nergy Landscapes: Motivation/Goa

e change of molecule structure over time
e energy driven process

folding process: move through structure-space on energy landscape

o
o

o
o

o
IS

population probability

0.2

10° 10° 10
time

Kinetics in contrast to Thermodynamics




o states
e neighbors (of a state)

e energy (of a state)

Inse ot

-
=
1=
54
=
w
~
-
h
@
=
u



!nergy Ean!scapes

Definition (Energy Landscape)
An energy landscape (EL) consists of
1. a set of states X

2. a notion of neighborhood, nearness, distance,
accessibility on X' (relation \)

3. an (energy) function E: X — R.
(That is, it is a triple (X, N, E)).

et

S.Will, 18.417, Fall 2011



Energy Landscapes

Definition (Energy Landscape)
An energy landscape (EL) consists of
1. a set of states X

2. a notion of neighborhood, nearness, distance,
accessibility on X’ (relation \)

3. an (energy) function E: X — R.
(That is, it is a triple (X, N, E)).
Remarks

e here, states X’ are structures
= for our models of RNA, protein: discrete & finite

e however: continuous X possible
e physical folding process: energy function, energy minimization

e evolutionary process: fitness function, fitness maximization
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EL Examples: RNA

EL of RNA sequence S

1. X = set of non-crossing RNA structures of S
2. Py and P; are neighbors (PLN Py) iff

P1 75 P2 and

(i j): Pr=PaU{(i,j)} or Po =P U{(i,j)}
3. E(P) = Es(P)

similar: HP-proteins; define neighborhood by local moves, pivot
moves, ...

S.Will, 18.417, Fall 2011



!asm !roper!les: |!€Ig|!!0l’”00!

discrete Neighborhood
defined by neighbor function N : X — P(X)

define
x € X has neighbor y iff y € N(x), write x\y

often:
neighbor relation is symmmetric,

i.e. xNy iff yNx.

=g
S.Will, 18.417, Fall 2011



!aSIC !roper!les: !OC3| !p!lma

Definition (global minimum)
X is a global minimum iff
E(X) = min E(y).

y€EStates

Definition (local minimum)

X is a local minimum iff

Yy € N(%) : E(%) < E(y).

Note
easy to show: global minima are local minima

Inse ot
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Walks and Basins

Definition (Walks, Basin of attraction)

A walk, or path, w € X is w = wy ... wi €, s.t. wiN w1
(1<i<k).

A walk is adaptive iff E(w;) > E(w;11) (1 < i< k).

A walk is called gradient walk iff wj+1 = arg min ) E(x)
(1<i<k).

A gradient walk of x is a gradient walk starting in x and ending in
a local minimum X; x is attracted by X.

The basin (of attraction), or gradient basin of a local minimum

X € X is the set of all x attracted by X.

Remarks

e are gradient walks unique?
e Degenerate EL: Ix,y € X' : x # y A E(x) = E(y).
e Assume non-degenerate energy landscape.

-
=
j=1
<
=
w
~
=
<
©
X
%



Barriers
Non-degenerate case: Gradient basins partition the structure space
Definition (Barrier)
The energy barrier E[x,y| from x to y (x,y € X) is the minimum

energy of a state z on any walk from x to y. z is called saddle
point from x to y.

Remarks:
e N symmetric => energy barrier/saddle point symmetric
(Elx, y] = Ely, x]).
e Assume symmetry

e Then, E[x, y] induces an additive distance on states, in
particular local minima.

e — Darrier tree, visualizes EL
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Move Sets

Move sets define neighborhood of states/structures.
Definition (Move Set)

A move set for X is a function N : X — P(X).

As before: xNy iff y € N(x).

Most important properties: symmetry, ergodicity

Definition (Ergodicity)
A move set for X is ergodic iff for all x,y € X there is a walk from
x to y (with neighborship N).

Equivalent in case of symmetric move set: Fix any state xp € X
(e.g. open chain). Ergodic iff all x € X" are connected to xp (by a
walk).

Remark: ergodic = connected
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Move Sets for RNA

Fix RNA sequence S. X is the set of non-crossing RNA structures
of S.

e Single Base Pair Moves
insert or remove a single base pair

e Stem Moves
insert or remove a stem (set of stacked bp)

e Shift Moves
move one end of a base pair
(combine with single base pair moves)

Remarks

e Properties: Symmetry and Ergodicity
e Move Set Hierarchy

e Effect of move set on EL
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Move Sets for (Lattice) Proteins

Fix seqeuence S.
Recall: state/structure is a vector w = (w1, ...,wp) € L", w
self-avoiding walk!

e k-Local Moves
change position of k' < k consecutive monomers
iy...,i+ k" —1(s.t. resultis self-avoiding walk )

e Pivot Moves
Apply transformation (lattice automorphism) to monomers
1,...,i ( s.t. result is self-avoiding walk )

P

Remarks

e Properties: Ergodicity! frozen structures

k-local moves: not ergodic; pivot-moves: ergodic.
o Effect of move set on EL
e Other ergodic move sets: e.g. Pull moves
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D
Back to our Goal

o
@

=4
o

population probability

o
IS

0.2

How do the probabilities of single structures change over time?
(different from “probabilities in equilibrium”, cf. McCaskill)

We need a probabilistic model of the folding process.

et
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!!OCI!BS!IC ! rocess

The physical folding process is described as a stochastic process.

Define a random function X, where X(t) is a random variable
X(t) ="state at time t".

A physical process has “no history” = Markov property

=
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Excursion: (Time-homogenous) Markov Chain

o states X = {1,...,n}
e random variables X, X1, ...
e initial probabilities 72 = Pr[Xo = x|
e transition probabilities
general case, after history y = yp,...,y:—1 to x:
Pr[Xt = X|Xt—1 =¥-1,Xt—2 = Yt—2,.. ]
=no history Pr[Xt = X‘thl = thl]
= time-homogenous Pxy “transition to x from y"

Transition matrix P = (pxy)1<x,y<n
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Markov chain models discrete time. Next: continous time




Markov Process

Definition (Continuous-Time Markov Process)

A (continous-time, time-homogenous, finite state) Markov Process
modeling a random function X : R — X, t — X(t) is a triple
(X, 70, P), where

e X ={1,...,n} set of states

o 79 vector of initial probabilities

e P(t) matrix of probabilities of transitions p,,(t) to x from y
in time t

pi1(t) ... pia(t)
P(t) = R
pni(t) ... pnn(t)
that satisfy the (strong) Markov property

PriX(t+s) = x|X(s) = y] = Pr{X(t) = x|X(0) = y] = pxy(2)-

S.Will, 18.417, Fall 2011



Markov Process Allows Studying Folding Behavior

For example, our main goal:

Joon protasity

Definition (Probabilities of a state over time)

mx(t) := Pr["State x at time t"]

) = 3 12y (1)

Yet, we need to construct/define the Markov Process for an EL:
What are the transition probabilities?
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Markov Process of an Energy Landscape

EL (X, N,E)

Idea: specify Markov Process
e of the same states X

e by rates between neighbored states x\/y. Rates tell how fast
the system moves from state to state. Rate k,, determined by
energy change E(x) — E(y).

Review on folding kinetics approaches

[@ Christoph Flamm and Ivo Hofacker. Beyond energy
minimization: approaches to the kinetic folding of RNA.
Chemical Monthly, 2008.
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D
The Master Equation

Definition (Master Equation)

The master equation of a Markov process (X, 70, P) with state
distribution 7(t) at time t and rate matrix K is

d

Ew(t) = Kn(t)

Equivalently:

—7TX Zﬂ'y t)kyy — Z’ﬂ'x(t Y

y#x y#x

Note: since 3°, mx(t) = 1, kx = — 30,y Ky

e
S.Will, 18.417, Fall 2011



Properties of Folding Markov process

e |rreducible
Pxy(t) >0

for all x,y,t (cf. ergodicity).

e Detailed Balance
* Lk
TFkay = Tekyx

for stationary distribution 7*.

e Stationary Distribution = Boltzmann Distribution

. _ ew(=E/(RT))
x Z

since we want to model the folding process.
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Rates of the Folding Process

Detailed balance and stationary distribution leaves much freedom!
Only fixed ratio:

kg [ kyx = [y, = exp(—(Ex — Ey)/(RT))

Usually defined in the form of Arrhenius rates assuming transition
state 7(x, y); then, activation energy (from y to x): E(x,) —Ey

ki =y exp(—(Er(xy) = Ey)/(RT))

Metropolis rates [E;(y ) = max(Ex, Ey)]
1 if Ex <E,
kxy =1y )
exp(—(Ex —E,)/(RT)) otherwise
—  min{L, exp(~ (Ex — E,)/(RT))}
Kawasaki rates [E;(, ) = $(Ex+ E))]
kyy = v exp(—(Ex —Ey)/(2RT))
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Example Markov Process for RNA

e Energy Landscape (X, N, E)

e X non-crossing RNA structures
e N simple base pair moves
e E loop-based free energy

e Markov process (X, 70, P)

1 x =open chain

) ’]'['2 = i
0 otherwise

e P specified by rate matrix K

ki =~ min{1,exp(—(E« —E,)/(RT))}

S.Will, 18.417, Fall 2011



Determine 7(t)

e Solve master equation 47 (t) = Kn(t)
e numerical solution, after solving the differential equation

7(t) = exp(Kt)m®

for example solve by diagonalizing K: K = UDU™! and D
diagonal, then exp(Kt) = Uexp(Dt)U~? [exponential of
diagonal matrix: element-wise]

= only small systems (several thousand states)

for example, xbix=CUGCGGCUUUGGCUCUAGCC, 20 nucleotides,
3886 structures

10 100 100 w0 10f 100 10t 10
time

e usually too expensive = Simulation, Coarse Graining, ...

S.Will, 18.417, Fall 2011



Monte Carlo Simulation with Metropolis Criterion
(Rejection-based)

e x = initial conformation (random according to 7°)
o for t =1 to tpnax do

e choose move x — x” with probability A(x — x’)
e accept with probability P(x — x'): x = x’

Remarks

e transition probability x — x’ is
A(x = x")P(x = x')
e Metropolis criterion:
P(x = x') = min(L, exp(—(Ew — £)/(RT)))

e In general: no detailed balance! = this does not simulate
the folding process
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Rejection-less Monte Carlo Simulation

e x = initial conformation (random according to 7°)
e t=0
e for i =1 to imax do
e evaluate all possible moves from x and compute “rate out of x

Rx ‘= § kx”x

move x — x”’/

e choose move x — x’ with probability
P(x — x') = kux/Fix
e accept always: x = x’
e sample “waiting time” At from exponential distribution with

average rate Ky
e increment time: t =t + At

Remarks

detailed balance due to time correction; correctly models folding
process; a.k.a. Gillespie-algorithm or Boltz-Kalos-Liebowitz
method; simulation still slow (average thousands of trajectories);
for example, simulation tool kinfold (C. Flamm)
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Coarse Grained Processes

General idea: define macro states and macro state process

For example, macro states = basins of attraction
energy of macro state a: ensemble energy

Z, =Y exp(—E./(RT)); Ea = =RTInZ,
p{e’

macro rates (from macro state § to «): Arrhenius rates
e energy of transition state (ensemble)

Zog = Z eXP(_ ET(x,y) /(RT))

XEa,yEB,move y — X

ET(O(,[;) =—RTIn Zaﬁ
e transition rate
kap = v exp(=(Er(a,p) — Es)/(RT)) = vZap/Zs

Equivalently, kag =73 cn e ke Prly | B,

since Zaﬁ/Zﬁ Zxéa,yeﬁ,y—m eXP( ‘r(x,y) /(RT))/Zﬁ =
era,yeﬁ,yﬁx exp(_(ET(x,y) - Ey)/(RT))) exp(— Ey)/ZB

S.Will, 18.417, Fall 2011
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barrier tree; process of local minima via saddle point energies;
macro state process; full process
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population probabiy
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barrier tree; kinfold simulation;
macro state process (absorbing state 56)

einteof

Wolfinger, Svrcek-Seiler, Flamm, Hofacker, Stadler Efficient
computation of RNA folding dynamics. J.Phys. A, 2004
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Dynamics of 3-sheet proteins: tFolder

P
e %/ ‘ \@
Coarse graining:

macro state = 1

sub-ensemble of a specific 09

B-strand interaction ﬁzj ﬁ

5 0e A

0.2
0.1
0

Protein G Folding Dynamics

http://csb.cs.mcgill.ca/tfolder/

it
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@ Shenker, O'Donnell, Devadas, Berger, Waldispuhl. Efficient
traversal of protein folding pathways using ensemble models.

RECOMB 2011.
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