Finite fields

We plan to describe all finite fields. Most of the work will be preliminary.
We give two examples first.

Let F be a field. If $f(x)$ is an irreducible element of the polynomial ring $F[x]$, then the principal ideal (f) it generates is a maximal ideal, so the quotient ring $F[x]/(f)$ is a field. This gives us a way to construct field extensions.

Example 1. Let $F = \mathbb{F}_2$ be the field with two elements. We’ll call the elements 0 and 1. There is just one irreducible polynomial of degree 2 in $F[x]$, namely $f(x) = x^2 + x + 1$. The field $K = F[x]/(f)$ has F-basis $1, \alpha$, where α denotes the residue of x, which is a root of the polynomial f. The elements of K are $0, 1, \alpha, 1 + \alpha$. To compute in K, one uses the two relations $1 + 1 = 0$ and $\alpha^2 + \alpha + 1 = 0$. Since $1 + 1 = 0$ in K, signs are irrelevant: $a = -a$.

The element $1 + \alpha$ is the second root of f:

$$(x + \alpha)(x + (1 + \alpha)) = x^2 + x + 1$$

Example 2. Here $F = \mathbb{F}_3$. The elements of F are $0, 1, -1 (= 2)$. The polynomial $x^2 + 1$ has no root in F. It is an irreducible element of $F[x]$, and $K = F[x]/(f)$ is a field with F-basis $1, \alpha$, where α is the residue of x. The elements of F are $0, 1, -1, \alpha, -\alpha, 1 + \alpha, 1 - \alpha, -1 + \alpha, -1 - \alpha$.

The six elements other than $0, 1, -1$ are roots of irreducible quadratic polynomials, so there must be at least three irreducible quadratic polynomials in $F[x]$. In fact, there are exactly three:

$$x^2 + 1, \quad x^2 + x - 1, \quad x^2 - x - 1$$

For example, $1 + \alpha$ is a root of $x^2 + x - 1$.

Now for the preliminary work:

Lemma 1. Let F be a field, let f be a monic irreducible polynomial in $F[x]$, and let K denote the field $F[x]/(f)$. Also, let α denote the residue of x in K. Then

(i) K contains F as subfield.

(ii) α is a root of $f(x)$ in K.

proof (i) This is almost obvious, but it can be a bit confusing. We consider the homomorphisms $F \subset F[x] \rightarrow F[x]/(f) = K$. The composed map $F \rightarrow K$ is injective because F is a field. (It has no proper ideals). So F is mapped isomorphically to a subfield of K that we identify with F.

(ii) Let’s denote the residue in K of an element z of $F[x]$ by \overline{z}. Then since we are identifying F with its image in K, $\alpha = a$ when $a \in F$.

Say that $f(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_0$ with $a_i \in F$. In the homomorphism $F[x] \rightarrow F[x]/(f)$, the element f maps to zero: $\overline{f(x)} = 0$. Then

$$0 = \overline{f} = \overline{x^d} + a_{d-1}\overline{x^{d-1}} + \cdots + a_0 = \overline{x^d + a_{d-1}x^{d-1} + \cdots + a_0} = f(\alpha)$$

Thus $F[x]/(f)$ is a field extension of F in which the polynomial f has a root.

Corollary 1. Let F be a field, and let $f(x)$ be an irreducible monic polynomial with coefficients in F. There exists a field extension K in which f has a root.

We can say a bit more. A monic polynomial $f(x)$ splits completely in a field K if it is a product of linear factors: $f(x) = (x - \alpha_1 - \cdots - (x - \alpha_d)$ with $\alpha_i \in K$.

Corollary 2. Let $f(x)$ be a monic polynomial with coefficients in a field F. There exists a field extension K of F in which $f(x)$ splits completely.
proof If \(f \) splits completely in \(F \), there is nothing to show. Otherwise, we choose an irreducible factor \(g(x) \) of \(f(x) \), of degree \(> 1 \), and apply Corollary 1. There is field extension \(F_1 \) of \(F \) in which \(g \) has a root \(\alpha \). Then \(\alpha \) is also a root of \(f \) in \(F_1 \), so \(f \) has more roots in \(F_1 \) than in \(F \). We replace \(F \) by \(F_1 \) and repeat this construction. \(\square \)

Lemma 2. Let \(F \) be a field. A polynomial \(f(x) \) in \(F[x] \) of degree \(d \) has at most \(d \) roots in \(F \).

proof We use induction on \(d \). Let \(\alpha \) be a root of \(f \) in \(F \). Then in \(F[x] \), \(f(x) = (x - \alpha)g(x) \) for some \(g \) in \(F[x] \) of degree \(d - 1 \). Any root of \(f \) other than \(\alpha \) must be a root of \(g \). By induction, we may suppose that \(g \) has at most \(d - 1 \) roots. Then \(f \) has at most \(d \) roots. \(\square \)

Proposition 1. Let \(K \) be a field. Every finite subgroup of the multiplicative group \(K^\times \) is a cyclic group.

proof We will use the Structure Theorem for abelian groups, which tells us that a finite abelian group is a direct sum of cyclic groups of some orders \(d_1, d_2, \ldots, d_k \), where \(d_1 \) divides \(d_2 \), etc. The theorem was proved using additive notation for the law of composition, but it remains true when the law is written as multiplication. So \(G = C_{d_1} \times C_{d_2} \times \cdots \times C_{d_k} \). We need the fact that \(d_1 | d_2 | \cdots | d_k \) here. It shows that any element of \(G \) has an order that divides \(d_k \). Therefore the elements of \(G \) are roots of the polynomial \(x^{d_k} - 1 \). Lemma 2 tells us that the order of \(G \) cannot be greater than \(d_k \). On the other hand, the order is the product \(d_1 d_2 \cdots d_k \). Therefore, assuming we have eliminated the trivial groups \(C_1 \), there can be only one cyclic group: \(k = 1 \).

about the derivative

The derivative of a polynomial \(f(x) = \sum a_i x^i \) is defined by the usual calculus rule \(f'(x) = \sum i a_i x^{i-1} \), in which the integer \(i \) stands for \(1 + 1 + \cdots + 1 \). The derivative satisfies the product rule \((fg)' = fg' + fg \).

The next lemma gives the most important property of the derivative.

Lemma 3. An element \(\alpha \) is a multiple root of a polynomial \(f \), i.e., \((x - \alpha)^2 \) divides \(f \), if and only if it is a common root of \(f \) and of \(f' \).

proof Suppose that \(\alpha \) is a root, so that \(f(x) = (x - \alpha)g(x) \) for some polynomial \(g \). Then by the product rule, \(f'(x) = g(x) + (x - \alpha)g'(x) \), and \(f''(\alpha) = g(\alpha) \). So \(\alpha \) is a root of \(f'' \) if and only if it is a root of \(g \), and it is a root of \(g \) if and only if it is a double root of \(f \).

We go to finite fields now.

Let \(K \) be a finite field. We map the integers \(\mathbb{Z} \) to \(K \) by the unique homomorphism: \(\mathbb{Z} \to K \). Because \(K \) is finite, the kernel of \(\varphi \) will be a nonzero ideal, generated by an irreducible element of \(\mathbb{Z} \) – a prime integer \(p \). The image of \(\varphi \) will be isomorphic to the prime field \(\mathbb{Z}/(p) = \mathbb{F}_p \).

• Every finite field \(K \) contains one of the fields \(F = \mathbb{F}_p \), as subfield.

Then \(K \) will be a field extension of \(F \), and the degree \([K : F] \) will be finite. Say that \([K : F] = r \). Then \(K \) is an \(F \)-vector space of dimension \(r \). It has an \(F \)-basis of \(r \) elements, so its order is \(p^r \).

Let \(q = p^r \).

Lemma 4. The polynomial \(x^q - x \) has no multiple root in any field \(K \) of characteristic \(p \).

proof Let \(f(x) = x^q - x \). Then \(f'(x) = qx^{q-1} - 1 \). Since \(q \) is a power of \(p \), it is zero in \(K \), and \(f'(x) = -1 \). Then \(f' \) has no root, and so \(f \) and \(f' \) have no common root. \(\square \)

Lemma 5. Let \(K \) be a finite field of order \(q = p^r \). The elements of \(K \) are roots of the polynomial \(x^q - x \).

proof The multiplicative group \(K^\times \) is a finite group of order \(q - 1 \), and Proposition 1 tells us that \(K^\times \) is a cyclic group. All of its elements have orders that divide \(q - 1 \). They are roots of the polynomial \(x^{q-1} - 1 \). Since \(0 \) is a root of the polynomial \(x \), all elements of \(K \) are roots of \(x(x^{q-1} - 1) = x^q - x \). \(\square \)

Lemma 6. Let \(R \) be a ring that contains the prime field \(F = \mathbb{F}_p \) as a subring, and let \(q = p^r \). Then if \(a, b \) are elements of \(R \), then \((a + b)^q = a^q + b^q \).

proof The fact that \((x + y)^q = x^q + y^q \) follows from the binomial expansion: \((x + y)^q = \sum \binom{q}{i} x^i y^{q-i} \). The binomial coefficients \(\binom{q}{i} \) are divisible by \(p \) when \(i = 1, \ldots, p - 1 \). Therefore they are zero in \(F \). Then
Lemma 7. Let L be a field that contains $F = \mathbb{F}_p$, and let K be the set of roots of the polynomial $x^q - x$ in L, where $q = p^r$. Then K is a subfield of L.

The roots are the elements a of L such that $a^q = a$, or if $a \neq 0$, such that $a^{q-1} = 1$.

proof We have to show that K contains 1, is closed under the operations $+,-,\times$, and contains the inverses of its nonzero elements. If a, b are in K, Lemma 6 shows that $a + b$ is in K. A somewhat interesting point is that if a is in K, then $-a$ is in K: If p is odd, then q is odd, and $(-a)^q = -a^q$. If q is even, i.e., $p = 2$, then $(-a)^q = a^q = a$. However, in this case, $a = -a$ so $(-a)^q = -a$ as well.

Lemma 8. Let k and r be integers such that k divides r, and let $q = p^r$ and $q' = p^k$. The polynomial $x^{(q'-1)} - 1$ divides $x^{(q-1)} - 1$.

proof This is tricky. Say that $r = ks$. We substitute $y = p^k$ and $n = s$ into the equation

$$y^n - 1 = (y-1)(y^{n-1} + y^{n-2} + \cdots + y + 1)$$

obtaining $q - 1 = (p^k)^s - 1 = (p^k - 1)(\ell) = (q' - 1)(\ell)$, where ℓ is an integer. So $q' - 1$ divides $q - 1$.

Next, we substitute $y = x^{(q'-1)}$ and $n = \ell$ into the same displayed equation: $x^{(q'-1)} - 1 = (x^{(q'-1)} - 1)(\ell - 1)\varphi(x)$, for some polynomial φ. So $x^{(q'-1)} - 1$ divides $x^{(q-1)} - 1$.

The main results about finite fields are the next theorems, in which p is a prime integer and $q = p^r$.

Theorem 1. There exists a finite field of order q, and any two fields of order q are isomorphic.

Theorem 2. Let K be a field of order $q = p^r$, and let K' be a field of order $q' = p^k$. Then K contains a subfield isomorphic to K' if and only if k divides r.

Theorem 3. The polynomial $x^q - x$ is the product of the irreducible polynomials in $F[x]$ whose degrees divide r.

In Theorem 3, each factor appears just once in the product because $x^q - x$ has no multiple root.

Examples 3. (i) ($q = 2^2$) In $\mathbb{F}_2[x]$, the polynomial $x^4 - x$ is the product $x(x+1)(x^2 + x + 1)$.

(ii) ($q = 3^2$) In $\mathbb{F}_3[x]$, $x^9 - x = x(x+1)(x^2 + 1)(x^2 - x - 1)$.

(iii) ($q = 2^3$) In $\mathbb{F}_2[x]$, $x^8 - x = x(x+1)(x^2 + x + 1)(x^2 + x^2 + 1)$.

(iv) ($q = 2^4$) In $\mathbb{F}_2[x]$, $x^{16} - x = x(x+1)(x^2 + x + 1)(x^4 + x^3 + 1)(x^4 + x^3 + x^2 + x + 1)$.

The factors of $x^q - x$ appear here because 4 = 2^2, $q = 2^4$, and 2 divides 4.

proof of Theorem 1 We start with the prime field $F = \mathbb{F}_p$. Corollary 2 tells us that there is a field extension L of F in which the polynomial $x^q - x$ splits completely. It has q roots in L (Lemma 4). Lemma 7 tells us that the set K of those roots is a field.

The fact that two fields K and K' a of order $q = p^r$ are isomorphic will follow from Theorem 2. If K and K' have the same order and K' is isomorphic to a subfield of K, then that subfield is equal to K.

proof of Theorem 2 Here $[K : F] = r$ and $[K' : F] = k$. If K' is (or is isomorphic to) a subfield of K, then $r = [K : F] = [K : K'][K' : F] = [K : K']k$, so k divides r.

Conversely, let k be an integer that divides r, and let $q' = p^k$. Let K and K' be fields of orders q and q', respectively. We must show that K contains a subfield isomorphic to K'. The multiplicative group K^{*r} is cyclic of order $q' - 1$. Let β' be a generator for that cyclic group. Then obviously, $K' = F[\beta']$. Let $g(x)$ be the irreducible polynomial in $F[x]$ with root β'. Since β' is also a root of $x^{(q'-1)} - 1$, g divides $x^{(q'-1)} - 1$. Lemma 8 tells us that $x^{(q'-1)} - 1$ divides $x^{(q-1)} - 1$. So g divides $x^{(q-1)} - 1$, which is a polynomial that splits completely in K. Therefore g has a root β in K, and $K' = F[\beta']$ is isomorphic to the subfield $F[\beta]$ of K.

So K contains a subfield isomorphic to K'. □
Example 4. In Example 2, \(F = F_4 \) and \(K = F[\alpha] = F[x]/(x^2 + 1) \) where \(\alpha \) is the residue of \(x \). The multiplicative group \(K^\times \) has order 8, and the element \(\alpha \) isn’t a generator because \(\alpha^2 = -1 \) and \(\alpha^4 = 1 \). But let \(\beta = 1 + \alpha \). Then \(\beta^2 = 1 - \alpha + \alpha^2 = -\alpha \). So \(\beta \) has order 8. The four elements of \(K \) distinct from 0, 1, \(-1\), \(\alpha \), \(-\alpha \) all have order 8.

proof of Theorem 3 Let \(K \) be a field of order \(q = p^r \), and let \(g(x) \) be an irreducible factor of \(x^q - x \) in \(F[x] \), say of degree \(k \). Since \(x^q - x \) splits completely in \(K \), \(g \) has a root \(\beta \) in \(K \). The subfield \(K' = F[\beta] \) of \(K \) generated by \(\beta \) has degree \(k \) over \(F \). So \(k \) divides \(r \).

Next, let \(g(x) \) be an irreducible polynomial in \(F[x] \) whose degree \(k \) divides \(r \). We are to show that \(g \) divides \(x^q - x \) or, if \(g \) isn’t the polynomial \(x \), that \(g \) divides \(x^{q-1} - 1 \). Let \(\beta' \) be a root of \(g \) in a field extension of \(F \), and let \(K' \) be the field \(F[\beta'] \). Its degree over \(F \) is \([K' : F] = k \), and \(\beta' \) is also a root of \(x^{q-1} - 1 \). So \(g \) divides \(x^{q-1} - 1 \). Since \(k \) divides \(r \), \(x^{q-1} - 1 \) divides \(x^{(q-1)} - 1 \) (Lemma 8). So \(g \) divides \(x^{(q-1)} - 1 \). □