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Introduction

Sequence Alignment
Motivation: assess similarity of sequences and learn about their

evolutionary relationship
Why do we want to know this?

Example: Sequences
ACCCGA

ACTA

TCCTA

⇒align

Alignment
ACCCGA

AC--TA

TCC-TA

Homology: Alignment reasonable, if sequences homologous

ACCGA

ACCCGA

ACCTA

TCCTA

T

C T CACTA

Definition (Sequence Homology)

Two or more sequences are homologous iff
they evolved from a common ancestor.

[Homology in anatomy]
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Introduction

Plan (and Some Preliminaries)

• First: study only pairwise alignment.
Fix alphabet Σ, such that − 6∈ Σ. − is called the gap symbol .
The elements of Σ∗ are called sequences.
Fix two sequences a, b ∈ Σ∗.

• For pairwise sequence comparison: define edit distance, define
alignment distance, show equivalence of distances, define
alignment problem and efficient algorithm
gap penalties, local alignment

• Later: extend pairwise alignment to multiple alignment

Definition (Alphabet, words)

An alphabet Σ is a finite set (of symbols/characters). Σ+ denotes
the set of non-empty words of Σ, i.e. Σ+ :=

⋃
i>0 Σi . A word

x ∈ Σn has length n, written |x |. Σ∗ := Σ+ ∪ {ε}, where ε denotes
the empty word of length 0.



S
.W

il
l,

1
8

.4
1

7
,

F
a

ll
2

0
1

1

Introduction

Levenshtein Distance

Definition
The Levenshtein Distance between two words/sequences is the
minimal number of substitutions, insertions and deletions to
transform one into the other.

Example

ACCCGA and ACTA have (at most) distance 3:
ACCCGA → ACCGA → ACCTA → ACTA

In biology, operations have different cost. (Why?)
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Introduction

Edit Distance: Operations

Definition (Edit Operations)

An edit operation is a pair (x , y) ∈ (Σ ∪ {−} 6= (−,−). We call
(x,y)

• substitution iff x 6= − and y 6= −
• deletion iff y = −
• insertion iff x = −

For sequences a, b, write a→(x ,y) b, iff a is transformed to b by
operation (x , y). Furthermore, write a⇒S b, iff a is transformed
to b by a sequence of edit operations S .

Example

ACCCGA →(C ,−) ACCGA →(G ,T ) ACCTA →(−,T ) ATCCTA

ACCCGA ⇒(C ,−),(G ,T ),(−,T ) ATCCTA

Recall: − 6∈ Σ, a, b are sequences in Σ∗
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Edit Distance: Cost and Problem Definition

Definition (Cost, Edit Distance)

Let w : (Σ ∪ {−})2 → R, such that w(x , y) is the cost of an edit
operation (x , y). The cost of a sequence of edit operations
S = e1, . . . , en is

w̃(S) =
n∑

i=1

w(e1).

The edit distance of sequences a and b is

dw (a, b) = min{w̃(S) | a⇒S b}.
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Introduction

Edit Distance: Cost and Problem Definition

Definition (Cost, Edit Distance)

Let w : (Σ ∪ {−})2 → R, such that w(x , y) is the cost of an edit
operation (x , y). The cost of a sequence of edit operations
S = e1, . . . , en is

w̃(S) =
n∑

i=1

w(e1).

The edit distance of sequences a and b is

dw (a, b) = min{w̃(S) | a⇒S b}.

Is the definition reasonable?

Definition (Metric)

A function d : X 2 → R is called metric iff 1.) d(x , y) = 0 iff x = y
2.) d(x , y) = d(y , x) 3.) d(x , y) ≤ d(x , z) + d(z , y).

Remarks: 1.) for metric d, d(x , y) ≥ 0, 2.) dw is metric iff w(x , y) ≥ 0,

3.) In the following, assume dw is metric.
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Introduction

Edit Distance: Cost and Problem Definition

Definition (Cost, Edit Distance)

Let w : (Σ ∪ {−})2 → R, such that w(x , y) is the cost of an edit
operation (x , y). The cost of a sequence of edit operations
S = e1, . . . , en is

w̃(S) =
n∑

i=1

w(e1).

The edit distance of sequences a and b is

dw (a, b) = min{w̃(S) | a⇒S b}.

Remarks

• Natural ’evolution-motivated’ problem definition.

• Not obvious how to compute edit distance efficiently
⇒ define alignment distance
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Alignment Distance

Definition (Alignment)

A pair of words a�, b� ∈ (Σ ∪ {−})∗ is called alignment of
sequences a and b (a� and b� are called alignment strings), iff

1. |a�| = |b�|
2. for all 1 ≤ i ≤ |a�|: a�i 6= − or b�i 6= −
3. deleting all gap symbols − from a� yields a

and deleting all − from b� yields b

Example
a = ACGGAT

b = CCGCTT

possible alignments are
a� = AC-GG-AT

b� = -CCGCT-T
or

a� = ACGG---AT

b� = --CCGCT-T
or . . . (exponentially many)

edit operations of first alignment: (A,-),(-,C),(G,C),(-,T),(A,-)
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Alignment Distance

Definition (Cost of Alignment, Alignment Distance)

The cost of the alignment (a�, b�), given a cost function w on edit
operations is

w(a�, b�) =

|a�|∑
i=1

w(a�i , b
�
i )

The alignment distance of a and b is

Dw (a, b) = min{w(a�, b�) | (a�, b�) is alignment of a and b}.
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Alignment Distance = Edit Distance

Theorem (Equivalence of Edit and Alignment Distance)

For metric w, dw (a, b) = Dw (a, b).

Recall:

Definition (Edit Distance)

The edit distance of a and b is
dw (a, b) = min{w̃(S) | a transformed to b by e.o.-sequence S}.

Definition (Alignment Distance)

The alignment distance of a and b is
Dw (a, b) = min{w(a�, b�) | (a�, b�) is alignment of a and b}.
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Alignment Distance = Edit Distance

Theorem (Equivalence of Edit and Alignment Distance)

For metric w, dw (a, b) = Dw (a, b).

Remarks

• Proof idea:
dw (a, b) ≤ Dw (a, b): alignment yields sequence of edit ops
Dw (a, b) ≤ dw (a, b): sequence of edit ops yields equal or
better alignment (needs triangle inequality)

• Reduces edit distance to alignment distance

• We will see: the alignment distance is computed efficiently by
dynamic programming (using Bellman’s Principle of
Optimality).
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Principle of Optimality and Dynamic Programming

Principle of Optimality :
‘Optimal solutions consist of optimal partial solutions’

Example: Shortest Path

Idea of Dynamic Programming (DP):

• Solve partial problems first and materialize results

• (recursively) solve larger problems based on smaller ones

Remarks

• The principle is valid for the alignment distance problem

• Principle of Optimality enables the programming method DP

• Dynamic programming is widely used in Computational
Biology and you will meet it quite often in this class
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Alignment Matrix
Idea: choose alignment distances of prefixes a1..i and b1..j as
partial solutions and define matrix of these partial solutions.

Let n := |a|, m := |b|.

Definition (Alignment matrix)

The alignment matrix of a and b is the (n + 1)× (m + 1)-matrix
D := (Dij)0≤i≤n,0≤j≤m defined by

Dij := Dw (a1..i , b1..j)(
= min{w(a�, b�) | (a�, b�) is alignment of a1..i and b1..j}

)
.

Notational remarks

• ai is the i-th character of a

• ax ..y is the sequence axax+1 . . . ay (subsequence of a).

• by convention ax ..y = ε if x > y .
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Alignment Matrix Example

Example

• a =AT, b =AAGT

• w(x , y) =

{
0 iff x = y

1 otherwise

A A G T

A
T

Remark: The alignment matrix D contains the alignment distance
(=edit distance) of a and b in Dn,m.
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Introduction

Alignment Matrix Example

Example

• a =AT, b =AAGT

• w(x , y) =

{
0 iff x = y

1 otherwise

A A G T

A
T

0 1 2 3 4

1

2

0 1 2

2

3

11 2

Remark: The alignment matrix D contains the alignment distance
(=edit distance) of a and b in Dn,m.
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Needleman-Wunsch Algorithm

Claim
For (a�, b�) alignment of a and b with length r = |a�|,

w(a�, b�) = w(a�1..r−1, b
�
1..r−1) + w(a�r , b

�
r ).

Theorem
For the alignment matrix D of a and b, holds that

• D0,0 = 0

• for all 1 ≤ i ≤ n: Di ,0 =
∑i

k=1 w(ak ,−) = Di−1,0 + w(ai ,−)

• for all 1 ≤ j ≤ m: D0,j =
∑j

k=1 w(−, bk) = D0,j−1 + w(−, bj)

• Dij = min


Di−1,j−1 + w(ai , bj) (match)

Di−1,j + w(ai ,−) (deletion)

Di ,j−1 + w(−, bj) (insertion)

Remark: The theorem claims that each prefix alignment distance
can be computed from a constant number of smaller ones.
Proof ???
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Needleman-Wunsch Algorithm

Claim
For (a�, b�) alignment of a and b with length r = |a�|,

w(a�, b�) = w(a�1..r−1, b
�
1..r−1) + w(a�r , b

�
r ).

Theorem
For the alignment matrix D of a and b, holds that

• D0,0 = 0

• for all 1 ≤ i ≤ n: Di ,0 =
∑i

k=1 w(ak ,−) = Di−1,0 + w(ai ,−)

• for all 1 ≤ j ≤ m: D0,j =
∑j

k=1 w(−, bk) = D0,j−1 + w(−, bj)

• Dij = min


Di−1,j−1 + w(ai , bj) (match)

Di−1,j + w(ai ,−) (deletion)

Di ,j−1 + w(−, bj) (insertion)

Remark: The theorem claims that each prefix alignment distance
can be computed from a constant number of smaller ones.
Proof: Induction over i+j
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Needleman-Wunsch Algorithm (Pseudocode)

D0,0 := 0
for i := 1 to n do

Di ,0 := Di−1,0 + w(ai ,−)
end for
for j := 1 to m do

D0,j := D0,j−1 + w(−, bj)
end for
for i := 1 to n do
for j := 1 to m do

Di ,j := min


Di−1,j−1 + w(ai , bj)

Di−1,j + w(ai ,−)

Di ,j−1 + w(−, bj)
end for

end for
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Back to Example

Example

• a =AT, b =AAGT

• w(x , y) =

{
0 iff x = y

1 otherwise

A A G T

A
T

0 1 2 3 4

1 0

2

Open: how to find best alignment?
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Back to Example

Example

• a =AT, b =AAGT

• w(x , y) =

{
0 iff x = y

1 otherwise

A A G T

A
T

0 1 2 3 4

1

2

0 1 2

2

3

11 2

Open: how to find best alignment?
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Traceback

w(x , y) =

{
0 iff x = y

1 otherwise

A A G T

A
T

0 1 2 3 4

1

2

0 1 2

2

3

11 2

Remarks

• Start in (n,m). For every (i , j) determine optimal case.

• Not necessarily unique.

• Sequence of trace arrows let’s infer best alignment.
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Traceback

w(x , y) =

{
0 iff x = y

1 otherwise

A A G T

A
T

0 1 2 3 4

1

2

0 1 2

2

3

11 2

Remarks

• Start in (n,m). For every (i , j) determine optimal case.

• Not necessarily unique.

• Sequence of trace arrows let’s infer best alignment.
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Complexity

• compute one entry: three cases, i.e. constant time

• nm entries ⇒ fill matrix in O(nm) time

• traceback: O(n + m) time

• TOTAL: O(n2) time and space (assuming m ≤ n)

Remarks

• assuming m ≤ n is w.l.o.g. since we can exchange a and b

• space complexity can be improved to O(n) for computation of
distance (simple, “store only current and last row”) and
traceback (more involved; Hirschberg-algorithm uses “Divide
and Conquer” for computing trace)
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Plan

• We have seen how to compute the pairwise edit distance and
the corresponding optimal alignment.

• Before going multiple, we will look at two further special
topics for pairwise alignment:

• more realistic, non-linear gap cost and
• similarity scores and local alignment



S
.W

il
l,

1
8

.4
1

7
,

F
a

ll
2

0
1

1

Introduction

Alignment Cost Revisited

Motivation:

• The alignments
GA--T

GAAGT
and

G-A-T

GAAGT
have the same edit

distance.

• The first one is biologically more reasonable: it is more likely
that evolution introduces one large gap than two small ones.

• This means: gap cost should be non-linear, sub-additive!
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Gap Penalty

Definition (Gap Penalty)

A gap penalty is a function g : N→ R that is sub-additive, i.e.

g(k + l) ≤ g(k) + g(l).

A gap in an alignment string a� is a substring of a� that consists of
only gap symbols − and is maximally extended. ∆a� is the
multi-set of gaps in a�.
The alignment cost with gap penalty g of (a�, b�) is

wg (a�, b�) =
∑

1≤r≤|a�|,
where a�r 6=−,b�r 6=−

w(a�r , b
�
r ) (cost of mismatchs)

+
∑

x∈∆a�]∆b�

g(|x |) (cost of gaps)

Example:
a� = ATG---CGAC--GC

b� = -TGCGGCG-CTTTC

⇒ ∆a� = {---, --}, ∆b� = {-, -}
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General sub-additive gap penalty

Theorem
Let D be the alignment matrix of a and b with cost w and gap
penalty g, such that Dij = wg (a1..i , b1..j). Then:

• D0,0 = 0

• for all 1 ≤ i ≤ n: Di ,0 = g(i)

• for all 1 ≤ j ≤ m: D0,j = g(j)

• Dij = min


Di−1,j−1 + w(ai , bj) (match)

min1≤k≤i Di−k,j + g(k) (deletion of length k)

min1≤k≤j Di ,j−k + g(k) (insertion of length k)

Remarks

• Complexity O(n3) time, O(n2) space

• pseudocode, correctness, traceback left as exercise

• much more realistic, but significantly more expensive than
Needleman-Wunsch ⇒ can we improve it?
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Affine gap cost

Definition
A gap penalty is affine, iff there are real constants α and β, such
that for all k ∈ N: g(k) = α + βk .

Remarks

• Affine gap penalties almost as good as general ones:
Distinguishing gap opening (α) and gap extension cost (β) is
“biologically reasonable”.

• The minimal alignment cost with affine gap penalty can be
computed in O(n2) time! (Gotoh algorithm)
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Gotoh algorithm: sketch only
In addition to the alignment matrix D, define two further
matrices/states.

• Ai ,j := cost of best alignment of a1..i , b1..j ,

that ends with deletion
ai
|
−

.

• Bi ,j := cost of best alignment of a1..i , b1..j ,

that ends with insertion
−
|
bj

.

Recursions:
Ai ,j = min

{
Ai−1,j + β (deletion extension)

Di−1,j + g(1) (deletion opening)

Bi ,j = min

{
Bi ,j−1 + β (insertion extension)

Di ,j−1 + g(1) (insertion opening)

Dij = min


Di−1,j−1 + w(ai , bj) (match)

Ai ,j (deletion closing)

Bi ,j (insertion closing)

Remark: O(n2) time and space
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Similarity

Definition (Similarity)

The similarity of an alignment (a�, b�) is

s(a�, b�) =

|a�|∑
i=1

s(a�i , b
�
i ),

where s : (Σ ∪ {−})2 → R is a similarity function, where
for x ∈ Σ : s(x , x) > 0, s(x ,−) < 0, s(−, x) < 0.

Observation. Instead of minimizing alignment cost, one can
maximize similarity:

Sij = max


Si−1,j−1 + s(ai , bj)

Si−1,j + s(ai ,−)

Si ,j−1 + s(−, bj)

Motivation:
• defining similarity of ’building blocks’ could be more natural,

e.g. similarity of amino acids.
• similarity is useful for local alignment
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Local Alignment Motivation

Local alignment asks for the best alignment of any two
subsequences of a and b. Important Application: Search!
(e.g. BLAST combines heuristics and local alignment)

Example

a =AWGVIACAILAGRS

b =VIVTAIAVAGYY

In contrast, all previous methods compute “global alignments”.
Why is distance not useful?

Example

a)
XXXAAXXXX

YYAAYY
b)

XXAAAAAXXXX

YYYAAAAAYY
Where is the stronger local motif? Only similarity can distinguish.
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Local Alignment

Definition (Local Alignment Problem)

Let s be a similarity on alignments.

Sglobal(a, b) := max
(a�,b�)

alignment of a and b

s(a�, b�) (global similarity)

Slocal(a, b) := max
1≤i ′<i≤n
1≤j ′<j≤m

Sglobal(ai ′..i , bj ′..j) (local similarity)

The local alignment problem is to compute Slocal(a, b).

Remarks

• That is, local alignment asks for the subsequences of a and b
that have the best alignment.

• How would we define the local alignment matrix for DP?

• For example, why does “Hi ,j := Slocal(a1..i , b1..j)” not work?
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Local Alignment Matrix

Definition
The local alignment matrix H of a and b is (Hi ,j)0≤i≤n,0≤j≤m
defined by

Hi ,j := max
0≤i ′≤i ,0≤j ′≤j

Sglobal(ai ′+1..i , bj ′+1..j).

Remarks

• Slocal(a, b) = maxi ,j Hi ,j (!)

• all entries Hi ,j ≥ 0, since Sglobal(ε, ε) = 0.

• Hi ,j = 0 implies no subsequences of a and b that end in
respective i and j are similar.

• Allows case distinction / Principle of optimality holds!
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Local Alignment Algorithm — Case Distinction

Cases for Hi ,j

1.)
. . . ai
. . . bi

2.)
. . . ai
. . . − 3.)

. . . −

. . . bj

4.) 0, since if each of the above cases is dissimilar (i.e. negative),
there is still (ε, ε).
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Local Alignment Algorithm (Smith-Waterman Algorithm)

Theorem
For the local alignment matrix H of a and b,

• H0,0 = 0

• for all 1 ≤ i ≤ n: Hi ,0 = 0

• for all 1 ≤ j ≤ m: H0,j = 0

• Hij = max


0 (empty alignment)

Hi−1,j−1 + s(ai , bj)

Hi−1,j + s(ai ,−)

Hi ,j−1 + s(−, bj)
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Local Alignment Remarks

Remarks

• Complexity O(n2) time and space, again space complexity can
be improved

• Requires that similarity function is centered around zero, i.e.
positive = similar, negative = dissimilar.

• Extension to affine gap cost works

• Traceback?
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Local Alignment Example

Example

• a =AAC, b =ACAA

• s(x , y) =

{
2 iff x = y

−3 otherwise

A C A A

A
A

0

0 2

42

C
0

0

0 0 0 0

0

0

1140

2 2

2

Traceback: start at maximum entry, trace back to first 0 entry
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Substitution/Similarity Matrices

• In practice: use similarity matrices learned from closely related
sequences or multiple alignments

• PAM (Percent Accepted Mutations) for proteins

• BLOSUM (BLOcks of Amino Acid SUbstitution) for proteins

• RIBOSUM for RNA

• Scores are (scaled) log odd scores: log Pr [x ,y |Related]
Pr [x ,y |Background]

For example, BLOSUM62:
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Multiple Alignment

Example: Sequences
a(1) = ACCCGAG

a(2) = ACTACC

a(3) = TCCTACGG

⇒align A =

Alignment
ACCCGA-G-

AC--TAC-C

TCC-TACGG

Definition
A multiple alignment A of K sequences a(1)...a(K) is a
K × N-matrix (Ai ,j)1≤i≤K

1≤j≤N
(N is the number of columns of A)

where

1. each entry Ai ,j ∈ (Σ ∪ {−})
2. for each row i : deleting all gaps from (Ai ,1...Ai ,N) yields a(i)

3. no column j contains only gap symbols
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How to Score Multiple Alignments

As for pairwise alignment:

• Assume columns are scored independently

• Score is sum over alignment columns

S(A) =
N∑
j=1

s(A1j , . . . ,AKj)

Example

S(A) = s

(
A
A
T

)
+ s

(
C
C
C

)
+ s

(
C
−
C

)
+ s

(
C
−
−

)
+ · · ·+ s

(−
C
G

)

How do we know similarities?
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How to Score Multiple Alignments

As for pairwise alignment:

• Assume columns are scored independently

• Score is sum over alignment columns

S(A) =
N∑
j=1

s

(
A1j

. . .
AKj

)

Example

S(A) = s

(
A
A
T

)
+ s

(
C
C
C

)
+ s

(
C
−
C

)
+ s

(
C
−
−

)
+ · · ·+ s

(−
C
G

)

How to define s

(
x
y
z

)
? as log odds s

(
x
y
z

)
= log Pr [x ,y ,z|Related]

Pr [x ,y ,z|Background] ?

Problems? Can we learn similarities for triples, 4-tuples, . . . ?
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Sum-Of-Pairs Score

Idea: approximate column scores by pairwise scores

s

(
x1

. . .
xj

)
=

∑
1≤k<l≤K

s(xk , xl)

Sum-of-pairs is the most commonly used scoring scheme for
multiple alignments.
(Extensible to gap penalties, in particular affine gap cost)

Drawbacks?
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Optimal Multiple Alignment

Idea: use dynamic programming

Example

For 3 sequences a, b, c , use 3-dimensional matrix
(after initialization:)

Si ,j ,k = max



Si−1,j−1,k−1 +s(ai , bj , ck)

Si−1,j−1,k +s(ai , bj ,−)

Si−1,j ,k−1 +s(ai ,−, ck)

Si ,j−1,k−1 +s(−, bj , ck)

Si−1,j ,k +s(ai ,−,−)

Si ,j−1,k +s(−, bj ,−)

Si ,j ,k−1 +s(−,−, ck)

For K sequences use K-dimensional matrix.
Complexity?
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Heuristic Multiple Alignment: Progressive Alignment

Idea: compute optimal alignments only pairwise

Example

4 sequences a(1), a(2), a(3), a(4)

1. determine how they are related
⇒ tree, e.g. ((a(1), a(2)), (a(3), a(4)))

2. align most closely related sequences first
⇒ (optimally) align a(1) and a(2) by DP

3. go on ⇒ (optimally) align a(3) and a(4) by DP

4. go on?! ⇒ (optimally) align the two alignments
How can we do that?

5. Done. We produced a multiple alignment of
a(1), a(2), a(3), a(4).

Remarks: - Optimality is not guaranteed. Why?
- The tree is known as guide tree. How can we get it?
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Guide tree

The guide tree determines the order of pairwise alignments in the
progressive alignment scheme.
The order of the progressive alignment steps is crucial for quality!

Heuristics:

1. Compute pairwise distances between all input sequences
• align all against all
• in case, transform similarities to distances (e.g. Feng-Doolittle)

2. Cluster sequences by their distances, e.g. by
• Unweighted Pair Group Method (UPGMA)
• Neighbor Joining (NJ)
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Aligning Alignments
Two (multiple) alignments A and B can be aligned by DP in the
same way as two sequences.

Idea:

• An alignment is a sequence of alignment columns.

Example:
ACCCGA-G-

AC--TAC-C

TCC-TACGG

≡
(

A
A
T

)(
C
C
C

)(
C
−
C

)(
C
−
−

)
. . .

(−
C
G

)
.

• Assign similarity to two columns from resp. A and B, e.g.

s(

(−
C
G

)
,
(
G
C

)
) by sum-of-pairs.

We can use dynamic programming, which recurses over alignment
scores of prefixes of alignments.

Consequences for progressive alignment scheme:

• Optimization only local .
• Commits to local decisions. “Once a gap, always a gap”
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Progressive Alignment — Example
IN: a(1) = ACCG , a(2) = TTGG , a(3) = TCG , a(4) = CTGG

w(x , y) =


0 iff x = y

2 iff x = − or y = −
3 otherwise (for mismatch)

• Compute all against all edit distances and cluster
Align ACCG and TTGG

T T G G
0 2 4 6 8

A 2 3 5 7 9
C 4 5 6 8 10
C 6 7 8 9 11
G 8 9 10 8 9

Align ACCG and TCG
T C G

0 2 4 6
A 2 3 5 7
C 4 5 3 6
C 6 7 5 6
G 8 9 8 5

Align ACCG and CTGG
C T G G

0 2 4 6 8
A 2 3 5 7 9
C 4 2 5 8 10
C 6 4 5 8 11
G 8 7 7 5 8

Align TTGG and TCG
T C G

0 2 4 6
T 2 0 3 6
T 4 2 3 6
G 6 5 5 3
G 8 8 8 5

Align TTGG and CTGG
C T G G

0 2 4 6 8
T 2 3 2 5 8
T 4 5 3 5 8
G 6 7 6 3 5
G 8 9 9 6 3

Align TCG and CTGG
C T G G

0 2 4 6 8
T 2 3 2 5 8
C 4 2 5 5 8
G 6 5 5 5 5
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Progressive Alignment — Example

IN: a(1) = ACCG , a(2) = TTGG , a(3) = TCG , a(4) = CTGG

w(x , y) =


0 iff x = y

2 iff x = − or y = −
3 otherwise (for mismatch)

• Compute all against all edit distances and cluster

⇒ distance matrix

a(1) a(2) a(3) a(4)

a(1) 0 9 5 8
a(2) 0 5 3
a(3) 0 5
a(4) 0

⇒ Cluster (e.g. UPGMA)
a(2) and a(4) are closest, Then: a(1) and a(3)
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Progressive Alignment — Example

IN: a(1) = ACCG , a(2) = TTGG , a(3) = TCG , a(4) = CTGG

w(x , y) =


0 iff x = y

2 iff x = − or y = −
3 otherwise (for mismatch)

• Compute all against all edit distances and cluster

⇒ guide tree ((a(2), a(4)), (a(1), a(3)))

• Align a(2) and a(4): TTGG

CTGG
, Align a(1) and a(3): ACCG

-TCG

• Align the alignments!

Align TTGG
CTGG and ACCG

-TCG

A C C G
- T C G

0 4 12 20 28
TC 8 10 . . .

TT 16
.
.
.

. . .

GG 24
GG 32
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Progressive Alignment — Example
IN: a(1) = ACCG , a(2) = TTGG , a(3) = TCG , a(4) = CTGG

w(x , y) =


0 iff x = y

2 iff x = − or y = −
3 otherwise (for mismatch)

• Compute all against all edit distances and cluster

⇒ guide tree ((a(2), a(4)), (a(1), a(3)))

• Align a(2) and a(4): TTGG

CTGG
, Align a(1) and a(3): ACCG

-TCG

• Align the alignments!

Align TTGG
CTGG and ACCG

-TCG

A C C G
- T C G

0 4 12 20 28
TC 8 10 . . .

TT 16
.
.
.

. . .

GG 24
GG 32

• w(TC ,−−) =

w(T ,−) + w(C ,−) + w(T ,−) + w(C ,−) = 8

• w(−−, A−) =

w(−, A) + w(−,−) + w(−, A) + w(−,−) = 4

• w(TC , A−) =

w(T , A) + w(C , A) + w(T ,−) + w(C ,−) = 10

• w(TC , CT ) =

w(T , C) + w(C , C) + w(T ,T ) + w(C ,T ) = 6

• . . .
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Progressive Alignment — Example

IN: a(1) = ACCG , a(2) = TTGG , a(3) = TCG , a(4) = CTGG

w(x , y) =


0 iff x = y

2 iff x = − or y = −
3 otherwise (for mismatch)

• Compute all against all edit distances and cluster

⇒ guide tree ((a(2), a(4)), (a(1), a(3)))

• Align a(2) and a(4): TTGG

CTGG
, Align a(1) and a(3): ACCG

-TCG

• Align the alignments!

Align TTGG
CTGG and ACCG

-TCG

A C C G
- T C G

0 4 12 20 28
TC 8 10 . . .

TT 16
.
.
.

. . .

GG 24
GG 32

=⇒
after filling

and traceback

TTGG

CTGG

ACCG

-TCG
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A Classical Approach: CLUSTAL W

• prototypical progressive
alignment

• similarity score with affine
gap cost

• neighbor joining for tree
construction

• special ‘tricks’ for gap
handling
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Advanced Progressive Alignment in MUSCLE

1.) alignment draft and 2.) reestimation 3.) iterative refinement
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Consistency-based scoring in T-Coffee

• Progressive alignment +
Consistency heuristic

• Avoid mistakes when
optimizing locally by
modifying the scores
“Library extension”

• Modified scores reflect
global consistency

• Details of consistency
transformation: next slide

• Merges local and global
alignments
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Consistency-based scoring in T-Coffee

Misalignment by standard procedure

Correct alignment after library extension

Consistency Transformation

• For each sequence triplet:
strengthen compatible
edges

• This moves global
information into scores

• Consistency-based scores
guide pairwise
alignments towards
(global) consistency

All-2-all alignments for weighting
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Alignment Profiles

Alignment
ACGG-

ACCG-

AC-G-

TCCGG

Consensus:
ACCG-

Profile:
A :
C :
G :
T :


0.75

0
0

0.25




0
1
0
0




0
0.5

0.25
0




0
0
1
0




0
0

0.25
0



Remarks

• A profile of a multiple alignment consists of character
frequency vectors for each column.

• The profile describes sequences of the alignment in a rigid way.

• Modeling insertions/deletions requires profile HMMs.
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Hidden Markov Models (HMMs)

Example of a simple HMM

S R

HH T T

0.8 0.6

1/6 5/6

0.2

0.42/3 1/3

T B T B
[The frog climbs the ladder more likely when the sun shines. Assume that

the weather is hidden, but we can observe the frog.]

• Idea: the probability of an observation depends on a hidden
state, where there are specific probabilities to change states.

• Hidden Markov Models generate observation sequences (e.g.
TBTTT) according to an (encoded) probability distribution.

• One can compute things like “most probable path given an
observation sequence”, . . . (no details here)
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Profile HMMs
• Profile HMMs describe (probability distribution of) sequences

in a multiple alignment (observation ≡ sequence).
• hidden states = insertion (Ii ), match (Mi ), deletion (Di ) in

relation to consensus (state sequence ≡ alignment string)

Alignment
ACGG-

ACCG-

AC-G-

TCCGG

Consensus:
ACCG-

Remarks
• Profile HMMs are used to search for sequences that are

similar to sequences of a given alignment (Pfam, HMMer)

• Profile HMMs can be used to construct multiple alignments

• We come back to HMMs when we discuss SCFGs.


	Introduction
	Introduction


