18.702 Comments on Problem Set 8

1. Chapter 15, Exercise 3.4. *(the irreducible polynomials for some \(\zeta \))

Let’s do the case of \(\zeta_9 \). Let \(f(x) = x^9 - 1 \), \(\omega = \zeta_9 \) and \(\zeta = \zeta_9 \). We have this factorization over \(\mathbb{Q} \):

\[
f(x) = (x - 1)(x^2 + x + 1)(x^6 + x^3 + 1)
\]

One can show that the sextic factor \(g(x) = x^6 + x^3 + 1 \) is irreducible by showing that it is irreducible modulo 2. It has no root in \(\mathbb{F}_2 \), so if reducible, it would have an irreducible factor of degree 2 or 3. There are only three polynomials to check, to see if they divide \(g \), namely \(x^2 + x + 1 \), \(x^3 + x + 1 \), and \(x^3 + x^2 + 1 \).

Here is a second approach for showing that \(g \) is irreducible modulo 2: In \(\mathbb{F}_2 \), the derivative of \(f(x) = x^9 - 1 \) is \(x^8 \), which doesn’t have a root in common with \(f \). So \(f \) has distinct roots. If \(\alpha \) is any root of \(f \), then \(\alpha^9 = 1 \). Since the roots are distinct, there is a root \(\alpha \) whose order is equal to 9 (not 1 or 3). Then \(\alpha \) is a root of \(g \). If we show that the degree of \(\alpha \) over \(\mathbb{F}_2 \) is 6, it will follow that the irreducible polynomial for \(\alpha \) is \(g \), and therefore that \(g \) is irreducible modulo 2.

We need to show that the field \(\mathbb{F}_2[\alpha] \) has degree 6 over \(\mathbb{F}_2 \), and we know that the order of this field is a power of 2. It will be \(\mathbb{F}_q \), where \(q \) can be one of these numbers: \(q = 4, 8, 16, 32, 64, \ldots \). The multiplicative group \(\mathbb{F}_q^* \) is a cyclic group of order \(q - 1 \). So \(\mathbb{F}_q^* \) contains an element of order 9 if and only if 9 divides \(q - 1 = 1, 3, 7, 15, 31, 63, \ldots \). The first of these integers that is divisible by 9 is 63. Therefore \(q = 64 = 2^6 \), and \(\alpha \) has degree 6 over \(\mathbb{F}_2 \).

4. Chapter 15, Exercise 7.6. *(factoring \(x^{16} - x \))

According to the text, \(x^{16} - x \) splits into linear factors over \(\mathbb{F}_{16} \), and it factors into the irreducible polynomials of degrees 1, 2, 4 over \(\mathbb{F}_2 \). The factorization over \(\mathbb{F}_2 \) is

\[
x^{16} - x = x(x + 1)(x^2 + x + 1)(x^4 + x + 1)(x^4 + x^3 + 1)(x^4 + x^3 + x^2 + x + 1).
\]

There is a tower of fields \(\mathbb{F}_2 \subset \mathbb{F}_4 \subset \mathbb{F}_{16} \). The degrees of the extensions are

\[
(*) \quad 4 = [\mathbb{F}_{16} : \mathbb{F}_2] = [\mathbb{F}_{16} : \mathbb{F}_4][\mathbb{F}_4 : \mathbb{F}_2] = 2 \cdot 2.
\]

The extension \(\mathbb{F}_4 \) of \(\mathbb{F}_2 \) is generated by a root, call it \(\alpha \), of the quadratic factor. Then \(\mathbb{F}_4 = \{0, 1, \alpha, \beta\} \), where \(\beta = 1 + \alpha \). A root of any one of the quartic factors generates \(\mathbb{F}_{16} \) over \(\mathbb{F}_2 \). Since \([\mathbb{F}_{16} : \mathbb{F}_4] = 2 \), each quartic factor of \(x^{16} - x \) will be the product of two irreducible quadratic factors in \(\mathbb{F}_4[x] \). It isn’t hard to carry out the factorization in \(\mathbb{F}_4 \) using undetermined coefficients. For example, \(x^4 + x + 1 = (x^2 + x + \alpha)(x^2 + x + \beta) \).

Since \([\mathbb{F}_8 : \mathbb{F}_2] = 3 \), the smallest field that contains \(\mathbb{F}_{16} \) and \(\mathbb{F}_8 \) is the field of order \(2^{17} = 128 \). It has degree 4 over \(\mathbb{F}_8 \), so the quartic factors in (*) remain irreducible over \(\mathbb{F}_8 \). Similarly, the quadratic factor remain irreducible.
6. Chapter 15, Exercise M5. (*elements of finite order in GL\(_2(\mathbb{Z})\)*)

By field theory:

Let \(n \) be an integer, and let \(A \) be a matrix with integer entries such that \(A^n = I \). Then the eigenvalues \(\lambda \) also satisfy \(\lambda^n = 1 \). The eigenvalues are roots of the characteristic polynomial, and because \(A \) is an integer matrix, its characteristic polynomial is a quadratic integer polynomial. So we ask: For which \(n \) does an \(n \)th root of unity have degree at most 2 over \(\mathbb{Q} \)? The answer is \(\zeta_1, \zeta_2, \zeta_3, \zeta_4, \) and \(\zeta_6 \). Problem 1 gives a good start at the proof. If \(\zeta_{ab} \) has degree at most 2 over \(\mathbb{Q} \), so does \(\zeta_a = \zeta_{ab} \).

For example, \(\zeta_{10} \) has degree 4.

Using the Crystallographic Restriction:

Let \(G \) be the cyclic group generated by a matrix \(A \) of order \(n \) in \(GL_2(\mathbb{Z}) \). Let \(V = \mathbb{R}^2 \), and let \(T \) be the linear operator on \(V \) whose matrix with respect to the standard basis is \(A \). Because \(A \) has integer entries, \(T \) carries the lattice \(L = \mathbb{Z}^2 \) to itself: \(TL = L \).

Theorem 10.3.6 asserts that there is a \(G \)-invariant, positive definite, symmetric form \(< , > \) on \(V \), a form such that \(< v, w > = < Tv, Tw > \) for all vectors \(v, w \). We change basis in \(V \) to an orthonormal basis for this form, using a real basechange matrix \(P \). The matrix of \(T \) is changed to the real matrix \(A' = P^{-1}AP \), and the lattice \(L \) is no longer the integer lattice in the new coordinates. However, it is still true that \(< v, w > = < Tv, Tw > \). Since the new basis is orthonormal, the new matrix \(A' \) is orthogonal. The property \(TL = L \) remains true too. The Crystallographic Restriction 6.5.12 tells us that \(n = 1, 2, 3, 4, \) or 6.