18.702 Comments on Problem Set 5

due Friday, March 26

1. Chapter 12, Exc. 2.4. (infinitely many primes in $F[x]$)

2. In the ring of integers \mathbb{Z}, the greatest common divisor d of two positive integers a, b is the positive integer that generates the ideal $a\mathbb{Z} + b\mathbb{Z}$. So $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$. The intersection $z\mathbb{Z} \cap b\mathbb{Z}$ is also an ideal. It is a principal ideal $m\mathbb{Z}$ for some positive integer m. The integer m is called the least common multiple of a and b.

(i) Prove that a and b divide m, and that if an integer n is divisible by a and b, then it is divisible by m.

(ii) Prove that $ab = md$.

First, $(ab)/d = (a/d)b = a(b/d)$ is an integer and it is divisible by a and by b. Therefore m divides $(ab)/d$ and md divides ab. Next, we write $d = ra + sb$. Then $md = ram + sbm$. Since both a and b divide m, ab divides md.

3. Chapter 12, Exercise 4.5. (irreducibility of some polynomials)

They are all irreducible. The Eisenstein Criterion applies to (a) and (d), the only possible integer roots of (c) are ± 1. For (b), a linear factor must be $x \pm 1, 2x \pm 1, 4x \pm 1$ or $8x \pm 1$. If the coefficient of x is $2, 4$ or 8, the term $8x^3$ is too big to cancel out, and $pm1$ aren’t roots.

4. Chapter 12, Exc. 4.6. (factoring $x^5 + 5x + 5$)

For $\mathbb{Q}[x]$, Eisenstein applies. Modulo 2, we get $x^5 + x + 1$. It is divisible by the only irreducible polynomial of degree 2, which is $x^2 + x + 1$: $x^5 + x + 1 = (x^2 + x + 1)(x^3 + x^2 + 1)$.

5. Chapter 12, Exc. 4.8. (factoring certain quartics)

One case in which $f = +bx^2 + c$ factors is that the quadratic polynomial $y^2 + by + c$ has a root in the field F. If $y^2 + by + c = (y - u)(y - v)$, then, setting $y = x^2$, one sees that $f = (x^2 - u)(x^2 - v)$.

I assigned this problem because there is another way that f might factor. It can be found by solving the equation $x^4 + bx^2 + c = (x^2 + px + q)(x^2 + p'x + q')$ with indeterminate coefficients:

$$(x^2 + px + q)(x^2 + p'x + q') = x^4 + (p + p')x^3 + (q + q' + pp')x^2 + (pq' + p'q)x + qq'$$

Equating coefficients, $p' = -p$, $q' = q$, $q^2 = c$, and $2q - p^2 = b$. If these equations can be solved in F, then $f = (x^2 + px + q)(x^2 - px + q)$.

1