Sequence Alignment

Motivation: assess similarity of sequences and learn about their
evolutionary relationship
Why do we want to know this?

Example: Sequences Alignment
ACCCGA ACCCGA
ACTA = align  AC--TA
TCCTA TCC-TA
Homology: Alignment reasonable, if sequences homologous
ACCGA
™~
ACCTA
ACCCGA ch{ \ACCTA

Definition (Sequence Homology)

Two or more sequences are homologous iff
they evolved from a common ancestor.
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Plan (and Some Preliminaries)

e First: study only pairwise alignment.

Fix alphabet ¥, such that — € X.. — is called the gap symbol.
The elements of X* are called sequences.
Fix two sequences a, b € ¥*.

e For pairwise sequence comparison: define edit distance, define
alignment distance, show equivalence of distances, define
alignment problem and efficient algorithm
gap penalties, local alignment

o Later: extend pairwise alignment to multiple alignment

Definition (Alphabet, words)

An alphabet ¥ is a finite set (of symbols/characters). ¥ denotes
the set of non-empty words of ¥, i.e. ¥ := U,->0 Y. A word

x € £" has length n, written |x|. X* := X U {e}, where € denotes
the empty word of length 0.
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Levenshtein Distance

Definition
The Levenshtein Distance between two words/sequences is the

minimal number of substitutions, insertions and deletions to
transform one into the other.

Example

ACCCGA and ACTA have (at most) distance 3:
ACCCGA — ACCGA — ACCTA — ACTA

In biology, operations have different cost. (Why?)
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Edit Distance: Operations

Definition (Edit Operations)
An edit operation is a pair (x,y) € (X U{—} # (-, —). We call
(xy)

e substitution iff x # — and y # —

e deletion iff y = —

e insertion iff x = —

For sequences a, b, write a —(, ) b, iff a is transformed to b by
operation (x,y). Furthermore, write a = s b, iff a is transformed
to b by a sequence of edit operations S.

Example
ACCCGA —»(c._y ACCGA —>(6.7y ACCTA —(_ 7y ATCCTA

ACCCGA =(C,-),(G,T),(=,T) ATCCTA

Recall: — ¢ ¥, a, b are sequences in ©*
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it Distance: Cost an roblem Dertinition

Definition (Cost, Edit Distance)

Let w: (2 U{—})? = R, such that w(x, y) is the cost of an edit
operation (x y). The cost of a sequence of edit operations

S=e1,...,e,is
w(S) = Z w(er).
i=1
The edit distance of sequences a and b is
dw(a, b) = min{w(S) | a=s b}.
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Edit Distance: Cost and Problem Definition

Definition (Cost, Edit Distance)

Let w: (X U{—})? = R, such that w(x, y) is the cost of an edit
operation (x,y). The cost of a sequence of edit operations
S=e,...,e,1is n

W(S) = w(e).

i=1
The edit distance of sequences a and b is
dw(a, b) = min{w(S) | a =5 b}.

Is the definition reasonable?

Definition (Metric)

A function d : X? — R is called metric iff 1.) d(x,y) =0 iff x =y
2.) d(x,y) =d(y,x) 3.) d(x,y) < d(x,2) + d(z,y).

Remarks: 1.) for metric d, d(x,y) > 0, 2.) d,, is metric iff w(x,y) >0,
3.) In the following, assume d,, is metric.
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Edit Distance: Cost and Problem Definition

Definition (Cost, Edit Distance)

Let w: (XU {-})? = R, such that w(x, y) is the cost of an edit
operation (x,y). The cost of a sequence of edit operations
S=e1,...,e,is n

W(S)=> wle).

i=1
The edit distance of sequences a and b is

dw(a, b) = min{w(S) | a=s b}.

Remarks

e Natural 'evolution-motivated’ problem definition.

e Not obvious how to compute edit distance efficiently
= define alignment distance
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Alignment Distance

Definition (Alignment)

A pair of words a®, b® € (X U{—})* is called alignment of
sequences a and b (a® and b° are called alignment strings), iff

L |a°] = [b°]

2. forall 1 < i< |a%: af # — or bY # —

3. deleting all gap symbols — from a° yields a
and deleting all — from b° yields b

Example
a = ACGGAT
b = CCGCTT

possible alignments are
a® = AC-GG-AT a® = ACGG---AT
or
b® = -CCGCT-T b® = --CCGCT-T

edit operations of first alignment: (A,-),(-,C),(G,C),(-,T),(A,-)

or ... (exponentially many)
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!||gnment Elstance

Definition (Cost of Alignment, Alignment Distance)

The cost of the alignment (a°, b®), given a cost function w on edit

operations is
|a°|

W(aov bo) = Z W(a;'}v b;})
i=1
The alignment distance of a and b is

Dy, (a, b) = min{w(a®, b°) | (a°, b°) is alignment of a and b}.

e
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D
Alignment Distance = Edit Distance

Theorem (Equivalence of Edit and Alignment Distance)
For metric w, dy(a, b) = Dy(a, b).

Recall:

Definition (Edit Distance)

The edit distance of a and b is

dw(a, b) = min{W(S) | a transformed to b by e.o.-sequence S}.
Definition (Alignment Distance)

The alignment distance of a and b is
Dy (a, b) = min{w(a®, b®) | (a°, b°®) is alignment of a and b}.

S.Will, 18.417, Fall 2011



Alignment Distance = Edit Distance

Theorem (Equivalence of Edit and Alignment Distance)
For metric w, d,(a, b) = Dy(a, b).

Remarks

e Proof idea:
dw(a, b) < Dy, (a, b): alignment yields sequence of edit ops
Dy (a, b) < dy(a, b): sequence of edit ops yields equal or
better alignment (needs triangle inequality)

e Reduces edit distance to alignment distance

o We will see: the alignment distance is computed efficiently by
dynamic programming (using Bellman's Principle of
Optimality).
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Principle of Optimality and Dynamic Programming

Principle of Optimality:
‘Optimal solutions consist of optimal partial solutions’

Example: Shortest Path

Idea of Dynamic Programming (DP):
e Solve partial problems first and materialize results

e (recursively) solve larger problems based on smaller ones

Remarks

e The principle is valid for the alignment distance problem
e Principle of Optimality enables the programming method DP

e Dynamic programming is widely used in Computational
Biology and you will meet it quite often in this class
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Alignment Matrix

Idea: choose alignment distances of prefixes a; ; and by j as
partial solutions and define matrix of these partial solutions.
Let n:=|a|, m:=|b|.

Definition (Alignment matrix)

The alignment matrix of a and b is the (n+ 1) x (m + 1)-matrix
D := (Djj)o<i<n,0<j<m defined by

Djj := Dy/(a1.;, b1.j)

(= min{w(a®, b°) | (a°, b°) is alignment of a1 ; and by_;}).

Notational remarks
e a; is the i-th character of a
* a,, is the sequence ayax41...a, (subsequence of a).

e by convention a, , =€ if x > y.

S.Will, 18.417, Fall 2011



Alignment Matrix Example

Example

e a =AT, b =AAGT

(%,y) 0 iffx=y
® WiX, = i
Y 1 otherwise

AAGT

A
T

Remark: The alignment matrix D contains the alignment distance
(=edit distance) of a and b in D .

S.Will, 18.417, Fall 2011



Alignment Matrix Example

Example

e a =AT, b =AAGT

(%,y) 0 iffx=y
® WiX, = i
Y 1 otherwise

Al1lo|1]2
TIl211]1]2]|2

Remark: The alignment matrix D contains the alignment distance
(=edit distance) of a and b in D .

-
=
=3
&
=
il
<
=
S
)
R
%




Needleman-Wunsch Algorithm
Claim

For (a%, b°®) alignment of a and b with length r = |a°|

w(a®, b%) = w(ay ,_1, b7 ;1) + w(a}, by).
Theorem
For the alignment matrix D of a and b, holds that
® Dgo=0

e forall1<i<n:Djy= 22:1 w(ak, —) = Dj_1,0 + w(aj, —)
o foralll<j <

< m: Doj =Yy w(— be) = Doj-1+w(—,b)
Di_1j-1+ w(aj, bj) (match)

* Dj=ming Dj_1;+ w(ai,—) (deletion)
Djj-1+ w(—, b)) (insertion)

Remark: The theorem claims that each prefix alignment distance

can be computed from a constant number of smaller ones.
Proof 777

S.Will, 18.417, Fall 2011



Needleman-Wunsch Algorithm
Claim

For (a%, b°®) alignment of a and b with length r = |a°|

w(a®, b%) = w(ay ,_1, b7 ;1) + w(a}, by).
Theorem
For the alignment matrix D of a and b, holds that
® Dgo=0

e forall1<i<n:Djy= 22:1 w(ak, —) = Dj_1,0 + w(aj, —)
o foralll<j <

< m: Doj =Yy w(— be) = Doj-1+w(—,b)
Di_1j-1+ w(aj, bj) (match)

* Dj=ming Dj_1;+ w(ai,—) (deletion)
Djj-1+ w(—, b)) (insertion)

Remark: The theorem claims that each prefix alignment distance

can be computed from a constant number of smaller ones.
Proof: Induction over i+j

S.Will, 18.417, Fall 2011



Needleman-Wunsch Algorithm (Pseudocode)

D070 =0
for i:=1tondo
Djo := Dj_10+ w(ai,—)
end for
for j:=1to mdo
Doj := Doj-1+ w(—, bj)
end for
for i:=1tondo
for j:=1to mdo
D,',l,jfl + W(a,', bj)
D,'J ‘= min D,'_]_’J' + W(a,', —)
Djj-1+ w(=, by)
end for
end for
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Back to Example

Example

e g =AT, b =AAGT

_JO iffx=y
° W(X7Y) - {1 otherwise
AAGT
0/1,213/4
N\
Al1]ot
T |2

Open: how to find best alignment?

S.Will, 18.417, Fall 2011



Back to Example

Example

e a3 —=AT, b =AAGT

(x,y) 0 iffx=y
°* w(x, —
Y 1 otherwise

AAGT

0(1]2|3|4

Ali1lo|1l2]3

TIl21111]2]|2

Open: how to find best alignment?

S.Will, 18.417, Fall 2011



Traceback

(x,y) 0 iffx=y
W X7 - .
Y 1 otherwise

AAG

Ali1lo|1]2]3
TIl21111]2|2

Remarks

e Start in (n, m). For every (i, /) determine optimal case.

e Not necessarily unique.
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Traceback

(x,y) 0 iffx=y
W X7 - .
Y 1 otherwise

AAG

@D 2|34
All|lo|@®Q@ 3
TIl21111]2|2

Remarks

e Start in (n, m). For every (i, /) determine optimal case.

e Not necessarily unique.
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Complexity

e compute one entry: three cases, i.e. constant time
e nm entries = fill matrix in O(nm) time
traceback: O(n+ m) time

TOTAL: O(n?) time and space (assuming m < n)

Remarks

e assuming m < nis w.l.o.g. since we can exchange a and b

e space complexity can be improved to O(n) for computation of
distance (simple, “store only current and last row” ) and
traceback (more involved; Hirschberg-algorithm uses “Divide
and Conquer” for computing trace)
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Plan

e We have seen how to compute the pairwise edit distance and
the corresponding optimal alignment.

o Before going multiple, we will look at two further special
topics for pairwise alignment:

e more realistic, non-linear gap cost and
e similarity scores and local alignment




Alignment Cost Revisited

Motivation:
. GA--T G-A-T .
e The alignments CAAGT and CAAGT have the same edit
distance.

e The first one is biologically more reasonable: it is more likely
that evolution introduces one large gap than two small ones.

e This means: gap cost should be non-linear, sub-additive!

S.Will, 18.417, Fall 2011



Gap Penalty

Definition (Gap Penalty)
A gap penalty is a function g : N — R that is sub-additive, i.e.

glk+1) < g(k) +g()-

A gap in an alignment string a° is a substring of a® that consists of
only gap symbols — and is maximally extended. A?° is the
multi-set of gaps in a°.

The alignment cost with gap penalty g of (a°, b%) is

wg(a®, b%) = Z w(a?, b%)  (cost of mismatchs)
1<r<)a°),
where al#— bP#—
+ Z g(|x]) (cost of gaps)
xEATTWAP®
Example:
a® = ATG---CGAC--GC = A% = {-—- -}, AP = {- -}

b® = -TGCGGCG-CTTTC

S.Will, 18.417, Fall 2011



General sub-additive gap penalty

Theorem
Let D be the alignment matrix of a and b with cost w and gap
penalty g, such that Djj = wg(a1_i, b1.j). Then:

® Doo=0

e foralll<i<n: Dio=g(i)

e forall1<j<m: Dyj=g(j)
Di_1j-1+ w(aj, bj) (match)

e Djj = min { minj<x<; Di_yj + g(k) (deletion of length k)
mini<k<j Dj j_«x + g(k) (insertion of length k)

Remarks
e Complexity O(n?) time, O(n?) space
e pseudocode, correctness, traceback left as exercise

e much more realistic, but significantly more expensive than
Needleman-Wunsch = can we improve it?
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Affine gap cost

Definition
A gap penalty is affine, iff there are real constants « and 3, such
that for all k € N: g(k) = o + Bk.

Remarks

o Affine gap penalties almost as good as general ones:
Distinguishing gap opening («) and gap extension cost (/3) is
“biologically reasonable”.

e The minimal alignment cost with affine gap penalty can be
computed in O(n?) time! (Gotoh algorithm)
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Gotoh algorithm: sketch only

In addition to the alignment matrix D, define two further
matrices/states.
e A, := cost of best alignment of a;_;, by_j,
that ends with deletion 1.

e B, := cost of best alignment of a;_;, by_j,

that ends with insertion bT

Recursions: . JA—j+ B (deletion extension)
ij = mi
" Di_1j +g(1) (deletion opening)
B, — min Bij-1+8 (l:nsert/:on exten.sion)
Djj—1+ g(1) (insertion opening)
D,',l,jfl + W(a,', bj) (match)
Djj = min ¢ A;; (deletion closing)
Bij (insertion closing)

Remark: O(n?) time and space
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Similarity
Definition (Similarity)
The similarity of an alignment (a°, b°) is

|a

s(a®,b%) = ) s(af, bf),

i=1

‘|

where s : (Z U {~})? — R is a similarity function, where
for x € X :s(x,x) >0, s(x,—) <0, s(—,x) <0.
Observation. Instead of minimizing alignment cost, one can

maximize similarity: Si—1,j-1+ s(ai, bj)
Sij =maxq Si_1; + s(ai,—)
Sij-1+s(=, b))
Motivation:

e defining similarity of 'building blocks' could be more natural,
e.g. similarity of amino acids.
e similarity is useful for local alignment
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Local Alignment Motivation

Local alignment asks for the best alignment of any two
subsequences of a and b. Important Application: Search!
(e.g. BLAST combines heuristics and local alignment)

Example

a =AWGVIACAILAGRS
b =VIVTATAVAGYY

In contrast, all previous methods compute “global alignments”.
Why is distance not useful?

Example
XXXAAXXXX XXAAAAAXXXX

) Yyaavy ) yyyaaaaavy

Where is the stronger local motif? Only similarity can distinguish.

S.Will, 18.417, Fall 2011



Local Alignment

Definition (Local Alignment Problem)
Let s be a similarity on alignments.
Sglobal(a, b) 1= (rrgagé) s(a®, b%)  (global similarity)
alignme‘ralt’of aand b
Siocal(a@, b) := max  Sgiobai(air_.i, bjr.j) (local similarity)

1<i’<i<n
1<'<j<m

The local alignment problem is to compute Siocal(a, b).

Remarks

e That is, local alignment asks for the subsequences of a and b
that have the best alignment.

e How would we define the local alignment matrix for DP?

e For example, why does “H; j := Siocai(a1..;i; b1.j)" not work?
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Local Alignment Matrix

Definition
The local alignment matrix H of a and b is (H; j)o<i<no0<j<m
defined by

ij 0<i'<i,0<j/<j global( i'+1..iy D] +1..J)
Remarks

5|oca|(a, b) = max,-J H,'J (')
all entries H;j > 0, since Sgiobai(€, €) = 0.

H; ; = 0 implies no subsequences of a and b that end in
respective i and j are similar.

Allows case distinction / Principle of optimality holds!

S.Will, 18.417, Fall 2011



Cases for H; ;

aj
1.) b

bj

aj

2.) 3)

4.) 0, since if each of the above cases is dissimilar (i.e. negative),
there is still (e, €).

Inse ot
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ocal Alignment Algorithm (Smith-VWaterman
Theorem
For the local alignment matrix H of a and b,
e Hopo=0
e forall1<i<n:Hg=0
e forall1<j<m: Hy;=0
0 (empty alignment)

H,'_1’j_1 + s(a,-, bj)
Hi_1j+ s(ai, —)
Hij-1+ s(—, bj)

e Hjj = max

gorithm

e
S.Will, 18.417, Fall 2011



Local Alignment Remarks

Remarks
o Complexity O(n?) time and space, again space complexity can
be improved
e Requires that similarity function is centered around zero, i.e.
positive = similar, negative = dissimilar.
e Extension to affine gap cost works
e Traceback?

417, Fall 2011




Local Alignment Example

Example

e a =AAC, b =ACAA

2 iffx=y
ACAA
0/0|0|0]|O
Alo|l2|0]2]2
Alofl2|0|2]|4
Clojo|4|1]1

Traceback: start at maximum entry, trace back to first 0 entry



Substitution/Similarity Matrices

e In practice: use similarity matrices learned from closely related
sequences or multiple alignments

PAM (Percent Accepted Mutations) for proteins

BLOSUM (BLOcks of Amino Acid SUbstitution) for proteins
RIBOSUM for RNA

e Scores are (scaled) log odd scores: /ogPP'[X’y| Related]

r[x,y| Background]
For example, BLOSUM®62:

Ala 4

Arg 1 5

Asn -2 0 6

Asp 2 -2 1 6

Cys 0o -3 -3 -3 9

Gln -1 1 0 0 -3 5

Glu -1 0 0 2 -4 2

Gly 0o -2 0 -1 -3 -2 6

His 2 0 1 -1 -3 0 -2 8

Ile 1 -3 -3 -3 -1 -3 3 -4 -3 4

Leu 1 -2 -3 -4 -1 -2 3 -4 -3 2 4

Lys -1 2 o -1 -3 1 1 -2 -1 -3 -2 5 -
Met -1 -1 -2 -3 - o -2 -3 -2 1 2 5 54
Phe 2 -3 -3 -3 -2 -3 -3 -3 -1 0 o -3 0 6 =
Pro -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 w
Ser 1 -1 1 [ 0 0 o -1 -2 -2 0 -1o-2 4 5
Thr 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 5
Trp -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 -
Tyr -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7

Val o -3 -3 -3 1 2 -2 -3 3 3 1 -2 1 -1 2 -2 o -3 -1 4

0 31 - - -2
Ala Arg Asn Asp Cys GIn Glu Gly His lle Leu Lys Met Phe Pro Ser Thr Trp Tyr Val



Multiple Alignment

Example: Sequences Alignment
al) = accceac ACCCGA-G-
a(2) = AcTACC =align A= AC--TAC-C
a®® = TceTacce TCC-TACGG
Definition

A multiple alignment A of K sequences a)...a(K) is a

K x N-matrix (Ajj)i<i<k (N is the number of columns of A)
152N
where

1. eachentry Ajj € (XU {-})
2. for each row i: deleting all gaps from (A;...A; y) yields a(’)

3. no column j contains only gap symbols
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How to Score Multiple Alignments

As for pairwise alignment:
e Assume columns are scored independently

e Score is sum over alignment columns
N

S(A) = s(Ayj,- .., Axg)

j=1

Example i . . . )
S(A) :s</74_> —i—s(g) +S(E) —l—s(:) +-~-+s<g)

How do we know similarities?

et
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How to Score Multiple Alignments

As for pairwise alignment:
e Assume columns are scored independently

e Score is sum over alignment columns
N ay

S(A) = E s ...

AKj

Example

=)o) o) o))

X X Pr(x,y,z| Related]
' ? — Y ?
How to define s }z/ ? as log odds s }Z/ = log Prlx,y 2| Background]

Problems? Can we learn similarities for triples, 4-tuples, ...?
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Sum-Of-Pairs Score

Idea: approximate column scores by pairwise scores

5(.%1.): Z s(xk, x1)

X 1<k<I<K

Sum-of-pairs is the most commonly used scoring scheme for
multiple alignments.
(Extensible to gap penalties, in particular affine gap cost)

Drawbacks?
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Optimal Multiple Alignment

Idea: use dynamic programming

Example

For 3 sequences a, b, ¢, use 3-dimensional matrix

(after initiali

zation:)

Si,j,k = max

Si—1j-1k-1
Si—1j-1k
Si—1jk-1
Sij-1k-1
Si—1j.k
Sij—1k
Sijk—1

—i—s(a,-, bj, Ck)
—l—s(a,-, bj, —)
+s(ai, —, ck)
+S(—, bj, Ck)
—i—s(a,-, - —)
+s(—, bj, —)
+5(* I Ck)

For K sequences use K-dimensional matrix.

Complexity?
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Heuristic Multiple Alignment: Progressive Alignment

Idea: compute optimal alignments only pairwise
Example
4 sequences a(l), a(2), a(3), a®)
1. determine how they are related
= tree, e.g. ((a,a®),(a®),a®))
2. align most closely related sequences first
= (optimally) align a®) and a(® by DP
3. go on = (optimally) align a(®) and a(*) by DP

4. go on?! = (optimally) align the two alignments
How can we do that?

5. Done. We produced a multiple alignment of
a1, a2 43 54

Remarks: - Optimality is not guaranteed. Why?
- The tree is known as guide tree. How can we get it?
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Guide tree

The guide tree determines the order of pairwise alignments in the
progressive alignment scheme.
The order of the progressive alignment steps is crucial for quality!

Heuristics:
1. Compute pairwise distances between all input sequences
e align all against all
e in case, transform similarities to distances (e.g. Feng-Doolittle)
2. Cluster sequences by their distances, e.g. by
o Unweighted Pair Group Method (UPGMA)
e Neighbor Joining (NJ)
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Aligning Alignments
Two (multiple) alignments A and B can be aligned by DP in the
same way as two sequences.

Idea:
e An alignment is a sequence of alignment columns.

ACCCGA-G- AN O\ SO\ /C _
Example: AC--TAC-C = <A> <C> <—> (—) <C>
TCC-TACGG T/ NG/ NE/ A= ¢
e Assign similarity to two columns from resp. A and B, e.g.
s(<C>, (g)) by sum-of-pairs.
G

We can use dynamic programming, which recurses over alignment
scores of prefixes of alignments.
Consequences for progressive alignment scheme:

e Optimization only local.
e Commits to local decisions. “Once a gap, always a gap”

S.Will, 18.417, Fall 2011



w(x,y) =

e Compute all against all edit distances and cluster

Align ACCG and TTGG Align ACCG and TCG

[2EeNePd

Align ACCG and CTGG

an0>

Align TTGG and CTGG

oo -H4

3 otherwise (for mismatch)

woANO woENO

0o AN O

Progressive Alignment — Example

IN: o) = ACCG, a® = TTGG, a® = TCG,a® = CTGG
Oiff x=y
2iff x=—ory=—

T

©~NGOWwN

NBNWNAO

o~NTwN AN

T
4

[N

10

U100~ O ®© o~ O

owuuon

e
®noL®n (R~ Y- N

W U100 0o

T
0 2

A 2 3
C 4 5
C 6 7
G 8 9
Align TTGG an
T
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T 4 2
G 6 5
G 8 8
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G 6 5
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Progressive Alignment — Example

IN: &) = ACCG, a® = TTGG, a® = TCG,a® = CTGG

0iff x=y
w(x,y) =42iff x=—ory=—

3 otherwise (for mismatch)

e Compute all against all edit distances and cluster

= distance matrix

2 5,2 6 ;4
a» o 9 5 8
a® 0 5 3
a® 0 5
a® 0

= Cluster (e.g. UPGMA)
a® and a® are closest, Then: a1 and a®

-
o
S
N
=
i
-
=
b=y
©
2
9



Progressive Alignment — Example
IN: o) = ACCG, a® = TTGG,a®) = TCG,a® = CTGG

0iff x =y
w(x,y) =49 2iffx=—ory=—

3 otherwise (for mismatch)

e Compute all against all edit distances and cluster
= guide tree ((a?,a®), (a),aB))Y)

e Align a® and a®): e Align a) and a®: AccG
CTGG -TCG

e Align the alignments!

A C C G
- T C G
0 4 12 20 28
TC 8 1‘0
TT 16
GG 24

GG 32
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Progressive Alignment — Example

IN: o) = ACCG, a® = TTGG, a® = TCG,a® = CTGG
Oiff x=y

wix,y)=12iff x=—ory=—
3 otherwise (for mismatch)

e Compute all against all edit distances and cluster
= guide tree ((a®®,a®), (a®, a®)))

e Align a® and a®: T Align a() and a®): Acca
CcTG -TCG
e Align the alignments!
® w(TC,——)=
. w(T, =) +w(C, =) +w(T,—=)+w(C,—)=8
s T a8
® w(——,A-)=
A C C G
- T C G w(—=, A) +w(—, =)+ w(—, A) +w(—,—)=4
0 4 12 20 28 o w(TC, A—) = o
TC 8 10 ... s
. . w(T,A) +w(C,A)+w(T,—-)+w —) =10 =
T 16 : . (T, A) + w(C, A) + w( ) +w(C, —) E
GG 24 ® w(TC,CT)=

GG 32 w(T,C)+w(C,C) +w(T, T)+w(C, T)=6




Progressive Alignment — Example

IN: o) = ACCG, a® = TTGG, a® = TCG,a® = CTGG

w(x,y) = {

0iff x =y

2iff x=—ory=—

3 otherwise (for mismatch)

e Compute all against all edit distances and cluster
= guide tree ((a?,a®), (a),aB))Y)

TTGG

e Align a® and a®):

CTGG '

e Align the alignments!

Align

TC
TT
GG
GG

TTGG
CTGG

0
8
16
24
32

and ACCG

-TCG
A C
ST
4 12
10

C
C
20

[2]9)]

28

Align a) and a®: f

—
after filling
and traceback

CCG
TCG

TTGG
CTGG
ACCG
-TCG
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A Classical Approach: CLUSTAL W

eyl PR
Hba_Human 3 59 80 -
Hba_Horse 4 59 59 13
Pairwise alignment: Myg Phyca 5 7 om s B -
Calculate distance matrix| f:;m HIF- R
s -
Unrooted Neighbor-Joinis "‘*’:":"‘ . .
T s wsres  ® prototypical progressive
ettt alignment
o e 02 e similarity score with affine
[ eo] o gap cost
and sequence weights . om
S e neighbor joining for tree
Lgb2 Luplu: 0442 .
. construction
e special ‘tricks’ for gap
P o S handling
Align following
the guide tree
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Advanced Progressive Alignment in MUSCLE

1.1 k-mer 1.2 1.3 progressive
___ counting UPGMA alignment
— N i )
S — — — MSA1
unaligned ;
sequences k-mer distance TREE1

2.1 compute
> %ids from MSA1

matrix D1

Kimura distance

<r—] matrix D2

2.2 UPGMA

© 2.3 progressive
alignment TREE2

' No,
i delete

N ==

i .3 re-a/igh MSA :
/?; 3.2 compute  profiles 3.4 SP
\5\ Subtree profiles

3.1 delete S~
edge from TREE2 T
giving 2 subtrees

Yes,
save

repeat L

18.417, Fall 2011

1.) alignment draft and 2.) reestimation 3.) iterative refinement =



Consistency-based scoring in T-Coffee

[

—
P——
P
e e Progressive alignment +
L s g Consistency heuristic
) v e Avoid mistakes when
S optimizing locally by
modifying the scores
“Library extension”
y -
EXTENSION e Modified scores reflect

global consistency

IXTENDED LIBRARY H H
e Details of consistency

[ - transformation: next slide
PROGRESSIVE ALIGNMENT ‘

‘ e Merges local and global
] alignments
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Consistency-based scoring in T-Coffee

Misalignment by standard procedure Consistency Tra nSfOfma tion
Seqh GRRFTELD THS LAST EAT CAT
SO e For each sequence triplet:
_— THE —-—- FA-T CAT .
S I strengthen compatible
e i e edges

e This moves global
Correct alignment after library extension . . .
— Extended Library | nformatlon Into scores

ST T Welght = 58
SeqB GIRFIELD THE FAST CAT

QA GARFIZLD

o Consistency-based scores
guide pairwise

— 1
[ Dynamic Programming
S T alignments towards

FA-T CAT
FAST CAT

Weight =77

sean

SeqB GARFIELD THE

(global) consistency

All-2-all alignments for weighting

. . . ) SeqB GARFTELD THE FAST CAT Prim Weight = 100 -
Seqgh GARFIELD THE LAST FAT CAT wim. Weight = §8 L - S =
s;q'ﬂ CREFTELD THE PRom CAD —-- nm g SeqC GARFTELD THE FAST CAT g
=

Segh GARFIELD THE LAST EA-T CAT prm, weignt = SeqB GARFTELD THE F =
SeaC GARFIELD THE VERY FAST Car Frim. Weight=77 kg SRRV ME Prim. Welght = 100 -
5

=

Segh CASFIELD THE LAST EAT CAT celght - SeqC GARFIELD THE Prim. Weight = 100 @
§a@ CRRFTEL IHE LAST EAT CBT  prim, Welght=100  SSI5 GARFI v rim. Welg @




Alignment Profiles

Alignment

ACGG- Profile:

ACCG- A: 0.75 0 0 0 0

AC-G- C: 0 1 0.5 0 0

TCCGG G: 0 0 0.25 1 0.25
T 0.25 0 0 0 0

Consensus:

ACCG-

Remarks

e A profile of a multiple alignment consists of character
frequency vectors for each column.

e The profile describes sequences of the alignment in a rigid way.

e Modeling insertions/deletions requires profile HMMs.
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Hidden Markov Models (HMMs)
Example of a simple HMM
0.8

0.6
0.2
(s) R}
2/3 1/3 0.4 1/6 5/6
2 & * a
s & &
T B T B

[The frog climbs the ladder more likely when the sun shines. Assume that
the weather is hidden, but we can observe the frog.]

e [dea: the probability of an observation depends on a hidden
state, where there are specific probabilities to change states.

e Hidden Markov Models generate observation sequences (e.g.
TBTTT) according to an (encoded) probability distribution.

e One can compute things like “most probable path given an
observation sequence”, ... (no details here)
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Profile HMMs

e Profile HMMs describe (probability distribution of) sequences
in a multiple alignment (observation = sequence).

e hidden states = insertion (I;), match (M;), deletion (D;) in
relation to consensus (state sequence = alignment string)

Alignment
ACGG-
ACCG-
AC-G-
TCCGG

Consensus:
ACCG-

Remarks
e Profile HMMs are used to search for sequences that are
similar to sequences of a given alignment (Pfam, HMMer)
e Profile HMMs can be used to construct multiple alignments

e We come back to HMMs when we discuss SCFGs.
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