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1 Irreversible switch using saddle node and transcritical bifurcations

Statement: Irreversible switch using saddle node and transcritical bifurcations

Imagine a system1 with a controlling parameter r, and with (at most) two distinct stable equilibrium states:

x1 = x1(r) and x2 = x2(r). In particular, such that infinity is unstable — that is: for every solution x = x(t)

there exists a constant M > 0 such that |x| < M for t large enough. Furthermore:

A. There is a value r = rs = switch value such that: for r > rs both states exist and are stable — so that the

system can be in either one of them.

B. For r < rs only the state x1 exists and it is stable.

1 A “switch”.

1
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C. Both x1(r) and x2(r) are continuous functions of r (though, maybe, not smooth), and |x1(r)− x2(r)| is bounded

away from zero.

Such a system, if started in the state x2 for r > rs, remains in x2 for as long as r varies (slowly enough) in the

range r > rs. Once r crosses below the threshold rs, the system switches to x1, and remains there for all values of

r. A switch back to x2 is not produced by slow variations in r. The condition in item C is important, for otherwise

small perturbations could produce an “accidental” switch if x1 and x2 get very close.

Remark 1.1 A “standard” (reversible) switch [e.g.: a thermostat], operates using hysteresis. For such systems there

are two switching values r1 < r2, with only x2 stable for r > r2, only x1 stable for r < r1, and both states stable for

r1 ≤ r ≤ r2. Then the system jumps from x2 to x1 as r is lowered below r1, and goes back to x2 as r is raised above

r2. ♣

Construct an irreversible switch, using a 1-D system of the form

dx

dt
= f(x, r), (1.1)

with the behavior caused by two bifurcations: a trans-critical and a saddle node (no other bifurcations should

occur!) Then draw the bifurcation diagram.

Hint: It is very easy to construct an explicit example in which f in equation (1.1) is a cubic polynomial in x, and it

is linear in the parameter r.

Remark 1.2 (Switch uniqueness). Even for a 1-D system such as the one in (1.1), there is an infinite number

of possible bifurcation diagrams that yield a switch, with various types of bifurcations involved. 2 However, if the

restriction that there should be only two bifurcations (one saddle-node and one transcritical) is imposed, then there

are only two possible topologies for the switch bifurcation diagram. This problem asks you to produce an example of

one such switch. ♣

2 Perturbed pitchfork, with root preserved (bifurcation diagram)

Statement: Perturbed pitchfork, with root preserved (bifurcation diagram)

Consider the structural stability for a (soft) pitchfork bifurcation, with the restriction that the “main” solution

branch is preserved across the bifurcation. Specifically, consider the situation where:

dx

dt
= g(x, r) (g odd in x), (2.1)

has a (soft) pitchfork bifurcation at (x, r) = (0, 0). Assume that the

problem depends on a hidden parameter h — i.e. let g(x, r) = f(x, r, h)
h=0

,

where you only know that h is small (but it may not be zero). Assume

also that you know that f(0, r, h) = 0, though f may not be odd for h 6= 0. Provided that f is reasonably smooth,

and f is generic, it can be shown that the canonical equation 3 describing this situation is

dx

dt
= r x+ hx2 − x3. (2.2)

2 This is the subject of another problem: Irreversible switches; classification.
3 That is, near the bifurcation, the full problem can be mapped into equation (2.2).



18.385 MIT, (Rosales) Perturbed pitchfork, with root preserved (canonical form). 3

Tasks: Assume h 6= 0 small (say, h = 0.05), and draw the bifurcation diagram for (2.2), including the flow lines

— recall that the bifurcation diagram is, basically, all the phase portraits (one for each r) stacked in one single 2-D

plot. What happens to the pitchfork? Furthermore: estimate the level of noise (in x) under which the distinction

between the pitchfork and the new behavior will be hidden — do this in terms of h.

3 Perturbed pitchfork, with root preserved (canonical form)

Statement: Perturbed pitchfork, with root preserved (canonical form)

Consider the structural stability for a (soft) pitchfork bifurcation, with the restriction that the “main” solution

branch is preserved across the bifurcation. Specifically, consider the situation where:

ẏ = g(y, λ) (g odd in y), (3.1)

has a (soft) pitchfork bifurcation at (y, λ) = (0, 0). Assume that the

problem depends on a hidden parameter ρ — i.e. let g(y, λ) = f(y, λ, ρ)
ρ=0

,

where you know that ρ is small (but it may not be zero). Assume

also that you know that f(0, λ, ρ) = 0, though f may not be odd for ρ 6= 0. Provided that f is reasonably smooth,

and f is generic, it can be shown that the canonical equation 4 describing this situation is

ẋ = r x+ hx2 − x3. (3.2)

SHOW THIS by using a Taylor expansion in the regime where (y, λ, ρ) are all small. ♣
Hint. The easiest approach is to expand f in powers of y, with coefficients that are functions of λ and ρ. Then use what you know

of f to estimate the size of the coefficients (when λ and ρ are small), and then neglect any term that is majored by another term.†
Then, upon re-scaling,‡ the resulting equation will be (3.2).

† A term neglected must be smaller than the terms retained for all (y, λ, ρ) in some neighborhood of (0, 0, 0). Making an

expansion as suggested (as opposed to expanding in all three (y, λ, ρ)), simplifies this step quite a bit.

‡ Note that r and h are generally not directly λ and ρ, but functions of λ and ρ.

4 Toy model for shell buckling

Statement: Toy model for shell buckling

Hold a ping-pong ball between your thumb and index fingers and squeeze it. If you do not apply enough force, the

ball will deform slightly with a purely elastic response. But, if you push hard enough, the ball will buckle and you

will make a (permanent) dent on it — and the ball will be ruined. This is the phenomena of (thin) shell buckling.

Shell buckling is a very rich phenomena, 5 way beyond the scope of this course. Here we will study an extremely

simplified (1-D) version of this phenomena (the emphasis here being on “toy” model) where all the geometrical

richness of the original setting is gone, and only the buckling bifurcation remains.

A sketch depicting the model is shown in figure 4.1. Further assumptions and notation are:
4 That is, near the bifurcation, the full problem can be mapped into equation (3.2).
5 Lots of interesting and important questions arise. For example: What is the shape of the dent that forms? The dent’s edges have sharp

corners: why these corners form, and how do they propagate as further pressure is applied?
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A bead of mass m (black square) can slide along a

rigid vertical rod (in red). The bead is connected

by two equal springs (in blue), with spring constant

k, to two supports placed symmetrically on each

side of the rod. See the text for further details.

Figure 4.1: Toy model for shell buckling.

1. Idealize the bead as a point mass.

2. Let x be the vertical distance, along the rod, of the bead from the horizontal line joining the spring supports.

Let x > 0 if the bead is above the supports and x < 0 if below.

3. Let h > 0 be the distance of the spring supports from the rod, and let L > 0 be the springs equilibrium length.

Assume L > h, so that the springs are under compression for x = 0.

4. Hook’s law applies to the springs. Thus they exert a force of magnitude F = k (`− L), where ` is the spring

length, along the spring axis, pushing if ` < L, and pulling if ` > L.

5. When the bead slides along the rod, the motion is opposed by a friction force of magnitude b ẋ, where b > 0 is

a constant.

6. Because the rod is rigid, we need to consider only the vertical components of the various forces that act on

the bead. These forces are: (i) Gravity, of magnitude mg, pointing down. (ii) The forces by the springs.

(iii) Friction along the rod. Note that here we assume that the force gravity is significant, so that there is no

up-down symmetry in this problem.

PROBLEM TASKS:

A. Derive an ode for the bead position, and write it in appropriate a-dimensional variables. 6

B. Assume that friction is large, so that inertia can be neglected. Exactly which a-dimensional number has to be

small for friction to be “large”?

C. Analyze the bifurcations that occur for the equation resulting from item B, as the bead mass changes — in this

toy model, increasing the bead mass plays the role of squeezing harder on the ping-pong ball. What type of

bifurcation(s) occur?

Hint: It is a bad idea to try to do this by attempting to solve for the critical points and bifurcation thresholds

analytically. A qualitative, graphical, analysis is the best way to go.

D. The picture in figure 4.1 corresponds, in this toy model, to the ping-pong ball in a more-or-less spherical shape.

What is the “buckled” state?

E. What a-dimensional parameter controls when bifurcations happen? This under the assumption:

The ratio γ = L/h > 1 is kept fixed. (4.1)

Thus γ is not the bifurcation parameter to use; something else is.

6 Suggestion: to a-dimensionalize use h for length and b/(2 k) for time.
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5 Problem 03.02.06 - Strogatz (Eliminate the cubic term)

Statement for problem 03.02.06

Consider the system
dX

dt
= RX −X2 + aX3 +O(X4), (5.2)

where R 6= 0. We want to find a new variable x such that the system transforms into

dx

dt
= Rx− x2 +O(x4). (5.3)

This would be a big improvement, since the cubic term has been eliminated and the error term has been bumped

to fourth order. 7 In fact, the procedure to do this (sketched below) can be generalized to higher orders. 8 This

generalization is the subject matter of problem 03.02.07.

Let x = X + bX3 + O(X4), where b is chosen later to eliminate the cubic term in the differential equation for

x. This is called a near-identity transformation, since x and X are practically equal: they differ by a cubic term. 9

Now we need to rewrite the system in terms of x; this calculation requires a few steps.

1. Show that the near-identity transformation can be inverted to yield X = x+ cx3 + O(x4), and solve for c.

2. Write ẋ = Ẋ + 3bX2Ẋ + O(X4), and substitute for X and Ẋ on the right hand side, so that everything

depends only on x. Multiply the resulting series expansions and collect terms, to obtain ẋ = Rx − x2 +

kx3 + O(x4), where k depends on a, b, and R.

3. Now the moment of triumph: choose b so that k = 0.

4. Is it really necessary to make the assumption that R 6= 0? Explain.

6 Stability index for flows in the circle

Statement: Stability index for flows in the circle

Show that the stability index S for any flow in the circle vanishes. To be precise, consider an equation of the form

dθ

dt
= f(θ), (6.1)

where θ is an angle (in radians), and f is periodic of period 2π and Lipschitz continuous. Assume also that the

equation has a finite number of critical points: 10 θ1 < θ2 < · · · < θN < θ1 + 2π. Now assign a weight w = 1 to each

stable critical point, a weight w = −1 to each unstable critical point, and a weight w = 0 to each semi-stable critical

point. Then show that

S =

N∑
n=1

wn = 0. (6.2)

7 Obviously we are considering here a situation where X (and x) is small.
8 That is, one can successively eliminate all the higher order terms: O(x3), O(x4), . . . , etc.
9 We have skipped the quadratic term X2, because it is not needed — you should check this later.

10 The critical points are the zeros of f .
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Hint 6.1 Consider the intervals In, 1 ≤ n ≤ N , where In is the interval θn < θ < θn+1 — here θN+1 = θ1 + 2π,

which is the same point as θ1 because we are in the circle. Then in each such interval either 11 f > 0 or f < 0.

Define σn = 1 if f > 0 in In, and σn = −1 if f < 0 in In. Then relate the wn to the σn to show (6.2). What

information do the σn capture? ♣

7 Bifurcations in the circle problem #06

Statement: Bifurcations in the circle problem #06

For equation (7.1) find the values of r at which a bifurcation occurs, and classify them as saddle-node, transcritical,

supercritical pitchfork, or subcritical pitchfork. Finally, sketch the bifurcation diagram for the fixed points versus r,

including the flow direction and the stability of the various branches of solutions (solid lines for stable branches and

dashed ones for unstable ones).
dθ

dt
= (r + sin(2 θ)) sin(θ), (7.1)

where θ is an angle (in radians). Note that the bifurcation diagram — which is periodic in θ — should be for a 2π

range in θ, and a range of r that includes all the bifurcations.

8 Bifurcations in the torus #01

Statement: Bifurcations in the torus #01

Bifurcations in the torus, phase-locking, and oscillator death. This problem is based on a paper on systems of

neural oscillators by G. B. Ermentrout and N. Kopell, 12 where they illustrate the notion of oscillator death (see

§ 10) with the following model

θ̇1 = ω1 + sin θ1 cos θ2 and θ̇2 = ω2 + sin θ2 cos θ1, (8.1)

where ω1, ω2 > 0. Here θ1 and θ2 are to be interpreted as the phases of two coupled stable and attracting limit cycle

oscillators, which are assumed to “survive” the coupling, so that the notion of their “individual phases” remains —

see § 10.

a. Classify all the different behaviors that the solutions to (8.1) have, as the parameters vary in the positive

quadrant of the [ω1, ω2]–plane. Do a diagram in this quadrant, indicating the regions that correspond to each

behavior.

The final answer should look something like this: (i) In such and such region the solutions are attracted to a

limit cycle [Note that this is phase locking]. (ii) In such and such region the solutions are attracted to a stable

node [Note that this is oscillator death]. (iii) In such and such region the solutions are quasi-periodic with two

periods [Phase locking fails]. (iv) . . .

Plus a drawing of the regions . . . will all the statements properly justified.

11 If f were to switch sign in In, then (since it is continuous) it would have a zero in In. This zero would no be one of the θn, which are

supposed to be all the zeros.
12 Oscillator death in systems of coupled neural oscillators. SIAM J. Appl. Math. 50:125 (1990).
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b. Draw the bifurcation curves in the [ω1, ω2]–plane. Describe each bifurcation.

Hints. I did not find an elegant way to analyze the system geometrically. The hints below lead you to an approach

that is (mostly) analytical, but allows a systematic and thorough investigation.

h1. Consider the equations satisfied by φ = θ1 + θ2 and ψ = θ1 − θ2.

h2. You may find the following result useful

Let α > 1. Then the solutions to the equation χ̇ = α+ sinχ

can be written in the form χ = µ (t− t0) +X(µ (t− t0)),

where µ > 0 is a constant, X is 2π-periodic,

X(0) = 0, and t0 is an arbitrary constant.

Furthermore: µ is an increasing function of α, with lim
α→1

µ = 0 and lim
α→∞

µ =∞.

All this follows from § 11, upon using a change of variables to transform χ̇ = α+ sinχ into equation (11.1). In

particular, note that the “µ” in § 11 (call it µ̃) is related to the one here by µ = α µ̃, with κ = 1
α .

9 First order equation with a periodic right hand side

Statement: First order equation with a periodic right hand side

Consider the equation

φ̇ = 1− κ sinφ, where 0 < κ < 1. (9.1)

Since φ̇ ≥ 1− κ > 0, φ is monotone increasing. Prove the statements below.

1. There is a constant 0 < µ < 1, and a function Φ = Φ(ζ) — periodic of period 2π — such that any solution to

(9.1) has the form

φ = µ (t− t0) + Φ(µ (t− t0)), (9.2)

where t0 is a constant and Φ(0) = 0. It follows that sin(φ) is periodic in t, with period T = 2π
µ

2. The period-average M for sin(φ) is given by M = average(sinφ) = 1−µ
κ

> 0. (9.3)

M = M(κ) only (µ depends only on κ).

3. Let φ∗ be the solution to (9.1) defined by φ∗(0) = 0 — i.e.: set t0 = 0 in (9.2). Then

Θ(µ t) =

∫ t

0

(sin(φ∗(s))−M) ds = − 1

κ
Φ(µ t), (9.4)

where Θ is defined by the first equality.

4. Assume that 0 < κ� 1. Then a Poincaré-Lindstedt expansion yields

φ∗ = µ t− κ (1− cos(µ t)) +O(κ2) and µ = 1− 1

2
κ2 +O(κ4). (9.5)

It follows that T = 2π + π κ2 +O(κ4) and M =
1

2
κ+O(κ3).

5. Assume that 0 < 1− κ� 1. Then µ = O(
√

1− κ) (9.6)

Hints.
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a. Define T > 0 as the (unique) time at which φ∗(T ) = 2π — why is the solution unique?

b. Show that φ∗(t+ T ) = 2π + φ∗(t) — sub-hint: both sides are solutions!

c. Define Φ by Φ(µ t) = φ∗(t)− µ t, with µ = 2π/T , and show that Φ is periodic of period 2π.

d. Write the general solution in terms of φ∗.

e. Show that T = O
(
1/
√

1− κ
)

as κ→ 1 — sub-hint: critical slowing-down.

f. To show that µ < 1, use (9.1) and separation of variables to write T as an integral over φ from 0 to 2π. Then

show T > 2π

g. To show (9.3), take the average of (9.1).

h. To obtain the second equality in (9.4), substitute φ∗ = µ t+ Φ(µ t) into (9.1), and obtain a formula for sin(φ∗)

in terms of Φ.

Part I

Supplementary notes on oscillators and ode

10 Notes: coupled oscillators, phase locking, oscillator death, etc.

10.1 On phases and frequencies

Consider a system made by two coupled oscillators, where each of the oscillators (when not coupled) has a sta-

ble attracting limit cycle. Let the limit cycle solutions for the two oscillators be given by ~x1 = ~F1(ω1 t) and

~x2 = ~F2(ω2 t), where ~x1 and ~x2 are the vectors of variables for each of the two systems, the ~Fj are periodic func-

tions of period 2π, and the ωj are constants (related to the limit cycle periods by ωj = 2π/Tj). In the un-coupled

system, the two limit cycle orbits make up a stable attracting invariant torus for the evolution. Assume now that

either the coupling is weak, or that the two limit cycles are strongly stable. Then the stable attracting invariant

torus survives for the coupled system. 13 The solutions (on this torus) can be (approximately) represented by

~x1 ≈ ~F1(θ1) and ~x2 ≈ ~F2(θ2), (10.1)

where θ1 = θ1(t) and θ2 = θ2(t) satisfy some equations, of the general form

θ̇1 = ω1 +K1(θ1, θ2) and θ̇2 = ω2 +K2(θ1, θ2). (10.2)

Here K1 and K2 are the “projections” of the coupling terms along the oscillator limit cycles. For example, take

K1(θ1, θ2) = sin θ1 cos θ2 and K2(θ1, θ2) = sin θ2 cos θ1. Another example is the one in § 8.6 of Strogatz’ book

(Nonlinear Dynamics and Chaos), where a model system with

K1(θ1, θ2) = −κ1 sin(θ1 − θ2) and K2(θ1, θ2) = κ2 sin(θ1 − θ2)

is introduced, with constants κ1, κ2 > 0. Note that:

1. In (10.2), K1 and K2 must be 2π-periodic functions of θ1 and θ2.

13 With a (slightly) changed shape and position.
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2. The phase space for (10.2) is the invariant torus T , on which θ1 and θ2 are the angles. We can also

think of T as a 2π × 2π square with its opposite sides identified. On T a solution is periodic if and only

if θ1(t+ T ) = θ1(t) + 2nπ and θ2(t+ T ) = θ2(t) + 2mπ, where T > 0 is the period, and both n and m are

integers.

3. In the “Coupled oscillators # 01” problem an example of the process leading to (10.2) is presented.

4. The θj ’s are the oscillator phases. One can also define oscillator frequencies, even when the θj ’s do not have

the form θj = ωj t, with ωj constant.

The idea is that, near any time t0 we can write θj = θj(t0) + θ̇j(t0) (t− t0) + . . .,

identifying θ̇j(t0) as the local frequency. Hence, we define the oscillator frequencies by ω̃j = θ̇j . These

frequencies are, of course, generally not constants.

5. The notion of phases can survive even if the limit cycles cease to exist (i.e.: oscillator death). For example: if

the equations for θ1 and θ2 have an attracting critical point. We will see examples where this happens in the

problems, e.g.: “Bifurcations in the torus # 01”.

10.2 Phase locking and oscillator death

The coupling of two oscillators, each with a stable attracting limit cycle, can produce many behaviors. Two of

particular interest are

1. Often, if the frequencies are close enough, the system phase locks. This means that a stable periodic solution

arises, in which both oscillators run at some composite frequency, with their phase difference kept constant.

The composite frequency need not be constant. In fact, it may periodically oscillate about a constant average

value.

2. However, the coupling may also suppress the oscillations, with the resulting system having a stable steady

state. This even if none of the component oscillators has a stable steady state. This is oscillator death. It can

happen not only for coupled pairs of oscillators, but also for chains of oscillators with coupling to the nearest

neighbors.

On the other hand, we note that it is also possible to produce an oscillating system, with a stable oscillation, by

coupling non-oscillating systems (e.g., the coupling of excitable systems can do this).

11 Notes: first order equation with a periodic right hand side

You will be asked to justify the statements below in one of the problems. They are stated here because these results

are used/needed in the answers to some of the other problems.

Consider the equation

φ̇ = 1− κ sinφ, where 0 < κ < 1. (11.1)

Since φ̇ ≥ 1− κ > 0, φ is monotone increasing. It can be shown that:

1. There is a constant 0 < µ < 1, and a function Φ = Φ(ζ) — periodic of period 2π — such that any solution to

(11.1) has the form

φ = µ (t− t0) + Φ(µ (t− t0)), (11.2)

where t0 is a constant and Φ(0) = 0. It follows that sin(φ) is periodic in t, with period T = 2π
µ
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2. The period-average M for sin(φ) is given by M = average(sinφ) = 1−µ
κ

> 0. (11.3)

M = M(κ) only (µ depends only on κ).

3. Let φ∗ be the solution to (11.1) defined by φ∗(0) = 0 — i.e.: set t0 = 0 in (11.2). Then

Θ(µ t) =

∫ t

0

(sin(φ∗(s))−M) ds = − 1

κ
Φ(µ t), (11.4)

where Θ is defined by the first equality.

4. Assume that 0 < κ� 1. Then a Poincaré-Lindstedt expansion yields

φ∗ = µ t− κ (1− cos(µ t)) +O(κ2) and µ = 1− 1

2
κ2 +O(κ4). (11.5)

It follows that T = 2π + π κ2 +O(κ4) and M =
1

2
κ+O(κ3).

5. Assume that 0 < 1− κ� 1. Then µ = O(
√

1− κ) (11.6)

THE END.


