
Summary of February 17 class

GROUP REPRESENTATIONS

G a finite group
V a finite-dimensional (complex) vecctor space

A representation of G on V is an operation of G on V by linear operators. So if g ∈ G and
v ∈ V , then gv is another element of V . The properties of the operation are

• g(hv) = (gh)v if g, h are in G
• 1Gv = v

These are the properties of any operation of a group on a set. In addition, we want the
operaton to be linear. (Otherwise we wouldn’t be thinking of V as a vector space.) So we
require

• g(v + w) = gv + gw if v, w are in V
• g(cv) = c(gv), c ∈ C.

Let GL(V ) denote the group of invertible linear operators on V . Say that V has dimension
n. The group GL(V ) becomes isomorphic to the general linear group of n×n matrices when
one chooses a basis for V , by

ϕ ↔ matrix of ϕ

Representations are usually denoted by a greek letter, often by ρ (rho). The repre-
sentation above becomes the map G → GL(V ) defined by: ρg = “how g operates”, i.e.,
ρg(v) = gv. (The element g is in the subscript position to keep it out of the way.)

The linear operator ρg is invertible because, as follows from the properties of an operation,
g−1gv = v. It also follows from those properties that ρgρh = ρgh. So ρ is a homomorphism
G → GL(V ). Conversely, a homomorphism G → GL(V ) defines a representation.

Example: We use our usual example in which G is the symmetric group S3, which is
isomorphic to the alternating group D3 of symmetries of a triangle. Let V be the plane C

2.
The standard representation α of G is the one whose matrices (with repect to the standard
basis) are

Ax =

(

c −s
s c

)

, Ay =

(

1
−1

)

So, αx is rotation by angle 2π/3 and αy is reflection about the e1-axis, except that we
operate on C

2 rather than on R
2.

I hope that this matrix representation is familiar. However, when one changes to another
basis, the matrices change to Bx = Q−1AxQ and By = Q−1AyQ. One might not recognize
the representation when given by B.

Then how can one classify the representations? The secret method is to look at the trace
of the operators and forget everything else. The trace of an operator is independent of the
basis.
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We define the character χ (greek letter “chi”) of a representation ρ to be

χ(g) = traceρg

We write the character of the standard representation, and also of two other representa-
tions:

• the it trivial representation τ : In the trivial representation, V is a one-dimensional
vector space, and τg = 1 (the identity operator) for all g. Its character is χτ (g) = 1 for all
g.

• the sign representation σ: Here V is also a one-dimensional vector space, and σg is the
sign of the permutation g in S3. Its character is χσ(x) = 1 and χσ(y) = −1.

We assemble the three characters into a table, listing the values of the character below
the elements of G:

1 x x2 y xyx2y

standard : 2−1−1 0 0 0

trivial : 1 1 1 1 1 1

sign : 1 1 1 −1−1−1

This table has the following general properties:

1. The first column is the dimension of the vector space, which is also called the dimension
of the representation and the dimension of the character. By definition,

dimρ = dimχ = dimV

This is clear. The trace of the identity operator ρ1 is the dimension of the space V .

2. The characters are constant on the conjugacy classes.
The conjugacy classes are: {1}, {x, x2}, {y, xy, x2y}

This is also clear. If g, g′ are conjugate group elements, then ρg and ρg′ are also conjugate.
Conjugate operators (or matrices) have the same trace.

The next properties aren’t so clear:

3. The rows are orthogonal.

4. The lengths of the rows is 6, which is also the order of the group.
These properties illustrate the Main Theorem, which is stated below.

For the theorem, we need to know about invariant subspaces and irreducible representa-
tions. This is quite simple.

Let ρ be a representation of G on a vector space V . An invariant subspace W of V is a
subspace such that, if w is an element of W , then gw = ρgw is also in W for all g. Or, one
might write gW ⊂ W (in which case gW = W because ρg is invertible.)
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The representation ρ is irreducible if V has no proper invariant subspace. The represen-
tations listed above are irreducible. If ρ is an irreducible representation, its character χ is
called an irreducible character.

We define a pairing on characters, by normalizing the standard hermitian form:

〈χ, χ′〉 =
1

|G|

∑

g

χ(g)χ′(g)

The term 1

|G| takes care of the fact that the lengths of the rows in the diagram above is

6 = |G|.

Main Theorem. • The irreducible characters form an orthonormal basis for the space of
class functions (functions on the conjugacy classes).
• The number of irreducible characters is equal to the number of conjugacy classes.
• Let χ1, ..., χk be the irreducible characters, and let di be the dimension of χi (the dimension
of the vector space Vi). Then |G| = d2

1
+ · · ·+ d2k.


