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Summaries, March 12 and 15

March 12

Factoring.

When discussing factoring in a ring R, we always assume that that R is a domain: ab = 0 only if a = 0 or
b = 0. We also discuss only nonzero elements. So to avoid endless repetition ofthe word ’nonzero’ we adopt
the convention that we are always speaking of nonzero elements.

The basic terminology is as follows:

A unit is an element of R that has a multiplicative inverse.
If a and b are elements of R, then a divides b if b = ra for some r in R.
Two elements a and b of R are associates if a divides b and also b divides a. This happens when b = ua

for some unit u.
A proper factorization of an element a is an equation a = bc, where neither b nor c is a unit.
An element a is irreducible if it is not a unit, and if it has no proper factorization.
A prime element p is an elementvsuch that, whenever p idvides a product ab, it divides one of the factors

a or b.

Greatest Common Divisor.

First, the ring Z of integers. This ring is a principal ideal domain: Every ideal of Z is principal.
Let a and b be integers. The sum of the two principal ideals aZ and bZ is an ideal, so it has the form dZ

for some integer d:
aZ+ bZ = dZ

. The element d is determined up to unit factor.
This displayed equation has the following consequences:

d divides a and b, because a and b are in dZ.

(*) There are integers r and s such that d = ra+ sb. This is true because d is in the sum aZ+ bZ.

It follows that, if an integer e divides both a and b, then e divides d.

The conclusion marked with * is very powerful. One should always try to apply it.
One very important case is that a and b have no common divisors except units. In that case one says that

their greatest common divisor is 1, and we can write 1 = ra+ sb for suitable r and s in R.

Proposition. Let R be a domain.
(i) A prime element of R is irreducible.
(ii) If R is a principal ideal domain, then an irreducible element of R is a prime element.

proof (i) Let p be a prime element. We must show that p has no proper factorization. Sy that p = ab. Since p
is prime, 4=it divides one of the factors. Say that p | a, so a = pq for some q. Then p = ab = pqb. Therefore
qb = 1, b is a unit, and the factorization wasn’t proper.

(ii) For this proof, we restate the hypothesis that an element q of R is irreducible in terms of principal ideals.
If a is an element of R, we denote the principal ideal Ra by (a). If a is a proper divisor of another element
q, then (q) < (a). The inclusion (q) ⊂ (a) follows from the hypothesis that a divides q, which shows that
q ∈ (a). And, if (q) = (a), then q and a are associates, so the a isn’t a proper divisor of q. Therefore, an
element q is irreducible if and only if (q) < (1) but there is no element a such that (q) < (a) < (1).

Suppose that an irreducible element q divides a product ab: ab = qr for some r. Since q is irreducible,
it has no proper divisor. So if q doesn’t divide a, then q and a have no common divisors except units. Their
greatest common divisor is 1, and therefore we can write 1 = ra + sq for some r and s. Multiplying by b,
b = rab+ sqb. Here q ivides the right side of this equation, and therefore q divides b.
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Unique Factorization Domains.
It is nearly true that a domain R has unique factorization into irreducible elements if and only if every

irreducible element is a prime element. The only thing missing is that one needs to know that factoring into
irreducible elements is possible.

To factor an element z, not a unit, one looks for a proper factor. If there is no such factor, then z is
irreducible. If there is, one has a proper factorization z = ab. Then one continues, looking for proper factors
of a and b, etc... It is usually clar tht this process can’t be continued indefinitely.

Assume that very irreducible element is prime and that factoring is possible. We look at two factorizations
of an element z into irreducible elements, say z = p1 · · · pr and z = q1 · · · qn. Since p1 is irreducible, it is a
prime element. Then since p1 divids z = q1 · · · qn, p1 divides one of the factors qi. Since qi is irreducible,
it has no proper factor, so p1 is an associate of qi : qi = up1 for some unit u. We cancel p1 from both
factorizations, moving the unit u to another factor qj . Then we use induction.

Fatoring in the ring Z[x] of integer polynomials (polynomials with integer coefficients)

The ring Z[x] isn’t a principal ideal domain, but it does have unique factorization.
The main tools for studying this ring are:

the inclusion Z[x] ⊂ Q[x], and

the homomorphisms Z[x]
ψp

F p [x].
A polynomial f() = anx

n+ · · ·+ a0 with rational coefficients ai, an element of Q[x] is primitive if it has
positive degree, n > 0, its leading coefficient an is positive, it is an element of Z[x], i.e., the coefficients ai are
integers, and the greatest common divisor of the coefficients ai is 1. For instance, 3x2 + 5x+ 8 is a primitive
polynomial.

Lemma 1. A polynomial f(x) with integer coefficients nd positive leading coefficient is primitive if and only
if it isn’t in the kernel of ψp for any prime p.

Lemma 2. Let f(x) be a polynomial with rational coefficients, f ∈ Q[x]. Then f(x) = cf0(x) with c ∈ Q
and f0 primitive. This expression for f is unique. If f has integer coefficients, then c is an integer.

Gauss Lemma. The product fg of primitive polynomials f and g is primitive.

proof. If f and g are primitive, then their images f and g in Fp[x] are not zero for any prime p. If so, then
because Fp[x] is a domain, fg isn’t zero either. so fg is primitive. �

Isn’t this a nice proof?

Lemma 3. Let f0 and g we polynomials in Z[x], with f0 primitive. If f0 divides g in Q[x], sy g = f0q then q
is in Z[x], and therefore f0 divides g in Z[x].

proof Say that g = f0q in Q[x]. Applying Lemma 2, we write g = cg0 and q = dq0 where g0 and q0 are
primitive, c ∈ Z, and d ∈ bbq. Then cg0 = df0q0, and f0q0 is primitive. Since the expression g = cg0 is
unique, c = d and g0 = f0q0. Then d is an integer, and so q = dq+0 is in Z[x]. �

Proposition. The irreducible elements of Z[x] with positive leading coefficient are: the prime integers p,
and the primitive polynomials f that are irreducible in Q[x]. Moreover, these are prime elements of Z[x].
Therefore Z[x] has unique factorization into irreducible (prime) elements.

proof Let f be an irreducible element of Z[x]. Let’s suppose that f isn’t a constant. When we write f = cf0,
we must have c = ±1. Otherwise f isn’t irreducible. So f = ±f0. We may assume that f = f0 is primitive.

To show that f0 is a prime element ofZ[x], we suppose that f0 divides a product gh in Z[x]. We write
g = cg0 and h = dh0 with g0, h0 primitive. Then since f0 is assumed irreducible in the principal ideal domain
Q[x], f0 divides one of the factors, say f0 divides g0, in Q[x]. By Lemma 3, f0 divides g0 in Z[x]. �
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March 15

Gauss Primes.

We have seen that the ring Z[i]of Gauss integers is a principal ideal domain and therefore a unique fac-
torization domain. Here we describe the irreducible (or prime) elements of Z[i]. They are called the Gauss
primes.

A prime integer may be an irreducible element of Z[x], a Gauss prime, or not. The prime 3 is irreducible,
as is seen by looking for a proper divisor. The only Gauss integers α with absolute value < 3 are associates of
1+ i. They don’t divide 3. Instead, (i+ i)(i− i) = 2. So 2 is not a Gauss prime. Similarly, 5 = (2+ i)(2− i).
The factors 1± i and 2± i are Gauss primes.

Lemma 1. Let p be a prime different from 2, and let G be the multiplicative group of nonzero elements of the
field Fp of integers modulo p, which has order p− 1.
(i) G contains an element of order 4 if and only if p ≡ 1 modulo 4.
(ii) The residue a of an integer a in G is an element of order 4 if and only if a2 ≡ −1 modulo p. If so, then
a2 = −1.

proof (i) We inspect the homomorphism G
ϕ−→ G defined by ϕ(a) = a2. Its kernel is {±1} and its image

H has order (p − 1)/2. This subgroup contains 1, and the elements a distinct from ±1 can be paired with
their inverses. So H contains −1 if and only if its order is even, (p − 1)/2 = 2n. This is true if and only if
p− 1 = 4n and therefore p ≡ 1 modulo 4. �

Lemma 2. An integer prime p is either a Gauss prime or a product a product ππ of a Gauss prime and its
conjugate.

proof If α = a+ bi is a Gauss integer (a, b ∈ Z), then αα = a2 + b2 is an integer.
We factor p into Gauss primes in the ring Z[i], say p = π1 · · ·πk. Then p2 = pp is the product of the

integers (π1π1), ..., (πkπk). Since Z is a unique factorization domain, k ≤ 2. If k = 2, then p = π1π1, and if
k = 1, then p is an associate of π, and is a Gauss prime. �

The next theorem describes the Gauss primes.

Theorem. Let p be an odd prime integer. The following are equvalent:
1. There is a Gauss prime π such that p = ππ.
2. p is the sum of two integer squares: p = a2 + b2.
3. p is congruent 1 modulo 4: p = 5, 13, 17, ....
4. The residue of −1 modulo p is a square.

proof 1. ⇔ 2.This is rather trivial. If p = ππ and π = a+ bi, then ππ = (a− bi)(a+ bi) = a2 + b2.

1. ⇔ 4. This is the most interesting part of the theorem because, a priori, these two conditions don’t seem
related.

We show that a prime integer p is a Gauss prime if and only if the residue of −1 is not a square in the
field Fp of integers modulo p. The ring Z[i] of Gauss integers can be obtained from the ring of integers Z by
adjoining an element i with the relation i2+1 = 0. So as explained last time, Z[i] is isomorphic to the quotient
ring Z[x]/Q of the integer polynomial ring, where Q is the principal ideal of Z[x] generated by x2 + 1.

Next, p is a Gauss prime if and only if it generates a prime ideal of the ring Z[i] of Gauss integers. Let R
denote the quotient ring Z[i]/pZ[i].

The ring R has finite order p2. Its elements are the residues of the cosets that contain n or ni, with
n = 0, ., ..., p−1. If p generates a prime ideal, then R is a domain. A finite domain is a field. So if p generates
a prime ideal of Z[i], then R is a field.

Now, R is obtained from the integer polynomial ring Z[x] by killing x2 + 1, and then killing p. It is the
quotient Z[x]/I , where I is the ideal generated by the two elements x2 + 1 and p. Moreover, we can just as
well start by killing p in Z[x] first, then killing the residue of x2 + 1. Killing p in Z[x] produces the ring Fp[x]
of polynomials with coefficients modulo p.

The two procedures of killing elements in succession are summed up in this diagram:
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Z[x] a−−−−→ Z[i]

b

y yc′
Fp[x]

a′−−−−→ R

where b and b′ stand for for killing p in bbz[x] and in Z[i], and a and a′ stand for killing x2 + 1 in Z[x] and in
Fp[x].

Therefore R is a field if and only if p is an irreducible element of Z[i], and also if and only if x2 + 1 is an
irreducible element of Fp[x]. And, x2 + 1 is irreducible in Fp if and only if it has no root, which means that
−1 is not a square in Fp. This shows that 1. and 4. are equivalent.

3. ⇔ 4.: Let G be the group of p − 1 nonzero elements in Fp, as before. We consider the homomorphism
G

sq−→ G that sends an element α to α2. Its kernel is {±1}, so its image H has order (p− 1)/2. In H we can
pair the elements that aren’t equal to ±1 with their inverses. So the number of such elements is even. We also
have the identity element 1. So, if the order |H| of H is odd,−1 cannot be in H , while if |H| is even,−1 must
be in H . And, if −1 is in H , there is an element α in G whose square is −1. Then −1 is a square in Fp. Since
the order of H is (p − 1)/2, this happens if and only if p ≡ 1 modulo 4. Therefore 3. and 4. are equivalent.
This completes the proof of the theorem. �

Factoring Polynomials.

We consider the problem of factoring a given polynomial

f(x) = anx
n + an−1x

n−1 + · · ·+ a0

with rational coefficients.
First, we may as well clear the denominators. So we can suppose that f has integer coefficients. The cost

of doing this is that, whereas with rational coefficients we aan assume that f is monic, i.e., that an = 1, we
can’t do this if we want integer coefficients. However, if a polynomial

g(x) = brx
r + · · ·+ b0

divides f in Q[x], then if we make it primitive, the quotient will have integer coefficients too. This was
discussed before. So at the cost of working with nonmonic polynomials, we can stay with integers.

(Recall that g is primitive if bi are integers for all i, they have no common divisor, and br is positive.)
The simplest case is that g has degree 1, g = b1x + b0. Then if g divides f , b1 divides an and b0 divides

a0. Since an and a0 have finitely many intger divisors, there are finitely many linear polynomials to check for
dividing f . Of course we prefer not to do such a check.

It is harder to decide if f has a divisor g of degree 2.

Reduction modulo p

The homomorphism Z[x] π−→ Fp[x], p a prime integer, is a useful tool for studying divisibility. We denote
the image π(f) by f as usual:

f(x) = anx
n + · · ·+ a0

If f factors, f = gh, then f = gh, and provided that p doesn’t divide the leading coefficient an of f , g and h
will have the same degrees as g and h, respectively. So if we factor f , we will, among other things, know the
degrees of possible factors of f . This is helpful because there are finitely many polynomials of a given degree
in Fp[x], so factoring of f can be done in finitely many steps.

The simplest application is to show that a polynomial f is irreducible. If we suspect that f is irreducible,
we can reduce modulo som prime p. If f turns out to be irreducible, then we will have proved that f is
irreducible.

Let’s take the prime p = 2. There are two rules making computation modulo 2 particularly simple. Let R
be a ringR of characteristi 2, i.e., in which 1+1 = 0. Then, first, if a is inR, then, then a+a = a(1+1) = 0,
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so a = −a. This means that we can bring an element a that a;ppears on one side of any equation to the other
side without changing it. Second, if a and b are in R, then (a+ b)2 = a2+ b2 becauseth cross term 2ab is zero.

OK: Let’s list the irrducible polynomials in F2[x]. First, in degree 1 there are two polynmials x and x+ 1,
and obviously, both are irreducible. We use the “sieve method” to find the irrducible polynomials of degree 2.
The polynomials of degree 2 are:

x2, x2 + x, x2 + 1, x2 + x+ 1

The first two have 0 as root, and not irreducible. The third one x2 + 1 has root 1, also not irreducible. The last
one, x2 + x+ 1 doesn’t have 0 or 1 as root. it is the only irreducible polynomial of degree 2.

We see here two necessary conditions that a polynomial must satisfy in order to be irreducible: The constant
coefficient must be 1. If it is 0, then 0 is a root, and there must be an odd number of monomials with coefficient
1. If the number of those monomials is even, then 1 is a root.

Any reducible polynomial of degree 5 or less must have a linear factor or an irreducible quadratic factor. If
it is made up of an odd number of monomials including 1 and is irreducible, it must be divisible by x2+x+1.
And it isn’t hard to check divibility by that polynomial.

One way to can make that check easily is to look at the quotient ringK = F2[x]/I , where I is the principal
ideal generated by g = x2 + x+ 1. Since g has degree 2, the residues of 0, 1, x, x2 form a basis for K, which
is therefore a vector space of dimension 4 over the field F2. Let’s use the same notation 0, 1, x, x2 forthe
residues. Since the residue of x2+x+1 is zero, x2 = x+1 in K. Since g is irreducible, K is a finite domain,
and therefore a field. The multiplicative group K× of nonzeo elements of K has order 3. It is a cyclic group.
generated by any element different from 1, for example by x (more precisely, its residue). Then the powers of
x run through the group K×:

1, x, x2 = x+ 1, x3 = 1, x4 = x, x5 = x+ 1, ...

Now to check whether a polynmial such as f = x5 + x3 + x2 + x + 1 is irreducible in F2[x], we
look at its residue f in F2[x]/I . Working modulo g, we substitute the values of the powers, obtaining f =
(x+1) + 1 + (x+1) + x + 1. We cancel pairs of xs and pairs of 1s, and are left with x. Therefore f isn’t
zero and f isn’t divisible by x2+x+1. Since it has an odd number of terms and 1 appears, f is an irreducible
element of F2[x]. Of course, there are otherways to do this.

the Eisenstein Criterion

It is easiest to understand this by going through an example. Let f = x5 + 3x3 − 6x2 + 3. Reducing
modulo 3, we get the polynomial f = x5 in F3[x]. Now suppose that f were reducible, say f = gh, where
g = x2 + b1x + b0 and h = x3 + · · · + c0. Then in F5[x], we will have f = gh, and since f = x6, g = x2

and h = x3. Therefore the coefficients b1, b0, and c2, c1, c0 are all divisible by 3. The constant term of f is the
product b0c0. So it must be divisible by 32. Since the constant term is 3, this is a contradiction. So we can’t
have f = gh.

The principle at work here is the Eisenstein Criterion: Let f(x) = anx
2+· · ·+a0 be an integer polynomial

and let p be a prime integer. Suppose that

• p doesn’t divide an,
• p divides all other coefficients an−1, ..., a0, and
• p2 doesn’t divide a0.

Then f is irreducible in Z[x] and in Q[x].
The proof is the same as the one given in the example.

The Eisenstein Criterion doesn’t apply often, but it is very useful when it does apply. Its most important
application is to prove that the cyclotomic polynomial φ(x) = xp−1 + xp−2 + · · ·+ x+ 1 is irreducible when
p is a prime. (When p is not a prime, this polynomial won’t be irreducible.) The cyclotomic polynomial is the
result of dividing xp − 1 by x− 1:

xp − 1 = (x− 1)(xp−1 + · · ·+ x+ 1) = (x− 1)φ(x)

To prove that φ(x) is irreducible, we substitute x = y + 1 into this equation:

(y + 1)p − 1 = yφ(y + 1)
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If φ(x) factors, so does φ(y + 1). So it suffices to prove that φ(y + 1) is irreducible. We expand the left side
of the equation:

(y + 1)p − 1 =
(
yp +

(
p

1

)
yp−1 + · · ·

(
p

p− 1

)
y + 1

)
− 1

Dividing both sides of the equation by y,

yp−1 +

(
p

1

)
yp−2 + · · ·

(
p

p− 1

)
= φ(y + 1)

Now,
(
p
i

)
is divisible by p for every i = 1, ..., p − 1. The reason is that

(
p
i

)
= p!

i!(p−i)! . In this fraction, the
numerator is divisible by p but the denominator is not. The hypotheses of the Eisenstein Criterion are satisfied,
so φ(y + 1) and φ(x) are irreducible.
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