Summary-February24

Summing over the group. Let ρ be a representation of G on V. Because G is finite, one can sum over the group. This is a way to produce something that is invariant.

The simplest examples start with a subspace W of V. The sum $U = \sum_{g} gW$ of the subspaces gW is invariant, and so is the intersection $T = \bigcap_{g} gW$: For any group element h, U = hU and T = hT.

The reason that these subspaces are invariant subspaces is that, as g runs over the group, so does g' = hg, though in a different order.

For example, let $G = S_3$, and let h = y. As g runs through the group in the order $1, x, x^2, y, xy, x^2y$, g' = hg runs through G in the order $y, x^2y, xy, 1, x^2, x$.

Therefore $\sum_{g} hg = sum_{g}g' = \sum_{g'} g' = \sum_{g} g$, and

$$hU = \sum_g g'W = \sum_g gW = U$$

Similarly,

$$hT = \bigcap_g hgW = \bigcap_g g'W = \bigcap_g gW = T$$

The next example is averaging an element v of the vector space V. The averaging operation is

$$\widetilde{v} = \frac{1}{|G|} \sum_{g} g v$$

If h is a group element, then $h\tilde{v} = \frac{1}{|G|} \sum_g hgv$. We put g' = hg: $h\tilde{v} = \frac{1}{|G|} \sum_g g'v$. As g runs over the group, so does g', in a different order. Therefore the sum $\sum_g g'$ is equal to $\sum_{g'} g'$, and $h\tilde{v} = \frac{1}{|G|} \sum_g gv = \tilde{v}$.

However, it may very well happen that \tilde{v} is the zero vector. So this averaging process isn't always interesting.

The factor $\frac{1}{|G|}$ that appears isn't important. It is there so that, if v happens to be inveriant itself, then $\tilde{v} = v$

Next, let [,] be a positive definite hermitian form on V. The form is called *invariant* if [v, w] = [gv, gw] for all g. If the form is invariant, the operators ρ_g will be *unitary*.

The averaging process can be used to produce an invariant form from an arbitrary form.

We start with an arbitrary positive definite hermitian form $\{, \}$ on V. For instance, we could choose a basis for V and carry the standard hermitian form on \mathbb{C}^n over using the basis. We define a new form [,] by

$$[v,w] = \frac{1}{|G|} \{gv,gw\}$$

This form is positive definite and invariant. To prove that it is invariant, we show that [v, w] = [hv, hw] for all h in G:

$$[hv, hw] = \frac{1}{|G|} \sum_{g} \{ghv, ghw\} = \frac{1}{|G|} \sum_{g} \{g'v, g'w\}$$

As g runs over the group, so does g'' = gh, though in a different order. Therefore

$$[hv, hw] = \frac{1}{|G|} \sum_{g''} \{g''v, g''w\} = [v, w]$$

V. Proof of Maschke's Theorem The theorem asserts that every representation is a direct sum of irreducible representations. To prove it, we start with a representation ρ on a space V. If there is no proper invariant subspace, then ρ is irreducible. If there is a proper invariant subspace W, we look for a complementary subspace W' such that V is the direct sum $W \oplus W'$. If W' exists, we can apply induction on the dimension to conclude that the restrictions of ρ to W and W' are direct sums of irreducible representations, and then ρ will be a sum of irreducibles too.

We choose an invariant positive definite form [,] on V, so that $[v, w] = [\rho_g v, \rho_g w]$ for all g in G and all v, w in V. I hope you have earned that this formula shows that ρ_g are *unitary operators*. (See Proposition 8.6.3 of the text. A unitary operator preserves orthogonality. Therefore, if W is invariant, $W = \rho_g W$, and if W' is the orthogonal space W^{\perp} , then $\rho_g W'$ will be the orthogonal space to $\rho_g W = W$. So $W' = \rho_g W'$, i.e., W' is invariant.

Character table for the icosahedral group.

Let G be the icosahedral group of rotational symmetries of a regular icosahedron or dodecahedron. It is isomorphic to the alternating group A_5 . The conjugacy classes were described in 18.701, I hope. They can be identified by the angles of rotation. or by the type of permutation of five indices. I've displayed two permutation representations below. The first is the operation of A_5 on five indices. The second is the operation of the icosahedral group on the six pairs of opposite faces of a dodecahedron. For example, a rotation x by $2\pi/5$ fixes the axis of rotation, i.e., one pair of opposite faces. So $\chi_{f.pr}(x) = 1$. Rotation by $2\pi/3$ fixes no pair of opposite faces. Looking at a picture of the dodecahedron, I can't see the face pairs fixed by a rotation by π about an edge, so the number (2) is in parentheses. It can be seen to be the only possible value by orthogonality with the trivial representation.

	(1) (15) (20) (12) (12)	
	$0 \pi 2\pi, 32\pi/5 4/5 (angle)$	
(0.0.1)	(.)()()()()()(perm)	charsA5
	$\chi_{perm}: 5 1 2 0 0$	
	$\chi_{f.pr.}: 6 (2) 0 1 1$	

Subtracting the trivial character from χ_{perm} and from $\chi_{f.pr.}$ gives two of the irreducible representations. One also has the representation of 3-space by rotations. Its character can be computed easily. Remember that the trace of rotation by θ on 3-space is $1 + 2\cos\theta$, the 1 resulting from the fact that the rotation fixes its axis.

With this information, the character table is computed easily. It is in the text.