
April 17, 2021

18.702 Comments on Problem Set 7

1. Chapter 13, Exercise 7.3. (some norms with d = −26)

The integers in Z[δ] are a+ bδ, with a, b ∈ Z, and the norm of a+ bδ is a2 + 26b2.
I guess the simplest thing is just to check. First, 56 = a2 with a = 53. It is the norm of

53 + 0δ.
For the others, we can note that 42 · 26 = 416. If an integer < 416 is the norm of a+ bδ,

then b must be ≤ 4. Knowing this, there isn’t too much work to be done. 75 = N(7 + δ),
250 = N(4 + 3δ), and 375 is not a norm.

2. Determine the ideal class group in the ring of integers R = Z[δ] when δ2 = d, with
(a) d = −37 , and (b) d = −41.

Both −37 and −41 are congruent 3 modulo 4. So µ = 2
√

|d|/3, and µ < 8. The primes
that need to be examined are p = 2, 3, 5, 7. We know that 2 splits, and that: (2) = P 2 for
some prime ideal P .

The case d = −37: A prime p splits if and only if the polynomial x2 +37 has a root modulo
p. It has no root modulo p = 3, 5, 7. So those primes remain prime and don’t ontribute to
the ideal class group. The class group is generated by the prime ideal P that divides 2. It
is a cyclic group of order 2.

The case d = −41: Here p splits if x2 + 41 has root modulo p. It does have a root modulo
p = 3, 5, and 7. Those primes all split. Let’s say that (3) = QQ, (5) = SS, and (7) = TT .
The classes 〈P 〉〈Q〉, 〈S〉, and laT 〉 generate the class group.

We compute some norms:

N(2 + δ) = 45 = 32 · 5. From this we can conclude that 〈S〉 = 〈Q〉±2.

N(3 + δ) = 50 = 2 · 52. This implies that 〈S〉2 = 〈P 〉.
Putting these two rpelations together with 〈P 〉2 = 1 shows that 〈Q〉6 = 1, and that we

an eliminate

3. Chapter 13, Exercise 8.4. (the cases of unique factorization)

The case d = −43 was done in class (see the summaries for April 2 and 5, and d = −163
is in the text. The remaining cases are similar.
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4. Chapter 14, Problem 1.4. (Schur’s Lemma)

(a) A module is simple if it isn’t the zero module and if it has no proper submodule. Let V
be a simple module, and let v be a nonzero element of V . The map R −→ V that sends an
element a of R to av is a homomorphism, and since V is simple, it is surjective. Therefore
V is isomporphic to R/K, where K is the kernel of the map (First Isomorphism Theorem).
The Correspondence Theorem tell us that submodules of V correspond to submodules of R
(i.e. to ideals of R) that contain the kernel. Since V is a simple module, there are no such
ideals except K and R. The ideal K isn’t the unit ideal R because v isn’t zero. So it is a
maximal ideal.

(b) Let ϕ : S −→ S′ be a homomorphism of simple modules. Then since S is simple, its
kernel is either 0 or S, ad since S′ is simple, its image is either o or S′.

5. Chapter 14, Problem 4.5. (lattices in the complex plane)

Let V be the set of linear combinations of the elements α, β, γ. In order for V to be a lattice,
the first condition is that they must contain elements that are independent over R, i.e., they
must span C as a real vector space.

Next, if the elements are contained in a lattice, they are integer combinations of two
vectors, and therefore they are linearly dependent over the rational numbers Q. We can
clear the denominator in a linear relation to obtain one, say aα+bβ+cγ = 0, with a, b, c ∈ Z.
Conversely, if there is such a relation, and if c 6= 0, then V is contained in the lattice spanned
by α/c and β/c. A subgroup of a lattice is a discrete group, so if it contains two independent
vectors, it is a lattice.

So, α, β, γ span a lattice if and only if they span C as real vector space, and are linearly
dependent over the rational numbers Q.


