18.701 Comments on Problem Set 3

1. Chapter 2, Exercise M.6a,b (paths in \mathbb{R}^k)

(a) We’ll check transitivity. Let a, b, c be points of S, and suppose that there is a path $X(t)$ in S from a to b and a path $Y(t)$ from b to c. We must show that there is a path in S, say $Z(t)$ that connects a to c. The idea is to travel with twice the velocity from a to b and from b to c. So the path Z is defined by $Z(t) = X(2t)$ for $0 \leq t \leq \frac{1}{2}$, and $Z(t) = Y(2t - 1)$ for $\frac{1}{2} \leq t \leq 1$. Then $Z(0) = X(0) = a$ and $Z(1) = Y(1) = c$. The path lies entirely in S because $X(t)$ and $Y(t)$ take values in S. It is continuous at all points except possibly $t = \frac{1}{2}$, because X and Y are continuous. And at $t = \frac{1}{2}$, it is continuous from the left because X is continuous from the left at $t = 1$, and continuous from the right for the analogous reason. (I don’t care much about precision on this point, but continuity should be mentioned.)

2. (a) If $X(t)$ is a path from A to B in GL_n and $Y(t)$ is a path from C to D, then the matrix product $X(t)Y(t)$ defines a path from AB to CD. It is continuous because matrix multiplication is continuous.

3. (a) Chapter 2, Exercise M.8 (SL_n is connected)

We know from a previous assignment that SL_n is generated by elementary matrices of the first type: $E = I + aev_{ij}$. They are connected to the identity by a path $E_t = I + ate_{ij}$ in SL_n. Then A connects to EA by the path E_tA. Since the \approx is an equivalence relation, any two elements of SL_n can be connected by a path.

4. Chapter 3, Exercise 4.4 (order of $GL_2(\mathbb{F}_p)$)

A 2×2 matrix A is invertible if and only if its columns are independent. To determine two independent vectors v_1, v_2, one may choose for v_1 any nonzero vector. This gives us $p^2 - 1$ choices for v_1. Then once v_1 is chosen, we can choose for v_2 any vector that is not a multiple of v_1. This gives us $p^2 - p$ choices for v_2, given v_1. So there are $(p^2 - 1)(p^2 - p)$ invertible matrices.

5. Chapter 6, Exercise 11.6 (a homomorphism from $GL_2(\mathbb{F}_3)$ to S_4)

I like to denote the elements of \mathbb{F}_3 as $0, 1, -1$. Every nonzero vector X in F^2 spans a one-dimensional subspace that consists of the three vectors $0, X, -X$, and $-X$ spans the same subspace. Therefore the one-dimensional subspaces are spanned by the four vectors $X_1 = (1, 0)^t, X_2 = (0, 1)^t, X_3 = (1, 1)^t, X_4 = (-1, 1)^t$.

Let’s denote these subspace spanned by X_i by x_i. An element $A \in GL_2$ sends AX_i to $\pm X_j$ for some j. The permutation α associated to a matrix A in GL_2 is determined by the relation that if $AX_i = \pm X_j$, then $\alpha(i) = j$. This is a permutation because, if $i \neq i'$ then, since A is invertible, we can’t have $AX_i = \pm AX_{i'}$.

Next, a product AB operates as “first do B, then A”, and a product of permutations $\alpha \beta$ operates as “first do α, then β”. So products are sent to products. The map $A \mapsto \alpha$ is a group homomorphism.

If A is sent the identity permutation, then $AX_i = \pm X_i$ for all i. This implies that $A = \pm I$. For example, the relation $AX_1 = \pm X_1$ means that the first column of A is $\pm (1, 0)^t$. So the kernel of the homomorphism φ has order 2. Since GL_2 has order 48, the counting formula tells us that the image of φ has order 24. This is also the order of S_4. So the map is surjective.