and q(x, y) such that

(2.4.8) p1f1 + · · ·+ pkfk + q(gy − 1) = 1rabinowitz

The ring R = C[x, y]/(gy − 1) can be described as the one obtained by adjoining an inverse of g to the
polynomial ring C[x]. The residue of y is the inverse of g. Since g isn’t zero, C[x] is a subring of R. In R,
gy − 1 = 0. So the equation (2.4.8) becomes p1f1 + · · · + pkfk = 1. When we multiply both sides of this

45



equation by a large power gN of g, we can use the equation gy = 1, which is true inR, to cancel all occurences
of y in the polynomials pi(x, y). Let hi(x) denote the polynomial in x that is obtained by cancelling y in gNpi.
Then

h1(x)f1(x) + · · ·+ hk(x)fk(x) = gN (x)

is a polynomial equation that is true in R and in its subring C[x]. Since f1, ..., fk are in I , this equation shows
that gN is in I . �

2.4.9. Corollary. VIsupVJet C[x] denote the polynomial ring C[x1, ..., xn].
(i) Let P be a prime ideal of C[x], and let V = V (P ) be the variety of zeros of P in An. If a polynomial g
vanishes at every point of V , then g is an element of P .
(ii) Let f be an irreducible polynomial in C[x]. If a polynomial g vanishes at every point of V (f), then f
divides g.
(iii) Let I and J be ideals of C[x]. Then V (I) ⊃ V (J) if and only if rad I ⊂ rad J , and V (I) > V (J) if
and only if rad I > rad J . (See (2.2.2).) �

2.4.10. Examples.
strongnullex(i) Let I be the ideal generated by y5 and y2 − x3 in the polynomial algebra C[x, y] in two variables. The

origin y = x = 0 is the only common zero of these polynomials in the affine plane, and the polynomial x also
vanishes at the origin. The Strong Nullstellensatz predicts that I contains a power of x. This is verified by the
following equation:

yy5 − (y4 + y2x3 + x6)(y2 − x3) = x9

(ii) We may regard pairs A,B of n×n matrices as points of an affine space A2n2

with coordinates aij , bij ,
1 ≤ i, j ≤ n. The pairs of commuting matrices (AB = BA) form a closed subset of A2n2

, the locus of
common zeros of the n2 polynomials cij that compute the entries of the matrix AB −BA:

(2.4.11) cij(a, b) =
∑
ν

aiνbνj − biνaνj comm-
mateq

Let I denote the ideal of the polynomial algebra C[a, b] generated by the polynomials cij . Then V (I) is the
set of pairs of commuting complex matrices. The Strong Nullstellensatz asserts that if a polynomial g(a, b)
vanishes on every pair of commuting matrices, some power of g is in I . Is g itself in I? It is a famous conjecture
that I is a prime ideal. If so, g would be in I . Proving the conjecture would establish your reputation as a
mathematician, but I don’t recommend spending very much time on it right now. �

2.5 The Spectrum
spectru-
malg

The Nullstellensatz allows us to associate a set of points to a finite-type domain A without reference to a
presentation. We can do this because the maximal ideals of A and the homomorphisms A → C don’t depend
on the presentation. When a finite-type domain A is presented as a quotient C[x]/P of a polynomial ring,
where P is a prime ideal, A becomes the coordinate algebra of the variety V (P ) in affine space. Then the
points of V (P ) correspond to maximal ideals of A and also to homomorphisms A→ C.

When a finite-type domain A is given without a presentation, we replace the variety V (P ) by an abstract
set of points, the spectrum of A, that we denote by SpecA and call an affine variety. We put one point
p into the spectrum for every maximal ideal of A, and then we turn around and denote the maximal ideal
that corresponds to a point p by mp. The Nullstellensatz tells us that p also corresponds to a homomorphism
A→ C whose kernel is mp. We denote that homomorphism by πp. In analogy with (2.2.20), the domain A is
called the coordinate algebra of the affine variety SpecA. To work with SpecA, we may interpret its points
as maximal ideals or as homomorphisms to C, whichever is convenient.

When defined in this way, the variety SpecA isn’t embedded into affine space, but because A is a finite-
type algebra, it can be presented as a quotient C[x]/P . When this is done, points of SpecA correspond to
points of the subset V (P ) in An.

Even when the coordinate ring A of an affine variety is presented as C[x]/P , we may denote the variety
by SpecA rather than by V (P ).
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Let X = SpecA. The elements of A define (complex-valued) functions on X as follows: A point p of X

corresponds to a homomorphism A
πp−→ C. If α is an element of A, the value of the function α at p is defined

to be πp(α):

(2.5.1)defalphap α(p)
def
= πp(α)

The kernel mp of πp is the set of elements α of the coordinate algebra A such that α(p) = 0:

mp = {α ∈ A |α(p) = 0}

The functions defined by the elements of A are called regular functions on X . (See Proposition 2.7.2 below.)

2.5.2. Lemma.regfndetelt The regular function determined by distinct elements α and β of A are distinct.

proof. We replace α by α− β. Then what is to be shown is that, if the function determined by an element α is
the zero function, then α is the zero element.

We present A as C[x]/P , x = x1, ..., xn, where P is a prime ideal. Then X is the locus of zeros of P in
An, and Corollary ?? (iii) tells us that P is the ideal of all elements that are zero on X .

Let g(x) be a polynomial that represents α. If p is a point of X at which α is zero, then g(p) = 0. So if α
is the zero function, then g is in P , and therefore α = 0. �

For example, the spectrum SpecC[x1, ..., xn] of the polynomial algebra is the affine space An. The
homomorphism πp : C[x] → C that corresponds to a point p = (a1, ..., an) of An is evaluation at p. So
πp(g) = g(a1, ..., an) = g(p). The function defined by a polynomial g(x) is simply the polynomial function.

Note. In modern terminology, the word “spectrum” is usually used to denote the set of prime ideals of a ring.
This becomes important when one studies rings that aren’t finite-type algebras. When working with finite-type
algebras, there are enough maximal ideals. The other prime ideals aren’t needed, so we have eliminated them.

2.5.3. Lemma.gpequal-
salphap

Let A be a quotient C[x]/P of the polynomial ring C[x1, ..., xn] modulo a prime ideal P ,
so that SpecA becomes the closed subset V (P ) of An. Then a point p of SpecA becomes a point of An:
p = (a1, ..., an). When an element α of A is represented by a polynomial g(x), the value of α at p is
α(p) = g(p) = g(a1, ..., an).

proof. The point p of SpecA gives us a diagram (2.4.5), with π = πp and π = πp, and where τ is the canonical
map C[x]→ A. Then α = τ(g), and

(2.5.4)redefinefn g(p)
defn
= πp(g) = πpτ(g) = πp(α)

defn
= α(p). �

Thus the value α(p) at a point p of SpecA can be obtained by evaluating a polynomial g, though the polyno-
mial g isn’t unique. The polynomial g that represents the regular function α won’t be unique unless P is the
zero ideal.

(2.5.5)ztoponvar the Zariski topology on an affine variety

Let X = SpecA be an affine variety with coordinate algebra A. An ideal J of A defines a locus in X , a
closed subset, that we denote by VX(J). The points of VX(J) are the points of X at which all elements of J
vanish. This is analogous to (2.4.2):

(2.5.6)locusin-
spec

VX(J) = {p ∈ SpecA | J ⊂ mp}

2.5.7. Lemma.zerolocus-
inX

Let A be a finite-type domain, presented as A = C[x]/P ≈ A. An ideal J of A corresponds
to an ideal J of C[x] that contains P , and if VAn(J) denotes the zero locus of J in An, then VX(J) = VAn(J).
�

The properties of closed sets in affine space that are given in Lemmas 2.2.3 and 2.2.5 are true for closed
subsets of an affine variety. In particular, VX(J) = VX(rad J), and VX(IJ) = VX(I ∩J) = VX(I)∪VX(J).

47



2.5.8. Proposition. emptyLet J be an ideal of a finite-type domain A, and let X = SpecA. The zero set VX(J) is
empty if and only if J is the unit ideal of A. If X is empty, then A is the zero ring.

proof. The only ideal that isn’t contained in a maximal ideal is the unit ideal. �

2.5.9. Note. nobarIn this section, we have put bars on the symbols m and π here in order to distinguish maximal
ideals ofA from maximal ideals of C[x] and homomorphismsA→ C from homomorphisms C[x1, . . . , xn]→
C. In the future, we will put bars over the letters only when there is a danger of confusion. Most of the time,
we will denote an ideal of A by an ordinari letter such as J . �

(2.5.10) rad-
icalofideal

ideals whose zero sets are equal

2.5.11. Lemma. radpowerAn ideal I of a noetherian ring R contains a power of its radical.

proof. Since R is noetherian, the ideal rad I is generated by a finite set of elements α = {α1, ..., αk}, and for
large r, αri is in I . We can use the same large integer r for every i. A monomial β = αe11 · · ·α

ek
k of sufficiently

large degree n in α will be divisible αri for at least one i, and therefore it will be in I . The monomials of degree
n generate (rad I)n, so (rad I)n ⊂ I . And as has been remarked, I ⊂ rad I . �

2.5.12. Corollary. subsof-
specA

Let I and J be ideals of a finite-type domain A, and let X = SpecA. Then VX(I) ⊃
VX(J) if and only if rad I ⊂ rad J .

This follows from Corollary ?? bf (iii) and Lemma 2.5.7. �

The next proposition includes Proposition 2.2.19 as a special case.

2.5.13. Proposition.
proofirred-
prime

Let X = SpecA , where A is a finite-type domain. The closed subset VX(P ) defined
by a radical ideal P is irreducible if and only if P is a prime ideal.

proof. Let P be a radical ideal of A, and let Y = VX(P ). Let C and D be closed subsets of X such that
Y = C∪D. SayC = VX(I),D = VX(J). We may suppose that I and J are radical ideals. Then the inclusion
C ⊂ Y implies that I ⊃ P . Similarly, J ⊃ P . Because Y = C∪D, we also have Y = VX(I∩J) = VX(IJ).
So IJ ⊂ P (Corollary 2.5.12). If P is a prime ideal, then I = P or J = P , and therefore C = Y or D = Y
(Lemma 2.1.2 iii’), and Y is irreducible. Conversely, if P isn’t a prime ideal, there are ideals I, J strictly larger
than the radical ideal P , such that IJ ⊂ P (2.1.2). Then Y will be the union of the two proper closed subsets
VX(I) and VX(J), so Y isn’t irreducible (2.5.12). �

(2.5.14) the nilradical thenilradi-
cal

The nilradical of a ring is the set of its nilpotent elements. It is the radical of the zero ideal. The nilradical of
a domain is the zero ideal. If a ring R is noetherian, its nilradical will be nilpotent : some power of will be the
zero ideal (Lemma 2.5.11).

2.5.15. Proposition. intersect-
primes

The nilradical of a noetherian ring R is the intersection of the prime ideals of R.

proof. Let x be an element of the nilradical N . Some power of x is zero. Since the zero element is in every
prime ideal, x is in every prime ideal. Therefore N is contained in every prime ideal. Conversely, let x be an
element not in N , i.e., not nilpotent. We show that there is a prime ideal that doesn’t contain x. Let S be the
set of ideals that don’t contain any power of x. The zero ideal is one such ideal, so S isn’t empty. Since R
is noetherian, S contains a maximal member P (2.1.11). We show that P is a prime ideal by showing that, if
two ideals A and B are strictly larger than P , their product AB isn’t contained in P . Since P is a maximal
member of S, A and B aren’t in S. They contain powers of x, say xk ∈ A and x` ∈ B. Then xk+` is in AB
but not in P . Therefore AB 6⊂ P . �

Note. The conclusion of this proposition is true whether or not the ring R is noetherian.

2.5.16. Corollary.
strongnullA(i) Let A be a finite-type algebra. An element that is in every maximal ideal of A is nilpotent.

(ii) Let A be a finite-type domain. The intersection of the maximal ideals of A is the zero ideal.
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proof. (i) Say that A is presented as C[x1, ..., xn]/I . Let α be an element of A that is in every maximal ideal,
and let g(x) be a polynomial whose residue in A is α. Then α is in every maximal ideal of A if and only if
g = 0 at all points of the variety VA(I) in An. If so, the Strong Nullstellensatz asserts that some power gN is
in I . Then αN = 0. �

2.5.17. Corollary.fndetermi-
neselt

An element α of a finite-type domain A is determined by the function that it defines on
X = SpecA.

proof. It is enough to show that an element α that defines the zero function is the zero element. Such an
element is in every maximal ideal (2.5.8), so α is nilpotent, and since A is a domain, α = 0. �

2.6 Localization
boldloc Let s be a nonzero element of a domain A. The ring A[s−1], obtained by adjoining an inverse of s to A is

called a localization of A. It is isomorphic to the quotient A[z]/(sz − 1) of the polynomial ring A[z] by the
principal ideal generated by sz − 1. We will often denote this localization by As. If A is a finite-type domain,
so is As. In that case, if X denotes the variety = SpecA, Xs will denote the variety SpecAs, and Xs will be
called a localization of X too.

2.6.1. Proposition.topology-
onlocal-

ization

(i) With terminology as above, points of the localization Xs = SpecAs correspond
bijectively to the open subset of X of points at which the function defined by s is nonzero.
(ii) When we identify a localization Xs with a subset of X , the Zariski topology on Xs is the induced topology
from X . So Xs is an open subspace of X .

proof. (i) Let p be a point of X , let A
πp−→ C be the corresponding homomorphism. If s isn’t zero at p, i.e.,

c = s(p) 6= 0, then πp extends uniquely to a homomorphism As → C that sends s−1 to c−1. This gives us a
unique point of Xs whose image in X is p. If c = 0, then πp doesn’t extend to As.

(ii) Let C be a closed subset of X , say the zero set of a set of elements a1, ..., ak of A. Then C ∩ Xs is the
zero set in Xs of those same elements, so it is closed in Xs. Conversely, let D be a closed subset of Xs, say
the zero set in Xs of some elements β1, ..., βk, where βi = bis

−n with bi in A. We can use the same exponent
n for each i. Since s−1 doesn’t vanish on Xs, the elements bi and βi have the same zeros in Xs. If we let C
be the zero set of b1, ..., bk in X , we will have C ∩Xs = D. �

We usually identify Xs as an open subset of X . Then the effect of adjoining the inverse is to throw out the
points of X at which s vanishes. For example, the spectrum of the Laurent polynomial ring C[t, t−1] becomes
the complement of the origin in the affine line A1 = SpecC[t].

This illustrates one benefit of working with an affine variety without a fixing an embedding into affine
space. If X is embedded into An, the localization Xs wants to be in An+1.

As is true for many open sets, the complement X ′ of the origin in the affine plane SpecC[x1, x2] isn’t a
localization. Every polynomial that vanishes at the origin vanishes on an affine curve, which has points distinct
from the origin. So the inverse of such a polynomial doesn’t define a function on X ′. This is rather obvious,
but in other situations, it may be hard to tell whether or not an open set that is given is a localization.

Localizations are important for two reasons:

• The relation between an algebra A and a localization As is easy to understand, and

• The localizations Xs of an affine variety X form a basis for the Zariski topology on X .

A basis for the topology on a topological space X is a family B of open sets such that every open set is a union
of open sets that are members of B.

We verify the second statement marked with a bullet. We must show that if U is an open subset of X =
SpecA, then U can be covered by sets of the form Xs. The complement of Xs in X , the set X −Xs, is the
zero set VX(s) of s. Let C be the closed complement X − U of U in X . Since C is closed, it is the set of
common zeros of some elements s1, ..., sk of A. Then C is the intersection

⋂
VX(si) of zero sets, and U is

the union of those sets Xsi . �
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2.6.2. Lemma. loclocLet U and V be affine open subsets of an affine variety X .
(i) If V is a localization of U and U is a localization of X , then V is a localization of X .
(ii) If V ⊂ U and V is a localization of X , then V is a localization of U .
(iii) Let p be a point of U ∩ V . There is an open set Z containing p that is a localization of U and also a
localization of V .

proof. (i) Say that X = SpecA, U = Xs = SpecAs and V = Ut = Spec(As)t. Then t is an element of
As, say t = rs−k with r in A. The localizations (As)t and (As)r are equal, and (As)r = Asr. So V = Xsr.

(ii) Say that X = SpecA, U = SpecB, and V = SpecAt, where t is a nonzero element of A. A regular
function onX restricts to a regular onU , and a regular functon onU to a regular function on V . The restrictions
define homomorphisms A → B → At, which are injective because A ⊂ At. Since t is in B, Bt ⊂ At, and
therefore Rt = At.

(iii) Since localizations form a basis for the topology, U ∩ V contains a localization Xs of X that contains p.
By (ii), Xs is also a localization of U and a localization of V . �

(2.6.3) extension and contraction of ideals extcontr

Let A ⊂ B be the inclusion of a ring A as a subring of a ring B. The extension of an ideal I of A is the
ideal IB of B generated by I . Its elements are finite sums

∑
i zibi with zi in I and bi in B. The contraction

of an ideal J of B is the intersection J ∩A. It is an ideal of A.
If As is a localization of A and I is an ideal of A, the elements of the extended ideal IAs are fractions of

the form zs−k, with z in I . We denote this extended ideal by Is.

2.6.4. Lemma. extcontr-
prop(i) Let As be a localization of a domain A, let J be an ideal of As and let I = J ∩ A. Then J = Is. Every

ideal of As is the extension of an ideal of A.
(ii) Let P be a prime ideal of A. If s is an element of A that isn’t in P , the extended ideal Ps is a prime ideal
of As. If s is in P , the extended ideal Ps is the unit ideal. �

(2.6.5) localizing a module locmod

Let A be a domain, and let M be an A-module. torsion element of M is an element that is annihilated
by some nonzero element s of A: sm = 0. A nonzero element m such that sm = 0 is called an s-torsion
element.

The set of all torsion elements of M is its torsion submodule, and a module whose torsion submodule is
zero is torsion-free.

Let s be a nonzero element of a domainA. The localizationMs of anA-moduleM is defined in the natural
way, as the As-module whose elements are equivalence classes of fractions m/sr = ms−r, with m in M and
r ≥ 0. An alternate notation for the localization Ms is M [s−1]. The only complication comes from the fact
that there may be s-torsion elements in M . If ms = 0 and s is in S, then m must map to zero in Ms, because
we will have mss−1 = m in Ms.

To defineMs, it suffices to modify the equivalence relation. Two fractionsm1s
−r1 andm2s

−r2 are defined
to be equivalentm1s

r2+n = m2s
r1+n when n is sufficiently large. This takes care of torsion, andMs becomes

an As-module. There will be a homomorphism M →Ms that sends an element m to the fraction m/1.
This is also how one localizes a ring that isn’t a domain.

(2.6.6) multiplicative systems multsys

To work with the inverses of finitely many nonzero elements, one may simply adjoin the inverse of their
product. For working with an infinite set of inverses, the concept of a multiplicative system is useful.
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A multiplicative system S in a domain A is a subset that consists of nonzero elements, is closed under
multiplication, and contains 1. If S is a multiplicative system, the ring of S-fractionsAS−1 is the ring obtained
by adjoining inverses of all elements of S. Its elements are equivalence classes of fractions as−1 with a in A
and s in S, the equivalence relation and the laws of composition being the usual ones for fractions. The ring
AS−1 will be called a localization too. For emphasis, the ring obtained by inverting a single element s may
be called a simple localization.

2.6.7. Examples.inverseex-
amples

(i) The set consisting of the powers of a nonzero element s of a domainA is a multiplicative
system. Its ring of fractions is the simple localization As = A[s−1].

(ii) The set S of all nonzero elements of a domain A is a multiplicative system. Its ring of fractions is the field
of fractions of A.

(iii) An ideal P of a domain A is a prime ideal if and only if its complement, the set of elements of A not in
P , is a multiplicative system. �

2.6.8. Proposition.extendide-
altoloc

Let S be a multiplicative system in a domain A, and let A′ be the localization AS−1.
(i) Let I be an ideal of A. The extended ideal IA′ (2.6.3) is the set IS−1 whose elements are classes of
fractions xs−1, with x in I and s in S. The extended ideal is the unit ideal if and only if I contains an element
of S.
(ii) Let J be an ideal of the localization A′ and let I denote its contraction J ∩A. The extended ideal IA′ is
equal to J: J = (J ∩A)A′.
(iii) If Q is a prime ideal of A and if Q∩S is empty, the extended ideal Q′ = QA′ is a prime ideal of A′, and
the contraction Q′ ∩ A is equal to Q. If Q ∩ S isn’t empty, the extended ideal is the unit ideal. Thus prime
ideals of AS−1 correspond bijectively to prime ideals of A that don’t meet S. �

2.6.9. Corollary.locfintype Every localization AS−1 of a noetherian domain A is noetherian. �

(2.6.10) a general principleimport-
princ

An important, though elementary, principle for working with fractions is that any finite sequence of com-
putations in a localization AS−1 will involve only finitely many denominators, and can therefore be done
in a simple localization As, where s is a common denominator for the fractions that occur. (This has been
mentioned before.)

(2.6.11) localizing a modulelocmod

Let S be a multiplicative system in a domainA. The localizationMS−1 of anA-moduleM is defined in a
way analogous to the one used for simple localizations, as the AS−1-module whose elements are equivalence
classes of fractions ms−1 with m in M and s in S. To take care of possible torsion, two fractions m1s

−1
1 and

m2s
−1
2 are defined to be equivalent if there is an element s̃ ∈ S such that m1s2s̃ = m2s1s̃. Then ms−1

1 = 0 if
and only ifms̃ = 0 for some s̃ in S. As with simple localizations, there will be a homomorphismM →MS−1

that sends an element m to the fraction m/1.

2.6.12. Proposition.localexact Let S be a multiplicative system in a domain A.

(i) Localization is an exact functor: A homomorphism M
ϕ−→ N of A-modules induces a homomorphism

MS−1 ϕ′−→ NS−1 of AS−1-modules, and if M
ϕ−→ N

ψ−→ P is an exact sequence of A-modules, the

localized sequence MS−1 ϕ′−→ NS−1 ψ′−→ PS−1 is exact.
(ii) Let M be an A-module. and let N be an AS−1-module. Homomorphisms of AS−1-modules MS−1 → N
correspond bijectively to homomorphisms of A-modules M → N , when N is made into an A-module by
restriction of scalars.
(iii) If multiplication by s is an injective map M → M for every s in S, then M ⊂ MS−1. If multiplication
by every s is a bijective map M →M , then M ≈MS−1. �
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2.7 Morphisms of Affine Varieties
morphism

Morphisms are the allowed maps between varieties. Morphisms between affine varieties are defined below.
They correspond to algebra homomorphisms in the opposite direction between their coordinate algebras.

Morphisms of projective varieties require more thought. They will be defined in the next chapter.

(2.7.1) regfnoneregular functions

The function field K of an affine variety X = SpecA is the field of fractions of A. A rational function on
X is a nonzero element of the function field K.

As we have seen, (2.5.1) elements of the coordinate algebra A define functions on X . The value of the
function α at a point p is α(p) = πp(α), where πp is the homomorphism A → C that corresponds to p. A
rational function f = a/s with a and s in A is an element of As, and it defines a function on the open subset
Xs. A rational function f is regular at a point p of X if it can be written as a fraction a/s such that s(p) 6= 0.
A rational function is regular on X if it is regular at every point of X .

2.7.2. Proposition. delocaThe regular functions on an affine variety X = SpecA are the elements of the coordinate
algebra A.

proof. Let f be a rational function that is regular on X . So for every point p of X , there is a localization
Xs = SpecAs that contains p, such that f is an element of As. Because X is quasicompact, a finite set of
these localizations, say Xs1 , . . . , Xsk , will cover X . Then s1, ..., sk have no common zeros on X , so they
generate the unit ideal of A (2.5.8). Since f is in Asi , we can write f = s−ni bi, or sni f = bi, with bi in A,
and we can use the same exponent n for each i. Since the elements si generate the unit ideal of A, so do the
powers sni . Say that

∑
sni ci = 1, with ci in A. Then f =

∑
sni cif =

∑
cibi is an element of A. �

(2.7.3) morphtwomorphisms

Let X = SpecA and Y = SpecB be affine varieties, and let A
ϕ−→ B be an algebra homomorphism. A

point q of Y corresponds to an algebra homomorphism B
πq−→ C. When we compose πq with ϕ, we obtain a

homomorphism A
πqϕ−→ C. By definition, the points of SpecA correspond to homomorphisms A

πp−→ C. So
there is a unique point p of X = SpecA such that πp = πqϕ:

(2.7.4) piqphi

A
ϕ−−−−→ B

πp

y yπq
C C

2.7.5. Definition. defmor-
phaff

Let X = SpecA and Y = SpecB. A morphism Y
u−→ X is a map that can be defined

by an algebra homomorphism A
ϕ−→ B, as follows: If q is a point of Y , then uq is the point p of X such that

πp = πqϕ.

Let α be an element of A and let β = ϕ(α). If p is the image in X of a point q of Y , then β(q) = α(p):

(2.7.6) bisphiaβ(q) = πq(β) = πq(ϕα) = πp(α) = α(p)

The morphism Y
u−→ X is an isomorphism if and only if there is an inverse morphism. This will be true if

and only if A
ϕ−→ B is an isomorphism of algebras. �

The next formula sums up the relation between a homomorphism A
ϕ−→ B and the associated morphism

Y
u−→ X . If q is a point of Y and α is an element of A, then

(2.7.7) auqphiaqα[u(q)] = [ϕα](q)
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Thus the homomorphism ϕ is determined by the map u, and vice-versa. But just as most maps A→ B aren’t
homomorphisms, most maps Y → X aren’t morphisms.

The description of a morphism can be confusing because the direction of the arrow is reversed. It will become
clearer as we expand the discussion.

Morphisms to the affine line.

A morphism Y
u−→ A1 from a variety Y = SpecB to the affine line SpecC[x] is defined by an algebra

homomorphism C[x]
ϕ−→ B, which substitutes an element β ofB for x. The corresponding morphism u sends

a point q of Y to the point of the x-line at which x = β(q).

For example, let Y be the space of 2×2 matrices, so thatB = C[yij ], 1 ≤ i, j ≤ 2, and let A1 be the affine
line SpecC[x]. The determinant defines a morphism Y → A1. The corresponding algebra homomorphism
C[x]

ϕ−→ C[yij ] substitutes y11y22 − y12y21 for x. It sends a polynomial f(x) to f(y11y22 − y12y21).
In the other direction, a morphism from A1 to a variety Y may be called a (complex) polynomial path

in Y . For example, if Y is the space of matrices, a morphism A1 → Y corresponds to a homomorphism
C[yij ]→ C[x], and such a homomorphism substitutes polynomials in x for the variables yij .

Morphisms to affine space.
A morphism from an affine variety Y = SpecB to affine space An will be defined by a homomorphism

C[x1, ..., xn]
Φ−→ B, which substitutes elements βi of B for xi: Φ(f(x)) = f(β). (We are using an upper

case Φ here, in order to keep ϕ in reserve.) The corresponding morphism Y
u−→ An sends a point q of Y to

the point (β1(q), ..., βn(q)) of An.

Morphisms to affine varieties.
Let X = SpecA and Y = SpecB be affine varieties. Say that we have chosen a presentation A =

C[x1, ..., xm]/(f1, ..., fk) of A, so that X becomes the closed subvariety V (f) of affine space Am. There
is no need to choose a presentation of B. A natural way to define a morphism from a variety Y to X is
as a morphism Y

u−→ Am to affine space, whose image is contained in X . We check that this agrees with
Definition 2.7.5:

As above, a morphism Y
u−→ Am corresponds to a homomorphism C[x1, ..., xm]

Φ−→ B. It will be
determined by the set (β1, ..., βm) of elements of B such that βi = Φ(xi). Since X is the locus of zeros of the
polynomials f , the image of Y will be contained in X if and only if fi(β1(q), ..., βm(q)) = 0 for every point
q of Y and every i, i.e., if and only if fi(β) is in every maximal ideal of B, in which case fi(β) = 0 for every
i (2.5.16)(i). Another way to say this is:

The image of Y is contained in X if and only if β = (β1, ..., βm) solves the equations f(x) = 0.

And, if β is a solution, the map Φ defines a map A
ϕ−→ B.

C[x]
Φ−−−−→ By ∥∥∥

A
ϕ−−−−→ B

There is an elementary, but important, principle at work here:

• Homomorphisms from an algebra A = C[x]/(f) to an algebra B correspond to solutions of the equations
f = 0 in B.

2.7.8. Example.maptocusp Let B = C[x], and let A be the coordinate algebra C[u, v]/(v2 − u3) of a cusp curve. A
homomorphism A → B is determined by a solution of the equation v2 = u3 in bbc[x]. For example, u = x3

and v = x3 is a solution. Every solution will have the form u = f3, v = f2 with f in C[x]. �

2.7.9. Corollary.mor-
phandho-

mom

Let X = SpecA and let Y = SpecB be affine varieties. Suppose that A is presented as
the quotient C[x1, ..., xm]/(f1, ..., fk) of a polynomial ring. There are bijective correspondences between the
following sets:
• algebra homomorphisms A→ B, or morphisms Y → X ,
• morphisms Y → An whose images are contained in X ,
• solutions of the equations fi(x) = 0 in B, �
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The second and third sets refer to an embedding of the variety X into affine space, but the first one does not.
It shows that a morphism depends only on the varieties X and Y , not on an embedding of X ,

The geometry of a morphism will be described more completely in Chapters ?? and ??. We note a few
more facts about them here.

2.7.10. Proposition. phisurjLet X u←− Y be the morphism of affine varieties that corresponds to a homomorphism
of coordinate algebras A

ϕ−→ B.

(i) Let Y v←− Z be another morphism, corresponding to another homomorphism B
ψ−→ R of finite-type

domains. The the composition Z uv−→ X . is the morphism that corresponds to the composed homomorphism

A
ψϕ−→ R.

(ii) Suppose that B = A/P , where P is a prime ideal of A, and that ϕ is the canonical homomorphism
A→ A/P . Then u is the inclusion of the closed subvariety Y = VX(P ) into X .
(iii) ϕ is surjective if and only if u maps Y isomorphically to a closed subvariety of X . �

It is useful to rephrase the definition of the morphism Y
u−→ X that corresponds to a homomorphism

A
ϕ−→ B in terms of maximal ideals. Let mq be the maximal ideal of B at a point q of Y . The inverse image

of mq in A is the kernel of the composed homomorphism A
ϕ−→ B

πq−→ C, so it is a maximal ideal of A:
ϕ−1mq = mp for some point p of X . That point is the image of q: p = uq.

In the other direction, let mp be the maximal ideal at a point p of X , and let J be the ideal generated by the
image of mp in B. This ideal is called the extension of mp to B. Its elements are finite sums

∑
ϕ(zi)bi with

zi in mp and bi in B. If q is is a point of Y , then uq = p if and only if mp = ϕ−1mq , and this will be true if
and only if J is contained in mq .

Recall that, if Y u−→ X is a map of sets, the fibre of Y over a point p of X is the set of points q of Y that
map to p.

2.7.11. Corollary. extmaxLet X = SpecA and Y = SpecB, and let Y u−→ X be the morphism corresponding to
a homomorphism A

ϕ−→ B. Let mp be the maximal ideal at a point p of X , and let J = mpB be the extended
ideal.
(i) The fibre of Y over p is the set VY (J) of points q such that J ⊂ mq .
(ii) The fibre of Y over p is empty if and only if J is the unit ideal of B. �

2.7.12. Example. (blowing up the plane) cusp-
normxLet Z and Y be the affine planes with coordinates x, z and x, y, respectively. The map Z π−→ Y defined

by y = xz. The morphism that corresponds to the algebra homomorphism C[x, y]
ϕ−→ C[x, z] defined by

ϕ(x) = x, ϕ(y) = xz.
This morphism π is bijective at points (x, y) t which x 6= 0. At such a point, y = zx−1. The fibre of Z

over a point of Y of the form (0, y) is empty unless y = 0, and the fibre over the origin (0, 0) in Y is the z-axis
{(0, z)} in the plane Z. Because the origin in Y is replaced by a line in Z, this morphism π is called a blowup
of the affine plane Y . �

figure

2.7.13. Proposition. mcontA morphism Y
u−→ X of affine varieties is a continuous map in the Zariski topology

and also in the classical topology.

proof. The Zariski topology: Let X = SpecA and Y = SpecB, so that u corresponds to an algebra
homomorphism A

ϕ−→ B. A closed subset C of X will be the zero locus of a set α = {α1, ..., αk} of
elements of A. Let βi = ϕαi. The inverse image u−1C is the set of points q such that p = uq is in C, i.e.,
such that αi(uq) = βi(q) = 0 (2.7.5). So u−1C is the zero locus in Y of the elements βi = ϕ(αi) of B. It is
a closed set.

The classical topology: We use the fact that polynomials are continuous functions. First, a morphism if
affine spaces Any

ũ−→ Amx is defined by an algebra homomorphism C[x1, ..., xm]
Φ−→ C[y1, ..., yn], and this
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homomorphism is determined by the polynomials h1(y), ..., hm(y) that are the images of the variables x. The
morphism ũ sends the point (y1, ..., yn) of An to the point (h1(y), ..., hm(y)) of Am. It is continuous.

Next, a morphism Y
u−→ X is defined by a homomorphism A

ϕ−→ B. We choose presentations
A = C[x]/I and B = C[y]/J , and we form a diagram of homomorphisms and the associated diagram of
morphisms:

C[x]
Φ−−−−→ C[y]

α

y yβ
A

ϕ−−−−→ B

Anx
ũ←−−−− Amyx x

X
u←−−−− Y

Here α and β are the canonical maps of a ring to a quotient ring. The map α sends x1, ..., xn to α1, ..., αn.
Then Φ is obtained by choosing elements hi of C[y], such that β(hi) = ϕ(αi).

In the diagram of morphisms, ũ is continuous, and the vertical arrows are the embeddings of X and Y into
their affine spaces. Since the topologies on X and Y are induced from their embeddings, u is continuous. �

As we see here, every morphism of affine varieties can be obtained by restriction from a morphism of
affine spaces. However, in the diagram above, the morphism ũ isn’t unique. It depends on the choice of the
polynomials hi.

2.8 Finite Group Actions
grpi

Let G be a finite group of automorphisms of a finite-type domain B. An invariant element of B is an element
that is sent to itself by every element σ of G. For example, the product and the sum

(2.8.1)
∏
σ∈G

σb ,
∑
σ∈G

σbinvarelts

are invariant elements. The invariant elements form a subalgebra of B that is often denoted by BG. Theorem
2.8.5 below asserts that BG is a finite-type algebra, and that points of SpecBG correspond bijectively to
G-orbits in SpecB.

2.8.2. Examples.actonpla-
neex (i) The symmetric group G = Sn operates on the polynomial ring R = C[x1, ..., xn] by permuting the

variables, and the Symmetric Functions Theorem asserts that the elementary symmetric functions

s1 =
∑
i

xi , s2 =
∑
i<j

xixj , . . . , sn = x1x2 · · ·xn

generate the ring RG of invariant polynomials. Moreover, s1, ..., sn are algebraically independent, so RG is
the polynomial algebra C[s1, ..., sn]. The inclusion of RG into R gives us a morphism from affine x-space Anx
to affine s-space Ans = SpecRG. If a = (a1, ..., an) is a point of Ans , the points b = (b1, ..., bn) of Anx that
map to a are those such that si(b) = ai. They are the roots of the polynomial xn − a1x

n−1 + · · · ± an. Since
the roots form a G-orbit, the set of G-orbits of points of Anx maps bijectively to Ans .

(ii) Let ζ = e2πi/n, let σ be the automorphism of the polynomial ring B = C[y1, y2] defined by σy1 = ζy1

and σy2 = ζ−1y2. Let G be the cyclic group of order n generated by σ, and let A denote the algebra BG

of invariant elements. A monomial m = yi1y
j
2 is invariant if and only if n divides i − j, and an invariant

polynomial is a linear combination of invariant monomials. You will be able to show that the three monomials

(2.8.3)zetainvar u1 = yn1 , u2 = yn2 , and w = y1y2

generate A. We’ll use the same symbols u1, u2, w to denote variables in the polynomial ring C[u1, u2, w]. Let
J be the kernel of the canonical homomorphism C[u1, u2, w]

τ−→ A that sends u1, u2, w to yn1 , y
n
2 , y1y2.

2.8.4. Lemma.slaction With notation as above, the kernel J of τ is the principal ideal of C[u1, u2, w] generated by
the polynomial f = wn − u1u2.
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proof. First, f is an element of J . Next, let g(u1, u2, w) be an element of J . So g(yn1 , y
n
2 , y1y2) = 0. We

divide g by f , considered as a monic polynomial in w, say g = fq+ r, where the remainder r has degree < n
in w. The remainder will be in J too: r(yn1 , y

n
2 , y1y2) = 0. We write r(u1, u2, w) as a polynomial of degree

at most n in w: r = r0(u1, u2) + r1(u1, u2)w+ · · ·+ rn−1(u1, u2)wn−1. When we substitute yn1 , y
n
2 , y1y2,

the term ri(u1, u2)wi becomes ri(yn1 , y
n
2 )(y1y2)i. The degree in y1 of every monomial that appears here will

be congruent to i modulo n, and the same is true for y2. Since r(yn1 , y
n
2 , y1y2) = 0, and since the indices i are

distinct, ri(yn1 , y
n
2 ) will be zero for every i. And if ri(yn1 , y

n
2 ) is zero, then ri(u1, u2) = 0. So r = 0, which

means that f divides g. �

We go back to the operation of the cyclic group on B and the algebra of invariants A. Let Y denote the
affine plane SpecB, and let X = SpecA. The group G operates on Y , and except for the origin, which is a
fixed point, the orbit of a point (y1, y2) consists of the n points (ζiy1, ζ

−iy2), i = 0, . . . , n− 1. To show that
G-orbits in Y correspond bijectively to points of X , we fix complex numbers u1, u2, w with wn = u1u2, and
we look for solutions of the equations (2.8.3). When u1 6= 0, the equation u1 = yn1 has n solutions for y1, and
then y2 is determined by the equation w = y1y2. So the fibre has order n. Similarly, there are n points in the
fibre if u2 6= 0. If u1 = u2 = 0, then y1 = y2 = w = 0. In all cases, the fibres are the G-orbits. �

2.8.5. Theorem.
groupoper-
one

Let G be a finite group of automorphisms of a finite-type domain B, and let A denote the
algebra BG of invariant elements. Let Y = SpecB and X = SpecA.
(i) A is a finite-type domain and B is a finite A-module.
(ii) G operates by automorphisms on Y .
(iii) The morphism Y → X defined by the inclusion A ⊂ B is surjective, and its fibres are the G-orbits of
points of Y .

When a group G operates on a set Y , one often denotes the set of G-orbits of Y by Y/G (read Y mod G).
With that notation, the theorem asserts that there is a bijective map

Y/G→ X

proof of 2.8.5 (i): The invariant algebra A = BG is a finite-type algebra, and B is a finite A-module.
This is an interesting indirect proof. To show that A is a finite-type algebra, one constructs a finite-type

subalgebra R of A such that B is a finite R-module.

Let {z1, . . . , zk} be the G-orbit of an element z1 of B. The orbit is the set of roots of the polynomial

f(t) = (t− z1) · · · (t− zk) = tk − s1t
k−1 + · · · ± sk spoly

whose coefficients are the elementary symmetric functions in {z1, ..., zk}. LetR1 denote the algebra generated
by those symmetric functions. Because the symmetric functions are invariant, R1 ⊂ A. Using the equation
f(z1) = 0, we can write any power of z1 as a polynomial in z1 of degree less than k, with coefficients in R1.

We choose a finite set of generators {y1, . . . , yr} for the algebraB. If the order of the orbit of yj is kj , then
yj will be the root of a monic polynomial fj of degree kj with coefficients in A. Let R denote the finite-type
algebra generated by all of the coefficients of all of the polynomials f1, ..., fr. We can write any power of yj
as a polynomial in yj with coefficients in R, and of degree less than kj . Using such expressions, we can write
every monomial in y1, ..., yr as a polynomial with coefficients in R, whose degree in each variable yj is less
than kj . Since y1, ..., yr generate B, we can write every element of B as such a polynomial. Then the finite
set of monomials ye11 · · · yerr with ej < kj spans B as an R-module. Therefore B is a finite R-module.

Since R is a finite-type algebra, it is noetherian. The algebra A of invariants is a subalgebra of B that
contains R. So when regarded as an R-module, A is a submodule of the finite R-module B. Since R is
noetherian, A is also a finite R-module. When we put a finite set of algebra generators for R together with a
finite set of R-module generators for A, we obtain a finite set of algebra generators for A. So A is a finite-type
algebra. And, since B is a finite R-module, it is also a finite module over the larger ring A.

proof of 2.8.5(ii): The group G operates on Y .
A group element σ is a homomorphism B

σ−→ B, which defines a morphism Y
uσ←− Y , as in Definition

2.7.5. Since σ is an invertible homomorphism, i.e., an automorphism, uσ is also an automorphism. Thus G
operates on Y . However, there is a point that should be mentioned.
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Let’s write the operation of G on B on the left as usual, so that a group element σ maps an element β of B
to σb. Then if σ and τ are two group elements, the product στ acts as first do τ , then σ: (στ)β = σ(τβ).

(2.8.6)BBB B
τ−→ B

σ−→ B

We substitute u = uσ into Definition 2.7.5: If q is a point of Y , the morphism Y
uσ←− Y sends q to the

point p such that πp = πqσ. It seems permissible to drop the symbol u, and to write the morphism simply as
Y

σ←− Y . But since arrows are reversed when going from homomorphisms of algebras to morphisms of their
spectra, the maps displayed in (2.8.6), give us morphisms

(2.8.7) Y
τ←− Y σ←− YYYY

On Y = SpecB, the product στ acts as first do σ, then τ .
To get around this problem, we can put the symbol σ on the right when it operates on Y , so that σ sends a

point q to qσ. Then if q is a point of Y , we will have q(στ) = (qσ)τ , as required of an operation.

• If G operates on the left on B, then it operates on the right on SpecB.

This is important only when one wants to compose morphisms. In Definition 2.7.5, we followed custom
and wrote the morphism u that corresponds to an algebra homomorphism ϕ on the left. We will continue to
write morphisms on the left when possible, but not here.

Let β be an element of B and let q be a point of Y . The value of the function σβ at a point q is the same

as the value of the function β at the point qσ: [σβ](q)
defn
= πq(σβ) = πqσ(β)

defn
= β(qσ) (2.7.6):

(2.8.8)bsigmay [σβ](q) = β(qσ) �

proof of 2.8.5 (iii): The fibres of the morphism Y → X are the G-orbits in Y .
We go back to the subalgebra A = BG. For σ in G, we have a diagram of algebra homomorphisms and

the corresponding diagram of morphisms

(2.8.9)

B
σ−−−−→ Bx x

A A

Y
σ←−−−− Yy y

X X

actonB

The diagram of morphisms shows that the elements of Y forming a G-orbit have the same image in X , and
therefore that the set of G-orbits in Y , which we may denote by Y/G, maps to X . We show that the map
Y/G→ X is bijective.

2.8.10. Lemma.arbvals (i) Let p1, . . . , pk be distinct points of affine space An, and let c1, . . . , ck be complex
numbers. There is a polynomial f(x1, . . . , xn) such that f(pi) = ci for i = 1, . . . , n.
(ii) Let B be a finite-type algebra, let q1, . . . , qk be points of SpecB, and let c1, . . . , ck be complex numbers.
There is an element β in B such that β(qi) = ci for i = 1, . . . , k. �

injectivity of the map Y/G→ X:
Let O1 and O2 be distinct G-orbits. Lemma 2.8.10 tells us that there is an element β in B whose value is

0 at every point of O1, and is 1 at every point of O2. Since G permutes the orbits, σβ will also be 0 at points
of O1 and 1 at points of O2. Then the product γ =

∏
σ σβ will be 0 at points of O1 and 1 at points of O2,

and the product γ is invariant. If pi denotes the image in X of the orbit Oi, the maximal ideal mpi of A is the
intersection A ∩mq , where q is any point in Oi. Therefore γ is in the maximal ideal mp1 , but not in mp2 . The
images of the two orbits are distinct.

surjectivity of the map Y/G→ X:
It suffices to show that the map Y → X is surjective.

2.8.11. Lemma.extideal If I is an ideal of the invariant algebra A, and if the extended ideal IB is the unit ideal of B,
then I is the unit ideal of A.
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As before, the extended ideal IB is the ideal of B generated by I .

Let’s assume the lemma for the moment, and use it to prove surjectivity of the map Y → X . Let p be
a point of X . The lemma tells us that the extended ideal mpB isn’t the unit ideal. So it is contained in a
maximal ideal mq of B, where q is a point of Y . Then mp ⊂ (mpB)∩A ⊂ mq ∩A.

The contraction mq ∩ A is an ideal of A, and it isn’t the unit ideal because 1 isn’t in mq . Since mp is a
maximal ideal, mp = mq ∩A. This means that q maps to p in X . �

proof of the lemma. If IB = B, there will be an equation
∑
i zibi = 1, with zi in I and bi in B. The

sums αi =
∑
σ σbi are invariant, so they are elements of A, and the elements zi are invariant. Therefore∑

σ σ(zibi) = zi
∑
σ σbi = ziαi is in I . Then∑

σ

1 =
∑
σ

σ(1) =
∑
σ,i

σ(zibi) =
∑
i

ziαi

The right side is in I , and the left side is the order of the group which, because A contains the complex
numbers, is an invertible element of A. So I is the unit ideal. �
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Chapter 3 PROJECTIVE ALGEBRAIC GEOMETRY

projgeom june23
3.1 Projective Varieties
3.2 Homogeneous Ideals
3.3 Product Varieties
3.4 Morphisms and Isomorphisms
3.5 Affine Varieties
3.6 Lines in Projective Three-Space

3.1 Projective Varieties
pvariety

The projective space Pn of dimension n was described in Chapter 1. Its points are equivalence classes of
nonzero vectors (x0, ..., xn), the equivalence relation being that, for any nonzero complex number λ,

(3.1.1) (x0, ..., xn) ∼ (λx0, ..., λxn).xlambdax

A subset of Pn is Zariski closed if it is the set of common zeros of a family of homogeneous polynomials
f1, ..., fk in the coordinate variables x0, ..., xn, or if it is the set of zeros of the ideal I generated by such
a family. Homogeneity is required because the vectors (x) and (λx) represent the same point of Pn. As
explained in (1.3.1), f(λx) = 0 for all λ if and only if f is homogeneous. The Zariski closed sets are the
closed sets in the Zariski topology on Pn. We usually refer to the Zariski closed sets simply as closed sets.

Because the polynomial ring C[x0, ..., xn] is noetherian, Pn is a noetherian space: Every strictly increasing
family of ideals of C[x] is finite, and every strictly decreasing family of closed subsets of Pn is finite. Therefore
every closed subset of Pn is a finite union of irreducible closed sets (2.2.14). The irreducible closed sets are
the projective varieties, the closed subvarieties of Pn. Thus every projective variety X is an irreducible closed
subset of some projective space.

We will want to know when two projective varieties are isomorphic. This will be explained in Section 3.4,
where morphisms are defined.

The Zariski topology on a projective variety X is induced from the topology on the projective space that
contains it. Since a projective variety X is closed in Pn, a subset of X is closed in X if it is closed in Pn.

3.1.2. Lemma.point-
closed

The one-point sets in projective space are closed.

proof. This simple proof illustrates a general method. Let p be the point (a0, ..., an). The first guess might be
that the one-point set {p} is defined by the equations xi = ai, but the polynomials xi−ai aren’t homogeneous
in x. This is reflected in the fact that, for any λ 6= 0, the vector (λa0, ..., λan) represents the same point,
though it won’t satisfy those equations. The equations that define the set {p} are

(3.1.3) aixj = ajxi,define-
point

for i, j = 0, ..., n, which imply that the ratios ai/aj and xi/xj are equal. �

3.1.4. Lemma.closedin-
line

The proper closed subsets of the projective line are the nonempty finite subsets, and the proper
closed subsets of the projective plane are finite unions of points and curves. �

Though affine varieties are important, most of algebraic geometry concerns projective varieties. It won’t
be clear why this is so, but one property of projective space gives a hint of its importance: With its classical
topology, projective space is compact.

59



A topological space is compact if it has these properties:

Hausdorff property: Distinct points p, q of X have disjoint open neighborhoods, and
quasicompactness: If X is covered by a family {U i} of open sets, then a finite subfamily covers X .

By the way, when we say that the sets {U i} cover a topological space X , we mean that X is the union⋃
U i. We don’t allow U i to contain elements that aren’t in X , though that would be a customary English

usage.

In the classical topology, affine space An isn’t quasicompact, and therefore it isn’t compact. The Heine-
Borel Theorem asserts that a subset of An is compact in the classical topology if and only if it is closed and
bounded.

We’ll show that Pn is compact, assuming that the Hausdorff property has been verified. The 2n+ 1-
dimensional sphere S of unit length vectors in An+1 is a bounded set, and because it is the zero locus of the
equation x0x0 + · · · + xnxn = 1, it is closed. The Heine-Borel Theorem tells us that S is compact. The
map S → Pn that sends a vector (x0, ..., xn) to the point of projective space with that coordinate vector is
continuous and surjective. The next lemma of topology shows that Pn is compact.

3.1.5. Lemma. image-
compact

Let Y
f−→ X be a continuous map. Suppose that Y is compact and that X is a Hausdorff

space. Then the image Z = f(Y ) is a closed and compact subset of X . �

The rest of this section contains a few examples of projective varieties.

(3.1.6) linear subspaces linsubsp

If W is a subspace of dimension r+1 of the vector space V , the points of Pn that are represented by the
nonzero vectors in W form a linear subspace L of Pn, of dimension r. If (w0, ..., wr) is a basis of W , the
linear subspace L corresponds bijectively to a projective space of dimension r, by

c0w0 + · · ·+ crwr ←→ (c0, ..., cr)

For example, the set of points (x0, ..., xr, 0, ..., 0) is a linear subspace of dimension r. �

(3.1.7) a quadric surface quadric-
surface

A quadric in P3 is the locus of zeros of an irreducible homogeneous quadratic equation in four variables.
We describe a bijective map from the product P1×P1 of projective lines to a quadric. Let coordinates

in the two copies of P1 be (x0, x1) and (y0, y1), respectively, and let the four coordinates in P3 be wij , with
0 ≤ i, j ≤ 1. The map is defined by wij = xiyj . Its image is the quadric Q whose equation is

(3.1.8) w00w11 = w01w10 ponepone

Let’s check that the map P1×P1 → Q is bijective. If w is a point of Q, one of the coordinates, say w00, will
be nonzero. Then if (x, y) is a point of P1×P1 whose image is w, so that wij = xiyj , the coordinates x0 and
y0 must be nonzero. When we normalize w00, x0, and y0 to 1, w11 = w01w10. There is a unique solution for
x and y such that wij = xiyj , namely x1 = w10 and y1 = w01.

The quadric with the equation (3.1.8) contains two families of lines (one dimensional linear subspaces),
the images of the subsets x×P1 and P1×y of P×P.

Note. Equation (3.1.8) can be diagonalized by the substitution w00 = s+ t, w11 = s − t, w01 = u+v,
w10 = u− v. This substitution changes the equation (3.1.8) to s2 − t2 = u2−v2. When we look at the affine
open set {u = 1}, the equation becomes s2 +v2− t2 = 1. The real locus of this equation is a one-sheeted
hyerboloid in R3, and the two families of complex lines in the quadric correspond to the familiar rulings of
this hyboloid by real lines.
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(3.1.9) hypersurfaceshsurftwo

A hypersurface in projective space Pn is the locus of zeros of an irreducible homogeneous polynomial
f(x0, ..., xn). The degree of Y is the degree of the polynomial f .

Plane projective curves and quadric surfaces are hypersurfaces.

(3.1.10) the Segre embedding of a productsegreemb

The product Pmx ×Pny of projective spaces can be embedded by its Segre embedding into a projective space
PNw that has coordinates wij , with i = 0, ...,m and j = 0, ..., n. So N = (m+1)(n+1)−1. The Segre
embedding is defined by

(3.1.11) wij = xiyj .segreco-
ords

We call the coordinates wij the Segre variables.

The map from P1× P1 to P3 that was described in (3.1.7) is the simplest case of a Segre embedding.

3.1.12. Proposition.segreeq The Segre embedding maps the product Pm× Pn bijectively to the locus S of the Segre
equations

(3.1.13) wijwk` − wi`wkj = 0.segree-
quations

proof. The proof is the same as the one given above, in (3.1.7). When one substitutes (3.1.11) into the Segre
equations, one obtains equations in {xi, yj} that are true. So the image of the Segre embedding is contained
in S.

Say that we have a point p of the locus S, that is the image of a point (x, y) of Pm×Pn. Some coordinate
of p, say w00, will be nonzero, and then x0 and y0 are also nonzero. We normalize w00, x0, and y0 to 1. Then
wij = wi0w0j for all i, j. The unique solution of the Segre equations is xi = wi0 and yj = w0j . �

The Segre embedding is important because it makes the product of projective spaces into a projective
variety, the closed subvariety of PN defined by the Segre equations. However, to show that the product is a
variety, we need to show that the locus S of the Segre equations is irreducible. This is less obvious than one
might expect, so we defer the discussion to Section 3.3 (see Proposition 3.3.1).

(3.1.14) the Veronese embedding of projective spaceverone-
seemb

Let the coordinates in Pn be xi, and let those in PN be vij , with 0≤ i≤j≤n. Then N =
(
n+2

2

)
− 1. The

Veronese embedding is the map Pn f−→ PN defined by vij = xixj . The Veronese embedding resembles the
Segre embedding, but in the Segre embedding, there are distinct sets of coordinates x and y, and there is no
requirement that i≤j.

The proof of the next proposition is similar to the proof of (3.1.12), once one has untangled the inequalities.

3.1.15. Proposition.veroneq The Veronese embedding f maps Pn bijectively to the locus X in PN of the equations

vijvk` = vi`vkj for 0≤ i≤k≤j≤`≤n �

For example, the Veronese embedding maps P1 bijectively to the conic v00v11 = v2
01 in P2.

(3.1.16) the twisted cubictwistcubic
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There are higher order Veronese embeddings, defined in an analogous way by the monomials of some
degree d > 2. The first example is the embedding of P1 by the cubic monomials in two variables, which maps
P1
x to P3

v . Let the coordinates in P3 be v0, ..., v3. The cubic Veronese embedding is defined by

v0 = x3
0, v1 = x2

0x1, v2 = x0x
2
1, v3 = x3

1

Its image is a twisted cubic in P3, the locus (v0, v1, v2, v3) = (x3
0, x

2
0x1, x0x

2
1, x

3
1). This locus is the set of

common zeros of the three polynomials

(3.1.17) twcubicv0v2 − v2
1 , v1v2 − v0v3 , v1v3 − v2

2

which are the 2×2 minors of the 2×3 matrix

(3.1.18)
(
v0 v1 v2

v1 v2 v3

)
twothree-
matrix

A 2×3 matrix has rank ≤ 1 if and only if its 2×2 minors are zero. So a point (v0, v1, v2, v3) lies on
the twisted cubic if (3.1.18) has rank one. This means that if the vectors (v0, v1, v2) and (v1, v2, v3) are both
nonzero, they represent the same point of P2. Setting x0 = 1 and x1 = t, the twisted cubic becomes the locus
of points (1, t, t2, t3). There is also one point on the twisted cubic at which x0 = 0, the point (0, 0, 0, 1). �

3.2 Homogeneous Ideals
homogenWe denote the polynomial algebra C[x0, ..., xn] by R here.

3.2.1. Lemma. ho-
mogideal

Let I be an ideal of R. The following conditions are equivalent.
(i) I can be generated by homogeneous polynomials.
(ii) A polynomial is in I if and only if its homogeneous parts are in I. �

An ideal I of R that satisfies these conditions is a homogeneous ideal.

3.2.2. Lemma. radicalho-
moge-
neous

The radical (2.2.2) of a homogeneous ideal is homogeneous.

proof. Let I be a homogeneous ideal, and let f be an element of its radical rad I. So fr is in I for some r.
When f is written as a sum f0 + · · · + fd of its homogeneous parts, the highest degree part of fr is (fd)

r.
Since I is homogeneous, (fd)

r is in I and fd is in rad I. Then f0 + · · ·+ fd−1 is also in rad I. By induction
on d, all of the homogeneous parts f0, ..., fd are in rad I. �

If f is a set of homogeneous polynomials, its set of zeros in Pn may be denoted by V (f) or VPn(f), and
the set of zeros of a homogeneous ideal I may be denoted by V (I) or VPn(I). This is the same notation as is
used for closed subsets of affine space.

The complement of the origin in the affine space An+1 is mapped to the projective space Pn by sending a
vector (x0, ..., xn) to the point of Pn it defines. This map can be useful when one studies projective space.

A homogeneous ideal I has a zero locus in projective space Pn and also a zero locus in the affine space
An+1. We can’t use the V (I) notation for both of them here, so let’s denote these two loci by V and W ,
respectively. Unless I is the unit ideal, the origin x = 0 will be a point of W , and the complement of the
origin will map surjectively to V . If a point x other than the origin is in W , then every point of the one-
dimensional subspace of An+1 spanned by x is in W , because a homogeneous polynomial f vanishes at x if
and only if it vanishes at λx. An affine variety that is the union of such lines through the origin is called an
affine cone. If the locus W contains a point x other than the origin, it is an affine cone.

The familiar locus x2
0 + x2

1 − x2
2 = 0 is a cone in A3. The zero locus of the polynomial x3

0 + x3
1 − x3

2 is
also called a cone.

Note. The real locus x2
0 + x2

1− x2
2 = 0 in R3 decomposes into two parts when the origin is removed. Because

of this, it is sometimes called a “double cone”. However, the complex locus doesn’t decompose.

(3.2.3) the irrelevant ideal irrel

In the polynomial algebra R = C[x0, ..., xn], the maximal idealM = (x0, ..., xn) that is generated by the
variables is called the irrelevant ideal because its zero locus in projective space is empty.
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3.2.4. Proposition.nozeros The zero locus in Pn of a homogeneous ideal I of R is empty if and only if I contains a
power of the irrelevant idealM.

Another way to say this is that the zero locus V (I) in projective space of a homogeneous ideal I is empty if
and only if either I is the unit ideal R, or rad I is the irrelevant ideal.

proof of Proposition 3.2.4. Let Z be the zero locus of I in Pn. If I contains a power ofM, it contains a power
of each variable. Powers of the variables have no common zeros in projective space, so Z is empty.

Suppose that Z is empty, and let W be the locus of zeros of I in the affine space An+1 with the same
coordinates x0, ..., xn. Since the complement of the origin in W maps to the empty locus Z, it is empty.
The origin is the only point that might be in W . If W is the one point space consisting of the origin, then
rad I =M. If W is empty, I is the unit ideal. �

3.2.5. Lemma.homprime Let P be a homogeneous ideal in the polynomial algebra R, not the unit ideal. The following
conditions are equivalent:
(i) P is a prime ideal.
(ii) If f and g are homogeneous polynomials, and if fg ∈ P , then f ∈ P or g ∈ P .
(iii) If A and B are homogeneous ideals, and if AB ⊂ P , then A ⊂ P or B ⊂ P .

In other words, a homogeneous ideal is a prime ideal if the usual conditions for a prime ideal are satisfied
when the polynomials or ideals are homogeneous.

proof of the lemma. When the word homogeneous is omitted, (ii) and (iii) become the definition of a prime
ideal. So (i) implies (ii) and (iii). The fact that (iii) ⇒ (ii) is proved by considering the principal ideals
generated by f and g.

(ii) ⇒ (i) Suppose that a homogeneous ideal P satisfies the condition (ii), and that the product fg of two
polynomials, not necessarily homogeneous, is in P . If f has degree d and g has degree e, the highest degree
part of fg is the product fdge of the homogeneous parts of f and g of maximal degree. Since P is a homoge-
neous ideal, it contains fdge. Therefore one of the factors, say fd, is in P . Let h = f − fd. Then hg is in P ,
and it has lower degree than fg. By induction on the degree of fg, h or g is in P , and if h is in P , so is f . �

3.2.6. Proposition.
closedirred

Let Y be the zero locus in Pn of a homogeneous radical ideal I that isn’t the irrelevant
ideal. Then Y is a projective variety (an irreducible closed subset of Pn) if and only if I is a prime ideal.
Thus a subset Y of Pn is a projective variety if and only if it is the zero locus of a homogeneous prime ideal
that isn’t the irrelevant ideal.

proof. The locus W of zeros of I in the affine space An+1 is irreducible if and only if Y is irreducible. This is
easy to see. Proposition 2.2.19 tells us that W is irreducible if and only if the radical ideal I is a prime ideal.
�

3.2.7. Strong Nullstellensatz, projective version.homstrnull
(i) Let g be a nonconstant homogeneous polynomial in x0, ..., xn, and let I be a homogeneous ideal of C[x].
If g vanishes at every point of the zero locus V (I) in Pn, then I contains a power of g.
(ii) Let f and g be homogeneous polynomials. If f is irreducible and if V (f) ⊂ V (g), then f divides g.
(iii) Let I and J be homogeneous ideals, and suppose that rad I isn’t the irrelevant ideal or the unit ideal.
Then V (I) = V (J ) if and only if rad I = radJ .

proof. (i) Let W be the locus of zeros of I in the affine space An+1 with coordinates x0, ..., xn. The
homogeneous polynomial g vanishes at every point ofW different from the origin, and since g isn’t a constant,
it vanishes at the origin too. So the affine Strong Nullstellensatz applies. �

(3.2.8) quasiprojective varietiesvar-
quasiproj

We will also want to consider nonempty open subsets of a projective variety. We call such a subset a
variety.
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For example, the complement of a point in a projective variety is a variety. An affine variety X = SpecA
may be embedded as a closed subvariety into the standard affine space U0 : {x0 6= 0}. It becomes an open
subset of its closure in Pn, which is a projective variety (Lemma 2.2.16 (ii)). And of course, a projective
variety is a variety. The topology on a (quasiprojective) variety is induced from the topology on projective

space.
In more usual terminology such a variety is called a quasiprojective variety, but we drop the adjective

’quasiprojective’. There are varieties that aren’t quasiprojective. They cannot be embedded into any projective
space. But such varieties aren’t very important. We will not study them. In fact, it is hard enough to find
convincing examples of such varieties that we won’t try to give one here. So the adjective ’quasiprojectve’ is
superfluous as well as ugly.

3.2.9. Lemma. topon-
standaff

The topology on the affine open subset U0 : x0 6= 0 of Pn that is induced from the Zariski
topology on Pn is the Zariski topology obtained by viewing U0 as the affine space SpecC[u1, ..., un], ui =
xi/x0. �

3.3 Product Varieties
prodvarThe properties of products of varieties seem intuitive, but some of the proofs aren’t obvious. The reason for

this is that the (Zariski) topology on a product of varieties isn’t the product topology.
The product topology on the product X×Y of topological spaces is the coarsest topology such that the

projection maps X×Y → X and X×Y → Y are continuous. If C and D are closed subsets of X and Y ,
then C×D is a closed subset of X×Y in the product topology, and every closed set in the product topology
is a finite union of subsets of the form C×D.

The first examples of closed subsets of Pm× Pn are products of the form C×D, where C is a closed
subset of Pm and D is a closed subset of Pn. But the product topology on Pm×Pn is much coarser than the
Zariski topology. For example, the proper (Zariski) closed subsets of P1 are the nonempty finite subsets. In the
product topology, the proper closed subsets of P1× P1 are finite unions of points and sets of the form P1×q,
p×P1, and p×q (’horizontal lines’, ’vertical’ lines, and points). Most Zariski closed subsets of P1× P1 aren’t
of this form. The diagonal ∆ = {(p, p) | p ∈ P1} is a simple example.

3.3.1. Proposition. PirredLet X and Y be irreducible topological spaces, and suppose that a topology is given on
the product Π = X×Y , with the following properties:
• The projections Π

π1−→ X and Π
π2−→ Y are continuous.

• For all x in X and all y in Y , the fibres x×Y and X×y are homeomorphic to Y and X , respectively.
Then Π is an irreducible topological space.

The first condition means that the topology on X×Y is at least as fine as the product topology, and the second
one assures us that the topology isn’t too fine. (We don’t want the discrete topology on Π.)

The product of varieties has the two properties mentioned in the proposition.

3.3.2. Lemma. projopenLet X,Y , and Π be as in the proposition. If W is an open subset of Π, its image U via the
projection Π→ Y is an open subset of Y .

proof. The intersection xW = W ∩ (x×Y ) is an open subset of the fibre x×Y , and its image xU in the
homeomorphic space Y is open too. Since W is the union of the sets xW , U is the union of the open sets xU .
So U is open. �

proof of Proposition 3.3.1. Let C and C ′ be closed subsets of the product Π. Suppose that C < Π and
C ′ < Π, and let W = Π− C and W ′ = Π− C ′ be the open complements of C and C ′ in Π. To show that Π
is irreducible, we must show that C ∪ C ′ < Π. We do this by showing that W ∩W ′ is not the empty set.

Since C < Π, W isn’t empty. Similarly, W ′ isn’t empty. The lemma tells us that the images U and U ′ of
W and W ′ via projection to Y are nonempty open subsets of Y . Since Y is irreducible, U ∩ U ′ is nonempty.
Let y be a point of U ∩ U ′. The intersection Wy = W ∩ (X×y) is an open subset of X×y, and since its
image U contains y, Wy contains a point of the form p = (x, y). Thus Wy is a nonempty open subst of Wy .
Similarly, W ′y = W ′ ∩ (X×y) is nonempty. Since X×y is homeomorphic to the irreducible space X , it is
irreducible. So Wy ∩W ′y is nonempty, and therefore W ∩W ′ is nonempty, as was to be shown. �
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(3.3.3) products of affine varieties

We inspect the product X×Y of the affine varieties X = SpecA and Y = SpecB. Say that X is
embedded as a closed subvariety of Am, so that A = C[x1, ..., xm]/P for some prime ideal P , and that Y is
embedded similarly into An, and B = C[y1, ..., yn]/Q. Then in affine x, y-space Am+n, X×Y is the locus
of the equations f(x) = 0 and g(y) = 0 with f ∈ P and g ∈ Q. Proposition 3.3.1 shows that X×Y is
irreducible. Therefore it is a variety. Let P ′ be the ideal of C[x, y] generated by the elements of P . It consists
of sums of products of elements of P with polynomials in x, y. Let Q′ be defined analgously using Q, and let
I = P ′ +Q′.

3.3.4. Proposition.fgprime The ideal I = P ′ + Q′ consists all elements of C[x, y] that vanish on the variety X×Y .
Therefore I is a prime ideal.

(The fact that X×Y is a variety tells us only that the radical of I is a prime ideal.)

proof of Proposition 3.3.4 Let A = C[x]/P , B = C[y]/Q, and R = C[x, y]/I . Any polynomial in x, y can
the written, in many ways, as a sum, each of whose terms is a product of a polynomial in x with a polynomial
in y: p(x, y) =

∑
ai(x)bi(y). Therefore any element p of R can be written as a finite sum

(3.3.5)pab p =

k∑
i=1

aibi

with ai in A and bi in B. We show that if p vanishes identically on X×Y , then p = 0. To do this, we show
that the same element p can also be written as a sum of k − 1 products.

Suppose that p = 0. If ak = 0, then p =
∑k−1
i=1 aibi. If ak 6= 0, the function defined by ak isn’t

identically zero on X . We choose a point x of X such that ak(x) 6= 0. Let ai = ai(x) and p(y) = p(x, y). So
p(y) =

∑k
i=1 aibi. Since p vanishes on X×Y , p vanishes on Y , and therefore p = 0. Since ak 6= 0, we can

solve the equation
∑k
i=1]oaibi = 0 for bk: bk =

∑k−1
i=1 cibi, where ci = −ai/ak. Substituting into p gives us

an expression for p as a sum of k − 1 terms. Finally, when k = 1, a1b1 = 0. Then b1 = 0, and p = 0. �

(3.3.6) the Zariski topology on Pm× Pnzartopprod

As mentioned above (3.1.10), the product of projective spaces Pm×Pn is made into a projective variety by
identifying it with its Segre image, the locus of the Segre equations wijwk` = wi`wkj . Since Pm× Pn, with
its Segre embedding, is a projective variety, we don’t really need a separate definition of its Zariski topology.
Its closed subsets are the zero sets of families of homogeneous polynomials in the Segre variables wij that
include the Segre equations.

One can also describe the closed subsets of Pm×Pn directly, in terms of bihomogeneous polynomials. A
polynomial f(x, y) is bihomogeneous if it is homogeneous in the variables x and also in the variables y. For
example, the polynomial x2

0y0 + x0x1y1 is bihomogeneous, of degree 2 in x and degree 1 in y.
Because (x, y) and (λx, µy) represent the same point of Pm× Pn for all nonzero λ and µ, we want to know
that f(x, y) = 0 if and only if f(λx, µy) = 0. This is true for all nonzero λ and µ if and only if f is
bihomogeneous.

3.3.7. Lemma.PxPtopol-
ogy

The (Zariski) topology on Pm×Pn has the properties listed in Proposition 3.3.1:
• The projections Pm× Pn → Pm and Pm× Pn → Pn are continuous maps.
• For all y in Pn, the fibre Pm×y, with the topology induced from Pm× Pn, is homeomorphic to Pm, and the
analogous statement is true for the fibre x×Pn.

proof. We look at the projection Pm× Pn → Pm. If X is the closed subset of Pm defined by a system of
homogeneous polynomials fi(x), its inverse image in Pm× Pn is the zero set of the same system, considered
as a family of bihomogeneous polynomials of degree zero in y. So the inverse image is closed.

For the second property, because the projection Pm×Pn → Pm is continuous, it suffices to show that the
inclusion map Pm → Pm× Pn that sends Pm to Pm× y is continuous. If f(x, y) is a bihomogeneous
polynomial and y is a point of Pn, the zero set of f in Pm×y is the zero set of f(x, y). This polynomial
also defines a closed subset of Pm. �
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3.3.8. Proposition. closedin-
pxp(i) A subset of Pm×Pn is closed if and only if it is the locus of zeros of a family of bihomogeneous polynomials.

(ii) If X and Y are closed subsets of Pm and Pn, respectively, then X×Y is a closed subset of Pm×Pn.

proof. (i) For this proof, we denote the Segre image of Pm×Pn by Π. Let f(w) be a homogeneous polynomial
in the Segre variables wij . When we substitute wij = xiyj into into f , we obtain a polynomial f(xiyj) that is
bihomogeneous and that has the same degree as f in x and in y. Let’s denote that bihomogeneous polynomial
by f̃(x, y). The inverse image of the zero set of f in Π is the zero set of f̃ in Pm× Pn. Therefore the inverse
image of a closed subset of Π is the zero set of a family of bihomogeneous polynomials in Pm× Pn.

Conversely, let g(x, y) be a bihomogeneous polynomial, say of degrees r in x and degree s in y. If r= s,
we may collect variables that appear in g in pairs xiyj and replace each pair xiyj by wij . We will obtain a
homogeneous polynomial G in w such that G(w) = g(x, y) when wij = xiyj . The zero set of G in Π is the
image of the zero set of g in Pm× Pn.

Suppose that r ≥ s, and let k = r−s. Because the variables y cannot all be zero at any point of Pn, the
equation g = 0 on Pm× Pn is equivalent with the system of equations gyk0 = gyk1 = · · · = gykn = 0. The
polynomials gyki are bihomogeneous, of same degree in x and in y.

(ii) A polynomial f(x) can be viewed as a bihomogeneous polynomial of degree zero in y, and a polynomial
g(y) as a bihomogeneous polynomial of degree zero in x. So X×Y , which is the locus f = g = 0 in Pm×Pn,
is closed in Pm×Pn. �

3.3.9. Corollary. projcontLet X and Y be projective varieties, and let Π denote the product X×Y . This is a closed
subset of Pm×Pn.
• The projections Π→ X and Π→ Y are continuous.
• For all x in X and all y in Y , the fibres x×Y and X×y, with topologies induced from Π, are homeomorphic
to Y and X , respectively.

Therefore the product X×Y is a projective variety. �

We will come back to products in Chapter ??.

3.4 Morphisms and Isomorphisms
sectmorph

(3.4.1) fnfldthe function field

Let X be a projective variety, and let Xi be its intersection with the standard affine open subset Ui of the
projective space with coordinates x0, ..., xn. If it is nonempty, Xi will be an affine variety – an irreducible
closed subset of Ui. Let’s omit the indices for whichXi is empty. Then the intersectionXij = Xi∩Xj will be
a localization of Xi and also a localization of Xj . If Xi = SpecAi and uij = xj/xi, then Xij = SpecAij ,
where Aij = Ai[u

−1
ij ] = Aj [u

−1
ji ]. So the fraction fields of the coordinate algebras Ai are equal for all i such

that Xi isn’t empty.

3.4.2. Definition. deffnfldThe function field K of a projective variety X is the field of fractions of the coordinate
algebra Ai of any one of its nonempty affine open subsets Xi = X ∩ Ui. If X ′ is an open subvariety of a
projective variety X , the function field of X ′ is the function field of X . �

Thus all open subvarieties of a variety have the same function field. In particular, suppose that we regard an
affine variety X = SpecA as a closed subvariety of U0. The function field of X will be the field of fractions
of A. This agrees with the definition given in Chapter 2 (See (2.7.1).)

3.4.3. Definition. defregfnA rational function on a variety X ′ is an element of the function field K of X ′.

A rational function can be evaluated at some points of X ′, but probably not at all points. Suppose that
X ′ is an open subvariety of a projective variety X , and that p is a point of X ′ that lies in the affine open set
Xi = X ∩ Ui = SpecAi, as above.

A rational function α on X or on X ′ is regular at p if it is a regular function at p on one of the open sets
Xi. This means that one can write α as a fraction a/b of elements of Ai, with b(p) 6= 0. Then the value of α
at p is α(p) = a(p)/b(p).
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3.4.4. Lemma.regindep The regularity of a rational function at p doesn’t depend on the choice of the open set Xi that
contains p. �

Let X = SpecA be an affine variety. As has been noted, we may regard X as a quasiprojective variety by
embedding it as a closed subset of U0. The function field of X will be the field of fractions of its coordinate
algebra A, and a rational function α on X will be regular at a point p of X if it can be written as a fraction
α = a/s, where a and s are inA and s isn’t zero at p. Thus α is regular at p if it is an element of the coordinate
algebra of some localization Xs that contains p. Proposition 2.7.2 shows that the regular functions on an affine
variety SpecA are the elements of A.

3.4.5. Lemma. Let X be a variety. A rational function that is regular on X is determined by the function it
defines on X .

proof. We show that if the function is identically zero, then α = 0. We may assume that U is affine, say
X = SpecA, where A is a finite-type domain. Then what is to be proved is that an element α of A that
defines the zero function is the zero element. Or, equivalently, that the only element of A which is in every
maximal ideal is zero. This is Corollary 2.5.16(ii). �

(3.4.6) points with values in a fieldptvlfld

Let K be a field that contains the complex numbers. A point of projective space Pn with values in K is an
equivalence class of nonzero vectors α = (α0, ..., αn) with αi in K, the equivalence relation being analogous
to the one for ordinary points: α ∼ α′ if α′ = λα for some λ in K.

If K is the function field of a variety X , the embedding of X into projective space Pn defines a point
(α0, ..., αn) of X with values in K. To get this point, one may choose a standard affine open set, say U0, of
Pm such that X0 = X ∩ U0 isn’t empty. Then X0 is affine, say X0 = SpecA. The embedding of X0 into
the affine space U0 is defined by a homomorphism C[u1, ..., un] → A, and the images αi of the variables ui
in A give us a point (α0, α1, ..., αn) with values in K, and with α0 = 1. This is the point.

(3.4.7) morphisms to projective spacemorphtoP

For the rest of this section, it will be helpful to have a separate notation for the point with values in the
function field K of a variety that is determined by a nonzero vector α = (α0, ..., αn), with αi ∈ K. We’ll
denote that point by α. So α = α′ if α′ = λα for some nonzero λ in K. We’ll drop this notation later.

We define a morphism from a variety X to projective space using a point of Pn with values in the function
field K of X . When doing this, we must keep in mind that the points of projective space are equivalence
classes of vectors, not the vectors themselves. As we will see, this complication turns out to be useful.

We begin with a simple example.

3.4.8. Example.project-
conic

LetC be the conic in the projective plane P2 defined by f(x0, x1, x2) = x0x1+x0x2+x1x2.
We project C to the line L0 : {x0 = 0}, defining C π−→ P1 by π(x0, x1, x2) = (x1, x2). The formula for π is
undefined at the point q = (1, 0, 0), though the map extends to the whole conic C.

Let’s write this projection using a point with values in the function field K of C. The affine open set
{x0 6= 0} of P2 is the polynomial algebra C[u1, u2], with u1 = x1/x0 and u2 = x2/x0. We also denote
by ui the restriction of the function ui to C0 = C ∩ U0. The restricted functions are related by the equation
u1 + u2 + u1u2 = 0 that is obtained by dehomogenizing f . We solve for u2: u2 = −u1/(1 + u1).

The projection is given by π(x0, x1, x2) = π(1, u1, u2) = (u1,−u1/(1 + u1)). Multiplying by λ =
(1 + u1)/u1, we see that π(x0, x1, x2) is the point (1 + u1,−1). This formula is defined at all points at which
x0 6= 0, including at q. Thus π(q) = (1,−1). The image of q is the point at which the tangent line Lq to C at
q intersects L0.

To define π at the remaining points, we look on another standard affine open set. Let vi = xi/x1 and wi =
xi/x2. Then (x0, x1, x2) = (v0, 1, v2) = (w0, w1, 1). The projection can also be written as π(x) = (1, v2),
which is valid at points at which x1 6= 0 or as π(x) = (w1, 1), which is valid at points at which x2 6= 0. �
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Let K be the function field of a variety Y , and let α = (α0, ..., αn) be a nonzero vector with entries in K.
We try to define a morphism from Y to projective space Pn using the point α with values in K. To define the
image α(q) of a point q of Y (an ordinary point), we look for a vector α′ = (α′0, ..., α

′
n), with α′ = α, i.e.,

α′ = λα, such that the rational functions α′i are all regular at q and not all zero there. Such a vector may exist
or not. If it exists, we define

(3.4.9) defmor-
phP

α(q) = (α′0(q), ..., α′n(q))
(

= α′(q)
)

If such a vector α′ exists for every point q of Y , we call α a good point.

3.4.10. Lemma. twocondsA point α of Pn with values in the function field KY of Y is a good point if either one of the
two following conditions holds for every point q of Y :
• There is an element λ in KY such that the rational functions α′i = λαi, i = 0, ..., n, are regular and not all
zero at q.
• There is an index j, 0 ≤ j ≤ n, such that the rational functions αi/αj , j = 0, ..., n, are regular at q.

proof. The first condition simply restates the definition. We show that it is equivalent with the second one.
Suppose that αi/αj are regular at q for all i. Let λ = α−1

j , and let α′i = λαi = αi/αj . The rational
functions α′i are regular at q, and they aren’t all zero there because α′j = 1.

Conversely, suppose that α′i = λαi are all regular at q and that α′j isn’t zero there. Then α′j
−1 is a regular

function at q, so the rational functions α′i/α
′
j , which are equal to αi/αj , are regular at q for all i. �

3.4.11. Lemma. doesntde-
pend

With notation as in (3.4.9), the point α(q) is independent of the choice of the vector α′.

You will be able to supply the proof of this lemma �

3.4.12. Definition. defmor-
phtoP

Let Y be a variety with function field K. A morphism from Y to projective space Pn is a
map that is defined, as above, by a good point α with values in K. We denote that morphism by α too. (3.4.9).

3.4.13. Example. identmapThe identity map P1 → P1.
Let X = P1, and let (x0, x1) be coordinates in X . The function field of X is the field K = C(t) of rational
functions in the variable t = x1/x0. The identity map X → X is the map α defined by the point α = (1, t)
with values in K. For every point p of X except the point (0, 1), α(p) = α(p) = (1, t(p)). For the point
q = (0, 1), we let α′ = t−1α = (t−1, 1). Then α(q) = α′(q) = (x0(q)/x1(q), 1) = (0, 1). �

(3.4.14) morphisms to quasiprojective varieties morphtoV

3.4.15. Definition. defmor-
phtoX

Let Y be a variety, and let X be a subvariety of a projective space Pn. A morphism of

varieties Y
α−→ X is the restriction of a morphism Y

α−→ Pn whose image is contained in X .

When a projective variety X is the locus of zeros of a family f of homogeneous polynomials, a morphism
Y

α−→ Pn defines a morphism Y → X if f(α) = 0.

A word of caution: A morphism Y
α−→ X won’t define a map of function fields KX → KY unless the

image of Y is dense in X .

3.4.16. Proposition. morphcontA morphism of varieties Y
α−→ X is a continuous map in the Zariski topology, and a

continuous map in the classical topology.

proof. This proposition is rather trivial, once one has unraveled the notation. Let Ui be the standard affine
open subset of Pm, and let Y i be an affine open subset of the inverse image of Ui. If X = Pm, the restriction
Y i → Ui of α is continuous in either topology because it is a morphism of affine varieties, as was defined
in Section 2.7. Since Y can be covered by affine open sets such as Y i, α is continuous. Continuity for a
morphism to a subvariety X of Pm follows, because the topology on X is the induced topology. �
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3.4.17. Proposition.comp-
morph

Let X,Y , and Z be varieties and let Z
β
−→ Y and Y

α−→ X be morphisms. The

composed map Z
αβ
−→ X is a morphism.

proof. The proof is easy. Say that X is a subvariety of Pm. The morphism α is the restriction of a morphism
Y → Pm whose image is in X , and that is defined by a good point α, α = (α0, ..., αm) of Pm with values
in the function field KY of Y . Similarly, if Y is a subvariety of Pn, the morphism β is the restriction of a
morphism Z → Pn whose image is contained in Y , and that is defined by a good point β, β = (β0, ..., βn) of
Pn with values in the function field KZ of Z.

Let z be a point (an ordinary point) of Z. Since β is a good point, we may adjust β by a factor inKZ so that
the rational functions βi are regular and not all zero at z. Then β(z) is the point (β0(z), ..., βn(z)). Let’s denote
that point by q = (q0, ..., qn). So qi = βi(z). The elements αj are rational functions on Y . We may adjust α
by a factor in KY , so that they are regular and not all zero at q. Then [αβ](z) = α(q) = (α0(q), ..., αm(q)),
and αj(q) = αj(β0(z), ..., βn(z)) = αj(β(z)) are not all zero. When these adjustments have been made, the
point of Pm with values in KZ that defines αβ is (α0(β(z)), ..., αm(β(z))). �

This next is a lemma of topology.

3.4.18. Lemma.closedi-
naff

Let {Xi} be a covering of a topological space X by open sets. A subset Y of X is open (or
closed) if and only if Y ∩Xi is open (or closed) in Xi for every i. In particular, if {Ui} is the standard affine
cover of Pn, a subset Y of Pn is open (or closed) if and only if Y ∩Ui is open (or closed) in Ui for every i. �

3.4.19. Lemma.firstprop-
morph (i) The inclusion of an open or a closed subvariety Y into a variety X is a morphism.

(ii) Let Y
f−→ X be a map whose image lies in an open or a closed subvariety Z of X . Then f is a morphism

if and only if its restriction Y → Z is a morphism.

(iii) Let {Y i} be open an open covering of a variety Y , and let Y i
fi−→ X be morphisms. If the restrictions of

f i and f j to the intersections Y i ∩ Y j are equal for all i, j, there is a unique morphism f whose restriction to
Y i is f i.

We omit the proof, noting only that (iii) is trivial because the points with values in K are all the same. �

(3.4.20) isomorphismsisomor-
phisms

A bijective morphism Y
u−→ X of quasiprojective varieties whose inverse function is also a morphism is

an isomorphism. Isomorphisms are important because they allow us to identify different incarnations of the
“same” variety, i.e., to describe an isomorphism class of varieties. For example, the projective line P1, a conic
in P2, and the twisted cubic in P3 are isomorphic.

3.4.21. Example.twistcu-
bicinverse Let Y denote the projective line, with coordinates y0, y1. As before, the function field of Y is the field

K = C(t) of rational functions in t = y1/y0. The degree 3 Veronese map Y −→ P3 (3.1.16) defines an
isomorphism of Y to its image, a twisted cubic X . The Veronese map is defined by the point α = (1, t, t2, t3)
of P3 with values in K. On the open set {y0 6= 0} of Y , the rational functions 1, t, t2, t3 are regular and not all
zero. Let λ = t−3 and α′ = λα = (t−3, t−2, t−1, 1). The functions t−k are regular on the open set {y1 6= 0}.
So α is a good point that defines a morphism Y

α−→ X .
The twisted cubic X is the locus of zeros of the equations (3.1.17):

v0v2 = v2
1 , v2v1 = v0v3 , v1v3 = v2

2

To identify the function field F of X , we put v0 = 1, obtaining relations v2 = v2
1 , v3 = v3

1 . Then F is the field
C(v1). The point of Y = P1 with values in F that defines the inverse of the morphism α is β = (1, v1). �

3.4.22. Lemma.propisom Let Y
f−→ X be a morphism of varieties, let {Xi} be an open covering of X , and let

Y i = f−1Xi. If the restrictions Y i
fi−→ Xi of f are isomorphisms, then f is an isomorphism.
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proof. Let gi denote the inverse of the morphism f i. Then gi = gj on Xi ∩Xj because f i = f j on Y i ∩ Y j .
By (3.4.19) (iii), there is a unique morphism X

g−→ Y whose restriction to Y i is gi. That morphism is the
inverse of f . �

(3.4.23) the diagonal diagonal

Let X be a variety. The diagonal X∆ is the set of points (p, p) in X×X . It is an example of a subset of X×X
that is closed in the Zariski topology, but not closed in the product topology.

3.4.24. Proposition. diagclosedLet X be a variety. The diagonal X∆ is a closed subvariety of the product variety
X×X .

proof. Let P denote the projective space Pn that contains X , and let x0, ..., xn and y0, ..., yn be coordinates in
the two factors of P×P. The diagonal P∆ in P×P is the closed subvariety defined by the bilinear equations
xiyj = xjyi, or in the Segre variables, by the equations wij = wji, which show that the ratios xi/xj and
yi/yj are equal.

Next, suppose that X is the closed subvariety of P defined by a system of homogeneous equations f(x) =
0. The diagonalX∆ can be identified as the intersection of the productX×X with the diagonal P∆ in P×P, so
it is a closed subvariety of X×X . As a closed subvariety of P×P, the diagonal X∆ is defined by the equations

(3.4.25) xiyj = xjyi and f(x) = 0 Xdelta

The equations f(y) = 0 are redundant. Finally, X∆ is irreducible because it is homeomorphic to X . �

It is interesting to compare Proposition 3.4.24 with the Hausdorff condition for a topological space. The
proof of the next lemma is often assigned as an exercise in topology.

3.4.26. Lemma. hausdorff-
diagonal

A topological space X is a Hausdorff space if and only if, when X×X is given the product
topology, the diagonal X∆ is a closed subset of X×X . �

Though a variety X with its Zariski topology isn’t a Hausdorff space unless it is a point, Lemma 3.4.26
doesn’t contradict Proposition 3.4.24 because the Zariski topology onX×X is finer than the product topology.

(3.4.27) the graph of a morphism ggraph

Let Y
f−→ X be a morphism of varieties. The graph Γ of f is the subset of Y ×X of pairs (q, p) such that

p = f(q).

3.4.28. Proposition. graphThe graph Γf of a morphism Y
f−→ X is a closed subvariety of Y×X , that is isomorphic

to Y .

proof. We form a diagram of morphisms

(3.4.29) graphdia-
gram

Γf −−−−→ Y ×X

v

y yf×id
X∆ −−−−→ X×X

where v sends a point (q, p) of Γf with f(q) = p to (p, p). The graph Γf is the inverse image in Y ×X of the
diagonal X∆. Since the diagonal is closed in X×X , Γf is closed in Y ×X .

Let π1 denote the projection from X×Y to Y . The composition of the morphisms Y
(id,f)−→ Y ×X π1−→ Y

is the identity map on Y , and the image of the map (id, f) is the graph Γf . Therefore Y maps bijectively to
Γf . The two maps Y → Γf and Γf → Y are inverses, so Γf is isomorphic to Y . �
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(3.4.30) projectiondefprojec-
tion

The map

(3.4.31) Pn π−→ Pn−1projec-
tiontwo

that drops the last coordinate of a point: π(x0, ..., xn) = (x0, ..., xn−1) is called a projection. It is defined
at all points of Pn except at the point q = (0, ..., 0, 1), which is called the center of projection. So π is a
morphism from the complement U = Pn−{q} to Pn−1.

Let the coordinates in Pn and Pn−1 be x = x0, ..., xn and y = y0, ..., yn−1, respectively. The fibre π−1(y)
over a point (y0, ..., yn−1) is the set of points (x0, ..., xn) such that (x0, ..., xn−1) = (λy0, ..., λyn−1), while
xn is arbitrary. It is the line in Pn through the points (y1, ..., yn−1, 0) and q = (0, ..., 0, 1), with the center of
projection q omitted.

In Segre coordinates, the graph Γ of π in U×Pn−1
y is the locus of solutions of the equations wij = wji for

0≤ i, j≤n−1, which imply that the vectors (x0, ..., xn−1) and (y0, ..., yn−1) are proportional.

3.4.32. Proposition.projgrah In Pnx× Pn−1
y , the locus Γ of the equations xiyj = xjyi, or wij = wji, with 0 ≤ i, j ≤

n− 1, is the closure of the graph Γ of π.

proof. The equations are true at points (x, y) of Γ at which x 6= q, and also at all points (q, y). So the locus Γ,
a closed set, is the union of the graph Γ and the set q×Pn−1. We must show that a homogeneous polynomial
g(w) that vanishes on Γ vanishes at all points of q×Pn−1. Given y, let x = (ty0, ..., tyn−1, 1). For all t 6= 0,
the point (x, y) is in Γ and therefore g(x, y) = 0. Since g is a continuous function, g(x, y) approaches g(q, y)
as t→ 0. So g(q, y) = 0. �

The projection Γ → Pnx that sends a point (x, y) to x is bijective except when x = q. The fibre over q,
which is q×Pn−1, is a projective space of dimension n−1. Because the point q of Pn is replaced by a projective
space in Γ, the map Γ→ Pnx is called a blowup of the point q.

figure: projection with closure of graph??

3.4.33. Proposition.pro-
ductmap

Let Y
α−→ X and Z

β
−→ W be morphisms of varieties. The product map Y ×Z

α×β
−→

X×W that sends (y, z) to (α(y), β(z)) is a morphism

proof. Let P and q be points of X and Y , respectively. We may assume that αi are regular and not all zero at
p and that βj are regular and not all zero at q. Then, in the Segre coordinates wij , [α×β](p, q) is the point
wij = αi(p)βj(q). We must show that αiβj are all regular at (p, q) and are not all zero there. This follows
from the analogous properties of αi and βj . �

======================================
When defining morphisms varieties, one must keep in mind that points of projective space are equivalence

classes of vectors, not the vectors themselves. This complication turns out to be very useful.
Some morphisms are sufficiently obvious that they don’t require discussion. They include the projection

from a product variety X×Y to X , the inclusion of X into the product X×Y as the set X×y for some point
y of Y , the morphism of products X×Y → X ′×Y when a morphism X → X ′ is given, and of course, the
analogous maps when Y replaces X .

If X and Y are subvarieties of projective spaces Pm and Pn, respectively, a morphism Y → X will be
determined by a morphism from Y to Pm whose image is contained inX . However, it is important to note that

a morphism Y
f−→ X needn’t be the restriction of a morphism from Pn to Pm. There will often be no way

to extend the morphism from Y to Pn. It may not be possible to define f using polynomials in the coordinate
variables of Pn.

For example, the Veronese map from the projective line P1 to P2, defined by (x0, x1) (x2
0, x0x1, x

2
1), is

an obvious morphism. Its image is the conic C : v00v11 − v2
01 = 0 in the projective plane P2. The Veronese

defines a bijective morphism P1 f−→ C whose inverse function sends a point (v00, v01, v11) of C with v00 6= 0
to the point (x0, x1) = (v01, v11). There is no way to extend the inverse function f−1 to P2, though it is a
morphism. In fact, there is no nonconstant morphism from P2 to P1.
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In order to have a definition that includes all cases, we will define morphisms using points with values in a
field.

(3.4.34) ffofprodthe function field of a product

To define the function field of a product X×Y of projective varieties, one can use the Segre embedding
Pmx ×Pny → PN . We use notation as in (3.1.10), and let’s denote the product X×Y by Π. So xi, yj , and wij
are coordinates in the three projective spaces. The Segre map is defined by wij = xiyj . Let Ui, Vj , and Wij

be the standard affine open sets xi 6= 0, yj 6= 0 and wij 6= 0, respectively. The function field will be the field
of fractions of any of the nonempty intersection Π ∩Wij = Πij , and Πij ≈ Xi×Y j , where Xi = X ∩ Ui
and Y j = Y ∩ Vj .

Since Πij = Xi×Y j , all that remains to do is to describe the field of fractions of a product of affine
varieties Π = X×Y , when X = SpecA and Y = SpecB. If A = C[x]/P and B = C[y]/Q, then in the
notation of Proposition 3.3.4, the coordinate algebra of Π is the algebra C[x, y]/(P ′ +Q′). This is the tensor
product algebra A ⊗ B. We don’t need to know much about the tensor product algebra here, but let’s use the
tensor notation.

The function field KX of X is the field of fractions of the coordinate algebra A. Similarly, KY is the field
of fractions of B and KX×Y is the field of fractions of A ⊗ B. The one important fact to note is that KX×Y
isn’t generated by KX and KY . For example, if A = C[x] and B = C[y] (one x and one y), then KX×Y is
the field of rational functions in two variables C(x, y). The algebra generated by the fraction fields C(x) and
C(y) consists of the rational functions p(x, y)/q(x, y) in which q(x, y) is a product f(x)g(y) of a polynomial
in x and a polynomial in y. Most rational functions, 1/(x+ y) for example, aren’t of this type.

But, KX×Y is the fraction field of A⊗B.

(3.4.35) ratfn-
spspace

interlude: rational functions on projective space

Let R denote the polynomial ring C[x0, ..., xn]. A homogeneous polynomial f of positive degree d doesn’t
define a function on Pn, because f(λx) = λdf(x). It does make sense to say that f vanishes at a point of Pn.

On the other hand, a fraction g/h of homogeneous polynomials of the same degree d does define a function
wherever h isn’t zero, because

g(λx)/h(λx) = λdg(x)/λdh(x) = g(x)/h(x)

A homogeneous fraction f is a fraction of homogeneous polynomials. The degree of a homogeneous
fraction f = g/h is the difference of degrees: deg f = deg g − deg h.

A homogeneous fraction f is regular at a point p of Pn if, when it is written as a fraction g/h of relatively
prime homogeneous polynomials, the denominator h isn’t zero at p, and f is regular on a subset U if it is
regular at every point of U . This definition agrees with the one given above, in Definition 3.4.2.

3.4.36. Lemma. ho-
mogfractsfn-
fld

(i) Let h be a homogeneous polynomial of positive degree d, and let V be the open subset of
Pn of points at which h isn’t zero. The nonzero rational functions that are regular on V are those of the form
g/hk, where k ≥ 0 and g is a homogeneous polynomial of degree dk.
(ii) The only rational functions that are regular at every point of Pn are the constant functions.

For example, the homogeneous polynomials that don’t vanish at any point of the standard affine open set U0

are the scalar multiples of powers of x0. So the rational functions that are regular on U0 are those of the
form g/xk0 , g homogeneous of degree k. This agrees with the fact that the coordinate algebra of U0 is the
polynomial ring C[u1, ..., un], with ui = xi/x0:, because g(x0, ..., xm)/xk0 = g(u0, ..., un).

proof of Lemma 3.4.36 (i) Let α be a regular function on the open set U , say g1/h1, where g1 and h1 are
relatively prime homogeneous polynomials. Then h1 doesn’t vanish on U , so its zero locus in Pn is contained
in the zero locus of h. According to the Strong Nullstellensatz 3.2.7, h1 divides a power of h, say hk = fh1.
Then g1/h1 = fg1/fh1 = fg1/h

k.
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(ii) If a rational function f is regular at every point of Pn, then it is regular on U0. so it will have the form
g/xk0 , where g has degree k and isn’t divisible by x0. And since f is also regular on U1, it will have the form
h/x`1, where x1 doesn’t divide h. Then gx`1 = hxk0 . Since x0 doesn’t divide g, k = 0, g is a constant, and
f = g. �

It is also true that the only rational functions on a projective variety X that are regular at every point are
the constant functions. The proof of this will be given later (see Corollary 8.3.10). When studying projective
varieties, the constant functions are useless, so one has to look at at regular functions on open subsets. One
way that affine varieties appear in projective algebraic geometry is as open subsets on which there are enough
regular functions.

3.5 Affine Varieties
affineV We have used the term ’affine variety’ in several contexts:

A closed subset of affine space Anx is an affine variety, the set of zeros of a prime ideal P of C[x]. Its
coordinate algebra is A = C[x]/P .

The spectrum SpecA of a finite type domain A is an affine variety that becomes a closed subvariety of
affine space when one chooses a presentation A = C[x]/P .

An affine variety becomes a variety in projective space when the ambient affine space An is identified with
the standard open subset U0.

We combine these definitions now: An affine variety X is a variety that is isomorphic to a variety of the
form SpecA.

If X = SpecA is an affine variety with function field K, its coordinate algebra A will be the subalgebra
of K consisting of the regular functions on X . So A and SpecA, are determined uniquely by X , and the
isomorphism SpecA→ X is determined uniquely too. When X is affine, it seems permissible to identify X
with SpecA.

(3.5.1)regfnon-
affinetwo

regular functions on affine varieties

Let X = SpecA be an affine variety. Its function field K is the field of fractions of the coordinate algebra A.
A rational function α is regular at a point p of X if it can be written as a fraction a/s where a, s are in A and
s(p) 6= 0, and α is regular on X if it is regular at every point of X . As Proposition 2.7.2 shows, the regular
functions on an affine variety SpecA are the elements of A.

3.5.2. Lemma.Xmaps
(i) Let R be the algebra of regular functions on a variety Y , and let A be a finite-type domain. A homomor-

phism A→ R defines a morphism Y
f−→ SpecA.

(ii) When X and Y are affine varieties, say X = SpecA and Y = SpecB, morphisms Y → X , as defined
in (3.4.15), correspond bijectively to algebra homomorphisms A→ B, as in Definition 2.7.5.

Note. Since Y isn’t affine, all that we know about the algebra R is that it is a the subring of the function field
of Y of elements that are regular everywhere.

proof of Lemma 3.5.2. (i) Let {Y i} be an affine open covering of Y , and let Ri be the coordinate algebra of

Y i. The inclusions A ⊂ R ⊂ Ri define morphisms Y i = SpecRi
fi−→ SpecA. It is true that f i = f j on

Y i ∩ Y j , so Lemma 3.4.19 (iii) applies.

(ii) We choose a presentation ofA, to embedX as a closed subvariety of affine space, and we identify that affine
space with the standard affine open set U0 of Pn. Let K be the function field of Y – the field of fractions of B.
A morphism Y

u−→ X is determined by a good point α with values in K, for which α0 6= 0. We may suppose
that this point has the form α = (1, α1...., αn). Then the rational functions αi will be regular at every point
of Y . They are elements of B. The coordinate algebra A of X is generated by the residues of the coordinate
variables x1, ..., xn, with x0 = 1. Sending xi → αi defines a homomorphism A

ϕ−→ B. Conversely, if ϕ is
such a homomorphism, the good point that defines the morphism Y

u−→ X is (1, ϕ(x1), ..., ϕ(xn)). �
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(3.5.3) affopensaffine open subsets affopens

An affine open subset of a variety X is an open subset that is an affine variety. If V is a nonempty open
subset of X and R is the algebra of rational functions that are regular on V , then V is an affine open subset if
and only if R is a finite-type domain and V is isomorphic to SpecR.

3.5.4. Proposition. comphy-
per

The complement of a hypersurface is an affine open subvariety of Pn.

###rewrite this proof ###
proof. Let V be the complement of the hypersurface {f = 0}, where f is an irreducible homogeneous
polynomial of degree d, let R be the algebra of regular functions on V , and let K be its fraction field, the field
of rational functions on V .

The regular functions on V are the homogeneous fractions of degree zero of the form g/fk (3.4.35), and
the fractions m/f , where m is a monomial of degree d, generate R. Since there are finitely many monomials
of degree d, R is a finite-type domain. Let w be an arbitrary monomial of degree d − 1, and let si = xiw/f .
The point (x0, ..., xn) of V can also be written as (s0, ..., sn), and the fractions si are among the generators for
R. Let W = SpecR. Then (s0, ..., sn) is a point of W with values in K that defines a morphism W

z−→ V .
We show that z is an isomorphism.

3.5.5. Lemma. czeroLet Ui be the standard affine open subset of Pn. With si as above, the intersection V i = V ∩Ui
is isomorphic to the localization Wsi of W .

Assuming the lemma, the morphism W
z−→ V restricts to an isomorphism V i → SpecRsi . Since the

sets V i = V ∩ Ui cover V z is an isomorphism (3.4.22). �

proof of Lemma ??. We work with the index i = 0, as usual. Let s = xd0/f and t = s−1 = f/xd0. Also, let
P be the coordinate algebra of U0. Then V 0 = V ∩ U0 is the set of points of U0 at which t isn’t zero. Its
coordinate algebra is the localization Pt, and V 0 is the affine variety SpecPt.

According to Lemma 3.4.22, the lemma will follow when we show that Pt is the localization Rs of R.
With coordinates uj = xj/x0 for U0, a fraction m/f , where m is a monomial xj1 · · ·xjd , can also be written
as uj1 · · ·ujd/t. These fractions generate R, so R ⊂ Pt, and since s−1 = t is in Pt, Rs ⊂ Pt. For the other
inclusion, we write uj = (xjx

d−1
0 /f) s−1. Because xjxd−1

0 /f is in R, uj is in Rs. Therefore P ⊂ Rs and
Pt ⊂ Rs. So Pt = Rs, as claimed. �

3.5.6. Lemma. affinesba-
sis

The affine open subsets of a variety X form a basis for the topology on X .

proof. See Proposition ??. �

3.5.7. Theorem inter-
sectaffine

Let U and V be affine open subvarieties of a variety X , say U ≈ SpecA and V ≈ SpecB.
The intersection U ∩V is an affine open subvariety whose coordinate algebra is generated by the two algebras
A and B.

proof. We denote the algebra generated by two subalgebras A and B of the function field K of X by [A,B].
The elements of [A,B] are finite sums of products of elements of A and B. If A = C[a1, ..., ar], and B =
C[b1, ..., bs], then [A,B] is generated by the set {ai} ∪ {bj}. Let W = SpecR, where R = [A,B]. We are
to show that W is isomorphic to U ∩ V . The varieties U, V , and W have the same function field K as X , and
the inclusions of coordinate algebras A→ R and B → R give us morphisms W → U and W → V . We also
have inclusions U ⊂ X and V ⊂ X , and X is a subvariety of a projective space Pn. Let α be the Pn with
values in K that defines the projective embedding X

ϕ−→ Pn. This point also defines morphisms U u−→ Pn

and V v−→ Pn and W
ψ−→ Pn. The morphisms u and v are the restrictions of ϕ to the open subsets U and V

of X , respectively.

The morphism W
ψ−→ Pn can be obtained as the composition of the morphisms W → U ⊂ X → Pn,

and also as the analogous composition, in which V replaces U . Therefore the image of W in X is contained
in U ∩ V . (I suggest this slightly confusing point as an exercise.) Thus ψ defines a morphism W

ε−→ U ∩ V .
We show that ε is an isomorphism.
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Let p be a point of U ∩ V . We choose an affine open subset Z of U ∩ V that is a localization of U and
a localization of V , and that contains p (2.6.2)(ii). Let S be the coordinate ring of Z. So S = As for some
nonzero s in A and also S = Bt for some nonzero t in B. Then

Rs = [A,B]s = [As, B] = [S,B] = S

So ε maps the localization Ws = SpecRs of W isomorphically to the open subset Z of U ∩ V . Since we can
cover U ∩ V by open sets such as Z, Lemma 3.4.19 (ii) shows that ε is an isomorphism. �

3.6 Lines in Projective Three-Space
linesinp

The Grassmanian G(m,n) is a variety whose points correspond to subspaces of dimension m of the vector
space Cn, and to linear subspaces of dimension m−1 of Pn−1. One says that G(m,n) parametrizes those
subspaces. For example, the Grassmanian G(1, n+1) is the projective space Pn. Points of Pn parametrize
one-dimensional subspaces of Cn+1.

The GrassmanianG(2, 4) parametrizes two-dimensional subspaces of C4, or lines in P3. In this section we
describe that Grassmanian, denoting it by G. The point of G that corresponds to a line ` in P3 will be denoted
by [`].

One can get some insight into the structure of G using row reduction. Let V = C4, let u1, u2 be a basis
of a two-dimensional subspace U of V and let M be the 2×4 matrix whose rows are u1, u2. The rows of
the matrix M ′ obtained from M by row reduction span the same space U , and the row-reduced matrix M ′ is
uniquely determined by U . Provided that the left hand 2×2 submatrix of M is invertible, M ′ will have the
form

(3.6.1) M ′ =

(
1 0 ∗ ∗
0 1 ∗ ∗

)
rowre-
duced

So the Grassmanian G contains, as an open subset, a four-dimensional affine space whose coordinates are the
variable entries of M ′.

In any 2×4 matrix M with independent rows, some pair of columns will be independent. Those columns
can be used in place of the first two in a row reduction. So G is covered by six four-dimensional affine spaces
that we denote by Wij , 1≤ i < j≤4, Wij being the space of 2×4 matrices such that columni = (1, 0)t and
columnj = (0, 1)t. Since P4 and the Grassmanian are both covered by affine spaces of dimension four, they
may seem similar, but they aren’t the same.

(3.6.2) the exterior algebraextalgone

Let V be a complex vector space. The exterior algebra
∧
V (read ‘wedge V ’) is a noncommutative ring

that contains the complex numbers and is generated by the elements of V , with the relations

(3.6.3) vw = −wv for all v, w in V .extalg

3.6.4. Lemma.vvzero The condition (3.6.3) is equivalent with: vv = 0 for all v in V .

proof. To get vv = 0 from (3.6.3), one sets w = v. Suppose that vv = 0 for all v in V . Then (v+w)(v+w) =
vv = ww = 0. Since (v+w)(v+w) = vv + vw + wv + ww, vw + wv = 0. �

To familiarize yourself with computation in
∧
V , verify that v2v3v1v4 = v1v2v3v4 and that v2v3v4v1 =

−v1v2v3v4.

Let
∧r

V denote the subspace of
∧
V spanned by products of length r of elements of V . The exterior algebra∧

V is the direct sum of those subspaces
∧r

V . An algebra A that is a direct sum of subspaces Ai, and
such that multiplication maps Ai×Aj to Ai+j is called a graded algebra. Since its multiplication law isn’t
commutative, the exterior algebra is a noncommutative graded algebra.

3.6.5. Proposition.depen-
dentprod-

uct

If (v1, ..., vn) is a basis for V , the products vi1 · · · vir of length r with increasing indices
i1 < i2 < · · · < ir form a basis for

∧r
V .

The proof is at the end of the section.
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3.6.6. Corollary. wedgezeroLet v1, ..., vr be elements of V . The product v1 · · · vr is zero in
∧r

V if and only if the set
(v1, ..., vr) is dependent. �

For the rest of the section, we let V be a vector space of dimension four with basis (v1, ..., v4). Proposition
3.6.5 tells us that

(3.6.7) extba-
sistwo∧0

V = C is a space of dimension 1, with basis {1}∧1
V = V is a space of dimension 4, with basis {v1, v2, v3, v4}∧2
V is a space of dimension 6, with basis {vivj | i < j} = {v1v2, v1v3, v1v4, v2v3, v2v4, v3v4}∧3
V is a space of dimension 4, with basis {vivjvk | i < j < k} = {v1v2v3, v1v2v4, v1v3v4, v2v3v4}∧4
V is a space of dimension 1, with basis {v1v2v3v4}∧q
V = 0 when q > 4.

The elements of
∧2

V are combinations

(3.6.8) w =
∑
i<j

aijvivj wedgetwo

We regard
∧2

V as an affine space of dimension 6, identifying the combination w with the vector whose
coordinates are the six coefficients aij (i < j). We use the same symbolw to denote the point of the projective
space P5 with those coordinates: w = (a12, a13, a14, a23, a24, a34).

3.6.9. Definition. defde-
comp

An element w of
∧2

V is decomposable if it is a product of two elements of V .

3.6.10. Proposition. de-
scribede-
comp

The decomposable elements of
∧2

V are those such that ww = 0, and the relation
ww = 0 is given by the following equation in the coefficients aij of w =

∑
i<j aijvivj:

(3.6.11) a12a34 − a13a24 + a14a23 = 0 eqgrass

proof. If w is decomposable, say w = u1u2, then w2 = u1u2u1u2 = −u2
1u

2
2 is zero because u2

1 = 0. For the
converse, we compute w2 when w =

∑
i<j aijvivj . The answer is

ww = 2
(
a12a34 − a13a24 + a14a23

)
v1v2v3v4

To show that w is decomposable if w2 = 0, it seems simplest to factor w explictly. Since the assertion is
trivial when w = 0, we may suppose that some coefficient of w, say a12, is nonzero. Then if w2 = 0, w is the
product

(3.6.12) w =
1

a12

(
a12v2 + a13v3 + a14v4

)(
− a12v1 + a23v3 + a24v4

)
factorw�

3.6.13. Corollary. de-
comptwo

(i) Let w be a nonzero decomposable element of
∧2

V , say w = u1u2, with ui in V .
Then (u1, u2) is a basis for a two-dimensional subspace of V .
(ii) If (u1, u2) and (u′1, u

′
2) are bases for the same subspace U of V , then w = u1u2 and w′ = u′1u

′
2 differ by

a scalar factor. Their coefficients represent the same point of P5.
(iii) Let u1, u2 be a basis for a two-dimensional subspace U of V , and let w = u1u2. The rule ε(U) = w
defines a bijection ε from G to the quadric Q in P5 whose equation is (3.6.11).

Thus the Grassmanian G can be represented as the quadric (3.6.11).

proof. (i) If an element w of
∧2

V is decomposable, say w = u1u2, and if w is nonzero, then u1 and u2 must
be independent (3.6.6). They span a two-dimensional subspace.

(ii) When we write the second basis in terms of the first one, say (u′1, u
′
2) = (au1+bu2, cu2+du2), the product

u′1u
′
2 becomes (ad−bc)u1u2, and ad−bc 6= 0.
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(iii) In view of (i) and (ii), all that remains to show is that, if (u1, u2) and (u′1, u
′
2) are bases for distinct two-

dimensional subspaces U and U ′, then in
∧2

V , u1u2 6= u′1u
′
2. When U 6= U ′, the intersection W = U ∩ U ′

will have dimension at most 1. Then at least three of the vectors u1, u2, u
′
1, u
′
2 will be independent. Therefore

u1u2 6= u′1u
′
2. �

For the rest of this section, we use the algebraic dimension of a variety, a concept that will be studied in
the next chapter. We refer to the algebraic dimension simply as the dimension. The dimension of a variety X
can be defined as the length d of the longest chain C0 > C1 > · · · > Cd of closed subvarieties of X .

As was mentioned in Chapter 1, the topological dimension of X , its dimension in the classical topology, is
always twice the algebraic dimension. Because the Grassmanian G is covered by affine spaces of dimension
4, its algebraic dimension is 4 and its topological dimension is 8.

3.6.14. Proposition.pinlclosed Let P3 be the projective space associated to a four dimensional vector space V . In the
product P3× G, the locus Γ of pairs p,[`] such that the point p of P3 lies on the line ` is a closed subset of
dimension 5.

proof. Let ` be the line in P3 that corresponds to the subspace U with basis (u1, u2), and say that p represented
by the vector x in V . Let w = u1u2. Then p ∈ ` means x ∈ U , which is true if and only if (x, u1, u2) is a
dependent set, and this happens if and only if xw = 0 (3.6.5). So Γ is the closed subset of points (x,w) of
P3× P5 defined by the bihomogeneous equations w2 = 0 and xw = 0. �

When we project Γ to G, The fibre over a point [`] of G is the set of points p, [`] such that p is a point of
`. The fibre maps bijectively to the line `. Thus Γ can be viewed as a family of lines, parametrized by the
four-dimensional variety G of X . Its dimension is dim `+ dimG = 1 + 4 = 5.

(3.6.15)linesina-
surface

lines on a surface

One may ask whether or not a given surface in P3 contains a line. One surface that contains lines is the quadric
Q in P3 with equationw01w10 = w00w11, the image of the Segre embedding P1×P1 → P3

w (3.1.7). It contains
two families of lines, corresponding to the two “rulings” p×P1 and P1×q of P1× P1. There are surfaces of
arbitrary degree that contain lines, but, that a generic surface of degree four or more doesn’t contain any line.

We use coordinates xi with i = 1, 2, 3, 4 for P3 here. There are N =
(
d+3

3

)
monomials of degree d in four

variables, so homogeneous polynomials of degree d are parametrized by an affine space of dimension N , and
surfaces of degree d in P3 by a projective space of dimension N−1. Let S denote that projective space, and
let [S] denote the point of S that corresponds to a surface S. The coordinates of [S] are the coefficients of the
monomials in the defining polynomial f of S. Speaking infomally, we say that a point of S “is” a surface of
degree d in P3. (When f is reducible, its zero locus isn’t a variety. Let’s not worry about this.)

Consider the line `0 defined by x3 = x4 = 0. Its points are those of the form (x1, x2, 0, 0), so a surface
S : {f = 0} will contain `0 if and only if f(x1, x2, 0, 0) = 0 for all x1, x2. Substituting x3 = x4 = 0 into f
leaves us with a polynomial in two variables:

(3.6.16) f(x1, x2, 0, 0) = c0x
d
1 + c1x

d−1
1 x2 + · · ·+ cdx

d
2scon-

tainslzero
where ci are some of the coefficients of the polynomial f . If f(x1, x2, 0, 0) is identically zero, all of those
coefficients must be zero. So the surfaces that contain `0 correspond to the points of the linear subspace L0

of S defined by the equations c0 = · · · = cd = 0. Its dimension is (N−1)−(d+1) = N−d−2. This is a
satisfactory answer to the question of which surfaces contain `0, and we can use it to make a guess about lines
in a generic surface of degree d.

3.6.17. Lemma.scon-
tainslclosed

In the product variety G×S, the set Γ of pairs [`],[S] such that ` ⊂ S is closed.

proof. Let Wij , 1≤ i < j≤ 4 denote the six affine spaces that cover the Grassmanian, as at the beginning of
this section. It suffices to show that the intersection Γij = Γ ∩ (Wij×S) is closed in Wij×S (3.4.18). We
inspect the case i, j = 1, 2.

A line ` such that [`] is in W12 corresponds to a subspace of C2 with basis of the form u1 = (1, 0, a2, a3),
u2 = (0, 1, b2, b3) and ` is the line whose points are combinations ru1+su2 of u1, u2. Let f(x1, x2, x3, x4) be
the polynomial that defines a surface S. The line ` is contained in S if and only if f(r, s, ra2 + sb2, ra3 + sb3)
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is zero for all r and s. This is a homogeneous polynomial of degree d in r, s. Let’s call it f̃(r, s). If we write
f̃(r, s) = z0r

d + z1r
d−1s+ · · ·+ zds

d, the coefficients zν will be polynomials in ai, bi and in the coefficients
of f . The locus z0 = · · · = zd = 0 is the closed set Γ12 of W12 × S. �

The set of surfaces that contain our special line `0 corresponds to the linear space L0 of S of dimension
N−d−2, and `0 can be carried to any other line ` by a linear map P3 → P3. So the sufaces that contain another
line ` also form a linear subspace of S of dimension N−d−2. Those subspaces are the fibres of Γ over G.
The dimension of the Grassmanian G is 4. Therefore the dimension of Γ is dim Γ = dimL0 + dimG =
(N−d−2) + 4. Since S has dimension N−1,

(3.6.18) dim Γ = dimS− d+ 3 dimspace-
lines

We project the product G×S and its subvariety Γ to S. The fibre of Γ over a point [S] is the set of pairs
[`],[S] such that ` is contained in S – the set of lines in S.

When the degree d of the surfaces we are studying is 1, dim Γ = dim S+2. Every fibre of Γ over S will
have dimension at least 2. In fact, every fibre has dimension equal to 2. Surfaces of degree 1 are planes, and
the lines in a plane form a two-dimensional family.

When d = 2, dim Γ = dimS+1. We can expect that most fibres of Γ over S will have dimension 1. This
is true: A smooth quadric contains two one-dimensional families of lines. (All smooth quadrics are equivalent
with the quadric (3.1.8).) But if a quadratic polynomial f(x1, x2, x3, x4) is the product of linear polynomials,
its locus of zeros will be a union of planes. It will contain two-dimensional families of lines. Some fibres have
dimension 2.

When d ≥ 4, dim Γ < dimS. The projection Γ → S cannot be surjective. Most surfaces of degree 4 or
more contain no lines.

The most interesting case is that d = 3. In this case, dim Γ = dimS. Most fibres will have dimension
zero. They will be finite sets. In fact, a generic cubic surface contains 27 lines. We have to wait to see why the
number is precisely 27 (see Theorem 4.8.16).

Our conclusions are intuitively plausible, but to be sure about them, we need to study dimension carefully.
We do this in the next chapters.

proof of Proposition 3.6.5. Let v = (v1, ..., vn) be a basis of the vector space V . The proposition asserts that
the products vi1 · · · vir of length r with increasing indices i1 < i2 < · · · < ir form a basis for

∧r
V .

To prove this, we need to be more precise about the definition of the exterior algebra
∧
V . We start with

the algebra T (V ) of noncommutative polynomials in the basis v, which is also called the tensor algebra on
V . The part T r(V ) of T (V ) of degree r has as basis the nr noncommutative monomials of degree r, products
vi1 · · · vir of length r of elements of the basis v. Its dimension is nr. When n = r = 2, T 2(V ) has the basis
(x2

1, x1x2, x2x1, x
2
2).

The exterior algebra
∧
V is the quotient of T (V ) obtained by forcing the relations vw+wv = 0 (3.6.3).

Using the distributive law, one sees that the relations vivj+vjvi = 0, 1≤ i, j≤n, are sufficient to define this
quotient. The relations vivi = 0 are included when i = j.

To obtain
∧r

V , we multiply the relations vivj+vjvi on left and right by arbitrary noncommutative mono-
mials p(v) and q(v) in v1, ..., vn whose degrees add to r−2. The noncommutative polynomials

(3.6.19) vivjp(vivj+vjvi)q

span the kernel of the linear map T r(V )→
∧r

V . So in
∧r

V , p(vivj)q = −p(vjvi)q. Using these relations,
any product vi1 · · · vir in

∧r
V is, up to sign, equal to a product in which the elements viν are listed in

increasing order. Thus the products with indices in increasing order span
∧r

V , and because vivi = 0, such a
product will be zero unless the indices are strictly increasing.

We go to the proof now. Let v = (v1, ..., vn) be a basis for V . We show first that the product w = v1 · · · vn
in increasing order of the basis elements of V is a basis of

∧n
V . We have shown that this product spans∧n

V , and it remains to show that w 6= 0, or that
∧n

V 6= 0.
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Let’s use multi-index notation: (i) = (i1, ..., ir), and v(i) = vi1 · · · vir . We define a surjective linear map
Tn(V )

ϕ−→ C on the basis of Tn(V ) of products v(i) = (vi1 · · · vin) of length n. If there is no repetition
among the indices i1, ..., in, then (i) will be a permutation of the indices 1, ..., n. In that case, we set ϕ(v(i)) =
ϕ(vi1 · · · vin) = sign(i). If there is a repetition, we set ϕ(v(i)) = 0.

Let p and q be noncommutative monomials whose degrees add to n−2. If the product p(vivj)q has no
repeated index, the indices in p(vivj)q and p(vjvi)q will be permutations of 1, ..., n, and those permutations
will have opposite signs. Then p(vivj + vjvi)q will be in the kernel of ϕ. Since these elements span the space
of relations, ϕ defines a surjective linear map

∧n
V → C. Therefore

∧n
V 6= 0.

To prove (3.6.5), we must show that for r ≤ n, the products vi1 · · · vir with i1 < i2 < · · · < ir form a basis
for
∧r

V , and we know that those products span
∧r

V . We must show that they are independent. Suppose
that a combination z =

∑
c(i)v(i) is zero, the sum being over sets of strictly increasing indices. We choose

a set (j1, ..., jr) of n strictly increasing indices, and we let (k) = (k1, ..., kn−r) be the set of n − r indices
that don’t occur in (j), listed in arbitrary order. Then all terms in the sum zv(k) =

∑
c(i)v(i)v(k) will be zero

except the term with (i) = (j). On the other hand, since z = 0, zv(k) = 0. Therefore c(j)v(j)v(k) = 0, and
since v(j)v(k) differs by sign from v1 · · · vn, it isn’t zero. It follows that c(j) = 0. This is true for all (j), so
z = 0. �
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Chapter 4 INTEGRAL MORPHISMS OF AFFINE VARIETIES

july 18

4.1 The Nakayama Lemma
4.2 Integral Extensions
4.3 Finiteness of the Integral Closure
4.4 Geometry of Integral Morphisms
4.5 Dimension
4.6 Krull’s Theorem
4.7 Chevalley’s Finiteness Theorem
4.8 Double Planes

The concept of an algebraic integer was one of the important ideas that contributed to the development of
algebraic number theory in the 19th century. Then, largely through the work of Noether and Zariski, an analog
was seen to be essential in algebraic geometry. We study the analog in this chapter.

Section 4.1 The Nakayama Lemma
nakayama

(4.1.1) eigenvectorseigen

It won’t surprise you that eigenvectors are important, but the way that they are used to study modules may
be unfamiliar.

Let P be an n× n matrix with entries in a ring A. The concept of an eigenvector for P makes sense when
the entries of a vector are in an A-module. A column vector v = (v1, ..., vn)t with entries in an A-module M
is an eigenvector of P with eigenvalue λ if Pv = λv.

When the entries of a vector are in a module, it becomes hard to adapt the usual requirement that an
eigenvector must be nonzero, so we drop it, though the zero eigenvector tells us nothing.

4.1.2. Lemma.eigenval Let p(t) be the characteristic polynomial det (tI−P ) of a square matrix P . If v is an
eigenvector of P with eigenvalue λ, then p(λ)v = 0.

The usual proof, in which one multiplies the equation (λI−P )v = 0 by the cofactor matrix of (λI−P ), carries
over. �

The next lemma is a cornerstone of the theory of modules.

4.1.3. Nakayama Lemma.nakaya-
malem

Let M be a finite module over a ring A, and let J be an ideal of A such that
M = JM . There is an element z in J such that m = zm for all m in M , or such that (1−z)M = 0.

By definition, JM denotes the set of (finite) sums
∑
aimi with ai in J and mi in M .

Because it is always true that M ⊃ JM , the hypothesis M = JM can be replaced by M ⊂ JM .
proof of the Nakayama Lemma. Let v1, ..., vn be generators for the finite A-module M , and let v be the

vector (v1, ..., vn)t. The equation M = JM tells us that there are elements pij in J such that vi =
∑
pijvj .
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In matrix notation, v = Pv. So v is an eigenvector of P with eigenvalue 1, and if p(t) is the characteristic
polynomial of P , then p(1)v = 0. Since the entries of P are in J , inspection of the determinant of I−P
shows that p(1) has the form 1−z, with z in J . Then (1−z)vi = 0 for all i. Since v1, ...., vn generate M ,
(1−z)M = 0. �

4.1.4. Corollary. loczeroWith notation as in the Nakayama Lemma, let s = 1−z, so that sM = 0. The localized
module Ms is the zero module.

4.1.5. Corollary. idealzero(i) Let I and J be ideals of a noetherian domain A. If I = JI , then either I is the zero
ideal or J is the unit ideal.
(ii) Let A ⊂ B be rings, and suppose that B is a finite A-module. If J is an ideal of A, and if the extended
ideal JB is the unit ideal of B, then J is the unit ideal of A.

proof. (i) Since A is noetherian, I is a finite A-module. If I = JI , the Nakayama Lemma tells us that there is
an element z of J such that zx = x for all x in I . Suppose that I isn’t the zero ideal. We choose a nonzero
element x of I . Because A is a domain, we can cancel x from the equation zx = x, obtaining z = 1. Then 1
is in J , and J is the unit ideal.

(ii) The elements of the extended ideal JB are sums
∑
uibi with ui in J and bi in B (2.6.3). Suppose that

B = JB. The Nakayama Lemma tells us that there is an element z in J such that zb = b for all b inB. Setting
b = 1 shows that z = 1. So J is the unit ideal. �

4.1.6. Corollary. xkdividesyLet x be an element of a noetherian domain A, not a unit, and let J be the principal ideal
xA.
(i) The intersection

⋂
Jn is the zero ideal.

(ii) If y is a nonzero element of A, the integers k such that xk divides y in A are bounded.
(iii) For every k > 0, Jk > Jk+1.

proof. Let I =
⋂
Jn. The elements of I are the ones that are divisible by xn for every n. Let y be such an

element. So for every n, there is an element an in A such that y = anx
n. Then y/x = anx

n−1, which is an
element of Jn−1. Since this is true for every n, y/x is in I , and y is in JI . Since y can be any nonzero element
of I , I = JI . But since x isn’t a unit, J isn’t the unit ideal. So (i) tells us that I = 0. This proves (i) and (ii).
For (iii), we note that if Jk = Jk+1, then, multiplying by Jn−k shows that Jn = Jn+1 for every n ≥ k, and
therefore that

⋂
Jn = Jk. But since A is a domain and x 6= 0, Jk = xkA 6= 0. �

4.1.7. Corollary. betainte-
gral

Let I be a nonzero ideal of a noetherian domain A, and let B be a domain that contains A
as subring. If β is an element of B and if βI ⊂ I , then β is integral over A.

proof. BecauseA is noetherian, I is finitely generated. Let v = (v1, ..., vn)t be a vector whose entries generate
I . The hypothesis βI ⊂ I allows us to write βvi =

∑
pijvj with pij in A, or in matrix notation, Pv = βv. So

v is an eigenvector of P with eigenvalue β, and if p(t) is the characteristic polynomial of P , then p(β)v = 0.
Since at least one vi is nonzero and since A is a domain, p(β) = 0. The characteristic polynomial p(t) is a
monic polynomial with coefficients in A, so β is integral over A. �

Section 4.2 Integral Extensions
int

Let A be a domain. An extension of A is a ring that contains A as a subring. An element β of an extension B
is integral over A if it is a root of a monic polynomial

(4.2.1) f(x) = xn + an−1x
n−1 + · · ·+ a0 eqn

with coefficients ai in A, and an extension B is an integral extension of A if all of its elements are integral
over A.

4.2.2. Lemma. aboutinte-
gral

Let A ⊂ B be an extension of domains.
(i) An element b of B is integral over A if and only if the subring A[b] of B generated by b is a finite A-module.
(ii) The set of elements of B that are integral over A is a subring of B.
(iii) If B is generated as A-algebra by finitely many integral elements, it is a finite A-module.
(iv) Let R ⊂ A ⊂ B be rings, and suppose that A is an integral extension of R. An element of B is integral
over A if and only if it is integral over R. �
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4.2.3. Corollary.inte-
gralifffi-

nite

An extension A ⊂ B of finite-type domains is an integral extension if and only if B is a
finite A-module. �

4.2.4. Definition.deffinmor-
phaff

Let Y u−→ X be a morphism of affine varieties Y = SpecB and X = SpecA, and let
A

ϕ−→ B be the corresponding homomorphism of their coordinate algebras. If ϕ makes B into a finite A-
module, we call u a finite morphism of affine varieties. If A is a subring of B, and B is an integral extension
of A, we call u an integral morphism of affine varieties.

An integral morphism of affine varieties is a finite morphism whose associated algebra homomorphism
A

ϕ−→ B is injective.

4.2.5. Example.invarinte-
gral

Let G be a finite group of automorphisms of a finite-type domain B and let A = BG be the
algebra of invariants. Then B is an integral extension of A. (See Theorem 2.8.5.) �

The next example is helpful for an intuitive understanding of the geometric meaning of integrality.

4.2.6. Example.inte-
gralovercx

Let f be an irreducible polynomial in C[x, y] (one x and one y), let B = C[x, y]/(f), and
let A = C[x]. So X = SpecA is the affine line A1

x, and Y = SpecB is a plane affine curve. The canonical
map A → B defines a morphism Y

u−→ X , which can be described as the restriction of the projection
A2
x,y → A1

x to Y .
We write f as a polynomial in y, whose coefficients ai(x) are polynomials in x:

(4.2.7)fxy f(x, y) = a0(x)yn + a1(x)yn−1 + · · ·+ an(x)

Let x0 be a point of X . The fibre of Y over x0 consists of the points (x0, y0) such that y0 is a root of the
one-variable polynomial f(x0, y) = f̃(y). Because f is irreducible, its discriminant δ(x) with respect to the
variable y isn’t identically zero (1.7.19). For all but finitely many values of x, a0 and δ will be nonzero. Then
f̃(y) will have n distinct roots.

When f(x, y) is a monic polynomial in y, u will be an integral morphism. If so, the leading term yn of f
will be the dominant term, when y is large. Near to any point x0 of X , there will be a positive real number B
such that

|yn| > |a1(x)yn−1 + · · ·+ an(x)|

when |y| > B, and there fore f̃(y) 6= 0. So the roots y of f(x, y) are bounded for all x near to x0.
On the other hand, when the leading coefficient a0(x) isn’t a constant, B won’t be integral over A. If

x0 is a root of a0(x), f(x0, y) will have degree less than n. What happens then is that, as a point x1 of X
approaches x0, at least one root of f(x1, y) tends to infinity. In calculus, one says that the locus f(x, y) = 0
has a vertical asymptote at x0.

To see this, we divide f by its leading coefficient. Let g(x, y) = f(x, y)/a0 = yn + c1y
n−1 + · · · + cn

with ci(x) = ai(x)/a0(x). For any x at which a0(x) isn’t zero, the roots of g are the same as those of f .
However, let x0 be a root of a0. Because f is irreducible. At least one coefficient aj(x) doesn’t have x0 as a
root. Then cj(x) is unbounded near x0, and because the coefficient cj is an elementary symmetric function in
the roots, the roots can’t all be bounded.

This is the general picture: The roots of a polynomial remain bounded where the leading coefficient isn’t
zero. If the leading coefficient vanishes at a point, some roots are unbounded near that point. �

figure : nonmonic polynomial, but compare with figure for Hensel’s Lemma

4.2.8. Noether Normalization Theorem.noether-
normal

Let A be a finite-type algebra over an infinite field k. There exist
elements y1, . . . , yn in A that are algebraically independent over k, such that A is a finite module over its
polynomial subalgebra k[y1, . . . , yn], i.e., A is an integral extension of k[y1, ..., yn].

When K = C, the theorem can be stated by saying that every affine variety X admits an integral morphism to
an affine space.

The Noether Normalization Theorem is also true when k is a finite field, though the proof given below
needs to be modified.
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4.2.9. Lemma. nonzero-
coeff

Let k be an infinite field, and let f(x) be a nonzero polynomial of degree d in x1, . . . , xn,
with coefficients in k. After a suitable linear change of variable, the coefficient of xdn in f will be nonzero.

proof. Let fd be the homogeneous part of f of maximal degree d. We regard fd as a polynomial function.
Since k is infinite, this function isn’t identically zero. We choose coordinates x1, ..., xn so that the point
q = (0, ..., 0, 1) isn’t a zero of fd. Then fd(0, ..., 0, xn) = cxdn, and the coefficient c, which is fd(0, ..., 0, 1),
will be nonzero. By scaling xn, we can make c = 1. �

proof of the Noether Normalization Theorem. Say that the finite-type algebra A is generated by elements
x1, . . . , xn. If those elements are algebraically independent over k, A will be isomorphic to the polynomial
algebra C[x], and we will be done. If not, they will satisfy a polynomial relation f(x) = 0 of some degree
d, with coefficients in k. The lemma tells us that, after a suitable change of variable, the coefficient of xdn
in f will be 1. Then f will be a monic polynomial in xn with coefficients in the subalgebra R generated by
x1, . . . , xn−1. So xn will be integral over R, and A will be a finite R-module. By induction on n, we may
assume that R is a finite module over a polynomial subalgebra P . Then A will be a finite module over P too.
�

The next proposition is an example of the general principle (5.1.15), that a construction involving finitely
many operations can be done in a simple localization.

4.2.10. Proposition. localnthe-
orem

Let A ⊂ B be finite-type domains. There is a nonzero element s in A such that Bs is a
finite module over a polynomial subring As[y1, ..., yr].

proof. Let S be the set of nonzero elements of A, so that K = AS−1 is the fraction field of A, and let
BK = BS−1 be the ring obtained from B by inverting all elements of S. Also, let β = (β1, ..., βk) be a set of
elements of the finite-type algebra B that generates B as algebra. Then BK is generated as K-algebra by β.
It is a finite-type K-algebra. (A K-algebra is a ring that contains K as subring.) The Noether Normalization
Theorem tells us thatBK is a finite module over a polynomial subring P = K[y1, ..., yr]. SoBK is an integral
extension of P . Any element of B will be in BK , and therefore it will be the root of a monic polynomial, say

f(x) = xn + cn−1x
n−1 + · · ·+ c0 = 0

where the coefficients cj(y) are elements of P . Each coefficient cj is a combination of finitely many mono-
mials in y, with coefficients in K. If d ∈ A is a common denominator for those coefficients, cj(x) will have
coefficients in Ad[y]. Since the generators β of B are integral over P , we may choose a denominator s so that
the generators β1, ..., βk are all integral over As[y]. The algebra Bs is generated over As by β, so Bs will be
an integral extension of As[y]. �

Section 4.3 Normalization
finint

Let A be a domain with fraction field K. The normalization A# of A is the set of al elements of K that are
integral over A. It follows from Lemma 4.2.2 (ii) that the normalization is a domain, and it contains A.

A domain A is normal if it is equal to its normalization, and a normal variety X is a variety that has an
affine covering {Xi = SpecAi} in which the algebras Ai are normal domains.

To justify the definition of normal variety, we need to show that if an affine variety X = SpecA has an
affine covering Xi = SpecAi, in which Ai are normal domains, then A is normal. This follows from Lemma
4.3.3 (iii) below.

Our goal here is the next theorem, whose proof is at the end of the section.

4.3.1. Theorem. normalfi-
nite

LetA be a finite-type domain with fraction fieldK of characteristic zero. The normalization
A# of A is a finite A-module and a finite-type domain.

Thus there will be an integral morphism SpecA# → SpecA.

The proof given here makes use of the characteristic zero hypothesis, though the theorem is true for a finite-
type algebra over any field k.

4.3.2. Example. nodecurve(normalization of a nodal cubic curve) The algebra A = C[u, v]/(v2−u3−u2) can be
embedded into the one-variable polynomial algebra B = C[x], by u = x2 − 1 and v = x3 − x. The fraction
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fields of A and B are equal because x = v/u, and the equation x2 − (u+1) = 0 shows that x is integral over
A. The algebra B is normal, so it is the normalization of A (see Lemma 4.3.3 (i)).

In this example, SpecB is the affine line A1
x, and the plane curve C = SpecA has a node at the origin

p = (0, 0). The inclusion A ⊂ B defines an integral morphism A1
x → C whose fibre over p is the point pair

x = ±1. The morphism is bijective at all other points. I think of C as the variety obtained by gluing the points
x = ±1 of the affine line together.

figure: curve, not quite glued
In this example, the effect of normalization can be visualized geometrically. This isn’t always so. Normaliza-
tion is an algebraic process. Its effect on geometry may be subtle. �

4.3.3. Lemma.ufdnormal (i) A unique factorization domain is normal. In particular, a polynomial algebra over a field
is normal.
(ii) If s is a nonzero element of a normal domain A. The localization As is normal.
(iii) Let s1, ..., sk be nonzero elements of a domain A that generate the unit ideal. If the localizations Asi are
normal for all i, then A is normal.

proof. (i) Let A be a unique factorization domain, and let β be an element of its fraction field that is integral
over A. Say that

(4.3.4)eqntwo βn + a1β
n−1 + · · ·+ an−1β + an = 0

with ai in A. We write β = r/s, where r and s are relatively prime elements of A. Multiplying by sn gives us
the equation

rn = −s (a1r
n−1 + · · ·+ ans

n−1)

This equation shows that if a prime element ofA divides s, it also divides r. Since r and s are relatively prime,
there is no such element. So s is a unit, and β is in A.

(ii) Let β be an element of the fraction field of A that is integral over As. There will be a polynomial relation
of the form (4.3.4), except that the coefficients ai will be elements of As. The element γ = skβ satisfies the
polynomial equation

γn + (ska1)γn−1 + · · ·+ (s(n−1)kan−1)γ + (snkan) = 0

Since ai are in As, all coefficients of this polynomial will be in A when k is sufficiently large, and then γ will
be integral over A. Since A is normal, γ will be in A, and β = s−kγ will be in As.

(iii) This proof follows a common pattern. Suppose that Asi is normal for every i. If an element β of K is
integral over A, it will be in Asi for all i, and sni β will be an element of A if n is large. We can use the same
exponent n for all i. Since s1, ..., sk generate the unit ideal, so do their powers sni , ..., s

n
k . Say that

∑
ris

n
i = 1,

with ri in A. Then β =
∑
ris

n
i β is in A. �

For the proof, it is convenient to state Theorem 4.3.1 more generally. The more general statement is
essentially the same.

Let A be a finite type domain with fraction field K, and let L be a finite field extension of K. The integal
closure of A in L is the set of all elements of L that are integral over A. As Lemma 4.2.2 (ii) shows, the
integral closure is a domain that contains A.

4.3.5. Theorem.intclo Let A be a finite type domain with fraction field K, and let L be a finite field extension of K.
The integal closure B of A in L is a finite A-module.

4.3.6. Lemma.about-
tracetwo

Let A be a normal noetherian domain with fraction field K of characteristic zero, and let L
be an algebraic field extension of K. An element β of L is integral over A if and only if the coefficients of the
monic irreducible polynomial f for β over K are in A.

proof. If the monic polynomial f has coefficients in A, then β is integral over A. Suppose that β is integral
over A. Since we may replace L by any field extension that contains β, we may assume that L is a finite
extension of K. A finite extension embeds into a Galois extension, so we may assume that L/K is a Galois
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extension. Let G be its Galois group, and let {β1, . . . , βr} be the G-orbit of β, with β = β1. The irreducible
polynomial for β over K is

(4.3.7) f(x) = (x− β1) · · · (x− βr) orbitpoly

Its coefficients are symmetric functions of the roots. If β is integral over A, then all elements of the orbit are
integral overA. Therefore the symmetric functions are integral overA (4.2.2) (iii), and sinceA is normal, they
are in A. So f has coefficients in A. �

4.3.8. Example. dplanenor-
mal

A polynomial inA = C[x, y] is square-free if it has no nonconstant square factors and isn’t a
constant. Let f(x, y) be a square-free polynomial, and letB denote the integral extension C[x, y, w]/(w2−f)
of A. Let K and L be the fraction fields of A and B, respectively. Then L = K[w]/(w2 − f) is a Galois
extension of K. Its Galois group is generated by the automorphism σ of order 2 defined by σ(w) = −w. The
elements of L have the form β = a+ bw with a, b ∈ K, and σ(β) = β′ = a− bw.

We show thatB is the integral closure ofA in L. Suppose that β = a+bw is integral overA. If b = 0, then
β = a. This is an element of A and therefore it is in B. If b 6= 0, the irreducible polynomial for β = a + bw
will be

(x− β)(x− β′) = x2 − 2ax+ (a2−b2f)

Because β is integral over A, 2a and a2−b2f are in A. Because the characteristic isn’t 2, this is true if and
only if a and b2f are in A. We write b = u/v, with u, v relatively prime elements of A, so b2f = u2f/v2. If
v weren’t a constant, then since f is square-free, it couldn’t cancel v2. So from b2f in A we can conclude that
v is a constant and that b is in A. Summing up, β is integral if and only if a and b are in A, which means that
β is in B. �

(4.3.9) trace deftrace

Let L be a finite field extension of a fieldK and let β be an element ofK. When L is viewed as aK-vector
space, multiplication by β becomes a linear operator L

β−→ L. The trace of this operator will be denoted by
tr(β). The trace is a K-linear map L→ K.

4.3.10. Lemma. about-
traceone

Let L/K be a finite field extension, let β be an element of L of degree r over K, let
f(x) = xr + a1x

r−1 + · · · + ar be its irreducible polynomial over K, and let K(β) be the extension of K
generated by β. Say that [L :K(β)] = d and [L :K] = n (= rd). Then tr(β) = −da1. If β is an element of
K, then tr(β) = nβ.

proof. The set (1, β, . . . , βr−1) is a K-basis for K(β). On this basis, the matrix M of multiplication by β has
the form illustrated below for the case r = 3. Its trace is −a1.

M =

0 0 −a3

1 0 −a2

0 1 −a1

 .

Next, let (u1, . . . , ud) be a basis for L over K(β). Then {βiuj}, with i = 0, . . . , r − 1 and j = 1, . . . , d, will
be a basis for L over K. When this basis is listed in the order

(u1, u1β, ..., u1β
n−1;u2, u2β, . . . u2β

n−1; . . . ;ud, udβ, ..., udβ
n−1),

the matrix of multiplication by β will be made up of d blocks of the matrix M . �

4.3.11. Corollary. traceinALet A be a normal domain with fraction field K and let L be a finite field extension of K.
If an element β is integral over A, its trace is in A.

This follows from Lemmas 4.3.6 and 4.3.10. �

4.3.12. Lemma. formnon-
deg

Let A be a normal noetherian domain with fraction field K of characteristic zero, and let L
be a finite field extension of K. The form L×L → K defined by 〈α, β〉 = tr(αβ) is K-bilinear, symmetric,
and nondegenerate. If α and β are integral over A, then 〈α, β〉 is an element of A.
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proof. The form is obviously symmetric, and it is K-bilinear because multiplication is K-bilinear and trace
is K-linear. A form is nondegenerate if its nullspace is zero, which means that when α is a nonzero element,
there is an element β such that 〈α, β〉 6= 0. We let β = α−1. Then 〈α, β〉 = tr(1), which, according to
(4.3.10), is the degree [L :K] of the field extension. It is here that the hypothesis on the characteristic of K
enters: The degree is a nonzero element of K.

If α and β are integral over A, so is their product αβ (4.2.2) (ii). Corollary 4.3.11 shows that 〈α, β〉 is an
element of A. �

4.3.13. Lemma.clearde-
nom

Let A be a domain with fraction field K, let L be a field extension of K, and let β be an
element of L that is algebraic over K. If β is a root of a polynomial f = anx

n + an−1x
n−1 + · · ·+ a0 with

ai in A, then γ = anβ is integral over A.

proof. One finds a monic polynomial with root γ by substituting x = y/an into f and multiplying by an−1
n . �

proof of Theorem 4.3.1. Let A be a finite-type domain with fraction field K of characteristic zero, and let L be
a finite field extension of K. We are to show that the integral closure of A in L is a finite A-module.

Step 1. We may assume that A is normal.
We use the Noether Normalization Theorem to write A as a finite module over a polynomial subalgebra

R = C[y1, . . . , yd]. Let F be the fraction field of R. Then K and L are finite extensions of F . An element of
L will be integral over A if and only if it is integral over R ((4.2.2) (iv)). So the integral closure of A in L is
the same as the integral closure of R in L. We replace A by the normal algebra R and K by F .

Step 2. Bounding the integral extension.
We assume that A is normal. Let (v1, . . . , vn) be a K-basis for L whose elements are integral over A.

Such a basis exists because we can multiply any element of L by a nonzero element of K to make it integral
(Lemma 4.3.13). Let

(4.3.14) T : L→ Knmapvector

be the map defined by T (β) =
(
〈v1, β〉, . . . , 〈vn, β〉

)
, where 〈 , 〉 is the form defined in Lemma 4.3.12. This

map is K-linear. If 〈vi, β〉 = 0 for all i, then because (v1, . . . , vn) is a basis for L, 〈γ, β〉 = 0 for all γ in L,
and since the form is nondegenerate, β = 0. Therefore T is injective.

Let B be the integral closure of A in L. The basis elements vi are in B, and if β is in B, viβ will be
in B too. Then 〈vi, β〉 = tr(vib) will be in A, and T (β) will be in An (4.3.12). When we restrict T to B,
we obtain an injective map B → An that we denote by T0. Since T is K-linear, T0 is a A-linear. It is an
injective homomorphism of A-modules that maps B isomorphically to its image, a submodule of An. Since
A is noetherian, every submodule of the finite A-module An is finitely generated. Therefore the image of T0

is a finite A-module, and so is the isomorphic A-module B. �

Section 4.4 Geometry of Integral Morphisms
prmint The main geometric properties of an integral morphism of affine varieties are summarized in the theorems in

this section, which show that the geometry is as nice as could be expected.

Let Y u−→ X be an integral morphism. We say that a closed subvarietyD of Y lies over a closed subvariety
C of X if C is the image of D.

We translate this definition to algebra: Let A ⊂ B be an extension of finite-type domains. As before, if I
is an ideal of A, the extended ideal IB is the ideal of B generated by I . Its elements are finite sums

∑
uibi

with ui in I and bi in B. The contraction of an ideal J of B is the ideal J ∩ A of A. The contraction of a
prime ideal is a prime ideal.

Closed subvarieties of the affine variety X = SpecA correspond bijectively to prime ideals of A. In
analogy with the terminology for closed subvarieties, we say that a prime ideal Q of B lies over a prime ideal
P of A if its contraction is P . For example, if a point y of Y = SpecB has image x in X , the maximal ideal
my lies over the maximal ideal mx.
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4.4.1. Lemma. QoverPLet A→ B be an integral extension, and let X = SpecA and Y = SpecB. Also, let P and
Q be prime ideals ofA andB, respectively, and letC = VX(P ) = SpecA/P andD = VY (Q) = SpecB/Q.
Then Q lies over P if and only if D lies over C.

proof. If Q lies over P , i.e., P = Q ∩ A, then the canonical map A/P → B/Q is an integral extension.
By Theorem 4.4.3, SpecB/Q = D maps surjectively to SpecA/P = C, which means that D lies over
C. Conversely, if D = SpecB/Q lies over C = SpecA/P , the morphism D

ϕ−→ C gives us a map
A/P → B/Q, and since D → C is surjective, that map must be injective. This impies that P = Q ∩A. �

4.4.2. Proposition. incomparLet Y u−→ X be an integral morphism of affine varieties, and let D and D′ be closed
subvarieties of Y that lie over closed subvarieties C and C ′ of X , respectively. Then D′ < D if and only if
C ′ < C.

proof. Since C and C ′ are the images of D and D′, respectively, it is clear that if C ′ < C, then D′ < D.
For the other implication, we may replace X and Y by C and D, respectively. Then what has to be shown
is that if C ′ < X , then D′ < Y . We go over to ideals. Say that Q′ and P ′ are the prime ideals of B and A
corresponding to D′ and C ′, respectively. So P ′ is the contraction Q′ ∩A of Q′. What has to be shown is that
if Q′ is nonzero, then P ′ is nonzero.

Let β be a nonzero element of Q′. Then β is integral over A, say βn + an−1β
n−1 + · · · + a0 = 0, with

ai ∈ A. If a0 = 0, then because B is a domain, we can cancel β from the equation. So we may assume
a0 6= 0. The equation shows that a0 is in Q′, and since it is also in A, it is in P ′. �

4.4.3. Theorem. closedim-
age

Let Y u−→ X be an integral morphism of affine varieties.
(i) The morphism u is surjective, and its fibres have bounded cardinality.
(ii) The image of a closed subvariety of Y is a closed subvariety of X , and the image of a closed subset of Y
is a closed subset of X .
(iii) The set of closed subvarieties of Y that lie over a closed subvariety of X is finite and nonempty.

proof. Let Y u−→ X be the integral morphism, Y = SpecB and X = SpecA, that corresponds to the
inclusion A ⊂ B.
(i) (bounding the fibres) Let mx be the maximal ideal at point x of X . Corollary 4.1.5 (ii) shows that the
extended ideal mxB isn’t the unit ideal of B, so it is contained in a maximal ideal of B, say my , where y is a
point of Y , and then x is the image of y. Therefore u is surjective.

Let y1, ..., yr be the points of Y in the fibre over a point x of X . Then for each i, the maximal ideal mx of
A is the contraction of the maximal ideal myi of B. To bound the number r, we use the Chinese Remainder
Theorem to show that B cannot be spanned as A-module by fewer than r elements.

Let ki and k denote the residue fields B/myi , and A/mx, respectively, all of these fields being abstractly
isomorphic to C. Let B = k1× · · · × kr. We form a diagram of algebra homomorphisms

B
ϕ−−−−→ Bx x

A −−−−→ k

which we interpret as a diagram ofA-modules. The minimal number of generators of theA-moduleB is equal
to its dimension as k-module, which is r. The Chinese Remainder Theorem asserts that ϕ is surjective, so B
cannot be spanned by fewer than r elements.

(ii) (the image of a closed set is closed) It is clear that the image of an irreducible set via a continuous map is
irreducible, so it suffices to show that the image of a closed subvariety is closed. LetD be the closed subvariety
of Y that corresponds to a prime ideal Q of B, and let P = Q ∩ A be its contraction, which is a prime ideal
of A. Let C be the variety of zeros of P in X . The coordinate algebras of the affine varieties D and C are
B = B/Q andA = A/P , respectively, and becauseB is an integral extension ofA, B is an integral extension
of A. By (i), the map D → C is surjective. Therefore C is the image of D.

(iii) (subvarieties that lie over a closed subvariety) We will refer to Proposition 4.4.2 here. The inverse image
Z = u−1C of a closed subvariety C is closed in Y . It is the union of finitely many irreducible closed subsets,
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say Z = D′1 ∪ · · · ∪ D′k. Part (i) tells us that the image C ′i of D′i is a closed subvariety of X . Since u is
surjective, C =

⋃
C ′i, and since C is irreducible, it is equal to at least one C ′i. The components D′i such that

C ′i = C are the subvarieties that lie over C. Moreover, any subvariety D that lies over C will be contained in
the inverse image Z =

⋃
D′i of C. According to Proposition 4.4.2, there are no inclusions among subvarieties

that lie over C. Therefore D must be one of the D′i. So it is an element of a finite set. �

(4.4.4) finite group actionsgrpii

Let G be a finite group of automorphisms of a normal, finite-type domain B, let A be the algebra of
invariant elements of B. According to Theorem 2.8.5, A is a finite-type domain, and B is a finite A-module.
Let Y = SpecB and X = SpecA. Points of X correspond to G-orbits of points of Y . Theorem 4.4.6 below
extends this correspondence to closed subvarieties.

4.4.5. Lemma.invariant-
denom

Let G be a finite group of automorphisms of a normal, finite-type domain B and let A be the
subalgebra of invariant elements. Let L and K be the fraction fields of B and A, respectively.
(i) The algebra A = BG is normal.
(ii) Every element of L can be written as a fraction b/s, with b in B, and s in A.
(iii) L is a Galois extension of K, with Galois group G. The ring of G-invariants LG is K. �

Since B is a finite A-module, the results of Section 4.4 apply to the integral morphism Y
u−→ X . Recall

that, when G operates on the left on B, it operates on the right on Y (2.8.9).

4.4.6. Theorem.
groupoper-

onvariety

Let G be a finite group of automorphisms of a normal, finite-type domain B, let A be the
algebra of invariant elements of B, and let Y u−→ X be the integral morphism of varieties corresponding to
the inclusion A ⊂ B.
(i) Let {D′1, ..., D′r} and {D1, ..., Ds} be orbits of closed subvarieties Y that lie over C ′ and C, respectively,
in X . If D′i ⊂ Dj for some i and j, then C ′ ⊂ C ′. If C ′ ⊂ C, then every D′i is contained in some Dj .
(ii) There is a bijective correspondence between closed subvarieties of X and G-orbits of closed subvarieties
of Y :

{closed subvarieties of Y }/G ←→ {closed subvarieties of X}
The orbit that corresponds to a closed subvariety C of X is the set of closed subvarieties of Y that lie over C.

proof. (i) The first assertion is clear: If D′i ⊂ Dj , then C ′ ⊂ C. Suppose that D′i 6⊂ Dj for all i and j. We
show that C ′ 6⊂ C. The lemma below, whose proof is left as an exercise, shows that there is an element β that
is identically zero on every Di and is not identically zero on any D′j . Then for all σ in G, σβ has the same
property. So α =

∏
σβ is an element of A that is identically zero on every Di but not on any D′j . Therefore

α is identically zero on C but not on C ′. So C ′ isn’t contained in C.

(ii) Let D be a closed subvariety of Y with image C in X . Because points of X correspond to σ-orbits in Y ,
the subvarietiesDσ in the orbit ofD have the same imageC. The fact that distinct orbits of closed subvarieties
of Y lie over distinct closed subvarieties of X will follow from (ii). �

4.4.7. Lemma.avoiding-
primes

Let Y = SpecB be an affine variety, let D1, . . . , Dn be distinct closed subvarieties of Y
and let V be a closed subset of Y . Assume that V doesn’t contain any of the subvarieties Dj . There is an
element β of B that vanishes on V , but isn’t identically zero on any Dj . �

The next theorem concerns inclusions among closed subvarieties. It refers to the diagram below:

D′ ⊂ D Y

C ′ ⊂ C X

4.4.8. Theorem.integral-
properties

Let Y u−→ X be an integral morphism of affine varieties, and let C ′ ⊂ C be closed
subvarieties of X .
(i) Every closed subvariety D of Y that lies over C contains a closed subvariety D′ that lies over C ′.
(ii) Suppose that X normal

¯
. Every closed subvariety D′ of Y that lies over C ′ is contained in a closed

subvariety D that lies over C.
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Property (ii) is more subtle than (i), as is indicated by the fact that X is assumed normal. There is an example
at the end of the section showing that the hypothesis of normality cannot be dropped.

In commutative algebra books, Theorem 4.4.8 is stated in terms of prime ideals. Suppose given prime
ideals P ⊂ P ′ of A: Do there exist prime ideals Q ⊂ Q′ of B that lie over P and P ′, respectively?

Q ⊂ Q′ B

P ⊂ P ′ A

The translation of Theorem 4.4.8 to prime ideals reads as follows:

4.4.9. Theorem. integral-
primeprop

Let A ⊂ B be an integral extension of finite-type domains, and let P ⊂ P ′ be prime ideals
of A.
(i) Every prime ideal Q that lies over P is contained in a prime ideal Q′ that lies over P ′.
(ii) Suppose that A is normal. Then every prime ideal Q′ that lies over P ′ contains a prime ideal Q that lies
over P .

The statements (i) and (ii) of this theorem are often called “going up”, and “going down”, respectively. Since
inclusions are reversed when one passes to closed subvarieties, those terms aren’t appropriate in Theorem
4.4.8. �

proof of Theorem 4.4.8. (i). We are given C ′ ⊂ C in X and D in Y that lies over C, and we must find D′. We
replace Y and X by D and C, respectively. Then what is to be proved is that there is a closed subvariety D′

of Y that lies over a given closed subvariety C ′. This is part (ii) of Theorem 4.4.3.

(ii). Here, we are given an integral morphism SpecB = Y
u−→ X = SpecA with X normal, and we are

given closed subvarieties C ⊃ C ′ of X and a closed subvariety D′ of Y that lies over C ′. We are to find a
closed subvariety D that lies over C, and that contains D′. Let K and L denote the fraction fields of A and B,
respectively. Since B is a finite A-module, L is a finite extension of K.

Case 1: L is a Galois extension of K and B is normal. Then A and BG have the same fields of fractions, BG

is an integral extension of A, and A is normal. So BG = A. This case follows from Theorem 4.4.6.

Case 2: the general case. We put L into a Galois extension F , and we let R be the integral closure of B in F .
Then R is a finite B-module and a finite A-module. Let Z = SpecR and let E be a closed subvariety of Z
that lies over D. Then E also lies over C. By Case 1, there is a closed subvariety E′ of Z that lies over C ′ and
is contained in E. The image D′ of E′ in Y is the required closed subvariety of Y .

E′ ⊂ E Z

D Y

C ′ ⊂ C X

�.
##out of place ?? ##

4.4.10. Corollary. compo-
nentslieover

Let Y u−→ X be an integral morphism of affine varieties with X normal, and let C be
a closed subvariety of X . The subvarieties of Y that lie over C are the irreducible components of the inverse
image of C.

proof. Let Z be the inverse image of C, let D′ be a component of Z, and let C ′ be its image in X . Then
C ′ ⊂ C, so by part (ii) of Theorem 4.4.8, D′ is contained in a subvariety D of Y that lies over C. Because D
is contained in Z and D′ is a component of Z, D′ = D. �

4.4.11. Example. downfalseIn this example, B is the normalization of a finite-type domain A, A isn’t normal, and the
conclusion of Theorem 4.4.8 (ii) fails.

In the affine plane Y = SpecC[u, v], let L1 and L2 be the lines v = 1 and v = −1, respectively, let D
be the diagonal line u = v, and let D′ be the point (−1, 1). We form an affine variety X by gluing L1 to L2,
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identifying the points (u, 1) and (u,−1). You can work out its coordinate algebra. Let Y π−→ X be the gluing
map. The real loci of Y → X are depicted below. In the figure, C is the image of D, and C ′ is the image of
D′. Then C ′ is ontained in C, but because D is the only subvariety of Y that lies over C, there is no variety
that lies over C and that contains D′. �

##figure##
�

4.5 Dimension
dim Every variety has a dimension, and though dimension is a very coarse measure, but as is true for the dimension

of a vector space, it is important.

A chain of closed subvarieties of a variety X is a strictly decreasing sequence of closed subvarieties (of
irreducible closed subsets)

(4.5.1) C0 > C1 > C2 > · · · > Ckchntwo

The length of this chain is defined to be k. The chain is maximal if it cannot be lengthened by inserting another
closed subvariety, which means that C0 = X , that there is no closed subvariety C̃ with Ci > C̃ > Ci+1 for
i < k, and that Ck is a point. Theorem 4.5.3 below shows that all maximal chains have the same length. The
dimension of X , often denoted by dimX , is the length of a maximal chain.

When X is the affine variety SpecA, the decreasing chain (4.5.1) corresponds to an increasing chain

(4.5.2) P0 < P1 < P2 < · · · < Pk,chn

of prime ideals of A of length k, a prime chain. This prime chain is maximal if it cannot be lengthened
by inserting another prime ideal, which means that P0 is the zero ideal, that there is no prime ideal P̃ with
Pi < P̃ < Pi+1 for i < k, and that Pk is a maximal ideal. The dimension dimA of a finite-type domain A is
the length k of a maximal chain (4.5.2) of prime ideals. Thus if X = SpecA, then dimX = dimA.

4.5.3. Theorem.dimtheo-
rem

(i) Let A be a finite-type domain whose fraction field K has transcendence degree n. All
prime chains in A have length at most n, and all maximal prime chains have length equal to n. Therefore the
dimension of A is the transcendence degree of A.
(ii) Let X be a variety whose function field K has transcencence degree n. All chains of closed subvarieties
of X have length at most n, and all maximal chains have length n. Therefore the dimension of X is equal to
the transcendence degree of K.

The proof is below.
For example, the transcendence degree of the polynomial algebra C[x1, . . . , xn] in n variables is n, so the

polynomial algebra has dimension n. The chain of prime ideals

(4.5.4) 0 < (x1) < (x1, x2) < · · · < (x1, . . . , xn)
primechain

is a maximal prime chain. The corresponding chain

Pn > Pn−1 > · · · > P0

is a maximal chain of closed subvarieties of projective space Pn.
The maximal chains of closed subvarieties of P2 have the form P2 > C > p, where C is a plane curve and

p is a point.

If (4.5.1) is a maximal chain in X , then C0 = X , and

(4.5.5) C1 > C2 > · · · > Ckchaini

will be a maximal chain in the variety C1. So whenX has dimension k, the dimension of C1 is k−1. Similarly,
let (4.5.2) be a maximal chain of prime ideals in a finite-type domain A, let A = A/P1 and let P j denote the
image Pj/P1 of Pj in A, for j ≥ 1. Then

0 = P 1 < P 2 < · · · < P k
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will be a maximal prime chain in A, and therefore the dimension of the domain A is k−1. There is a bijective
correspondence between maximal prime chains in A and maximal prime chains in A whose first term is P0.

One more term: A closed subvariety C of a variety X has codimension codimension 1 if C < X and
if there is no closed set C̃ with C < C̃ < X . A prime ideal P of a noetherian domain has codimension
1 if it is not the zero ideal, and if there is no prime ideal P̃ with (0) < P̃ < P . In the polynomial algebra
C[x1, . . . , xn], the prime ideals of codimension 1 are the principal ideals generated by irreducible polynomials.

4.5.6. Proposition. chainsmaxLet Y u−→ X be an integral morphism of varieties. Every chain of closed subvarieties of
Y lies over a chain in X , and every chain of closed subvarieties of X has chain in Y lying over it.

proof. It follows from Proposition 4.4.2 that the image of a prime chain in Y is a prime chain in X . Theorem
4.4.8(i) and Proposition 4.4.2 show that ###

4.5.7. Lemma. tdnminu-
sone

Let A = C[x1, . . . , xn] be a polynomial algebra, let f be an irreducible element of A, and
let A = A/(f). The transcendence degree of A is n− 1.

proof. We may choose coordinates so that f becomes a monic polynomial in xn with coefficients in
C[x1, . . . , xn−1], say f = xkn+ck−1x

k−1
n +· · ·+c0 (Lemma 4.2.9). ThenAwill be integral over C[x1, . . . , xn−1],

so it will have the same transcendence degree. �

proof of theorem 4.5.3. (i) Induction allows us to assume the theorem true for a finite-type domain whose
transcendence degree is less than n. Let A be a finite-type domain of transcendence degree n.

Case 1: The case that A is a polynomial algebra C[x1, . . . , xn].
Let P0 < P1 < · · · < Pk be a prime chain in A. We are to show that k ≤ n, and that k = n if the chain

is maximal. We may assume that P0 = 0 and that P1 is a codimension 1 prime, generated by an irreducible
polynomial f . If not, we insert a prime ideal into the chain. Let A = A/P1, and for i ≥ 1, let P i = Pi/P1.
Then P 1 < P 2 < · · · < P k is a prime chain in A of length k − 1, and if the chain {Pi} is maximal, the
chain {P i} will be a maximal chain too. Lemma 4.5.7 shows that A has transcendence degree n − 1. So by
induction, the length of the chain {P i} is at most n − 1 and is equal to n − 1 if the chain {Pi} is maximal.
Therefore the chain {Pi} has length at most n and has length n if it is maximal.

Case 2: The general case.
Let B be a finite-type domain of transcendence degree n, and let Q0 < Q1 < · · · < Qk be a prime chain

in B. Again, we are to show that k ≤ n and that if the chain is maximal, then k = n. We apply the Noether
Normalization Theorem: B is a finite module over a polynomial subring A. The transcendence degree of A is
n, and the contractions Pi = Qi ∩ A form a prime chain in A. This follows when one translates Proposition
4.5.6 to prime ideals. Therefore k ≤ n.

Next, suppose that the chain {Qi} is maximal. Then Q0 = 0 and therefore P0 = 0. If P1 were not a
codimension 1 prime, we could choose a nonzero prime ideal P̃ contained in P1. Since A is normal, we could
apply Theorem 4.4.8 (ii): there would be a nonzero prime ideal Q̃ of B that lies over P̃ and is contained in
Q1. This would imply that the chain {Qi} wasn’t maximal, contrary to hypothesis. So P1 is a codimension
1 prime, and by Lemma 4.5.7, A = A/P1 has transcendence degree n − 1. Since B = B/Q1 is a finite
A-module, it also has transcendence degree n− 1. Let Qi = Qi/Q1 for i ≥ 1. By induction, the length of the
maximal chain Q1 < · · · < Qk in B is n− 1, and therefore k = n.

Part (ii) of Theorem 4.5.3 follows from the next lemma.

4.5.8. Lemma. re-
strictchain

Let X ′ be an open subvariety of a variety X . There is a bijective correspondence between
chains C0 > · · · > Ck of closed subvarieties of a varietyX such that Ck∩X ′ 6= ∅ and chains C ′0 > · · · > C ′k
of closed subvarieties of X ′, defined by C ′i = Ci ∩X ′. Given a chain C ′i in X ′, the corresponding chain in X
consists of the closures Ci in X of the varieties C ′i.

proof. Suppose given a chain Ci and that Ck ∩ X ′ 6= ∅. Then the intersections C ′i = Ci ∩ X ′ are dense
open subsets of the irreducible closed sets Ci (2.2.13). So the closure of C ′i is Ci, and since Ci > Ci+1, it
is also true that C ′i > C ′i+1. Therefore C ′0 > · · · > C ′k is a chain of closed subsets of X ′. Conversely, if
C ′0 > · · · > C ′k is a chain in X ′, the closures in X will form a chain in X . �
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4.5.9. Corollary.inte-
graldime-

qual

(i) If Xs is a localization of an affine variety X , then dimXs = dimX .
(ii) If Y is a proper closed subvariety of a variety X , then dimY < dimX .
(iii) If Y → X is an integral morphism of varieties, then dimY = dimX . �

4.6 Krull’s Theorem
krull

Krull’s Principal Ideal Theorem completes our discussion of dimension. It asserts that the zero set of a principal
ideal can’t have a low dimension. Though the statement is natural, the proof isn’t very easy.

4.6.1. Krull’s Theorem.krullthm Let X be an affine variety of dimension d, and let α be a nonzero element of its
coordinate ring A. Every irreducible component of the zero locus VX(α) of α in X has dimension d− 1.

proof. Let C be an irreducible component of VX(α). Since α isn’t zero, C is a proper subset of X , and its
dimension is less than d. We must show that the dimension is d − 1, and we prove this by contradiction. So
we assume that dimC < d− 1.

Step 1: Reduction to the case that A is normal.
Let B be the normalization of A and let Y = SpecB. The dimension of Y is d. The integral morphism

Y → X is surjective, and it sends closed sets to closed sets (4.4.3). So the zero locus of α in Y maps
surjectively to the zero locus in X , and at least one irreducible component of VY (α), call it D, will map
surjectively to C. The map D → C is also an integral morphism, so the dimension of D is the same as that of
C. We may therefore replace X by Y and C by D. Hence we may assume that A is normal.

Step 2: Reduction to the case that the zero locus of α is irreducible.
We do this by localizing. Say that the zero locus is C ∪ V , where C is a closed subvariety of codimension

at least two, and V is the union of the other irreducible components. We choose an element s of A that is
identically zero on V but not identically zero on C. Inverting s eliminates the points of V , but Xs ∩ C = Cs
will be nonempty. If X is normal, so is Xs. Since localization doesn’t change dimensions, we may replace X
and C by Xs and Cs.

Step 3: Completion of the proof.
This is the main step: We assume thatX is a normal affine variety, X = SpecA, and that the zero locus of

α in X is a closed subvariety C of codimension at least two. Then C is the zero locus of a prime ideal P , and
also the zero locus of α. So P is the radical of the principal ideal αA, and Pn ⊂ Aα if n is large (see 2.5.11).

By what we know about dimension, C will be contained in a closed subvariety Z of codimension one. Let
Q be the prime ideal whose locus is Z. Then P ⊃ Q because C ⊂ Z. On the other hand, α 6∈ Q because α
vanishes only on C, and it follows that the principal ideal Aα isn’t contained in Q.

4.6.2. Lemma.PandQ With notation as above, There is an element γ in A such that γ 6∈ Aα but Pγ ⊂ Aα.

proof. Let β be an element of Q. Corollary 4.1.6 tells us that the powers of α that divide β are bounded. Let
αk is the largest such power, and let β′ = β/αk. Then β′ vanishes on the dense open subset Z ′ = Z − C of
Z, so it vanishes on Z. So β′ is in Q but not in Aα.

Next, since Pn ⊂ Aα for large n, it is also true that PnQ ⊂ Aα for large n. Let r be the largest integer
≥ 0 such that P rQ 6⊂ Aα. We choose an element γ of P rQ that isn’t in Aα: γ 6∈ Aα, but Pγ ⊂ Aα. �

We finish the proof of Krull’s Theorem now. Let δ = γ/α, where γ is as in the lemma. Then δ 6∈ A,
but Pδ ⊂ A. Since γ vanishes on Z while α vanishes only on C, every element of Pδ vanishes on the dense
complement Z ′ of C in Z, and therefore on Z. So Pδ ⊂ Q ⊂ P . Corollary 5.2.7 shows that δ is integral over
A, and since A is assumed normal, δ is in A. This is a contradiction that proves the theorem. �

4.6.3. Corollary.
chainavoids

Let Z be a proper closed subset of a variety X of dimension d, and let p be a point of Z.
There is a maximal chain of closed subvarieties X = X0 > X1 > · · · > Xd with Xd = {p}, such that Xd−1

isn’t contained in Z, and therefore Z doesn’t contain Xi for any i < d.

proof. Lemma 4.5.8 shows that we may assume that X is affine: X = SpecA. Lemma 4.4.7 asserts that
A contains an element α that vanishes at p but doesn’t vanish identically on any component of Z. Then at
least one component of VX(α) contains p. Let X1 be such a component. Krull’s Theorem tells us that X1 has
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dimension d− 1. Since α doesn’t vanish identically on any component of Z, X1 doesn’t contain any of those
components. Therefore Z1 = Z ∩ X1 is a proper closed subvariety of X1. We replace X by X1. Then the
corollary follows by induction on the dimension d. �

4.7 Chevalley’s Finiteness Theorem
finmorph

(4.7.1) finite morphisms prodagain

The concepts of a finite morphism and an integral morphism of affine varieties were defined in Section
4.2. A morphism Y

u−→ X of affine varieties X = SpecA and Y = SpecB is a finite morphism if the
homomorphism A

ϕ−→ B that corresponds to u makes B into a finite A-module. As was noted before, the
difference between a finite morphism and an integral morphism of affine varieties is that for a finite morphism,
the homomorphism ϕ needn’t be injective. If ϕ is injective, B will be an integral extension of A, and u will be
an integral morphism. We extend these definitions to varieties that aren’t necessarily affine here.

By the restriction of a morphism Y
u−→ X to an open subset X ′ of X , we mean the induced morphism

Y ′ → X ′, where Y ′ is the inverse image of X ′.

4.7.2. Definition. deffin-
morph

A morphism of varieties Y u−→ X is a finite morphism if X can be covered by affine
open subsets Xi such that the restriction of u to each Xi is a finite morphism of affine varieties, as defined in
(4.2.4). A morphism u is an integral morphism if X can be overed by affine open sets to which the restriction
of u is an integral morphism of affine varieties.

4.7.3. Corollary. finiteex-
amp

An integral morphism is a finite morphism. The composition of finite morphisms is a finite
morphism. The inclusion of a closed subvariety into a variety is a finite morphism. �

When X is affine, Definition 4.2.4 and Definition 4.7.2 both apply. The next proposition shows that the
two definitions are equivalent.

4.7.4. Proposition. onecov-
erfinite

Let Y u−→ X be a finite or an integral morphism, as defined in (4.7.2), and let X ′ be
an affine open subset of X . The restriction of u to X ′ is a finite or an integral morphism of affine varieties, as
was defined in (4.2.4).

4.7.5. Lemma. restfin-
morph

(i) Let A
ϕ−→ B be a homomorphism of finite-type domains that makes B into a finite A-

module, and let s be a nonzero element of A. Then Bs is a finite As-module.
(ii) The restriction of a finite (or an integral) morphism Y

u−→ X to an open subset of X is a finite (or an
integral) morphism, as in Definition 4.7.2.

proof. (i) In the statement, Bs denotes the localization of B as A-module. This localization can also be
obtained by localizing the algebra B with respect to the image s′ = ϕ(s), provided that it isn’t zero. If s′ is
zero, then s annihilates B, so Bs = 0. In either case, a set of elements that spans B as A-module will span Bs
as As-module, so Bs is a finite As-module.

(ii) Say that X is covered by affine open sets to which the restriction of u is a finite morphism. The localiza-
tions of these open sets form a basis for the Zariski topology onX . SoX ′ can be covered by such localizations.
Part (i) shows that the restriction of u to X ′ is a finite morphism. �

proof of Proposition 4.7.4. We’ll do the case of a finite morphism. The proof isn’t difficult, but there are
several things to check, and this makes the proof longer than one would like.

Step 1. Preliminaries.
We are given a morphism Y

u−→ X , X is covered by affine open setsXi, and the restrictions of u to these
open sets are finite morphisms of affine varieties. We are to show that the restriction to any affine open set X ′

is a finite morphism of affine varieties.
The affine open set X ′ is covered by the affine open sets X ′i = X ′ ∩Xi, and the restrictions fo X ′i are

finite morphisms ((4.7.5) (ii)). So we may replace X by X ′. Since the localizations of an affine variety form a
basis for its Zariski topology, we see that what is to be proved is this:

A morphism Y
u−→ X is given in which X = SpecA is affine. There are elements s1, ..., sk that generate

the unit ideal of A, such that for every i, the inverse image Y i of Xi = Xsi if nonempty, is affine, and its
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coordinate algebra Bi is a finite module over the localized algebra Ai = Asi . We must show that Y is affine,
and that its coordinate algebra B is a finite A-module.

Step 2. The algebra B of regular functions on Y .
If Y is affine, its coordinate algebra B will be a finite-type domain, and Y will be its spectrum. Since Y

isn’t assumed to be affine, we don’t know very much about B other than that it is a subalgebra of the function
field L of Y . By hypothesis, the inverse image Y i of Xi, if nonempty, is affine, the spectrum of a finite Ai-
algebra Bi. Since the localizations Xi cover X , the affine varieties the Y i cover Y . We throw out the indices
i such that Y i is empty. Then a function is regular on Y if and only if it is regular on each Y i, and

B =
⋂
Bi

the intersection being in the function field L of Y .
Let’s denote the images in B of the elements si of A by the same symbols.

Step 3. For any index j, Bj is the localization B[s−1
j ] of B.

The intersection Y j ∩ Y i is an affine variety. It is the set of points of the affine variety Y j = SpecBj at
which si isn’t zero. Its coordinate algebra is the localization Bj [s−1

i ]. Then

B[s−1
j ]

(1)
=
⋂
i

(
Bi[s

−1
j ]
) (2)

=
⋂
i

Bj [s
−1
i ]

(3)
= Bj [s

−1
j ]

(3)
= Bj

where the explanation of the numbered equalities is as follows:
(1) A rational function β is in Bi[s−1

j ] if snj β is in Bi for large n, and we can use the same exponent n for all
i = 1, ..., r. Then β is in

⋂
i

(
Bi[s

−1
j ]
)

if and only if snj β is in
⋂
iBi = B, i.e., if and only if β is in B[s−1

j ].

(2) Bi[s
−1
j ] = Bj [s

−1
i ] because Y j ∩ Y i = Y i ∩ Y j .

(3) For all i, Bj ⊂ Bj [s
−1
i ]. Moreover, sj doesn’t vanish on Y j . It is a unit in Bj , and therefore Bj [s−1

j ] =

Bj . Then Bj ⊂
⋂
iBj [s

−1
i ] ⊂ Bj [s−1

j ] = Bj .

Step 4. B is a finite A-module.
We choose a finite set (b1, ..., bn) of elements of B that generates the Ai-module Bi for every i. We can

do this because we can span the finite Ai-module Bi = B[s−1
i ] by finitely many elements of B, and there are

finitely many algebras Bi. We show that the set (b1, ..., bn) generates the A-module B.
Let x be an element of B. Since x is in Bi, it is a combination of the elements (b1, ..., bn) with coefficients

in Ai. Then for large k, ski x will be a combination of those elements with coefficients in A, say

ski x =
∑
ν

ai,νbν

with ai,ν ∈ A. We can use the same exponent k for all i. Then with
∑
ris

k
i = 1,

x =
∑
i

ris
k
i x =

∑
i

ri
∑
ν

ai,νbν

The right side is a combination of b with coefficients in A.

Step 5. Y is affine.
The algebraB of regular functions on Y is a finite-type domain because it is a finite module over the finite-

type domainA. Let Ỹ = SpecB. The fact thatB is the algebra of regular functions on Y gives us a morphism

Y
ε−→ Ỹ (Corollary 3.5.2). Restricting to the open subset Xj of X gives us a morphism Y j

εj−→ Ỹ j in which
Y j and Ỹ j are both equal to SpecBj . Therefore εj is an isomorphism. Corollary 3.4.19 (ii) shows that ε is an
isomorphism. So Y is affine and by Step 4, its coordinate algebra B is a finite A-module. �

We come to Chevalley’s theorem now. Let P denote the projective space Pn with coordinates y0, ..., yn.

4.7.6. Chevalley’s Finiteness Theorem.chevfin Let X be a variety, let Y be a closed subvariety of the product
P×X , and let π denote the projection Y → X . If all fibres of π are finite sets, then π is a finite morphism.
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4.7.7. Corollary. pro-
jchevfin

Let Y be a projective variety and let Y π−→ X be a morphism whose fibres are finite sets.
Then π is a finite morphism. In particular, if Y is a projective curve, any nonconstant morphism Y

u−→ X is
a finite morphism.

This corollary follows from the theorem when one replaces Y by the graph of π in Y ×X . If Y is embedded
as a closed subvariety of P, the graph will be a closed subvariety of P×X (Proposition 3.4.28). �

In the next lemma,A denotes a finite-type domain,B denotes a quotient of the algebraA[u] of polynomials
in n variables u1, ..., un with coefficients in A, and A

ϕ−→ B denotes the canonical homomorphism. We’ll use
capital letters for nonhomogeneous polynomials here. If G(u) is a polynomial in A[u], we denote its image in
B by G(u) too.

4.7.8. Lemma. powerso-
fyenuf

Let k be a positive integer. Suppose that, for each i = 1, ..., n, there is a polynomial
Gi(u1, ..., un) of degree at most k−1 in n variables, with coefficients in A, such that uki = Gi(u) in B.
Then B is a finite A-module.

proof. Any monomial in u1, ..., un of degree d ≥ nk will be divisible by uki for at least one i. So if m is
a monomial of degree d ≥ nk, the relation uki = Gi(u) shows that, in B, m is equal to a polynomial in
u1, ..., un of degree less than d, with coefficients in A. It follows by induction that the monomials in u1, ..., un
of degree at most nk−1 span B. �

Let y0, ..., yn be coordinates in Pn, and letA[y0, ..., yn] be the algebra of polynomials in y with coefficients
in A. A homogeneous element of A[y] is an element that is a homogeneous polynomial in y with coefficients
in A. A homogeneous ideal is an ideal that can be generated by homogeneous polynomials.

4.7.9. Lemma. hompoly-
coeffA

Let Y be a closed subset of P×X , where X = SpecA is affine,
(i) The ideal I of elements of A[y] that vanish at every point of Y is a homogeneous ideal of A[y].
(ii) If the zero locus of a homogeneous ideal I of A[y] is empty, then I contains a power of the irrelevant ideal
M = (y0, ..., yn) of A[y].

proof. (i) Let’s write a point of P×X as q = (y0, ..., yn, x), with x representing a point of X . So (y, x) =
(λy, x). Then the proof for the case A = C that is given in (1.3.2) carries over.

(ii) Let V be the complement of the origin in the affine n+ 1-space with coordinates y. Then V ×X maps to
P×X (see 3.2.4). If the locus of zeros of I in P×X is empty, its locus of zeros in V ×X will be contained
in o×X , o being the origin in P. Then the ideal of o×X , which is generated by the elements y0, ..., yn, will
contain I. �

proof of Chevelley’s Finiteness Theorem. This proof is adapted from a proof by Schelter.
We abbreviate the notation for a product of a variety Z with X , denoting Z×X by Z̃.

We are given a closed subvariety Y of P̃ = P×X , and the fibres over X are finite sets. We are to prove that
the projection Y → X is a finite morphism (4.2.4). We may assume that X is affine, say X = SpecA, and
by induction on n, we may assume that the theorem is true when P is a projective space of dimension n−1.

Case 1. There is a hyperplane H in P such that Y is disjoint from H̃ = H×X in P̃ = P×X .
This is the main case. We adjust coordinates y0, ..., yn in P so thatH is the hyperplane at infinity {y0 = 0}.

Because Y is a closed subvariety of P̃ disjoint from H̃ , Y is also a closed subvariety of Ũ0 = U0×X , U0

being the standard affine {y0 6= 0}. So Y is affine.

Let P and Q be the (homogeneous) prime ideals in A[y] that define Y and H̃ , respectively, and let I =
P +Q. So Q is the principal ideal of A[y] generated by y0. A homogeneous element of I of degree k has the
form f(y) + y0g(y), where f is a homogeneous polynomial of degree k, and g is a homogeneous polynomial
of degree k−1.

The closed subsets Y and H̃ are disjoint. Since Y ∩ H̃ is empty, the sum I = P +Q contains a power of
the irrelevant idealM = (y0, ..., yn). Say thatMk ⊂ I. Then yki is in I for i = 0, ..., n. So we may write

(4.7.10) yki = fi(y) + y0gi(y) fplusg

with fi in P of degree k and gi in A[y] of degree k−1. We can omit the index i = 0.
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We dehomogenize these equations with respect to the variables y, substituting ui = yi/y0 for yi, i =
1, ..., n with u0 = 1. Writing dehomogenizations with capital letters, the dehomogenized equations that
correspond to the equations yki = fi(y) + y0g(y) have the form

(4.7.11)FplusG uki = Fi(u) +Gi(u)

The important point is that the degree of Gi is at most k−1.
Recall that Y is also a closed subset of U0. Its (nonhomogenous) ideal P in A[u] contains the polynomials

F1, ..., Fn, and its coordinate algebra isB = A[u]/P . In the quotient algebraB, the terms Fi drop out, leaving
us with equations uki = Gi(u), which are true in B. Since Gi has degree at most k−1, Lemma 4.7.8 tells us
that B is a finite A-algebra, as was to be shown.

This completes the proof of Case 1.

Case 2. the general case.
We have taken care of the case in which there exists a hyperplane H such that Y is disjoint from H̃ . The

next lemma shows that we can cover the given variety X by open subsets to which this special case applies.
Then Lemma 4.7.4 and Proposition 4.7.4 will complete the proof.

4.7.12. Lemma.avoidh-
plane

Let Y be a closed subvariety of P̃ = Pn×X , and suppose that the projection Y π−→ X has
finite fibres. Suppose also that Chevalley’s Theorem has been proved for closed subvarieties of Pn−1×X . For
every point p of X , there is an open neighborhood X ′ of p in X , and there is a hyperplane H in P, such that
the inverse image Y ′ = π−1X ′ is disjoint from H̃ .

proof. Let p be a point of X , and let q̃ = (q̃1, ..., q̃r) be the finite set of points of Y making up the fibre over p.
We project q̃ from P×X to P, obtaining a finite set q = (q1, ..., qr) of points of P, and we choose a hyperplane
H in P that avoids this finite set. Then H̃ avoids the fibre q̃. Let W denote the closed set Y ∩ H̃ . Because
the fibres of Y over X are finite, so are the fibres of W over X . By hypothesis, Chevalley’s Theorem is true
for subvarieties of Pn−1×X , and H̃ is isomorphic to Pn−1×X . It follows that, for every component W ′

of W , the morphism W ′ → X is a finite morphism, and therefore its image is closed in X (Theorem 4.4.3).
Thus the image Z of W is a closed subset of X , and it doesn’t contain p. Then X ′ = X−Z is the required
neighborhood of p. �

figure: ??I’m not sure

4.8 Double Planes
dplane

(4.8.1)affdplanes affine double planes

Let A be the polynomial algebra C[x, y], and let X be the affine plane SpecA. An affine double plane is a
locus of the form w2 = f(x, y) in affine 3-space with coordinates w, x, y, where f is a square-free polynomial
in x, y, as in Example 4.3.8. Let B = C[w, x, y]/(w2 − f). So the affine double plane is Y = SpecB.

We’ll denote by w, x, y both the variables and their residues in B. As in Example 4.3.8, B is a normal
domain of dimension two, and a freeA-module with basis (1, w). It has an automorphism σ of order 2, defined
by σ(a+ bw) = a− bw.

The fibres of Y over X are the σ-orbits in Y . If f(x0, y0) 6= 0, the fibre consists of two points, and if
f(x0, y0) = 0, it consists of one point. The reason that Y is called a double plane is that most points of the
plane X are covered by two points of Y . The branch locus of the covering, which will be denoted by ∆, is the
(possibly reducible) curve {f = 0} in X . The fibres over the branch points, the points of ∆, are single points.

We study the closed subvarieties D of Y that lie over a curve C in X . These subvarieties will have
dimension one, and we call them curves too. If D lies over C, and if D = Dσ, then D is the only curve lying
over C. Otherwise, there will be two curves that lie over C, namely D and Dσ. In that case we say that C
splits in Y .

A curve C in X will be the zero set of a principal prime ideal P of A, and if D lies over C, it will be the
zero set of a prime ideal Q of B that lies over P (4.4.1). However, the prime ideal Q needn’t be a principal
ideal.
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4.8.2. Example. circleex-
ample

Let f(x, y) = x2 + y2 − 1. The double plane Y = {w2 = x2+y2−1} is an affine quadric
in A3. In the affine plane, its branch locus ∆ is the curve {x2+y2 = 1}.

The line C1 : {y = 0} in X meets the branch locus ∆ transversally at the points (x, y) = (±1, 0), and
when we set y = 0 in the equation for Y , we obtain the irreducible polynomial w2−x2 +1. So y generates
a prime ideal of B. On the other hand, the line C2 : {y = 1} is tangent to ∆ at the point (0, 1), and it splits.
When we set y = 1 in the equation for Y , we obtain w2 = x2. The locus {w2 = x2} is the union of the two
lines {w = x} and {w = −x} that lie over C1. The prime ideals of B that correspond to these lines aren’t
principal ideals.

figure circle with two lines �

This example illustrates a general principle: If a curve intersects the branch locus transversally, it doesn’t
split. We explain this now.

(4.8.3) localanallocal analysis

Suppose that a plane curve C : {g = 0} and the branch locus ∆ : {f = 0} of a double plane w2 = f meet at
a point p. We adjust coordinates so that p becomes the origin (0, 0), and we write

f(x, y) =
∑

aijx
iyj = a10x+ a01y + a20x

2 + · · ·

Since p is a point of ∆, the constant coefficient of f is zero. If the two linear coefficients aren’t both zero, p
will be a smooth point of ∆, and the tangent line to ∆ at p will be the line {a10x + a01y = 0}. Similarly,
writing g(x, y) =

∑
bijx

iyj , the tangent line to C, if defined, is the line {b10x+ b01y = 0}.
Let’s suppose that the two tangent lines are defined and distinct – that ∆ and C intersect transversally at

p. We change coordinates once more, to make the tangent lines the coordinate axes. After adjusting by scalar
factors, the polynomials f and g will have the form

f(x, y) = x+ u(x, y) and g(x, y) = y + v(x, y),

where u and v are polynomials all of whose terms have degree at least 2.

Let X1 = SpecC[x1, y1] be another affine plane. We consider the map X1 → X defined by the substitu-
tion x1 = x+ u(x, y), y1 = y + v(x, y). In the classical topology, this map is invertible analytically near the
origin, because the Jacobian matrix

(4.8.4)
(
∂(x1, y1)

∂(x, y)

)
(0,0) jacob

at p is the identity matrix. When we make this substitution, ∆ becomes the locus {x1 = 0} and C becomes
the locus {y1 = 0}. In this local analytic coordinate system, the equation w2 = f that defines the double plane
becomes w2 = x1. When we restrict it to C by setting y1 = 0, x1 becomes a local coordinate function on C.
The restriction of the equation remains w2 = x1. So the inverse image Z of C doesn’t split analytically near
p. Therefore it doesn’t split algebraically either.

4.8.5. Corollary. splitnot-
transver-
sal

A curve that meets the branch locus transversally at some point doesn’t split. �

This isn’t a complete analysis. When C and ∆ are tangent at every point of intersection, C may split or
not, and which possibility occurs cannot be decided locally in most cases. However, one case in which a local
analysis suffices to decide splitting is that C is a line. Let t be a coordinate in a line C, so that C ≈ SpecC[t].
Let’s assume that C does’t intersect ∆ at t = ∞. The restriction of the polynomial f to C will give us a
polynomial f(t) in t. A root of f corresponds to an intersection of C with ∆, and a multiple root corresponds
to an intersection at which C and ∆ are tangent, or at which ∆ is singular. The line C will split if and only if
f is a square in C[t], and this will be true if and only if every root of f has even multiplicity.

A rational curve is a curve whose function field is a rational function field C(t) in one variable. One can
make a similar analysis for any rational plane curve, a conic for example, but one needs to inspect its points at
infinity and its singular points as well as its smooth points at finite distance.
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(4.8.6)projdplane projective double planes

Let X be the projective plane P2, with coordinates x0, x1, x2. A projective double plane is a locus of the form

(4.8.7) y2 = f(x0, x1, x2)wtdplane

where f is a square-free, homogeneous polynomial of even degree 2d. To regard this as a homogeneous
equation, we must assign weight d to the variable y (see 1.7.7). Then, since we have weighted variables, we
must work in a weighted projective space WP with coordinates x0, x1, x2, y, where xi have weight 1 and y
has weight d. A point of this weighted space WP is represented by a nonzero vector (x0, x1, x2, y) with the
equivalence relation that, for all λ 6= 0, (x0, x1, x2, y) ∼ (λx0, λx1, λx2, λ

dy). The points of the projective
double plane Y are the points of WP that solve the equation (4.8.7).

The projection WP→ X that sends (x, y) to x is defined at all points except at (0, 0, 0, 1). If (x, y) solves
(4.8.7) and if x = 0, then y = 0 too. So (0, 0, 0, 1) isn’t a point of Y . The projection is defined at all points of
Y . The fibre of the morphism Y → X over a point x consists of points (x, y) and (x,−y), which will be equal
if and only if x lies on the branch locus of the double plane, the (possibly reducible) plane curve ∆ : {f = 0}
in X . The map σ : (x, y)  (x,−y) is an automorphism of Y , and points of X correspond bijectively to
σ-orbits in Y .

Since the double plane Y is embedded into a weighted projective space, it isn’t presented to us as a pro-
jective variety in the usual sense. However, it can be embedded into a projective space in the following way:
The projective plane X can be embedded by a Veronese embedding of higher order, using as coordinates the
monomials m = (m1,m2, . . .) of degree d in the variables x. This embeds X into a projective space PN
where N =

(
d+2

2

)
− 1. When we add a coordinate y of weight d, we obtain an embedding of the weighted

projective space WP into PN+1 that sends the point (x, y) to (m, y). The double plane can be realized as a
projective variety by this embedding.

If Y → X is a projective double plane, then, as happens with affine double planes, a curve C in X may
split in Y or not. If C has a transversal intersection with the branch locus ∆, it will not split. On the other
hand, if C is a line, and if C intersects the branch locus ∆ with multiplicity 2 at every intersection point, it will
split. For example, when the branch locus ∆ is a generic quartic curve, the lines that split will be the bitangent
lines to ∆ (see Section 1.11).

(4.8.8)ho-
mogdplane

homogenizing an affine double plane

To construct a projective double plane from an affine double plane, we write the affine double plane as

(4.8.9) w2 = F (u1, u2)rela-
belaffd-

plane for some nonhomogeneous polynomial F . We suppose that F has even degree 2d, and we homogenize F ,
setting ui = xi/x0. We multiply both sides of this equation by x2d

0 and set y = xd0 w. This produces an
equation of the form (4.8.7), where f is the homogenization of F .

If F has odd degree 2d − 1, one needs to multiply F by x0 in order to make the substitution y = xd0w
permissible. When we do this, the line at infinity {x0 = 0} becomes a part of the branch locus.

(4.8.10)cubicisd-
plane

cubic surfaces and quartic double planes

We use coordinates x0, x1, x2, z for the (unweighted) projective 3-space P3 here, and X will denote the
projective x-plane P2. Let P3 π−→ X denote the projection that sends (x, z) to x. It is defined at all points
except at the center of projection q = (0, 0, 0, 1), and its fibres are the lines through q, with q omitted.

Let S be a cubic surface in P3, the locus of zeros of an irreducible homogeneous cubic polynomial g(x, z).
We’ll denote the restriction of π to S by the same symbol π.
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Let’s suppose that q is a point of S. Then the coefficient of z3 in g will be zero, and g will be quadratic
in z: g(x, z) = az2 + bz + c, where the coefficienta a, b, c are homogeneous polynomials in x, of degrees
1, 2, 3, respectively. The equation for S becomes

(4.8.11) projequa-
tion

az2 + bz + c = 0

The discriminant f = b2−4ac of g is a homogeneous polynomial of degree 4 in x. Let Y be the projective
double plane

(4.8.12) y2 = b2 − 4ac quarticd-
plane

.
We denote by V the affine space of polynomials a, b, c of degrees 1, 2, 3 in x, and by W the affine space

of homogeneous quartic polynomials in x. Sending a polynomial g (4.8.11) to its discriminant f defines a
morphism V

u−→W (4.8.11).

4.8.13. Lemma. quarticis-
generic

The image of the morphism u contains all quartic polynomials f such that the divisor
D : f = 0 has at least one bitangent line. Therefore the image of u is dense in W .

proof. Given such a quartic polynomial f , let a be a linear polynomial such that the line `1 : {a = 0} is a
bitangent to D : {f = 0}. Then, as noted above, `1 splits in the double plane y2 = f . So f is congruent to a
square, modulo a. Let b be a quadratic polynomial such that f ≡ b2, modulo a. When we take this polynomial
as b, we will have f = b2 − 4ac for some cubic polynomial c.

Conversely, if g(x, y) = az2 + bz + c, the line `1 : {a = 0} will be a bitangent to D provides that the
locus b = 0 meets `1 in two distinct points. �

It follows from the lemma that, if g(x, z) = az2 + bz + c is a polynomial in which a, b, c are generic
homogeneous polynomials in x, of degrees 1, 2, 3, respectively, the discriminant b2 − 4ac will be a generic
homogeneous quartic polynomial in x.

We suppose given a generic cubic surface S : az2 + bz + c = 0 and the generic double plane Y : y2 =
b2 − 4ac.

4.8.14. Theorem. twenty-
seven

A generic cubic surface S in P3 contains precisely 27 lines.

This theorem follows from next lemma, which relates the 27 lines in S to the 28 bitangents of the generic
quartic curve ∆ : {b2 − 4ac = 0} in the plane X . (See (1.11.2).)

4.8.15. Lemma. linesplitsLet S be a generic cubic surface az2 + bz+ c = 0, projected to the plane X from a generic
point q of S, let ∆ : {b2 = 4ac = 0} be the discriminant curve, and let Y be the double plane y2 = b2 − 4ac.
(i) The image ` in X of a line L in S is a line ` in X that is bitangent to the quartic curve ∆. Distinct lines in
S have distinct images in X .
(ii) The line `1 : {a = 0} is a bitangent to ∆, and it isn’t the image of a line in S.
(iii) A bitangent ` to ∆ that is distinct from `1 is the image of a line in S.

proof. (i) The projection P3 → X maps a line L bijectively to a line ` unless L contains the center of projection
q, in which case its image will be a point. Because our cubic surface S is generic, it contains finitely many
lines (3.6). The generic point q of S won’t lie on any of those lines. So the image of a line L in S will be a
line ` in X .

A line ` in X is defined by a homogeneous linear equation in the variables x. The same linear equation
defines a plane H in P3 that contains q, and the intersection C = S∩H will be a cubic curve in H . This curve
is essentially the inverse image of ` via the projection S → X , though the projection is undefined at q. Let’s
call it the inverse image anyway.

At least one of the irreducible components of C contains q, and that component isn’t a line. So if C is
reducible, it will be a union Q ∪ L, where Q is a conic that contains q and L is a line in S. Thus lines L in S
correspond bijectively to lines in X such that the corresponding cubic C is reducible.

(ii) The inverse image C in S of the line `1 is the locus a = 0 and az2 + bz + c = 0, or equivalently, a = 0
and bz + c = 0.
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Let’s adjust coordinates so that a becomes the polynomial x0. The locus {x0 = 0} in P3 is the projective
plane P with coordinates x1, x2, z, and in P , C is the locus g = 0, where g = bz + c, b and c being the
polynomials obtained from b and c by substituting x0 = 0. In P , the point q becomes (0, 0, 1), and C becomes
the cubic curve g = 0. This cubic curve is singular at q because g has no term of degree > 1 in z. As we have
noted, C doesn’t contain a line through q. Since its degree is three, C must be an irreducible cubic curve. So
`1 doesn’t split.

(iii) Referring to (4.8.11) and (4.8.12), the quadratic formula solves for z in terms of y whenever a 6= 0:

(4.8.16) z =
−b+ y

2a
or y = 2az + bquadrfor-

mula
These equations define a bijection S′ ←→ Y ′ between the open subsets S′ and Y ′ of points of S and Y at
which a 6= 0. A point of Y at which a 6= 0 is one that isn’t on the line `1.

If a line ` in X is distinct from the line `1, the intersection ` ∩ `1 will be a single point p. The bijection
S′ ←→ Y ′ will be defined at all points that lie over ` except at the finite set of points over p.

If ` is a bitangent line, it splits in Y , and therefore it splits in S too. The cubic curve C = S ∩H will be
reducible. It will be the union of a line L and a conic. So every bitangent line distinct from `1 is the image of
a unique line in S. �

Summing up: The 27 bitangents distinct from the bitangent `1 : {a = 0} are images of lines in S, but `1 is
not the image of a line in S.
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Chapter 5 STRUCTURE OF VARIETIES IN THE ZARISKI TOPOL-
OGY

july12

5.1 Modules – a review
5.2 Valuations
5.3 Smooth Curves
5.4 Constructible sets
5.5 Closed Sets
5.6 Fibred Products
5.7 Projective Varieties are Proper
5.8 Fibre Dimension

The ultimate goal of this chapter is to show how algebraic curves control the geometry of higher dimen-
sional varieties.

5.1 Modules – a review
moduleloc We start with a brief review of modules, omitting proofs.

(5.1.1) exact sequencesexactseq

Let R be a ring. A sequence

· · · → V n−1 dn−1

−→ V n
dn−→ V n+1 dn+1

−→ · · ·
of homomorphisms of R-modules is exact if the image of dk−1 is equal to the kernel of dk. For example, to
say that a sequence 0 → V

d−→ V ′ is exact means that the map d is injective, and to say that a sequence
V

d−→ V ′ → 0 is exact, means that d is surjective. Any homomorphism V
d−→ V ′ can be embedded into an

exact sequence
0→ K → V

d−→ V ′ → C → 0,

where K and C are the kernel and cokernel of d, respectively.
A short exact sequence is an exact sequence of the form

0→ V
a−→ V ′

b−→ V ′′ → 0.

To say that this sequence is exact means that the map a is injective, and that V ′′ is isomorphic to the quotient
module V ′/aV .

5.1.2. Proposition.snake (functorial property of the kernel and cokernel) Suppose given a (commutative) diagram
of R-modules

V
u−−−−→ V ′ −−−−→ V ′′ −−−−→ 0

f

y f ′
y f ′′

y
0 −−−−→ W −−−−→ W ′ −−−−→

v
W ′′

103



whose rows are exact sequences. Let K,K ′,K ′′ and C,C ′, C ′′ denote the kernels and cokernels of f, f ′, and
f ′′, respectively.
(i) (kernel is left exact) The kernels form an exact sequence K → K ′ → K ′′. If u is injective, the sequence
0→ K → K ′ → K ′′ is exact.
(ii) (cokernel is right exact) The cokernels form an exact sequence C → C ′ → C ′′. If v is surjective, the
sequence C → C ′ → C ′′ → 0 is exact.

(iii) (Snake Lemma) There is a canonical homomorphismK ′′
d−→ C that combines with the above sequences

to form an exact sequence
K → K ′ → K ′′

d−→ C → C ′ → C ′′.

If u is injective and/or v is surjective, the sequence remains exact with zeros at the appropriate ends. �

(5.1.3) tensor products tensprod

Let U and V be modules over a ring R. The tensor product U ⊗RV is an R-module that is generated by
elements u ⊗v called tensors, one for each u in U and v in V . Its elements are combinations of tensors with
coefficients in R.

The defining relations among the tensors are the bilinear relations:

(5.1.4) bilinrels(u1+u2)⊗ v = u1 ⊗ v+u2 ⊗v , u⊗ (v1+v2) = u⊗ v1+u⊗ v2

and r(u⊗ v) = (ru)⊗ v = u⊗ (rv)

for all u in U , v in V , and r in R. The symbol ⊗ is used as a reminder that the tensors are to be manipulated
using these relations.

One can absorb a coefficient from R into either one of the factors of a tensor, so every element of U ⊗RV
can be written as a finite sum

∑
ui ⊗vi with ui in U and vi in V .

5.1.5. Example. colxrowIf U and V are free R-modules with bases {ui} and {vj}, respectively, then U ⊗RV is a
free R-module with basis {ui ⊗ vj}. If U is the space of m dimensional (complex) column vectors, and V is
the space of n-dimensional row vectors. Then U ⊗C V identifies naturally with the space of m×n-matrices.

There is an obvious map of sets U×V β−→ U ⊗RV from the product set to the tensor product, that sends
(u, v) to u⊗ v. This map isn’t a homomorphism. The defining relations (5.1.4) show that it is R-bilinear, not
R-linear. It is a universal bilinear map.

The product module U×V and the tensor product module U⊗RV are very different. For instance, when
U and V are free modules of ranks r and s, U×V is free of rank r+s, while U⊗RV is free of rank rs.

5.1.6. Corollary. tensorbilinet U, V , and W be R-modules. Homomorphisms of R-modules U ⊗R V →W correspond
bijectively to R-bilinear maps U×V →W .

This follows from the defining relations. �

Thus, any R-bilinear map U×V f−→ W to a module W can be obtained from a module homomorphism

U ⊗RV
f̃−→W by composition with the bilinear map β defined above: U×V β−→ U ⊗RV

f̃−→W .

5.1.7. Proposition. canonisomThere are canonical isomorphisms
• U⊗RR ≈ U , defined by u⊗ r! ur

• (U ⊕ U ′)⊗RV ≈ (U⊗RV )⊕ (U ′⊗RV ), defined by (u1 + u2)⊗ v! u1 ⊗ v + u2 ⊗ v
• U⊗RV ≈ V ⊗RU , defined by u⊗ v! v ⊗ u
• (U⊗RV )⊗RW ≈ U⊗R(V ⊗RW ), defined by (u⊗ v)⊗ w! u⊗ (v ⊗ w) �

5.1.8. Proposition. rexactten-
sor

Tensor product is right exact Let U
f−→ U ′

g−→ U ′′ → 0 be an exact sequence of
R-modules. For any R-module V , the sequence

U ⊗RV
f⊗id−→ U ′ ⊗RV

g⊗id−→ U ′′ ⊗RV → 0

is exact. �
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Tensor product isn’t left exact. For example, Let R = C[x]. Then R/xR ≈ C, so there is an exact
sequence 0 → R

x−→ R → C → 0. When we tensor with C we get the sequence 0 → C 0−→ C → C → 0,
which isn’t exact on the left.

proof of Proposition 5.1.8. We are given an exact sequence of R-modules U
f−→ U ′

g−→ U ′′ → 0 and another

R-module V . We are to prove that the sequence U ⊗RV
f⊗1−→ U ′ ⊗RV

g⊗1−→ U ′′ ⊗RV → 0 is exact. It is
evident that the composition (g⊗ 1)(f ⊗ 1) is zero, and that g⊗ 1 is surjective. We must prove that U ′′ ⊗RV
is the cokernel of f ⊗RV . Let C denote that cokernel. Then we have a canonical map U ′′ ⊗RV

ϕ−→ C that
we want to show is an isomorphism. To do this, we construct its inverse function, first defining the inverse on
tensors. We form a diagram

U×V −−−−→ U ′×V −−−−→ U ′′×V −−−−→ 0y y y??

U ⊗RV
f⊗1−−−−→ U ′ ⊗RV −−−−→ C −−−−→ 0

in which the rows are exact sequences, and the first two vertical arrows are the canonial bilinear maps. The
arrow labelled ?? is defined by lifting an element u′′, v toU ′×V . It is bilinear, so it induces a mapU ′′⊗RV → C
that inverts ϕ. �

5.1.9. Corollary.locisten-
sor

Let U and V be modules over a domain R and let s be a nonzero element of R. Let
Rs, Us, Vs be the localizations of R,U, V , respectively.
(i) There is a canonical isomorphism U⊗R(Rs) ≈ Us.
(ii) Tensor product is compatible with localization: Us⊗RsVs ≈ (U⊗RV )s

proof of Corollary 5.1.9 ((ii).???? �

Thus the tensor productM⊗O N of O-modulesM, N on a variety is defined. The modules of sections
ofM⊗O N on an affine open set U isM(U)⊗O (U)N (U).

(5.1.10)extend-
scalars

extension of scalars in a module

Let R
ρ−→ R′ be a ring homomorphism. Extension of scalars is an operation that constructs an R′-module

from an R-module.
Let’s write scalar multiplication on the right. So M will be a right R-module. Then M ⊗R R′ becomes a

right R′-module, multiplication by s ∈ R′ being (m⊗ a)s = m⊗ (as). This gives the functor

R−modules ⊗R
′

−→ R′−modules

called the extension of scalars from R to R′.

(5.1.11) localization, againmultsys

###where???###

If s is a nonzero element of a domain A, the simple localization As, which is often referred to simply as
a localization, is the ring obtained by adjoining an inverse of s. To work with the inverses of finitely many
nonzero elements, one may simply adjoin the inverse of their product. For working with an infinite set of
inverses, the concept of a multiplicative system is convenient.

A multiplicative system S in a domain A is a subset that consists of nonzero elements, is closed under
multiplication, and contains 1. If S is a multiplicative system, the ring of S-fractionsAS−1 is the ring obtained
by adjoining inverses of all elements of S. Its elements are equivalence classes of fractions as−1 with a in A
and s in S, the equivalence relation and the laws of composition being the usual ones for fractions. The ring
AS−1 called a localization too.
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5.1.12. Examples. inverseex-
amples

(i) The set consisting of the powers of a nonzero element s of a domain A is a multiplica-
tive system. Its ring of fractions is the simple localization As = A[s−1].

(ii) The set S of all nonzero elements of a domain A is a multiplicative system. Its ring of fractions is the field
of fractions of A.

(iii) An ideal P of a domain A is a prime ideal if and only if its complement, the set of elements of A not in
P , is a multiplicative system. �

LetA ⊂ B be a ring extension, and let I and J be ideals ofA andB, respectively. Recall that the extension
of I is the ideal IB of B generated by I , whose elements are finite sums

∑
i zibi with zi in I and bi in B. The

contraction of J is the intersection J ∩A, which is an ideal of A.

5.1.13. Proposition. extendide-
altoloc

Let S be a multiplicative system in a domain A, and let A′ be the localization AS−1.
(i) Let I be an ideal of A. The extended ideal IA′ is the set IS−1 whose elements are classes of fractions
xs−1, with x in I and s in S. The extended ideal is the unit ideal if and only if I contains an element of S.
(ii) Let J be an ideal of the localization A′ and let I denote its contraction J ∩ A. The extended ideal
IA′ = (J ∩A)A′ is equal to J .
(iii) If Q is a prime ideal of A and if Q∩S is empty, the extended ideal Q′ = QA′ is a prime ideal of A′, and
the contraction Q′ ∩ A is equal to Q. If Q ∩ S isn’t empty, the extended ideal is the unit ideal. Thus prime
ideals of AS−1 correspond bijectively to prime ideals of A that don’t meet S. �

5.1.14. Corollary. locfintypeEvery localization AS−1 of a noetherian domain A is noetherian.

Tis follows from (5.1.13) (ii). �

(5.1.15) a general principle import-
princ

An important, though elementary, principle for working with fractions is that any finite sequence of com-
putations in a localization AS−1 will involve only finitely many denominators, and can therefore be done in a
simple localization As, where s is a common denominator for the fractions that occur.

For example, let A ⊂ B be finite-type domains, and let S be the multiplicative system of nonzero elemets
ofA. ThenAS−1 = K is the field of fractions ofA, andBK = BS−1 is a finite-typeK-algebra. The Noether
Normalization Theorem tells us that BK is a finite module over a polynomial subring K[y1, ..., yn], There is a
nonzero element s in A such that Bs is a finite module over the polynomial ring As[y1, ..., yn].

(5.1.16) restriction of scalars resscal

### check Chapter 6###

If A
ρ−→ B is a ring homomorphism, a B-module N can be made into an A-module by restriction of

scalars, scalar multiplication by an element a of A being defined by the formula

(5.1.17) restrscalan = ρ(a)n

It is customary to denote a module and the one obtained by restriction of scalars by the same symbol. But if it
seems necessary in order to avoid confusion, we may denote a B-module N and the A-module obtained from
it by restriction of scalars by BN and AN , respectively.

(5.1.18) localringslocal rings

A local ring is a noetherian ring that contains just one maximal ideal. We make a few general comments
about local rings here though we will be interested mainly in some special ones, the discrete valuation rings
that are discussed below.

Let R be a local ring with maximal ideal M . The quotient R/M = k is a field that is called the residue
field of R. . In most of the cases we study, the residue field k will be the field of complex numbers.

An element of R that isn’t in M isn’t in any maximal ideal, so it is a unit.

The Nakayama Lemma 4.1.3 has a useful version for local rings:
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5.1.19. Local Nakayama Lemma.local-
nakayama

Let R be a local ring with maximal ideal M and residue field k. Let V be
a finite R-module, and let V be the quotient V/MV , which an also be written as the tensor product V ⊗A k.
If V = 0, then V = 0.

proof. If V = 0, then V = MV . The usual Nakayama Lemma tells us that M contains an element z such that
1−z annihilates V . Then 1−z isn’t in M , so it is a unit. A unit annihilates V , and therefore V = 0. �

5.2 Valuations
dvr A local domain R with maximal ideal M has dimension one if (0) and M are the only prime ideals of R,

and (0) 6= M . In this section, we describe the normal local domains of dimension one. They are the discrete
valuation rings that are defined below.

Let K be a field. A discrete valuation v on K is a surjective homomorphism

(5.2.1) K×
v−→ Z+dval

from the multiplicative group of nonzero elements of K to the additive group of integers such that, if a, b are
elements of K and if a, b and a+b aren’t zero, then

• v(a+b) ≥ min{v(a), v(b)}.

The word “discrete” refers to the fact that Z+ has the discrete topology. Other valuations exist. They
are interesting, but less important, and we won’t use them. To simplify terminology, we refer to a discrete
valuation simply as a valuation.

Let k be a positive integer. If v is a valuation and if v(a) = k, then k is called the order of zero of a, and if
v(a) = −k, then k is called the order of pole of a , with respect to the valuation.

5.2.2. Lemma.valczero Let v be a valuation on a field K that contains the complex numbers. Every nonzero complex
number has value zero.

proof. This is true because C contains n th roots. If γ is an n th root of a nonzero complex number c, then
because v is a homomorphism, v(γ) = v(c)/n. The only integer that is divisible by every positive integer n is
zero. �

The valuation ring R associated to a valuation v on a field K is the subring of elements of K with non-
negative values, together with zero:

(5.2.3) R = {a∈K×| v(a)≥0} ∪ {0}.valnring

Valuation rings are usually called “discrete valuation rings”, but since we have dropped the word discrete from
the valuation, we drop it from the valuation ring too.

5.2.4. Proposition.valsinCt Valuations of the field C(t) of rational functions in one variable correspond bijectively
to points of the projective line P1

t . The valuation ring that corresponds to a point p 6= ∞ is the local ring of
the polynomial ring C[t] at p.

beginning of the proof. Let K denote the field C(t), and let a be a complex number. To define the valuation
v that corresponds to the point p : t = a of P1, we write a nonzero polynomial f as (t − a)kh, where t − a
doesn’t divide h, and we define, v(f) = k. Then we define v(f/g) = v(f)− v(g). You will be able to check
that with this definition, v becomes a valuation whose valuation ring is the algebra of regular functions at p
(2.7.1). This algebra is called the local ring at p (see (5.2.8) below). The valuation that corresponds to the
point at infinity of P1 is obtained by working with t−1 in place of t.

The proof that these are all of the valuations of C(t) will be given at the end of the section.

107



5.2.5. Proposition. idealsin-
valring

Let v be a valuation on a field K, let R be its valuation ring, and let x be a nonzero
element of K with value v(x) = 1.
(i) The ring R is a normal local domain of dimension one. Its maximal ideal M is the principal ideal xR. The
elements of M are the elements of K with positive value, together with zero:

M = {a ∈ K× | v(a) > 0} ∪ {0}

(ii) The units of R are the elements of K× with value zero. Every element z of the multiplicative group of K×

has the form z = xku, where u is a unit and k = v(z) can be any integer.
(iii) The proper R-submodules of K are the sets xkR, where k is a positive or negative integer. The set xkR
consists of zero and the elements of K× with value ≥ k. The nonzero ideals of R are the principal ideals xkR
with k ≥ 0. They are the powers of the maximal ideal.
(iv) There is no ring properly between R and K: If R′ is a ring and if R ⊂ R′ ⊂ K, then either R = R′ or
R′ = K.

proof. We prove (i) last.

(ii) Since v is a homomorphism, v(u−1) = − v(u). So u is a unit of R, i.e., u and u−1 are both in R, if and
only if v(u) = 0 . If z is a nonzero element of K with v(z) = k, then u = x−kz has value zero, so it is a unit,
and z = xku.

(iii) TheR-module xkR consists of the elements ofK of value at least k. Suppose that a nonzeroR-submodule
N of K contains an element z with value k. Then z = xku, where u is a unit, and therefore N contains xk,
and xkR ⊂ N . If k is the smallest integer such that N contains an element z with value k, then N = xkR. If
there is no minimum value of the elements of N , then N contains xkR for every k, and N = K.

(iv) This follows from (iii). The ring R′ will be a nonzero R-submodule of K. since R′ 6= K, R′ = xkR
for some k, and if R′ contains R, k ≤ 0. If k < 0 then xkR isn’t closed under multiplication. So k = 0 and
R′ = R.

(i) First, R is noetherian because (iii) tells us that it is a principal ideal domain, and it follows from (ii) that
the only prime ideals of R are {0} and M = xR, where x is an element with value 1. So R is a local ring
of dimension 1. If the normalization of R were larger than R, then according to (iv), it would be equal to K.
Then x−1 would be integral over R. It would satisfy a polynomial relation x−r + a1x

−(r−1) + · · ·+ ar = 0
with ai in R. When one multiplies this relation by xr, one sees that 1 would be a multiple of x. Then x would
be a unit, which it is not. �

5.2.6. Theorem. character-
izedvr(i) A local domain whose maximal ideal is a nonzero principal ideal is a valuation ring.

(ii) Every normal local domain of dimension 1 is a valuation ring.

proof. (i) Let R be a local domain whose maximal ideal M is a nonzero principal ideal, say M = xR, with
x 6= 0, and let y be a nonzero element of R. The integers k such that xk divides y are bounded (4.1.6). Let
xk be the largest power that divides y. Then y = uxk, where k ≥ 0 and u isn’t in M . It is a unit. Then any
nonzero element z of the fraction fieldK ofR will have the form z = uxr where u is a unit and r is an integer,
possibly negative. This is shown by writing the numerator and denominator of a fraction in such a form and
dividing.

The valuation whose valuation ring is R is defined by v(z) = r when z = uxr as above. If zi = uix
ri ,

i = 1, 2, where ui are units and r1 ≤ r2, then z1 + z2 = αxr1 , where α = u1 + u2x
r2−r1 is an element of

R. Therefore v(z1 + z2) ≥ r1 = min{v(z1), v(z2)}. We also have v(z1z2) = v(z1) + v(z2). Thus v is a
surjective homomorphism. The requirements for a valuation are satisfied.

(ii) The fact that a valuation ring is a normal, one-dimensional local ring is Proposition 5.2.5 (i). We show that
a normal local domain R of dimension 1 is a valuation ring by showing that its maximal ideal is a principal
ideal. The proof is tricky.

Let z be a nonzero element of M . Because R is a local ring of dimension 1, M is the only prime ideal
that contains z, so M is the radical of the principal ideal zR, and Mr ⊂ zR if r is large. Let r be the smallest
integer such that Mr ⊂ zR. Then there is an element y in Mr−1 that isn’t in zR, but such that yM ⊂ zR.
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We restate this by saying that w = y/z isn’t in R, but wM ⊂ R. Since M is an ideal, multiplication by an
element of R carries wM to wM . So wM is an ideal of R. Since M is the maximal ideal of the local ring R,
either wM ⊂ M , or wM = R. If wM ⊂ M , the lemma below shows that w is integral over R. This can’t
happen because R is normal and w isn’t in R. Therefore wM = R and M = w−1R. This implies that w−1 is
in R and that M is a principal ideal. �

5.2.7. Lemma.betainte-
gral

Let I be a nonzero ideal of a noetherian domain A, and let B be a domain that contains A.
An element w of B such that wI ⊂ I is integral over A.

proof. This is the Nakayama Lemma once more. Because A is noetherian, I is finitely generated. Let v =
(v1, ..., vn)t be a vector whose entries generate I . The hypothesis wI ⊂ I allows us to write wvi =

∑
pijvj

with pij in A, or in matrix notation, wv = Pv. So w is an eigenvalue of P . If p(t) denotes the characteristic
polynomial of P , p(w)v = 0. Since I 6= 0, at least one vi is nonzero. Since A is a domain, p(w)vi = 0
implies that p(w) = 0. The characteristic polynomial is a monic polynomial with coefficients in A, so w is
integral over A. �

(5.2.8)local-
ringatp

the local ring at a point

Let m be the maximal ideal at a point p of an affine variety X = SpecA, and let S be the complement of
m in A. This is a multiplicative system, and the prime ideals P of the localization AS−1 are extensions of the
prime ideals Q of A that are contained in m: P = QS−1 (5.1.13). Thus AS−1 is a local ring whose maximal
ideal is mS−1. This ring is called the local ring of A at p, and is often denoted by Ap.

Any finite set α1, ..., αk of elements of the local ring Ap at p will be contained in a simple localization As,
for some s in S. So Ap will be in the coordinate algebra of some affine open neighborhood Xs of p.

For example, let X = SpecA be the affine line, A = C[t], and let p be the point t = 0. The local ring Ap
is the ring whose elements are fractions f(t)/g(t) with g(0) 6= 0.

5.2.9. Lemma.ineverylo-
calring

A rational function α on a variety X is regular on X if it is in the local ring of X at every
point p.

This is true because a function α is in the local ring at p if and only if it is in the coordinate algebra of some
affine neighborhood of p. �

5.2.10. Corollary.intloc Let X = SpecA be an affine variety.
(i) The coordinate algebra A is the intersection of the local rings Ap at points of X .

A =
⋂
p∈X

Apintersect-
codi-

monea-
gain (ii) The coordinate algebra A is normal if and only if all of its local rings Ap are normal.

See Lemma 4.3.3 for (ii). �

5.2.11. Note.local (about the overused word local) A property is true locally on a topological space X if every
point p of X has an open neighborhood U such that the property is true on U .

In these notes, the words localize and localization refer to the process of adjoining inverses. The localiza-
tions Xs of an affine variety X = SpecA form a basis for the topology on X . So if some property is true
locally on X , one can cover X by localizations on which the property is true. There will be elements s1, ..., sk
of A that generate the unit ideal, such that the property is true on each of the localizations Xsi .

An A-module M is locally free if there are elements s1, ..., sk that generate the unit ideal of A, such that
Msi is a free Asi -module for each i. The free modules Msi will have the same rank. That rank is the rank of
the locally free A-module M .

An ideal I of A is locally principal if there are elements si that generate the unit ideal, such that, for every
i, Isi is a principal ideal of Asi . A locally principal ideal is a locally free module of rank one.

�

5.2.12. Corollary.gener-
ateMinloc

Let M be a finite module over a finite-type domain A. If for some point p of X = SpecA
the localized module Mp (5.1) is a free module, there is an element s not in mp such that Ms is free.
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proof. This is an example of the general principle (5.1.15). �

We finish the proof of Proposition 5.2.4 now, by showing that every valuation v of the function field
K = C(t) of P1 corresponds to a point of P1.

Let R be the valuation ring of v. If v(t) < 0, we replace t by t−1. So we may assume that v(t) ≥ 0. Then
t is an element of R, and therefore C[t] ⊂ R. The maximal ideal M of R isn’t zero. It contains a nonzero
element of K, a fraction f/g of polynomials in t. The denominator g is in R, so the ideal M also contains the
nonzero polynomial f . Since M is a prime ideal, it contains a monic irreducible factor of f , which will have
the form t− a for some complex number a. When c 6= a, then the scalar c− a isn’t in M , so t− c won’t be in
M . Since R is a local ring, t− c is a unit of R for all c 6= a. The localization R0 of C[t] at the point t = a is a
valuation ring that is contained in the valuation ring R (5.2.4). There is no ring properly containing R0 except
K, so R0 = R. �

5.3 Smooth Curves
smaf-
fcurve

A curve is a variety of dimension 1. The proper closed subsets of a curve are finite.

5.3.1. Definition.
smoothtwo

A point p of a curve X is a smooth point if the local ring at p is a valuation ring. Otherwise,
p is a singular point. A curve X is smooth if all of its points are smooth.

Let p be a smooth point of a curve X , and let vp be the corresponding valuation. As with any valuation,
we say that a rational function α on X has a zero of order k > 0 at p if vp(α) = k, and that it has a pole of
order k at p if vp(α) = −k.

5.3.2. Lemma. smptsopen(i) An affine curve X is smooth if and only if its coordinate algebra is a normal domain.
(ii) A curve has finitely many singular points.
(iii) The normalization X# of a curve X is a smooth curve, and the (finite) morphism X# → X becomes an
isomorphism when singular points of X and their inverse images are deleted.

proof. (i) This follows from Theorem 5.2.6 and Proposition 4.3.3.

(ii),(iii) Any nonempty open subset of a curve X will be the complement of a finite set, so we may replace X
by an affine open subset, say SpecA. The normalization A# of A will be a finite A-module, and therefore
a finite-type algebra with the same fraction field as A, and SpecA# will be a smooth curve. Let α1, ..., αk
be generators for the finite A-module A#. They are elements of the fraction field K, and can be written as
fractions αi = ai/s for some s inA. The localizationsAs andA#

s are equal, so the open subsetXs = SpecAs
of X will be smooth. �

5.3.3. Proposition.
pointsofcurve

LetX be a smooth curve with function fieldK. Every point of Pn with values inK defines
a morphism X → Pn.

proof. Let vp denote the valuation that corresponds to a point p of X . A point (α0, ..., αn) of Pn with values
in K determines a morphism X → Pn if and only if, for every point p of X , there is an index j such that the
functions αi/αj are regular at p for all i = 0, ..., n (3.4.12). This will be true when j is chosen so that the
order of zero vp(αj) of αj at p is the minimal integer among the vp(αi), for the indices i such that αi 6= 0. �

As the next example shows, this proposition cannot be extended to varieties X of dimension greater than
one.

5.3.4. Example. nomaptopLet Y be the complement of the origin in the affine plane X = SpecC[x, y], and let
K = C(x, y) be the function field of X . The vector (x, y) defines a point of P1

x,y with values in K. This point
can be written as (1, y/x) and also as (x/y, 1). So (x, y) defines a morphism to P1 wherever at least one of
the functions x/y or y/x is regular, which is true at all points of Y . To extend the morphism to X , one would
need an element λ in K such that λx and λy are both regular at (0, 0) and not both zero there. There is no
such element, so the morphism doesn’t extend to X . �

5.3.5. Proposition. ptsvalsLet X = SpecA be a smooth affine curve with function field K. The local rings of X are
the valuation rings of K that contain A. Therefore the maximal ideals of A are locally principal.
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proof. SinceA is a normal domain of dimension one, its local rings are valuation rings that containA (Theorem
5.2.6). Let R be a valuation ring of K that contains A, let v be the associated valuation, and let M be the
maximal ideal of R. The intersection M ∩ A is a prime ideal of A. Since A has dimension 1, the zero ideal
is the only prime ideal of A that isn’t a maximal ideal. We can clear the denominator of an element of M ,
multiplying by an element of R, to obtain an element of A while staying in M . So M ∩A isn’t the zero ideal.
It is the maximal ideal mp of A at a point p of X . The elements of A that aren’t in mp aren’t in M either, so
they are invertible in R. So the local ring Ap at p, which is a valuation ring, is contained in R, and therefore it
is equal to R (5.2.5) (iii). �

5.3.6. Proposition.
pointsvalns

Let X ′ and X be smooth curves with the same function field K.

(i) A morphism X ′
f−→ X that is the identity on the function field K maps X ′ isomorphically to an open

subvariety of X .
(ii) If X is projective, X ′ is isomorphic to an open subvariety of X .
(iii) If X ′ and X are both projective, they are isomorphic.
(iv) If X is projective, every valuation ring of K is the local ring at a point of X .

proof. (i) Let p be the image in X of a point q of X ′, let U be an affine open neighborhood of p, and let V
be an affine open neighborhood of q in X ′ that is contained in the inverse image of U . Say U = SpecA and
V = SpecB. The morphism f gives us a homomorphismA→ B, and since q maps to p, this homomorphism
extends to an inclusion of local rings Ap ⊂ Bq . They are valuation rings with the same field of fractions, so
they are equal. Since B is a finite-type algebra, there is an element s in A, with s(q) 6= 0, such that As = Bs.
Then the open subsets SpecAs of X and SpecBs of X ′ are the same. Since the point q is arbitrary, X ′ is
covered by open subvarieties of X . So X ′ is an open subvariety of X .

(ii) The projective embedding X ⊂ Pn is defined by a point (α0, ..., αn) with values in K, and that same point
defines a morphism X ′ → Pn. If f(x0, ..., xn) = 0 is a set of defining equations of X in Pn, then f(α) = 0
in K, and therefore f vanishes on X ′ too. So the image of X ′ is contained in the zero locus of f , which is X .
Then (i) shows that X ′ is an open subvariety of X .

(iii) This follows from (ii).

(iv) The local rings of X are normal and of dimension one. They are valuation rings of K. We prove the
converse. Let β = (β0, ..., βn) be the point with values in K that defines the projective embedding of X ,
let R be a valuation ring of K, and let v be the corresponding valuation. We order the coordinates so that
v(β0) is minimal. Then the ratios γj = βj/β0 will be in R. The coordinate algebra A0 of the affine variety
X0 = X ∩ U0 is generated by the coordinate functions γj , so A0 ⊂ R. Prposition 5.3.5 tells us that R is the
local ring of X0 at some point. �

5.3.7. Proposition.truncate-
curve

Let X = SpecA be an affine curve, let m and v be the maximal ideal and valuation,
respectively, at a smooth point p of X , and let t be an element of A with value v(t) = 1. The valuation ring R
of v is the local ring of A at p. Let M be its maximal ideal.
(i) The power mk consists of the elements of A whose values are at least k. If I is an ideal of A whose radical
is m, then I = mk for some k > 0.
(ii) The algebras A/mn and R/Mn are isomorphic to the truncated polynomial ring C[t]/(tn).
(iii) If X is a smooth affine curve, every nonzero ideal I of A is a product me11 · · ·m

ek
k of powers of maximal

ideals.

proof. (i) The nonzero ideals of R are powers of M . So Mk is the set of eleents of R with value ≥ k.
Let I be an ideal of A whose radical is m, and let k be the minimal value v(x) of the nonzero elements x

of I . We will show that I is the set of all elements of A with value ≥ k, i.e., that I = Mk ∩ A. Since we can
apply the same reasoning to mk, it will follow that I = mk.

We must show that if an element y if A has value v(y) ≥ k, then it is in I . Let x be an element of I with
value k. Then x divides y in R, say y/x = u, with u in R. The element u will be a fraction a/s with s and a
in A, s not in m, and sy = ax. The element s will vanish at a finite set of points q1, ..., qr, but not at p. We
choose an element z of A that vanishes at p but not at any of the points q1, ..., qr. Then z is in m, and since the
radical of I is m, some power of z is in I . We replace z by that power, so that z is in I . By our choice, z and
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s have no common zeros in X . They generate the unit ideal of A, say 1 = cs + dz with c and d in A. Then
y = csy + dzy = cax+ dzy. Since x and z are in I , so is y.

(ii) Since p is a smooth point, the local ring of A at p is the valuation ring R. Let P be the subring C[t] of A,
and let P k = P/(t)k, Ak = A/mk, and Rk = R/Mk. Since m isn’t the zero ideal, mk−1 < mk (Corollary
4.1.6). It follows from (i) that tmk−1 = mk. Therefore mk−1/mk has C-dimension 1. The map labelled gk−1

in the diagram below is bijective.

0 −−−−→ (tk−1)/(tk) −−−−→ P k −−−−→ P k−1 −−−−→ 0

gk−1

y fk

y fk−1

y
0 −−−−→ mk−1/mk −−−−→ Ak −−−−→ Ak−1 −−−−→ 0

By induction on k, we may assume that the map labelled fk−1 is bijective, and then fk is bijective. The same
argument shows that P k and Rk are isomorphic

(iii) Let I be a nonzero ideal of A. Because X has dimension one, the locus of zeros of I is a finite set
{p1, ..., pk}. Therefore the radical of I is the intersection m1 ∩ · · · ∩ mk of the maximal ideals mj at pj ,
which, by the Chinese Remainder Theorem, is the product ideal m1 · · ·mk, Moreover, I contains a power of
that product, say I ⊃ mN1 · · ·mNk . Let J = mN1 · · ·mNk . The quotient algebraA/J is the productB1×· · ·×Bk,
withBj = A/mNj , andA/I is a quotient ofA/J . Proposition 2.1.7 tells us thatA/I is a productA1×· · ·×Ak,
where Bj is a quotient of Bj . By part (ii), each Bj is a truncated polynomial ring. So the quotients Aj must
also be truncated polynomial rings. Then the kernel I of the map A→ A1×· · ·×Ak is a product of powers of
the maximal ideals mj . �

(5.3.8) jacobtwoisolated points

5.3.9. Proposition. noisolat-
edpt

In the classical topology, a curve, smooth or not, contains no isolated point. .

This was proved before for plane curves (Proposition 1.3.18).

5.3.10. Lemma. isolptofy
(i) Let Y ′ be an open subvariety of a variety Y . A point q of Y ′ is an isolated point of Y if and only if it is an
isolated point of Y ′.

(ii) Let Y ′ u′−→ Y be a nonconstant morphism of curves, let q′ be a point of Y ′, and let q be its image in Y . If
q is an isolated point of Y , then q′ is an isolated point of Y ′.

proof. (i) A point q of Y is isolated if {q} is an open subset of Y . If {q} is open in Y ′ and Y ′ is open in Y ,
then {q} is open in Y , and if {q} is open in Y , it is open in Y ′.

(ii) Because Y ′ has dimension one, the fibre over q will be a finite set, say {q′} ∪ F , where F is finite. Let
Y ′′ denote the (open) complement Y ′ − F of F in Y ′, and let u′′ be the restriction of u′ to Y ′′. The fibre of
Y ′′ over q is the point q′. If {q} is open in Y , then because u′′ is continuous, {q′} will be open in Y ′′, and
therefore open in Y ′. �

proof of Proposition 5.3.9. Let q be a point of a curve Y . Part (i) of Lemma 5.3.10 allows us to replace Y by
an affine neighborhood of q. Let Y ′ be the normalization of Y . Part (ii) of that lemma allows us to replace Y
by Y ′. So we may assume that Y is a smooth affine curve, say Y = SpecB. We can still replace Y by an
open neighborhood of q, so we may assume that the maximal ideal mq at q is a principal ideal.

Say that B = C[x1, ..., xn]/(f1, ..., fk), that q is the origin (0, ..., 0) in Anx , and that mq is generated by
the residue of a polynomial f0 in B. Then f0, ..., fk generate the maximal ideal M of C[x1, ..., xn] at the
origin, which is also generated by x1, ..., xn. Let’s write fi =

∑n
1 cijxj + O(2), where O(2) denotes an

undetermined polynomial, all of whose terms have degree≥ 2 in x. The coefficient cij is the partial derivative
∂fi
∂xj

, evaluated at q. So if J denotes (k+1)×n Jacobian matrix
(
∂fi
∂xj

)
, then (f0, ..., fk)t = J(x1, ..., xn)t+O(2).

Since f0, ..., fk generate M , there is a matrix P with polynomial entries such that Pf t = xt. Then xt =
PJxt + O(2). If P0 and J0 are the constant terms of P and J , P0J0 will be the identity matrix. So J0 has
rank n.
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Let J ′0 be the matrix obtained by deleting the column with index 0 from J0. This matrix has rank at least
n−1, and we may assume that the submatrix with indices 1 ≤ i, j ≤ n−1 is invertible. The Implicit Function
Theorem says that the equations f1, ..., fn−1 can be solved for the variables x1, ..., xn−1 as analytic functions
of xn, for small xn. The locus Z of zeros of f1, ..., fn−1 is locally homeomorphic to the affine line (1.4.18),
and it contains Y . Since Y has dimension 1, the component of Z that contains q must be equal to Y . So Y is
locally homeomorphic to A1, which has no isolated point. Therefore q isn’t an isolated point of Y . �

5.4 Constructible Sets
construct

In this section, X will denote a noetherian topological space. Every closed subset of X is a finite union
irreducible closed sets (2.2.14).

The intersection L = C∩U of a closed set C and an open set U is called a locally closed set. For example,
open sets and closed sets are locally closed.

5.4.1. Lemma.lclosed-
cond

The following conditions on a subset L of A are equivalent.
• L is locally closed.
• L is a closed subset of an open subset U of X .
• L is an open subset of a closed subset C of X . �

A constructible set is a set that is the union of finitely many locally closed sets.

5.4.2. Examples.constrin-
curve (i) A subset S of a curve X is constructible if and only if it is either a finite set or the complement of a finite

set. Thus S is constructible if and only if it is either closed or open.
(ii) Let C be the line {y = 0} in the affine plane X = SpecC[x, y], let U = X − C be its open complement,
and let p = (0, 0). The union U ∪ {p} is constructible, but not locally closed. �

We will use the following notation: L will denote a locally closed set, C will denote a closed set, and U
willl denote an open set.

5.4.3. Theorem.defloc-
closed

The set S of constructible subsets of a noetherian topological spaceX is the smallest family
of subsets that contains the open sets and is closed under the three operations of finite union, finite intersection,
and complementation.

proof. Let S1 denote the family of subsets obtained from the open sets by the three operations mentioned in
the statement. Open sets are constructible, and using those three operations, one can make any constructible
set from the open sets. So S ⊂ S1. To show that S = S1, we show that the family of constructible sets is closed
under the three operations.

It is obvious that a finite union of constructible sets is constructible. The intersection of two locally closed
sets L1 = C1 ∩ U1 and L2 = C2 ∩ U2 is locally closed because L1 ∩ L2 = (C1 ∩ C2) ∩ (U1 ∩ U2). If
S = L1 ∪ · · · ∪ Lk and S′ = L′1 ∪ · · · ∪ L′r are constructible sets, the intersection S ∩ S′ is the union of the
locally closed intersections (Li ∩ L′j), so it is constructible.

Let S be the constructible set L1 ∪ · · · ∪Lk. Its complement Sc is the intersection of the complements Lci
of Li: Sc = Lc1 ∩ · · · ∩ Lck. We have shown that intersections of constructible sets are constructible. So to
show that the complement Sc is constructible, it suffices to show that the complement of a locally closed set
is constructible. Let L be the locally closed set C ∩ U , and let Cc and U c be the complements of C and U ,
respectively. Then Cc is open and U c is closed. The complement Lc of L is the union Cc∪U c of constructible
sets, so it is constructible. �

5.4.4. Proposition.contain-
sopen

In a noetherian topological space X , every constructible subset is a union L1 ∪ · · · ∪Lk
of locally closed sets: Li = Ci ∩ Ui, in which the closed sets Ci are irreducible and distinct.

proof. Let L = C ∩ U be a locally closed set, and let C = C1 ∪ · · · ∪ Cr be the decomposition of C into
irreducible components. Then L = (C1 ∩U)∪ · · · ∪ (Cr ∩U), which is constructible. So every constructible
set S is a union of locally closed sets Li = Ci ∩ Ui in which the Ci are irreducible. Next, suppose that two of
the irreducible closed sets are equal, say C1 = C2. Then L1 ∪L2 = (C1 ∩U1)∪ (C1 ∩U2) = C1 ∩ (U1 ∪U2)
is locally closed. So we can find an expression in which the closed sets are also distinct. �
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5.4.5. Lemma. sinx
(i) Let X1 be a closed subset of a variety X , and let X2 be its open complement. A subset S of X is con-
structible if and only if S ∩X1 and S ∩X2 are constructible.
(ii) Let X ′ be an open or a closed subvariety of a variety X .

a) If S is a constructible subset of X , then S′ = S ∩X ′ is a constructible subset of X ′.
b) A subset S′ of X ′ is a constructible subset of X ′ if and onlt if it is a constructible subset of X .

proof. (i) This follows from Theorem 5.4.3.

(iia) It suffices to prove that the intersection L′ = L ∩X ′ of a locally closed subset L of X is a locally closed
subset of X ′. If L = C ∩ U , then C ′ = C ∩ X ′ is closed in X ′, and U ′ = U ∩ X ′ is open in X ′. So
L′ = C ′ ∩ U ′ is locally closed.

(iib) It follows from (iia) that if a subset S′ of X ′ is contructible in X , then it is constructible in X ′. To
show that a constructible subset of X ′ is contructible in X , it suffices to show that a locally closed subset
L′ = C ′ ∩ U ′ of X ′ is locally closed in X . If X ′ is closed in X , then C ′ is closed in X , and U ′ = X ∩ U for
some open subset U of X . Since C ′ ⊂ X ′, L′ = C ′ ∩ U ′ = C ′ ∩X ′ ∩ U = C ′ ∩ U , which is locally closed
in X .

Suppose that X ′ is open in X . Then U ′ is open in X . If C is the closure of C ′ in X , then L′ = C ∩ U ′ =
C ∩X ′ ∩ U ′ = C ′ ∩ U ′. Again, L′ is locally closed in X . �

The next theorem illustrates a general fact, that sets arising in algebraic geometry are often constructible.

5.4.6. Theorem. imagecon-
str

Let Y
f−→ X be a morphism of varieties. The inverse image of a constructible subset of X

is a constructible subset of Y . The image of a constructible subset of Y is a constructible subset of X .

proof. The fact that a morphism is continuous implies that the inverse image of a constructible set is con-
structible. To prove that the image of a constructible set is constructible, one keeps reducing the problem until
there is nothing is left.

Let S be a constructible subset of Y . Lemma 5.4.5 and Noetherian induction allow us to assume that
the theorem is true when S is contained in a proper closed subvariety of Y , and also when its image f(S) is
contained in a proper closed subvariety of X .

Suppose that X is the union a proper closed subvariety X1 and its open complement X2. The inverse
image Y1 = f−1(X1) will be closed in Y , and its open complement will be the inverse image Y2 = f−1(X2).
A constructible subset S of Y is the union of the constructible sets S1 = S ∩ Y1 and S2 = S ∩ Y2, and
f(S) = f(S1)∪ f(S2). It suffices to show that f(S1) and f(S2) are constructible, and to show this, it suffices
to show that f(Si) is a constructible subset of Xi for i = 1, 2 (5.4.5) (iib). Moreover, noetherian induction
applies to X1. So we need only show that f(S2) is a constructible subset of X2. This means that we can
replace X by X2, which is an arbitrary nonempty open subset, and Y by its inverse image.

Next, suppose that Y is the union of a proper closed subvariety Y1 and its open complement Y2, and let
Si = S ∩ Yi. It suffices to show that Si is a constructible subset of Yi, i = 1, 2, and induction applies to Y1.
So we may replace Y by any nonempty open subvariety.

Summing up, we can replace X by any nonempty open subset X ′, and Y by any nonempty open subset
Y ′ that is contained in the inverse image of X ′. We can do this finitely often.

Since S is a finite union of locally closed sets, it suffices to treat the case that S is locally closed. Moreover,
we may suppose that S = C ∩ U , where C is irreducible. Then Y is the union of the closed subset C = Y1

and its complement Y2. Since S ∩ Y2 = ∅, it suffices to treat Y1. We may replace Y by C. So we may assume
that S = Y ∩ U = U , and we may replace Y by U . We are thus reduced to the case that S = Y .

We may still replace X and Y by nonempty open subsets, so we may assume that they are affine, say
Y = SpecB and X = SpecA. Then the morphism Y → X corresponds to an algebra homomorphism
A

ϕ−→ B. If the kernel of ϕ were nonzero, the image of Y would be contained in a proper closed subset of X
to which induction would apply. So we may assume that ϕ is injective.

Proposition 4.2.10 tells us that, for suitable nonzero s in A, Bs will be a finite module over a polynomial
subring As[y1, ..., yk]. Then the maps Ys → SpecAs[y] and SpecAs[y] → Xs are both surjective, so Ys
maps surjectively to Xs. When we replace X and Y by Xs and Ys, the map Y → X becomes surjective, and
we are done. �
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5.5 Closed Sets
us-

ingcurves Limits of sequences are often used to analyze subsets of a topological space. In the classical topology, a subset
Y of Cn is closed if, whenever a sequence of points in Y has a limit in Cn, the limit is in Y . In algebraic
geometry curves can be used as substitutes.

We use the following notation:

(5.5.1)Cwith-
point

C is a smooth affine curve, q is a point of C, and C ′ is the complement of q in C.

The closure of C ′ will be C, and we think of q as a limit point. Theorem 5.5.3, which is below, asserts that a
constructible subset of a variety is closed if it contains all such limit points.

The next theorem tells us that there are enough curves to do the job.

5.5.2. Theorem.
enoughcurves

(enough curves) Let Y be a constructible subset of a variety X , and let p be a point of its

closure Y . There exists a morphism C
f−→ X from a smooth affine curve to X , and a point q of C with

f(q) = p, such that the image of C ′ = C − {q} is contained in Y .

proof. We use Krull’s Theorem to slice Y down to dimension 1. If X = p, then Y = p too. In this case, we
may take for f the constant morphism from any curve C to p. So we may assume that X has dimension at
least one. Next, we may replace X by an affine open subset X ′ that contains p, and Y by Y ′ = Y ∩X ′. The
closure Y

′
of Y ′ in X ′ will be the intersection Y ∩ X ′, and it will contain p. So we may assume that X is

affine, say X = SpecA.
Since Y is constructible, it is a union L1 ∪ · · · ∪ Lk of locally closed sets, say Li = Zi ∩ Ui where Zi are

irreducible closed sets and Ui are open sets. (We use Zi in place of Ci here to avoid confusion with a curve.)
The closure of Y is the union Z1 ∪ · · · ∪ Zk, and p will be in at least one of those closed sets, say p ∈ Zi. We
replace X by Zi and Y by Li. This reduces us to the case that Y is a nonempty open subset of X .

Suppose that the dimension n of X is at least two. Let D = X − Y be the (closed) complement of the
open set Y . The components of D have dimension at most n − 1. We choose an element α of the coordinate
algebra A of X that is zero at p and isn’t identically zero on any component of D except p itself, if p happens
to be a component. Krull’s Theorem tells us that every component of the zero locus of α has dimension n− 1,
and at least one of those components, call it V , contains p. If V were contained in D, it would be a component
of D because dimV = n − 1 and dimD ≤ n − 1. By our choice of α, this isn’t the case. So V 6⊂ D, and
therefore V ∩ Y 6= ∅. Because V is irreducible and Y is open, W = V ∩ Y is a dense open subset of V , and p
is a point of its closure V . We replace X by V and Y by W . The dimension of X is thereby reduced to n− 1.

Thus it suffices to treat the case that X has dimension one. In this case, X will be a curve that contains p
and Y will be a nonempty open subset of X . The normalization of X will be a smooth curve x1 that comes
with an integral and therefore surjective morphism to Y . Finitely many points of X1 will map to p. We choose
for C an affine open subvariety of X1 that contains just one of those points, and we call that point q. �

5.5.3. Theorem (curve criterion for a closed set)closed-
crittwo

Let Y be a constructible subset of a varietyX . The following
conditions are equivalent:
(a) Y is closed.

(b) For every morphism C
f−→ X from a smooth affine curve to X , the inverse image f−1Y is closed in C.

(c) Let q be a point of a smooth affine curve C, let C ′ = C−{q}, and let C
f−→ X be a morphism. If

f(C ′) ⊂ Y , then f(C) ⊂ Y .

The hypothesis that Y be constructible is necessary. For example, in the affine line X , the set Z of points
with integer coordinates isn’t constructible, but it satisfies the curve criterion. Any morphism C ′ → X whose
image is in Z will map C ′ to a single point, and therefore it will extend to C.
proof. The implications (a) ⇒ (b) ⇒ (c) are obvious. We prove the contrapositive of the implication (c) ⇒
(a). Suppose that Y isn’t closed. We choose a point p of the closure Y that isn’t in Y , and we apply Theorem

5.5.2. There exists a morphism C
f−→ X from a smooth curve to X and a point q of C such that f(q) = p

and f(C ′) ⊂ Y . Since q 6∈ Y , this morphism shows that (c) doesn’t hold either. �
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5.5.4. Theorem. class-
closed

A constructible subset Y of a variety X is closed in the Zariski topology if and only if it is
closed in the classical topology.

proof. A Zariski closed set is closed in the classical topology because the classical topology is finer than the
Zariski topology.

Suppose that Y is closed in the classical topology. Let q be a point of the Zariski closure Y of Y , and

let C
f−→ X be a morphism from a smooth affine curve to X that maps the complement C ′ of q to Y . Let

Y1 = f−1Y . Then Y1 contains C ′, so Y1 is either C ′ or C. A morphism is a continuous map in the classical
topology. Since Y is closed in the classical topology, Y1 is closed in C. If Y1 were equal to C ′, then {q} would
be open as well as closed. It would be an isolated point of C. Since a curve contains no isolated point, the
closure is C. Therefore the curve criterion (5.5.3 ) is satisfied, and Y is closed in the Zariski topology. �

5.6 Fibred Products
fibprod

(5.6.1) the mapping property of a product mapprop-
prod

The productX×Y of two setsX and Y has a mapping property that is easy to verify: Maps from a set T to

the product set X×Y , correspond bijectively to pairs of maps T
f−→ X and T

g−→ Y . The map T
(f,g)−→ X×Y

defined by the pair of maps f, g sends a point t to the point pair (f(t), g(t)).

Let X×Y π1−→ X and X×Y π2−→ Y denote the projection maps. If T h−→ X×Y is a map to the product,
the corresponding maps to X and Y are the compositions with the projections: T π1h−→ X and T π2h−→ Y :

The analogous statements are true for morphisms of varieties.

5.6.2. Proposition. mapprop-
var

Let X and Y be varieties, and let X×Y be the product variety.

(i) The projections X×Y π1−→ X and X×Y π2−→ Y are morphisms.
(ii) Morphisms from a variety T to the product variety X×Y correspond bijectively to pairs of morphisms
T → X and T → Y , the correspondence being the same as for maps of sets.

(iii) If X
f−→ Z and Y

g−→ W are morphisms of varieties, the product map X×Y f×g−→ Z×W defined by
[f×g](x, y) = (f(x), g(y)) is a morphism. �

(5.6.3) fibred products of sets fibprod-
sets

If X
f−→ Z and Y

g−→ Z are maps of sets, the fibred product X×ZY is the subset of the product X×Y
consisting of pairs of points x, y such that f(x) = g(y). It fits into a diagram

(5.6.4)

X×ZY
πZ−−−−→ Y

πX

y g

y
X

f−−−−→ Z

fproddiagr

in which π1 and π2 are the projections. Many important subsets of a product can be described as fibred
products. If a map Y → Z is given, and if p→ Z is the inclusion of a point into Z, then p×ZY is the fibre of
Y over p. The diagonal in X×X is the fibred product X×XX .

The reason for the term “fibred product” is that the fibre of X×ZY over a point x of X maps bijectively
to the fibre of Y over the image z = f(x), and that the fibre of X×ZY over a point y of Y maps bijectively
to the fibre of X over the image g(y).

(5.6.5) fibred products of varieties fibprodvar

Since we are working with varieties, not schemes, we have a small problem: A fibred product of varieties
will be a scheme, but it needn’t be a variety.
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5.6.6. Example.examplefi-
bredprod-

uct

Let X = SpecC[x], Y = SpecC[y] and Z = SpecC[z] be affine lines, let X
f−→ Z and

X
g−→ Z be the maps defined by z = x2 and z = y2, respectively. The fibred product X×ZY is the closed

subset of the affine x, y-plane consisting of points (x, y) such that x2 = y2. It is the union of the two lines
x = y and x = −y. �

The next proposition will be enough for our purposes.

5.6.7. Proposition.fibprod-
closed

Let X
f−→ Z and Y

g−→ Z be morphisms of varieties. The fibred product X×ZY is a
closed subset of the product variety X×Y .

5.6.8. Lemma.equalizer Let u and v be morphisms of varieties X → Z. The subset W of points x of X such that
u(x) = v(x) is closed in X .

proof. In X×Z, let W ′ be the intersection of the graphs of u and v: W ′ = Γu ∩ Γv . A point (x, z) is in W ′

if ux = z and vx = z. This is an intersection of closed sets, so it is closed in Γu (and in Γv). The projection
Γu → X , which is an isomorphism, carries W ′ to W , so W is closed in X .

poof of Proposition 5.6.7. The graph Γf of a morphism X
f−→ Z of varieties is a closed subvariety of X×Z

isomorphic to X (Proposition 3.4.28). With reference to Diagram 5.6.4, X×Z Y is the subset of the product
X×Y of points at which the maps fπX and gπY to Z are equal. The lemma shows that it is closed in X×Y .
�

5.7 Projective Varieties are Proper
proper

As has been noted before, an important property of projective space is that, in the classical topology, it is a
compact space. A variety isn’t compact in the Zariski topology unless it is a single point. However, in the
Zariski topology, projective varieties have a property closely related to compactness: They are proper.

Before defining the concept of a proper variety, we explain an analogous property of compact spaces.

5.7.1. Proposition.proper-
compact

Let X be a compact space, let Z be a Hausdorff space, and let V be a closed subset of
Z×X . The image of V via projection to Z is a closed subset of Z.

proof. Let W be the image of V in Z. We show that if a sequence of points zi of W has a limit z in Z, then
z is in W . For each i, we choose a point pi of V that lies over zi. So pi is a pair (zi, xi), xi being a point
of X . Since X is compact, there is a subsequence of the sequence xi that has a limit x in X . Passing to
subsequences, we may suppose that xi has limit x. Then pi will have the limit p = (z, x). Since V is closed,
p is in V , and therefore z is in its image W . �

5.7.2. Definition.defproper A varietyX is proper if has the following property: Let Z×X be the product with another
variety Z, let π denote the projection Z×X −→ Z, and let V be a closed subvariety of Z×X . The image
W = πZ(V ) is a closed subvariety of Z:

(5.7.3)imclos

V
⊂−−−−→ Z×Xy yπZ

W
⊂−−−−→ Z

If X is proper, then because every closed set is a finite union of closed subvarieties, the image of any closed
subset of Z×X will be ca closed subset of Z,

5.7.4. Proposition.propim-
closed

Let X be a proper variety, let V be a closed subvariety of X , and let X
f−→ Y be a

morphism. The image f(V ) of V is a closed subvariety of Y .

proof. InX×Y , the graph Γf of f is a closed subset isomorphic toX , and via this isomorphism, V corresponds
to a subset V ′ of Γf that is closed in Γf and in X×Y . The points of V ′ sre pairs (x, y) such that x ∈ V and
y = f(x). Since X is proper, the image of V ′ via projection to Y , which is f(V ), is closed. �
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5.7.5. Theorem. pnproperProjective varieties are proper.

This is the most important application of the use of curves to characterize closed sets.
proof. Let X be a projective variety. With notation as in Definition 5.7.2, suppose we are given a closed
subvariety V of the product Z×X . We must show that its image W is a closed subvariety of Z. If the image
is a closed set, it will be irreducible. So it suffices to show that W is closed, and to do this, it suffices to show
that W is closed in the classical topology (Theorem 5.5.4). Theorem 5.4.6 tells us that W is a constructible
set, and since X is closed in projective space, it is compact in the classical topology. Proposition 5.7.1 tells us
that W is closed in the classical topology. �

5.7.6. Note. needcoverOf course, this is an algebraic theorem, and one would prefer an algebraic proof. To make an
algebraic proof, one could attempt to use the curve criterion, proceeding as follows: Given a closed subset V

of Z×X with image W and a point z in the closure of W , one chooses a map C
f−→ Z from an affine curve

C to Z such that f(q) = p and f(C ′) ⊂W . Then one tries to lift this map, defining a morphism C
g−→ Z×X

such that g(C ′) ⊂ V and f = π ◦ g. Since V is closed, it would contain g(q), and therefore f(q) = πg(q)
would be in π(V ) = W . Unfortunately, to find g, it may be necessary to replace C by a curve that covers C.
It isn’t very difficult to make this method work, but it takes longer. That is why we resorted to the classical
topology. �

The next examples show how Theorem 5.7.5 can be used.

5.7.7. Example. properex(singular curves) We parametrize the plane curves of a given degree d. The number of
monomials xi0x

j
1x
k
2 of degree d = i+j+k is the binomial coefficient

(
d+2

2

)
. We order those monomials

arbitrarily, and label them as m0, ...,mr, with r =
(
d+2

2

)
− 1. A homogeneous polynomial of degree d will

be a combination
∑
zimi of monomials with complex coefficients zi, so the homogeneous polynomials f

of degree d in x, taken up to scalar factors, are parametrized by the projective space of dimension r with
coordinates z. Let’s denote that projective space by Z. Points of Z correspond bijectively to divisors of degree
d in the projective plane (1.3.12).

The product variety Z×P2 represents pairs (D, p), where D is a divisor of degree d and p is a point of P2.
A variable homogeneous polynomial of degree d in x will be a bihomogeneous polynomial f(z, x) of degree
1 in z and degree d in x. So the locus Γ: {f(z, x) = 0} in Z × P2 is a closed set. Its points are pairs (D, p)
such that D is the divisor of f and p is a point of D.

Let Σ be the set of pairs (D, p) such that p is a singular point ofD. This is also a closed set. It is defined by
the system of equations f0(z, x) = f1(z, x) = f2(z, x) = 0, where fi are the partial derivatives ∂f

∂xi
. (Euler’s

Formula shows that then f(x, z) = 0.) The partial derivatives fi are bihomogeneous, of degree 1 in z and
degree d−1 in x.

The next proposition isn’t especially easy to prove directly, but the proof becomes easy when one uses the
fact that projective space is proper.

5.7.8. Proposition singclosedThe singular divisors of degree d, the divisors containing at least one singular point, form
a closed subset S of the projective space Z of all divisors of degree d.

proof. The points of S are the images of points of the set Σ via projection to Z. Theorem 5.7.5 tells us that the
image of Σ is closed. �

5.7.9. Example. surface-
line

(surfaces that contain a line) We go back to the discussion of lines in a surface, as in (3.6).
Let S denote the projective space that parametrizes surfaces of degree d in P3, as before.

5.7.10. Proposition sur-
faceswith-
line

In P3, the surfaces of degree d that contain a line form a closed subset of the space S.

proof. Let G be the Grassmanian G(2, 4) of lines in P3, and let Ξ be the subset of G×S of pairs of pairs [`], [S]
such that ` ⊂ S. Lemma 3.6.17 tells us that Ξ is a closed subset of G×S. Therefore its image in S is closed.�

5.8 Fibre Dimension
semicont
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A function Y δ−→ Z from a variety to the integers is constructible if, for every integer n, the set of points of
Y such that δ(p) = n is constructible, and δ is upper semicontinuous if for every n, the set of points such that
δ(p) ≥ n is closed. For brevity, we refer to an upper semicontinuous function as semicontinuous, though the
term is ambiguous. A function might be lower semicontinuous.

A function δ on a curve C is semicontinuous if and only if for every integer n, there is a nonempty open
subset C ′ of C such that δ(p) = n for all points p of C ′ and δ(p) ≥ n for all points not in C ′.

The next curve criterion for semicontinuous functions follows from the criterion for closed sets.

5.8.1. Proposition. (curve criterion for semicontinuity)uppercrit Let Y be a variety. A function Y δ−→ Z is semicon-

tinuous if and only if it is a constructible function, and for every morphism C
f−→ Y from a smooth curve C

to Y , the composition δ ◦ f is a semicontinuous function on C. �

Let Y
f−→ X be a morphism of varieties, let q be a point of Y , and let Yp be the fibre of f over p = f(q).

The fibre dimension δ(q) of f at q is the maximum among the dimensions of the components of the fibre that
contain q.

Note. One could also define the fibre dimension of a point p of X to be the dimension of the fibre over p. This
would be simpler if all components of a fibre have the same dimension. However, it is possible that a fibre
contains components whose dimensions are distinct, and if so, then the fibre dimension defined here is more
precise.

5.8.2. Theorem. (semicontinuity of fibre dimension)uppersemi Let Y u−→ X be a morphism of varieties, and let δ(q)
denote the fibre dimension at a point q of Y .
(i) Suppose that X is a smooth curve, that Y has dimension n, and that u does not map Y to a single point.
Then δ is constant: Every nonempty fibre has constant dimension n− 1.
(ii) Suppose that the image of Y contains a nonempty open subset of X , and let the dimensions of X and Y
be m and n, respectively. There is a nonempty open subset X ′ of X such that δ(q) = n−m for every point q
in the inverse image of X ′.
(iii) δ is a semicontinuous function on Y .

The proof of this theorem is left as a long exercise. When you have done it, you will have understood the
chapter.
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Chapter 6 MODULES

july10
6.1 The Structure Sheaf
6.2 O-Modules
6.3 The Sheaf Property
6.4 Some O-Modules
6.5 Direct Image
6.6 Support
6.7 Twisting
6.8 Proof of Theorem 6.3.2

This chapter explains how modules on a variety are defined. For this, we review a few facts about localiza-
tion. Recall that, if s is a nonzero element of a domain A, the symbol As stands for the localization A[s−1],
and if X = SpecA, then Xs = SpecAs.
• Let X = SpecA be an affine variety. The intersection of two localizations Xs = SpecAs and Xt =
SpecAt is the localization Xst = SpecAst.
• Let W ⊂ V ⊂ U be affine open subsets of a variety X . If V is a localization of U and W is a localization
of V , then W is a localization of U (2.6.2).
• The affine open subsets of a variety X form a basis for the topology on a variety X . The localizations of
an affine variety form a basis for its topology (??).
• If U and V are affine open subsets of X , the open sets W that are localizations of U and localizations of
V , form a basis for the topology on U ∩ V . (2.6.2).

6.1 The Structure Sheaf.
strsh

We introduce two categories associated to a variety X . The first is the category (opens). Its objects are the
open subsets of X , and its morphisms are inclusions: If U and V are open sets and if V ⊂ U , there is a unique
morphism V → U in (opens), and if V 6⊂ U there is no morphism V → U .

We also introduce a subcategory (affines) of the category (opens). Its objects are the affine open subsets
of X , and its morphisms are localizations. A morphism V → U in (opens) is a morphism in (affines) if U is
affine and V is a localization of U , i.e., if V is an open subset of the form Us, where s is a nonzero element of
the coordinate algebra of U .

The structure sheaf OX on a variety X is the functor

(6.1.1)strshdef (affines)◦ OX−→ (algebras)

from affine open sets to algebras, that sends an affine open set U = SpecA to its coordinate algebra. The
coordinate algebra of U is then denoted by OX(U).

As has been noted before, inclusions V → U of affine open subsets needn’t be localizations. We focus
attention on localizations because the relation between the coordinate algebras of an affine variety and a local-
ization is easy to understand. However, the structure sheaf extends with little difficulty to the category (opens),
(See Corollary 6.1.2 below.)
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A brief review about regular functions: The function field of a variety X is the field of fractions of the
coordinate algebra of any one of its affine open subsets, and a rational function on X is an element of the
function field. A rational function f is regular on an affine open set U = SpecA if it is an element A, and f
is regular on a nonempty open set U if U can be covered by affine open sets on which it is regular. Thus the
function field of a variety X contains the regular functions on every nonempty open subset, and the regular
functions are governed by the regular functions on affine open subsets.

An affine variety is determined by its regular functions, but the regular functions don’t suffice to determine
a variety that isn’t affine. For instance, the only rational functions that are regular everywhere on the projective
line P1 are the constant functions, which are useless. We will be interested in regular functions on non-affine
open sets, especially in functions that are regular on the whole variety, but one should always work with the
affine open sets, where the definition of a regular function is clear.

Let U and V be open subsets of a variety X , with V ⊂ U . If a rational function is regular on U , it is also
regular on V . Thus if V ⊂ U is an inclusion of affine open subsets, say U = SpecA and V = SpecB, then
A ⊂ B. However, it won’t be clear how to construct B from A unless B is a localization. If V = Us, then
B = A[s−1]. When B isn’t a localization of A, the exact relationship between A and B remains obscure.

We extend the notation introduced for affine open sets to all open sets, denoting the algebra of regular
functions on any open set U by OX(U).

6.1.2. Corollary. exten-
dOone

Let X be a variety. By defining OX(U) to be the algebra of regular functions on an open
subset U , the structure sheaf OX on X extends to a functor

(opens)◦ OX−→ (algebras) �

If it is clear which variety is being studied, we may write O for OX .
The regular functions on U , the elements of O(U), are called sections of the structure sheaf OX on U .

When V → U is a morphism in (opens),OX(U) is contained inOX(V ). This gives us the homomorphism,
an inclusion,

OX(U)→ OX(V )

that makes OX into a functor. Note that arrows are reversed by OX . If V → U , then OX(U) → OX(V ). A
functor that reverses arrows is a contravariant functor. The superscript ◦ in (6.1.1) and (6.1.2) is a customary
notation to indicate that a functor is contravariant.

6.1.3. Proposition extendOThe (extended) structure sheaf has the following sheaf property:

• Let Y be an open subset of X , and let U i = SpecAi be affine open subsets that cover Y . Then

OX(Y ) =
⋂
OX(U i)

(
=
⋂
Ai
)

This sheaf property is especially simple because regular functions are elements of the function field. It is more
complicated for O-modules, which will be defined in the next section.

By definition, if f is a regular function on X , there is a covering by affine open sets U i such that f is
regular on each of them, i.e., that f is in

⋂
O(U i). Therefore the next lemma proves the proposition.

6.1.4. Lemma. capsameLet Y be an open subset of a variety X . The intersection
⋂
OX(U i) is the same for every

affine open covering {U i} of Y .

We prove the lemma first in the case of a covering of an affine open set by localizations.

6.1.5. Sublemma. sheaffor-
loc

Let U = SpecA be an affine variety, and let {U i} be a covering of U by localizations,
say U i = SpecAsi . Then A =

⋂
Asi , i.e., O(U) =

⋂
O(U i).

proof. The fact that A is a subset of
⋂
Asi is clear. We prove the opposite inclusion.

A finite subset of the set {U i} will cover U , so we may assume that the index set is finite. Let α be an
element of

⋂
Asi . So α = s−ri ai, or sriα = ai for some ai in A and some integer r, and we can use the same

r for every i. Because {U i} covers U , the elements si generate the unit ideal in A, and so do their powers sri .
There are elements bi in A such that

∑
bis

r
i = 1. Then α =

∑
bis

r
iα =

∑
biai is in A. �
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proof of Lemma 6.1.4. Say that Y is covered by affine open sets {U i} and also by affine open sets {V j}.
We cover the intersections U i ∩ V j by open sets W ijν that are localizations of U i and also localizations of
V j . Fixing i and letting j and ν vary, the set {W ijν}j,ν will be a covering of U i by localizations, and the
sublemma shows that O(U i) =

⋂
j,ν O(W ijν). Then

⋂
iO(U i) =

⋂
i,j,ν O(W ijν). Similarly,

⋂
j O(V j) =⋂

i,j,ν O(W ijν). �

6.2 O-Modules
module An OX -module on a variety X associates a module to every affine open subset.

6.2.1. Definition.defO-
modtwo

An O-moduleM on a variety X is a (contravariant) functor

(affines)◦ M−→ (modules)

such thatM(U) is an O(U)-module for every affine open set U , and such that, if s is a nonzero element of
O(U), the moduleM(Us) is the localization ofM(U):

M(Us) =M(U)s

A section of an O-moduleM on an affine open set U is an element ofM(U). An O-moduleM is called a
finite O-module . IfM(U) is a finite O(U)-module for every affine open set U .

A homomorphismM ϕ−→ N of O-modules consists of homomorphisms of O(U)-modules

M(U)
ϕ(U)−→ N (U)

for each affine open subset U ofX such that, when s is a nonzero element ofO(U), the homomorphism ϕ(Us)
is the localization of ϕ(U).

A sequence of homomorphisms

(6.2.2) M→N → Pexse-
qsheaves

of O-modules on a variety X is exact if the sequence of sectionsM(U)→ N (U)→ P(U) is exact for every
affine open subset U of X . �

At first glance, this definition of an O-module will seem too complicated for comfort. However, when a
module has a natural definition, the data involved in the definition take care of themselves. This will become
clear as we go along.

Note. When stating thatM(Us) is the localization ofM(U), it would be more correct to say thatM(Us)
andM(U)s are canonically isomorphic. Let’s not worry about this.

One example of anO-module is the free moduleOk. The sections of the free module on an affine open set
U are the elements of the free O(U)-module O(U)k. In particular, O = O1 is an O-module.

The kernel, image, and cokernel of a homomorphism M ϕ−→ N are among the operations that can be

made on O-modules. The kernel K of ϕ is the O-module defined by K(U) = ker (M(U)
ϕ(U)−→ N (U)) for

every affine open set U , and the image and cokernel are defined analogously. The reason that we work with
localizatons is that many operations, including these, are compatible with localization.

6.3 The Sheaf Property
nonaffine-

sections
In this section, we extend an O-moduleM on a variety X to a functor (opens)◦ M̃−→ (modules) on all open
subsets of X , such that M̃(Y ) is an O(Y )-module for every open subset Y , and when U is an affine open set,
M̃(U) =M(U).

The tilde is used for clarity here. When we have finished with the discussion, we will use the same notation
for a functor on (affines) and for its extension to (opens).
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6.3.1. Terminology. restrictionIf (opens)◦ M̃−→ (modules) is a functor and U is an open subset, an element of M̃(U) is

a section of M̃ on U . If V
j−→ U is an inclusion of open subsets, the associated homomorphism M̃(U) →

M̃(V ) is the restriction from U to V . The restriction to V of a section m may be denoted by j◦m. However,
the operation of restriction occurs very often. Because of this, we usually abbreviate, using the same symbolm
for a section and for its restriction. Also, if an open set V is contained in two open sets U and U ′, and if m,m′

are sections of M̃ on U and U ′, respectively, we may say that m and m′ are equal on V if their restrictions to
V are equal. �

6.3.2. Theorem. extendO-
mod

An O-moduleM extends uniquely to a functor

(opens)◦ M̃−→ (modules)

that has the sheaf property described below. Moreover, for every open set U , M̃(U) is an O(U)-module,
and for every inclusion V → U of nonempty open sets, the map M̃(U) → M̃(V ) is compatible with scalar
multiplication in this sense:

Let m be a section of M̃ on U , let α be a regular function on U , and let m′ and α′ denote the restrictions
of m and α to V . The restriction of αm is α′m′.

Thought the proof of this theorem isn’t expecially difficult, but it is lengthy because there are several things to
check. In order not to break up the discussion, we have put the proof into Section 6.8 at the end of the chapter.

(6.3.3) the sheaf property sheafprop

The sheaf property is the key requirement that determines the extension of an O-moduleM to a functor M̃
on (opens).

Let Y be an open subset of X , and let {U i} be a covering of Y by affine open sets. The intersections
U ij = U i ∩ U j are also affine open sets, soM(U i) andM(U ij) are defined. The sheaf property asserts that
an element m of M̃(Y ) corresponds to a set of elements mi inM(U i) such that the restrictions of mj and mi

to U ij are equal.
If the affine open subsets U i are indexed by i = 1, ..., n, the sheaf property asserts that an element of

M̃(Y ) is determined by a vector (m1, ...,mn) with mi inM(U i), such that the restrictions of mi and mj to
U ij are equal. This means that M̃(Y ) is the kernel of the map

(6.3.4)
∏
i

M(U i)
β−→
∏
i,j

M(U ij) sheafker

that sends the vector (m1, ...,mn) to the n×n matrix (zij), where zij is the difference mj − mi of the
restrictions of mj and mi to U ij . The analogous description is true when the index set is infinite.

In short, the sheaf property tells us that sections of M̃ are determined locally: A section on an open set Y
is determined by its restrictions to the open subsets U i of any affine covering of Y .

Note. The morphisms U ij → U i needn’t be localizations, and if not the restriction mapsM(U i)→M(U ij)
aren’t a part of the structure of an O-module. We need a definition of the restriction map for an arbitrary
inclusion V → U of affine open subsets. This point will be taken care of by the proof of Theorem 6.3.2. (See
Step 2 in Section 6.8.) We don’t need to worry about it here. �

We drop the tilde now, and denote byM also the extension of anO-module to all open sets. The sheaf property
forM is the statement that, when {U i} is an affine open covering of an open set U , the sequence

(6.3.5) sheaf-
proptwo

0→M(U)
α−→
∏
i

M(U i)
β−→
∏
i,j

M(U ij)

is exact, where alpha is the product of the restriction maps, and β is the map described in (6.3.4).

The next corollary follows from Theorem 6.3.2.
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6.3.6. Corollary.injoncover Let {U i} be an affine open covering of a variety X .
(i) An O-moduleM is zero if and only ifM(U i) = 0 for every i.

(ii) A homomorphism M ϕ−→ N of O-modules is injective, surjective, or bijective if and only if the maps

M(U i)
ϕ(Ui)−→ N (U i) are injective, surjective, or bijective, respectively, for every i.

proof. (i) Let V be an open subset of X . We can cover the intersections V ∩ U i by affine open sets V iν that
are localizations of U i, and these sets, taken together, cover V . IfM(U i) = 0, then the localizationsM(V iν)
are zero too. The sheaf property shows that the map M(V ) →

∏
M(V iν) is injective, and therefore that

M(V ) = 0.

(ii) This follows from (i) because a homomorphism ϕ is injective or surjective if and only if its kernel or its
cokernel is zero. �

(6.3.7) families of open setsomod

It is convenient to have a more compact notation for the sheaf property. For this, one can use symbols to
represent families of open sets. Say that U and V represent families of open sets {U i} and {V ν}, respectively.
A morphism of families V → U consists of a morphism from each V ν to one of the subsets U i. Such a
morphism will be given by a map ν  iν of index sets, such that V ν ⊂ U iν .

There may be more than one morphism V → U, because a subset V ν may be contained in more than one
of the subsets U i. To define a morphism, one must make a choice among the subsets U i that contain V ν . For
example, let U = {U i} be a family of open sets, and let V be another open set. There is a morphism V → U
that sends V to U i whenever V ⊂ U i. In the other direction, there is a unique morphism U → V provided
that U i ⊂ V for all i.

We extend a functor (opens)◦ M−→ (modules) to families U = {U i} by defining

(6.3.8) M(U) =
∏
M(U i).section-

sonfamily

Then a morphism of families V f−→ U defines a mapM(V)
f◦←−M(U) in a way that is fairly obvious, though

notation for it is clumsy. Say that f is given by a map ν  iν of index sets, with V ν → U iν . A section ofM
on U, an element ofM(U), can be thought of as a vector (ui) with ui ∈M(U i), and a section ofM(V) as a
vector (vν) with vν ∈M(V ν). If vν denotes the restriction of uiν to V ν , the map f◦ sends (uiν )→ (vν).

We write the sheaf property in terms of families of open sets: Let U0 = {U i} be an affine open covering
of an open set Y , and let U1 denote the family {U ij} of intersections: U ij = U i ∩ U j . The intersections are
also affine. and there are two sets of inclusions

U ij ⊂ U i and U ij ⊂ U j

They define two morphisms of families U1
d0,d1−→ U0 of affine open sets: U ij d0−→ U j and Uij d1−→ U i. We

also have a morphism U0 → Y , and Tte two composed morphisms U1
di−→ U0 → Y are equal. These maps

form what we all a covering diagram

(6.3.9)covdiagr Y ←− U0 ⇔ U1

When we apply a functor (opens) M−→ (modules) to this diagram, we obtain a sequence

(6.3.10) 0→M(Y )
αU−→M(U0)

βU−→M(U1)defbeta

where αU is the restriction map and βU is the difference M(d0) −M(d1) of the maps induced by the two
morphisms U1 ⇒ U0. The sheaf property for the covering U0 of Y (6.3.5) is the assertion that this sequence
is exact, which means that αU is injective, and that its image is the kernel of βU.
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6.3.11. Note.
twoopensets

One can suppose that the open sets U i that make a covering are distinct. However, the inter-
sections won’t be distinct, because U ij = U ji and U ii = U i. These coincidences lead to redundancy in the
statement (6.3.10) of the sheaf property. If the indices are i = 1, ..., k, we only need to look at intersections
U ij with i < j. The productM(U1) =

∏
i,jM(U ij) that appears in the sheaf property can be replaced by the

product
∏
i<jM(U ij) with increasing pairs of indices. For instance, suppose that an open set Y is covered

by two affine open sets U and V . The sheaf property is the exact sequence

0 → M(Y )
α−→
(
M(U)×M(V )

) β−→
(
M(U ∩ U)×M(U ∩ V )×M(V ∩ U)×M(V ∩ V )

)
is equivalent with the exact sequence

(6.3.12) twoopens0 → M(Y )→
(
M(U)×M(V )

) +,−−→M(U ∩ V ) �

6.3.13. Example. strsheafPn
Let A denote the polynomial ring C[x, y], and let V be the complement of a point p in affine space X =
SpecA. We cover V by two localizations: Xx = SpecA[x−1] and Xy = SpecA[y−1]. A regular function
on V will be regular on Xx and on Xy , so it will be in the intersection of their coordinate algebras. The
intersection A[x−1] ∩ A[y−1] is A. This tells us that the sections of the structure sheaf OX on V are the
elements of A. They are the same as the sections on X . �

We have been working with nonempty open sets. The next lemma takes care of the empty set.

6.3.14. Lemma. emptysetThe only section of an O-moduleM on the empty set is the zero section: M(∅) = {0}. In
particular, O(∅) is the zero ring.

proof. This follows from the sheaf property. The empty set is covered by the empty covering, the covering
indexed by the empty set. ThereforeM(∅) is contained in an empty product. We want both the empty product
andM(∅) to be modules, and we have no choice but to set them equal to {0}.

If you find this reasoning pedantic, you can takeM(∅) = {0} as an axiom. �

(6.3.15) adiagramInterlude: a useful diagram

We consider a commutative diagram of abelian groups of the form

0 −−−−→ A
f−−−−→ B

g−−−−→ C

a

y b

y c

y
0 −−−−→ A′

f ′−−−−→ B′
g′−−−−→ C

6.3.16. Lemma. toprow(i) Suppose that the rows of the diagram are exact. If b and c are bijective, so is a.
(ii) Suppose that the bottom row of the diagram is exact. If a is bijective and b and c are injective, the top row
is exact.

It is customary to leave the proofs of such statements to the reader. But since this sort of reasoning may
be new, we’ll give the proof of part (ii). Here a,b, c and f ′ are assumed to be injective, so f is injective and
gf = 0. It remains to show that ker g = im f . Let x be an element of ker g, so that gx = 0, and let x′ = bx.
Then g′x′ = g′bx = cgx = 0. Since the bottom row is exact, x′ = f ′y′ for some unique element y′ of A′.
Since a is bijective, y′ = ay for some element y of A. Then bfy = f ′ay = f ′y′ = x′ = bx. Since b is
injective, fy = x. �

(6.3.17) coherencethe coherence property

In addition to the sheaf property, an O-module on a variety X has a property called coherence.
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6.3.18. Proposition. (the coherence property)cohprop Let Y be an open subset of a variety X , let s be a nonzero
regular function on Y , and letM be an OX -module. ThenM(Ys) is the localizationM(Y )s ofM(Y ).

Compatibility with localization is a requirement for anO-module when Y is affine. The coherence property is
the extension to all open subsets.

proof of Proposition 6.3.18. Let U0 = {U i} be a family of affine open sets that covers an open set Y . The
intersections U ij will be affine open sets too. We inspect the covering diagram Y ← U0 ⇔ U1. If s is a
nonzero regular function on Y , the localization of this diagram forms a covering diagram Ys ← U0,s ⇔ U1,s,
in which U0,s = {U is} is an affine covering of Ys. ThereforeM(U0)s ≈M(U0,s). The sheaf property for the
two covering diagrms gives us exact sequences

0→M(Y )→M(U0)→M(U1) and 0→M(Ys)→M(U0,s)→M(U1,s)

and since s is invertible in the second sequence, the localization of the first sequence maps to the second one:

0 −−−−→ M(Y )s −−−−→ M(U0)s −−−−→ M(U1)s

a

y b

y c

y
0 −−−−→ M(Ys) −−−−→ M(U0,s) −−−−→ M(U1,s)

The bottom row is exact, and since localization is an exact operation, the top row of the diagram is exact too.
Since U0 and U1 are families of affine open sets, the vertical arrows b and c are bijections. Therefore a is a
bijection. This is the coherence property. �

6.4 Some O-Modules
moduleex-

amples
6.4.1. modules on a pointsheafon-

point Let’s denote a point, the affine variety SpecC, by p. The point has only one nonempty open set: the whole
space p, andOp(p) = C. LetM be anOp-module. The space of global sectionsM(p) is anOp(p)-module, a
complex vector space. To defineM, that vector space can be assigned arbitrarily. One may say that a module
on the point is a sscomplex vector space.

6.4.2.refldmod the residue field module κp.
Let p be a point of a variety X . A residue field module κp is defined as follows: If U is an affine open

subset of X that contains p, then O(U) has a residue field k(p) at p, and κp(U) = k(p). If U doesn’t contain
p, then κp(U) = 0.

6.4.3. torsion modules.
An O-moduleM is a torsion module ifM(U) is a torsion O(U)-module for every affine open set U (see

(2.6.11)).

6.4.4. ideals.
An ideal I of the structure sheaf is an O-submodule of O.
Let p be a point of a variety X . The maximal ideal at p, which we denote by mp, is an ideal. If an affine

open subset U contains p, its coordinate algebra O(U) will have a maximal ideal consisting of the elements
that vanish at p. That maximal ideal is the module of sections mp(U) on U . If U doesn’t contain p, then
mp(U) = O(U).

##where should this go??##
When I is an ideal ofO, we denote by VX(I) the closed set of points p such that I ⊂ mp – such that all

elements of I vanish.

6.4.5. examples of homomorphismsdefker
(i) There is a homomorphism of O-modules O → κp whose kernel is the maximal ideal mp.
(ii) Homomorphisms On → Om of free O-modules correspond to m×n-matrices of global sections of O.

(iii) LetM be an O-module. The O-module homomorphisms O ϕ−→ M correspond bijectively to global
sections of M. This is analogous to the fact that, when M is a module over a ring A, homomorphisms
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A → M correspond to elements of M . To be explicit: If m is a global section of M, the homomorphism
O(U)

ϕ−→M(U) is multiplication by the restriction of m to U . It sends a regular function f on U to fm.

(iv) If f is a global section of O, scalar multiplication by f defines a homomorphismM f−→M.

6.4.6. kerthmkernel
As we have remarked, many operations that one makes on modules over a ring are compatible with local-

ization, and therefore can be made on O-modules. However, when applied to sections over non-affine open
sets the operations are almost never compatible with localization. One important exception is the kernel of a
homomorphism.

6.4.7. Proposition. leftexact-
section

Let X be a variety, and let K be the kernel of a homomorphism ofO-modulesM→N ,
so that the there is an exact sequence 0 → K → M → N . For every open subset Y of X , the sequence of
sections

(6.4.8) 0→ K(Y )→M(Y )→ N (Y ) lexsect

is exact.

proof. We choose a covering diagram Y ←− U0 ⇔ U1, and inspect the diagram

0 −−−−→ K(U0) −−−−→ M(U0) −−−−→ N (U0)y y y
0 −−−−→ K(U1) −−−−→ M(U1) −−−−→ N (U1)

where the vertical maps are the maps βU described in (6.3.10). The rows are exact because U0 and U1 are
families of affines, and the sheaf property asserts that the kernels of the vertical maps form the sequence
(6.4.8). That sequence is exact because taking kernels is a left exact operation. �

The section functor isn’t right exact. When M → N is a surjective homomorphism of O-modules and
Y is a non-affine open set, the mapM(Y ) → N (Y ) may fail to be surjective. There is an example below.
Cohomology, which will be discussed in the next chapter, is a substitute for right exactness.

6.4.9. coverponemodules on the projective line
The projective line P1 is covered by the standard open sets U0 and U1, and the intersection U01 = U0 ∩ U1

is a localization of U0 and of U1. The coordinate algebras of these affine open sets are co(U0) = A0 = C[u]
and O(U1) = A1 = C[v], with v = u−1, and O(U01) = A01 = C[u, u−1]. The algebra A01 is the Laurent
polynomial ring whose elements are (finite) combinations of powers of u, negative powers included. The form
(6.3.12) of the sheaf property asserts that a global section of O is determined by polynomials f(u) in A0 and
g(v) in A1 such that f(u) = g(u−1) in A01. The only such polynomials f and g are the constants. The only
rational functions that are regular everywhere on P1 are the constants. I think we knew this.

If M is an O-module, M(U0) = M0 and M(U1) = M1 will be modules over the algebras A0 and
A1, and the A01-module M(U01) = M01 can be obtained by localizing M0 and also by localizing M1:
M0[u−1] ≈ M01 ≈ M1[v−1]. As (6.3.12) tells us, a global section ofM is determined by a pair of elements
m1,m2 in M1,M2 that become equal in the common localization M01. In fact, these data determine the
moduleM.

6.4.10. Lemma. modon-
pone

With notation as above, letM0,M1, andM01 be modules overA0,A1, andA01 , respectively,
and let M0[u−1]

ϕ0−→M01 and M1[v−1]
ϕ1−→M01 be A01-isomorphisms. There is an OX -moduleM, unique

up to isomorphism, that gives this data: M(U0) andM(U1) are isomorhic to M0 and M1, and the diagram
belpow ommutes.

M(U0) −−−−→ M(U01) ←−−−− M(U1)y y y
M0

ϕ0−−−−→ M01
ϕ1←−−−− M1
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The proof is at the end of this section.

Suppose thatM0 andM1 are free modules of rank r overA0 andA1,. ThenM01 will be a freeA01-module
of rank r. A basis B0 of the free A0-module M0 will also be a basis of the A01-module M01, and a basis B1

of M1 will be a basis of M01. When regarded as bases of M01, B0 and B1 will be related by an r×r invertible
A01-matrix P , and that matrix determinesM up to isomorphism. When r = 1, P will be an invertible 1×1
matrix in the Laurent polynomial ring A01 – a unit of that ring. The units in A01 are scalar multiples of
powers of u. Since the scalar can be absorbed into one of the bases, an O-module of rank 1 is determined, up
to isomorphism, by a power of u. It is one of the twisting modules that will be described in Section 6.7.

The Birkhoff-Grothendieck Theorem, which will be proved in Chapter 8, describes the O-modules on the
projective line whose sections on U0 and on U1 are free. They are direct sums of free O-modules of rank
one. This means that by changing the bases B0 and B1, one can diagonalize the matrix P . Such changes of
basis will be given by an invertible A0-matrix Q0 and an invertible A1-matrix Q1, respectively. In down-to-
Earth terms, the Birkhoff-Grothendieck Theorem asserts that, for any invertible A01-matrix P , there exist two
matrices: an invertible A0-matrix Q0 and an invertible A1-matrix Q1 , such that Q−1

0 PQ1 is diagonal. This
can be proved by matrix operations. �

6.4.11. tensor productstensprod-
module Tensor products are compatible with localization. If M and N are modules over a domain A and s is a

nonzero element of A, the canonical map (M ⊗AN)s →Ms⊗AsNs is an isomorphism. Therefore the tensor
product M⊗O N of O-modules M and N is defined. On an affine open set U , [M⊗O N ] is the tensor
productM(U)⊗O(U) N (U).

LetM and N be O-modules, letM⊗O N be the tensor product module, and let V be an arbitrary open
subset of X . There is a canonical map

(6.4.12)ten-
sprodmap

M(V )⊗O(V ) N (V )→ [M⊗O N ](V )

By definition of the tensor product module, this map exists and is an equality when V is affine. For arbitrary
V , we cover by a family U0 of affine open sets. The family U1 of intersections also consists of affine open
sets. We form a diagram

M(V )⊗O(V ) N (V ) −−−−→ M(U0)⊗O(U0) N (U0) −−−−→ M(U1)⊗O(U1) N (U1)ya yb yc
0 −−−−→ [M⊗O N ](V ) −−−−→ [M⊗O N ](U0) −−−−→ [M⊗O N ](U1)

The composition of the two arrows in the top row is zero, the bottom row is exact, and the vertical maps b and
c are equalities. The canonical map a is induced by the diagram. It is bijective when V is affine, but when V
isn’t affine, it needn’t be either injective or surjective.

6.4.13. Examples.residue-
fieldmod-

ule

(i) Let p and q be distinct points of the projective line X , and let κp and κq be the
residure field modules on X . Then κp(X) = κq(X) = C, so κp(X) ⊗O(X) κq(X) ≈ C ⊗C C = C. But
κp ⊗O κq = 0. The canonical map (6.4.12) is the zero map. It isn’t injective.

(ii) Let p a point of a variety X , and let mp and κp be the maximal ideal and residue field modules at p. There
is an exact sequence of O-modules

(6.4.14) 0→ mp → O
πp−→ κp → 0ideal-

sheafatp
In this case, the sequence of global sections is exact.

(iii) Let p0 and p1 be the points (1, 0) and (0, 1) of the projective line P1. We form a homomorphism

mp0×mp1
ϕ−→ O

ϕ being the map (a, b) 7→ b− a. On the open set U0, mp1 → O is bijective and therefore surjective. Similarly,
mp0 → O is surjective on U1. Therefore ϕ is surjective. The only global sections of mp, mq , and mp0×mp1
are the zero sections, while O has the nonzero global section 1. The map ϕ isn’t surjective on global sections.
�
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6.4.15. the function field module ffldmod
Let F be the function field of a variety X . The function field module F is defined as follows: Its module

of sections any nonempty open set U is the field F . This is an O-module. It is called a constant O-module
because the modules of sections F(U) are the same for ever U . It isn’t a finite module unless X is a point.

Tensoring with the function field module: LetM be an O-module on a variety X , and let F be the function
field module. ThenM⊗OF is a constantO-module whose sections on any affine open setU form an F -vector
space. But ifM is a torsion module,M⊗O F will be zero.

(6.4.16) omodlimlimits of O-modules

6.4.17. limitsA directed set M• is a sequence of maps of sets M0 → M1 → M2 → · · · . Its limit lim−→M• is the
set of equivalence classes on the union

⋃
Mk, the equivalence relation being that elements m in Mi and m′ in

Mj are equivalent if they have the same image in Mn when n is sufficiently large. An element of lim−→M• will
be represented by an element of Mi for some i.

6.4.18. Example. limexam-
ple

Let R = C[x] and let m be the maximal ideal xR. Repeated multiplication by x defines a
directed set

R
x−→ R

x−→ R
x−→ R · · ·

whose limit is isomorphic to the Laurent Polynomial Ring R[x−1] = C[x, x−1]. Proving this is an exercise. �

A directed set of O-modules on a variety X is a sequence M• = {M0 → M1 → M2 → · · · } of
homomorphisms of O-modules. So, for every affine open set U , the O(U)-modulesMn(U) form a directed
set, as defined in (6.4.17). The direct limit lim−→M• is defined simply, by taking the limit for each affine open
set: [lim−→M•](U) = lim−→ [M•(U)]. This limit operation is compatible with localization, so lim−→M• is an
O-module. In fact, the equality [lim−→M•](U) = lim−→ [M•(U)] is true for every open set.

6.4.19. Lemma. jstarlimit(i) The limit operation is exact. IfM• → N• → P• is an exact sequence of directed sets
of O-modules, the limits form an exact sequence.
(ii) Tensor products are compatible with limits: If N• is a directed set of O-modules and M is another
O-module, then lim−→ [M⊗O N•] ≈M⊗O [lim−→N•].

6.4.20. Proposition. moduleon-
affines

Let X = SpecA be an affine variety. Sending an O-module M to the A-module
M(X) of its global sections defines a bijective correspondence between O-modules and A-modules.

proof. We must invert the functor O-(modules)→ A-(modules) that sendsM toM(X). Given an A-module
M , the corresponding O-moduleM is defined as follows: Let U = SpecB be an affine open subset of X .
The inclusion U ⊂ X corresponds to an algebra homomorphism A → B. We define M(U) to be the B-
module B ⊗AM . If s is a nonzero element of B, then Bs ⊗AM is the localization (B ⊗AM)s of B ⊗AM .
SoM is an O-module. �

6.4.21. Example. delete-
pointThis example shows that, when an open subset isn’t affine, definingM(V ) = B ⊗AM , as in Proposition

6.4.20, may be wrong. Let X be the affine plane SpecA, A = C[x, y], let V be the complement of the
origin in X , and let M be the A-module A/yA. This module can be identified with C[x], which becomes an
A-module when scalar multiplication by y is defined to be zero. Here O(V ) = O(X) = A (6.3.13). If we
followed the method used for affine open sets, we would setM(V ) = A⊗AM = C[x].

To identify M(V ) correctly, we cover V by the two affine open sets Vx = SpecA[x−1] and Vy =
SpecA[y−1]. ThenM(Vx) = M [x−1] whileM(Vy) = 0. The sheaf property ofM shows thatM(V ) ≈
M(Vx) = M [x−1] = C[x, x−1]. �

proof of Lemma 6.4.10. With notation as in the proposition, we suppose given the modules M0, M1 and
isomorphisms M0[u−1] → M1[v−1], and we are to show that this data comes from an O-module M. The
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previous proposition shows thatMi defines modulesMi on Ui whose restrictions to U01 are isomorphic. Let’s
denote these modules byM. ThenM is defined on open sets that are contained in U0 or in U1.

Let V be an arbitrary open set V , and let V i = V ∩ Ui we define M(V ) to be the kernel of the map
M(V 0×M(V 1)) → M(V 01). It is clear that with this definition, M is a functor. We must verify the
sheaf property, and the notation gets confusing. We suppose given an open covering {V ν} of V , and to avoid
confusion with V 0 and V 1, we label the corresponding covering diagram as V@ <<< W0 ⇔ W1. So
W0 = {V ν}. We form a diagram

0 0 0y y y
0 −−−−→ M(V ) −−−−→ M(W0) −−−−→ M(W1)y y y
0 −−−−→ M(V 0)×M(V 1) −−−−→ ∗ −−−−→ ∗y y y
−−−−→ M(V 01) −−−−→ ∗ −−−−→ ∗

in which the first asterisk stands forM(W0∩U0)×M(W0∩U1), etc. The columns are exact by our definition
ofM, and the second and third columns are exact because the open sets involved are contained in U0 or U1.
It follows that the top row is exact. This is the sheaf property. �

6.5 Direct Image
directim-

age
Let Y

f−→ X be a morphism of varieties, and let N be an OY -module. The direct image f∗N is an OX -
module that is defined as follows: The sections of f∗N on an affine open subset U of X are the sections of N
on the inverse image V = f−1U in Y . For example, the direct image f∗OY of the structure sheaf OY is the
functor

OY −modules
f∗−→ OX−modules

defined by [f∗OY ](U) = OY (f−1U).

The direct image generalizes restriction of scalars in modules over rings. If A
ϕ−→ B is an algebra homo-

morphism and N is a B-module, one can restrict scalars to make N into an A-module. Scalar multiplication
by an element a of A on the restricted module N is defined to be scalar multiplication by its image ϕ(a). For
clarity, we will sometimes denote the given B-module by NB and the A-module obtained by restriction of
scalars by NA. The additive groups NB and NA are the same, but the scalars change.

Let X = SpecA and Y = SpecB, and let Y
f−→ X be the morphism of affine varieties defined by an

algebra homomorphism A
ϕ−→ B. An OY -module N is determined by a B-module N = NB . The direct

image f∗N is the OX -module determined by the A-module NA.

6.5.1. Lemma.fstarcoh Let Y
f−→ X be a morphism of varieties. The direct image f∗N of an OY -module N is an

OX -module. Moreover, for all open subsets U of X , not only for affine open subsets,

[f∗N ](U) = N (f−1U)

proof. Let U ′ → U be an inclusion of affine open subsets of X , and let V = f−1U and V ′ = f−1U ′.
These inverse images are open subsets of Y , but they aren’t necessarily affine. The inclusion V ′ → V gives
us a homomorphism N (V ) → N (V ′), and therefore a homomorphism f∗N (U) → f∗N (U ′). So f∗N is
a functor. Its OX -module structure is explained as follows: Composition with f defines a homomorphism
OX(U) → OY (V ), and N (V ) is an OY (V )-module. Restriction of scalars to OX(U) makes [f∗N ](U) =
N (V ) into an OX(U)-module.

To show that f∗N is an OX -module, we must show that if s is a nonzero element of OX(U), then
[f∗N ](Us) is obtained by localizing [f∗N ](U). Let s′ be the image of s in OV (V ). Scalar multiplication
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by s on [f∗N ](U) is given by restriction of scalars, so it is the same as scalar multiplication by s′ on N (V ).
If s′ 6= 0, the localization Vs′ is the inverse image of Us. So [f∗N ](Us) = N (Vs′). The coherence property
(6.3.17) tells us that N (Vs′) = N (V )s′ . Then [f∗N ](Us) = N (Vs′) = N (V )s′ = [[f∗N ](U)]s.

If s′ = 0, then N (V )s′ = 0. In this case, because scalar multiplication is defined by restricting scalars, s
annihilates [f∗N ](U), and therefore [f∗N ](U)s = 0 too. �

6.5.2. Lemma. dirimlimDirect images are compatible with limits: If M• is a directed set of O-modules, then
lim−→ (f∗M•) ≈ f∗(lim−→M•). �

(6.5.3) extension by zero extbyzero

When Y i−→ X is the inclusion of a closed subvariety into a variety X , and N is an OY -module, the
direct image i∗N is also called the extension by zero of N . If U is an open subset of X then, because i is an
inclusion map, i−1U = U ∩ Y . Therefore

[i∗N ](U) = N (U ∩ Y )

The term “extension by zero” refers to the fact that, when an open set U of X doesn’t meet Y , the intersection
U ∩ Y is empty, and the module of sections of [i∗N ](U) is zero. So i∗N is zero outside of the closed set Y .

6.5.4. Examples. extfrom-
point(i) Let p i−→ X be the inclusion of a point into a variety. When we view the residue field k(p) as anO-module

on p, its extension by zero i∗k(p) is the residue field module κp.

(ii) Let Y i−→ X be the inclusion of a closed subvariety, and let I be the ideal of Y in OY . The extension by
zero of the structure sheaf on Y fits into an exact sequence of OX -modules

0→ I → OX → i∗OY → 0

So the extension by zero i∗OY is isomorphic to the quotient module OX/I. �

6.5.5. Proposition. izeroLet Y i−→ X be the inclusion of a closed subvariety Y into a variety X , and let I be the
ideal of Y . Let M denote the subcategory of the category ofOX -modules that are annihilated by I. Extension
by zero defines an equivalence of categories

(OY −modules)
i∗−→M

proof. Let f be a section of OX on an affine open set U , let f be its restriction to U ∩ Y , and let α be an
element of [i∗N ](U)

(
= N (U ∩ Y )

)
. So multiplication by f is defined by restriction of scalars: fα = fα.

If f is in I(U), then f = 0 and therefore fα = fα = 0. So the extension by zero of an OY -module is
annihilated by I. The direct image i∗N is an object of M.

We construct a quasi-inverse to the direct image. Starting with an OX -moduleM that is annihilated by I,
we construct an OY -module N such that i∗N is isomorphic toM.

Let Y ′ be an open subset of Y . The topology on Y is induced from the topology on X , so Y ′ = X1 ∩ Y
for some open subset X1 of X . We try to set N (Y ′) = M(X1). To show that this is well-defined, we show
that if X2 is another open subset of X such that Y ′ = X2 ∩ Y , thenM(X2) is isomorphic toM(X1). Let
X3 = X1 ∩X2. Then it is also true that Y ′ = X3 ∩ Y . Since X3 ⊂ X1, we have a mapM(X1)→M(X3),
and It suffices to show that this map is an isomorphism. The same reasoning will give us an isomorphism
M(X2)→M(X3).

The complement U = X1 − Y ′ of Y ′ in X1 is an open subset of X1 and of X , and U ∩ Y = ∅. We
cover U by a set {U i} of affine open sets. Then X1 is covered by the open sets {U i} together with X3. The
restriction of I to each of the sets U i is the unit ideal, and since I annihilatesM, M(U i) = 0. The sheaf
property shows thatM(X1) is isomorphic toM(X3). The rest of the proof is boring. �

(6.5.6) inclusion of an open set in-
cludeopen
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Let Y
j−→ X be the inclusion of an open subvariety Y into a variety X .

First, restriction from X to Y . Since open subsets of Y are also open subsets of X , we can restrict an
O-moduleM from X to Y . By definition, the sections of the restricted module on a subset U of Y are simply
the elements ofM(U). For example, the restriction of the structure sheaf OX to Y is the structure sheaf OY .
We use subscript notation, writingMY for the restriction of an OX -moduleM to Y , then denoting the given
moduleM by MX for clarity. If U is an open subset of Y ,

(6.5.7)restr-
toopen

MY (U) =MX(U)

Now the direct image: Let Y
j−→ X be the inclusion of an open subvariety Y , and let N be an OY -

module. The inverse image of an open subset U of X is the intersection Y ∩U . By definition, the direct image
is

[j∗N ](U) = N (Y ∩ U)

For example, [j∗OY ](U) is the algebra of rational functions on X that are regular on Y ∩ U . They needn’t be
regular on U .

6.5.8. Example.exam-
pledirec-

timage

Let Xs
j−→ X be the inclusion of a localization into an affine variety X = SpecA.

Modules onX correspond to their global sections, which areA-modules. Similarly, modules onXs correspond
to As-modules. We can restrict the OX -moduleMX that corresponds to an A-module M to the open set Xs,
obtaining the OXs -module MXs that corresponds to the AS-module Ms. Then Ms is also the module of
global sections of j∗MXs on X:

[j∗MXs ](X) =Mxs(Xs) = Ms

The localization Ms is made into an A-module by restriction of scalars.
The reversal of arrows when one passes from affine varieties to their coordinate algebras seems especially

confusing here. �

6.5.9. Proposition.fstarexact Let Y
j−→ X be the inclusion of an open subvariety Y into a variety X .

(i) The restriction OX -modules→OY -modules is an exact operation.
(ii) If Y is an affine open subvariety of X , the direct image functor j∗ is exact.
(iii) LetM =MX be an OX -module. There is a canonical homomorphismMX → j∗[MY ].

proof. (ii) Let U be an affine open subset of X , and letM→N → P be an exact sequence of OY -modules.
The sequence j∗M(U) → j∗N (U) → j∗P(U) is the same as the sequenceM(U ∩ Y ) → N (U ∩ Y ) →
P(U ∩ Y ), though the scalars have changed. Since U and Y are affine, U ∩ Y is affine. By definition of
exactness, this sequence is exact.

(iii) Let U be open in X . Then j∗MY (U) =M(U ∩Y ). Since U ∩Y ⊂ U , M(U) maps toM(U ∩Y ). �

6.5.10. Example.dirim-
standaffine

Let X = Pn and let j denote the inclusion U0 ⊂ X of the standard affine open subset into
X . The direct image j∗OU0 is the algebra of rational functions that are allowed to have poles on the hyperplane
at infinity.

The inverse image of an open subset W of X is its intersection with U0: j−1W = W ∩ U0. The sections
of the direct image j∗OU0 on an open subset W of X are the regular functions on W ∩ U0:

[j∗OU0 ](W ) = OU0(W ∩ U0) = OX(W ∩ U0)

Say that we write a rational function α as a fraction g/h of relatively prime polynomials. Then α is an element
of OX(W ) if h doesn’t vanish at any point of W , and α is a section of [j∗OU0 ](W ) = OX(W ∩ U0) if h
doesn’t vanish on W ∩ U0. Arbitrary powers of x0 can appear in the denominator h when α is a section of
j∗OU0 . �
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6.6 Support
annand-
supp

###need support dim zero and ??###

(6.6.1) annihilators annih

Let A be a ring, and let m be an element of an A-module M . The annihilator I of an element m of M is
the set of elements α of A such that αm = 0. It is an ideal of A that is often denoted by ann(m).

The annihilator of an A-module M is the set of elements of A such that aM = 0. This annihilator is also
an ideal.

6.6.2. Lemma. localize-
support

Let I be the annihilator of an element m of M , and let s be a nonzero element of A. The
annihilator of the image of m in the localized module Ms is the localized ideal Is �

This lemma allows us to extend the concept of annihilator to sections of a finite O-module on a variety X .

6.6.3. Support. Let M be a finite module over a finite-type domain A and X = SpecA. The support of M
is the locus C = VX(I) of zeros of its annihilator I in X . It is the set of points p of X such that I ⊂ mp.
The support of a finite module is a closed subset of X . If s is a nonzero element of A, dtThe support of the
localized module Ms is the intersection Cs = C ∩Xs.

LetM be a finite O-module on a variety X , and let I be its annihilator. The support ofM is the closed
subset VX(I) of points such that I ⊂ mp. For example, the support of the residue field module κp is the point
p. The support of the maximal ideal mp at p is the whole variety X .

(6.6.4) O-modules with support of dimension zero support-
dimzero

6.6.5. Proposition. suppfiniteLetM be a finite O-module on a variety X .
(i) Suppose that the support ofM is a single point p, let M = M(X), and let U be an affine open subset of
X . If U contains p, thenM(U) = M , and if U doesn’t contain p, thenM(U) = 0.
(ii) (Chinese Remainder Theorem) If the support of M is a finite set {p1, ..., pk}, then M is the direct sum
M1 ⊕ · · · ⊕Mk of O-modules supported at the points pi.

proof. (i) Let I be the annihilator ofM. The locus VX(I) is p. If p isn’t contained in U , then when we restrict
M to U , we obtain an OU -module whose support is empty. Therefore the restriction to U is the zero module.

Next, suppose that p is contained in U , and let V denote the complement of p in X . We cover X by a set
{U i} of affine open sets with U = U1, and such that U i ⊂ V if i > 1. By what has been shown,M(U i) = 0if
i > 0 andM(U ij) = 0 if j 6= i. The sheaf axiom for this covering shows thatM(X) ≈M(U).

(ii) This follows from the ordinary Chinese Remainder Theorem. �

6.7 Twisting
twisting-
modules

The twisting modules that we define here are among the most important modules on projective space.

Let X denote the projective space Pn with coordinates x0, ..., xn. As before, a homogeneous fraction of
degree d is a fraction g/h of homogeneous polynomials with deg g− deg h = d. When g and h are relatively
prime, the fraction g/h is regular on an open subset V of X if h isn’t zero at any point of V .

The definition of the twisting modules is this: The sections of O(d) on an open subset V of Pn are the
homogeneous fractions of degree d that are regular on V .

6.7.1. Proposition. Odismod-
ule(i) Let V be an affine open subset of Pn that is contained in the standard affine open set U0. The sections of

O(d) on V form a free module of rank one with basis xd0, over the coordinate algebra O(V ).
(ii) The twisting module O(d) is an O-module.
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proof. (i) Let V be an open set contained in U0, and let α be a section of O(d) on V . Then f = αx−d0 has

degree zero. It is a rational function. Since V ⊂ U0, x0 doesn’t vanish at any point of V . Since α is regular
on V , f is a regular function on V , and α = fxd0.

(ii) It is clear that O(d) is a contravariant functor. We verify compatibility with localization. Let V = SpecA
be an affine open subset of X and let s be a nonzero element of A. We must show that [O(d)](Vs) is the
localization of [O(d)](V ), and it is true that [O(d)](V ) is a subset of [O(d)](Vs). What has to be shown is that
if β is a section of O(d) on Vs, then skβ is a section on V , if k is sufficiently large.

We cover V by the affine open sets V i = V ∩ Ui. To show that skβ is a section on V , it suffices to show
that it is a section on V ∩ Ui for every i. This is the sheaf property. We apply (i) to the open subset V 0

s of V 0.
Since V 0

s is contained in U0, β can be written (uniquely) in the form fxd0, where f is a rational function that
is regular on V 0

s . We know already that O has the coherence property. Therefore skf is a regular function on
V 0 if k is large, and then skα = skfxd0 is a section of O(d) on V 0. The analogous statement is true for every
index i. �

As part (i) of the proposition shows, O(d) is quite similar to the structure sheaf. However, O(d) is only
locally free. Its sections on the standard open set U1 form a free O(U1)-module with basis xd1. That basis is
related to the basis xd0 on U0 by the factor (x0/x1)d, a rational function that isn’t invertible on on U0 or on U1.

6.7.2. Proposition.sectionso-
fOn

When d ≥ 0, the global sections of the twisting moduleO(d) on Pn are the homogeneous
polynomials of degree d. When d < 0, the only global section of O(d) is zero.

proof. A nonzero global section u of O(d) will restrict to a section on the standard affine open set U0. Since
elements of O(U0) are homogeneous fractions of degree zero whose denominators are powers of x0, and
since [O(d)](U0) is a free module over O(U0) with basis xd0, u will have the form g/xm0 for some some
homogeneous polynomial g and some m. Similarly, restriction to U1 shows that u has the form g1/x

n
1 . It

follows that m = n = 0 and that u = g. Since u has degree d, g will have degree d. �

6.7.3. Examples.prodhomfr
The product uv of homogeneous fractions of degrees r and s is a homogeneous fraction of degree r+s, and
if u and v are regular on an open set V , so is their product uv. So multiplication defines a homomorphism of
O-modules

(6.7.4) O(r)×O(s)→ O(r+s)oros

Multiplication by a homogeneous polynomial f of degree d defines an injective homomorphism

(6.7.5) O(k)
f−→ O(k+d)multby-

fone
.

When k = −d, this becomes a homomorphism O(−d)
f−→ O. �

The twisting modules O(n) have a second interpretation. They are isomorphic to the modules that we
denote by O(nH), of rational functions on projective space with poles of order at most n on the hyperplane
H : {x0 = 0} at infinity.

By definition, the nonzero sections of O(nH) on an open set V are the rational functions f such that xn0f
is a section of O(n) on V . Thus multiplication by xn0 defines an isomorphism

(6.7.6)OnOnH O(nH)
xn0−→ O(n)

If f is a section of O(nH) on an open set V , and if we write f as a homogeneous fraction g/h of degree zero,
with g, h relatively prime, the denominator hmay have xk0 , with k ≤ n, as factor. The other factors of h cannot
vanish anywhere on V . If f = g/h is a global section of O(nH), then h = cxk0 , with c ∈ C and k ≤ n. A
global section of O(nH) can be represented as a fraction g/xk0 .

Since x0 doesn’t vanish at any point of the standard affine open set U0, the sections of O(nH) on an open
subset V of U0 are simply the regular functions on V . The restrictions of O(nH) and O to U0 are equal.
Using the subsctript notation (6.5.6) for restriction to an open set,
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(6.7.7) jstarOHO(nH)U0 = OU0

Let V be an open subset of one of the other standard affine open sets, say of U1. The ideal of H ∩U1 in U1

is principal, generated by v0 = x0/x1, and v0 generates the ideal ofH ∩V in V too. If f is a rational function,
then because x1 doesn’t vanish on U1, the function fvn0 will be regular on V if and only if the homogeneous
fraction fxn0 is regular there. So f will be a section of O(nH) on V if and only if fvn0 is a regular function.
Because v0 generates the ideal of H in V , we say that such a function f has a pole of order at most n on H .

The isomorphic O-modules O(n) and O(nH) are interchangeable. The twisting module O(n) is often
better because its definition is independent of coordinates. On the other hand, O(nH) can be convenient
because its restriction to U0 is the structure sheaf OU0 .

6.7.8. Proposition. curveidealLet Y be the zero locus of an irreducible homogeneous polynomial f of degree d (a
hypersurface of degree d in Pn), let I be the ideal of Y , and let O(−d) be the twisting module on X .

Multiplication by f defines an isomorphism O(−d)
f−→ I.

proof. If α is a section ofO(−d) on an open set V , then fα will be a rational function that is regular on V and

that vanishes on Y ∩ V . Therefore the image of the multiplication map O(−d)
f−→ O is contained in I. This

map is injective because C[x0, ..., xn] is a domain. To show that it is an isomorphism, it suffices to show that
its restrictions to the standard affine open sets Ui are isomorphisms (6.3.6). As usual, we work with U0.

We may suppose that f isn’t a scalar multiple of any xi. Then Y ∩ U0 will be a dense open subset of Y .
The sections of O on U0 are the homogeneous fractions g/xk0 of degree zero. Such a fraction is a section of
I on U0 if and only if g vanishes on Y ∩ U0. If so, then since Y ∩ U0 is dense in Y , g will vanish on Y , and
therefore it will be divisible by f : g = fq. The sections of I on U0 have the form fq/xk0 . They are in the
image of the map O(−d)→ I. �

The proposition has an interesting corollary:

6.7.9. Corollary. idealsisomWhen regarded as O-modules, the ideals of all hypersurfaces of degree d are isomorphic.

(6.7.10) twisting a module twistmod-
ule

6.7.11. Definition deftwistmLetM be an O-module on projective space Pd, and let O(n) be the twisting module. The
nth twist ofM is defined to be the tensor productM(n) =M⊗OO(n). Similarly,M(nH) =M⊗OO(nH).
Twisting is a functor on O-modules.

If X is a closed subvariety of Pd andM is an OX -module,M(n) andM(nH) are obtained by twisting
the extension ofM by zero. (See the equivalence of categories (6.5.5)).

Since xn0 is a basis of O(n) on U0, a section ofM(n) on an open subset V of U0 can be written in the
form µ = m⊗ fxn0 , where f is a regular function on V and m is a section ofM on V (6.7.1). The function f
can be moved over to m, so µ can also be written in the form µ = m⊗ xn0 , and this expression is unique.

6.7.12. limOnHThe modules O(n) and O(nH) form directed sets that are related by a diagram

(6.7.13)

O ⊂−−−−→ O(H)
⊂−−−−→ O(2H)

⊂−−−−→ · · ·∥∥∥ x0

y x2
0

y
O x0−−−−→ O(1)

x0−−−−→ O(2) −−−−→ · · · Oninclu-
sions

In this diagram, the vertical arrows are bijections and the horizontal arrows are injective. The limit of the upper
directed set is the module whose sections are allowed to have arbitrary poles on H . This is also the module
j∗OU0 , where j denotes the inclusion of the standard affine open set U0 into X (see (6.5.9) (iii)):

(6.7.14) limequal-
sjstar

lim−→O(nH) = j∗OU0
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The next diagram is obtained by tensoring Diagram 6.7.13 withM.

(6.7.15)

M −−−−→ M(H) −−−−→ M(2H) −−−−→ · · ·∥∥∥ x0

y x2
0

y
M 1⊗x0−−−−→ M(1)

1⊗x0−−−−→ M(2) −−−−→ · · ·

Mnmaps

Here, the vertical maps are bijective, but becauseMmay have torsion, the horizontal maps needn’t be injective.
However, since tensor products are compatible with limits,

(6.7.16)limjstar lim−→M(nH) = lim−→M⊗O O(nH) =M⊗O j∗O ≈ j∗MU0

The last isomorphism needs explanation:

6.7.17. Lemma.Mjstare-
qualjs-

tarM

Let M be an O-module on projective space, and let U j−→ Pd be the inclusion of the
standard affine open set U = U0. ThenM⊗O j∗OU and j∗MU are isomorphic.

proof. Let α ⊗ f be a section ofM⊗ j∗OU on an open set V , where α is a section ofM on V and and f is
a regular function on V ∩ U. Then, denoting the restriction of α to V ∩ U by the same symbol, αf will be a
section ofM on V ∩U and therefore a section of j∗MU on V . Sending α⊗f to αf defines a homomorphism
M⊗O j∗Obbu → j∗MU. To show that this map is an isomorphism, it suffices to verify that it defines a
bijective map on each of the standard affine open sets Ui. We leave the case i = 0 as exercise and look at U1.
On that open set, the coordinate algebra is C[v0, ..., vd] with v= = xi/x1. and v1 = 1. Let M0 = M(U0).
Then [j∗MU](U1) = M0[v−1

0 ]. Also, [j∗OU0 ](U1) = O(U0 ∩ U1), so by definition of the tensor product,

[M⊗O j∗OU0 ](U1) =M(U1)⊗O(U1) O(U0 ∩ U1) =M(bbu1 ∩ U0) = M0[v−1
0 ] �

(6.7.18)generators generating an O-module

LeM be an O-module on a variety X , and let m = (m1, ...,mk) be a set of global sections ofM. This
set defines a map

(6.7.19) Ok m−→Mgen

n that sends a section (α1, ..., αk) of Ok on an open set to the combination
∑
αimi. The global sections

m1, ...,mk generateM if this map is surjective. If the sections generateM, then they (more precisely, their
restrictions), generate the O(U)-moduleM(U) for every affine open set U . They may fail to generateM(U)
when U isn’t affine.

6.7.20. Example.generate-
example

Let X = P1. For n ≥ 0, the global sections of the twisting moduleO(n) are the polynomi-

als of degree n in the coordinate variables x0, x1 (6.7.2). Consider the map O2 (xn0 ,x
n
1 )−→ O(n). On U0, O(n)

has basis xn0 . Therefore this map is surjective on U0. Similarly, it is surjective on U1. So it is a surjective map
on all of X (6.3.6). The global sections xn0 , x

n
1 generate O(n). However, the global sections of O(n) are the

homogeneous polynomials of degree n. When n > 1, the two sections xn0 , x
n
1 don’t span the space of global

sections, and the map O2 (xn0 ,x
n
1 )−→ O(n) isn’t surjective. �

The next theorem explains the importance of the twisting operation.

6.7.21. Theorem.gentwist LetM be a finite O-module on a projective variety X . For large k, the twistM(k) is
generated by global sections.

proof. We may assume that X is projective space Pn.
We are to show that ifM is a finite O-module, the global sections generateM(k) when k is large, and it

suffices to show that for each i = 0, ..., n, the restrictions of those global sections to Ui generate the O(Ui)-
module [M(k)](Ui) (6.3.6). We work with the index 0 as usual.
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We replaceM(k) by the isomorphic moduleM(kH). We recall that the restriction ofM(kH) to U0 is
equal toMU0 . and that lim−→M(kH) = j∗MU0 .

Let A0 = O(U0), and M0 =M(U0). The global sections of j∗MU0 are the sections ofM on U0, which
we are denoting by M0. We choose a finite set of generators m1, ...,mr for the finite A0-module M0. These
generators are global sections of j∗MU0 , and since lim−→M(kH) = j∗MU0 , the sections mi are represented
by global sections m′1, ...,m

′
r ofM(kH) when k is large. The restrictions of mi and m′i to U0 are equal, so

the restrictions of m′1, ...,m
′
r generate M0 too. Then M0 is generated by global sections ofM(kH), as was

to be shown. �

6.8 Proof of Theorem 6.3.2.
proveex-
tensionThe statement to be proved is that an O-moduleM on a variety X has a unique extension to a functor

(opens) M̃−→ (modules)

that has the sheaf property (6.3.5),(6.3.10) and that a homomorphismM → N of O-modules has a unique
extension to a homomorphism M̃ → Ñ .

The proof has the following steps:

1. Verification of the sheaf property for a covering of an affine open set by localizations.
2. Extension of the functorM to all morphisms between affine open sets.

3. Definition of M̃.

Step 1. (the sheaf property for a covering of an affine open set by localizations)
###has this been done before??###
Suppose that an affine open set Y = SpecA is covered by a family of localizations U0 = {Usi}, etM

be an O-module, and let M = M(Y ), Mi = M(Usi), and Mij = M(Usisj ). The exact sequence that
expresses the sheaf property for the covering diagram Y ←− U0 ⇔ U1 becomes

(6.8.1) localize-
module

0→M
α−→
∏

Mi
β−→
∏

Mij

In this sequence, the map α sends an element m of M to the vector (m, ...,m) of its images in
∏
iMi, and β

sends a vector (m1, ...,mk) in
∏
iMi to the matrix (zij), with zij = mj −mi in Mij To be precise, Mi and

Mj map to Mij , and zij is the difference of their images. We must show that the sequence (6.8.1) is exact.

exactness at M : Since the open sets U i cover Y , the elements s1, ..., sk generate the unit ideal. Let m be
an element of M that maps to zero in every Mi. Then there exists an n such that snim = 0, and we can
use the same exponent n for all i. The elements sni generate the unit ideal. Writing

∑
ais

n
i = 1, we have

m =
∑
ais

n
im =

∑
ai0 = 0.

exactness at
∏
Mi: Let mi be elements of Mi such that mj = mi in Mij for all i, j. We must find an element

w in M that maps to mj in Mj for every j.
We write mi as a fraction: mi = s−ni xi, or xi = snimi, with xi in M , using the same integer n for all i.

The equation mj = mi in Mij tells us that sni xj = snj xi in Mij , and then (sisj)
rsni xj = (sisj)

rsnj xi will be
true in M , if r is large (see 2.6.11).

We adjust the notation. Let x̃i = srixi, and s̃i = sr+ni . Then in M , x̃i = s̃imi and s̃j x̃i = s̃ix̃j . The
elements s̃i generate the unit ideal So there is an equation in A, of the form

∑
ais̃i = 1. Let w =

∑
aix̃i.

This is an element of M , and
x̃j =

(∑
i

ais̃i
)
x̃j =

∑
i

ais̃j x̃i = s̃jw

Since mj = s̃−1
j x̃j , mj = w is true in Mj . Since j is arbitrary, w is the required element of M . �

Step 2. (extending an O-module to all morphisms between affine open sets)

TheO-moduleM comes with localization mapsM(U)→M(Us). It doesn’t come with homomorphisms
M(U)→M(V ) when V → U is an arbitrary inclusion of affine open sets. We define those maps here.
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Let M be an O-module and let V → U be an inclusion of affine open sets. To describe the canonical
homomorphism M(U) → M(V ), we cover V by a family V0 = {V i} of open sets that are localizations
of U and therefore also localizations of V , and we inspect the covering diagram V ← V0 ⇔ V1 and the

corresponding exact sequence 0 → M(V )
α−→ M(V0)

β−→ M(V1). We add the map V → U to the
covering diagram:

U ← V ← V0 ⇔ V1

Since V i are localizations of U and V ij are localizations of V i and of V j , the O-module M comes with
maps M(U)

ψ−→ M(V0) ⇒ M(V1). Let ψ be the map M(U) → M(V0). The two composed maps
U ← V ⇔ V1 are equal, and so are the mapsM(U) ⇒M(V1). Their difference, which is βψ, is the zero
map. Therefore ψ mapsM(U) to the kernel of β which, according to Step 1, isM(V ). This gives us a map
M(U)

η−→M(V ) that makes a diagram

M(U)
η−−−−→ M(V )∥∥∥ α

y
M(U)

ψ−−−−→ M(V0)

Both ψ and α are compatible with multiplication by a regular function f on U , and α is injective. So η is also
compatible with multiplication by f .

We must check that η is independent of the covering V0. Let V′0 = {V ′j} be another covering of V by
localizations of U . We cover each of the open sets V i ∩V ′j by localizations W ijν of U . Taken together, these
open sets form a covering W0 of V . We have a map W0

ε−→ V0 that gives us a diagram

V ←−−−− V0 V1∥∥∥ y y
V ←−−−− W0 W1

and therefore a diagram

(6.8.2)compare-
cov

0 −−−−→ M(V ) −−−−→ M(V0)
βV−−−−→ M(V1)∥∥∥ y y

0 −−−−→ M(V ) −−−−→ M(W0)
βW−−−−→ M(W1)

whose rows are exact sequences. HereM(U) maps to the kernels of βV and βW, both of which are equal to
M(V ). Looking at the diagram, one sees that the map M(U) → M(W0) is the composition of the maps
M(U) → M(V0) → M(W0). Therefore the mapsM(U) → M(V ) defined using the two coverings V0

and W0 are equal.

We show that this extended functor has the sheaf property for an affine covering U0 = {U i} of an affine
variety U . Let V0 be a covering of U that is obtained by covering each U i by localizations of U . This gives us
a diagram

0 −−−−→ M(U) −−−−→ M(U0) −−−−→ M(U1)∥∥∥ β

y γ

y
0 −−−−→ M(U) −−−−→ M(V0) −−−−→ M(V1)

Because V0 covers U0, V1 covers U1 as well. So the maps β and γ are injective. Step 1 tells us that the bottom
row is exact. Then Lemma 6.3.16 (ii) shows that the top row is exact.

Step 3. (definition of M̃)

Let Y be an open subset of X . We use the sheaf property to define M̃(Y ). We choose a (finite) covering

U0 = {U i} of Y by affine open sets, and we define M̃(Y ) to be the kernel KU of the map M(U0)
βU−→
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M(U1), where βU is the map described in (??). When we show that this kernel is independent of the covering
U0, it will follow that M̃ is well-defined, and that it has the sheaf property.

Let W0 = {W ν} be another covering of Y by affine open sets. One can go from U0 to V0 and back in a
finite number of steps, each of which changes a covering by adding or deleting a single affine open set.

We consider a family W0 = {U i, V } obtained by adding one affine open subset V of Y to U0, and we let
W1 be the family of intersections of pairs of elements of W0. Then with notation as above, we have a map
KW → KU. We show that, for any element (ui) in the kernel KU, there is a unique element v inM(V ) such
that ((ui), v) is in the kernel KW. This will show that KW = KU.

To define the element v, we let V i = U i ∩ V . Since U0 = {U i} is a covering of Y , V0 = {V i} is a
covering of V by affine open sets. Let vi be the restriction of the section ui to V i. Since (ui) is in the kernel
of βU, ui = uj on U ij . Then it is also true that vi = vj on the smaller open set V ij . So (vi) is in the kernel

of the mapM(V0)
βV−→M(V1), and since V0 is a covering of the affine variety V by affine open sets, Step 2

tells us that the kernel isM(V ). So there is a unique element v inM(V ) that restricts to vi on V i. With this
element V , (ui, v) is in the kernel of βW.

When the subsets in the family W1 are listed in the order

W1 = {U i ∩ U j}, {V ∩ U j}, {U i ∩ V }, {V ∩ V }

the map βW sends ((ui), v) to ((uj − ui), (uj − v), (v − ui), 0), restricted appropriately. Here ui = uj on
U i ∩ U j because (ui) is in the kernel of βU, and uj = vj = v on U j ∩ V = V i by definition.

This completes the proof of Theorem 6.3.2. �
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Chapter 7 COHOMOLOGY

cohomol-
ogy July8

7.1 Cohomology
7.2 Complexes
7.3 Characteristic Properties of Cohomology
7.4 Existence of Cohomology
7.5 Cohomology of the Twisting Modules
7.6 Cohomology of Hypersurfaces
7.7 Three Theorems about Cohomology
7.8 Bézout’s Theorem

7.1 Cohomology
cohqcoh

In a classic 1956 paper “Faisceaux Algébriques Cohérents”, Serre showed that the Zariski topology could be
used to define cohomology of O-modules on a variety. This cohomology is the topic of the chapter. By the
way, the Zariski topology has limited use for cohomology with other coefficients. In particular, the constant
coefficient cohomology Hq(X,Z) in the Zariski topology is zero for all q > 0.

LetM be an O-module on a variety X . The zero-dimensional cohomology ofM is the spaceM(X) of
its global sections. When speaking of cohomology, one denotes that space by H0(X,M).

The functor
(O-modules) H0

−→ (vector spaces)

that carries an O-moduleM to H0(X,M) is left exact: If

(7.1.1) 0→M→N → P → 0SS

is an exact sequence of O-modules, the associated sequence of global sections

(7.1.2) 0→ H0(X,M)→ H0(X,N )→ H0(X,P)globalsec-
tions

is exact. But unless X is affine, the map H0(X,N )→ H0(X,P) needn’t be surjective. The cohomology is a

sequence of functors (O-modules) Hq−→ (vector spaces),

H0, H1, H2, . . .

beginning with H0, one for each dimension, that compensates for the lack of exactness in the following way:

(a) To every short exact sequence (7.1.1) ofO-modules, there is an associated long exact cohomology sequence

(7.1.3) 0→ H0(X,M)→ H0(X,N )→ H0(X,P)
δ0−→HSS

δ0−→ H1(X,M)→ H1(X,N )→ H1(X,P)
δ1−→

141



· · · · ·
δq−1

−→ Hq(X,M)→ Hq(X,N )→ Hq(X,P)
δq−→ · · ·

The maps δq in this sequence are the coboundary maps.

(b) Given a (commutative) diagram

0 −−−−→ M −−−−→ N −−−−→ P −−−−→ 0y y y
0 −−−−→ M′ −−−−→ N ′ −−−−→ P ′ −−−−→ 0

whose rows are short exact sequences of O-modules, there is a map of cohomology sequences

(7.1.4)

deltadia-
gram

· · · −−−−→ Hq(X,N ) −−−−→ Hq(X,P)
δq−−−−→ Hq+1(X,M) −−−−→ Hq+1(X, cn) −−−−→ · · ·y y y y

· · · −−−−→ Hq(X,N ′) −−−−→ Hq(X,P ′) δq−−−−→ Hq+1(X,M′) −−−−→ Hq+1(X, cn) −−−−→ · · ·

Most of this diagram arises from the fact that theHq are functors. The only property that doesn’t follow is that
the squares

(7.1.5) deltadia-
gram

Hq(X,P)
δq−→Hq+1(X,M)y y

Hq(X,P ′) δq−→Hq+1(X,M′)

that involve the coboundary maps δ commute.
Thus a map of exact sequences of O-modules induces a map of cohomology sequences.

A sequence Hq , q = 0, 1, ... of functors fromO-modules to vector spaces that comes with long cohomol-
ogy sequences for every short exact sequence of O-modules is called a cohomological functor .

Unfortunately, there is no natural construction of the cohomology. We present a construction in Section
7.4, but it isn’t canonical. Though one needs to look at an explicit construction at times, it is usually best to
work with the characteristic properties that are described below, in the Section 7.3.

The cohomology H1 in dimension one has an interesting interpretation that you can read about if you like.
We won’t use it. The higher cohomology Hq has no useful direct interpretation.

7.2 Complexes
complexes

We need complexes because they are used in the construction of cohomology.
A complex of vector spaces is a sequence of homomorphisms of vector spaces

(7.2.1) · · · → V n−1 dn−1

−→ V n
dn−→ V n+1 dn+1

−→ · · · complex-
one

indexed by the integers, such that the composition dndn−1 of adjacent maps is zero: The image of dn−1 is
contained in the kernel of dn. Such a complex may be denoted by V •.

The q-dimensional cohomology of a complex V • is the quotient

(7.2.2) Cq(V •) = (ker dq)/(im dq−1). cohcoplx-
one

An exact sequence of vector spaces is a complex whose cohomology is zero.
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A finite sequence of homomorphisms (7.2.1), V k dk−→ V k+1 · · · d
`−1

−→ V `, such that the compositions
dndn−1 are zero can be made into a complex by defining V n = 0 for all other integers n. In all of the
complexes we consider, V q will be zero when q < 0.

A homomorphism of vector spaces V 0 d0−→ V 1 can be made into the complex

· · · → 0→ V 0 d0−→ V 1 → 0→ · · ·

For this complex, C0 = ker d0, C1 = coker d0, and Cq = 0 for all other q.

A map V •
ϕ−→ V ′

• of complexes is a collection of homomorphisms V n
ϕn−→ V ′

n making a diagram

−−−−→ V n−1 dn−1

−−−−→ V n
dn−−−−→ V n+1 −−−−→ · · ·

ϕn−1

y ϕn
y ϕn+1

y
−−−−→ V ′

n−1 d′n−1

−−−−→ V ′
n d′n−−−−→ V ′

n+1 −−−−→ . . .

A map of complexes induces maps on the cohomology

Cq(V •)→ Cq(V ′
•
)

because ker dq maps to ker d′
q and im dq maps to im d′

q .
A sequence

(7.2.3) · · · → V •
ϕ−→ V ′

• ψ−→ V ′′
• → · · ·exseqcplx

of maps of complexes consists of maps

(7.2.4)mapcplx · · · → V q
ϕq−→ V ′

q ψq−→ V ′′
q → · · ·

for each q. A sequence of maps of complexes is exact if those sequences (7.2.4) are exact for every q.

7.2.5. Proposition.cohcplx
Let 0 → V • → V ′

• → V ′′
• → 0 be a short exact sequence of complexes. For every q, there are maps

Cq(V ′′
•
)

δq−→ Cq+1(V •) such that the sequence

→ C0(V •)→ C0(V ′
•
)→ C0(V ′′

•
)

δ0−→ C1(V •)→ C1(V ′
•
)→ C1(V ′′

•
)

δ1−→ C2(V •)→ · · ·

is exact.

The proof of the proposition is below.
The long exact sequence is the cohomology sequence associated to the short exact sequence of complexes.

This proposition makes the set of functors {Cq} into a cohomological functor on the category of complexes.

7.2.6. Example.snakeco-
homology

We make the Snake Lemma 5.1.2 into a cohomology sequence. Suppose given a diagram

V
u−−−−→ V ′ −−−−→ V ′′ −−−−→ 0

f

y f ′
y f ′′

y
0 −−−−→ W −−−−→ W ′ −−−−→

v
W ′′

with exact rows. We form the complex 0 → V
f−→ W → 0 with V in degree zero, so that C0(V •) = ker f

and C1(V •) = coker f . When we do the analogous thing for the maps f ′ and f ′′, the Snake Lemma becomes
an exact sequence

C0(V •)→ C0(V ′
•
)→ C0(V ′′

•
)→ C1(V •)→ C1(V ′

•
)→ C1(V ′′

•
)
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proof of Proposition 7.2.5. Let

V • = {· · · → V q−1 dq−1

−→ V q
dq−→ V q+1 dq+1

−→ · · · }

be a complex, let Bq be the image of dq−1, and let Zq be the kernel of dq . So Bq ⊂ Zq ⊂ V q . The
cohomology of the complex is Cq(V •) = Zq/Bq . Let Dq be the cokernel V q/Bq of dq−1, o that we have an
exact sequence

0→ Bq → V q → Dq → 0

The map V q dq−→ V q+1 factors therouh Dq because Bq ⊂ Zq , and its image is in Zq+1. This gives us a

map Dq fq−→ Zq+1 such that dq is the composition of three maps

V q
πq−→ Dq fq−→ Zq+1 iq+1

−→ V q+1

where πq is the projection from V q to Dq and iq+1 is the inclusion of Zq+1 into V q+1. Studying these maps,
one sees that

(7.2.7) Cq(V •) = ker fq and Cq+1(V •) = coker fq. hiskerand-
coker

Suppose given a short exact sequence of complexes 0 → V • → V ′
• → V ′′

• → 0 as in the proposition.
In the diagram below, the rows are exact because cokernel is a right exact functor and kernel is a left exact
functor.

Dq −−−−→ D′
q −−−−→ D′′

q −−−−→ 0

fq
y f ′q

y f ′′q
y

0 −−−−→ Zq+1 −−−−→ Z ′
q+1 −−−−→ Z ′′

q+1

When we apply (7.2.7) and the Snake Lemma to this diagram, we obtain an exact sequence

Cq(V •)→ Cq(V ′
•
)→ Cq(V ′′

•
)

δq−→ Cq+1(V •)→ Cq+1(V ′
•
)→ Cq+1(V ′′

•
)

The cohomology sequence associated to the short exact sequence of complexes is obtained by splicing these
sequences together. �

The coboundary maps δq in cohomology sequences are related in a natural way. If

0 −−−−→ U• −−−−→ U ′
• −−−−→ U ′′

• −−−−→ 0y y y
0 −−−−→ V • −−−−→ V ′

• −−−−→ V ′′
• −−−−→ 0

is a diagram of maps of complexes whose rows are short exact sequences, the diagrams

Cq(U ′′
•
)
δq−→Cq+1(U•)y y

Cq(V ′′
•
)
δq−→Cq+1(V •)

commute. It isn’t difficult to check this. Thus a map of short exact sequences induces a map of cohomology
sequences.

7.3 Characteristic Properties of Cohomology
charpropcharprop

The cohomology Hq(X, · ) of O-modules, the sequence of functors H0, H1, H2, · · · from (O-modules) to
(vector spaces), is characterized by the three properties below. The first two have already been mentioned.

(7.3.1) charpro-
pone

Characteristic Properties
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1. H0(X,M) is the spaceM(X) of global sections ofM.
2. The sequence H0, H1, H2, · · · is a cohomological functor on O-modules: A short exact sequence of
O-modules produces a long exact cohomology sequence.

3. Let Y
f−→ X be the inclusion of an affine open subset Y into X , letN be an OY -module, and let f∗N be

its direct image on X . The cohomology Hq(X, f∗N ) is zero for all q > 0.

When Y is an affine variety, the global section functor is exact. If 0 → M → N → P → 0 is a short
exact sequence of O-modules on Y , the sequence

0→ H0(Y,M)→ H0(Y,N )→ H0(Y,P)→ 0

is exact. There is no need for the higher cohomology Hq . One may as well define Hq(Y, ·) = 0 to be zero
when Y is affine and q > 0. The third characteristic property is based on this observation.

7.3.2. Theorem.existco-
hom

There exists a cohomology theory with the properties (7.3.1), and it is unique up to unique
isomorphism.

The proof is in the next section.

7.3.3. Corollary.cohze-
roaffine

If X is an affine variety, Hq(X,M) = 0 for all O-modulesM and all q > 0.

This follows when one applies the third characteristic property to the identity map X → X . �

7.3.4. Example. Let j be the inclusion of the standard affine open set U0 into projective space X . The third
property tells us that the cohomology Hq(X, j∗OU0) of the direct image j∗OU0 is zero when q > 0. The
direct image is isomorphic to the limit lim−→OX(nH) (6.7.13). We will see below (7.4.26) that cohomology
commutes with direct limits. Therefore lim−→Hq(X,OX(nH)) and lim−→Hq(X,OX(n)) are zero when q > 0.
This will be useful.

Intuitively, the third property tells us that allowing poles on the complement of an affine open set kills
cohomology in positive dimension. �

7.4 Existence of Cohomology
constrcoh The proof of existence of cohomology and its uniqueness are based on the following facts:

• The intersection of two affine open subsets of a variety is an affine open set.

• A sequence · · · → M → N → P → · · · of O-modules on a variety X is exact if and only if, for every
affine open subset U , the sequence of sections · · · → M(U) → N (U) → P(U) → · · · is exact. This is the
definition of exactness.

We begin by choosing an arbitrary affine covering U = {Uν} of our varietyX by finitely many affine open
sets Uν , and we use this covering to describe the cohomology. When we have shown that the cohomology is
unique, we will know that it doesn’t depend on our choice of covering.

Let U j−→ X denote the inclusions Uν
jν−→ X of our chosen affine open sets into X . If M is an O-

module, RM will denote the O-module j∗MU =
∏
jν∗MUν , whereMUν is the restriction ofM to Uν . As

has been noted (6.5.9), there is a canonical mapM→ jν∗MUν , and therefore a canonical mapM→RM.

7.4.1. Lemma.defcalr (i) Let X ′ be an open subset of X . The module of sectionsRM(X ′) ofRM on X ′ is is the
product

∏
νM(X ′ ∩ Uν). In particular, the space of global sections RM(X), which is H0(X,RM), is the

product
∏
νM(Uν).

(ii) The canonical mapM→RM is injective. Thus, if SM denotes the cokernel of that map, there is a short
exact sequence of O-modules

(7.4.2)MRze-
roMone

0→M→RM → SM → 0

(iii) For any cohomology theory with the characteristic properties and for any q > 0, Hq(X,RM) = 0.
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proof. (i) This is seen by going through the definitions:

R(X ′) =
∏
ν [jν∗MUν ](X ′) =

∏
νMUν (X ′ ∩ Uν) =

∏
νM(X ′ ∩ Uν).

(ii) Let X ′ be an open subset of X . The map M(X ′) → RM(X ′) is the product of the restriction maps
M(X ′)→M(X ′ ∩ Uν). Because the open sets Uν cover X , the intersections X ′ ∩ Uν cover X ′. The sheaf
property ofM tells us that the mapM(X ′)→

∏
νM(X ′ ∩ Uν) is injective.

(iii) This follows from the third characteristic property. �

7.4.3. Lemma. Rcminjec-
tive

(i) A short exact sequence 0→M→N → P → 0 of O-modules embeds into a diagram

(7.4.4)

M −−−−→ N −−−−→ Py y y
RM −−−−→ RN −−−−→ RPy y y
SM −−−−→ SN −−−−→ SP

ttdiagr

whose rows and columns are short exact sequences. (We have suppressed the surrounding zeros.)
(ii) The sequence of global sections 0→ RM(X)→ RN (X)→ RP(X)→ 0 is exact.

proof. (i) We are given that the top row of the diagram is a short exact sequence, and we have seen that the
columns are short exact sequences. To show that the middle row

(7.4.5) 0→ RM → RN → RP → 0 Rsequence

is exact, we must show that if X ′ is an affine open subset, the sections on X ′ form a short exact sequence. The
sections are explained in Lemma 7.4.1 (i). Since products of exact sequences are exact, we must show that the
sequence

0→M(X ′ ∩ Uν)→ N (X ′ ∩ Uν)→ P(X ′ ∩ Uν)→ 0

is exact. This is true because X ′ ∩ Uν is an intersection of affine opens, and is therefore affine.
Now that we know that the first two rows of the diagram are short exact sequences, the Snake Lemma tells

us that the bottom row of the diagram is a short exact sequence.

(ii) The sequence of of global sections is the product of the sequences

0→M(Uν)→ N (Uν)→ P(Uν)→ 0

These sequences are exact because the open sets Uν are affine. �

(7.4.6) uniquecohuniqueness of cohomology

Suppose that a cohomology with the characteristic properties (7.3.1) is given, and letM be an O-module.
The cohomology sequence associated to the sequence 0→M→RM → SM → 0 is

0→ H0(X,M)→ H0(X,RM)→ H0(X,SM)
δ0−→ H1(X,M)→ H1(X,RM)→ · · ·

Lemma 7.4.1 (iii) tells us that Hq(X,RM) = 0 when q > 0. So this cohomology sequence breaks up into an
exact sequence

(7.4.7) 0→ H0(X,M)→ H0(X,RM)→ H0(X,SM)
δ0−→ H1(X,M)→ 0 hone

and isomorphisms

(7.4.8) 0→ Hq(X,SM)
δq−→ Hq+1(X,M)→ 0 hq
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for every q > 0. The first three terms of the sequence (7.4.7), and the arrows connecting them, depend on
our choice of covering of X , but the important point is that they don’t depend on the cohomology. So that
sequence determines H1(X,M) up to unique isomorphism as the cokernel of a map that is independent of the
cohomology, and this is true for every O-moduleM, including for the module SM. Therefore it is also true
that H1(X,SM) is determined uniquely. This being so, H2(X,M) is determined uniquely for everyM, by
the isomorphism (7.4.8), with q = 1. The isomorphisms (7.4.8) determine the rest of the cohomology up to
unique isomorphism by induction on q. �

(7.4.9)existcoh construction of cohomology

One can use the sequence (7.4.2) and induction to construct cohomology, but it seems clearer to proceed
by iterating the construction ofRM.

LetM be an O-module. We rewrite the exact sequence (7.4.2), labelingRM asR0
M, and SM asM1:

(7.4.10)MtoR-
toMone

0→M→R0
M →M1 → 0

and we repeat the construction withM1. LetR1
M = R0

M1 (= j∗M1
U), so that there is an exact sequence

(7.4.11)cmonese-
quence

0→M1 → R1
M →M2 → 0

analogous to the sequence (7.4.10), withM2 = R1
M/M1. We combine the sequences (7.4.10) and (7.4.11)

into an exact sequence

(7.4.12) 0→M→R0
M → R1

M →M2 → 0RMone

Then we letR2
M = R0

M2 . We continue in this way, to construct modulesRkM that form an exact sequence

(7.4.13) 0→M→R0
M → R1

M → R2
M → · · ·RM

The next lemma follows by induction from Lemmas 7.4.1 and 7.4.3.

7.4.14. Lemma.Rcmexact
(i) Let 0→M→N → P → 0 be a short exact sequence of O-modules. For every n, the sequences

0→ RnM → RnN → RnP → 0

are exact, and so are the sequences of global sections

0→ RnM(X)→ RnN (X)→ RnP(X)→ 0

(ii) If H0, H1, ... is a cohomology theory, then Hq(X,RnM) = 0 for all n and all q > 0. �

An exact sequence such as (7.4.13) is called a resolution ofM, and becauseHq(X,RnM) = 0 when q > 0,
it is called an acyclic resolution.

Continuing with the proof of existence, we consider the complex of O-modules R•M that is obtained by
omitting the first term from (7.4.13):

(7.4.15) 0→ R0
M → R1

M → R2
M → · · ·Rse-

quencetwo
and the complexR•M(X) of its global sections:

(7.4.16) 0→ R0
M(X)→ R1

M(X)→ R2
M(X)→ · · ·RMX

which we can also write as

0→ H0(X,R0
M)→ H0(X,R1

M)→ H0(X,R2
M)→ · · ·
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The sequence R•M becomes the resolution (7.4.13) when the moduleM is inserted. So the complex (7.4.15)
is exact except at R0

M. But the global section functor is only left exact, and the sequence (7.4.16) of global
sections R•M(X) needn’t be exact anywhere. However, it is a complex because R•M is a complex. The
composition of adjacent maps is zero.

Recall that the cohomology of a complex 0 → V 0 d0−→ V 1 d1−→ · · · of vector spaces is defined to be
Cq(V •) = (ker dq)/(im dq−1), and that {Cq} is a cohomological functor on complexes (7.2.5).

7.4.17. Definition. definecohThe cohomology of an O-moduleM is the cohomology of the complexR•M(X):

Hq(X,M) = Cq(R•M(X))

Thus if we denote the maps in the complex (7.4.16) by dq ,

0→ R0
M(X)

d0−→ R1
M(X)

d1−→ R2
M(X)→ · · ·

then Hq(X,M) = (ker dq)/(im dq−1).

7.4.18. Lemma. affineco-
hzero

Let X be an affine variety. With cohomology defined as above, Hq(X,M) = 0 for all
O-modulesM and all q > 0.

proof. When X is affine, the sequence of global sections of the exact sequence (7.4.13) is exact. �

To show that our definition gives the (unique) cohomology, we verify the three characteristic properties.
Since the sequence (7.4.13) is exact and since the global section functor is left exact,M(X) is the kernel of
the mapR0

M(X)→ R1
M(X), and this kernel is also equal to C0(R•M(X)). So our cohomology has the first

property: H0(X,M) =M(X).

To show that we obtain a cohomological functor, we apply Lemma 7.4.14 to conclude that, for a short
exact sequence 0→M→N → P → 0, the global sections

(7.4.19) 0→ R•M(X)→ R•N (X)→ R•P(X)→ 0, crtwo

form an exact sequence of complexes. The cohomology Hq(X, · ) is a cohomological functor because coho-
mology of complexes is a cohomological functor.

We make a digression before verifying the third characteristic property.

(7.4.20) affine morphisms
affinemorph

Let Y
f−→ X be a morphism of varieties. Let U

j−→ X be the inclusion of an open subvariety into X and
let V be the inverse image f−1U , which is an open subvariety of Y . These varieties and maps form a diagram

(7.4.21) jstarfstar

V
i−−−−→ Y

g

y f

y
U

j−−−−→ X

As before, the notationMU stands for the restriction ofM to an open subset U .
With notation as in the diagram above, let N be an OY -module. When we restrict the direct image f∗N

of N to U , we obtain an OU -module [f∗N ]U . We can obtain an OU -module in a second way: First restrict
the module N to the open subset V of Y , and then take its direct image g∗[NV ].

7.4.22. Lemma. jstarfs-
tartwo

The OU -modules g∗[NV ] and [f∗N ]U are the same.

proof. Let U ′ be an open subset of U , and let V ′ = g−1U ′. Then

[f∗N ]U (U ′) = [f∗N ](U ′) = N (V ′) = NV (V ′) = [g∗[NV ]](U ′) �
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7.4.23. Definition.de-
faffmorph

An affine morphism is a morphism Y
f−→ X of varieties with the property that the inverse

image f−1(U) of every affine open subset U of X is an affine open subset of Y . �

The following are examples of affine morphisms:

• the inclusion of an affine open subset Y into X ,
• the inclusion of a closed subvariety Y into X ,
• a finite morphism, or an integral morphism.

But, the inclusion of a nonaffine open set may not be an affine morphism, and if Y is a closed subset of Pn×X ,
the projection Y → X will not be an affine morphism unless its fibres are finite, in which case Chevalley’s
Finitenss Theorem tells us that it is a finite morphism.

7.4.24. Lemma.fs-
taraffmorph

Lert Y
f−→ C be an affine morphism and let N → N ′ → N ′′ be an exact sequence of

OY -modules The sequence of direct images f∗N → f∗N ′ → f∗N ′′ is exact. �

Let Y
f−→ X be an affine morphism, let j be the map from our chosen affine covering U = {Uν} to X ,

and let V denote the family {V ν} = {f−1Uν} of inverse images. Then V is an affine covering of Y , and
there is a morphism V g−→ U. We form a diagram analogous to (7.4.21), in which V and U replace V and U ,
respectively:

V i−−−−→ Y

g

y f

y
U j−−−−→ X

7.4.25. Proposition.affinedi-
rectimage

Let Y
f−→ X be an affine morphism, and let N be an OY -module. Let Hq(X, · )

be cohomology defined in (7.4.17), and let Hq(Y, · ) be cohomology defined in the analogous way, using the
covering V of Y . Then Hq(X, f∗N ) is isomorphic to Hq(Y,N ).

proof. This proof is easy, except that one has to untangle the notation.
To compute the cohomology of f∗N on X , we substituteM = f∗N into (7.4.17):

Hq(X, f∗N ) = Cq(R•f∗N (X)).

To compute the cohomology of N on Y , we let

R′0N = i∗[NV ]

and we continue, to construct a resolution R′•N = 0 → N → R′0N → R′
1
N → · · · and the complex of its

global sectionsR′•N (Y ). The prime is there to remind us thatR′ is defined using the covering V of Y . Then

Hq(Y,N ) = Cq(R′•N (Y )).

It suffices to show that the complexesR•f∗N (X) andR′•N (Y ) are isomorphic. If so, we will have

Hq(X, f∗N ) = Cq(R•f∗N (X)) ≈ Cq(R′•N (Y )) = Hq(Y,N )

as required.
By definition of the direct image, [f∗R′qN ](X) = R′qN (Y ). So it suffices to show that Rqf∗N ≈ f∗R′qN .

We look back at the definition (7.4.11) of the modules R0 in its rewritten form (7.4.10). On Y , the analogous
sequence for N analogous to

0→ N → R′0N → N 1 → 0

whereR′0N = i∗NV. When f is an affine orphism, the direct image of this sequence is exact:

0→ f∗N → f∗R′
0
N → f∗N 1 → 0
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Here
f∗R′

0
N = f∗i∗NV = j∗g∗NV = j∗[f∗N ]U = R0

fcn

So f∗R′0N = R0
fcn

. Now induction on q applies. �

We go back to the proof of existence of cohomology to verify the third characteristic property, which is

that when Y
f−→ X is the inclusion of an affine open subset, Hq(X, f∗N ) = 0 for allOY -modulesN and all

q > 0. The inclusion of an affine open set is an affine morphism, so Hq(Y,N ) = Hq(X, f∗N ) (7.4.25), and
since Y is affine, Hq(Y,N ) = 0 for all q > 0 (7.4.18). �

Proposition 7.4.25 is one of the places where a specific construction of cohomology is used. The charac-
teristic properties don’t apply directly. The next proposition is another such place.

7.4.26. Lemma. cohlimitCohomology is compatible with limits of directed sets of O-modules: Hq(X, lim−→M•) ≈
lim−→Hq(X,M•) for all q.

proof. The direct and inverse image functors and the global section functor are all compatible with lim−→ , and
lim−→ is exact (??). So the module Rqlim−→M•

that is used to compute the cohomology of lim−→M• is isomorphic

to lim−→ [RqM• ] and Rqlim−→M•
(X) is isomorphic to lim−→ [RqM• ](X). �

(7.4.27) unique-
cobound

uniqueness of the coboundary maps

We have constructed a cohomology {Hq} that has the characteristic properties, and we have shown that
the functors Hq are unique. We haven’t shown that the coboundary maps δq that appear in the cohomology
sequences are unique. To make it clear that there is something to show, we note that the cohomology sequence
(7.1.3) remains exact when some of the coboundary maps δq are multiplied by −1. Why can’t we define a
new collection of coboundary maps by changing some signs? The reason we can’t do this is that we used
the coboundary maps δq in (7.4.7) and (7.4.8), to identify Hq(X,M). Having done that, we aren’t allowed
to change δq for the particular short exact sequences (7.4.2). We show that the coboundary maps for those
sequences determine the coboundary maps for every short exact sequence of O-modules

(A) 0→M−→ N −→ P → 0

The sequences (7.4.2) were rewritten as (7.4.10). We will use that form.
To show that the coboundaries for the sequence (A) are determined uniquely, we relate it to a sequence for

which the coboundary maps are fixed:

(B) 0→M−→ R0
M −→M1 → 0

We map (A) and (B) to a third short exact sequence

(C) 0→M ψ−→ R0
N −→ Q → 0

where ψ is the composition of the injective mapsM→N → R0
N and Q is the cokernel of ψ.

First, we inspect the diagram

(A) M −−−−→ N −−−−→ P∥∥∥ y y
(C) M ψ−−−−→ R0

N −−−−→ Q

and its diagram of coboundary maps

(A) Hq(X,P)
δqA−−−−→ Hq+1(X,M)y ∥∥∥

(C) Hq(X,Q)
δqC−−−−→ Hq+1(X,M)

150



This diagram shows that the coboundary map δqA for the sequence (A) is determined by the coboundary map
δqC for (C).

Next, we inspect the diagram

(7.4.28)BtoC

(B) M −−−−→ R0
M −−−−→ M1∥∥∥ u

y v

y
(C) M ψ−−−−→ R0

N −−−−→ Q

and its diagram of coboundary maps

(B) Hq(X,M1)
δqB−−−−→ Hq+1(X,M)y ∥∥∥

(C) Hq(X,Q)
δqC−−−−→ Hq+1(X,M)

When q > 0, δqC and δqB are bijective because the cohomology of R0
M and R0

N is zero in positive dimension.
Then δqC is uniquely determined by δqB , and so is δqA.

We have to look more closely to settle the case q = 0. The map labeled u in (7.4.28) is injective, and
the Snake Lemma shows that v is injective. The cokernels of u and v are isomorphic. We write both of the
cokernels as R0

P . When we add the cokernels to the diagram, and pass to cohomology, we obtain a diagram
whose relevant part is

(B) H0(X,R0
M) −−−−→ H0(X,M1)

δ0B−−−−→ H1(X,M)

u

y yv ∥∥∥
(C) H0(X,R0

N )
β−−−−→ H0(X,Q)

δ0C−−−−→ H1(X,M)yγ y
H0(X,R0

P) H0(X,R0
P)

The rows and columns in the diagram are exact. We want to show that the map δ0
C is determined uniquely by

δ0
B . It is determined by δ0

B on the image of v and it is zero on the image of β. To show that δ0
C is determined

by δ0
B , it suffices to show that the images of v and β together span H0(X,Q). This follows from the fact that

γ is surjective. Thus δ0
C is determined uniqely by δ0

B , and so is δ0
A. �

7.5 Cohomology of the Twisting Modules
cohprojsp

We determine the cohomology of the twisting modules O(d) on Pn here. As we will see, Hq(Pn,O(d)) is
zero for most values of q. This will help us to determine the cohomology of other modules.

Lemma 7.4.18 about vanishing of cohomology on an affine variety, and Lemma 7.4.25 about the direct
image via an affine morphism, were stated using a particular affine covering. Since we know that cohomology
is unique, that particular covering is irrelevant. Though it isn’t necessary, we restate those lemmas here as a
corollary:

7.5.1. Corollary.affineco-
hzerotwo

(i) On an affine variety X , Hq(X,M) = 0 for all O-modulesM and all q > 0.

(ii) Let Y
f−→ X be an affine morphism. If N is an OY -module, then Hq(X, f∗N ) and Hq(Y,N ) are

isomorphic. If Y is an affine variety, Hq(X, f∗N ) = 0 for all q > 0. �

One case in which (ii) applies is that f is the inclusion of a closed subvariety Y into X .

LetM be a finite O-module on projective space Pn. The twisting modules O(d) and the twistsM(d) =
M⊗O O(d) are isomorphic to the modules O(dH) andM(dH), respectively (6.7.11). They form maps of
directed sets
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O ⊂−−−−→ O(H)
⊂−−−−→ O(2H)

⊂−−−−→ · · ·

1

y x0

y x2
0

y
O x0−−−−→ O(1)

x0−−−−→ O(2)
x0−−−−→ · · ·

,

M −−−−→ M(H) −−−−→ M(2H) −−−−→ · · ·

1

y x0

y x2
0

y
M x0−−−−→ M(1)

x0−−−−→ M(2)
x0−−−−→ · · ·

(See (??)). The second diagram is obtained from the first one by tensoring withM. Let U denote the standard
affine open subset U0 of Pn, and let j be the inclusion of U into Pn. Then lim−→O(dH) ≈ j∗OU (??) and because
lim−→ is compatible with tensor products, lim−→M(dH) ≈ j∗MU (6.7.16). Since j is an affine morphism and
U0 is an affine open set, Hq(Pn, j∗OU) = 0 and Hq(Pn, j∗MU) = 0 for all q > 0.

The next corollary follows from the facts that M(d) is isomorphic to M(dH), and that cohomology is
compatible with direct limits (7.4.26).

7.5.2. Corollary. Onse-
quencetwo

For all projective varieties X , all O-modules M, and all q > 0 lim−→Hq(X,O(d)) = 0

and lim−→Hq(X,M(d)) = 0. �

7.5.3. Notation. dimnota-
tion

IfM is an O-module, we denote the dimension of Hq(X,M) by hq(X,M) or by hqM.
We can write hqM = ∞ if the dimension is infinite. However, in Section 7.7, we will see that whenM is a
finite O-module on a projective variety X , Hq(X,M) has finite dimension for every q.

7.5.4. Theorem. cohOd

(i) For d ≥ 0, h0(Pn,O(d)) =
(
d+n
n

)
and hq(Pn,O(d)) = 0 if q 6= 0.

(ii) For r > 0, hn(Pn,O(−r)) =
(
r−1
n

)
and hq(Pn,O(−r)) = 0 if q 6= n.

In particular, the case r = 1 in part (ii) asserts that hq(Pn,O(−1)) = 0 for all q.

proof. We have described the global sections of O(d) before: If d ≥ 0, H0(X,O(d)) is the space of homoge-
neous polynomials of degree d in the coordinate variables, and if d < 0, H0(X,O(d)) = 0 (see (6.7.2)).

(i) (the case d ≥ 0)

Let X = Pn, and let Y i−→ X be the inclusion of the hyperplane at infinity x0 = 0 into X . By induction
on n, we may assume that the theorem has been proved for Y , which is a projective space of dimension n−1.
We consider the exact sequence

(7.5.5) basecase0→ OX(−1)
x0−→ OX → i∗OY → 0

and its twists

(7.5.6) 0→ OX(d−1)
x0−→ OX(d)→ i∗OY (d)→ 0 Od

The twisted sequences are exact because they are obtained by tensoring (7.5.5) with the invertible O-modules
O(d). Because the inclusion i is an affine morphism, Hq(X, i∗OY (d)) ≈ Hq(Y,OY (d)).

The monomials of degree d in n+1 variables form a basis of the space of global sections ofOX(d). Setting
x0 = 0 and deleting terms that become zero gives us a basis of OY (d). Every global section of OY (d) is the
restriction of a global section of OX(d). The sequence of global sections

0→ H0(X,OX(d−1))
x0−→ H0(X,OX(d))→ H0(Y,OY (d))→ 0

is exact. This tells us that the map H1(X,OX(d−1)) −→ H1(X,OX(d)) is injective.
By induction on the dimension n, Hq(Y,OY (d)) = 0 for d ≥ 0 and q > 0. When combined with

the injectivity noted above, the cohomology sequence of (7.5.6) shows that the maps Hq(X,OX(d−1)) →
Hq(X,OX(d)) are bijective for every q > 0. Since the limits are zero (7.5.2), Hq(X,OX(d)) = 0 for all
d ≥ 0 and all q > 0.

(ii) (the case d < 0, or r > 0.)
We use induction on the integers r and n. We suppose the theorem proved for r, and we substitute d = −r
into the sequence (7.5.6):
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(7.5.7) 0→ OX(−(r+1))
x0−→ OX(−r)→ i∗OY (−r)→ 0Or

The base case r = 0 is the exact sequence (7.5.5). In the cohomology sequence associated to that sequence,
the terms Hq(X,OX) and Hq(Y,OY ) are zero when q > 0, and H0(X,OX) = H0(Y,OY ) = C. Therefore
Hq(X,OX(−1)) = 0 for every q. This proves (ii) for r = 1.

Our induction hypothesis is that, hn(X,O(−r)) =
(
r−1
n

)
and hq = 0 if q 6= n. By induction on n, we

may suppose that hn−1(Y,O(−r)) =
(
r−1
n−1

)
and hq(Y,O(−r)) = 0 if q 6= n − 1. Instead of displaying the

cohomology sequence associated to (7.5.7), we assemble the dimensions of cohomology into a table in which
the asterisks stand for entries that are to be determined:

(7.5.8)co-
hdimstwo

OX(−(r+1)) OX(−r) i∗OY (−r)

h0 : ∗ 0 0
...

...
...

...

hn−2 : ∗ 0 0

hn−1 : ∗ 0
(
r−1
n−1

)
hn : ∗

(
r−1
n

)
0

The second column is determined by induction on r and the third by induction on n. The cohomology sequence
shows that that

hn(X,O(−(r+1))) =
(
r−1
n−1

)
+
(
r−1
n

)
and that the other entries labeled with an asterisk are zero. The right side of this equation is equal to

(
r
n

)
. �

7.6 Cohomology of Hypersurfaces
cohhyper

We determine the cohomology of a plane projective curve first. Let X be the projective plane P2 and let
C

i−→ X denote the inclusion of a plane curve C of degree k. The ideal I of functions that vanish on C is
isomorphic to the twisting module OX(−k) (6.7.8). So one has an exact sequence

(7.6.1)coh-
planecurvetwo

0→ OX(−k)→ OX → i∗OC → 0

We form a table showing dimensions of the cohomology. Theorem 7.5.4 determines the first two columns, and
the cohomology sequence determines the last column.

(7.6.2)cohdims

OX(−k) OX i∗OC
h0 : 0 1 1

h1 : 0 0
(
k−1

2

)
h2 :

(
k−1

2

)
0 0

Since the inclusion of the curve C into the projective plane X is an affine morphism, hq(X, i∗OC) =
hq(C,OC). Therefore

h0(C,OC) = 1, h1(C,OC) =
(
k−1

2

)
, and hq = 0 when q > 1.

The dimension h1(C,OC), which is
(
k−1

2

)
, is called the arithmetic genus of C. It is denoted by pa (= pa(C)).

We will see later (8.8.2) that when C is a smooth curve, its arithmetic genus is equal to its topological genus:
pa = g. But the arithmetic genus of a plane curve of degree k is

(
k−1

2

)
also when the curve C is singular.

We restate the results as a corollary.

7.6.3. Corollary.coh-
planecurve

Let C be a plane curve of degree k. Then h0OC = 1, h1OC =
(
k−1

2

)
= pa, and hq = 0

if q 6= 0, 1. �

153



The fact that h0OC = 1 tells us that the cibstabts are the only rational functions that are regular everywhere
on C. This reflects a fact that will be proved later: A plane curve is compact and connected in the classical
topology. However, it isn’t a proof of that fact.

We will need more technique in order to compute cohomology of a curve that is embedded in a higher
dimensional projective space. Cohomology of projective curves is the topic of Chapter 8. In the next section
we will see that the cohomology on any projective curve is zero except in dimensions 0 and 1.

One can make a similar computation for the hypersurface Y in X = Pn defined by an irreducible homo-
geneous polynomial f of degree k. The ideal of Y is isomorphic to OX(−k), and there is an exact sequence

0→ OX(−k)
f−→ OX → i∗OY → 0

Since we know the cohomology of OX(−k) and of OX , and since Hq(X, i∗OY ) ≈ Hq(Y,OY ), we can use
this sequence to compute the dimensions of the cohomology of OY .

7.6.4. Corollary. cohhyper-
surface

Let Y be a hypersurface of dimension d and degree k in a projective space of dimension
d+ 1. Then h0(Y,OY ) = 1, hd(Y,OY ) =

(
k−1
d+1

)
, and hq(Y,OY ) = 0 for all other q. �

In particular, when S is a surface in P3 defined by an irreducible polynomial of degree k, h0(S,OS) = 1,
h1(S,OS) = 0, h2(S,OS) =

(
k−1

3

)
, and hq = 0 if q > 2. For a projective surface S that isn’t embedded into

P3, it is still true that hq = 0 when q > 2, but h1(S,OS) may be nonzero. The dimensions h1(S,OS) and
h2(S,OS) are invariants of the surface somewhat analogous to the genus of a curve. In classical terminology,
h2(S,OS) is the geometric genus pg and h1(S,OS) is the irregularity q . The arithmetic genus pa is defined
to be

(7.6.5) pa = h2(S,OS)− h1(S,OS) = pg − q patwo

Therefore the irregularity is q = pg − pa. When S is a surface in P3, q = 0 and pg = pa.

In modern terminology, it would be more natural to replace the arithmetic genus by the Euler character-
istic of the structure sheaf χ(OS), which is defined to be

∑
q(−1)qhq(OS) (see 7.7.7) below. The Euler

characteristic of the structure sheaf on a curve is

χ(OC) = h0(C,OC)− h1(C,OC) = 1− pa

and on a surface S it is

χ(OS) = h0(S,OS)− h1(S,OS) + h2(S,OS) = 1 + pa

But because of tradition, the arithmetic genus is still used quite often.

7.7 Three Theorems about Cohomology
threethms

These theorems are taken from Serre’s 1956 paper.

7.7.1. Theorem. cohsup-
port

Let X be a projective variety, and letM be a finite OX -module. If the support ofM has
dimension k, then Hq(X,M) = 0 for all q > k. In particular, if X has dimension n, then Hq(X,M) = 0
for all q > n.

See Sectdon (6.6) for the definition of support.

7.7.2. Theorem. largetwistLetM(d) be the twist of a finite OX -moduleM on a projective variety X . For sufficiently
large d, Hq(X,M(d)) = 0 for all q > 0.

7.7.3. Theorem. findimLetM be a finite O-module on a projective variety X . The cohomology Hq(X,M) is a
finite-dimensional vector space for every q.
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7.7.4. Notes.descind (a) As the first theorem asserts, the highest dimension in which cohomology of anOX -module
on a variety X can be nonzero is the dimension of X . It is also true that, on any projective variety X of
dimension n, there will be O-modules M such that Hn(X,M) 6= 0. In contrast, in the classical topology
on a projective variety X of dimnsion n, the constant coefficient cohomology H2n(Xclass,Z) isn’t zero. As
we have mentioned, the constant coefficient cohomology is zero for every q > 0 in the Zariski topology. And
when X is affine, the cohomology of any O-module is for all q > 0.
(b) The third theorem tells us that the space of global sections of a finite O-moduleM is finite-dimensional.
This is one of the most important consequences of the theorem, and it isn’t easy to prove directly. Cohomology
needn’t be finite-dimensional when a variety isn’t projective. For example, on an affine variety X = SpecA,
H0(X,O) = A isn’t finite-dimensional unless X is a point. When X is the complement of a point in P2,
H1(X,O) isn’t finite-dimensional.
(c) The structure of the proofs is interesting. The first theorem allows us to use descending induction to
prove the second and third theorems, beginning with the fact that s Hk(X,M) = 0 when k is greater than the
dimension of X . �

In these theorems, we are given that X is a closed subvariety of a projective space Pn. We can replace an
OX -module by its extension by zero to Pn (7.5.1). This doesn’t change the cohomology or the dimension of
support. So we may assume that X is a projective space. In fact, the twist M(d) of an OX -module that is
referred to in the second theorem is defined in terms of the extension by zero (??).

The proofs are based on the cohomology of the twisting modules (7.5.4) and the vanishing of the limit
lim−→Hq(X,M(d)) for q > 0 (7.5.2).

proof of Theorem 7.7.1 (vanishing in large dimension)
HereM is a finite O-module whose support S has dimension k or less. We are to show that Hq(X,M) = 0
when q > k. We choose coordinates so that the hyperplane H : x0 = 0 doesn’t contain any component of the
support S. Then H ∩S has dimension at most k−1. We inspect the multiplication mapM(−1)

x0−→M. The
kernel K and cokernelQ are annihilated by x0, so the supports of K andQ are contained in H . Since they are
also in S, the supports have dimension at most k − 1. We can apply induction on k to them. In the base case
k = 0, the supports of K and Q will be empty, and the cohomology will be zero.

We break the exact sequence 0 → K → M(−1) → M → Q → 0 into two short exact sequences by
introducing the O-module N = ker (M→Q):

(7.7.5)kercoker 0→ K →M(−1)→ N → 0 and 0→ N →M→Q→ 0

The induction hypothesis applies to K and to Q. When q > k, Hq−1(X,K) = Hq−1(X,Q) = 0. The
relevant parts of the cohomology sequences associated to these exact sequences for q > k become

0→ Hq(X,M(−1))→ Hq(X,N )→ 0 and 0→ Hq(X,N )→ Hq(X,M)→ 0

respectively. Therefore the maps Hq(X,M(−1))→ Hq(X,N )→ Hq(X,M) are bijective, and this is true
for every O-module whose upport has dimension at most k, including the O-module M(d). For every d,
Hq(X,M(d−1)) ≈ Hq(X,M(d)).

According to (7.5.2), lim−→Hq(X,M(d)) = 0. It follows thatHq(X,M(d)) = 0 for all d, and in particular,
Hq(X,M) = 0, when q > k.

proof of Theorem 7.7.2 (vanishing for a large twist)
Let M be a finite O-module. Then M(r) is generated by global sections when r is sufficiently large

(6.7.21). Choosing generators gives us a surjective map Or →M(r). LetN be the kernel of this map. When
we twist the sequence 0→ N → Or →M(r)→ 0, we obtain short exact sequences

(7.7.6) 0→ N (d)→ O(d)r →M(d+r)→ 0threetwos

for every d ≥ 0. These sequences are useful because Hq(X,O(d)) = 0 when q > 0.

We go to the proof of Theorem 7.7.2 now. We must show this:

155



(*) LetM be a finite O-module. For every q > 0 and for sufficiently large d, Hq(X,M(d)) = 0.

Let n be the dimnsion of X . By Theorem 7.7.1, Hq(X,M) = 0 for any O-moduleM, when q > n, in
particular, for the twistsM(d) ofM. This leaves a finite set of integers q = 1, ..., n to consider, and it suffices
to consider them one at a time. If (*) is true for each individual q it will be true for the finite set of integers
q = 1, ..., n at the same time, and therefore for all positive integers q, as the theorem asserts.

We use descending induction on q, the base case being q = n + 1, for which (*) is true. We suppose that
(*) is true for every finiteO-moduleM when q = p+ 1, and that p > 0, and we show that (*) is true for every
finite O-moduleM when q = p.

We substitute q = p into the cohomology sequence associated to the sequence (7.7.6). The relevant part of
that sequence is

Hp(X,O(d)m)→ Hp(X,M(d+r))
δp−→ Hp+1(X,N (d))

Since p is positive, Hp(X,O(d)) = 0 for all d ≥ 0, and therefore the map δp is injective. Our induction
hypothesis, applied to the O-module N , shows that Hp+1(X,N (d)) = 0 if d is large, and then

Hp(X,M(d+r)) = 0

The particular integer d+r isn’t useful. Our conclusion is that, for every finiteO-moduleM,Hp(X,M(k)) =
0 when k is large enough. �

proof of Theorem 7.7.3 (finiteness of cohomology)
This proof uses ascending induction on the dimension of support as well as descending induction on the

degree d of a twist. As was mentioned above, it isn’t easy to prove directly that the space H0(X,M) of global
sections is finite-dimensional.

We go back to the sequences (7.7.5) and their cohomology sequences. Ascending induction on the dimen-
sion of the support ofM allows us to assume that Hr(X,K) and Hr(X,Q) are finite-dimensional for all r.
Denoting finite-dimensional spaces ambiguously by F , the two cohomology sequencs become

· · · → F → Hq(X,M(−1))→ Hq(X,N )→ F → · · ·

and
· · · → F → Hq(X,N )→ Hq(X,M)→ F → · · ·

The first sequence shows that if Hq(X,M(−1)) has infinite dimension, then Hq(X,N ) also has infinite
dimension, and the second sequence shows that if Hq(X,N ) has infinite dimension, then Hq(X,M) has
infinite dimenson too. This applies to the twisted moduleM(d) as well as toM. Therefore Hq(X,M(d−1))
and Hq(X,M(d)) are either both finite-dimensional, or else they are both infinite-dimensional, and this is
true for every d.

Suppose that q > 0. Then Hq(X,M(d)) = 0 when d is large enough (Theorem 7.7.2). Since the zero
space is finite-dimensional, we can use the sequence together with descending induction on d, to conclude
that Hq(X,M(d)) is finite-dimensional for every finite moduleM and every d. In particular, Hq(X,M) is
finite-dimensional.

This leaves the case that q = 0. To prove that H0(X,M) is finite-dimensional, we set d = −r in the
sequence (7.7.6):

0→ N (−r)→ O(−r)m →M→ 0

The corresponding cohomology sequence is

0→ H0(X,N (−r))→ H0(X,O(−r))m → H0(X,M)
δ0−→ H1(X,N (−r))→ · · · .

Here H0(X,O(−r))m = 0, and we’ve shown that H1(X,N (−r)) is finite-dimensional. It follows that
H0(X,M) is finite-dimensional, and this completes the proof. �

Notice that the finiteness of H0 comes out only at the end. The higher cohomology is essential for the
proof.
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(7.7.7) Euler characteristiceulerchar

Theorems 7.7.1 and (7.7.3) allow us to define the Euler characteristic of a finite module on projective
variety.

7.7.8. Definition.defeuler Let X be a projective variety. The Euler characteristic of a finite O-module M is the
alternating sum of the dimensions of the cohomology:

(7.7.9) χ(M) =
∑

(−1)qhq(X,M).chi

This makes sense because hq(X,M) is finite for every q, and is zero when q is large.
Try not to confuse the Euler characterstic of an O-module with the topological Euler characteristic of the

variety X .

7.7.10. Proposition. (i) If 0 → M → N → P → 0 is a short exact sequence of finite O-modules on a
projective variety X , then χ(M)− χ(N ) + χ(P) = 0.

(ii) If 0 →M0 →M1 → · · · → Mn → 0 is an exact sequence of finite O-modules on X , the alternating
sum

∑
(−1)iχ(Mi) is zero.

7.7.11. Lemma.altsum Let 0 → V 0 → V 1 → · · · → V n → 0 be an exact sequence of finite dimensional vector
spaces. The alternating sum

∑
(−1)qdimV q is zero. �

proof of Proposition 7.7.10. (i) Let n be the dimension of X . The cohomology sequence associated to the
given sequence is

0→ H0(M)→ H0(N )→ H0(P)→ H1(M)→ H1(N )→ H1(P)→ · · · → Hn(P)→ 0

and the lemma tells us that the alternating sum of its dimensions is zero. That alternating sum is also equal to
χ(M)− χ(N ) + χ(P).
(ii) Let ’s denote the given sequence by S0 and the alternating sum

∑
i(−1)iχ(Mi) by χ(S0).

Let N =M1/M0. The sequence S0 decomposes into the two exact sequences

S1 : 0→M0 →M1 → N → 0 and S2 : 0→ N →M2 → · · · →Mk → 0

One sees directly that χ(S0) = χ(S1)− χ(S2), and the assertion follows from (i) by induction on n. �

7.8 Bézout’s Theorem
bezout

As an application of cohomology, we use it to prove Bézout’s Theorem.
If f(x) = p1(x)e1 · · · pk(x)ek is a factorization of a homogeneous polyomial f(x0, x1, x2) into irreducible

polynomials, the divisor of f is defined to be the integer combination e1C1 + · · · + ekCk, where Ci is the
curve of zeros of pi.

We restate the theorem to be proved.

7.8.1. Bézout’s Theorem.be-
zoutrestated

Let Y and Z be the divisors in the projective plane X defined by relatively prime
homogeneous polynomials f and g of degreesm and n, respectively. The number of intersection points Y ∩Z,
counted with an appropriate multiplicity, is equal to mn. Moreover, the multiplicity is 1 at a point at which Y
and Z intersect transversally.

The definition of the multiplicity will emerge during the proof.

7.8.2. Example.intersect-
lines

Suppose that f and g are products of linear polynomials, so that Y is the union ofm lines and
Z is the union of n lines, and suppose that those lines are distinct. Since distinct lines intersect transversally
in a single point, there are mn intersection points of multiplicity 1. �
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proof of Bézout’s Theorem. Multiplication by f defines a short exact sequence

0→ OX(−m)
f−→ OX → A→ 0

where A stands for the quotient O/fO(−m). If f is a irreducible, A will be the extension by zero of the
structure sheaf on Y . When f is reducible, Y won’t be a variety. Let’s use that imprecise notation anyway.
This sequence describes OX(−m) as the ideal I of Y , and there is a similar sequence describing the module
OX(−n) as the ideal J of Z. The zero locus of the ideal I+J is the intersection Y ∩ Z.

Let O denote the quotient OX/(I+J ). Since f and g have no common factor, Y ∩ Z is a finite set of
points {p1, ..., pk}, andO is isomorphic to a direct sum

⊕
Oi, whereOi is a finite-dimensional algebra whose

support is pi (6.6.4). We define the intersection multiplicity of Y and Z at pi to be the dimension ofOi, which
is also equal to the dimension h0(X,Oi) of its space of its global sections. Let’s denote that multiplicity by
µi. The dimension of H0(X,O) is the sum µ1+· · ·+µk, and Hq(X,O) = 0 for all q > 0 (Theorem 7.7.1).
So the Euler characteristic χ(O) is equal to h0(X,O). We’ll show that χ(O) = mn, and therefore that
µ1+· · ·+µk = mn. This will prove Bézout’s Theorem.

We form an exact sequence of O-modules, in which O = OX :

(7.8.3) 0→ O(−m−n)
(g,f)t−→ O(−m)×O(−n)

(f,−g)−→ O π−→ O → 0 bezoutres-
olution

In order to interpret the maps in this sequence as matrix multiplication with homomorphisms acting on the
left, sections of O(−m)×O(−n) should be represented as column vectors (u, v)t, u and v being sections of
O(−m) and O(−n), respectively.

7.8.4. Lemma. bresolex-
act

The sequence (7.8.3) is exact.

proof. To prove exactness, it suffices to show that the sequence of sections on each of the standard affine open
sets is exact. Let’s suppose that coordinates have been chosen so that none of the points making up Y ∩Z lie on
the coordinate axes. We look at U0, as usual. Let A be the algebra of regular functions on U0, the polynomial
algebra C[u1, u2], with ui = xi/x0. We identify O(k) with O(kH), H being the hyperplane at infinity. The
restriction of the module O(kH) to U0 is isomorphic to OU0 . Its sections on U0 are the elements of A. Let
A be the algebra of sections of O on U0. Since f and g are relatively prime, so are their dehomogenizations
F = f(1, u1, u2) and G = g(1, u1, u2). The sequence of sections of (7.8.3) on U0 is

0→ A
(G,F )t−→ A×A (F,−G)−→ A→ A → 0

and the only place at which exactness of this sequence isn’t obvious is at A×A. Suppose that (u, v)t is in the
kernel of the map (F,−G), i.e., that Fu = Gv Since F and G are relatively prime, F divides v, G divides u,
and v/F = u/G. Let w = v/F = u/G. Then (u, v)t = (G,F )tw. �

We go back to the proof of Bézout’s Theorem. Proposition 7.7.10(ii), applied to the exact sequence (7.8.3),
tells us that the alternating sum

(7.8.5) χ(O(−m−n)) −
[
χ(O(−m))+χ(O(−n)×O(−n))− χ(O) chiforbe-

zout
is zero. Since cohomology is compatible with products, χ(M×N ) = χ(M) + χ(N ) for any O-modulesM
and N . Solving for χ(O) and applying Theorem 7.5.4,

χ(O) =
(
n+m−1

2

)
−
(
m−1

2

)
−
(
n−1
2

)
+ 1

This equation shows that the term χ(O) depends only on the integers m and n. Since we know that the answer
is mn when Y and Z are unions of distinct lines, it is mn in every case. This completes the proof.

If you are suspicious of this reasoning, you can evaluate the right side of the equation. �

We still need to explain the assertion that the mutiplicity at a transversal intersection p is equal to 1. This
will be true if and only if I+J generates the maximal ideal m of A = C[y, z] at p locally, and it is obvious
when Y and Z are lines. In that case we may choose affine coordinates so that p is the origin in A2 = SpecA
and the curves are the coordinate axes {z = 0} and {y = 0}. The variables y, z generate the maximal ideal at
the origin, so the quotient algebra k = A/m has dimension 1.
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Suppose that Y and Z intersect transverally at p, but that they aren’t lines. We choose affine coordinates so
that p is the origin and that the tangent directions of Y and Z at p are the coordinate axes. The affine equations
of Y and Z will have the form y′ = 0 and z′ = 0, where y′ = y+ g(y, z) and z′ = z + h(y, z), g and h being
polynomials all of whose terms have degree at least 2. Because Y and Z may intersect at points other than
p, the elements y′ and z′ may not generate the maximal ideal m at p. However, it suffices to show that they
generate the maximal ideal locally.

The locus Y ∩ Z in the plane X is the intersection of two distinct curves in X , so it is a finite set. We
choose an element s of A that is not zero at p, but is zero at the other points of Y ∩ Z. Then in Xs the locus
y′ = z′ = 0 is p.

In As, let I be the ideal generated by x′, y′. We map a free As-module V with basis x′, y′ to I . Let C be
the cokernel of that map. Tensoring the exact sequence V → I → C → 0 with the residue field k = A/m
gives us an exact sequence V → I → C → 0. The map V → I is surjective, so C = 0. The Local Nakayama
Lemma tells us that the localization of C at p is zero. Then, since C is supported at p, C = 0. �
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Chapter 8 THE RIEMANN-ROCH THEOREM FOR CURVES

rrcurves july 11

8.1 Branched Coverings
8.2 Divisors
8.3 The Riemann-Roch Theorem
8.4 The Birkhoff-Grothendieck Theorem
8.5 Differentials
8.6 Trace
8.7 The Riemann-Roch Theorem II
8.8 Using Riemann-Roch

The topic of this chapter is a classical problem of algebraic geometry, to determine the rational functions
on a smooth projective curve with given poles. This is can be difficult. The functions whose poles have orders
at most ri at pi, i=1,...,k, form a vector space, and one is usually happy if one can determine the dimension of
that space. The most important tool for determining the dimension is the Riemann-Roch Theorem.

8.1 Branched Coverings
cover-
curve

Smooth affine curves were discussed in Chapter ??. An affine curve is smooth if its local rings are valuation
rings, or if its coordinate ring is a normal domain. An arbitrary curve is smooth if it has an open covering by
smooth affine curves.

We take a brief look at modules on a smooth curve.
Recall that a module over a domain A is torsion-free if its only torsion elementis zero (2.6.11). This

definition is extended to O-modules by applying it to affine open sets.

8.1.1. Lemma.lfree Let Y be a smooth curve.
(i) A finite O-moduleM is locally free if and only if it is torsion-free.
(ii) An O-moduleM that isn’t torsion-free has a nonzero global section.

proof. (i) We may assume that Y is affine, Y = SpecB, and thatM is theO-module associated to aB-module
M . Let B̃ and M̃ be the localizations of B and M at a point q, respectively. Then M̃ is a finite, torsion-free
module over the local ring B̃. It suffices to show that, for every point q of Y , M̃ is a free B̃-module (5.1.15).
The local ring B̃ is a valuation ring. It is a principal ideal domain its nonzero ideals are powers of the maximal
ideal m̃, which is a principal ideal. Every finite, torsion-free module over a principal ideal domain is free.

(ii) If the torsion submodule ofM isn’t zero, there will be an affine open set U , with nonzero elements m in
M(U) and a in O(U), such that am = 0. Let C be the finite set of zeros of a in U , and let V = Y −C be the
complement of C in Y . Then a is invertible on the intersection W = U ∩V , and since am = 0, the restriction
of m to W is zero.

The open setsU and V cover Y , and the sheaf property for this covering can be written as an exact sequence

0→M(Y )→M(U)×M(V )
+,−−→M(W )

(Lemma 6.3.11). In this sequence, the section (m, 0) ofM(U)×M(V ) maps to zero inM(W ). Therefore it
is the image of a nonzero global section ofM. �
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8.1.2. Lemma. idealprod-
max

Let Y be a smooth curve. Every nonzero ideal I of OY is a product of powers of maximal
ideals of OY : I = me11 · · ·m

ek
k .

proof. This follows for any smooth curve from the case that Y is affine, which is Proposition 5.3.7. �

We come now the main topic of this section: branched coverings of smooth curves.
An integral morphism Y

π−→ X of smooth curves will be called a branched covering. It follows from
Chevalley’s Finiteness Theorem that every morphism of smooth projective curves is a branched covering,
unless it maps Y to a point.

Let Y → X be a branched covering. The function field K of Y will be a finite extension of the function
field F of X . The degree of the covering is the degree [K : F ] of that field extension. It will be denoted
by [Y : X]. If X ′ SpecA is an affine open subset of X , its inverse image Y ′ will be an affine open subset
Y ′ = SpecB of Y , and B will be a locally free A-module whose rank is the degee [Y :X] of the covering.

To describe the fibre of a branched covering Y π−→ X over a point p of X , we may localize. So we may
assume that X and Y are affine, X = SpecA and Y = SpecB, and that the maximal ideal mp of A at a point
p is a principal ideal, generated by an element x of A. If a point q of Y lies over p, the ramification index at q,
which we denote by e, is defined to be vq(x), where vq is the valuation of the function field K corresponding
to q. WE usually denote theramification index by e. Then, if y is a local generator for the maximal ideal mq of
B at q, we will have

x = uye

where u is a local unit. (A rational function is a local unit at a point p if it is a unit in some open neighborhood
of p.)

The next lemma follows from Lemma 8.1.2 and the Chinese Remainder Theorem.

8.1.3. Lemma. extende-
dideal-
isprod

Let Y π−→ X be a branched covering, with X = SpecA and Y = SpecB. Let q1, ..., qk be
the points of Y that lie over a point p of X , let x be a generator for the the maximal ideal mp at p, and let mi
and ei be the maximal ideal and ramification index at qi, respectively.
(i) The extended ideal mpB = xB is the product ideal me11 · · ·m

ek
k .

(ii) Let Bi = B/meii . The quotient B = B/xB is isomorphic to the product B1×· · ·×Bk.
(iii) The degree [Y :X] of the covering is the sum e1 + · · ·+ ek of the ramification indices at the points qi. �

Points of Y whose ramification indices are greater than one are called branch points. We also call a point
p of X a branch point of the covering if there is a branch point of Y whose image is p.

8.1.4. Lemma. mostptsA branched covering Y → X has finitely many branch points. If a point p of X is not a
branch point, the fibre over p consists of n = [Y :X] points with ramification indices equal to 1.

proof. This is very simple. We can delete finite sets of points, so we may suppose that X and Y are affine,
X = SpecA and Y = SpecB. Then B is a finite A-module of rank n. Let F and K be the fraction
fields of A and B, respectively, and let β be an element of B that generates the field extension K/F . Then
A[β] ⊂ B, and since these two rings have the same fraction field, there will be a nonzero element s ∈ A such
that As[β] = Bs. We may suppose that B = A[β]. Let g be the monic irreducible polynomial for β over A.
The discriminant of g is not the zero ideal (1.7.19), so for all but finitely many points p of X , there will be n
points of Y over p with ramification indices equal to 1. �

8.1.5. Corollary. degonei-
som

A branched covering Y π−→ X of degree one is an isomorphism.

proof. When [Y :X] = 1, the function fields of Y and X are equal. Then, because Y → X is an integral
morphism and X is normal, Y = X . �

figure: a branched covering

(8.1.6) local analytic structure locanstr

The local analytic structure of a branched covering Y π−→ X in the classical topology is very simple. We
explain it here because it is helpful for intuition. It is also useful.
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8.1.7. Proposition.yeth-
roottwo

In the classical topology, Y is locally isomorphic to the e-th root covering ye = x.

proof. Let q be a point of Y , let p be its image in X , let x and z be local generators for the maximal ideals
mp of OX at p, and mq of OY at q, respectively. Let e = vq(x) be the ramification index at q. Then x has the
form uze, where u is a local unit at q. In a neighborhood of q in the classical topology, u will have an analytic
e-th root w. The element y = wz also generates mq locally, and x = ye. It follows from the implicit function
theorem that x and y are local analytic coordinate functions on X and Y (see (??)). �

8.1.8. Corollary.pprimeap-
proachesp

Let Y π−→ X be a branched covering, let {q1, ..., qk} be the fibre over a point p of X , and
let ei be the ramification index at qi. As a point p′ of X approaches p, ei points of the fibre over p′ approach
qi. �

8.1.9. Notation.workonX When considering a branched covering Y π−→ X of smooth curves, we will often pass
between an OY -module M and its direct image π∗M, and it will be convenient to work primarily on X .
Recall that if Y ′ is the inverse image of an open subset X ′ of X , then

[π∗M](X ′) =M(Y ′)

One can think of the direct image π∗M as working with M, but looking only at open subsets Y ′ that are
inverse images of open subsets X ′ of X . If we look only at such subsets, the only significant difference
betweenM and its direct image will be that the OY (Y ′)-moduleM(Y ′) is made into an OX(X ′)-module by
restriction of scalars.

To simplify notation, we will often drop the symbol π∗, and writeM instead of π∗M. If X ′ is an open
subset of X ,M(X ′) will stand for [π∗M](X ′) = M(π−1X ′). When denoting the direct image of an OY -
moduleM by the same symbolM, we may refer to it as an OX -module. In accordance with this convention,
we may also write OY for π∗OY , but we must be careful to include the subscript Y .

This abbreviation is analogous to the one used for restriction of scalars in a module. When A → B is
an algebra homomorphism, the A-module obtained from a B-module M by restriction of scalars is usually
denoted by the same letter M . �

8.1.10. Lemma.
BrankArank

Let Y → X be a branched covering of smooth curves.
(i) A finite OY -moduleM is a torsion OY -module if and only if it is a torsion OX -module.
(ii) A finite OY -moduleM is a locally free OY -module if and only if it is a locally free OX -module. IfM is
a locally free OY -module of rank r, then its rank as OX -module will be nr, where n = [Y :X] is the degree
of the covering. �

(8.1.11) the module of homomorphismszerospoles

We begin by discussing homomorphisms of modules over a ring.

Let M and N be modules over a noetherian ring A. The set of homomorphisms M → N is usually
denoted by HomA(M,N). It becomes an A-module with some fairly obvious laws of composition: If ϕ and
ψ are homomorphisms and a is an element of A, then ϕ+ψ and aϕ are defined by

(8.1.12)homis-
module

[ϕ+ψ](m) = ϕ(m) + ψ(m) and [aϕ](m) = aϕ(m)

Because ϕ is a module homomorphism, we also have ϕ(m1+m2) = ϕ(m1) +ϕ(m2) and aϕ(m) = ϕ(am).

8.1.13. Lemma.Nequal-
sHom

(i) An A-module N is canonically isomorphic to HomA(A,N). The homomorphism A
ϕ−→

N that corresponds to an element n of N is multiplication by n: ϕ(a) = an. The element of N that corre-
sponds to a homomorphism A

ϕ−→ N is n = ϕ(1).
(ii) HomA(Ak, N) is isomorphic to Nk, and HomA(Ak, A`) is isomorphic to the module A ×̀k of k×` A-
matrices. �

A presentation of an A-module M is an exact sequence of the form A` → Ak → M → 0. Every finite
module over a noetherian ring A has such a presentation.
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8.1.14. Lemma. homfinite
(i) The functor HomA is a left exact and contravariant in the first variable. For any A-module N , an exact
sequence M1 →M2 →M3 → 0 of A-modules induces an exact sequence

0→ HomA(M3, N)→ HomA(M2, N)→ HomA(M1, N)

(ii) The functor HomA is a left exact and covariant in the second variable. For any A-module M , an exact
sequence 0→ N1 → N1 → N3 of A-modules induces an exact sequence

0→ HomA(M,N1)→ HomA(M,N2)→ HomA(M,N3) �

8.1.15. Corollary.
homfinitetwo

If M and N are finite A-modules over a notherian ring A, then HomA(M,N) is a finite
A-module.

This follows when part (i) of the lemma is applied to a presentation of M . �

The module Hom is compatible with localization:

8.1.16. Lemma. localize-
Hom

Let M and N be modules over a noetherian domain A, and suppose that M is a finite
module. Let S be a multiplicative system in A. The localization S−1 HomA(M,N) is canonically isomorphic
to HomS−1A(S−1M,S−1N).

proof. We choose a presentation A` → Ak → M → 0 of the A-module M . Its localization, which is
(S−1A)` → (S−1A)k → S−1M → 0 is a presentation of the S−1A-module S−1M . The sequence

0→ HomA(M,N)→ HomA(Ak, N)→ HomA(A`, N)

is exact, as is its localization. So it suffices to prove the lemma in the case that M = A. It is true in that case.
�

This lemma shows that, when M and N are finite O-modules on a variety X , there is an O-module of
homomorphisms M → N . This O-module is usually denoted by HomO(M,N ). If U = SpecA is an
affine open set, M = M(U) and N = N (U), the module of sections of HomO(M,N ) on U is the A-
module HomA(M,N). We are using the symbol Hom here because the vector space of homomorphisms
M→N defined on all of X , which is the space of global sections of HomO(M,N ), is customarily denoted
by HomO(M,N ).

The analogues of Lemma 8.1.13 and lemma 8.1.14 are true for Hom:

8.1.17. Corollary. leftexco(i) An O-moduleM on a smooth curve Y is isomorphic to HomO(O,M).
(ii) The functor Hom is left exact and contravariant in the first variable, and it is left exact and covariant in
the first variable. �

Notation. The notation HomA(M,N) is cumbersome. It seems permissible to drop the symbol Hom, and
to write A(M,N) for HomA(M,N). Similarly, ifM andM are O-modules on a variety X , we will write
O(M,N ) or X(M,N ) for HomO(M,N ).

(8.1.18) the dual module dualmod

The dual moduleM∗ of a locally free O-moduleM is the O-module O(M,O) of O-module homomor-
phismsM→O. A section ofM∗ on an open set U is a O(U)-module homomorphismM(U)→ O(U).

The dualizing operation is contravariant. A homomorphismM→N of locally free O-modules induces a
homomorphismM∗ ← N ∗.

IfM is a free module with basis v1, ..., vk, thenM∗ will also be free, with the dual basis v∗i defined by
v∗i (vi) = 1 and v∗i (vj) = 0 if i 6= j. Therefore, whenM is locally free,M∗ is also locally free. The dual O∗
of the structure sheafO is the moduleO itself. IfM andN are locally freeO-modules, the dual (M⊗ON )∗

is isomorphic to the tensor productM∗⊗ON ∗.
There is a canonical O-bilinear mapM∗×M→ O. If µ and m are sections ofM∗ andM, respectively,

the bilinear map evaluates µ at m: 〈µ,m〉 = µ(m).
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8.1.19. Corollary.bidualm (i) A locally free O-moduleM is canonically isomorphic to its bidual: (M∗)∗ ≈M.
(ii) IfM and N are locally free O-modules,M∗ ⊗O N ∗ is isomorphic to (N ⊗OM)∗. �

##any functor commutes with ⊕##

8.1.20. Proposition.dualseq Let O be the strucdture sheaf on a variety X .

(i) Let P f−→ N g−→ P be homomorphisms of O-modules whose composition gf is the identity map on P .
Then N is the direct sum of the image of f , which is isomorphic to P , and the kernel K of g: N ≈ P ⊕K.
(ii) Let g : N → P be a surjective homomorphism O-modules, and suppose that P is a free module. If the
map H0(N )→ H0(P) of global sections is surjective, the sequence splits: N is isomorphic to the direct sum
M⊕P .
(iii) Let 0→M→ N → P → 0 be an exact sequence of O-modules. If P is locally free, the dual modules
form an exact sequence 0→ P∗ → N ∗ →M∗ → 0.

proof. (i) This follows from the analogous statement about modules over a ring.

(ii) Let {pi} be a basis of global sections of P , let vi be global sections of N such that g(vi) = pi, and let f
be the map f : P → N defined by f(pi) = vi. Then fg is the identity map on P .

(iii) The sequence 0 → P∗ → N ∗ → M∗ is exact whether or not the modules are locally free (8.1.14(ii)).
The zero on the right comes from the fact that, when P is locally free, it is free on some affine covering, so the
given sequence splits locally. �

8.2 Divisors
divtwo

A divisor on a smooth curve Y is a finite integer combination of points:

D = r1q1 + · · ·+ rkqk

with ri ∈ Z. The terms riqi whose integer coefficients ri are zero can be omitted or not, as desired.
The support of D is the set of points qi of Y such that ri 6= 0. The degree of D is the sum r1 + · · ·+ rk of

the coefficients.
Let Y ′ be an open subset of Y . The restriction of a divisor D = r1q1 + · · ·+ rkqk to Y ′ is the divisor on

Y ′ obtained from D by deleting points that aren’t in Y ′. Thus, if D = q, the restriction of D to Y ′ is q when
q ∈ Y ′, and is zero whan q 6∈ Y ′.

A divisor D =
∑
riqi is effective if all of its coefficients ri are non-negative, and if Y ′ is an open subset

of Y , D is effective on Y ′ if its restriction to Y ′ is effective – if ri ≥ 0 for every i such that qi is a point of
Y ′. Let D =

∑
ripi and E =

∑
sipi be divisors. We my write D ≤ E if ri ≤ si for all i, or if E − D is

effctive. Thus D ≥ 0 if ri ≥ 0 for all i, i.e., if D is effective.

(8.2.1) the divisor of a functiondivfn

Let f be a rational function on a smooth curve Y . The divisor of f is

div(f) =
∑
q∈Y

vq(f) q

where, as usual, vq denotes the valuation of K that corresponds to the point q of Y .
The divisor of f is written here as a sum over all points q, but it becomes a finite sum when we disregard terms
with coefficient zero, because f has finitely many zeros and poles. The coefficients will be zero at all other
points.

The map
K× → (divisors)+

that sends a rational function to its divisor is a homomorphism from the multiplicative group K× of nonzero
elements of K to the additive group of divisors:

div(fg) = div(f)+div(g)
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As before, a rational function f has a zero of order r > 0 at q if vq(f) = r, and it has a pole of order r at
q if vq(f) = −r. Thus the divisor of f is the difference of two effective divisors:

div(f) = zeros(f)− poles(f)

A rational function f is regular on Y if and only if div(f) is effective – if and only if poles(f) = 0.
The divisor of a rational function is a principal divisor, and two divisors D and E are linearly equivalent

if their difference D−E is a principal divisor. For instance, the divisors zeros(f) and poles(f) of a rational
function f are linearly equivalent.

8.2.2. Lemma. levelsetsLet f be a rational function on a smooth curve Y . For all complex numbers c, the divisors of
zeros of f − c, which are the level sets of f , are linearly equivalent.

proof. The functions f−c have the same poles as f . �

(8.2.3) invertible modules invertmod

An invertible O-module is a locally free module of rank one – a module that is isomorphic to the free
moduleO in a neighborhood of any point. The tensor product L⊗OM of invertible modules is invertible. The
dual L∗ of an invertible module L is invertible.

Part (i) of the next lemma explains the adjective ’invertible’.

8.2.4. Lemma. inverse-
mod

Let L be an invertible O-module.
(i) Let L∗ be the dual module. The canonical map L∗⊗OL → O defined by γ⊗α 7→ γ(α) is an isomorphism.
(ii) The map O → O(L,L) that sends a regular function α to multiplication by α is an isomorphism.

(iii) Every nonzero homomorphism L ϕ−→M to a locally free moduleM is injective.

proof. (i),(ii) It is enough to verify these assertions in the case that L is free, isomorphic to O, in which case
they are clear.

(iii) The problem is local, so we may assume that the variety is affine, say Y = SpecA, and that L andM are
free. Then ϕ becomes a nonzero homomorphism A1 → Ak. Such a homomorphism is injective because A is
a domain. �

(8.2.5) the module O(D) mod-
uleOD

To analyze functions with given poles on a smooth curve Y , we associate an invertible O-module O(D)
to a divisor D. The nonzero sections of O(D) on an open subset V of Y are the rational functions f such that
the the divisor div(f)+D is effective on V – such that its restriction to V is effective.

Thus, when D is effetcive, the global sections of O(D) are the rational functions with poles bounded by
D. They are the solutions of the classical problem that was mentioned at the beginning of hte chapter.

(8.2.6) ODV[O(D)](V ) = {f | div(f)+D is effective on V } ∪ {0}

Points that aren’t in V impose no conditions on the sections ofO(D) on V . A section on V can have arbitrary
zeros or poles at points not in V .

When D is an effective divisor, a rational function f is a global section of O(D) if poles(f) ≤ D.

Say that D =
∑
riqi. If qi is a point of an open set V and if ri > 0, a section of O(D) on V may have a

pole of order at most ri at qi, and if ri < 0 a section must have a zero of order at least −ri at qi. For example,
the module O(−q) is the maximal ideal mq . The sections of O(−q) on an open set V that contains q are the
regular functions on V that are zero at q. Similarly, the sections of O(q) on an open set V that contains q are
the rational functions that have a pole of order at most 1 at q and are regular at every other point of V . The
sections of O(−q) and of O(q) on an open set V that doesn’t contain p are the regular functions on V .

The fact that a section of O(D) is allowed to have a pole at qi if ri > 0 contrasts with the divisor of a
function. If div(f) =

∑
riqi, then ri > 0 means that f has a zero at qi. Thus, if div(f) = D, then f will be

a global section of O(−D).
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8.2.7. Proposition.LisOD Let D and E be divisors on a smooth curve Y .
(i) The map O(D)⊗OO(E)→ O(D+E) that sends f⊗g to the product fg is an isomorphism.
(ii) The dual module O(D)∗ is O(−D).
(iii) O(D) ⊂ O(E) if and only if E−D is effective.

proof. We may assume that Y is affine and that the supports of D and E contain at most one point: D = rp
and E = sp. We may also assume that the maximal ideal at p is a principal ideal, generated by an element x.
Then O(D), O(−D), O(E), and O(D + E) have bases xr, x−r, xs and xr+s, respectively. �

8.2.8. CorollarylimODK The union of the modules O(D) is the function field module K. �

8.2.9. Corollary.idealOD Let Y be a smooth curve, and let m1, ...,mk be the maximal ideals at points q1, ..., qk of Y .
The product ideal I = mr11 · · ·m

rk
k of OY is equal to OY (−D), where D is the effective divisor

∑
riqi. Thus

the nonzero ideals of OY correspond bijectively to divisors −D, where D is effective. �

A module of the form O(D) is equal to O on the open complement of the support of D. Therefore, when
we localize by forming the tensor product O(D)⊗OK with the function field module K, we get K. Since an
invertible module L is isomorphic toO on an open set, the localization LK = L⊗OK is a one dimensional K-
vector space, but without a chosen basis (see (??)). As the next proposition shows, this is is the only difference
between an invertible module L and a module of the form O(D).

Notation.LD Let L be an invertible module and let D be a divisor. We denote by L(D) the invertible module
L ⊗O O(D). If L ≈ O(D), the degree of L is defined to be the degree of D.

8.2.10. Proposition.invertOD Every invertible O-module L is isomorphic to a module of the form O(D).

proof of proposition 8.2.10 Since the function field module K of Y is the union K =
⋃
O(D), we also

have LK =
⋃
L(D), where L(D) denotes the tensor product L⊗OO(D). A nonzero global section α of

LK will be a global section of L(D) for some D. It will define a map O α−→ L(D). Passing to duals,
L(D)∗ = L∗⊗OO(D)∗ ≈ L∗ ⊗O O(−D) ≈ L∗(−D). The dual of the map α is a nonzero and therefore
injective map L∗(−D) → O whose image is an ideal of O. So L∗(−D) is isomorphic to O(−E) for some
effective divisor E (8.2.9). Therefore L∗ is isomorphic to O(D − E). Dualizing once more, L is isomorphic
to O(E −D). �

8.2.11. Proposition.CLD Let L ⊂ M be an inclusion of invertible O-modules. Then M = L(E) for some
effective divisor E.

proof. Since L ⊂ M, L ⊗OM∗ ⊂ M⊗OM∗ = O. Therefore L ⊗OM∗ = O(−E) for some effective
divisor E (refidealOD), and L =M(−E). �

It is important to note that, though every invertible module L is isomorphic to one of the form O(D), the
divisorD isn’t uniquely determined byM. IfD and E are divisors,O(D) is a submodule ofO(E) only when
E−D is effective. But as the next proposition explains, there may be injective homomorphisms from O(D)
to O(E) that aren’t inclusions.

8.2.12. Proposition.mapOD-
toOE

Let D and E be divisors on a smooth curve Y . Multiplication by a rational func-
tion f such that div(f)+E−D ≥ 0 defines a homomorphism of O-modules O(D) → O(E), and every
homomorphism O(D)→ O(E) is multiplication by such a function.

proof. For any O-moduleM, a homomorphism O → M is multiplication by a global section ofM (6.4.5).
Then a homomorphismO → O(E−D) will be multiplication by a rational function f such that div(f)+E−D ≥
0. If f is such a function, one obtains a homomorphism O(D) −→ O(E) by tensoring with O(D). �

8.2.13. Corollary.ODOE
(i) The modules O(D) and O(E) are isomorphic if and only if the divisors D and E are linearly equivalent.
(ii) Let f be a rational function on Y , and let D = div(f). Multiplication by f defines an isomorphism
O(D)→ O. �
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8.3 The Riemann-Roch Theorem
rrone

Let Y be a smooth projective curve. In Chapter 7, we learned that, when M is a finite OY -module, the
cohomology Hq(Y,M) is a finite-dimensional vector space for all q, and is zero if q 6= 0, 1. As before, we
denote the dimension of the spaceHq(Y,M) by hqM or, if there is ambiguity about the variety, by hq(Y,M).

The Euler characteristic (7.6.5) of a finite O-moduleM is

(8.3.1) χ(M) = h0M− h1M chicurve

In particular,
χ(OY ) = h0OY − h1OY

The dimension h1OY is the arithmetic genus of Y . The arithmetic genus is denoted by pa. We will see below,
in (8.3.10)(iv), that h0OY = 1. So

(8.3.2) chi-
curvetwo

χ(OY ) = 1− pa

8.3.3. Riemann-Roch Theorem (version 1). RRcurveLet D =
∑
ripi be a divisor on a smooth projective curve Y .

Then
χ(O(D)) = χ(O) + deg D

(
= deg D + 1− pa

)
proof. We analyze the effect on cohomology when a divisor is changed by adding or subtracting a point. We
do this by inspecting the inclusionO(D−p) ⊂ O(D). Let ε be the cokernel of the inclusion map, so that there
is a short exact sequence

(8.3.4) addpoint0→ O(D−p)→ O(D)→ ε→ 0

in which ε is a one-dimensional vector space supported at p. This sequence can be obtained by tensoring the
sequence

(8.3.5) kappaseq0→ mp → O → κp → 0

with the invertible module O(D), because mp is isomorphic to O(−p), t
Since ε is a one-dimensional module supported at p, h0ε = 1, and h1ε = 0. Let’s denote the one-

dimensional vector space H0(Y, ε) (which isn’t very different from ε itself) by [1]. The cohomology sequence
associated to (8.3.4) is

(8.3.6) add-
pointtwo

0→ H0(Y,O(D−p))→ H0(Y,O(D))
γ−→ [1]

δ−→ H1(Y,O(D−p))→ H1(Y,O(D))→ 0

In this exact sequence, one of the two maps, γ or δ, must be zero. Either

(1) γ is zero and δ is injective. In this case

h0O(D−p) = h0O(D) and h1O(D−p) = h1O(D) + 1, or

(2) δ is zero and γ is surjective, in which case

h0O(D)−p) = h0O(D)− 1 and h1O(D−p) = h1O(D)

In either case,

(8.3.7) χ(O(D)) = χ(O(D−p)) + 1 chichange

Also, deg D = deg (D − p) + 1. The Riemann-Roch theorem follows, because wecan get from O to O(D)
by a finite number of operations, each of which changes the divisor by adding or subtracting a point. �

The Riemann-Roch Theorem can be written in terms of an invertible module. Recall that the degree of an
invertible module L is the degree of a divisor D such that L ≈ O(D).
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8.3.8. Corollary.RRforL Let L be an invertible O-module on a smooth projective curve Y . Then χ(L) = deg L +
1− pa. �

Because h0 ≥ h0 −h1 = χ, this version of the Riemann-Roch Theorem gives reasonably good control of
H0. It is less useful for controlling H1. To do that, one wants the full Riemann-Roch Theorem, which is in
Section 8.7. It requires some preparation. However, the version which is above has important consequences:

8.3.9. Corollary.onepole Let p be a point of a smooth projective curve Y . The dimension h0(Y,O(np)) tends to
infinity with n. Therefore there exist rational functions with a pole of large order at p and no other poles.

proof. When we change the module O(np) to O((n+1)p), then, as we saw above, either h0 increases or
h1 decreases. Since H1(Y,O(np)) is finite-dimensional, the second possibility can occur only finitely many
times. �

8.3.10. Corollary.RRcor Let Y be a smooth projective curve.
(i) The divisor of a rational function on Y has degree zero: The number of zeros is equal to the number of
poles.
(ii) Linearly equivalent divisors on Y have equal degrees.
(iii) A nonconstant rational function on Y takes every value, including infinity, the same number of times.
(iv) A rational function on Y that is regular at every point of Y is a constant: H0(Y,O) = C.
(v) Let D be a divisor on Y . If deg D ≥ pa, then h0O(D) > 0. If h0O(D) > 0, then deg D ≥ 0.

proof. (i) Let f be a nonzero rational function and letD = div(f). Multiplication by f defines an isomorphism
O(D) → O, so χ(O(D)) = χ(O). On the other hand, by Riemann-Roch, χ(O(D)) = χ(O) + deg D.
Therefore deg D = 0.

(ii) If two divisors D and E are linearly equivalent, say D−E = div(f), then D−E has degree zero, and
deg D = deg E.

(iii) The zeros of the functions f − c are linearly equivalent to the poles of f .

(iv) According to (iii), a nonconstant function must have a pole.

(v) If deg D ≥ pa, then χ = deg D + 1 − pa ≥ 1, and h0 ≥ h0 − h1 = χ. If O(D) has a nonzero global
section f , a rational function such that div(f)+D = E is effective, then deg E ≥ 0. Since the degree of
div(f) is zero, deg D ≥ 0. �

8.3.11. Theorem.curveconn With its classical topology, a smooth projective curve Y is a connected, compact, orientable
two-dimensional manifold.

proof. We prove connectedness here. All other points have been discussed before (Theorem 1.7.24). A
nonempty topological space is connected if it isn’t the union of two disjoint, nonempty, closed subsets. Sup-
pose that, in the classical topology, Y is the union of disjoint, nonempty closed subsets Y1 and Y2. Both Y1

and Y2 will be compact manifolds. Let q be a point of of Y1. Corollary 8.3.9 shows that there is a nonconstant
rational function f whose only pole is at q. Then f will be a regular function on the complement of q. It will
be an analytic function on the compact manifold Y2.

For review: For any point q of Y , Y can be represented as a branched covering of the projective line P1

that is unramified at q. Then a small neighborhood V of q in Y maps bijectively to an neighborhood U of
its image p in P1. To say that f is analytic means that the function on V that corresponds to f is an analytic
function of one variable on U .

The maximum principle for analytic functions asserts that a nonconstant analytic function on an open
region of the complex plane has no maximal absolute value in the region. This applies to the neighborhood
U of p, and also to the neighborhood V of q. Consequently, if f isn’t constant, |f(q)| cannot be a maximum
value of f . Since q is arbitrary, f cannot have a maximum on Y2. On the other hand, since Y2 is compact,
a continuous function does have a maximum. So f must be constant on Y2. When we subtract that constant
from f , we obtain a nonconstant rational function that is zero on Y2. But since Y has dimension 1, the zero
locus of a rational function is finite. This is a contradiction. �
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8.4 The Birkhoff-Grothendieck Theorem
birkgroth

This theorem describes finite, torsion-free modules on the projective line.

8.4.1. Birkhoff-Grothendieck Theorem. BGtheo-
rem

A finite, torsion-free O-module on the projective line P1 is iso-
morphic to a direct sum of twisting modules:M≈

⊕
O(ni).

This theorem was proved by Grothendieck in 1957 using cohomology. It had been proved by Birkhoff in 1909,
much earlier, in the following equivalent form:

Birkhoff Factorization Theorem. Let A0 = C[u] , A1 = C[u−1], and A01 = C[u, u−1]. Let P be an invert-
ible A01-matrix. There exist an invertible A0-matrix Q0 and an invertible A1-matrix Q1 such that Q−1PQ1 is
diagonal, and the diagonal entries are integer powers of u.

We recall the cohomology of the twisting modules on P1: Let r be a positive integer. According to Theorem
7.5.4,

h0O(r) = r+1, h1O(r) = 0, h0O(−r) = 0, and h1O(−r) = r−1.

8.4.2. Lemma. map-
stoMbounded

Let X denote the projective line, and letM be a finite, torsion-free O-module on X . For
sufficiently large r,
(i) the only module homomorphism O(r)→M is the zero map, and
(ii) h0(X,M(−r)) = 0.

proof. (i) A nonzero map from the invertible module O(r) to the locally free module M will be injective
(8.2.4), and the associated map H0(X,O(r)) → H0(X,M) will also be injective. So h0(X,O(r)) ≤
h0(X,M). Since h0(X,O(r)) = r+1 and since h0(X,M) is finite, r is bounded.

(ii) A global section ofM(−r) defines a map O →M(−r). Its twist by r will be a map O(r)→M. �

proof of the Birkhoff-Grothendieck Theorem. This is Grothendieck’s proof.
Lemma 8.1.1 tells us thatM is locally free. We use induction on the rank ofM. We suppose thatM has

rank r > 0, and that the theorem has been proved for locally free O-modules of rank less than r. The plan
is to show thatM has a twisting module as a direct summand, so thatM = W ⊕O(n) for someW . Then
induction on the rank can be applied toW .

Since twisting is compatible with direct sums, we may replaceM by a twistM(n). Instead of showing
that M has a twisting module O(n) as a direct summand, we show that, after we replace M by a suitable
twist, the structure sheaf O will be a direct summand.

As we know (6.7.21), the twistM(n) will have a nonzero global section when n is sufficiently large, and
it will have no nonzero global section when n is sufficiently negative (Lemma 8.4.2 (ii)). Therefore, when we
replaceM by a suitable twist, we will have H0(X,M) 6= 0 but H0(X,M(−1)) = 0. We assume that this is
true forM.

We choose a nonzero global section s ofM and consider the injective multiplication map O s−→M. Let
W be its cokernel, so that we have a short exact sequence

(8.4.3) 0→ O s−→M→W → 0 cvcwse-
quence

8.4.4. Lemma. sectionba-
sic

LetW be the O-module that appears in the sequence (8.4.3).
(i) H0(X,W(−1)) = 0.
(ii)W is torsion-free, and therefore locally free.
(iii)W is a direct sum

⊕r−1
i=1 O(ni) of twisting modules on P1, with ni ≤ 0.

proof. (i) This follows from the cohomology sequence associated to the twisted sequence

0→ O(−1)→M(−1)→W(−1)→ 0

because H0(X,M(−1)) = 0 and H1(X,O(−1)) = 0.

(ii) IfW had a nonzero torsion submodule, so wouldW(−1), and thenW(−1) would have a nonzero global
section (8.1.1).

170



(iii) The fact that W is a direct sum of twisting modules follows by induction on the rank: W ≈
⊕
O(ni).

Since H0(X,W(−1)) = 0, we must have H0(X,O(ni−1)) = 0 too. Therefore ni − 1 < 0, and ni ≤ 0. �

We go back to the proof of Theorem 8.4.1. Lemma 8.1.20 tells us that the dual of the sequence (8.4.3) is
an exact sequence

0→W∗ −→M∗ −→ O∗ → 0

and W∗ ≈
⊕
O(−ni) with −ni ≥ 0. Therefore h1W∗ = 0. The map H0(M) → H0(O∗) is surjective.

Lemma 8.1.20 tells us thatM∗ is isomorphic toW∗ ⊕O∗. ThenM is isomorphic toW ⊕O. �

8.5 Differentials
diff

Why differentials enter into the Riemann-Roch Theorem is a mystery, but they do, so we introduce them here.

Let A be an algebra and let M be an A-module. A derivation A δ−→M is a C-linear map that satisfies the
product rule for differentiation – a map that has these properties:

(8.5.1)deriv δ(ab) = a δb+ b δa , δ(a+b) = δa+ δb , and δc = 0

for all a, b in A and all c in C. The fact that δ is C-linear, i.e., that it is a homomorphism of vector spaces,
follows. Since dc = 0, δ(cb) = c δb. For example, differentiation d

dt is a derivation C[t]→ C[t].

8.5.2. Lemma.compde Let A
ϕ−→ B be an algbra homomorphism, and let M

f−→ N be a homomorphism of
B-modules.

(i) Let B δ−→M be a derivation. The composed maps A
δϕ−→M and B

fδ−→ N are derivations.

(ii) Suppose that the homomorphism ϕ is surjective. Let B
g−→ M be a map, and let d = g ◦ ϕ. If A d−→ M

is a derivation, then g is a derivation. �

The module of differentials ΩA of an algebra A is an A-module that is generated by elements denoted by
da, one for each element a of A. Its elements are (finite) combinations

∑
bi dai, with ai and bi in A. The

defining relations among the generators da are the ones that make the map A d−→ ΩA that sends a to da a
derivation. For all a, b in A and all c in C,

(8.5.3)defdiff d(ab) = a db+ b da , d(a+b) = da+ db , and dc = 0

The elements of ΩA are called differentials.

8.5.4. Lemma.ho-
momderiv (i) When we compose a homomorphism ΩA

ϕ−→ M of O-modules with the derivation A d→ ΩA, we obtain

a derivation A
ϕ◦d−→ M . Composition with d defines a bijection between homomorphisms ΩA →M and

derivations A δ−→M .
(ii) Ω is a functor: An algebra homomorphism A

u−→ B induces a homomorphism ΩA
v−→ ΩB that is

compatible with the ring homomorphism u, and that makes a diagram

B
d−−−−→ ΩB

u

x xv
A

d−−−−→ ΩA

By compatibility of v with u we mean that, if ω is an element of ΩA and α is in A, then v(αω) = u(α)v(ω).
proof. (i) The composition δ = ϕ ◦ d is a derivation A → M . In the other direction, given a derivation
A

δ−→ M , we define a map ΩA
ϕ−→ M by ϕ( da) = δ(a). It follows from the defining relations for ΩA that

ϕ is a well-defined homomorphism of A-modules.
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(ii) When ΩB is made into an A-module by restriction of scalars, the composed map A u→ B
d→ ΩB will be a

derivation to which (i) applies. �

8.5.5. Lemma. omegafreeLetR be the polynomial ring C[x1, ..., xn]. TheR-module of differentials ΩR is a free module
with basis dx1, ..., dxn.

proof. The formula df =
∑ df

dxi
dxi follows from the defining relations. It shows that the elements dx1, ..., dxn

generate the R-module ΩR. Let v1, ..., vn be a basis of a free R-module V . The product rule for derivatives
shows that the map δ : R→ V by δ(f) = ∂f

∂xi
vi is a derivation. It induces a module homomorphism ΩA → V

that sends dxi to vi. Since dx1, ..., dxn generate ΩR and since v1, ..., vn is a basis of V , ϕ is an isomorphism.
�

8.5.6. Proposition.
omegafreetwo

Let I be an ideal of an algebra R, let A be the quotient algebra R/I , and let dI denote
the set of differentials df with f in I . The subset N = dI+IΩR is a submodule of ΩR, and ΩA is isomorphic
to the quotient module ΩR/N .

The proposition can be interpreted this way: Suppose that the ideal I is generated by elements f1, ..., fr of R.
Then ΩA is the quotient of ΩR that is obtained from ΩR by introducing these two rules:
• dfi = 0, and
• multiplication by fi is zero.

For example, let A be the quotient C[y]/(y2) of a polynomial ring R in one variable. Here I is the principal
ideal (y2), 2y dy generates dI , and y2dy generates IΩA. So ydy generates the R-module N . Then, if y
denotes the residue of y in A, ΩA is generated by an element dy, with the relation 2y dy = 0. In particular, it
isn’t the zero module.

proof of Proposition 8.5.6. First, IΩR is a submodule of ΩR, and dI is an additive subgroup of ΩR. To show
that N is a submodule, we must show that scalar multiplication by an element of R maps dI to N , i.e., that if
g is in R and f is in I , then g df is in N . By the product rule, g df = d(fg)− f dg. Since I is an ideal, fg is
in I . Then d(fg) is in dI , and f dg is in IΩR. So g df is in N .

The two rules shown above hold in ΩA because the generators fi of I are zero in A. Therefore N is in the
kernel of the surjective map ΩR

v−→ ΩA defined by the homomorphism R → A. Let Ω denote the quotient
module ΩR/N . This is an A-module, and because N ⊂ ker v, v defines a surjective map of A-modules
Ω

v−→ ΩA. We show that v is bijective. Let r be an element of R, let a be its image in A, and let dr be
its image in Ω. The composed map R d−→ ΩR

π−→ Ω is a derivation that sends r to dr, and because I is
in its kernel, it defines a derivation R/I = A

δ−→ Ω that sends a to dr. This derivation corresponds to a
homomorphism of A-modules ΩA → Ω that sends da to dr, and that inverts v (8.5.4). �

8.5.7. Corollary. Omegafi-
nite

If A is a finite-type algebra, then ΩA is a finite A-module.

This follows from Proposition 8.5.6 because the module of differentials on the polynomial ring C[x1, ..., xn]
is a finite module. �

8.5.8. Lemma. local-
izeomega

Let S be a multiplicative system in a domain A, and let S−1ΩA be the module of fractions of
ΩA. The modules S−1ΩA and ΩS−1A are canonically isomorphic. In particular, if K is the field of fractions
of A, then K⊗AΩA ≈ ΩK .

We have moved the symbol S−1 to the left for clarity.

proof of Lemma 8.5.8. The composition A→ S−1A
d−→ ΩS−1A is a derivation that defines an A-module ho-

momorphism ΩA → ΩS−1A. This homomorphism extends to an S−1A-homomorphism S−1ΩA
ϕ−→ ΩS−1A

because scalar multiplication by the elements of S is invertible in ΩS−1A. The relation ds−k = −ksk−1ds
follows from the definition of a differential, and it shows that ϕ is surjective. The quotient rule

δ(s−ka) = −ks−k−1a ds+ s−kda

can be used to define a derivation S−1A
δ−→ S−1ΩA, which corresponds to a homomorphism ΩS−1A →

S−1ΩA that inverts ϕ. Here, one must show that δ is well-defined, that δ(s−k1 a1) = δ(s−`2 a2) if s−`1 a1 =
s−k2 a2, and that δ is a derivation. You will be able to do this. �
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Lemma 8.5.8 shows that a finite O-module ΩY of differentials on a variety Y is defined. When U =
SpecA is an affine open subset of Y , ΩY (U) = ΩA.

8.5.9. Proposition.omega-
funct

The module ΩY of differentials on a smooth curve Y is invertible. If y is a local generator
for the maximal ideal at a point q, then in a suitable neighborhood of q, ΩY is a free O-module with basis dy.

proof. We may assume that Y is affine, say Y = SpecB. Let q be a point of Y , and let y be an element of B
with vq(y) = 1. To show that dy generates ΩB locally, we may localize, so we may suppose that y generates
the maximal ideal m at q. We must show that after we localize B once more, every differential df with f in
B will be a multiple of dy. Let c be the value of the function f at q: Then f = c + yg for some g in B, and
because dc = 0, df = g dy + y dg. Here g dy is in B dy and y dy is in mΩB , so

ΩB = B dy + mΩB

If W denotes the quotient module ΩB/(B dy), then W = mW . The Nakayama Lemma tells us that there is
an element z in m such that s = 1− z annihilates W . When we replace B by its localization Bs, we will have
W = 0 and ΩB = B dy, as required.

We must still verify that dy isn’t a torsion element. If it were, say b dy = 0, then because dy is a local
generator, ΩB would be the zero module except at the finite set of zeros of b. Since the chosen point q of Y
was arbitrary, it suffices to show that the local generator dy for ΩB isn’t equal to zero. Let R = C[y] and
A = C[y]/(y2). The module ΩR is free, with basis dy, and as noted above, if y is the residue of y in A, the
A-module ΩA is generated by dy, with the relation 2y dy = 0. It isn’t the zero module. Proposition 5.3.7 tells
us that, at our point q, the algebraB/m2

q is isomorphic toA, and Proposition 8.5.6 tells us that ΩA is a quotient
of ΩB . Since ΩA isn’t zero, neither is ΩB . �

8.6 Trace
tracediff

(8.6.1) trace of a functiontracefn

Let Y π−→ X be a branched covering of smooth curves, and let F and K be the function fields of X and
Y , respectively.

The trace map K tr−→ F for a field extension of finite degree has been defined before (4.3.10). If α is an
element of K, multiplication by α on the F -vector space K is an F -linear operator, and tr(k) is the trace of
that operator. The trace is F -linear: If fi are in F and αi are in K, then tr(

∑
fiαi) =

∑
fi tr(αi). Moreover,

the trace carries regular functions to regular functions: If X ′ = SpecA′ is an affine open subset of X , with
inverse image Y ′ = SpecB′, then because A′ is a normal algebra, the trace of an element of B′ will be in A′

(4.3.6). Using our abbreviated notation OY for π∗OY , the trace defines a homomorphism of OX -modules

(8.6.2)trace-
global

OY
tr−→ OX

Analytically, the trace can be described as a sum over the sheets of the covering. Let n = [Y :X]. Over
a point p of X that isn’t a branch point, there will be n points q1, ..., qn of Y . If U is a small neighborhood
of p in X in the classical topology, its inverse image V will consist of disjoint neighborhoods Vi of qi, each
of which maps bijectively to U . On Vi, the ring B of analytic functions will be isomorphic to the ring A of
analytic functions on U . So B is isomorphic to the direct sum A1 ⊕ · · · ⊕ An of n copies of A. If a rational
function g on Y is regular on V , its restriction to V can be written as g = g1 ⊕ · · · ⊕ gn, with gi in Ai. The
matrix of left multiplication by g on A1 ⊕ · · · ⊕ An is the diagonal matrix with entries gi, so

(8.6.3)trsum tr(g) = g1 + · · ·+ gn

8.6.4. Lemma.tracesum Let Y π−→ X be a branched covering of smooth curves, let p be a point of X , let q1, ..., qk be
the fibre over p, and let ei be the ramification index at qi. If a rational function g on Y is regular at the points
q1, ..., qk, its trace is regular at p, and its value at p is [tr(g)](p) = e1g(q1) + · · ·+ ekg(qk).

proof. The regularity was discussed above. If p isn’t a branch point, we will have k = n and ei = 1 for all i.
In this case, the lemma follows by evaluating (8.6.3). It follows by continuity for any point p. As a point p′

approaches p, ei points q′ of Y approach qi (8.1.8). For each such point, the limit of g(q′) will be g(qi). �
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(8.6.5) trace of a differential traced

The structure sheaf is naturally contravariant. A branched covering Y π−→ X corresponds to an OX -
module homomorphism OX → OY . The trace map for functions is a homomorphism of OX -modules in the
opposite direction: OY

tr−→ OX .
Differentials are also naturally contravariant. A morphism Y → X induces an OX -module homomor-

phism ΩX → ΩY that sends a differential dx on X to a differential on Y that we denote by dx too (8.5.4) (ii).
As is true for functions, there is a trace map for differentials in the opposite direction. It is defined below, in
(8.6.7), and will be denoted by τ :

ΩY
τ−→ ΩX

First, a lemma about the natural contravariant map ΩX → ΩY :

8.6.6. Lemma. dxydy(i) Let p be the image in X of a point q of Y , let x and y be local generators for the maximal
ideals ofX and Y at p and q, respectively, and let e be the ramification index at q. Then dx = vye−1dy, where
v is a local unit at q.
(ii) The canonical homomorphism ΩX → ΩY is injective.

proof. (i) As we have noted before, x = uye, where u is a local unit. Since dy generates ΩY locally, there is a
rational function z that is regular at q, such that du = zdy. Then dx = d(uye) = yez dy + eye−1u dy =
vye−1dy, where v = yz + eu. Since yz is zero at q and eu is a local unit there, v is a local unit.
(ii) See (8.2.4). �

To define the trace for differentials, we begin with differentials of the functions fields. Let F and K be
the function fields of X and Y , respectively. Because the OY -module ΩY is invertible, the module ΩK of
K-differentials, which is the localization ΩY ⊗OK, is a free K-module of rank one. Any nonzero differential
will form a K-basis. We choose as basis a nonzero F -differential α. Its image in ΩK , which we denote by α
too, will be a K-basis for ΩK . We can, for example, take α = dx, where x is a local coordinate function on
X .

Since α is a basis, an element β of ΩK can be written uniquely, as

β = gα

where g is an element of K. The trace ΩK
τ−→ ΩF is defined by

(8.6.7) deftrdifτ(β) = tr(g)α

where tr(g) is the trace of the function g. Since the trace for functions is F -linear, τ is also an F -linear map.
We need to check that τ is independent of the choice of α. If α′ is another nonzero F -differential, then

fα′ = α for some nonzero element f of F , and gα = gfα′. Since tr is F -linear, tr(gf) = f tr g, and

tr(gf)α′ = tr(g)fα′ = tr(g)α

Using α′ in place of α gives the same value for the trace.

A differenial of the function fieldK will be called a rational differential. A rational differential β is regular
at a point q of Y if there is an affine open neighborhood Y ′ = SpecB of q such that β is an element of ΩB .
If y is a local generator for the maximal ideal mq and β = g dy, the differential β is regular at q if the rational
function g is regular there.

at q of a regular

Let p be a point of X . Working locally at p, we may suppose that X and Y are affine, X = SpecA and
Y = SpecB, that the maximal ideal at p is a principal ideal, generated by an element x of A, and that the
differential dx generates ΩA. Let q1, ..., qk be the points of Y that lie over p, and let ei be the ramification
index at qi.
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8.6.8. Corollary.poleorder With notation as above,
(i) When viewed as a differential on Y , dx has zeros of orders ei−1 at qi.
(ii) If a differential β on Y is regular at the points qi, ..., qk, then β = g dx, where g is a rational function with
poles of orders at most ei−1 at qi.

This follows from Lemma 8.6.6 (i). �

8.6.9. Main Lemma.tracereg Let Y π−→ X be a branched covering, let p be a point of X , and let q1, ..., qk be the
points of Y that lie over p. Also, let β be a rational differential on Y .
(i) If β is regular at the points q1, ..., qk, its trace τ(β) is regular at p.
(ii) If β has a simple pole at qi and is regular at qj for all j 6= i, then τ(β) is not regular at p.

proof. (i) Corollary 8.6.8 tells us that β = g dx, where g has poles of orders at most ei − 1 at the points qi.
Since x has a zero of order ei at qi, the function xg is regular at qi, and its value there is zero. Then tr(xg) is
regular at p, and its value at p is zero (8.6.4). So x−1 tr(xg) is a regular function at p. Since tr is F -linear and
x is in F , x−1 tr(xg) = tr(g). Therefore tr(g) and τ(β) = tr(g)dx are regular at p.

(ii) With β = g dx, the function xg will be regular at p. Its value at qj will be zero when j 6= i, and not zero
when j = i. Then tr(xg) will be regular at p, but not zero there (8.6.4). Therefore τ(β) = x−1 tr(xg)dx
won’t be regular at p. �

8.6.10. Corollary.
omegaYandX

The trace map defines a homomorphism of OX -modules ΩY
τ−→ ΩX . �

8.6.11. Example.sumroot-
cover

Let Y be the locus ye = x in A2
x,y . Multiplication by ζ = e2πi/e permutes the sheets of Y

over X . The trace of a power yk is

(8.6.12)sumzeta tr(yk) =
∑
j

ζkjyk

The sum
∑
ζkj is zero unless k ≡ 0 modulo e. So dy = y1−edx/e, and τ(dy) = tr(y1−e)dx/e = 0. But

y−1dy = y−edx/e = x−1dx/e, and τ(y−1dy) = tr(x−1)dx/e = x−1 tr(1)dx/e = dx/x. This isn’t regular
at x = 0. �

Let Y be a smooth curve, and let Y π−→ X be a branched covering. As is true for any OY -module, the
module of differentials ΩY is isomorphic to the module of homomorphisms OY(OY ,ΩY ). The homomor-
phism OY → ΩY that corresponds to a section β of ΩY on an open set U sends a regular function f on U to

fβ. We will denote that homomorphism by β too: OY
β−→ ΩY .

8.6.13. Lemma.compwtau Composition with the trace defines a homomorphism of OX -modules

ΩY approxcoY(OY ,ΩY )
τ−→OX (OY ,ΩX)

This is true because τ is OX -linear. An OY -linear map becomes an OX -linear map by restriction of scalars.
So when we compose an OY -linear map β with τ , the result will be OX -linear. It is a homomorphism of
OX -modules. �

8.6.14. Theorem.
traceomega

(i) The map (??) is bijective.
(ii) More generally, ifM is any locally free OY -module, composition with the trace defines a bijection

(8.6.15)compw-
trace

OY
(M,ΩOY )

τ◦−→ OX(M,ΩOX )

This theorem follows from the Main Lemma 8.6.9, when one looks closely.

Remark. The domain and range of the map (8.6.15) are to be interpreted as modules on X . For example, OY
denotes the direct image on X of the structure sheaf on Y . When we insert the symbols Hom and π∗ into the
notation, (8.6.15) becomes an isomorphism

π∗
(
HomOY(M,ΩY )

) τ◦−→ HomOX(π∗M,ΩX)

Because the theorem is about modules on X , we can verify it locally on X . In particular, we may suppose
that X and Y are affine, X = SpecA and Y = SpecB. When we state the theorem in terms of algebras and
modules, the statement of the theorem for the affine varieties becomes this:
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8.6.16. Theorem.
traceomegaal-
gebra

Let Y → X be a branched covering, with Y = SpecB → X = SpecA.

(i) The trace map ΩB = B(B,ΩB)
τ ◦−→ A(B,ΩA) is bijective.

(ii) For any locally freeB-moduleM , composition with the trace defines a bijection B(M,ΩB)
τ◦−→ A(M,ΩA).

8.6.17. Lemma. homisB-
mod

Let A ⊂ B be rings, let M be a B-module, and let N be an A-module. Then A(M,N) has
the structure of a B-module.

In the theorem and the lemma, when we write A(M,ΩB) and A(M,N), we are interpreting theB-modules
ΩB and N as A-modules by restriction of scalars.

proof of the lemma We must define scalar multiplication of a homomorphism M
ϕ−→ N of A-modules by

an element b of B. The definition of bϕ is [bϕ](m) = ϕ(bm). Here one must show that this map [bϕ] is a
homomorphism of A-modules M → N , and that the axioms for a B-module are true for A(M,N). You will
be able to check these things. �

proof of Theorem 8.6.14 (i). We use the algebra notation of Theorem 8.6.16. Since the theorem is local, we
are still allowed to localize A. As A-modules, both B and ΩB are torsion-free, and therefore locally free.
Localizing as needed, we may assume that they are free A-modules, and that ΩA is a free module of rank one
with basis dx. Then A(B,ΩA) will be a free A-module too.

Let’s denote A(B,ΩA) by Θ. Lemma 8.6.17 tells us that Θ is a B-module. Because B and ΩA are locally
free A-modules, Θ is a locally free A-module and a locally free B-module. Since ΩA has A-rank 1, the A-
rank of Θ is the same as the A-rank of B. So the B-rank of Θ is 1 (8.1.10)(ii). Therefore Θ is an invertible
B-module.

The trace map ΩB
τ−→ Θ isn’t the zero map because, if x is a local coordinate on X , then τ dx 6= 0. Since

domain and range are invertible B-modules, τ is an injective homomorphism. Its image, which is isomorphic
to ΩB , is an invertible submodule of the invertible B-module Θ. Therefore Θ is isomorphic to an invertible
module ΩB(D) for some effective divisor D (8.2.7). To complete the proof of the theorem, we show that the
divisor D is zero.

Suppose that D > 0, let q be a point in the support of D. Then ΩB(q) ⊂ ΩB(D) ≈ Θ. Let p be the
image of q in X . We choose a rational differential β in ΩK that has a simple pole at q, and is regular at the
other points of Y in the fibre over p. The Chinese Remainder Theorem allows us to do this. According to
Proposition 8.2.11, the trace τ(β) isn’t regular at p. It isn’t in Θ. �

proof of Theorem 8.6.14 (ii). We go back to the statement in terms of O-modules. We are to show that ifM is
a locally freeOY -module, composition with the trace defines a bijective map OY(M,ΩOY )→ OX(M,ΩOX ).
Part (i) of the theorem tells us that this is true in whenM = OY , and therefore it is also true whenM is a
free module OkY . And, since (ii) is a statement about OX -modules, it suffices to prove it locally on X . So it
suffices to prove that a locally free OY -module is free on the inverse image of an open set in X .

8.6.18. Lemma. local-
lyfreeonX

Let q1, ..., qk be points of a smooth curve Y , and letM be a locally free OY -module. There
is an open set V that contains the points q1, ..., qk, such thatM is free on V .

We assume the lemma and complete the proof of the theorem. Let {q1, ..., qk} be the fibre over a point p
of X and let be V as in the lemma. The complement D = Y − V is a finite set whose image C in X is a finite
set that doesn’t contain p. If U is the complement of C in X , its inverse image W will be a subset of V that
contains the fibre and on whichM is free. �

proof of the lemma We may assume that Y is affine, Y = SpecB, and that the O-moduleM corresponds to
a locally free B-module M .

We go back to Lemma 8.1.3. Let mi be the maximal ideal of B at qi, and let Bi = B/meii . The quotient
B = B/xB is isomorphic to the product B1×· · ·×Bk. SinceM is locally free, it is free in a neighborhood
of each point qi. Therefore M i = M/miM is a free Bi-module. whose dimension is the rank r ofM.

Let r be the rank ofM . It follows from the Chinese Remainder Theorem that there are elementsm1, ...,mr

in M whose residues form a basis of M i for every i. Let V be the free B-module with basis v1, ..., vr, and
let V

ϕ−→ M be the map defined by ϕ(vi) = mi, let C be the cokernel of ϕ, and let V i = V/miV . The map
ϕ induces a bijection V i → M i, and therefore Ci = C/miC is the zero module: C = miC. The Nakayama
Lemma tells us that C is zero at qi. Since C is a finite B-module, it is is supported on a finite set F . When

176



we localize to delete this finite set from X , the elements m1, ...,mk generate M , and since M has rank r, they
form a basis. Then M is free. �

Note. Theorem 8.6.14 is subtle, and though its proof is understandable, it doesn’t give much insight as to why
the theorem is true. I don’t like that. To get more insight, we would need a better understanding of differentials.
As my father Emil Artin said,

“One doesn’t really understand differentials, but one can learn to work with them.”

8.7 The Riemann-Roch Theorem II
rroch

(8.7.1) the Serre dualserredual

Let Y be a smooth projective curve, and letM be a locally free OY -module. The Serre dual ofM, which
we will denote byM#, is the module

(8.7.2) M# = Y (M,ΩY )
(

= HomOY (M,ΩY )
)

defSerred-
ual

Since the invertible module ΩY is locally isomorphic toOY , the Serre dualM# will be locally isomorphic
to the ordinary dualM∗. It will be a locally free module with the same rank asM, and the bidual (M#)#

will be isomorphic toM. This follows from Corollary 8.1.19, becauseM# ≈M∗ ⊗O ΩY . To spell this out,

(M#)# ≈ (M∗ ⊗O ΩY )∗ ⊗O ΩY ≈M∗∗ ⊗O Ω∗Y ⊗O ΩY ≈M∗∗ ≈M

For example, O#
Y = ΩY and Ω#

Y = OY .

8.7.3. Riemann-Roch Theorem, version 2.dualco-
hom

Let M be a locally free OY -module on a smooth projective
curve Y , and letM# be its Serre dual. Then h0M = h1M# and h1M = h0M#.

BecauseM and (M#)# are isomorphic, the two assertions of the theorem are equivalent.

For example, h1ΩY = h0OY = 1 and h0ΩY = h1OY = pa. IfM is a locally free OY -module, then

(8.7.4)chitwo χ(M) = h0M− h0M#

A more precise statement of the Riemann-Roch Theorem is that H1(Y,M) and H0(Y,M#) are dual
vector spaces in a canonical way. We omit the proof of this. The fact that their dimensions are equal is enough
for many applications. The canonical isomorphism becomes important when one wants to apply the theorem
to a cohomology sequence.

Our plan is to prove Theorem 8.7.3 directly for the projective line. The structure of locally free modules on
P1 is very simple, so this will be easy. Following Grothendieck, we derive it for an arbitrary smooth projective
curve Y by projection to P1.

Let Y be a smooth projective curve, let X = P1, and let Y π→ X be a branched covering. LetM be a
locally free OY -module, and let the Serre dual ofM, as defined in (8.7.2), be

M#
1 = Y(M,ΩY )

The direct image ofM is a locally freeOX -module that we are denoting byM too, and we can form the Serre
dual on X . Let

M#
2 = X(M,ΩX)

8.7.5. Corollary.abouthom The direct image π∗M#
1 , which we denote byM#

1 , is isomorphic toM#
2 .
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proof. This is Theorem ??. �

The corollary allows us to drop the subscripts fromM#. Because a branched covering Y π−→ X is an
affine morphism, the cohomology of M and of its Serre dual M# can be computed, either on Y or on X .
If M is a locally free OY -module, then Hq(Y,M) ≈ Hq(X,M) and Hq(Y,M#) ≈ Hq(X,M#) (see
(7.4.25)).

Thus it is enough to prove Riemann-Roch for the projective line.

(8.7.6) dualityfor
pone

Riemann-Roch for the projective line

The Riemann-Roch Theorem for the projective lineX = P1 is a consequence of the Birkhoff-Grothendieck
Theorem tells us that a locally free OX -module M on X is a direct sum of twisting modules. To prove
Riemann-Roch for the projective line, it suffices to prove it for the twisting modules OX(k)

8.7.7. Lemma.
omegapone

The module of differentials ΩX on X is isomorphic to the twisting module OX(−2).

proof. Since ΩX is invertible, the Birkhoff-Grothendieck Theorem tells us that it is isomorphic to the twisting
module OX(k) for some k. We need only identify the integer k.

Let U0 = SpecC[x], and U1 = SpecC[z] be the standard open subsets of P1, with z = x−1. On U0, the
module of differentials is free, with basis dx, and dx = d(z−1) = −z−2dz describes the differential dx on U1.
Since the point p at infinity is {z = 0}, dx has a pole of order 2 there. It is a global section of ΩX(2p), and as a
section of that module, it isn’t zero anywhere. So multiplication by dx defines an isomorphism O → ΩX(2p)
that sends 1 to dx. Tensoring with O(−2p), we find that ΩX is isomorphic to O(−2p). �

8.7.8. Lemma. twisthomLet letM and N be locally free O-modules on the projective line X . Then X(M(r),N ) is
canonically isomorphic to X(M,N (−r)).

proof. When we tensor a homomorphism M(r)
ϕ−→ N with O(−r), we obtain a homomorphism M →

N (−r). Tensoring with O(r) is the inverse operation. �

The Serre dual O(n)# of O(n) is therefore

O(n)# = X(O(n),O(−2)) ≈ O(−2−n)

To prove Riemann-Roch for X = P1, we must show that

h0O(n) = h1X,O(−2−n) and h1O(n) = h0O(−2−n)

This follows from (Theorem 7.5.4), which computes the cohomology of the twisting modules. As we’ve noted
before, these two assertions are equivalent, so it suffices to verify the first one. If n < 0, then −2−n > 0.
In this case h0O(n) = h1O(−2 − n) = 0. If n ≥ 0, Theorem 7.5.4 asserts that h0O(n) = n+1 and that
h1O(−2− n) = (2+n)− 1 = n+1.

8.8 Using Riemann-Roch
appl

(8.8.1) genus genussm-
curve

There are three closely related numbers associated to a smooth projective curve Y : its topological genus
g, its arithmetic genus pa = h1OY , and the degree δ of the module of differentials ΩY (see 8.2).

8.8.2. Theorem. genus-
genus

Let Y be a smooth projective curve. The topological genus g and the arithmetic genus pa
of Y are equal, and the degree δ of the module ΩY is 2pa − 2, which is equal to 2g − 2.

Thus the Riemann-Roch Theorem 8.3.3 can we written as

χ(O(D)) = deg D + 1− g

We’ll write it this way in what follows.
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proof. Let Y π−→ X be a branched covering withX = P1. The topological Euler characteristic e(Y ), which is
2−2g, can be computed in terms of the branching data for the covering, as in (1.7.27). Let qi be the ramification
points in Y , and let ei be the ramification index at qi. Then ei sheets of the covering come together at qi. One
might say that ei − 1 points are missing. If the degree of Y over X is n, then since e(X) = 2,

(8.8.3)degdelta 2− 2g = e(Y ) = ne(X)−
∑

(ei−1) = 2n−
∑

(ei−1)

We compute the degree δ of ΩY in two ways. First, the Riemann-Roch Theorem tells us that h0ΩY =
h1OY = pa and h1ΩY = h0OY = 1. So χ(ΩY ) = −χ(OY ) = pa − 1. The Riemann-Roch Theorem also
tells us that χ(ΩY ) = δ + 1− pa (??). Therefore

(8.8.4) δ = 2pa − 2delta

Next, we compute δ by computing the divisor of the differential dx on Y , x being a coordinate in X . Let
qi be one of the ramification points in Y , and let ei be the ramification index at qi. Then dx has a zero of order
ei−1 at qi. On X , dx has a pole of order 2 at∞. Let’s suppose that the point at infinity isn’t a branch point.
Then there will be n points of Y at which dx has a pole of order 2, n being the degree of Y over X , as above.
The degree of ΩY is therefore

(8.8.5) δ = zeros− poles =
∑

(ei−1)− 2ndeltatwo

Combining (8.8.5) with (8.8.3), one sees that δ = 2g − 2. Since we also have δ = 2pa − 2, we conclude that
g = pa. �

8.8.6. Corollary.Honezero Let D be a divisor on a smooth projective curve Y of genus g. If deg D > 2g − 2, then
h1O(D) = 0. If deg D ≤ g − 2, then h1O(D) > 0.

proof. This follows from Corollary 8.3.10 (v). �

(8.8.7)genuszero curves of genus zero

Let Y be a smooth projective curve Y whose genus g is zero, and let p be a point of Y . The exact sequence

0→ OY → OY (p)→ ε→ 0

where ε is a one-dimensional module supported at p, gives us an exact cohomology sequence

0→ H0(Y,OY )→ H0(Y,OY (p))→ H0(Y, ε)→ 0

The zero on the right is due to the fact that h1OY = g = 0. We also have h0OY = 1 and h0ε = 1, so
h0OY (p) = 2. We choose a basis (1, x) for H0(Y,OY (p)), 1 being the constant function and x being a
nonconstant function with a single pole of order 1 at p. This basis defines a point of P1 with values in the
function field K of Y , and therefore a morphism Y

ϕ−→ P1. Because x has just one pole of order 1, it takes
every value exactly once. Therefore ϕ is bijective. It is a map of degree 1, and therefore an isomorphism
(8.1.5).

8.8.8. Corollary.gzero Every smooth projective curve of genus zero is isomorphic to the projective line P1. �

A curve, smooth or not, whose function field is isomorphic to the field C(t) of rational functions in one
variable is called a rational curve. A smooth projective curve of genus zero is a rational curve.

(8.8.9)genusone curves of genus one

A smooth projective curve of genus g = 1 is called an elliptic curve. The Riemann-Roch Theorem tells us that
on an elliptic curve Y ,

χ(O(D)) = deg D

Since h0ΩY = h1OY = 1, ΩY has a nonzero global section ω. Since ΩY has degree zero (8.8.2), ω doesn’t
vanish anywhere. Multiplication by ω defines an isomorphism O → ΩY . So ΩY is a free module of rank one.

The next lemma follows from Riemann-Roch.
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8.8.10. Lemma. hrpforel-
liptic

Let p be a point of an elliptic curve Y . For any r > 0, h0O(rp) = r, and h1O(rp) = 0. �

Since H0(Y,OY ) ⊂ H0(Y,OY (p)), and since both spaces have dimension one, they are equal. So (1)
is a basis for H0(Y,OY (p)). We choose a basis (1, x) for the two-dimensional space H1(Y,OY (2p)). Then
x isn’t a section of O(p). It has a pole of order precisely 2 at p and no other pole. Next, we choose a basis
(1, x, y) for H1(Y,OY (3p)). So y has a pole of order 3 at p, and no other pole. The point (1, x, y) of P2 with
values in K determines a morphism Y

ϕ−→ P2.
Let u, v, w be coordinates in P2. The map ϕ sends a point q distinct from p to (u, v, w) = (1, x(q), y(q)).

Since Y has dimension one, ϕ is a finite morphism. Its image will be a closed subvariety of P2 of dimension
one.

To determine the image of the point p, we multiply (1, x, y) by λ = y−1 to normalize the second coordinate
to 1, obtaining the equivalent vector (y−1, xy−1, 1). The rational function y−1 has a zero of order 3 at p, and
xy−1 has a simple zero there. Evaluating at p, we see that the image of p is the point (0, 0, 1).

Let Y ′ be the image of Y , which is a curve in P2. The map Y → P2 restricts to a finite morphism Y → Y ′.
Let ` be a generic line {au+bv+cw = 0} in P2. The rational function a+bx+cy on Y has a pole of order 3
at p and no other pole. It takes every value, including zero, three times, and the set of points q of Y at which
a+ bx+ cy is zero is the inverse image of the intersection Y ′ ∩ `. The only possibilities for the degree of Y ′

are 1 and 3. Since 1, x, y are independent, they don’t satisfy any homogeneous linear equation. So Y ′ isn’t a
line. The image Y ′ is a cubic curve (see Corollary 1.3.9).

To determine the image, we look for a cubic relation among the functions 1, x, y on Y . The seven mono-
mials 1, x, y, x2, xy, x3, y2 have poles at p of orders 0, 2, 3, 4, 5, 6, 6, respectively, and no other poles. They
are sections of OY (6p). Riemann-Roch tells us that h0OY (6p) = 6. So those seven functions are linearly
dependent. The dependency relation gives us a cubic equation among x and y, which we may write in the form

cy2 + (a1x+ a3)y + (a0x
3 + a2x

2 + a4x+ a6) = 0

There can be no linear relation among functions whose orders of pole at p are distinct. So, when we delete
either x3 or y2 from the list of monomials, we obtain an independent set of six functions. They form a basis for
the six-dimensional space H0(Y,O(6p)). So, in the cubic relation, the coefficients c and a0 aren’t zero. We
can scale y and x to normalize c and a0 to 1. We eliminate the linear term in y from this relation by substituting
y − 1

2 (a1x + a3) for y. Next, we eliminate the quadratic term in x. by substituting x − 1
3a2 for x. Bringing

the terms in x to the other side of the equation, we are left with a cubic relation of the form

y2 = x3 + a4x+ a6

The coefficients a4 and a6 have changed, of course.
The cubic curve Y ′ defined by the homogenized equation y2z = x3 + a4xz

2 + a6z
3 is the image of Y .

This curve meets a generic line ax + by + cz = 0 in three points and, as we saw above, its inverse image
in Y consists of three points too. Therefore the morphism Y

ϕ−→ Y ′ is generically injective, and Y is the
normalization of Y ′. Corollary 7.6.3 computes the cohomology of Y ′: h0OY ′ = h1OY ′ = 1. This tells us
that hqOY ′ = hqOY for all q. Let’s denote the direct image of OY by the same symbol OY , and let F be the
OY ′ -module OY /OY ′ . The exact sequence 0→ OY ′ → OY → F → 0 shows that h0F = 0. Since Y is the
normalization of Y ′, F is a torsion module with no global sections. So F = 0, and Y ≈ Y ′. �

8.8.11. Corollary. genu-
sonecubic

Every elliptic curve is isomorphic to a cubic curve in P2. �

(8.8.12) genusone-
group

the group law on an elliptic curve

The points of an elliptic curve form an abelian group, once one chooses a point to be the identity element.
We choose a point of an elliptic curve Y and label it o. We’ll write the law of composition in the group as

p⊕ q, using the symbol ⊕ to distinguish the sum in the group, which is a point of Y , from the divisor p+ q.
Let p and q be points of Y . To define p ⊕ q, we compute the cohomology of OY (p + q − o). It follows

from Riemann-Roch that h0OY (p+ q − o) = 1 and that h1OY (p+ q − o) = 0. There is a nonzero function
f , unique up to scalar factor, with simple poles at p and q and a zero at o. This function has exactly one other
zero. That zero is defined to be the sum p⊕ q in the group. In terms of linearly equivalent divisors, s = p⊕ q
is the unique point such that p+ q is linearly equivalent to o+ s.
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8.8.13. Proposition.grplaw The law of composition ⊕ defined above makes an ellipic curve into an abelian group.

The proof is an exercise. �

(8.8.14) interlude: maps to projective spacemaptoP

Let Y be a smooth projective curve. We have seen that any set (f0, ..., fn) of rational functions on Y ,
not all zero, defines a morphism Y

ϕ−→ Pn (5.3.3). As a reminder, let q be a point of Y and let gj = fj/fi,
where i is an index such that fi has the minimum value vq(fi). Then gj are regular at q for all j, and the
morphism ϕ sends the point q to is (g0(q), ..., gn(q)). For example, the inverse image ϕ−1(U0) of the standard
open set U0 is the set of points of Y at which the functions gj = fj/f0 are regular. If q is such a point, then
ϕ(q) = (1, g1(q), ..., gn(q)).

8.8.15. Lemma.mapcurve Let Y be a smooth projective curve, and let Y
ϕ−→ Pn be the morphism to projective space

that is defined by some set (f0, ..., fn) of rational functions on Y that aren’t all zero.
(i) If the subspace of the functionfield of Y that is spanned by {f0, ..., fn} has dimension at least two, then ϕ
is not a constant function.
(ii) If {f0, ..., fn} are linearly independent, the image isn’t contained in any hyperplane. �

The degree d of a nonconstant morphism Y
ϕ−→ Pn from a projective curve Y , smooth or not, to projective

space is the number of points of the inverse image ϕ−1H of a generic hyperplane H in Pn. We check that
this number is well-defined. Say that H is the locus h(x) = 0, where h =

∑
aixi, and that a second generic

hyperplane G is the locus g(x) = 0, where g =
∑
bixi. Let f(x) = h/g, and let f̃ = f ◦ ϕ. The divisor of f̃

on Y is ϕ−1H − ϕ−1G. It has degree zero.

(8.8.16) base pointsbasept

Let D be a divisor on the smooth projective curve Y such that h0O(D) = k > 1. A basis (f0, ..., fk)
of global sections of O(D) defines a morphism Y → Pk−1. This is the most common way to construct a
morphism to projective space, though one could use any set of rational functions.

If a global section of O(D) vanishes at a point p of Y , it is a global section of O(D−p). A point p is a
base point of O(D) if every global section of O(D) vanishes at p. A base point can be described in terms of
the usual exact sequence

0→ O(D−p)→ O(D)→ ε→ 0

The point p is a base point if h0O(D−p) = h0O(D), or if h1O(D−p) = h1O(D)− 1.

8.8.17. Lemma.deg-
nobasept

Let D be a divisor on a smooth projective curve Y , and suppose that h0O(D) > 1. Let
Y

ϕ−→ Pn be the morphism defined by a basis of global sections.
(i) The image of ϕ isn’t contained in any hyperplane.
(ii) If O(D) has no base points, the degree r of the morphism ϕ is equal to degree of D. If there are base
points, the degree is lower. �

(8.8.18) canonical divisorscanondiv

Because the module ΩY of differentials on a smooth curve Y is invertible, it is isomorphic to O(K) for
some divisor K. Such a divisor K is called a canonical divisor . The degree of K is 2g − 2. It is often
convenient to represent ΩY as a module O(K), though the canonical divisor K isn’t unique. It is determined
only up to linear equivalence (see (8.2.13)).

When written in terms of a canonical divisor K, the Serre dual of an invertible module O(D) will be
O(D)# = O(O(D),O(K)) ≈ O(K−D). With this notation, the Riemann-Roch Theorem forO(D) becomes
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(8.8.19) RRforODh0O(D) = h1O(K−D) and h1O(D) = h0O(K−D) �

8.8.20. Proposition. exbase-
points

Let K be a canonical divisor on a smooth projective curve Y of genus g > 0.
(i) O(K) has no base point.
(ii) Every point p of Y is a base point of O(K+p).

proof. (i) Let p be a point of Y . We apply Riemann-Roch to the exact sequence

0→ O(K−p)→ O(K)→ ε→ 0

where ε denotes a one-dimensional module supported on a point p. The Serre duals of O(K) and O(K−p)
are O and O(p), respectively. They form an exact sequence

0→ O → O(p)→ ε′ → 0

When Y has positive genus, there is no rational function on Y with just one simple pole. So h0O(p) = 1.
Riemann-Roch tells us that h1O(K−p) = 1. Also, h1O(K) = 1. The cohomology sequence

0→ H0(O(K−p))→ H0(O(K))→ [1]→ H1(O(K−p))→ H1(O(K))→ 0

shows that h0O(K−p) = h0O(K)− 1. So p is not a base point.

(ii) Here, the relevant sequence is

0→ O(K)→ O(K+p)→ ε3 → 0

The Serre dual of O(K+p) is O(−p), which has no global section. Therefore h1O(K+p) = 0, while
h1O(K) = h0O) = 1. The cohomology sequence

0→ h0O(K)→ h0O(K+p)→ [1]→ h1O(K)→ h1O(K+p)→ 0

shows that H0(O(K+p)) = H0(O(K)). So p is a base point of O(K+p). �

(8.8.21) hyperelliptic curves hyper

A hyperelliptic curve Y is a smooth projective curve of genus g > 1 that can be represented as a branched
double covering of the projective line. So Y is hyperelliptic if there is a morphism Y

π−→ X of degree two,
with X = P1. Justification for the strange term ’hyperelliptic’ is that every elliptic curve can be represented
as a double cover of P1, by the map to P1 defined by the global sections of O(2p).

The topological Euler characteristic of a hyperelliptic curve Y can be computed in terms of the covering
Y → X , which will be branched at a finite set, say of n points. Since π has degree two, the multiplicity of a
branch point will be 2. The Euler characteristic is therefore e(Y ) = 2e(X)− n = 4− n. Since we know that
e(Y ) = 2− 2g, the number n of branch points is 2g + 2. When g = 3, n = 8.

It would take some experimentation to guess that the next remarkable theorem might be true, and to find a
proof.

8.8.22. Theorem. hyper-
canon

Let K be a canonical divisor on a hyperelliptic curve Y , and let Y π−→ X = P1 be the
associated branched covering of degree 2. Let Y κ−→ Pg−1 be the morphism defined by the global sections
of ΩY = O(K). This morphism κ factors through X: There is a morphism X

u−→ Pg−1 such that κ is the
composition u ◦ π:

Y
π−−−−→ X

κ

y u

y
Pg−1 Pg−1
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8.8.23. Corollary.oned-
blcover

A curve of genus g ≥ 2 can be presented as a branched covering of P1 of degree 2 in at
most one way. �

proof of Theorem 8.8.22.
Let x be an affine coordinate in X , so that the standard affine open subset U0 of X is SpecC[x]. We suppose
that the point p∞ at infinity of X isn’t a branch point of the covering. Let Y 0 = π−1U0. Then Y 0 will have
an equation of the form

y2 = f(x)

where f is a polynomial with n = 2g + 2 simple roots. There will be two points of Y above the point p∞,
which are interchanged by the automorphism y → −y. Let’s call those points q1 and q2.

We start with the differential dx, which we view as a differential on Y . Then 2y dy = f ′(x)dx. Since f
has simple roots, f ′ doesn’t vanish at any of them. Therefore dx has simple zeros on Y above the roots of f ,
the points at which y = 0. We also have a regular function on Y 0 with simple roots at those points, namely
the function y. Therefore the differential ω = dx

y is regular and nowhere zero on Y 0. Because the degree of a
differential on Y is 2g−2, ω has a total of 2g−2 zeros at infinity. By symmetry, ω has zeros of order g−1 at
the each of two points q1 and q2. So K = (g−1)q1 + (g−1)q2 is a canonical divisor on Y , i.e., ΩY ≈ OY (K).

Since K has zeros of order g− 1 at infinity, the rational functions 1, x, x2, ..., xg−1, when viewed as
functions on Y , are among the global sections of OY (K). They are independent, and there are g of them.
Since h0OY (K) = g, they form a basis of H0(OY (K)). The map Y → Pg−1 defined by the global sections
of OY (K) evaluates these powers of x, so it factors through X . �

(8.8.24) canonical embeddingcanonemb

Let Y be a smooth projective curve of genus g ≥ 2, and let K be a canonical divisor on Y . Since O(K)
has no base point (??), its global sections define a morphism Y → Pg−1 that is called the canonical map. Let’s
denote the canonical map by κ. The degree of κ is the degree 2g − 2 of the canonical divisor.

8.8.25. Theorem.canonem-
btwo

Let Y be a smooth projective curve of genus g at least two. If Y isn’t hyperelliptic, the
canonical map embeds Y as a closed subvariety of projective space Pg−1.

proof. We show first that, if the canonical map Y κ−→ Pg−1 isn’t injective, then Y is hyperelliptic. Let p and
q be distinct points of Y such that κ(p) = κ(q). We choose an effective canonical divisor such that p and q
aren’t in its support. We inspect the global sections of O(K−p−q). Since κ(p) = κ(q), any global section of
O(K) that vanishes at p vanishes at q too. ThereforeO(K−p) andO(K−p−q) have the same global sections,
and q is a base point ofO(K−p). We’ve computed the cohomology ofO(K−p) before: h0O(K−p) = g−1
and h1O(K−p) = 1. Then h0O(K−p−q) = g−1 and h1O(K−p−q) = 2. The Serre dual of O(K−p−q)
is O(p + q), so by Riemann-Roch, h0O(p + q) = 2. If D is a divisor of degree one on a curve of positive
genus, then h0O(D) ≤ 1 (Proposition ??). Therefore O(p+ q) has no base point. Its global sections define a
morphism Y → P1 of degree 2. So Y is hyperelliptic.

If Y isn’t hyperelliptic, the canonical map is injective, so Y is mapped bijectively to its image Y ′ in Pg−1.
This almost proves the theorem. But: Can Y ′ have a cusp? We must show that the bijective map Y κ−→ Y ′ is
an isomorphism.

We go over the computation made above for a pair of points p, q, this time taking q = p. The computation
is the same. Since Y isn’t hyperelliptic, p isn’t a base point of OY (K−p). Therefore h0OY (K−2p) =
h0OY (K−p)− 1. This tells us that there is a global section f of OY (K) that has a zero of order exactly 1 at
p. When properly interpreted, this fact shows that κ doesn’t collapse any tangent vectors to Y , and that κ is an
isomorphism. Since we haven’t discussed tangent vectors, we prove this directly.

### reread this###
Since κ is bijective, the function fields of Y and its image Y ′ are equal, and Y is the normalization of Y ′.

Moreover, κ is an isomorphism except on a finite set. We work locally at a point p of Y ′, and we denote the
unique point of Y that maps to Y ′ by p too. When we restrict the global section f of OY (K) found above to
the image Y ′, we obtain an element of the maximal ideal m′p of OY ′ at p, that we denote by x. On Y , this
element has a zero of order one at p, and therefore it is a local generator for the maximal ideal mp of OY . Let
O′ andO be the local rings at p. We apply the Local Nakayama Lemma 5.1.19, regardingO as anO′-module.
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We substitute V = O and M = m′p into the statement of that lemma. Since x is in m′p, V/MV = O/m′pO is
the residue field k(p) of O, which is spanned, as O′-module, by the element 1. The Local Nakayama Lemma
tells us that O is spanned, as O′-module, by 1, and this shows that O = O′. �

(8.8.26) some curves of low genus lowgenus

Here Y will denote a smooth projective curve of genus g.

curves of genus 2.

When the genus of a smooth projective curve Y is 2, then 2g − 2 = 2. The canonical map κ is a map of
degree 2 from Y to P1. Every smooth projective curve of genus 2 is hyperelliptic.

curves of genus 3.

Let Y be a smooth projective curve of genus g = 3. The canonical map κ is a morphism of degree 4 from
Y to P2. If Y isn’t hyperelliptic, its image will be a plane curve of degree 4, isomorphic to Y . The genus of a
smooth projective curve of degree 4 is

(
3
2

)
= 3 (1.7.29), which checks.

There is a second way to arrive at the same result. We go through it because the same method can be used
for curves of genus 4 or 5.

Riemann-Roch determines the dimension of the space of global sections of O(dK):

h1O(dK) = h0O((1− d)K) = 0

when d > 1. For such d,

(8.8.27) OdKh0O(dK) = deg(dK) + 1− g = d(2g − 2)− (g − 1) = (2d− 1)(g − 1)

In our case g = 3, so h0O(dK) = 4d− 2 when d > 1.

The number of monomials of degree d in n + 1 variables x0, ..., xn is
(
n+d
d

)
. Here n = 2, so the number

is
(
d+2

2

)
.

We assemble this information into a table:

d 0 1 2 3 4 5
monos deg d 1 3 6 10 15 21
h0O(dK) 1 3 6 10 14 18

Now, if (α0, ..., α2) is a basis of H0O(K), the products αi1 · · ·αid of length d are global sections of
O(dK). In fact, they generate the space H0O(dK) of global sections. This isn’t very important here, so we
omit the proof. What we see from the table is that there is at least one homogeneous polynomial f(x0, ..., x2)
of degree 4 such that f(α) = 0. This means that the curve Y lies in the zero locus of that polynomial, which
is a quartic curve.

You will be able to show that, in fact, Y is this quartic curve, so f is, up to scalar factor, the only homo-
geneous quartic that vanishes on Y . Therefore the monomials of degree 4 in α span a space of dimension 14,
and therefore they span H0O(4K). This is one case of the general fact that was stated above.

The table also shows that there are (at least) three independent polynomials of degree 5 that vanish on Y .
They don’t give new relations because we know three such polynomials, namely xof, x1f, x2f .

curves of genus 4.

When Y is a smooth projective curve of genus 4 and is not hyperelliptic, the canonical map embeds Y as
a curve of degree 2g − 2 = 6 in P3. Let’s leave the analysis of this case as an exercise.

curves of genus 5.

With genus 5, things start to become more complicated.
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Let Y be a smooth projective curves of genus 5 that isn’t hyperelliptic. The canonical map embeds Y as a
curve of degree 8 in P4. We make a computation analogous to what was done for genus 3.

For d > 1, the dimension of the space of global sections of O(dK) is

h0O(dK) = (2d− 1)(g − 1) = 8d− 4

The number of monomials of degree d in 5 variables is
(
d+4

4

)
.

We form a table:

d 0 1 2 3
monos deg d 1 5 15 35
h0O(dK) 1 5 12 20

This table predicts that there are (at least) three independent homogeneous quadratic polynomials q1, q2, q3

that vanish on the curve Y .
Let H1, H2, H3 be hypersurfaces in P4, of degrees r1, r2, r3, respectively. If the intersection Z = H1 ∩

H2 ∩ H3 has dimension 1, it is called a complete intersection. Bézout’s Theorem has a generalization that
applies here. If Z is a complete intersection, its degree, the number of intersections of Z with a generic
hyperplane, will be the product r1r2r3. We set the proof up below, leaving details as an exercise. It is
analogous to the proof of the usual Bézout’s Theorem.

Thus, when Qi is the quadric qi = 0, the intersection Z = Q1 ∩Q2 ∩Q3 will have degree 23 = 8 and it
will contain Y , also of degree 8. Then Y will be equal to Z, and will be complete intersection.

However, it is possible that the three quadrics intersect in a subset of dimension 2, and in this case the
canonically embedded curve Y isn’t a complete intersection.

A curve which can be obtained as a three-sheeted covering of P1 is called a trigonal curve, another peculiar
term.

8.8.28. Proposition.trigonal A trigonal curve of genus 5 is not isomorphic to an intersection of three quadrics in P4.

proof. A trigonal curve Y will have a degee three morphism to the projective line: Y → X = P1. Let’s suppose
that the point at infinity of X isn’t a branch point. Let the fibre over the point at infinity be {p1, p2, p3}.
With coordinates (x0, x1) on X , the rational function u = x1/x0 on X has poles D =

∑
pi on Y , so

H0(Y,O(D)) contains 1 and u, and therefore h0O(D) ≥ 2. By Riemann-Roch, χO(D) = 3 + 1− g = −1.
so h1O(D) = h0O(K − D) ≥ 3. There are three independent global sections of O(K) that vanish on D.
Let them be α0, α1, α2. Then, when Y is embedded into P4 by a basis (α0, ..., α4), the three planes {xi = 0},
i = 0, 1, 2 contain D. The intersection of these planes is a line L that contains the three points D.

We go back to the three quadrics Q1, Q2, Q3 that contain Y . Since they contain Y , they contain D. A
quadric Q intersects the line L in two points unless L ⊂ Q. Therefore each of the quadrics Qi contains L,
and Q1 ∩ Q2 ∩ Q3 contains L as well as Y . According to Bézout, the intersection of three quadrics, if it is
one-dimensional, will have degree 23 = 8. But Y has degree 8 and L has degree 1, and 8 + 1 = 9 is too big.
Therefore Q1 ∩Q2 ∩Q3 has dimension 2. �

It can be shown that this is the only exceptional case. A curve of genus 5 is either hyperelliptic, or trigonal, or
else it is a complete intersecton of three quadrics in P4. However, this requires more work.

(8.8.29) Bézout’s Theorem, version 2bezouttwo

8.8.30. Theorem.beztwo Let H1, H2, H3 be hypersurfaces in Pr of degrees `.m, n, such that the intersection
Z = H1 ∩H2 ∩H3 has dimension r − 3. Then the degree of Z is the product `mn.

We slice Pr, Hi, and Z with a generic linear subspace L of Pr of dimension 3. So L is a projective space
of dimension 3. The degree of Z is defined to be the number of points of the intersection L ∩ Z, and L ∩Hi

are surfaces in P3, of degrees `,m, n. We replace Pr by L, Hi by Hi ∩ Z, and Z by L ∩ Z. This reduces us
to proving the theorem when r = 3. We restate the theorem for that case.
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8.8.31. Theorem. Let H1, H2, H3 be surfaces in P3 of degrees `.m, n, respectivly, such that the intersection
Z = H1 ∩ H2 ∩ H3 has dimension zero. The number of intersecton points, counted with multiplicity, is the
product `mn.

Setup for the proof. Say that the surfaces Hi are the zero loci of the homogenous polynomials f, g, h, respec-
tively. Let O be the structure sheaf on P3. We form the quotient O = O/(f, g, h). Its suport will be the finite
set Z. We want to show that the dimension of O as vector space is the product `mn.

The notation O = O/(f, g, h) isn’t precise. We should really write O = O/I, where I is the ideal
O(−`)f+O(−m)g++O(−n)h.

We form a resolution of O analogous to the resolution (7.8.3):

0→ O(−̀ −m−n)
A−→ O(−m−n)⊕O(−̀ −n)⊕O(−̀ −m)

B−→ O(−̀ )⊕O(−m)⊕O(−n)
C−→ O → O → 0

where A =

fg
h

, B =

 0 h −g
−h 0 f
g −f 0

, and C =
(
f g h

)
.

The maps are given by matrix multiplication, with A,B,C operating on the left, and with the direct sums
represented as columns.

It is an exercise to show that this sequence is exact provided that the intersection has dimension zero. It
shows that χ(O) is independent of f, g, h. When f, g, h are generic linear polynomials, there is just one
point of intersection, the theorem is true in that case, and it follows when f, g, h are products of generic
linear polynomials. Therefore it is true in all cases. (Or, one can evaluate the alternating sum of the Euler
characteristic of the terms.)
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