Comments on Problem Set 4

1. Chapter 12, Exc. 2.8 (division with remainder in $\mathbb{Z}[i]$)

It is simplest to do the division in \mathbb{C}, then take a nearby Gauss integer. For example,

$$
\frac{4 + 36i}{5 + i} = \frac{(4 + 36i)(5 - i)}{26} = \frac{56 + 176i}{26} = (2 + \frac{4}{26}) + (7 - \frac{6}{26})i
$$

So $4 + 36i = (2 + 7i)(5 + i) + r$, where the remainder r is $4 + 36i - (2 + 7i)(5 + i) = 1 + 4i$.

2. Chapter 11, Exc. 8.1 (principal ideals in $\mathbb{Z}[x]$ that are maximal)

The answer is that no maximal ideal of $\mathbb{Z}[x]$ is a principal ideal. You are expected to prove this, of course.

3. Chapter 11, Exc. 9.12 (polynomials without common zeros)

I assigned this so that you would learn that the Nullstellensatz is useful. To write 1 as a combination of f_1, f_2, f_3, one can use repeated division with remainder, as in the Euclidean algorithm.

For example, since f_1 is monic in t, one can use it to divide f_3. The remainder is $g = f_3 - tf_1 = 4tx^2 + 2t + 1$. Then one can divide g by f_2, obtaining remainder $h = g - xf_2 = 2t + 4x + 1$. We replace f_3 by $\frac{1}{2}h$, which is linear and monic in t. Then one can use h to divide f_1 and f_2, etc.

However, substituting back at the end is a big pain. Sorry.

4. Chapter 11, Exc. 6.8 (Chinese Remainder Theorem)

(a) For any ideals I and J, it is true that $IJ \subset I$ and $IJ \subset J$. So $IJ \subset I \cap J$. Suppose that $I + J = R$. Then we can write $1 = r + s$ with $r \in I$ and $s \in J$. If $x \in I \cap J$, rx is in IJ and sx is in $JI = IJ$. Therefore $x = xa + xb$ is in IJ. So $I \cap J \subset IJ$.

(b) Writing $x = rx + sx$, where $r + s = 1$, $r \in I$ and $s \in J$, does the trick.

(c) Let $R_1 = R/I$ and $R_2 = R/J$. The kernel of the map $\pi = (\pi_1, \pi_2) : R \to R_1 \times R_2$ that sends an element x to the pair (x_1, x_2) of its residues is $I \cap J$, which is equal to $IJ = 0$. Therefore π is injective. Let $(\overline{a}, \overline{b})$ be an element of $R_1 \times R_2$, and let a, b be elements that map to $\overline{a}, \overline{b}$. With $1 = r + s$ as above, $(1, 1) = \pi(1) = \pi(s) + \pi(r) = (\pi_1(s), 0) + (0, \pi_2(r))$. So $\pi(s) = (1, 0)$ and $\pi(r) = (0, 1)$. Then $\pi(sa + rb) = (\pi_1(a), 0) + (0, \pi_2(b)) = (\overline{a}, \overline{b})$.

(d) In $R_1 \times R_2$, the idempotents that describe the product decomposition are $(1, 0)$ and $(0, 1)$. The inverse images of these elements in R are the idempotents r and s.

1
5. Chapter 11, Exc. M.3 (maximal ideals in a ring of sequences)

The map that sends a sequence \(a = (a_1, a_2, \ldots) \) to \(a_i \) is a homomorphism \(R \rightarrow \mathbb{R} \). Its kernel \(\mathfrak{m}_i \), is the set of sequences \(a \) such that \(a_i = 0 \). It is a maximal ideal. The only other maximal ideal is \(\mathfrak{M} \), the kernel of the homomorphism to \(\mathbb{R} \) that sends a sequence \(a \) to its limit.

Let \(M \) be any maximal ideal. If \(M \neq \mathfrak{m}_i \), then because \(M \) is maximal, \(M \not\subset \mathfrak{m}_i \). So there is a sequence \(a \in M \) with \(a_i \neq 0 \). Let \(e_i \) be the sequence that is identically zero except for a 1 in position \(i \). Then the sequence \(e_ia \), which is in the ideal \(M \), is zero except for position \(i \), its entry in that position is \(a_i \), and it is an element of \(M \). Since we can multiply elements of \(M \) by \(a_i^{-1} \), \(e_i \) is an element of \(M \).

Using the elements \(e_i \), we can construct any element of \(R \) whose limit is zero. Thus \(M \) contains the set of such sequences. They form the ideal \(\mathfrak{M} \). So \(\mathfrak{m}_1, \mathfrak{m}_2, \ldots \) and \(\mathfrak{M} \) are the only maximal ideals.

6. Chapter 12, Exc. M.4. (ring generated by \(\sin x \) and \(\cos x \))

There are various ways to do this, but it seems simplest to begin by allowing complex coefficients, to study the ring \(\mathbb{C}[\cos t, \sin t] \).

Let \(S \) denote the ring \(\mathbb{C}[x, y]/(x^2 + y^2 - 1) \). When we change variables in \(S \) to \(u = x + iy, \ v = x - iy \), the equation \(x^2 + y^2 - 1 \) becomes \(uv = 1 \), or \(v = u^{-1} \). The ring \(S \) is isomorphic to the Laurent Polynomial Ring \(\mathbb{C}[u, u^{-1}] \). We identify \(S \) with that ring. The corresponding change of variables in \(\mathbb{C}[\cos t, \sin t] \) is \(e^{it} = \cos t + i \sin t, \ e^{-it} = \cos t - i \sin t \).

So \(\mathbb{C}[\cos t, \sin t] = \mathbb{C}[e^{it}, e^{-it}] \).

You will be able to check that the substitution \(u = e^{it} \) defines an isomorphism \(S = \mathbb{C}[u, u^{-1}] \rightarrow \mathbb{C}[e^{it}, e^{-it}] \). Therefore the ideal of complex polynomial relations among \(\cos t, \sin t \) is generated by \(e^{it}e^{-it} - 1 \), which is equal to \(\cos^2 t + \sin^2 t - 1 \). Then the same is true for the real polynomial relations. This proves (a).

In \(S \), every nonzero element of \(S \) can be written uniquely in the form \(u^k f(u) \), where \(k \) can be positive or negative, and \(f(u) \) is a polynomial in \(u \) whose constant coefficient isn't zero. This makes it easy to prove that \(S \) is a principal ideal domain and therefore a unique factorization domain, hence (c) is true.

(d) We write an element of \(S \) in the form \(s = u^k f(u) \), as above. If \(s \) is a unit, its inverse also has that form, say \(s^{-1} = u^\ell g(u) \), so that \(u^{k+\ell} f(u)g(u) = 1 \). Since the polynomials \(f \) and \(g \) aren't divisible by \(u \), neither is \(fg \). Therefore \(fg = 1 \) and \(k + \ell = 0 \). So \(f \) and \(g \) are scalars. The units of \(S \) are \(cu^k \) with \(c \in \mathbb{C} \) not zero, and \(k \in \mathbb{Z} \).

The units in \(R = \mathbb{R}[x, y]/(f) \) are units in \(S \) too. Since \(u^k \) isn't in \(R \) when \(k \neq 0 \), the units of \(R \) are the nonzero real scalars.

(b) In \(R \), we have the equation \(x^2 = (y + 1)(y - 1) \). When we show that \(x \) is an irreducible element of \(R \) that doesn't divide \(y + 1 \), it will follow that the two sides of the equation are inequivalent factorizations.
In S, $x = \frac{1}{2}(u + u^{-1}) = \frac{1}{2}u^{-1}(u^2 + 1) = \frac{1}{2}u^{-1}(u+i)(u-i)$, and $y+1 = \frac{1}{2}(u - u^{-1})+1 = \frac{1}{2}u^{-1}(u^2 + u + 1)$. The term $\frac{1}{2}u^{-1}$ is a unit that can be ignored. Since $u+1$ doesn’t divide $u^2 + u + 1$, x doesn’t divide $y+1$ in S or in R. The two factors $u+i, u-i$ of x are irreducible elements of $\mathbb{C}[u, u^{-1}]$. They can’t be made real by multiplying by a unit. So x is irreducible in R.