We determine some character tables.

I. Let G be the tetrahedral group of symmetries of a regular tetrahedron, which is also the alternating group A_4. Its order is 12. The conjugacy classes were probably discussed in 18.701. Unfortunately, we can’t show the process easily, so we display the table. $Initr$ denotes a rotation by angle $2\pi/3$ about a vertex and y denotes rotation by π about an edge. There are four conjugacy classes, so four irreducible characters. Let their dimensions be d_1, \ldots, d_4. The formula $|G| = d_1^2 + \cdots + d_4^2$ shows that $d_i = 1, 1, 1, 3$. This determines $\chi_i(1)$ for $i = 1, 2, 3, 4$.

The character χ is the one corresponding to the operation A_4 by permutations of four indices. So $\chi(y)$ is the number of indices fixed by y, which is a product of two disjoint transpositions. That number is zero. The character χ is a sum of irreducible characters, including the trivial character χ_1. This determines χ_4.

Finally, let ρ be the one-dimensional representation of G whose character is χ_2. Then $\chi_2(x)$ is the unique eigenvalue of the one-dimensional operator ρ_x. Since $x^3 = 1$, it is also true that $(\rho_x)^3 = 1$ and that $\chi_2(x) = 1$. There are three possibilities: $\chi_2(x) = 1, \omega$ or ω^2, with $\omega = e^{2\pi i/3}$. Moreover, $\chi_2(x^2)$ is the unique eigenvalue of ρ_x^2, which is the square of $\chi_2(x)$. The three possibilities for χ_2 are the first three rows of the table.

II. Let G be the dihedral group D_5 of symmetries of a regular pentagon. Let x denote rotation by $2\pi/5$, and let y be one of the reflection symmetries. The elements of G, grouped into conjugacy classes, are $1, \{x, x^4\}, \{x^2, x^3\}, \{y, xy, x^2y, x^3y, x^4y\}$, and the dimensions of the irreducible characters are 1, 1, 2, 2.

The character χ in the bottom row is the permutation character in which G operates on the vertices of the pentagon. It is the sum $\chi_1 + \chi_3 + \chi_4$.

The character χ_3 is the one that corresponds to the operation of G on the plane, in which x is rotation by $2\pi/5$ and y is a reflection. The value of the character on x is $\alpha = 2 \cos 2\pi/5 = \zeta + \zeta^{-1}$, with $\zeta = e^{2\pi i/5}$, and $\beta = 2 \cos 4\pi/5 = \zeta^2 + \zeta^3$.

The character table is

III. Let G be an arbitrary finite group. The permutation representation in which G operates on itself by left multiplication is called the regular representation, and its character χ_{reg} is the regular character. Then $\chi_{reg}(g)$
is the number of elements of G fixed by left multiplication by g. That number is zero unless g is the identity, in which case it is the order of the group: $\chi_{\text{reg}}(1) = |G|$. If χ_i is an irreducible character of G,

$$\langle \chi_{\text{reg}}, \chi_i \rangle = \frac{1}{|G|} \sum_g \chi_{\text{reg}}(g) \chi_i(g) = \frac{1}{|G|} \chi_{\text{reg}}(1) \chi_i(1) + 0 + \cdots + 0 = \frac{1}{|G|} |G| \chi_i(1) = \dim \chi_i$$

Let d_i be the dimension of χ_i. The projection formula $\chi_{\text{reg}} = \sum_i \langle \chi_{\text{reg}}, \chi_i \rangle \chi_i$ shows that $\chi_{\text{reg}} = \sum_i d_i \chi_i$. Therefore $|G| = \dim \chi_{\text{reg}} = \sum_i d_i \dim \chi_i = \sum_i d_i^2$. This proves one part of the Main Theorem!
February 24.

Summing over the group. Let ρ be a representation of G on V. Because G is finite, one can sum over the group. This is a way to produce something that is invariant.

The simplest examples start with a subspace W of V. The sum $U = \sum_g gW$ of the subspaces gW is invariant, and so is the intersection $T = \bigcap_g gW$: For any group element h, $U = hU$ and $T = hT$.

The reason that these subspaces are invariant subspaces is that, as g runs over the group, so does $g' = hg$, though in a different order.

For example, let $G = S_3$, and let $h = y$. As g runs through the group in the order $1, x, x^2, y, xy, x^2y, x$, $g' = hg$ runs through G in the order $y, x^2, y, xy, 1, x^2, x$.

Therefore
$$\sum_{g} hg = \sum_{g'} g' = \sum_{g} g,$$
so does g', in a different order. Therefore the sum $\sum_{g'} g'$ is equal to $\sum_{g} g'$, and $h\tilde{v} = \frac{1}{|G|} \sum_{g} gv = \tilde{v}$.

However, it may very well happen that \tilde{v} is the zero vector. So this averaging process isn’t always interesting.

The factor $\frac{1}{|G|}$ that appears isn’t important. It is there so that, if v happens to be invariant itself, then $\tilde{v} = v$.

Next, let $[\ ,\]$ be a positive definite hermitian form on V. The form is called invariant if $[v, w] = [gv, gw]$ for all g. If the form is invariant, the operators ρ_g will be unitary.

The averaging process can be used to produce an invariant form from an arbitrary form.

We start with an arbitrary positive definite hermitian form $\{\ ,\ \}$ on V. For instance, we could choose a basis for V and carry the standard hermitian form on \mathbb{C}^n over using the basis. We define a new form $[\ ,\]$ by
$$[v, w] = \frac{1}{|G|} \{gv, gw\}$$
This form is positive definite and invariant. To prove that it is invariant, we show that $[v, w] = [hv, hw]$ for all h in G:
$$[hv, hw] = \frac{1}{|G|} \sum_g \{ghv, ghw\} = \frac{1}{|G|} \sum_g \{g'v, g'w\}$$
As g runs over the group, so does $g'' = gh$, though in a different order. Therefore
$$[hv, hw] = \frac{1}{|G|} \sum_{g''} \{g''v, g''w\} = [v, w]$$

V. Proof of Maschke’s Theorem The theorem asserts that every representation is a direct sum of irreducible representations. To prove it, we start with a representation ρ on a space V. If there is no proper invariant subspace, then ρ is irreducible. If there is a proper invariant subspace W, we look for a complementary subspace W' such that V is the direct sum $W \oplus W'$. If W' exists, we can apply induction on the dimension to conclude that the restrictions of ρ to W and W' are direct sums of irreducible representations, and then ρ will be a sum of irreducibles too.

We choose an invariant positive definite form $\{\ ,\ \}$ on V, so that $[v, w] = [\rho_g v, \rho_g w]$ for all g in G and all v, w in V. I hope you have earned that this formula shows that ρ_g are unitary operators. (See Proposition 8.6.3.
A unitary operator preserves orthogonality. Therefore, if W is invariant, $W = \rho_g W$, and if W' is the orthogonal space W^\perp, then $\rho_g W'$ will be the orthogonal space to $\rho_g W = W$. So $W' = \rho_g W'$, i.e., W' is invariant.

Character table for the icosahedral group.

Let G be the icosahedral group of rotational symmetries of a regular icosahedron or dodecahedron. It is isomorphic to the alternating group A_5. The conjugacy classes were described in 18.701, I hope. They can be identified by the angles of rotation, or by the type of permutation of five indices. I’ve displayed two permutation representations below. The first is the operation of A_5 on five indices. The second is the operation of the icosahedral group on the six pairs of opposite faces of a dodecahedron. For example, a rotation x by $2\pi/5$ fixes the axis of rotation, i.e., one pair of opposite faces. So $\chi_{f.pr}(x) = 1$. Rotation by $2\pi/3$ fixes no pair of opposite faces. Looking at a picture of the dodecahedron, I can’t see the face pairs fixed by a rotation by π about an edge, so the number (2) is in parentheses. It can be seen to be the only possible value by orthogonality with the trivial representation.

\[
\begin{array}{cccccc}
(1) & (15) & (20) & (12) & (12) \\
0 & \pi & 2\pi,32\pi /5 & 4/5 \ (angle) \\
\end{array}
\]

\[
(0.0.3) \begin{array}{cccccc}
\chi_{perm} : & 5 & 1 & 2 & 0 & 0 \\
\chi_{f.pr.} : & 6 & (2) & 0 & 1 & 1 \\
\end{array}
\]

Subtracting the trivial character from χ_{perm} and from $\chi_{f.pr.}$ gives two of the irreducible representations. One also has the representation of 3-space by rotations. Its character can be computed easily. Remember that the trace of rotation by θ on 3-space is $1 + 2 \cos \theta$, the 1 resulting from the fact that the rotation fixes its axis.

With this information, the character table is computed easily. It is in the text.