De novo prediction of structural noncoding RNAs

Stefan Washietl

18.417 - Fall 2011

Outline

- ▶ Motivation: Biological importance of (noncoding) RNAs
- \triangleright Algorithms to predict structural noncoding RNAs
	- \triangleright RNAz: thermodynamical folding $+$ phylogenetic information
	- ► EvoFold: phylogenetic stochastic context-free grammars
- \triangleright A few applications of RNAz and Evofold

Essential biochemical functions of life

- \blacktriangleright Information storage and replication
- \blacktriangleright Enzymatic activity: catalyze biochemical reactions
- ▶ Regulator: sense and react to environment

Enzymatic activity: Ribozymes

▶ Self splicing introns and RNAseP were the first examples of RNAs with catalytic activity. First discoverd by Sidney Altman and Thomas Cech.

Self duplication

- ► Ribozyme acting as RNA dependent RNA polymerase
- \triangleright A chimeric construct of a natural ligase ribozyme with an in vitro selected template binding domain can replicate at least one turn of an RNA helix.

Regulation: Riboswitches

 \triangleright Environmental stimuli change directly (without protein) the conformation of an RNA which affects gene activity.

Serganov A, Patel DJ, Nat Rev Genet. 2007 8:(10)776-90

Putting things together: RNA world hypothesis

NFWS AND VIEWS

Origin of life

The RNA world

from Walter Gilbert

618

varied molecular processes at the origin of life, one imagined that the first selfreplicating systems consisted of both RNA and protein. RNA served to hold information, whereas protein molecules provided all the enzymic activities needed

UNTIL recently, when one thought of the | useful exon to pass from one replicating structure to an unrelated one. This picture of the RNA world is one of

replicating molecules that reassort exons by transposable elements created by introns. This process builds and remakes RNA molecules by chunks and also perto make conjes of RNA and to reproduce mits the useful distinction between inNATURE VOL. 319 20 FEBRUARY 1986

by arranging them according to an RNA template using other RNA molecules such as the RNA core of the ribosome. This process would make the first proteins. which would simply be better enzymes than their RNA counterparts. I suggest that protein molecules do not carry out enzymic reactions of a different nature from RNA molecules but are able to perform the same reactions more effectively and rapidly, and hence will eventually dominate. These protein enzymes are encoded by RNA exons, thus they, in turn, are built up of mini-elements of structure. Finally DNA appeared on the come

▶ RNA or RNA-like molecules could have formed a pre-protein world.

Overview of RNA functions

Examples of structured RNAs and their genomic context

Prediction of noncoding RNAs

- ► Compared to prediction of protein coding RNAs an extremely difficult problem:
	- ▶ No common strong statistical features in primary sequence such as start/stop codons, codon bias, open reading frame
	- \triangleright ncRNAs are highly diverse (short, long, spliced, unspliced, processed, intron encoded, intergenic, antisense,...)
- \triangleright Good progress in prediction for a subset of ncRNAs: structured ncRNAs

Prediction of RNA secondary structure

 \triangleright The standard energy model expresses the free energy of a secondary structure S as the sum of the energies of its components L :

$$
E(\mathcal{S}) = \sum_{L \in \mathcal{S}} E(L)
$$

 \triangleright The minimum free energy structure can be calculated by dynamic programming, e.g. by using RNAfold:

```
RNAfold < trna.fa
>AF041468
GGGGGUAUAGCUCAGUUGGUAGAGCGCUGCCUUUGCACGGCAGAUGUCAGGGGUUCGAGUCCAGUCCCCUUACCUCA
((((((\ldots_{i},\ldots_{i},\ldots_{i}))))_{i},((((\ldots_{i},\ldots_{i},\ldots_{i}))))_{i},\ldots((((\ldots_{i},\ldots_{i},\ldots))))_{i}))))_{i} (-31.10)
```
Significance of predicted RNA secondary structures: z-score statistics

- ► Has a natural occuring RNA sequence a lower minimum free energy (MFE) than random sequences of the same size and base composition?
	- 1. Calculate native MFE m.
	- 2. Calculate mean μ and standard deviation σ of MFEs of a large number of shuffled random sequences.
	- 3. Express significance in standard deviations from the mean as z-score

$$
z=\frac{m-\mu}{\sigma}
$$

 \triangleright Negative z-scores indicate that the native RNA is more stable than the random RNAs.

z-scores of structured RNAs

Washietl & Hofacker, J. Mol. Biol. (2004) 342:19

Comparative genomics at our hands

- \triangleright 30+ vertebrate genomes
- \blacktriangleright 12+ drosophila genomes
- \triangleright 20+ yeast genomes
- \blacktriangleright and many more...

Consensus folding using RNAalifold

- \triangleright RNAalifold uses the same algorithms and energy parameters as RNAfold
- ► Energy contributions of the single sequences are averaged
- ▶ Covariance information (e.g. compensatory mutations) is incorporated in the energy model.
- \triangleright It calculates a consensus MFE consisting of an energy term and a covariance term:

```
GTTTCCGTAGTGTAGCGGTTATCACATTCGCCTCACACGCCAAAGGTCCCCGGTTCGATCCCGGGCGCAAACA
GTTTCCGTAGTGTAGTGGTTATCACGTTCGCCTAACACGCCAAAGGTCCCCGGTTCGAAACCGGGCGCAAACA
GTTTTCGTAGTGTAGTGGTTATCACGTGTGCTTCACACGCACAAGGTCCCCGGTTCGAACCCGGGCGAAAACA
(-24.76 = -23.43 + -1.33)
```
Hofacker, Fekete & Stadler, J. Mol. Biol. (2002) 319:1059

The structure conservation index

▶ The SCI is an efficient and convenient measure for secondary structure conservation.

Efficient calculation of stability z-scores

- \blacktriangleright The significance of a predicted MFE structure can be expressed as z-score which is normalized w.r.t. sequence length and base composition.
- \blacktriangleright Traditionally, z-scores are sampled by time-consuming random shuffling.
- \blacktriangleright The shuffling can be replaced by a regression calculation which is of the same accuracy.

SVM classification based on both scores

▶ Both scores separate native ncRNAs from controls in two dimensions.

Washietl, Hofacker & Stadler, Proc. Natl. Acad. Sci. USA (2005) 33:2433

SVM classification based on both scores

- ▶ Both scores separate native ncRNAs from controls in two dimensions.
- \triangleright A support vector machine is used for classification: RNAz.

Washietl, Hofacker & Stadler, Proc. Natl. Acad. Sci. USA (2005) 33:2433

Probabilistic approaches to fold RNA

- ► Hidden Markov Models are commonly used in computational biology to assign "states" to a sequence: e.g. exons in DNA sequence, conserved regions in alignments,
- \triangleright Can we use a similar approach to parse a RNA sequence into structural states?

AGCUCUGAGGUGAUUUCAUAUAUUGA AUUUGA AAD AGAA AGAA AGCAGCUUGA AA ACCUGCGGGGCUU $((((((((\ldots))))))\ldots((((\ldots)))))))\ldots((((\ldots\ldots))))))))))$

► The HMM framework needs to be extended to allow for nested correlations

Context free grammars

- A context-free grammar can be defined by $G(V, T, P, S)$ where:
	- \triangleright V is a finite set of nonterminal symbols ("states"),
	- \triangleright T is a finite set of terminal symbols,
	- \triangleright P is a finite set of production rules and
	- S is the initial (start) nonterminal $(S \in V)$.
- A simple palindrome grammar: $V = \{S\}$, $T = \{a, b\}$, $P = \{S \rightarrow aSa, S \rightarrow bSb, S \rightarrow \epsilon\}$
	- \triangleright Efficiently describes the set of all palindromes over the alphabet $\{a, b\}$.
	- \blacktriangleright Example production: $S \rightarrow aSa \rightarrow abSba \rightarrow abbSbba \rightarrow abbbbba$
- ► Given the CFG $G(V, T, P, S)$, we get a stochastic CFG (SCGF) by assigning each production rule $\alpha \in P$ a probability $\mathit{Prob}(\alpha)$ such that: $\sum_{\alpha} \mathit{Prob}(\alpha) = 1$

A simple RNA grammar

$$
V = \{S\}, T = \{a, c, g, u\}, P =
$$
\n
$$
\Rightarrow S \rightarrow aSu|uSa|gSc|cSg|uSg|gSu
$$
\n
$$
\Rightarrow S \rightarrow aS|uS|gS|cS
$$
\n
$$
\Rightarrow S \rightarrow Sa|Su|Sa|Sc
$$
\n
$$
\Rightarrow S \rightarrow SS
$$
\n
$$
\Rightarrow S \rightarrow \epsilon
$$

Shorthand $S \rightarrow aS\hat{a}|aS|Sa|SS|\epsilon$

Parse tree

 \triangleright One possible parse tree Π of the string $x =$ ACAGGAAACUGUACGGUGCAACCG and its correspondence to a RNA secondary structure (nonterminals: red, terminals: black)

RNA folding using SCFG

- \triangleright Find the parse tree of maximum probability using a Nussinov style recursion.
- $\rightarrow \gamma(i, j)$ is the maximum log(Prob) for subsequence (i, j)
- ► Initialization: $\gamma(i, i 1) = \log p(S \rightarrow \epsilon)$

$$
\gamma(i,j) = \max \begin{cases}\n\gamma(i+1,j-1) + \log(Prob(S \to x_i S x_j) \\
\gamma(i+1,j) + \log(Prob(S \to x_i S)) \\
\gamma(i,j-1) + \log(Prob(S \to S x_j) \\
\max_{i < k < j} \{\gamma(i,k) + \gamma(k+1,j) + \log(Prob(S \to SS)\}\n\end{cases}
$$

Standard algorithms for SCFG

► Given a parameterized SCFG(G, Ω) and a sequence x, the Cocke-Younger-Kasami (CYK) dynamic programming algorithm finds an optimal (maximum probability) parse tree $\hat{\pi}$:

$$
\hat{\pi} = \arg\max_{\pi} \text{Prob}(\pi, x | \mathcal{G}, \Omega)
$$

 \triangleright The Inside algorithm, is used to obtain the total probability of the sequence given the model summed over all parse trees,

$$
Prob(x|\mathcal{G},\Omega) = \sum_{\pi} Prob(x,\pi|\mathcal{G},\Omega)
$$

- \blacktriangleright Analogies to thermodynamic folding:
	- \triangleright CYK \leftrightarrow Minimum Free energy (Nussinov/Zuker)
	- $▶$ Inside/outside algorithm \leftrightarrow Partition functions (McCaskill)
- ▶ Analogies to Hidden Markov models:
	- \triangleright CYK Minimum \leftrightarrow Viterbi's algorithm
	- $▶$ Inside/outside algorithm \leftrightarrow Forward/backwards algorithm

Evofold: Phylo SCFGs

Single sequence:

Terminal symbols are bases or base-pairs Emission probabilities are base frequencies in loops and paired regions

Phylo-SCFG:

Terminal symbols are single or paired alignment columns Emission probabilities calculated from phylogenetic model and tree using Felsenstein's algorithm

4x4 Matrix for single columns 16x16 Matrix for paired columns

EvoFold

► Structural RNA gene finding: EvoFold

- \triangleright Uses simple RNA grammar
- \blacktriangleright Two competing models:
	- \triangleright Non-structural model with all columns treated as evolving independently
	- ▶ Structural model with dependent and independent columns
- \blacktriangleright Sophisticated parametrization

Screening the human genome with RNAz

- Large scale comparative screen of mammals/vertebrates
- $\blacktriangleright \approx 5\%$ of the best conserved non-coding regions
- \blacktriangleright \rightarrow 438,788 alignments covering 82.64 MB (2.88% of the genome)

Washietl, Hofacker & Stadler, Nat. Biotech. (2005) 23:1383

Detection performance of well-known small ncRNAs

Washietl, Hofacker & Stadler, Nat. Biotech. (2005) 23:1383

Searching for H/ACA snoRNAs

- \blacktriangleright Two stems of at least 15 pairs
- \blacktriangleright Unpaired hinge
- \triangleright ACA in last 20 nucleotides
- \blacktriangleright \rightarrow 137 candidates (28 known), 30-40 show typical structure upon visual inspection, 15 have canonical H-box motif ANANNA
- \blacktriangleright Five candidates were tested, 3 found on Northerns in HeLa cells

Washietl, Hofacker & Stadler, Nat. Biotech. (2005) 23:1383

Searching for miRNA precursors

- \triangleright Stem with at least 20 pairs
- \blacktriangleright Mean z-score <-3.5
- \triangleright 22nt window with more than 95% identity
- \rightarrow 312 candidates (109 known miRNAs)
- ▶ Automatized in RNAmicro (Hertel und Stadler, Bioinformatics 22:e197, 2006)

Washietl, Hofacker & Stadler, Nat. Biotech. (2005) 23:1383

miRNA precursors in Drosophila (Sandman & Cohen)

- \triangleright 56 miRNAs predicted using RNAz and evolutionary patterns.
- ▶ 22 (39%) verified (16 Northern, 19 small RNA libraries, 13 both)

Sandman & Cohen, PLoS One (2007) 2:e1265

Intergenic RNAs

Washietl, Pedersen, Korbel et al., Genome Res. (2007) 17:852

Intronic RNAs

Washietl, Pedersen, Korbel et al., Genome Res. (2007) 17:852

RNAz screen in other genomes

- ▶ Drosophila melanogaster: Rose et al.: BMC Genomics 2007, 8:406.
- ▶ Ciana intestinalis: Missal, Rose & Stadler: Bioinformatics 2005, 21 Suppl 2:77-78
- ▶ Caenorhabditis elegans: Missal et al.: J Exp Zoolog B Mol Dev Evol 2006, 306(4):379-392.
- ▶ Saccharomyces cerevisiae: Steigele et al.: BMC Biol 2007, 5:25-25.
- ▶ Plasmodium falciparum: Mourier et al.: Genome Res., 2008

A RNAz screen in Plasmodium (Mourier et. al)

▶ 22 of 78 tested high scoring RNAz candidates $(28%)$ were verified by Northern blot analysis.

Mourier et al. Genome Res. 2008

Structure family identification using EvoFold+EvoFam

Family of hairpins in 39-UTR of MAT2A

Parker et al. Genome Res. 2011

tRNA like structures in intron of POP1

