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Energy Landscapes: Motivation/Goal

• change of molecule structure over time

• energy driven process

folding process: move through structure-space on energy landscape
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Kinetics in contrast to Thermodynamics
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Energy Landscapes: Idea

E

• states

• neighbors (of a state)

• energy (of a state)



S
.W

il
l,
1
8
.4
1
7
,
F
a
ll
2
0
1
1

Energy Landscapes

E

Definition (Energy Landscape)

An energy landscape (EL) consists of

1. a set of states X
2. a notion of neighborhood, nearness, distance,

accessibility on X (relation N )

3. an (energy) function E : X → R.

(That is, it is a triple (X ,N ,E)).
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Energy Landscapes

Definition (Energy Landscape)

An energy landscape (EL) consists of

1. a set of states X
2. a notion of neighborhood, nearness, distance,

accessibility on X (relation N )

3. an (energy) function E : X → R.

(That is, it is a triple (X ,N ,E)).

Remarks

• here, states X are structures
⇒ for our models of RNA, protein: discrete & finite

• however: continuous X possible

• physical folding process: energy function, energy minimization

• evolutionary process: fitness function, fitness maximization
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EL Examples: RNA

EL of RNA sequence S

1. X = set of non-crossing RNA structures of S

2. P1 and P2 are neighbors (P1NP2) iff
P1 6= P2 and
∃(i , j) : P1 = P2 ∪ {(i , j)} or P2 = P1 ∪ {(i , j)}

3. E(P) = ES(P)

similar: HP-proteins; define neighborhood by local moves, pivot
moves, . . .
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Basic Properties: Neighborhood

discrete Neighborhood
defined by neighbor function N : X → P(X )

define
x ∈ X has neighbor y iff y ∈ N(x), write xN y

often:
neighbor relation is symmmetric,
i.e. xN y iff yN x .
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Basic Properties: Local Optima

Definition (global minimum)

x̂ is a global minimum iff

E(x̂) = min
y∈States

E(y).

Definition (local minimum)

x̂ is a local minimum iff

∀y ∈ N(x̂) : E(x̂) ≤ E(y).

Note
easy to show: global minima are local minima
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Walks and Basins

Definition (Walks, Basin of attraction)

A walk, or path, w ∈ X is w = w1 . . .wk ∈, s.t. wiNwi+1

(1 ≤ i < k).

A walk is adaptive iff E(wi ) ≥ E(wi+1) (1 ≤ i < k).

A walk is called gradient walk iff wi+1 = arg minx∈N(wi ) E(x)
(1 ≤ i < k).

A gradient walk of x is a gradient walk starting in x and ending in
a local minimum x̂ ; x is attracted by x̂ .

The basin (of attraction), or gradient basin of a local minimum
x̂ ∈ X is the set of all x attracted by x̂ .

Remarks

• are gradient walks unique?

• Degenerate EL: ∃x , y ∈ X : x 6= y ∧ E(x) = E(y).

• Assume non-degenerate energy landscape.
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Barriers
Non-degenerate case: Gradient basins partition the structure space

Definition (Barrier)

The energy barrier E[x , y ] from x to y (x , y ∈ X ) is the minimum
energy of a state z on any walk from x to y . z is called saddle
point from x to y .

Remarks:

• N symmetric =⇒ energy barrier/saddle point symmetric
(E[x , y ] = E[y , x ]).

• Assume symmetry

• Then, E[x , y ] induces an additive distance on states, in
particular local minima.

• =⇒ barrier tree, visualizes EL
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Move Sets

Move sets define neighborhood of states/structures.

Definition (Move Set)

A move set for X is a function N : X → P(X ).

As before: xN y iff y ∈ N(x).

Most important properties: symmetry, ergodicity

Definition (Ergodicity)

A move set for X is ergodic iff for all x , y ∈ X there is a walk from
x to y (with neighborship N ).

Equivalent in case of symmetric move set: Fix any state x0 ∈ X
(e.g. open chain). Ergodic iff all x ∈ X are connected to x0 (by a
walk).

Remark: ergodic ≡ connected
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Move Sets for RNA

Fix RNA sequence S . X is the set of non-crossing RNA structures
of S .

• Single Base Pair Moves
insert or remove a single base pair

• Stem Moves
insert or remove a stem (set of stacked bp)

• Shift Moves
move one end of a base pair
(combine with single base pair moves)

Remarks

• Properties: Symmetry and Ergodicity

• Move Set Hierarchy

• Effect of move set on EL
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Move Sets for (Lattice) Proteins

Fix seqeuence S.
Recall: state/structure is a vector ω = (ω1, . . . , ωn) ∈ Ln, ω
self-avoiding walk!

• k-Local Moves
change position of k ′ ≤ k consecutive monomers
i , . . . , i + k ′ − 1 ( s.t. result is self-avoiding walk )

• Pivot Moves
Apply transformation (lattice automorphism) to monomers
1, . . . , i ( s.t. result is self-avoiding walk )

Remarks

• Properties: Ergodicity! frozen structures
k-local moves: not ergodic; pivot-moves: ergodic.

• Effect of move set on EL

• Other ergodic move sets: e.g. Pull moves
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Back to our Goal
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How do the probabilities of single structures change over time?
(different from “probabilities in equilibrium”, cf. McCaskill)

We need a probabilistic model of the folding process.
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Stochastic Process

The physical folding process is described as a stochastic process.

Define a random function X, where X(t) is a random variable
X (t) =“state at time t”.

A physical process has “no history” ≡ Markov property
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Excursion: (Time-homogenous) Markov Chain

• states X = {1, . . . , n}
• random variables X0,X1, . . .

• initial probabilities π0x = Pr [X0 = x ]

• transition probabilities
general case, after history ~y = y0, . . . , yt−1 to x :
Pr [Xt = x |Xt−1 = yt−1,Xt−2 = yt−2, . . . ]
=no history Pr [Xt = x |Xt−1 = yt−1]

=time-homogenous pxy “transition to x from y”

Transition matrix P = (pxy )1≤x ,y≤n

Markov chain models discrete time. Next: continous time
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Markov Process

Definition (Continuous-Time Markov Process)

A (continous-time, time-homogenous, finite state) Markov Process
modeling a random function X : R→ X , t 7→ X (t) is a triple
(X , π0,P), where

• X = {1, . . . , n} set of states

• π0 vector of initial probabilities

• P(t) matrix of probabilities of transitions pxy (t) to x from y
in time t

P(t) =

 p11(t) . . . p1n(t)
...

. . .
...

pn1(t) . . . pnn(t)


that satisfy the (strong) Markov property

Pr [X (t+s) = x |X (s) = y ] = Pr [X (t) = x |X (0) = y ] = pxy (t).
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Markov Process Allows Studying Folding Behavior

For example, our main goal:
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Definition (Probabilities of a state over time)

πx(t) := Pr [“State x at time t”]

πx(t) =
∑
y

π0ypxy (t)

Yet, we need to construct/define the Markov Process for an EL:
What are the transition probabilities?
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Markov Process of an Energy Landscape

EL (X ,N,E)

Idea: specify Markov Process

• of the same states X
• by rates between neighbored states xN y . Rates tell how fast

the system moves from state to state. Rate kxy determined by
energy change E (x)− E (y).

Review on folding kinetics approaches

Christoph Flamm and Ivo Hofacker. Beyond energy
minimization: approaches to the kinetic folding of RNA.
Chemical Monthly, 2008.
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The Master Equation

Definition (Master Equation)

The master equation of a Markov process (X , π0,P) with state
distribution π(t) at time t and rate matrix K is

d

dt
π(t) = Kπ(t)

Equivalently:

d

dt
πx(t) =

∑
y 6=x

πy (t)kxy −
∑
y 6=x

πx(t)kyx

Note: since
∑

x πx(t) = 1, kxx = −
∑

y 6=x kyx .
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Properties of Folding Markov process

• Irreducible
pxy (t) > 0

for all x,y,t (cf. ergodicity).

• Detailed Balance
π∗ykxy = π∗xkyx

for stationary distribution π∗.

• Stationary Distribution = Boltzmann Distribution

π∗x =
exp(−Ex /(RT ))

Z

since we want to model the folding process.
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Rates of the Folding Process
Detailed balance and stationary distribution leaves much freedom!
Only fixed ratio:

kxy/kyx = π∗x/π
∗
y = exp(−(Ex −Ey )/(RT ))

Usually defined in the form of Arrhenius rates assuming transition
state τ(x , y); then, activation energy (from y to x): Eτ(x ,y)−Ey

kxy := γ exp(−(Eτ(x ,y)−Ey )/(RT ))

Metropolis rates [Eτ(x ,y) = max(Ex ,Ey )]

kxy := γ

{
1 if Ex ≤ Ey

exp(−(Ex −Ey )/(RT )) otherwise

= γmin{1, exp(−(Ex −Ey )/(RT ))}

Kawasaki rates [Eτ(x ,y) = 1
2(Ex + Ey )]

kxy := γ exp(−(Ex −Ey )/(2RT ))



S
.W

il
l,
1
8
.4
1
7
,
F
a
ll
2
0
1
1

Example Markov Process for RNA

• Energy Landscape (X ,N,E)

• X non-crossing RNA structures
• N simple base pair moves
• E loop-based free energy

• Markov process (X , π0,P)

• π0
x =

{
1 x =open chain

0 otherwise
• P specified by rate matrix K

kxy = γmin{1, exp(−(Ex −Ey )/(RT ))}
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Determine π(t)

• Solve master equation d
dtπ(t) = Kπ(t)

• numerical solution, after solving the differential equation

π(t) = exp(Kt)π0

for example solve by diagonalizing K : K = UDU−1 and D
diagonal, then exp(Kt) = U exp(Dt)U−1 [exponential of
diagonal matrix: element-wise]
=⇒ only small systems (several thousand states)

for example, xbix=CUGCGGCUUUGGCUCUAGCC, 20 nucleotides,
3886 structures
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• usually too expensive =⇒ Simulation, Coarse Graining, . . .
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Monte Carlo Simulation with Metropolis Criterion
(Rejection-based)

• x = initial conformation (random according to π0)

• for t = 1 to tmax do
• choose move x → x ′ with probability A(x → x ′)
• accept with probability P(x → x ′): x = x ′

Remarks

• transition probability x → x ′ is

A(x → x ′)P(x → x ′)

• Metropolis criterion:

P(x → x ′) = min(1, exp(−(Ex ′ − Ex)/(RT )))

• In general: no detailed balance! =⇒ this does not simulate
the folding process
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Rejection-less Monte Carlo Simulation
• x = initial conformation (random according to π0)
• t = 0
• for i = 1 to imax do

• evaluate all possible moves from x and compute “rate out of x”

κx :=
∑

move x → x′′

kx′′x

• choose move x → x ′ with probability

P(x → x ′) = kx′x/κx

• accept always: x = x ′

• sample “waiting time” ∆t from exponential distribution with
average rate κx

• increment time: t = t + ∆t

Remarks
detailed balance due to time correction; correctly models folding
process; a.k.a. Gillespie-algorithm or Boltz-Kalos-Liebowitz
method; simulation still slow (average thousands of trajectories);
for example, simulation tool kinfold (C. Flamm)
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Coarse Grained Processes

• General idea: define macro states and macro state process

• For example, macro states = basins of attraction
• energy of macro state α: ensemble energy

Zα =
∑
x∈α

exp(−Ex/(RT )); Eα = −RT ln Zα

• macro rates (from macro state β to α): Arrhenius rates
• energy of transition state (ensemble)

Zαβ :=
∑

x∈α,y∈β,move y → x

exp(−Eτ(x,y) /(RT ))

Eτ(α,β) = −RT ln Zαβ

• transition rate

kαβ := γ exp(−(Eτ(α,β) − Eβ)/(RT )) = γZαβ/Zβ

Equivalently, kαβ = γ
∑

x∈α,y∈β kxy Pr[y | β],

since Zαβ/Zβ =
∑

x∈α,y∈β,y→x exp(−Eτ(x,y) /(RT ))/Zβ =∑
x∈α,y∈β,y→x exp(−(Eτ(x,y)−Ey )/(RT ))) exp(−Ey )/Zβ
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Dynamics of RNA xbix
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barrier tree; process of local minima via saddle point energies;
macro state process; full process
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Dynamics of a tRNA
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barrier tree; kinfold simulation;
macro state process (absorbing state 56)

Wolfinger, Svrcek-Seiler, Flamm, Hofacker, Stadler Efficient
computation of RNA folding dynamics. J.Phys. A, 2004
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Dynamics of β-sheet proteins: tFolder

http://csb.cs.mcgill.ca/tfolder/

Coarse graining:
macro state =
sub-ensemble of a specific
β-strand interaction

Shenker, O’Donnell, Devadas, Berger, Waldispühl. Efficient
traversal of protein folding pathways using ensemble models.
RECOMB 2011.

http://csb.cs.mcgill.ca/tfolder/

