Plane Crystallographic Groups with Point Group D_2

The possibilities for a discrete group G of isometries of the plane whose translation group L is a lattice and whose point group \overline{G} is the dihedral group D_2 are described here.

For reference:
- When coordinates are chosen, every isometry can be written as $m = t_v \varphi$, where φ is an orthogonal linear operator and t_v is a translation.
- The homomorphism $M \xrightarrow{\pi} O_2$ sends $t_v \varphi$ to φ. Its kernel is the subgroup of translations in M.
- The point group G is the image of G in O_2, so π defines a surjective homomorphism $G \rightarrow G$ whose kernel is the group of translations in G.
- The translation group L is the additive group of vectors v such that $t_v \varphi$ is in G. The translation group L is a lattice if it contains two independent vectors.
- The elements of G carry L to L.

With suitable coordinates, $G = \{1, r, s, \rho\}$, where r denotes reflection about the horizontal axis, s denotes reflection about the vertical axis, and ρ denotes rotation through the angle π about the origin.

The bars over the letters are there to distinguish elements of G from those of G. They have no other meaning.

1. Description of the lattice L.

Let u be a point of L that is in the first quadrant. Since G operates on L, L contains the horizontal vector $u + ru$ as well as the vertical vector $u + su$. So L contains nonzero horizontal and vertical vectors. We choose a horizontal vector $a = (a_1, 0)^t$ in L of minimal positive length. This can be done because L is a discrete subgroup of \mathbb{R}^2. Then the horizontal vectors in L are the integer multiples of a. Similarly, we choose a vertical vector $b = (0, b_2)^t$ in L of minimal positive length. The vertical vectors in L are the integer multiples of b.

Let L_1 denote the lattice $a\mathbb{Z} + b\mathbb{Z}$, and let $L_2 = a\mathbb{Z} + c\mathbb{Z}$, where $c = \frac{1}{2}(a + b)$.

Lemma 1. Any vector v in \mathbb{R}^2, that isn’t in L_1 can be written uniquely in the form $v = w + u$, where w is in L_1 and u is in the rectangle whose vertices are 0, a, $a + b$, and not on the ‘far edges’ $[a, a + b]$, or $[b, a + b]$. If v is in L, then u is in the interior of the rectangle.

proof. Since a, b are independent, they form a basis of \mathbb{R}^2. So $v = xa + yb$ for some x, y in \mathbb{R}. We can write $x = m + p$ with $m \in \mathbb{Z}$ and $0 \leq p < 1$, and $y = n + q$ with $n \in \mathbb{Z}$ and $0 \leq q < 1$. Then $w = ma + nb$ is in L_1, and $u = pa + qb$ is in the rectangle, not on the far edges. If v is in L, then v can’t be on the near edges of the rectangle either, so it is in interior. □
Lemma 2. L is either L_1 or L_2.

proof. We note that $b = 2c - a$ is in L_2. Therefore $L_1 \subset L_2$, and since a and b are in L, $L_1 \subset L$.

Suppose that L contains an element v not in L_1. We write $v = w + u$ as in the previous lemma, with $u = (u_1, u_2)^t$ in the interior of the rectangle $0, a, b, a + b$. So $0 < u_1 < a$ and $0 < u_2 < b_2$. Then $u + ru = (2u_1, 0)^t$ is in L, and since it is horizontal, $u + ru$ is an integer multiple of a. But $0 < 2u_1 < 2a_1$.

The only possibility is that $u_1 = \frac{1}{2}a_1$. Similarly, $u + ru = (0, u_2)^t$ is in L, and $u_2 = \frac{1}{2}b_2$. So $u = \frac{1}{2}(a + b) = c$. So if $L_1 < L$, then $L = L_2$. □

The reflections and glides in G.

We ask: Are the reflections τ and $\bar{\sigma}$ of \bar{G} the images of reflections in G? If so, we can put the origin at the intersection of the lines of reflection. Then τ and $\bar{\sigma}$ will be in G, and we will be happy.

To start, we put the origin at a point that has a rotation by π in G. Then $\rho = \rho_\pi$ is in G.

Lemma 3. Let $v = (v_1, v_2)^t$ be a vector, and let $z = \frac{1}{2}v_2$. The isometry $g = t_{v}r$ is either a reflection or a glide. The horizontal line $\ell : \{x = z\}$ is the line of reflection or the glide line, and g is a reflection about ℓ if and only if v is vertical: $v = (0, 2z)^t$.

proof. Since g reverses orientation, it is a reflection or a glide. It suffices to show that g carries the line ℓ to itself. The next computation does this. Let $x = (x_1, z)^t$ be a point of the line ℓ.

$$g(x) = t_{v}r(x) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ z \end{pmatrix} + \begin{pmatrix} v_1 \\ 2z \end{pmatrix} = \begin{pmatrix} x_1 + v_1 \\ z \end{pmatrix}$$

Since τ is in the point group, G must contain an element $g = t_{v}r$ that maps to τ, though we don’t know whether or not the translation t_v by itself is an element of G.

We can multiply g on the left by any element t_w with $w \in L$. The result $t_{w+v}r$ will be another element whose image in \bar{G} is τ. We write $v = w + u$ as in Lemma 1. Then $t_{-w}t_{v}r = t_{u}r$ is an element of G that maps to τ, and $u = pa + qb = (pa_1, qb_2)^t$ with $0 \leq p, q < 1$. We relabel $t_{u}r$ as g.

The element $g^2 = (t_{u}r)(t_{u}r) = t_{u}t_{u}rr = t_{u+ru}$ is in G, and therefore $u + ru = (2pa_1, 0)^t$ is in L. It is an integer multiple of a. Since $0 \leq p < 1$, $u + ru$ is either 0 or a, and then u_1 will be 0 or $\frac{1}{2}a_1$.

Since $t_{u}r$ and ρ are in G, so is $t_{u}r\rho = t_{u}s$. Then $u + \bar{\sigma}u$ will be a vertical vector, either 0 or b, and so u_2 can be 0 or $\frac{1}{2}b_1$. The four possibilities $u + \bar{\sigma}u = 0$ or a and $u + \bar{\sigma}u = 0$ or b show that u is one of the four vectors $0, \frac{1}{2}a, \frac{1}{2}b$, or $\frac{1}{2}(a + b) = c$.

Suppose that $L = L_2$. Then we eliminate the fourth possibility $u = c$ because if $t_{u}r$ is in G, so is $r = t_{0}r$. Next, if u is the vertical vector $\frac{1}{2}b$, then $t_{u}r$ is a reflection about some horizontal axis. So τ is represented by a reflection. Also, $t_{-u}s$ will be in G, and $-c + u$ is a horizontal vector. Therefore τ is represented by a reflection too. This shows that there is only one type of group, when $L = L_2$.

Suppose that $L = L_1$. The two possibilities $\frac{1}{2}a$ and $\frac{1}{2}b$ are interchanged when we switch axes, so we can eliminate one of them. This leaves at most three possibilities for G when $L = L_1$, making four possibilities in all. Table (6.6.2) of the text confirms that there are (at least) four patterns with point group D_2. Reading the table in the usual order, the first is the pattern of lozenges. The second brick pattern is the one with translation group L_2.