Problem Set Number xx, 18.385j/2.036j MIT (Fall 2020)

Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139)

November 5, 2020

Due Friday November 13, 2020. Turn it in via the canvas course website.

Contents

1	Large μ limit for Liénard system #03	1
2	Phase Plane Surgery #01	2
3	Simple Poincaré Map for a limit cycle #02 Stability of a limit cycle in a 2-D system by (explicitly) computing the Poincaré map	2 2
4	Problem 07.02.x1 (area evolution)	3
5	Problem 07.05.06 - Strogatz (Biased van der Pol)	3
6	Problem 08.02.05 - Strogatz (Hopf bifurcation using a computer)	4
7	Problem 08.02.07 - Strogatz (Hopf & homoclinic bifurcations via computer)	4
8	Problem 08.04.03 - Strogatz (Homoclinic bifurcation via computer)	4

1 Large μ limit for Liénard system #03

Statement: Large μ limit for Liénard system #03

A Liénard equation has the form	$\ddot{x} + \mu f'(x) \dot{x} + g(x) = 0,$	(1.1)
for some functions f and g . Here $\mu > 0$ is a parameter.		
This can be re-written in the form	$\frac{d}{dt}\left(\dot{x} + \mu f(x)\right) + g(x) = 0.$	(1.2)
	u <i>u</i>	

Introduce $y = \frac{1}{\mu}\dot{x} + f(x)$, to get the system

$$\dot{x} = \mu (y - f(x))$$
 and $\dot{y} = -\frac{1}{\mu} g(x).$ (1.3)

In this problem we will consider the case with $\mu \gg 1$.

$$f(x) = -x + \frac{1}{3}x^3 - \frac{1}{60}x^5$$
 and $g(x) = x$, (1.4)

Analyze the large μ limit for this system. In particular:

- 1. Are there any limit cycles? Are they stable, unstable, semi-stable?
- 2. Are there any critical points? Are they attractors, repellers?
- 3. Does the system have any global attractor?
- 4. Sketch the phase plane portrait.

Phase Plane Surgery #01 $\mathbf{2}$

Statement: Phase Plane Surgery #01

Can a smooth vector field exist in the plane such that:

- The critical points are $P_1 = (-2, 0)$, $P_2 = (0, 0)$ and $P_3 = (2, 0)$.
- All the critical points are spirals.
- The circles with radii: $R_1 = 1$ centered at P_1 , $R_2 = 4$ centered at P_2 , and $R_3 = 1$ centered at P_3 , are orbits.

Would your answer change if P_2 is a saddle?

In either case, if your answer is yes, sketch the way the orbits might look in an example satisfying the criteria above.

Challenge question: In either case, if your answer is yes, can you give an actual example (i.e.: write the vector field explicitly) that gives you a phase portrait with the same qualitative features (the closed orbits need not be circles for this).

Simple Poincaré Map for a limit cycle #023

Statement: Simple Poincaré Map for a limit cycle #02

Consider the following autonomous phase plane system

$$\frac{dx}{dt} = (x^2 + y^4) \left(\nu x - \frac{\nu}{4} x^3 - x^2 y - \nu x y^2 - 4 y^3\right), \\
\frac{dy}{dt} = (x^2 + y^4) \left(\nu y + \frac{1}{4} x^3 - \frac{\nu}{4} x^2 y + x y^2 - \nu y^3\right),$$
where $\nu > 0.$
(3.1)

This system has a periodic solution (show this), which can be written in the form

$$x = 2\cos\Phi, \ y = \sin\Phi, \ \text{where} \ \frac{d\Phi}{dt} = 2(x^2 + y^4) = 2(1 + \cos^2\Phi)^2.$$
 (3.2)

This solution produces an orbit going through the point x = 0, y = 1 in the phase plane. The orbit is an ellipse, as (3.2) shows.¹

Construct (either numerically² or analytically) a Poincaré map near this orbit, and use it to show that the orbit is a stable limit cycle. Define the Poincaré map $z \to u = P(z)$ as follows:

- For every sufficiently small z, let x = X(t, z) and y = Y(t, z) be the solution of (3.1) defined by X(0, z) =0 and Y(0, z) = 1 + z.
- For this solution the polar angle θ in the phase plane is an *increasing function of time*, starting at $\theta = \frac{1}{2}\pi$ for t = 0. Thus, there is a time $t = t_z$ at which the Then take $u = Y(t_z, z) - 1$.

solution reaches $\theta = \frac{5}{2}\pi$ (note that t_z is a function of z).

Hint. Because t_z is a function of z, unknown a priori, the definition of the Poincaré map above is a bit awkward to implement. To avoid having to calculate t_z for each solution, it is a good idea to use a parameter other than time to describe the orbits. For example, if the equations are written in terms of a parameter such as the polar angle namely $\frac{dx}{d\theta} = F(x, y)$ and $\frac{dy}{d\theta} = G(x, y)$, then the Poincaré map is easier to describe, as θ varies from $\theta = \frac{1}{2}\pi$ to $\theta = \frac{5}{2}\pi$ in every one of the orbits needed to compute u = P(z). Note that this is just a "for example", using the polar angle is not the best choice. Scale the variables first, so that the limit circle is a circle, not an ellipse. **Small challenge:** You should be able to write **P** analytically. The formula is not even messy.

 $^{^1}$ Note that Φ is a strictly increasing function of time.

 $^{^2}$ If you do it numerically, keep u as a variable and check your answers for several values — say: u = 0.1, 0.5, 1, 2, 5.

4 Problem 07.02.x1 (area evolution)

Statement for problem 07.02.x1

Consider some arbitrary orbit, Γ , for the phase plane system

$$\frac{d\vec{r}}{dt} = \vec{F}(\vec{r}) \quad \text{where} \quad \vec{r} = (x, y)^T, \quad \vec{F} = (f(x, y), g(x, y))^T, \tag{4.1}$$

and \vec{F} has continuous partial derivatives up to (at least) second order. That is: Γ is the curve in the plane given by some solution $\vec{r} = \vec{r}_{\gamma}(t)$ to (4.1). Then

- A. Let $\Omega = \Omega(t)$ be an "infinitesimal" region that is being advected, along Γ , by the flow given by (4.1). For example:
 - **A1.** Let $\Omega(0)$ be a disk of "infinitesimal" radius dr, centered at $\vec{r}_{\gamma}(0)$.
 - **A2.** For every point $\vec{r}_p^0 \in \Omega(0)$, let $\vec{r} = \vec{r}_p(t)$ be the solution to (4.1) defined by the initial data $\vec{r}_p(0) = \vec{r}_p^0$.
 - **A3.** Then, at any time t_* , the set $\Omega(t_*)$ is given by all the points $\vec{r_p}(t_*)$, where $\vec{r_p}^0$ runs over all the points in $\Omega(0)$.

Note that $\Omega(0)$ need not be a disk. Any infinitesimal region containing $\vec{r}_{\gamma}(0)$ will do. All we need is that the notion of area applies to it — see item **B**.

B. Let $\mathcal{A} = \mathcal{A}(t)$ be the area of $\Omega(t)$.

Find a differential equation for the time evolution of A. The equation that you will find is trivially extended to higher dimensions — e.g. to characterize the evolution of the volume in a 3-D phase space.

Hints.

- **h1.** First, introduce the vector $\delta \vec{r} = \delta \vec{r}(t) = \vec{r}_p \vec{r}_\gamma$ for every point in $\Omega(t)$. This vector characterizes the evolution of the "shape" of Ω as the set moves along Γ . In order to calculate how $\mathcal{A}(t)$ evolves, you only need to know how the $\delta \vec{r}$ vectors evolve.
- **h2.** For every vector $\delta \vec{r}$, write an equation giving $\delta \vec{r}(t+dt)$ in terms of $\delta \vec{r}(t)$ and the partial derivatives of \vec{F} along Γ . Since you are dealing with infinitesimal terms, you can neglect higher order terms, so as to obtain a relationship from $\delta \vec{r}(t)$ to $\delta \vec{r}(t+dt)$ given by a linear transformation. Make sure that this linear transformation correctly includes the O(dt) terms, which you will need to calculate time derivatives.
- **h3.** From the transformation in item **h2** derive a relationship between $\mathcal{A}(t + dt)$ and $\mathcal{A}(t)$ use the fact that, for linear transformations, areas are related by the absolute value of the determinant. You need to calculate the determinant only up to O(dt).
- **h4.** Use the result in item **h3** to calculate the time derivative of \mathcal{A} , and obtain the differential equation.

5 Problem 07.05.06 - Strogatz (Biased van der Pol)

Statement for problem 07.05.06

Suppose the van der Pol oscillator is biased by a constant force:

$$\frac{d^2x}{dt^2} + \mu \left(x^2 - 1\right) \frac{dx}{dt} + x = a,$$
(5.1)

where a can be positive, negative, or zero. (Assume $\mu > 0$ as usual).

a) Find and classify all the fixed points.

- **b)** Plot the nullclines in the Liénard plane. Show that if they intersect on the *middle* branch of the cubic nullcline, the corresponding fixed point is unstable.
- c) For $\mu \gg 1$, show that the system has a stable limit cycle if and only if $|a| < a_c$, where a_c is to be determined. (*Hint. Use the Liénard plane.*)
- d) Sketch the phase portrait for a slightly greater than a_c . Show that the system is *excitable* it has a globally attracting fixed point, but some (small, but not infinitesimal) disturbances can send the system on a long excursion through phase space before returning to the fixed point; compare with Exercise 4.5.3.

This system is closely related to the Fitzhugh-Nagumo model of neural activity; for an introduction see Murray, J. (1989) *Mathematical Biology* (Springer, New York) or Edelstein-Keshet, L. (1988) *Mathematical Models in Biology* (Random House, New York).

6 Problem 08.02.05 - Strogatz (Hopf bifurcation using a computer)

Statement for problem 08.02.05

For the following system

$$\frac{dx}{dt} = y + \mu x \quad \text{and} \quad \frac{dy}{dt} = -x + \mu y - x^2 y, \tag{6.1}$$

a Hopf bifurcation occurs at the origin when $\mu = 0$. Using a computer, plot the phase portrait and determine whether the bifurcation is subcritical or supercritical. For small values of μ , verify that the limit cycle is nearly circular. Then measure the period and radius of the limit cycle, and show that the radius R scales with μ as predicted by theory.

7 Problem 08.02.07 - Strogatz (Hopf and homoclinic bifurcations using a computer)

Statement for problem 08.02.07

For the following system

$$\frac{dx}{dt} = \mu x + y - x^2 \quad \text{and} \quad \frac{dy}{dt} = -x + \mu y + 2x^2,$$
(7.1)

a **Hopf bifurcation occurs** at the origin when $\mu = 0$. Using a computer, plot the phase portrait and determine whether the bifurcation is subcritical or supercritical. For small values of μ , verify that the limit cycle is nearly circular. Then measure the period and radius of the limit cycle, and show that the radius R scales with μ as predicted by theory.

In addition to a Hopf bifurcation, this system also exhibits an **homoclinic bifurcation** of the limit cycle. **FIND IT.**

8 Problem 08.04.03 - Strogatz (Homoclinic bifurcation via computer)

Statement for problem 08.04.03

Using numerical integration, find the value of μ at which the system

$$\frac{dx}{dt} = \mu x + y - x^2 \quad \text{and} \quad \frac{dy}{dt} = -x + \mu y + 2x^2,$$
(8.1)

undergoes a homoclinic bifurcation. Sketch the phase portrait just above and below the bifurcation. In fact:

- **1.** Find and classify all the critical points for all values of μ .
- 2. For μ = 0 the origin is a center for the linearized equations. What happens for the nonlinear equations? Are the nonlinear terms stabilizing or destabilizing? What sort of critical point is the origin for the full equations: stable spiral, unstable spiral, or center? You should be able to do this analytically See hint 8.1.
- **3.** What happens at μ crosses 0? (Justify your answer). The result in item 2 should help here!
- **4.** Increase μ from $\mu = 0$, and find the homoclinic bifurcation (this is where you'll need a computer).
- 5. Optional: Compute the period of the limit cycle as the homoclinic bifurcation is approached, and verify the theoretical prediction: period $\sim -\log |\mu \mu_c|$.

Remark 8.1 This problem is very similar (same system of equations) to Strogatz problem 8.2.7. However: 8.2.7 is purely computational, while here you are being asked to do the analysis behind the problem.

Hint 8.1 To do the analysis in item 2, you have two alternatives:

- A. Do a "two-times expansion" for orbits near the critical point. Namely: write the equations in terms of $x = \epsilon X$ and $y = \epsilon Y$ (where $0 < \epsilon \ll 1$). Then expand.
- B. Find a "local Liapunov function", $E = (x^2 + y^2) +$ higher order terms, such that $\frac{dE}{dt} < 0$ near the origin. In fact $\frac{dE}{dt} \leq 0$ is O.K., as long as $\frac{dE}{dt} = 0$ only for curves the orbits cross e.g. the axis.

The first alternative is a straightforward application of the methods in the "Weakly Nonlinear Things" notes. The second actually provides a rigorous proof of the result. However, it turns out that getting E is not completely trivial! The naive approach to searching for E is

0. Define $E_0 = x^2 + y^2$ and compute its time derivative. This yields

 $\frac{dE_0}{dt} = (3 rd\text{-}order \ terms) + (4 th\text{-}order \ terms).$

Of course, this is not good enough: the 3rd-order terms can have any sign. Hence:

1. Add 3rd-order term "corrections" to E_0 , to eliminate the 3rd-order terms in $\dot{E_0}$. That is, define $E_1 = E_0 + 3rd$ -order terms, so that dE_1

 $\frac{dE_1}{dt} = (4th \text{-} order \ terms) + (5th \text{-} order \ terms).$

There is only one way to do this. Unfortunately, some of the 4th-order terms are positive. Hence:

2. Add 4th-order terms "corrections" to E_1 , to eliminate the bad 4th-order terms in $\dot{E_1}$. That is, define $E_2 = E_1 + 4$ th-order terms, so that dE_2

 $\frac{dE_2}{dt} = (negative \ 4th \text{-} order \ terms) + (5th \text{-} order \ terms) + (6th \text{-} order \ terms).$

Again: there is only one way to do this. Unfortunately, this still does not work. Some of the higher order terms here are always smaller than the negative 4-th order terms, but some are not. For example, if $-x^2 y^2$ is a negative 4-th order term, then: (i) $-x^2 y^2 + x^3 y^2$ is always negative for $x^2 + y^2 \ll 1$, so $x^3 y^2$ is not a problem, but (ii) $-x^2 y^2 + x^4 y$ can switch sign (if $0 < y < x^2 \ll 1$), so $x^4 y$ is a "bad" term. Hence:

3. Add 5th-order terms "corrections" to E_2 , to eliminate the bad 5th order terms ... Unfortunately, you then end up with "bad" 6th order terms!

This never ends! Fortunately: if you do the process above correctly, you will notice that: while the terms in E_n involve ever higher powers of y, there is only a very small set of powers of x that appear. Hence, look for a Liapunov function of the form $E = g(y) + x^2 f(y) + \ldots$, where g, f, etc., are to be determined. This will work: there is a finite (and small) numbers of terms involved. After you have obtained E in this fashion, you will see that it can be expanded as in item B above.