Sequence Alignment

Motivation: assess similarity of sequences and learn about their evolutionary relationship Why do we want to know this? Example: Sequences Alignment ACCCGA ACCCGA $\Rightarrow_{\text{align}}$ ACTA AC--TA TCCTA TCC-TA Homology: Alignment reasonable, if sequences homologous ACCGA ACCTA ACTA ACCCGA TCCTA Definition (Sequence Homology) Two or more sequences are *homologous* iff they evolved from a common ancestor. [Homology in anatomy

Will, 18.417, Fall 2011

Plan (and Some Preliminaries)

- First: study only pairwise alignment.
 Fix alphabet Σ, such that ∉ Σ. is called the gap symbol.
 The elements of Σ* are called sequences.
 Fix two sequences a, b ∈ Σ*.
- For pairwise sequence comparison: define edit distance, define alignment distance, show equivalence of distances, define alignment problem and efficient algorithm gap penalties, local alignment
- Later: extend pairwise alignment to multiple alignment

Definition (Alphabet, words)

An alphabet Σ is a finite set (of symbols/characters). Σ^+ denotes the set of non-empty words of Σ , i.e. $\Sigma^+ := \bigcup_{i>0} \Sigma^i$. A word $x \in \Sigma^n$ has length n, written |x|. $\Sigma^* := \Sigma^+ \cup \{\epsilon\}$, where ϵ denotes the empty word of length 0.

Levenshtein Distance

Definition

The *Levenshtein Distance* between two words/sequences is the minimal number of substitutions, insertions and deletions to transform one into the other.

Example

ACCCGA and ACTA have (at most) distance 3: ACCCGA \rightarrow ACCGA \rightarrow ACCTA \rightarrow ACTA

In biology, operations have different cost. (Why?)

Edit Distance: Operations

Definition (Edit Operations)

An edit operation is a pair $(x, y) \in (\Sigma \cup \{-\} \neq (-, -)$. We call (x,y)

- substitution iff $x \neq -$ and $y \neq -$
- deletion iff y = -
- *insertion* iff x = -

For sequences a, b, write $a \rightarrow_{(x,y)} b$, iff a is transformed to b by operation (x, y). Furthermore, write $a \Rightarrow_S b$, iff a is transformed to b by a sequence of edit operations S.

Example

$$ACCCGA \rightarrow_{(C,-)} ACCGA \rightarrow_{(G,T)} ACCTA \rightarrow_{(-,T)} ATCCTA$$

 $ACCCGA \Rightarrow_{(C,-),(G,T),(-,T)} ATCCTA$

Recall: $- \notin \Sigma$, a, b are sequences in Σ^*

Definition (Cost, Edit Distance) Let $w : (\Sigma \cup \{-\})^2 \to \mathbb{R}$, such that w(x, y) is the cost of an edit operation (x, y). The cost of a sequence of edit operations $S = e_1, \ldots, e_n$ is $\tilde{w}(S) = \sum_{i=1}^n w(e_i).$

The edit distance of sequences a and b is

$$d_w(a,b) = \min\{\tilde{w}(S) \mid a \Rightarrow_S b\}.$$

Edit Distance: Cost and Problem Definition

Definition (Cost, Edit Distance) Let $w : (\Sigma \cup \{-\})^2 \to \mathbb{R}$, such that w(x, y) is the cost of an edit operation (x, y). The cost of a sequence of edit operations $S = e_1, \ldots, e_n$ is $\tilde{w}(S) = \sum_{i=1}^n w(e_i).$

The edit distance of sequences a and b is

$$d_w(a,b) = \min\{\tilde{w}(S) \mid a \Rightarrow_S b\}.$$

Is the definition reasonable?

Definition (Metric)

A function $d: X^2 \to \mathbb{R}$ is called *metric* iff 1.) d(x, y) = 0 iff x = y2.) d(x, y) = d(y, x) 3.) $d(x, y) \le d(x, z) + d(z, y)$.

Remarks: 1.) for metric d, $d(x, y) \ge 0$, 2.) d_w is metric iff $w(x, y) \ge 0$, 3.) In the following, assume d_w is metric.

Edit Distance: Cost and Problem Definition

Definition (Cost, Edit Distance) Let $w : (\Sigma \cup \{-\})^2 \to \mathbb{R}$, such that w(x, y) is the cost of an edit operation (x, y). The cost of a sequence of edit operations $S = e_1, \ldots, e_n$ is $\tilde{w}(S) = \sum_{i=1}^n w(e_i).$

The edit distance of sequences a and b is

$$d_w(a,b) = \min\{\tilde{w}(S) \mid a \Rightarrow_S b\}.$$

- Natural 'evolution-motivated' problem definition.
- Not obvious how to compute edit distance efficiently ⇒ define alignment distance

Alignment Distance

Definition (Alignment)

A pair of words $a^{\diamond}, b^{\diamond} \in (\Sigma \cup \{-\})^*$ is called *alignment of* sequences a and b (a^{\diamond} and b^{\diamond} are called *alignment strings*), iff

- 1. $|a^{\diamond}| = |b^{\diamond}|$
- 2. for all $1 \leq i \leq |a^{\diamond}|$: $a_i^{\diamond} \neq -$ or $b_i^{\diamond} \neq -$
- deleting all gap symbols from a[◊] yields a and deleting all – from b[◊] yields b

Example

- a = ACGGAT
- b = CCGCTT

possible alignments are

 $\begin{array}{lll} a^\diamond &= \mbox{AC-GG-AT} & a^\diamond &= \mbox{ACGG---AT} \\ b^\diamond &= \mbox{-CCGCT-T} & b^\diamond &= \mbox{--CCGCT-T} \end{array} \mbox{ or } \dots \mbox{ (exponentially many)} \end{array}$

edit operations of first alignment: (A,-),(-,C),(G,C),(-,T),(A,-)

Alignment Distance

Definition (Cost of Alignment, Alignment Distance) The *cost of the alignment* $(a^{\diamond}, b^{\diamond})$, given a cost function w on edit operations is

$$w(a^\diamond,b^\diamond)=\sum_{i=1}^{|a^\diamond|}w(a^\diamond_i,b^\diamond_i)$$

The alignment distance of a and b is

 $D_w(a,b) = \min\{w(a^\diamond,b^\diamond) \mid (a^\diamond,b^\diamond) \text{ is alignment of } a \text{ and } b\}.$

Theorem (Equivalence of Edit and Alignment Distance) For metric w, $d_w(a, b) = D_w(a, b)$.

Recall:

Definition (Edit Distance)

The *edit distance of a and b* is $d_w(a, b) = \min{\{\tilde{w}(S) \mid a \text{ transformed to } b \text{ by e.o.-sequence } S\}}.$

Definition (Alignment Distance)

The alignment distance of a and b is $D_w(a, b) = \min\{w(a^\diamond, b^\diamond) \mid (a^\diamond, b^\diamond) \text{ is alignment of } a \text{ and } b\}.$ Theorem (Equivalence of Edit and Alignment Distance) For metric w, $d_w(a, b) = D_w(a, b)$.

Remarks

• Proof idea:

 $d_w(a, b) \leq D_w(a, b)$: alignment yields sequence of edit ops $D_w(a, b) \leq d_w(a, b)$: sequence of edit ops yields equal or better alignment (needs triangle inequality)

- Reduces edit distance to alignment distance
- We will see: the alignment distance is computed efficiently by dynamic programming (using *Bellman's Principle of Optimality*).

Principle of Optimality and Dynamic Programming

Principle of Optimality:

'Optimal solutions consist of optimal partial solutions'

Example: Shortest Path

Idea of Dynamic Programming (DP):

- Solve partial problems first and materialize results
- (recursively) solve larger problems based on smaller ones

- The principle is valid for the alignment distance problem
- Principle of Optimality enables the programming method DP
- Dynamic programming is widely used in Computational Biology and you will meet it quite often in this class

Alignment Matrix

Idea: choose alignment distances of prefixes $a_{1..i}$ and $b_{1..j}$ as partial solutions and define matrix of these partial solutions.

Let n := |a|, m := |b|.

Definition (Alignment matrix)

The alignment matrix of a and b is the $(n + 1) \times (m + 1)$ -matrix $D := (D_{ij})_{0 \le i \le n, 0 \le j \le m}$ defined by

$$\begin{split} D_{ij} &:= D_w(a_{1..i}, b_{1..j}) \\ & \big(= \min\{w(a^\diamond, b^\diamond) \mid (a^\diamond, b^\diamond) \text{ is alignment of } a_{1..i} \text{ and } b_{1..j}\} \big). \end{split}$$

Notational remarks

- *a_i* is the i-th character of *a*
- $a_{x..y}$ is the sequence $a_x a_{x+1} \dots a_y$ (subsequence of a).
- by convention $a_{x..y} = \epsilon$ if x > y.

Alignment Matrix Example

Example

•
$$a = AT$$
, $b = AAGT$
• $w(x, y) = \begin{cases} 0 & \text{iff } x = y \\ 1 & \text{otherwise} \end{cases}$

Remark: The alignment matrix D contains the alignment distance (=edit distance) of a and b in $D_{n,m}$.

Alignment Matrix Example

Example

•
$$a = AT$$
, $b = AAGT$
• $w(x, y) = \begin{cases} 0 & \text{iff } x = y \\ 1 & \text{otherwise} \end{cases}$

Remark: The alignment matrix D contains the alignment distance (=edit distance) of a and b in $D_{n,m}$.

Needleman-Wunsch Algorithm

Claim For $(a^{\diamond}, b^{\diamond})$ alignment of a and b with length $r = |a^{\diamond}|$, $w(a^{\diamond}, b^{\diamond}) = w(a_{1..r-1}^{\diamond}, b_{1..r-1}^{\diamond}) + w(a_r^{\diamond}, b_r^{\diamond}).$

Theorem

For the alignment matrix D of a and b, holds that

•
$$D_{0,0} = 0$$

• for all $1 \le i \le n$: $D_{i,0} = \sum_{k=1}^{i} w(a_k, -) = D_{i-1,0} + w(a_i, -)$
• for all $1 \le j \le m$: $D_{0,j} = \sum_{k=1}^{j} w(-, b_k) = D_{0,j-1} + w(-, b_j)$
• $D_{ij} = \min \begin{cases} D_{i-1,j-1} + w(a_i, b_j) & (match) \\ D_{i-1,j} + w(a_i, -) & (deletion) \\ D_{i,j-1} + w(-, b_j) & (insertion) \end{cases}$

Remark: The theorem claims that each prefix alignment distance can be computed from a constant number of smaller ones. Proof ???

Needleman-Wunsch Algorithm

Claim For $(a^{\diamond}, b^{\diamond})$ alignment of a and b with length $r = |a^{\diamond}|$, $w(a^{\diamond}, b^{\diamond}) = w(a_{1..r-1}^{\diamond}, b_{1..r-1}^{\diamond}) + w(a_r^{\diamond}, b_r^{\diamond}).$

Theorem

For the alignment matrix D of a and b, holds that

•
$$D_{0,0} = 0$$

• for all $1 \le i \le n$: $D_{i,0} = \sum_{k=1}^{i} w(a_k, -) = D_{i-1,0} + w(a_i, -)$
• for all $1 \le j \le m$: $D_{0,j} = \sum_{k=1}^{j} w(-, b_k) = D_{0,j-1} + w(-, b_j)$
• $D_{ij} = \min \begin{cases} D_{i-1,j-1} + w(a_i, b_j) & (match) \\ D_{i-1,j} + w(a_i, -) & (deletion) \\ D_{i,j-1} + w(-, b_j) & (insertion) \end{cases}$

Remark: The theorem claims that each prefix alignment distance can be computed from a constant number of smaller ones. Proof: Induction over i+j

Needleman-Wunsch Algorithm (Pseudocode)

```
D_{0.0} := 0
for i := 1 to n do
   D_{i,0} := D_{i-1,0} + w(a_i, -)
end for
for j := 1 to m do
   D_{0,i} := D_{0,i-1} + w(-, b_i)
end for
for i := 1 to n do
   for i := 1 to m do
      D_{i,j} := \min \begin{cases} D_{i-1,j-1} + w(a_i, b_j) \\ D_{i-1,j} + w(a_i, -) \\ D_{i,j-1} + w(-, b_j) \end{cases}
   end for
```

end to end for

Back to Example

Example

•
$$a = AT$$
, $b = AAGT$
• $w(x, y) = \begin{cases} 0 & \text{iff } x = y \\ 1 & \text{otherwise} \end{cases}$

Open: how to find best alignment?

Back to Example

Example

•
$$a = AT$$
, $b = AAGT$
• $w(x, y) = \begin{cases} 0 & \text{iff } x = y \\ 1 & \text{otherwise} \end{cases}$

Open: how to find best alignment?

Traceback

$$w(x,y) = \begin{cases} 0 & \text{iff } x = y \\ 1 & \text{otherwise} \end{cases}$$

- Start in (n, m). For every (i, j) determine optimal case.
- Not necessarily unique.
- Sequence of trace arrows let's infer best alignment.

Traceback

$$w(x,y) = \begin{cases} 0 & \text{iff } x = y \\ 1 & \text{otherwise} \end{cases}$$

- Start in (n, m). For every (i, j) determine optimal case.
- Not necessarily unique.
- Sequence of trace arrows let's infer best alignment.

Complexity

- compute one entry: three cases, i.e. constant time
- nm entries \Rightarrow fill matrix in O(nm) time
- traceback: O(n + m) time
- TOTAL: $O(n^2)$ time and space (assuming $m \le n$)

- assuming $m \le n$ is w.l.o.g. since we can exchange a and b
- space complexity can be improved to O(n) for computation of distance (simple, "store only current and last row") and traceback (more involved; Hirschberg-algorithm uses "Divide and Conquer" for computing trace)

• We have seen how to compute the pairwise edit distance and the corresponding optimal alignment.

18.417, Fall 2011

- Before going multiple, we will look at two further special topics for pairwise alignment:
 - more realistic, non-linear gap cost and
 - similarity scores and local alignment

Alignment Cost Revisited

Motivation:

- The alignments $\begin{array}{c} GA--T\\ GAAGT \end{array}$ and $\begin{array}{c} G-A-T\\ GAAGT \end{array}$ have the same edit distance.
- The first one is biologically more reasonable: it is more likely that evolution introduces one large gap than two small ones.
- This means: gap cost should be non-linear, sub-additive!

Gap Penalty

Definition (Gap Penalty)

A gap penalty is a function $g:\mathbb{N}\to\mathbb{R}$ that is sub-additive, i.e.

$$g(k+l) \leq g(k) + g(l).$$

A gap in an alignment string a^{\diamond} is a substring of a^{\diamond} that consists of only gap symbols – and is maximally extended. $\Delta^{a^{\diamond}}$ is the multi-set of gaps in a^{\diamond} .

The alignment cost with gap penalty g of (a^\diamond, b^\diamond) is

$$\begin{split} w_{g}(a^{\diamond}, b^{\diamond}) &= \sum_{\substack{1 \leq r \leq |a^{\diamond}|, \\ \text{where } a_{r}^{\diamond} \neq -, b_{r}^{\diamond} \neq -}} w(a_{r}^{\diamond}, b_{r}^{\diamond}) \quad (\textit{cost of mismatchs}) \\ &+ \sum_{x \in \Delta^{a^{\diamond}} \uplus \Delta^{b^{\diamond}}} g(|x|) \quad (\textit{cost of gaps}) \end{split}$$
Example:

$$a^{\diamond} = \text{ATG} - -\text{CGAC} - \text{GC} \Rightarrow \Delta^{a^{\diamond}} = \{---, --\}, \ \Delta^{b^{\diamond}} = \{-, -\}$$

 $b^{\diamond} = -\text{TGCGGCG} - \text{CTTTC}$

General sub-additive gap penalty

Theorem

Let D be the alignment matrix of a and b with cost w and gap penalty g, such that $D_{ij} = w_g(a_{1..i}, b_{1..j})$. Then:

•
$$D_{0,0} = 0$$

• for all $1 \le i \le n$: $D_{i,0} = g(i)$
• for all $1 \le j \le m$: $D_{0,j} = g(j)$
• $D_{ij} = \min \begin{cases} D_{i-1,j-1} + w(a_i, b_j) & (match) \\ \min_{1 \le k \le j} D_{i-k,j} + g(k) & (deletion of length k) \\ \min_{1 \le k \le j} D_{i,j-k} + g(k) & (insertion of length k) \end{cases}$

- Complexity $O(n^3)$ time, $O(n^2)$ space
- pseudocode, correctness, traceback left as exercise
- much more realistic, but significantly more expensive than Needleman-Wunsch ⇒ can we improve it?

Affine gap cost

Definition

A gap penalty is affine, iff there are real constants α and β , such that for all $k \in \mathbb{N}$: $g(k) = \alpha + \beta k$.

- Affine gap penalties almost as good as general ones: Distinguishing gap opening (α) and gap extension cost (β) is "biologically reasonable".
- The minimal alignment cost with affine gap penalty can be computed in $O(n^2)$ time! (Gotoh algorithm)

Gotoh algorithm: sketch only

In addition to the alignment matrix D, define two further matrices/states.

•
$$B_{i,j} := \text{cost of best alignment of } a_{1..i}, b_{1..j},$$

Recursions:

$$A_{i,j} = \min \begin{cases} A_{i-1,j} + \beta & (deletion \ extension) \\ D_{i-1,j} + g(1) & (deletion \ opening) \end{cases}$$

$$B_{i,j} = \min \begin{cases} B_{i,j-1} + \beta & (insertion \ extension) \\ D_{i,j-1} + g(1) & (insertion \ opening) \end{cases}$$

$$D_{ij} = \min \begin{cases} D_{i-1,j-1} + w(a_i, b_j) & (match) \\ A_{i,j} & (deletion \ closing) \\ B_{i,j} & (insertion \ closing) \end{cases}$$

b:

Remark: $O(n^2)$ time and space

Similarity

Definition (Similarity)

The similarity of an alignment (a^\diamond, b^\diamond) is

$$s(a^\diamond,b^\diamond)=\sum_{i=1}^{|a^\diamond|}s(a^\diamond_i,b^\diamond_i),$$

where $s: (\Sigma \cup \{-\})^2 \to \mathbb{R}$ is a *similarity function*, where for $x \in \Sigma$: s(x, x) > 0, s(x, -) < 0, s(-, x) < 0.

Observation. Instead of minimizing alignment cost, one can maximize similarity: $S_{ii} = \max \begin{cases} S_{i-1,j-1} + s(a_i, b_j) \\ S_{i-1,j} + s(a_{i,j} - 1) \end{cases}$

$$\begin{cases} S_{i-1,j} + s(a_i, -) \\ S_{i,j-1} + s(-, b_j) \end{cases}$$

Motivation:

- defining similarity of 'building blocks' could be more natural, e.g. similarity of amino acids.
- similarity is useful for *local alignment*

Local Alignment Motivation

Local alignment asks for the best alignment of any two subsequences of *a* and *b*. Important Application: Search! (e.g. BLAST combines heuristics and local alignment)

Example

- a =AWGVIACAILAGRS
- b = VIVT<u>AIAVAG</u>YY

In contrast, all previous methods compute "global alignments". Why is distance not useful?

Example

a) $\begin{array}{c} XXXAAXXXX \\ YYAAYY \end{array}$ b) $\begin{array}{c} XXAAAAAXXXX \\ YYYAAAAAYY \end{array}$

Where is the stronger local motif? Only similarity can distinguish.

Local Alignment

Definition (Local Alignment Problem)

Let s be a similarity on alignments.

$$egin{alignment} S_{ ext{global}}(a,b) &:= \max_{\substack{(a^\diamond,b^\diamond) \ alignment ext{ of } a ext{ and } b}} s(a^\diamond,b^\diamond) & (global ext{ similarity}) \ S_{ ext{local}}(a,b) &:= \max_{\substack{1 \leq i' < i \leq n \ 1 \leq j' < j \leq m}} S_{ ext{global}}(a_{i'..i},b_{j'..j}) & (local ext{ similarity}) \end{split}$$

The local alignment problem is to compute $S_{local}(a, b)$.

- That is, local alignment asks for the subsequences of *a* and *b* that have the best alignment.
- How would we define the local alignment matrix for DP?
- For example, why does " $H_{i,j} := S_{\text{local}}(a_{1..i}, b_{1..j})$ " not work?

Local Alignment Matrix

Definition The *local alignment matrix* H of a and b is $(H_{i,j})_{0 \le i \le n, 0 \le j \le m}$ defined by

$$H_{i,j} := \max_{0 \le i' \le i, 0 \le j' \le j} S_{global}(a_{i'+1..i}, b_{j'+1..j}).$$

•
$$S_{\text{local}}(a,b) = \max_{i,j} H_{i,j}$$
 (!)

- all entries $H_{i,j} \ge 0$, since $S_{global}(\epsilon, \epsilon) = 0$.
- $H_{i,j} = 0$ implies no subsequences of *a* and *b* that end in respective *i* and *j* are similar.
- Allows case distinction / Principle of optimality holds!

Local Alignment Algorithm — Case Distinction

Cases for
$$H_{i,j}$$

1.) $\dots \begin{vmatrix} a_i \\ b_i \end{vmatrix}$ 2.) $\dots \begin{vmatrix} a_i \\ - \end{vmatrix}$ 3.) $\dots \begin{vmatrix} - \\ b_j \end{vmatrix}$

4.) 0, since if each of the above cases is dissimilar (i.e. negative), there is still (ϵ, ϵ) .

Local Alignment Algorithm (Smith-Waterman Algorithm)

Theorem

For the local alignment matrix H of a and b,

- $H_{0,0} = 0$
- for all $1 \le i \le n$: $H_{i,0} = 0$

• for all
$$1 \le j \le m$$
: $H_{0,j} = 0$
• $H_{ij} = \max \begin{cases} 0 & (empty \ alignment) \\ H_{i-1,j-1} + s(a_i, b_j) \\ H_{i-1,j} + s(a_i, -) \\ H_{i,j-1} + s(-, b_j) \end{cases}$

Local Alignment Remarks

- Complexity $O(n^2)$ time and space, again space complexity can be improved
- Requires that similarity function is centered around zero, i.e. positive = similar, negative = dissimilar.
- Extension to affine gap cost works
- Traceback?

Local Alignment Example

Example

•
$$a = AAC, b = ACAA$$

• $s(x, y) = \begin{cases} 2 & \text{iff } x = y \\ -3 & \text{otherwise} \end{cases}$

Traceback: start at maximum entry, trace back to first 0 entry

Substitution/Similarity Matrices

- In practice: use similarity matrices learned from closely related sequences or multiple alignments
- PAM (Percent Accepted Mutations) for proteins
- BLOSUM (BLOcks of Amino Acid SUbstitution) for proteins
- RIBOSUM for RNA
- Scores are (scaled) log odd scores: log <u>Pr[x,y|Related]</u>

For example, BLOSUM62:

Ala	4																				
Arg	- 1	5																			
Asn	- 2	0	6																		
Asp	- 2	- 2	1	б																	
Cys	0	- 3	- 3	- 3	9																
Gln	- 1	1	0	0	- 3	5															
Glu	- 1	0	0	2	- 4	2	5														
Gly	0	- 2	0	- 1	- 3	- 2	- 2	б													
His	- 2	0	1	- 1	- 3	0	0	- 2	8												
lle	- 1	- 3	- 3	- 3	- 1	- 3	- 3	- 4	- 3	4											
Leu	- 1	- 2	- 3	- 4	- 1	- 2	- 3	- 4	- 3	2	4										
Lys	- 1	2	0	- 1	- 3	1	1	- 2	- 1	- 3	- 2	5									
Met	- 1	- 1	- 2	- 3	- 1	0	- 2	- 3	- 2	1	2	- 1	5								
Phe	- 2	- 3	- 3	- 3	- 2	- 3	- 3	- 3	- 1	0	0	- 3	0	б							
Pro	- 1	- 2	- 2	- 1	- 3	- 1	- 1	- 2	- 2	- 3	- 3	- 1	- 2	- 4	7						
Ser	1	- 1	1	0	- 1	0	0	0	- 1	- 2	- 2	0	- 1	- 2	- 1	4					
Thr	0	- 1	0	- 1	- 1	- 1	- 1	- 2	- 2	- 1	- 1	- 1	- 1	- 2	- 1	1	5				
Trp	- 3	- 3	- 4	- 4	- 2	- 2	- 3	- 2	- 2	- 3	- 2	- 3	- 1	1	- 4	- 3	- 2	11			
Tyr	- 2	- 2	- 2	- 3	- 2	- 1	- 2	- 3	2	- 1	- 1	- 2	- 1	3	- 3	- 2	- 2	2	7		
Val	0	- 3	- 3	- 3	- 1	- 2	- 2	- 3	- 3	3	1	- 2	1	- 1	- 2	- 2	0	- 3	- 1	4	
	Ala	Arg	Asn	Asp	Cys	Gln	Glu	Gly	His	lle	Leu	Lys	Met	Phe	Pro	Ser	Thr	Trp	Tyr	Val	

Multiple Alignment

Definition

A multiple alignment A of K sequences $a^{(1)}...a^{(K)}$ is a $K \times N$ -matrix $(A_{i,j})_{\substack{1 \le i \le K \\ 1 \le j \le N}}$ (N is the number of columns of A) where

- 1. each entry $A_{i,j} \in (\Sigma \cup \{-\})$
- 2. for each row *i*: deleting all gaps from $(A_{i,1}...A_{i,N})$ yields $a^{(i)}$
- 3. no column j contains only gap symbols

How to Score Multiple Alignments

As for pairwise alignment:

- Assume columns are scored independently
- Score is sum over alignment columns

$$S(A) = \sum_{j=1}^{N} s(A_{1j}, \ldots, A_{Kj})$$

Example

$$S(A) = s \begin{pmatrix} A \\ A \\ T \end{pmatrix} + s \begin{pmatrix} C \\ C \\ C \end{pmatrix} + s \begin{pmatrix} C \\ - \\ C \end{pmatrix} + s \begin{pmatrix} C \\ - \\ - \end{pmatrix} + \dots + s \begin{pmatrix} - \\ C \\ G \end{pmatrix}$$

How do we know similarities?

How to Score Multiple Alignments

As for pairwise alignment:

- Assume columns are scored independently
- Score is sum over alignment columns

$$S(A) = \sum_{j=1}^{N} s inom{A_{1j}}{ \cdots \ A_{\kappa_j}}$$

Example

$$S(A) = s \begin{pmatrix} A \\ A \\ T \end{pmatrix} + s \begin{pmatrix} C \\ C \\ C \end{pmatrix} + s \begin{pmatrix} C \\ - \\ C \end{pmatrix} + s \begin{pmatrix} C \\ - \\ - \end{pmatrix} + \dots + s \begin{pmatrix} - \\ C \\ G \end{pmatrix}$$

How to define
$$s \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
? as log odds $s \begin{pmatrix} x \\ y \\ z \end{pmatrix} = log \frac{Pr[x,y,z| \text{ Related}]}{Pr[x,y,z| \text{ Background}]}$?
Problems? Can we learn similarities for triples, 4-tuples, ...?

Sum-Of-Pairs Score

Idea: approximate column scores by pairwise scores

$$s\binom{x_1}{\cdots}_{x_j} = \sum_{1 \le k < l \le K} s(x_k, x_l)$$

Sum-of-pairs is the most commonly used scoring scheme for multiple alignments.

(Extensible to gap penalties, in particular affine gap cost)

Drawbacks?

Optimal Multiple Alignment

Idea: use dynamic programming

Example

For 3 sequences a, b, c, use 3-dimensional matrix (after initialization:)

$$S_{i,j,k} = \max \begin{cases} S_{i-1,j-1,k-1} + s(a_i, b_j, c_k) \\ S_{i-1,j-1,k} + s(a_i, b_j, -) \\ S_{i-1,j,k-1} + s(a_i, -, c_k) \\ S_{i,j-1,k-1} + s(-, b_j, c_k) \\ S_{i-1,j,k} + s(a_i, -, -) \\ S_{i,j-1,k} + s(-, b_j, -) \\ S_{i,j,k-1} + s(-, -, c_k) \end{cases}$$

For K sequences use K-dimensional matrix. *Complexity*?

S.Will, 18.417, Fall 2011

Heuristic Multiple Alignment: Progressive Alignment

Idea: compute optimal alignments only pairwise

Example

4 sequences $a^{(1)}, a^{(2)}, a^{(3)}, a^{(4)}$

- 1. determine how they are related \Rightarrow tree, e.g. $((a^{(1)}, a^{(2)}), (a^{(3)}, a^{(4)}))$
- 2. align most closely related sequences first \Rightarrow (optimally) align $a^{(1)}$ and $a^{(2)}$ by DP
- 3. go on \Rightarrow (optimally) align $a^{(3)}$ and $a^{(4)}$ by DP
- go on?! ⇒ (optimally) align the two alignments How can we do that?
- 5. Done. We produced a multiple alignment of $a^{(1)}, a^{(2)}, a^{(3)}, a^{(4)}$.

Remarks: - Optimality is not guaranteed. Why?

- The tree is known as guide tree. How can we get it?

Guide tree

The guide tree determines the order of pairwise alignments in the progressive alignment scheme.

The order of the progressive alignment steps is crucial for quality!

Heuristics:

- 1. Compute pairwise distances between all input sequences
 - align all against all
 - in case, transform similarities to distances (e.g. Feng-Doolittle)
- 2. Cluster sequences by their distances, e.g. by
 - Unweighted Pair Group Method (UPGMA)
 - Neighbor Joining (NJ)

Aligning Alignments

Two (multiple) alignments A and B can be aligned by DP in the same way as two sequences.

Idea:

• An alignment is a sequence of alignment columns.

$$\begin{array}{c} \text{ACCCGA-G-} \\ \text{Example: } \text{AC--TAC-C} \\ \text{TCC-TACGG} \end{array} \equiv \begin{pmatrix} A \\ A \\ T \end{pmatrix} \begin{pmatrix} C \\ C \\ C \end{pmatrix} \begin{pmatrix} C \\ - \\ C \end{pmatrix} \begin{pmatrix} C \\ - \\ C \end{pmatrix} \begin{pmatrix} C \\ - \\ - \end{pmatrix} \dots \begin{pmatrix} - \\ C \\ G \end{pmatrix}.$$

• Assign similarity to two columns from resp. A and B, e.g. $s(\begin{pmatrix} -\\ C\\ G \end{pmatrix}, \begin{pmatrix} G\\ C \end{pmatrix})$ by sum-of-pairs.

We can use dynamic programming, which recurses over alignment scores of prefixes of alignments.

Consequences for progressive alignment scheme:

- Optimization only *local*.
- Commits to local decisions. "Once a gap, always a gap"

Progressive Alignment — Example IN: $a^{(1)} = ACCG, a^{(2)} = TTGG, a^{(3)} = TCG, a^{(4)} = CTGG$ $w(x, y) = \begin{cases} 0 \text{ iff } x = y \\ 2 \text{ iff } x = - \text{ or } y = - \\ 3 \text{ otherwise (for mismatch)} \end{cases}$

Compute all against all edit distances and cluster

Align	ACCG	and 7	TTGG								
		Т	Т	G	G						
	0	2	4	6	8						
Α	2	3	5	7	9						
С	4	5	6	8	10						
С	6	7	8	9	11						
G	8	9	10	8	9						
Align	Align ACCG and CTGG										
		С	Т	G	G						
	0	2	4	6	8						
Α	2	3	5	7	9						
С	4	2	5	8	10						
С	6	4	5	8	11						
G	8	7	7	5	8						
Align	TTGG	and	стбб								
		С	Т	G	G						
	0	2	4	6	8						
Т	2	3	2	5	8						
т	4	5	3	5	8						
G	6	7	6	3	5						
G	8	9	9	6	3						

A	ugn	ACCG	and	ICG		
			Т	С	G	
		0	2	4	6	
	А	2	3	5	7	
	С	4	5	3	6	
	С	6	7	5	6	
	G	8	9	8	5	
А	lign	TTGG	and	TCG		
	0		т	С	G	
		0	2	4	6	
	Т	2	0	3	6	
	Т	4	2	3	6	
	G	6	5	5	3	
	G	8	8	8	5	
A	lign	TCG a	ind C	TGG		
			С	т	G	G
		0	2	4	6	8
	Т	2	3	2	5	8
	С	4	2	5	5	8
	G	6	5	5	5	5

Progressive Alignment — Example

IN:
$$a^{(1)} = ACCG, a^{(2)} = TTGG, a^{(3)} = TCG, a^{(4)} = CTGG$$

 $w(x, y) = \begin{cases} 0 \text{ iff } x = y \\ 2 \text{ iff } x = - \text{ or } y = - \\ 3 \text{ otherwise (for mismatch)} \end{cases}$

• Compute all against all edit distances and cluster \Rightarrow distance matrix

$$\begin{array}{ccccccc} a^{(1)} & a^{(2)} & a^{(3)} & a^{(4)} \\ a^{(1)} & 0 & 9 & 5 & 8 \\ a^{(2)} & 0 & 5 & 3 \\ a^{(3)} & & 0 & 5 \\ a^{(4)} & & & 0 \end{array}$$

$$\Rightarrow$$
 Cluster (e.g. UPGMA)
 $a^{(2)}$ and $a^{(4)}$ are closest, Then: $a^{(1)}$ and $a^{(3)}$

Progressive Alignment — Example

IN:
$$a^{(1)} = ACCG, a^{(2)} = TTGG, a^{(3)} = TCG, a^{(4)} = CTGG$$

 $w(x, y) = \begin{cases} 0 & \text{iff } x = y \\ 2 & \text{iff } x = - \text{ or } y = - \\ 3 & \text{otherwise (for mismatch)} \end{cases}$

- Compute all against all edit distances and cluster \Rightarrow guide tree $((a^{(2)}, a^{(4)}), (a^{(1)}, a^{(3)}))$
- Align $a^{(2)}$ and $a^{(4)}$: $\operatorname{TTGG}_{\operatorname{CTGG}}$, Align $a^{(1)}$ and $a^{(3)}$: $\operatorname{ACCG}_{\operatorname{-TCG}}$
- Align the alignments!

TTGG CTGG	and	ACC -TC	G G			
	A	Ę	C	G G		
0	4	12	20	28		
8	10					
16		·				
24						
32						
	TTGG CTGG 0 8 16 24 32	TTGG CTGG and A - 0 4 8 10 16 : 24 32	TTGG CTGG and ACC -TC A C 0 4 12 8 10 16 24	$\begin{array}{c} TTGG\\ CTGG \end{array} and \begin{array}{c} ACCG\\ -TCG \end{array} \\ \begin{array}{c} A \\ - \end{array} \begin{array}{c} C \\ C \\ - \end{array} \begin{array}{c} C \\ C \\ C \\ - \end{array} \\ \begin{array}{c} C \\ C $		

Progressive Alignment — Example IN: $a^{(1)} = ACCG, a^{(2)} = TTGG, a^{(3)} = TCG, a^{(4)} = CTGG$ $w(x, y) = \begin{cases} 0 \text{ iff } x = y \\ 2 \text{ iff } x = - \text{ or } y = - \\ 3 \text{ otherwise (for mismatch)} \end{cases}$

- Compute all against all edit distances and cluster \Rightarrow guide tree $((a^{(2)}, a^{(4)}), (a^{(1)}, a^{(3)}))$
- Align $a^{(2)}$ and $a^{(4)}$: ${}^{\text{TTGG}}_{\text{CTGG}}$, Align $a^{(1)}$ and $a^{(3)}$: ${}^{\text{ACCG}}_{\text{-TCG}}$
- Align the alignments!

Align	TTGG CTGG	and	ACC -TC	CG CG		
		A	C T	C C	G	
	0	4	12	20	28	
ΤС	8	10				
ΤT	16		·			
GG	24					
GG	32					

•
$$w(TC, --) =$$

 $w(T, -) + w(C, -) + w(T, -) + w(C, -) = 8$

•
$$w(--, A) =$$

 $w(-, A) + w(-, -) + w(-, A) + w(-, -) = 4$

•
$$w(TC, A-) =$$

 $w(T, A) + w(C, A) + w(T, -) + w(C, -) = 10$

•
$$w(TC, CT) =$$

 $w(T, C) + w(C, C) + w(T, T) + w(C, T) = 6$

•

Progressive Alignment — Example

IN:
$$a^{(1)} = ACCG, a^{(2)} = TTGG, a^{(3)} = TCG, a^{(4)} = CTGG$$

 $w(x, y) = \begin{cases} 0 \text{ iff } x = y \\ 2 \text{ iff } x = - \text{ or } y = - \\ 3 \text{ otherwise (for mismatch)} \end{cases}$

- Compute all against all edit distances and cluster \Rightarrow guide tree $((a^{(2)}, a^{(4)}), (a^{(1)}, a^{(3)}))$
- Align $a^{(2)}$ and $a^{(4)}$: $\operatorname{TTGG}_{\operatorname{CTGG}}$, Align $a^{(1)}$ and $a^{(3)}$: $\operatorname{ACCG}_{\operatorname{-TCG}}$
- Align the alignments!

A

Align	CTGG	and	-TC	Ğ			
		A	С Т	C	G G	\implies	TTGG
тс	0	4 10	12	20	28	after filling	ACCG -TCG
TT	16	:	·			and traceback	
GG	24						
GG	32						

A Classical Approach: CLUSTAL W

- prototypical progressive alignment
- similarity score with affine gap cost
- neighbor joining for tree construction
- special 'tricks' for gap handling

Advanced Progressive Alignment in MUSCLE

1.) alignment draft and 2.) reestimation 3.) iterative refinement

Consistency-based scoring in T-Coffee

- Progressive alignment + Consistency heuristic
- Avoid mistakes when optimizing locally by modifying the scores *"Library extension"*
- Modified scores reflect global consistency
- Details of consistency transformation: next slide
- Merges local and global alignments

Consistency-based scoring in T-Coffee

Misalignment by standard procedure

Correct alignment after library extension

Consistency Transformation

- For each sequence triplet: strengthen compatible edges
- This moves global information into scores
- Consistency-based scores guide pairwise alignments towards (global) consistency

All-2-all alignments for weighting

SeqA SeqB	GARFIELD GARFIELD	THE THE	LAST FAST	FAT CAT	CAT	Prim. Weight = 88	SeqB SeqC	GARFIELD GARFIELD	THE THE	VERY	FAST FAST	CAT	Prim Weight = 100
SeqA SeqC	GARFIELD GARFIELD	THE THE	LAST VERY	FA-1 FAS1	r cat Cat	Prim. Weight = 77	SeqB SeqD	GARFIELD	THE THE	FAST FA-T	CAT CAT		Prim. Weight = 100
SegA SegD	GARFIELD	THE THE	LAST	FAT FAT	CAT CAT	Prim. Weight =100	SeqC SeqD	GARFIELD	THE THE	VERY	FAST FA-T	CAT CAT	Prim. Weight = 100

Alignment Profiles

ACCG-

- A *profile* of a multiple alignment consists of character frequency vectors for each column.
- The profile describes sequences of the alignment in a rigid way.
- Modeling insertions/deletions requires profile HMMs.

Hidden Markov Models (HMMs)

[The frog climbs the ladder more likely when the sun shines. Assume that the weather is hidden, but we can observe the frog.]

- *Idea:* the probability of an observation depends on a hidden state, where there are specific probabilities to change states.
- Hidden Markov Models generate observation sequences (e.g. TBTTT) according to an (encoded) probability distribution.
- One can compute things like "most probable path given an observation sequence", ... (no details here)

Profile HMMs

- Profile HMMs describe (probability distribution of) sequences in a multiple alignment (observation ≡ sequence).
- hidden states = insertion (I_i), match (M_i), deletion (D_i) in relation to consensus (state sequence ≡ alignment string)

- Profile HMMs are used to search for sequences that are similar to sequences of a given alignment (Pfam, HMMer)
- Profile HMMs can be used to construct multiple alignments
- We come back to HMMs when we discuss SCFGs.