1. Chapter 10, Exc. M.5 (diagonalizing commuting matrices)

Say that A has order m and B has order n, and let G be the product $C_m \times C_n$ of cyclic groups, generated by x of order m and y of order n.Sending $x^i y^j$ to $A^i B^j$ defines a representation of G. Since G is abelian, this representation is a sum of one-dimensional representations. Changing basis to exhibit this decomposition diagonalizes A and B.

2. Chapter 11, Exc. 3.4 (a homomorphism $\mathbb{C}[x, y] \to \mathbb{C}[t]$)

Experimenting, one finds that
\[
g(x, y) = y - x^3 + 3x^2 - 3x + 1
\]
is in the kernel. Let $g(x, y)$ be any polynomial in the kernel K. Since f is monic in the variable y, we can do division with remainder: $g = fq + r$, where r has degree zero in y. It is a polynomial in x alone. Since g and f are in K, so is r. The image of $r(x)$ is $r(t + 1)$, which isn't zero unless $r = 0$. Therefore $r = 0$, and g is in the principal ideal generated by f. So $K = (f)$.

Let I be any ideal of $\mathbb{C}[x, y]$. Its image \overline{I} is an ideal in the principal ideal domain $\mathbb{C}[t]$. Let $\overline{p}(t)$ be a generator for \overline{I}, and let $p(t)$ be an element that maps to \overline{p}. Let J be the ideal of $\mathbb{C}[x, y]$ generated by p and f. Then J contains K, and its image \overline{J} is equal to \overline{I}. By the Correspondence Theorem, $J = I$.

3. Chapter 11, Exc. 3.9 (unipotent and nilpotent elements)

This relies on the power series expansion $(1 + x)^{-1} = 1 + x + x^2 + \cdots$. If $x^n = 0$, then $(1 + x)^{-1} = 1 + x + x^2 + \cdots + x^{n-1}$.

Let p be a prime. The binomial coefficients $\binom{p}{i}$ for $i = 1, \ldots, p - 1$ are all divisible by p. Therefore, in characteristic p, $(1 + a)^p = 1 + a^p$, $(1 + a)^{p^2} = (1 + a^p)^p = 1 + a^{p^2}$, etc.

4. Chapter 11, Exc. 6.8 (Chinese Remainder Theorem)

Suppose that I, J are comaximal, say that $1 = u + v$ with $u \in I$ and $v \in J$. Then if $x \in I \cap J$, we will have $u = ux + vx$, and both ux and vx will be in IJ. So $I \cap J \subset IJ$. The other inclusion $IJ \subset I \cap J$ is true for any ideals.

Now let a and b be given. Then $a = ua + va$, and $va \equiv a$ modulo I and $va \equiv 0$ modulo J. Similarly, $ub \equiv b$ modulo J and $ub \equiv 0$ modulo I. So $x = va + ub$ works.
5. Chapter 11, Exc. M.3 (maximal ideals in a ring of sequences)

We know some surjective homomorphisms to the field \mathbb{R}. Namely, we can send a sequence a to a_k for any k, and also to the limit a_∞. Let’s call the kernels of these homomorphisms M_k and M_∞. We show that these are the only maximal ideals.

Let M be any maximal ideal. If M contains any one of those ideals M_k, it will be equal to M_k because M_k is maximal. Suppose that M isn’t equal to M_k for some finite k. Then for any k, M contains elements a with $a_k \neq 0$. Using these elements, one can show that any sequence with limit zero is in M:

Let e be the sequence with $e_i = 0$ for $i \neq k$ and $e_k = 1$. Let c denote the constant sequence $a_k^{-1}, a_k^{-1}, \ldots$. The product cae is equal to e and it is in M because M is an ideal. So any finite combination of such sequences e is in M.

Since the sequences with limit zero form the ideal M_∞, $M \supset M_\infty$, and since M_∞ is maximal, these two ideals are equal.