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Outline

◮ Motivation: Biological importance of (noncoding) RNAs

◮ Algorithms to predict structural noncoding RNAs
◮ RNAz: thermodynamical folding + phylogenetic information
◮ EvoFold: phylogenetic stochastic context-free grammars

◮ A few applications of RNAz and Evofold
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Essential biochemical functions of life

◮ Information storage and replication

◮ Enzymatic activity: catalyze biochemical reactions

◮ Regulator: sense and react to environment

3/ 38



Enzymatic activity: Ribozymes

◮ Self splicing introns and RNAseP were the first examples of
RNAs with catalytic activity. First discoverd by Sidney Altman
and Thomas Cech.
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Self duplication

◮ Ribozyme acting as RNA dependent RNA polymerase
◮ A chimeric construct of a natural ligase ribozyme with an in

vitro selected template binding domain can replicate at least
one turn of an RNA helix.
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Regulation: Riboswitches

◮ Environmental stimuli change directly (without protein) the
conformation of an RNA which affects gene activity.

Serganov A, Patel DJ, Nat Rev Genet. 2007 8:(10)776-90
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Putting things together: RNA world hypothesis

◮ RNA or RNA-like molecules could have formed a pre-protein
world.
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Overview of RNA functions
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Examples of structured RNAs and their genomic context
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Prediction of noncoding RNAs

◮ Compared to prediction of protein coding RNAs an extremely
difficult problem:

◮ No common strong statistical features in primary sequence
such as start/stop codons, codon bias, open reading frame

◮ ncRNAs are highly diverse (short, long, spliced, unspliced,
processed, intron encoded, intergenic, antisense,...)

◮ Good progress in prediction for a subset of ncRNAs:
structured ncRNAs
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Prediction of RNA secondary structure

◮ The standard energy model expresses the free energy of a secondary
structure S as the sum of the energies of its components L:

E (S) =
∑

L∈S

E (L)

◮ The minimum free energy structure can be calculated by dynamic
programming, e.g. by using RNAfold:

RNAfold < trna.fa

>AF041468

GGGGGUAUAGCUCAGUUGGUAGAGCGCUGCCUUUGCACGGCAGAUGUCAGGGGUUCGAGUCCCCUUACCUCCA

(((((((..((((........)))).(((((.......))))).....(((((.......)))))))))))). (-31.10)
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Significance of predicted RNA secondary structures:
z-score statistics

◮ Has a natural occuring RNA sequence a lower minimum free
energy (MFE) than random sequences of the same size and
base composition?

1. Calculate native MFE m.
2. Calculate mean µ and standard deviation σ of MFEs of a large

number of shuffled random sequences.
3. Express significance in standard deviations from the mean as

z-score

z =
m − µ

σ

◮ Negative z-scores indicate that the native RNA is more stable
than the random RNAs.
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z-scores of structured RNAs
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ncRNA Type No. of Seqs. Mean z-score

tRNA 579 −1.84

5S rRNA 606 −1.62

Hammerhead ribozyme III 251 −3.08

Group II catalytic intron 116 −3.88

SRP RNA 73 −3.37

U5 spliceosomal RNA 199 −2.73

Washietl & Hofacker, J. Mol. Biol. (2004) 342:19
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Comparative genomics at our hands

◮ 30+ vertebrate genomes

◮ 12+ drosophila genomes

◮ 20+ yeast genomes

◮ and many more. . .
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Consensus folding using RNAalifold

◮ RNAalifold uses the same algorithms and energy parameters
as RNAfold

◮ Energy contributions of the single sequences are averaged

◮ Covariance information (e.g. compensatory mutations) is
incorporated in the energy model.

◮ It calculates a consensus MFE consisting of an energy term
and a covariance term:

Hofacker, Fekete & Stadler, J. Mol. Biol. (2002) 319:1059
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The structure conservation index

◮ The SCI is an efficient and convenient measure for secondary
structure conservation.
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Efficient calculation of stability z-scores

◮ The significance of a predicted
MFE structure can be expressed as
z-score which is normalized w.r.t.
sequence length and base
composition.

◮ Traditionally, z-scores are sampled
by time-consuming random
shuffling.

◮ The shuffling can be replaced by a
regression calculation which is of
the same accuracy.
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SVM classification based on both scores

◮ Both scores separate native ncRNAs from controls in two
dimensions.

Washietl, Hofacker & Stadler, Proc. Natl. Acad. Sci. USA (2005) 33:2433
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SVM classification based on both scores

◮ Both scores separate native ncRNAs from controls in two
dimensions.

◮ A support vector machine is used for classification: RNAz.

Washietl, Hofacker & Stadler, Proc. Natl. Acad. Sci. USA (2005) 33:2433
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Probabilistic approaches to fold RNA

◮ Hidden Markov Models are commonly used in computational
biology to assign “states” to a sequence: e.g. exons in DNA
sequence, conserved regions in alignments,

◮ Can we use a similar approach to parse a RNA sequence into
structural states?

AGCUCUGAGGUGAUUUUCAUAUUGAAUUGCAAAUUCGAAGAAGCAGCUUCAAACCUGCCGGGGCUU

(((((((..((((...)))).(((((((...)))))))....((((........))))))))))).

◮ The HMM framework needs to be extended to allow for
nested correlations
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Context free grammars

◮ A context-free grammar can be defined by G(V ,T ,P , S)
where:

◮ V is a finite set of nonterminal symbols (“states”),
◮ T is a finite set of terminal symbols,
◮ P is a finite set of production rules and
◮ S is the initial (start) nonterminal (S ∈ V ).

◮ A simple palindrome grammar: V = {S}, T = {a, b},
P = {S → aSa, S → bSb, S → ǫ}

◮ Efficiently describes the set of all palindromes over the
alphabet {a, b}.

◮ Example production:
S → aSa → abSba → abbSbba → abbbba

◮ Given the CFG G(V ,T ,P , S), we get a stochastic CFG
(SCGF) by assigning each production rule α ∈ P a probability
Prob(α) such that:

∑

α
Prob(α) = 1
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A simple RNA grammar

◮ V = {S}, T = {a, c , g , u}, P =

◮ S → aSu|uSa|gSc |cSg |uSg |gSu
◮ S → aS |uS |gS |cS
◮ S → Sa|Su|Sa|Sc
◮ S → SS
◮ S → ǫ

◮ Shorthand S → aSâ|aS |Sa|SS |ǫ
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Parse tree

◮ One possible parse tree Π of the string x =
ACAGGAAACUGUACGGUGCAACCG and its correspondence
to a RNA secondary structure (nonterminals: red, terminals:
black)
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RNA folding using SCFG

◮ Find the parse tree of maximum probability using a Nussinov
style recursion.

◮ γ(i , j) is the maximum log(Prob) for subsequence (i , j)

◮ Initialization: γ(i , i − 1) = log p(S → ǫ)

γ(i , j) = max























γ(i + 1, j − 1) + log(Prob(S → xiSxj)

γ(i + 1, j) + log(Prob(S → xiS)

γ(i , j − 1) + log(Prob(S → Sxj)

maxi<k<j{γ(i , k) + γ(k + 1, j) + log(Prob(S → SS)}
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Standard algorithms for SCFG

◮ Given a parameterized SCFG(G,Ω) and a sequence x , the
Cocke-Younger-Kasami (CYK) dynamic programming
algorithm finds an optimal (maximum probability) parse tree
π̂:

π̂ = argmax
π

Prob(π, x |G,Ω)

◮ The Inside algorithm, is used to obtain the total probability of
the sequence given the model summed over all parse trees,

Prob(x |G,Ω) =
∑

π

Prob(x , π|G,Ω)

◮ Analogies to thermodynamic folding:
◮ CYK ↔ Minimum Free energy (Nussinov/Zuker)
◮ Inside/outside algorithm ↔ Partition functions (McCaskill)

◮ Analogies to Hidden Markov models:
◮ CYK Minimum ↔ Viterbi’s algorithm
◮ Inside/outside algorithm ↔ Forward/backwards algorithm
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Evofold: Phylo SCFGs
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Single sequence: 
Terminal symbols are bases or base-pairs
Emission probabilities are base frequencies in loops and paired regions

Phylo-SCFG: 
Terminal symbols are single or paired alignment columns
Emission probabilities calculated from phylogenetic model and tree using 
Felsenstein's algorithm

4x4 Matrix for single columns 16x16 Matrix for paired columns
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EvoFold

◮ Structural RNA gene finding: EvoFold
◮ Uses simple RNA grammar
◮ Two competing models:

◮ Non-structural model with all columns treated as evolving

independently
◮ Structural model with dependent and independent columns

◮ Sophisticated parametrization
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Screening the human genome with RNAz
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Most conserved noncoding regions (present in at least human/mouse/rat/dog)
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◮ Large scale
comparative screen of
mammals/vertebrates

◮ ≈ 5% of the best
conserved non-coding
regions

◮ → 438,788
alignments covering
82.64 MB (2.88% of
the genome)

Washietl, Hofacker & Stadler, Nat. Biotech. (2005) 23:1383
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Detection performance of well-known small ncRNAs

Washietl, Hofacker & Stadler, Nat. Biotech. (2005) 23:1383
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Searching for H/ACA snoRNAs

◮ Two stems of at least
15 pairs

◮ Unpaired hinge

◮ ACA in last 20
nucleotides

◮ → 137 candidates (28
known), 30-40 show
typical structure upon
visual inspection, 15
have canonical H-box
motif ANANNA

◮ Five candidates were
tested, 3 found on
Northerns in HeLa
cells

Washietl, Hofacker & Stadler, Nat. Biotech. (2005) 23:1383
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Searching for miRNA precursors

◮ Stem with at least 20 pairs

◮ Mean z-score < −3.5

◮ 22nt window with more than 95% identity

◮ → 312 candidates (109 known miRNAs)

◮ Automatized in RNAmicro (Hertel und Stadler, Bioinformatics
22:e197, 2006)

Washietl, Hofacker & Stadler, Nat. Biotech. (2005) 23:1383
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miRNA precursors in Drosophila (Sandman & Cohen)

◮ 56 miRNAs predicted using RNAz and evolutionary patterns.

◮ 22 (39%) verified (16 Northern, 19 small RNA libraries, 13
both)

Sandman & Cohen, PLoS One (2007) 2:e1265
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Intergenic RNAs
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Washietl, Pedersen, Korbel et al., Genome Res. (2007) 17:852
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Intronic RNAs
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Washietl, Pedersen, Korbel et al., Genome Res. (2007) 17:852
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RNAz screen in other genomes

◮ Drosophila melanogaster: Rose et al.: BMC Genomics

2007, 8:406.

◮ Ciana intestinalis: Missal, Rose & Stadler: Bioinformatics

2005, 21 Suppl 2:77-78

◮ Caenorhabditis elegans: Missal et al.: J Exp Zoolog B Mol

Dev Evol 2006, 306(4):379-392.

◮ Saccharomyces cerevisiae: Steigele et al.: BMC Biol 2007,
5:25-25.

◮ Plasmodium falciparum: Mourier et al.: Genome Res., 2008
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A RNAz screen in Plasmodium (Mourier et. al)

◮ 22 of 78 tested high scoring RNAz candidates (28%) were
verified by Northern blot analysis.

Mourier et al. Genome Res. 2008
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Structure family identification using EvoFold+EvoFam

Parker et al. Genome Res. 2011
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Family of hairpins in 39-UTR of MAT2A

Parker et al. Genome Res. 2011
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tRNA like structures in intron of POP1

Parker et al. Genome Res. 2011
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