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Summaries, March 9 and 10

We reviewed the mapping property of quotient ring, which is in the previous summary.

Next, the Correspondence Theorem. Let R
ϕ−→ R′ be a surjective homomorphism with kernel K. (So

R′ ≈ R/K.) There is a bijective correspondence between these two sets:

{ideals of R that contain K} ↔ {ideals of R′}

If I is an ideal of R that contains K, the corresponding ideal of R′ is the image ϕ(I) in R′. If J is an ieal of
R′, the corresponding ideal of R is the inverse image ϕ−1(J).

If the ideal I of R corresponds to the ideal I ′ of R′, then the quotient rings R/I and R′/I ′ are isomorphic.

Example. Let R = Z, R′ = Z/12Z, and let ϕ the canonical map. Ideals of R′ correspond to ideals of Z that
contain 12Z. They are generated by the divisors of 12: 1, 2, 3, 4, 6, 12. So Z/12Z contains six ideals.

Using the notation (a) for the principal ideal generated by an element a, the six ideals are: (1), (2), (3), (4), (6),
and (12), which is the zero ideal.

adding a relation to a ring.

Given an element a of a ring R, one can ask to force the relation a = 0 in R. This is the way that the ring
Z/nZ of integers modulo n is defined.

If we want to have a = 0, we must accept some consequences, including that ra = 0 for all elements r of
R. So killing a fores us to kill all elements of the principal ideal I = Ra. Then we can form the quotient ring
R = R/Ra. The surjective homomorphism R

π−→ R that sends an element r to the coset r + I has kernel I .
So R is the ring obtained by killing a. Killing a has no consequences other than ra = 0.

adjoining an element to a ring.

Next, we consider the problem of adding a new element to a given ring R. The model for this procedure is
the construction of the complex numbers C from the real numbers R by adjoining an element i. The element i
has no properties other than the equation i2 + 1 = 0, and the ones implied by the ring axioms,

We can identify C with the quotient ring R[x]/I where I is the principal ideal of R[x] generated by x2+1.
The canonical homomorphism C[x] π−→ C that maps x to i is surjetive, and its kernel is the principal ideal I
generated by x2 + 1. o if R denotes the quotient ring R[x]/I , then π defines an isomorphism R ≈ C. This
tells us how to make such a construction more generally.

Let R be a ring, and let f(x) be a polynomial in R[x] with coefficients in R. To adjoin an elmeent α to R
with the equation f(α) = 0, one forms the quotient R′ = R[x]/(f) of the polynomial ring R[x], modulo the
principal ideal (f) = Rf generated by f . The residue of x is the new element α.

Does the residue of x in R′ = R[x]/(f) does satisfy the relation f(α) = 0? Say that f(x) = anx
n +

an−1x
n−1+ · · ·+a0. The canonical mapR[x] π−→ R′ has f(x) in its kernel, and it is a homomorphism. Let’s

write the image π(z) of an element z of R[x] as z. So in particular, x = α. Then f = 0, and

anα
n + an−1α

n−1 + · · ·+ a0 = anx
n + an−1x

n−1 + · · ·+ a0 = f = 0

are ai are the images of the coeficients ai in R′, and if we are able to identify R with its image in R′, i.e., if
the restriction of π to the constant polynomials is injective, we will have

anα
n + an−1α

n−1 + · · ·+ a0 = 0

as desired. This will work in most cases of interest, though it is possible that the desired equation f(α) = 0 is
so bad that it kills some constant polynomials.

The simplest case is that the; polynomial f(x) is monic, i.e., that an = 1. In that case, R′ will have an
R-basis 1, α, ..., αn−1. Every element of R′ can be written in a unique way as a combination of this basis with
coefficients in R. In particular, the map R→ R′ is injective.

Things become more complicated when f isn’t monic. For example, let f(x) = ax − 1. In this case, we
will have aα = 1, i.e., α is an inverse of the element a. The ring R′ can be described as the ring obtained by
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adjoining an inverse of the element a. So far, so good. However, there doesn’t seem to be any restriction on
the element a. We seem to be able to adjoin an inverse of the element 0, though we are told never to invert 0.

What happens is that the equation f(α) = 0 becomes 0α − 1 = 0, which simplifies to 1 = 0. The
resulting ring R′ is R[x]/(1). However, the principal ideal (1) generated by 1 is the whole ring. Therefore
R′ = R/(1) = {0}. Yes, we can invert 0, but doing so gives us the zero ring.

Some terminology.
A zero divisor a in a ring R is a nonzero element such that, for some other nonzero element b, the product

ab is zero.
A nonzero ring that has no zero divisors is called a domain, or elsewhere, an integral domain.
An ideal P of a ring R is a prime ideal if it satisfies any one of the following three equivalent conditions:

(1) If a and b are elements o R, and if the produt ab is in P , then a is in P or b is in P (or both).

(2) If A and B are ideal of R, and if the product ideal AB is contained in P , then A ⊂ P or B ⊂ P .

(3) The quotient ring R = R/P is a domain.

Let’s check that (1) implies (2). Say ideals A and B are given, and that AB ⊂ P . If B ⊂ P , OK. Else
there is an element b ∈ B that isn’t in P . But Ab ⊂ AB ⊂ P . Therefore ab is in P for every a in A. By (1), a
or b is in P , and since b isn’t in P , a ∈ P for every a in A. So

A maximal ideal M of a ring R is an ideal that satisfies one of th following equivalent conditions:

(1) M isn’t the unit ideal, M < R, but such that there is no ideal I such that M < I < R.

(2) The quotient ring R = R/M is a field.

So, M is a maximal element among ideals different from the unit ideal.
The fact that these conditions are equivalent follows from the next, rather trivial, lemma:

Lemma. A ring R is a field if and only if it contains exactly two ideals, the zero ideal and the unit ideal.

proof. If R is a field, and if I is any nonzero ideal of R, then I contains a nonzero element a, which will have
an inverse in the field. Then I contains 1 = a−1a, so I is the unit ideal. Conversely, suppose that R contains
precisely two ideals. Those ideals are the zero ideal and the unit ideal R. Then if a is a nonzero element, the
principal ideal Ra isn’t zero, so it is the unit ideal, which means that there is an r in R such that ra = 1. That
element is the inverse of a. So every nonzero element has an inverse, and R is a field. �

The nonzero prime ideals of the ring Z of integers are also the maximal ideals, the ones generated by prime
integers. The same is true of the polynomial ring F [x], when F is a field. However, in the ringR = C[x, y] the
prime ideals are the ones generated by irreducible polynomials such as y2 − x3 + x, polynomials that cannot
be factored. Thse are not maximal ideals.

The maximal ideals are described by Hilbert’s Nullstellensatz.
Let R be the polynomial ring C[x1, ..., xn] in n variables, and let p = (a1, ..., an) be a point of complex n-

space Cn. One can evaluate polynomials at p. This gives us a homomorphismR
πp−→ C: πp(f(x1, ..., xn)) =

f(p) = f(a1, ..., an), evaluation at p. Its kernel, the set of polynomials such that f(a1, ..., an) = 0, is the ideal
thatg we denote by mp that is generated by the linear polynomials x1−a1, ..., xn−an. Every polynomial f(x)
such that f(a) = 0 can be written as a combination of those linear polynomials, with polynomial coefficients.
You can check this by writing down the Taylor’s expansion of f(x), which is a polynomial.

Since πp is obviously surjective, we have an isomorphism isomorphism R = R/mp ≈ C. Since C is a
field, mp is a maximal ideal. Hilbert’s Nullstellensatz asserts that the ideal mp are all of the maximal ideals of
C[x1, ..., xn].

It tells us, among other things, that there are no other “secret” points at which one can evaluate a polyno-
mial.

Nullstellensatz. The maximal ideals of R = C[x1, ..., xn] are the kernels mp of the evaluation maps, for
p ∈ Cn.
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proof. Let M be a maximal ideal of R, let F be the field R/M , and let R
ϕ−→ F be the canonical map from

R to its quotient ring F . The restriction of ϕ to the field C of constant polynomials is injective because C is
field. It maps C isomorphically to a subfield of F that we enote by C too.

We plan to show that C = F . If so, then the images of the variables xi will be complex numbers ai, and
xi − ai will be in the kernel of ϕ. Since the polynomials xi − ai generate the maximal ideal mp described
above, we will have M = mp.

We choose an index i, and relabel the variable xi as x. Then we restrict the homomorphism ϕ to the

subring C[x], obtaining a homomorphism C[x] ψ−→ F . The image of this map is a subring of F , so it is a
domain, and therefore the kernel of ψ is a prime ideal of C[x]. The prime ideals are: the zero ideal, and the
maximal ideals generated by linear polynomials x − a. If we show that the kernel isn’t the zero ideal, it will
follow that x is mapped to some complex number a. Then all the variables are mapped to elements of C, and
therefore the image of ϕ is simply C, as we wanted to show.

Suppose that the kernel of ψ is the zero ideal, so that C[x] is mapped isomorphically to its image, a subring
of F , Then F contains C[x], and since F is a field, it contains inverses of all polynomials, in particular it
contains 1/(x− a) for every a

Now: As a runs over the complex numbers, the polynomials 1/(x− a) are linearly independent. You will
be able to check that there is no nontrivial relation

∑n
1 ci/(x− ai) = 0 with distinct complex numbers ai and

with complex coefficients ci. A simple reason is this: Near to one of the points ai, 1/(x−ai) gets large, while
1/(x− aj) remains bounded for all aj 6= ai.

On the other hand, the field F is the image of the polynomial ring C[x1, ..., xn], and that polynomial ring
has a countable basis consisting of the monomials: 1;x1, ..., xn;x21, x1x2, ... So F is spanned by the images of
the monomials, a countable set. A vector space that is spanned by a countable set cannot contain uncountably
many independent elements. Thus it is impossible that C[x] is mapped injectively to F , and this completes the
proof. �
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