18.702 Comments on Problem Set 4

1. Chapter 11, Exc. 7.4. (fractions of formal power series)

The main point is to show that if the constant coefficient a_0 of a series $f(x) = a_0 + a_1x + \cdots$ isn't zero, the series is invertible, a unit in the power series ring $F[[x]]$. This is proved by induction, and there are various ways to set the induction up. Since we can multiply by a_0^{-1}, we can assume that the constant coefficient of f is 1. An informal approach is to write the inverse with undetermined coefficients and solve the resulting equations:

$$(1 + a_1x + a_2a^2 + \cdots)(1 + b_1x + b_2a^2 + \cdots) = 1$$

The equations are

$$a_1 + b_1 = 0,$$

$$a_2 + a_1b_1 + b_2 = 0,$$

$$a_3 + a_2b_1 + a_1b_2 + b_3 = 0,$$ etc.

The important point is that the coefficient of x^n has the form $E_n + b_n$, where E_n is an expression involving some a_i and some b_j with $j < n$. So one can solve recursively.

3. Chapter 11, Exc. 8.4 (maximal ideals of $\mathbb{R}[x]$)

This is rather simple. The maximal ideals of $\mathbb{R}[x]$ are principal ideals, generated by monic irreducible polynomials. The irreducible polynomials are linear or quadratic. A linear polynomial has a root on the real line. An irreducible quadratic polynomial q has a pair of complex conjugate roots $\alpha, \overline{\alpha}$, one of which is in the upper half plane. We associate that point of the upper half plane to the maximal ideal generated by q.

3. Chapter 11, Exc. 9.12 (polynomials without common zeros)

I assigned this so that you would learn that the Nullstellensatz is useful. To write 1 as a combination of f_1, f_2, f_3, one can use repeated division with remainder, as in the Euclidean algorithm.

For example, since f_1 is monic in t, one can use it to divide f_3. The remainder is

$$g = f_3 - tf_1 = 4tx^2 + 2t + 1.$$ Then one can divide g by f_2, obtaining remainder $h = g - xf_2 = 2t + 4x + 1$. We replace f_3 by $\frac{1}{2}h$, which is linear and monic in t. Then one can use h to divide f_1 and f_2, etc.

However, substituting back at the end is a real pain. Sorry.
4. Chapter 12, Exc. 2.8 (division with remainder in $\mathbb{Z}[i]$)

One can divide in \mathbb{C} and take a nearby Gauss integer. For example,

$$
\frac{4 + 36i}{5 + i} = \frac{(4 + 36i)(5 - i)}{26} = \frac{56 + 176i}{26} = \left(2 + \frac{4}{26}\right) + \left(7 - \frac{6}{26}\right)i
$$

So $4 + 36i = (2 + 7i)(5 + i) + r$, where the remainder $r = 4 + 36i - (2 + 7i)(5 + i) = 1 + 4i$.