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1 Large µ limit for Liénard system #03

1.1 Statement: Large µ limit for Liénard system #03

A Liénard equation has the form ẍ+ µ f ′(x) ẋ+ g(x) = 0, (1.1)

for some functions f and g. Here µ > 0 is a parameter.

This can be re-written in the form
d

dt
(ẋ+ µ f(x)) + g(x) = 0. (1.2)

Introduce y = 1
µ ẋ+ f(x), to get the system

ẋ = µ (y − f(x)) and ẏ = − 1

µ
g(x). (1.3)

In this problem we will consider the case f(x) = −x+
1

3
x3 − 1

60
x5 and g(x) = x, (1.4)

with µ� 1.

Analyze the large µ limit for this system. In particular:

1. Are there any limit cycles? Are they stable, unstable, semi-stable?

2. Are there any critical points? Are they attractors, repellers?

3. Does the system have any global attractor?

4. Sketch the phase plane portrait.

1.2 Answer: Large µ limit for Liénard system #03

The behavior in the µ� 1 limit is controlled by the following facts:

f01. g(x) > 0 for x > xg = 0, and g(x) < 0 for x < xg.

Thus ẏ < 0 for x > xg and ẏ > 0 for x < xg.

Let yg = f(xg) = 0.

f02. The curve y = f(x) (see the dashed black line in figure 1.1) has four special points {xn}n=1 to 4, with

corresponding values yn, given by its local maximums/minimums. We have

1) x1 < x2 < xg < x3 < x4.

2) x1 and x3 are local minimums, with y1 < y3.

3) x2 and x4 are local maximums, with y2 < y4.

4) The curve is (strictly) monotonic in each of the intervals open intervals In = (xn, xn+1),

n=0:4, where x0 = −∞ and x5 =∞ — decreasing, increasing, decreasing, . . .

5) y → ±∞ as x→ ∓∞.

Notation: The branch In means the portion of the curve given by y = f(x), x ∈ In.

Notation, for points: Pn = (xn, yn) and C = (xg, yg) = critical point.

C is the only critical point.
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f03. Since µ� 1, y changes very slowly, while x changes very fast (except when y − f(x) is small).

It follows that:

f04. For y − f(x) > 0 (but not too small), the phase plane trajectories are nearly horizontal lines, with the flow

left to right.

f05. For y − f(x) < 0 (but not too small), the phase plane trajectories are nearly horizontal lines, with the flow

right to left.

f06. In the t growing direction the trajectories get trapped in a narrow band near the branches I1 and I3 — which

they can exit only near the points P2 and P3, see item f08.

These are the stable/attracting branches.

f07. In the t decreasing direction the trajectories get trapped in a narrow band near the branches I0, I2, and I4
— which they can “exit” only near the points P1 for I0, P2 for the left half of I2, P3 for the right half of I2,

and P4 for I4, see item f08.

These are the unstable/repelling branches.

Hint: the easy way to figure out the phase portrait near an unstable branch, is to draw it for the reversed flow

(t decreasing), and then reverse the arrows.

f08. In the trapping narrow band near each branch, the solutions slowly move up or down, depending on the sign

of g. That is:

Up for I0, I1, and the left side (x < xg) of I2.

Down for I4, I3, and the right side (x > xg) of I2.

Eventually (forward/backwards in time for the stable/unstable branches) the solutions get pushed past one of

the points Pn. At this point the trajectories “exit” the narrow trapping band, and the trajectories switch to

the behavior in either item f04 or item f05.

Task #1 left to the reader. How do the solutions behave in the trapping bands near the branches? In particular: Do

the solutions cross the branches? If so, which solutions, and how is the crossing? Is the narrow trapping band on one

side of the branch (which side?), or does it enclose the branch?

Task #2 left to the reader. How do the solutions behave near the points Pn, n=1:4? Sketch a detail of the phase portrait

near these points.

f09. From the facts above, it follows that all the orbits leave the critical point C along the narrow band near I2, up

to the left, or down to the right. This with two exceptions: the nearly horizontal orbits that leave C to the left,

or to the right (these two orbits are the transition from the orbits leaving up to the left, and the ones leaving

down to the right). It follows that C is an unstable node.

Task #3 left to the reader. How do the solutions behave near the critical point C? Sketch a detail of the phase portrait

near this point, including the branch I2.

Using the facts above, it is now easy to figure out what the orbits do — see figure 1.1. The conclusion is that:

c1. There are two limit cycles, both clockwise. The larger one is unstable, and encloses the smaller one, which is

stable.

The larger one consists (approximately) of two horizontal segments (from the branch I0 to P4, and from the

branch I4 to P1), plus the complimentary pieces from the branches I0 and I4.

The smaller one consists (approximately) of two horizontal segments (from P2 to the branch I3, and from P3

to the branch I1), plus the complimentary pieces from the branches I1 and I3.

c2. The orbits that leave the larger limit cycle either zoom to infinity, or converge towards the smaller limit cycle.

The orbits that leave the unstable node C converge towards the inner limit cycle.
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Liénard system large µ limit #03.

The dashed blue (resp. black) line in-

dicates the zero of g (resp. the curve

y = f(x)). The critical point C is an

unstable node. The two limit cycles can

be seen in thicker red than the other or-

bits.

Figure 1.1: Phase portrait for the system in (1.3 – 1.4).

Task #4 left to the reader. Consider the solutions trapped near the branch I0. Eventually these solutions leave the trapping

region, either to the right or the left. There must be an orbit that is the transition between these two behaviors, and stays close

to the branch all the way to infinity. Find an approximate expression for this orbit.

Task #5 left to the reader. There are two orbits that leave C (one up to the left, the other down to the right) and stay close

to the branch I2 all the way to either P2 or P3. Find an approximate expression for these orbits.

2 Phase Plane Surgery #01

2.1 Statement: Phase Plane Surgery #01

Can a smooth vector field exist in the plane such that:

— The critical points are P1 = (−2, 0), P2 = (0, 0) and P3 = (2, 0).

— All the critical points are spirals.

— The circles with radii: R1 = 1 centered at P1, R2 = 4 centered at P2, and R3 = 1 centered at P3, are orbits.

Would your answer change if P2 is a saddle?

In either case, if your answer is yes, sketch the way the orbits might look in an example satisfying the criteria above.

Challenge question: In either case, if your answer is yes, can you give an actual example (i.e.: write the vector field

explicitly) that gives you a phase portrait with the same qualitative features (the closed orbits need not be circles

for this).

2.2 Answer: Phase Plane Surgery #01

The answer to the first question in this problem is: NO.

The reason is that the circle of radius R2 centered at P2 would be an orbit enclosing all three critical points. Thus

the sum of the indexes of the critical points would have to be one, which would contradict the fact that the critical

points are all supposed to be spirals.
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If, on the other hand, P2 is a saddle, then a vector field with the given properties exists.

We will show this by actually constructing one. In our construction the closed orbits doing the job are not be circles,

but this is a minor point: The method used to construct the example can be adapted (at the price of much more algebra

in the answer) to obtain closed orbits that are circles — or ellipses or any other closed curves one may desire.

Let V be the potential defined by V = −2x2 +
1

4
x4. For this potential

— x = 0 is a local maximum — with V (0) = 0.

— x = ±2 are local minimums — with V (−2) = V (2) = −4.

— Everywhere else
dV

dx
6= 0.

Define E = E(x, y) by E =
1

2
y2 + V (x). (2.1)

Then

1. ∇E = (Ex, Ey) =

(
dV

dx
, y

)
vanishes at the points P1, P2, and P3, only.

2. P1 and P3 are local minimums of the surface z = E(x, y), while P2 is a saddle.

3. The level curves E = c = constant (with −4 < c < 0) have two components: one enclosing (only) P1 and the

other enclosing (only) P3.

4. The level curves E = c = constant (with 0 < c) have only one component, which encloses all the Pj ’s and all

the level curves with −4 < E < 0.

Consider now the phase plane system given by:

dx

dt
= −Ey − f(E)Ex,

dy

dt
= Ex − f(E)Ey,

i.e.:
d

dt

(
x

y

)
= (∇E)⊥ − f(E)∇E, (2.2)

where f = f(E) is some function to be defined later, and the superscript ⊥ indicates rotation by π/2 of a vector in

the plane.

Remark 2.1 (Motivation). The flow provided by the system of equations in (2.2) has two components. The first

one, given by (∇E)⊥, induces a flow along the level lines of the surface z = E(x, y) — for this component alone

the orbits would be the level curves of E. The second component, given by f ∇E, induces a flow normal to the level

lines of E — for this component alone the orbits would correspond to the path of water flowing down/up 1 the gravity

gradient on the surface z = E.

Thus, for the system in (2.2), the level curves of E corresponding to zeros of f(E) are orbits. On the other hand,

when f is small, the orbits will (approximately) track the level curves of E — slowly drifting up or down the gradient

of E, depending on the sign of f . Thus, given the properties of E — itemized below equation (2.1), it should be clear

that: by judiciously choosing f = f(E), we can obtain a system with the desired properties.

A clarification regarding orbits and level lines: when above we say “the orbits would be level lines of E”, or similar,

it should be clear that this applies for each component of E = constant, if E = constant is made up by more than

one curve — e.g.: when −4 < E < 0. The case E = 0 (saddle level) has three components, one where x > 0, another

where x < 0, and the critical point P2. Finally, the case E = −4 has two components: the critical points P1 and P3.

♣
1 Down if f > 0; up if f < 0.
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Below we fill in the details of the intuitive arguments in the remark.

For the system in (2.2), we have

{
f ẋ− ẏ = −(1 + f2)Ex,

f ẏ + ẋ = −(1 + f2)Ey,
(2.3)

from which it follows that the critical points of (2.2) are exactly the Pj ’s — since these are the only points where

∇E vanishes. It is also clear that, along orbits:

dE

dt
= ẋ Ex + ẏ Ey = −

(
E2
x + E2

y

)
f(E). (2.4)

Hence: Any level curve E = E0 = constant, such that f(E0) = 0, is an orbit. (2.5)

Now take f = ε (E2 − 4), (2.6)

where ε > 0 is an arbitrary constant. With this choice for f = f(E), note that:

5. The critical points P1 = (−2, 0) and P3 = (2, 0) are stable spirals if ε <
√

2/49 ≈ 0.0673 . . ., or stable improper

nodes if ε =
√

2/49, or stable nodes if
√

2/49 < ε.

This follows from the 2× 2 matrix of the linearized

equations near the critical points, both given by:
A =

[
−96 ε −1

8 −12 ε

]
.

6. The critical point P2 = (0, 0) is always a saddle.

This follows from the 2× 2 matrix of the linearized

equations near the critical point, given by:
A =

[
−16 ε −1

−4 4 ε

]
.

7. For any orbit that is not a critical point, (2.4) yields

As t→ ∞ E → 2 or E → −4.

As t→ −∞ E → −2 or E → ∞.
(2.7)

A sketch of a proof is at the end of this problem answer.

Proviso: If an orbit has E →∞ in the direction of increasing t, then the limit is achieved for a finite value of t.

The other values (E = ±2 and E = −4) require either t→∞ or t→ −∞.

Thus, provided that 0 < ε <
√

2/49 ≈ 0.0673 . . ., we have:

8. The two level curves E = −2 are unstable limit cycles enclosing the critical points P1 and P3.

9. The level curve E = 2 is a stable limit cycle enclosing all the critical points.

10. The critical points P1 and P3 are stable spiral points, while P2 is a saddle point.

Figure 2.1 shows the phase portrait of the system for the choice ε = 1/40. The degree of stability of the limit cycles,

and of the critical points P1 and P3, is controlled by ε — as should be obvious from (2.4). As ε grows, the limit

cycles become more stable (resp. unstable), and at ε =
√

2/49 the critical points P1 and P3 switch from spirals to

nodes. Unless ε is fairly small, the orbits move away (towards) the limit cycles so fast that they appear as the spokes

of bicycle tires near them.

It should be obvious that the shape and location of the limit cycles can be changed — by replacing E by some other

function with different level curves. It is possible to get the limit cycles to have almost any desired shape (at the

price of having to manufacture a complicated 2 function E).

2 An explicit expression for E might not even be possible. But the surface z = E(x, y) need not be “geometrically” more complicated than

the one given by (2.1).
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y
Figure 2.1: Phase portrait for the system

in (2.2), with ε = 0.025 in (2.6). The two

unstable limit cycles are given by the com-

ponents of the level curve E = −2, and the

single stable limit cycle is given by the level

curve E = 2.

Sketch of the proof of (2.7). Consider an orbit that is not a critical point. Then E2
x + E2

y > 0 everywhere on the

orbit — although E2
x + E2

y may approach zero if the orbit approaches a critical point as either t→∞, or t→ −∞.

Then (2.4) shows that E is increasing for −2 < E < 2, and decreasing for |E| > 2. Note that E is restricted to the

range −4 ≤ E <∞.

3 Simple Poincaré Map for a limit cycle #02

3.1 Statement: Simple Poincaré Map for a limit cycle #02

Consider the following autonomous phase plane system

dx

dt
= (x2 + y4)

(
ν x− ν

4 x
3 − x2 y − ν x y2 − 4 y3

)
,

dy

dt
= (x2 + y4)

(
ν y + 1

4 x
3 − ν

4 x
2 y + x y2 − ν y3

)
,

 where ν > 0. (3.1)

This system has a periodic solution (show this), which can be written in the form

x = 2 cos Φ, y = sin Φ, where
dΦ

dt
= 2 (x2 + y4) = 2 (1 + cos2 Φ)2. (3.2)

This solution produces an orbit going through the point x = 0, y = 1 in the phase plane. The orbit is an ellipse, as

(3.2) shows. 3

Construct (either numerically 4 or analytically) a Poincaré map near this orbit, and use it to show that the orbit

is a stable limit cycle. Define the Poincaré map z → u = P (z) as follows:
3 Note that Φ is a strictly increasing function of time.
4 If you do it numerically, keep ν as a variable and check your answers for several values — say: ν = 0.1, 0.5, 1, 2, 5.
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• For every sufficiently small z, let x = X(t, z) and y = Y (t, z) be the solution of (3.1) defined by X(0, z) =

0 and Y (0, z) = 1 + z.

• For this solution the polar angle θ in the phase plane is an increasing function of time, starting at θ = 1
2
π

for t = 0. Thus, there is a time t = tz at which the

solution reaches θ = 5
2
π (note that tz is a function of z). Then take u = Y (tz, z)− 1.

Hint. Because tz is a function of z, unknown a priori, the definition of the Poincaré map above is a bit awkward to

implement. To avoid having to calculate tz for each solution, it is a good idea to use a parameter other than time

to describe the orbits. For example, if the equations are written in terms of a parameter such as the polar angle —

namely dx
dθ

= F (x, y) and dy
dθ

= G(x, y), then the Poincaré map is easier to describe, as θ varies from θ = 1
2 π

to θ = 5
2 π in every one of the orbits needed to compute u = P (z). Note that this is just a “for example”, using the

polar angle is not the best choice. Scale the variables first, so that the limit circle is a circle, not an ellipse. ♣
Small challenge: You should be able to write P analytically. The formula is not even messy.

3.2 Answer: Simple Poincaré Map for a limit cycle #02

Since the questions of interest here have to do with the topology of the orbits in phase space, it does not matter if we

parameterize the orbits with time, or some other parameter, as long as they both yield the same direction of travel

along the orbits (so stability is not affected). Thus, introduce a “new” time along the orbits, as follows:

dτ

dt
= x2 + y4, =⇒

dx

dτ
= ν x− ν

4 x
3 − x2 y − ν x y2 − 4 y3,

dy

dτ
= ν y + 1

4 x
3 − ν

4 x
2 y + x y2 − ν y3.

 (3.3)

Except for the critical point at the origin, dτ/dt > 0, so that τ is acceptable as an orbit parameter. Now we notice

that we can write the equations in the form

dx

dτ
= ν x (1− 1

4 x
2 − y2)− 4 y ( 1

4 x
2 + y2),

dy

dτ
= ν y (1− 1

4 x
2 − y2) + x ( 1

4 x
2 + y2).

 (3.4)

The combination
1

4
x2 + y2 in these equations suggests that we introduce elliptic-polar coordinates

x = 2R cos Φ and y = R sin Φ ⇐⇒ R2 =
1

4
x2 + y2 and tan Φ = 2

y

x
. (3.5)

Hence 5 dR

dτ
= ν R (1−R2) and

dΦ

dτ
= 2R2, so that

dR2

dΦ
= ν

(
1−R2

)
=⇒ R2 = 1 + ((R0)2 − 1) exp

(
ν
(
π
2 − Φ

))
, (3.6)

where R0 is the value of R for Φ = π/2. The Poincaré map now follows from this last equation. We want to find

the value R = 1 + u, at Φ = 5π/2, of the orbit for which R0 = 1 + z. Hence

(1 + u)2 = 1 + (z2 + 2 z) e−2π ν =⇒ u = P (z) = −1 +
√

1 + (z2 + 2 z) e−2π ν . (3.7)

In particular: P (0) = 0 and 0 <
dP

dz
(0) = e−2π ν < 1.

{
Thus the limit cycle

in (3.2) is stable.

5 Note that, for R = 1, these equations provide the periodic solution in equation (3.2).
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4 Problem 07.02.x1 (area evolution)

4.1 Statement for problem 07.02.x1

Consider some arbitrary orbit, Γ, for the phase plane system

d~r

dt
= ~F (~r) where ~r = (x, y)T , ~F = (f(x, y), g(x, y))T , (4.1)

and ~F has continuous partial derivatives up to (at least) second order. That is: Γ is the curve in the plane given by

some solution ~r = ~rγ(t) to (4.1). Then

A. Let Ω = Ω(t) be an “infinitesimal” region that is being advected, along Γ, by the flow given by (4.1). For

example:

A1. Let Ω(0) be a disk of “infinitesimal” radius dr, centered at ~rγ(0).

A2. For every point ~r 0
p ∈ Ω(0), let ~r = ~rp(t) be the solution to (4.1) defined by the initial data ~rp(0) = ~r 0

p .

A3. Then, at any time t∗, the set Ω(t∗) is given by all the points ~rp(t∗), where ~r 0
p runs over all the points in

Ω(0).

Note that Ω(0) need not be a disk. Any infinitesimal region containing ~rγ(0) will do. All we need is that the

notion of area applies to it — see item B.

B. Let A = A(t) be the area of Ω(t).

Find a differential equation for the time evolution of A. The equation that you will find is trivially extended to

higher dimensions — e.g. to characterize the evolution of the volume in a 3-D phase space.

Hints.

h1. First, introduce the vector δ~r = δ~r(t) = ~rp − ~rγ for every point in Ω(t). This vector characterizes the evolution

of the “shape” of Ω as the set moves along Γ. In order to calculate how A(t) evolves, you only need to know

how the δ~r vectors evolve.

h2. For every vector δ~r, write an equation giving δ~r(t+ dt) in terms of δ~r(t) and the partial derivatives of ~F

along Γ. Since you are dealing with infinitesimal terms, you can neglect higher order terms, so as to obtain a

relationship from δ~r(t) to δ~r(t+ dt) given by a linear transformation. Make sure that this linear transformation

correctly includes the O(dt) terms, which you will need to calculate time derivatives.

h3. From the transformation in item h2 derive a relationship between A(t+ dt) and A(t) — use the fact that, for

linear transformations, areas are related by the absolute value of the determinant. You need to calculate the

determinant only up to O(dt).

h4. Use the result in item h3 to calculate the time derivative of A, and obtain the differential equation.

4.2 Answer for problem 07.02.x1

At any time t, we can write

~rγ(t+ dt) = ~rγ(t) + ~Fγ(t) dt, (4.2)

~rp(t+ dt) = ~rp(t) + ~Fp(t) dt, (4.3)

where we have neglected O
(
(dt)2

)
contributions, ~Fγ = F (~rγ), ~Fp = F (~rp), and ~rp = ~rp(t) tracks an arbitrary point

in Ω(t) — as in item A2. Hence we can write

δ~r (t+ dt) = δ~r (t) +
(
~Fp(t)− ~Fγ(t)

)
dt

=
(
I +Mγ(t) dt

)
δ~r (t), (4.4)
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where δ~r = ~rp − ~rγ , I is the identity matrix, M is the matrix of partial derivatives of ~F

M =

(
fx fy
gx gy

)
,

Mγ = M(~rγ), and we have neglected O
(
(dr)2 dt

)
terms to arrive at the second line in (4.4). It follows that

A(t+ dt) = det

(
I +Mγ(t) dt

)
A(t)

=

(
1 + Trace

(
Mγ(t)

)
dt

)
A(t), (4.5)

where (again) we have neglected O
(
(dt)2

)
terms when computing the determinant. From this last equation we obtain

d

dt
A = div

(
~F
)
A, (4.6)

where we have used that Trace
(
Mγ(t)

)
= div

(
~F
)

, with the divergence evaluated along Γ.

A second, more “mathematical”, derivation follows:

Define ~R = ~R(t, ~r ) by
∂

∂t
~R = ~F

(
~R
)

with ~R (0, ~r ) = ~r. (4.7)

Thus ~R characterizes the whole flow given by the system in (4.1).

In particular, ~rγ(t) = ~R (t, ~rγ(0)) and ~rp(t) = ~R
(
t, ~r 0

p

)
for every ~r 0

p ∈ Ω(0).

Let now S = S(t, ~r ) be the matrix of the partial derivatives of ~R with respect to ~r, with Sγ = S(t, ~rγ(0)). Then

A(t) = J(t)A(0), where J = det(Sγ) (4.8)

is the Jacobian — along Γ — of the transformation from Ω(0) to Ω(t) defined by ~R. Now we have

1. ∂
∂t
S = M S, where M is the matrix of partial derivatives of ~F .

This follows by taking partial derivatives, with respect to ~r, of the equation for ~R in (4.7).

2. ln(J) = ln (det(Sγ)) = Trace (ln(Sγ)) . . . . . . . . . . . . . . . . . . . . . . . . . . . Why do we need this? See remark 4.2.

3. 1
J
dJ
dt

= Trace
(
dSγ

dt
S−1
γ

)
= Trace (Mγ).

This follows by taking the time derivative of the equation in item 2, and then using the result in item 1.

It should be now clear that, from (4.8) and the result in item 3, the same equation (4.6) obtained earlier for the time

evolution of A follows.

Remark 4.2 In the calculation above we need to calculate the time derivative of J , which is defined as the deter-

minant of a matrix. Directly calculating the derivatives of a determinant is, generally, rather messy. On the other

hand, the formula in item 2 transforms this into the calculation of the derivative of the trace of the logarithm of a

matrix. While the derivative of the logarithm of a matrix is, itself, hard to compute (because matrix multiplication

is not commutative), the trace fixes this problem — since Trace(AB) = Trace(BA) for any square matrices A and B

— and one can then take the derivative as if scalars, instead of matrices, were involved.
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5 Problem 07.05.06 - Strogatz (Biased van der Pol)

5.1 Statement for problem 07.05.06

Suppose the van der Pol oscillator is biased by a constant force:

d2x

dt2
+ µ (x2 − 1)

dx

dt
+ x = a, (5.1)

where a can be positive, negative, or zero. (Assume µ > 0 as usual).

a) Find and classify all the fixed points.

b) Plot the nullclines in the Liénard plane. Show that if they intersect on the middle branch of the cubic nullcline,

the corresponding fixed point is unstable.

c) For µ� 1, show that the system has a stable limit cycle if and only if |a| < ac, where ac is to be determined.

(Hint. Use the Liénard plane.)

d) Sketch the phase portrait for a slightly greater than ac. Show that the system is excitable — it has a globally

attracting fixed point, but some (small, but not infinitesimal) disturbances can send the system on a long

excursion through phase space before returning to the fixed point; compare with Exercise 4.5.3.

This system is closely related to the Fitzhugh-Nagumo model of neural activity; for an introduction see Murray,

J. (1989) Mathematical Biology (Springer, New York) or Edelstein-Keshet, L. (1988) Mathematical Models in

Biology (Random House, New York).

5.2 Answer for problem 07.05.06

We begin by writing the Liénard plane form of the equations. The system in (5.1) can be written in the form:

d

dt

(
dx

dt
+ µ(

1

3
x3 − x)

)
+ x = a.

Thus, in terms of

y =
1

µ

(
dx

dt
+ µ(

1

3
x3 − x)

)
,

we can write the equations in the Liénard plane as:

dx

dt
= µ

(
y − 1

3
x3 + x

)
and

dy

dt
=

1

µ
(a− x). (5.2)

The equations are invariant under the transformation x→ −x, y → −y, and a→ −a. Thus:

There is no loss of generality in assuming that a > 0. (5.3)

a) Fixed points.

The system in (5.2) has only one fixed point, namely P = (x0, y0) = (a, 1
3a

3 − a). The linearized system near

this critical point is:
dX

dt
= µ(1− a2)X + µY and

dY

dt
= − 1

µ
X, (5.4)

with eigenvalues

λ =
1

2

(
µ(1− a2)±

√
µ2(1− a2)2 − 4

)
. (5.5)
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Thus:

a1) For 1 +
2

µ
< a2 P is a stable node. Figure 5.1-A.

a2) For 1 < a2 < 1 +
2

µ
P is a stable spiral. Figure 5.1-B.

a3) For 1− 2

µ
< a2 < 1 P is an unstable spiral. Figure 5.2-A.

a4) For a2 < 1− 2

µ
P is an unstable node. Figure 5.2-B.

-3 -2 -1 0 1 2 3
-1

0

1

 x

 y   

 Nullclines and flow. Fixed point: stable node 
 Biased van der Pol:  µ = 3.00  and  a = 1.60

-3 -2 -1 0 1 2 3
-1

0

1

 x

 y   

 Nullclines and flow. Fixed point: stable spiral 
 Biased van der Pol:  µ = 1.00  and  a = 1.60

Figure 5.1: (Problem 07.05.06). Biased van der Pol; equation (5.2). Nullclines and flow field.

A (left). Fixed point: stable node, 1 + 2
µ < a2. B (right). Fixed point: stable spiral, 1 < a2 < 1 + 2

µ .
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 Nullclines and flow. Fixed point: unstable spiral 
 Biased van der Pol:  µ = 1.00  and  a = 0.50
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 y   

 Nullclines and flow. Fixed point: unstable node 
 Biased van der Pol:  µ = 3.00  and  a = 0.50

Figure 5.2: (Problem 07.05.06). Biased van der Pol; equation (5.2). Nullclines and flow field.

A (left). Fixed point: unstable spiral, 1− 2
µ < a2 < 1. B (right). Fixed point: unstable node, a2 < 1− 2

µ .

The borderline values a2 = 1 + 2/µ, a2 = 1, and a2 = 1− 2/µ correspond (in the linearized regime) to a stable

improper node (double eigenvalue with geometric multiplicity one), a center and an unstable improper node,
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respectively. In order to ascertain the detailed behavior of the orbits near the critical point in these cases, a

nonlinear analysis is required. However, the only situation we actually have to worry about is the one that

occurs for a = 1 and the critical point is a linear center — because this is the only case where the nonlinear

terms decide the stability properties of the fixed point. In the other cases the nonlinear terms may turn the

improper node into a weak spiral, but they cannot change the stability properties of the critical point. In what

follows we will do a nonlinear analysis near the center, for the case a = 1. We will use a method that is an

alternative to the two-timing asymptotic techniques introduced in the lectures.

Nonlinear analysis near the linear center.

Assume a = 1, and write x = 1 +X and y = − 2
3 + 1

µ Y . The equations are then

dX

dt
= Y − µ

(
X2 +

1

3
X3

)
and

dY

dt
= −X. (5.6)

As expected, at leading order for X2 + Y 2 � 1, these are the harmonic oscillator equations. Consider now the

harmonic oscillator energy: E = 1
2

(
X2 + Y 2

)
. This quantity is conserved by the linear part of the equations

above in (5.6), but the nonlinear terms change the conservation equation Ė = 0 to:

dE

dt
= −µ

(
X3 +

1

3
X4

)
. (5.7)

We claim now that it is possible to correct E, by higher order cubic terms in X and Y , in such a way that the

leading order cubic terms on the right hand side in (5.7) are eliminated. To do this we must find a combination

of terms of the form XnY 3−n (with n = 0, 1, 2, 3), whose time derivative — as given by equation (5.6) — is, to

leading order, equal to µX3. Adding then this combination to E will produce the desired result. This turns

out to be not too difficult a task: a few simple manipulations using equation (5.6) shows that the following

four equalities apply:
d

dt

(
−X2Y − 2

3
Y 3

)
= X3

d

dt

(
1

3
X3

)
= X2Y

d

dt

(
−1

3
Y 3

)
= XY 2

d

dt

(
XY 2 +

2

3
X3

)
= Y 3


+O

(
(X2 + Y 2)2

)
. (5.8)

Therefore any possible combination of cubic terms on the right in (5.7) can be eliminated. Thus consider the

corrected energy

Ec =
1

2

(
X2 + Y 2

)
− µ

(
X2Y +

2

3
Y 3

)
, (5.9)

which satisfies:
dEc
dt

= −1

3
µX4 + 2µ2X3Y +

2

3
µ2X4Y . (5.10)

Consider now an arbitrary solution near the center (say, within a distance 0 < ε� 1 of the center). For any

finite period of time, we know that we can write

X = ε cos(t− t0) +O(ε2) and Y = −ε sin(t− t0) +O(ε2), (5.11)

where t0 is some constant. Substituting this into the right hand side in (5.10), and integrating from t = 0 to

t = 2π, we can compute the leading order change in Ec as the solution goes once around the center. This yields:

∆Ec = −µ
8
ε4 +O(ε5). (5.12)
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Thus E decreases each time the solution goes around the fixed point. Since the surface z = E(x, y) has a local

minimum at the critical point, we conclude that:

For a = 1 the critical point is a nonlinear spiral. (5.13)

Remark 5.3 As we pointed out earlier, the approach used above to arrive at the conclusion in (5.13) is

something that one can always do near a critical point that is a center, no matter what the

nonlinearity. This follows because the equations near a center can always be manipulated into a form such

that the linear part looks as in (5.6). Thus E will satisfy an equation similar to (5.7), with some nonlinearity

on the right hand side. Then (5.8) shows that E can be modified to some Ec (by adding cubic terms to E) so

that the leading order time derivative of Ec is quartic, as in (5.10). Then the argument above in (5.11 – 5.12)

will — generally — give a nonzero value to ∆Ec, meaning that we will know if the point becomes a stable or

an unstable spiral point due to the nonlinear effects.

The approach will fail when the calculation yields ∆Ec = O(ε5) above in (5.12). In this case one must add

further corrections 6 to Ec, so as to compute ∆Ec with higher accuracy. This will require the elimination

of both the fourth and fifth order nonlinearities on the right hand side in (5.10). We further note that this

failure will occur, precisely, under the same circumstances where the alternative two-timing approach will require

computation of the asymptotic approximation to an order higher than the normal cubic.

The advantage of the approach here over the two-timing asymptotic approximation introduced in the lectures is

that it requires quite a bit less computation.. The disadvantage is that it gives less detailed information

— something that, many times is not too important. It is also somewhat less general and in problems involving

many dimensions it is not necessarily as simple to implement as in 2-D. At any rate: it is worth keeping

it in mind whenever one has to elucidate stability issues in situations where linearized theory is

not good enough.

Another “advantage” of this approach, is that it is often easy to recast the argument in a form that is mathe-

matically rigorous — something that is much harder, or impossible, with two-timing calculations. For example,

in our case here, the argument from (5.10) to (5.12) is not rigorous, because it involves the more-or-less hand-

waving step (5.11). However, note that, of the two quartic terms on the right in (5.10), one is a perfect

derivative at leading order. Thus we can write:

dE
dt

=
d

dt

(
Ec −

1

2
µ2X4

)
= −1

3
µX4 +O

(
(X2 + Y 2)5/4

)
.

But this means that, in a small enough neighborhood of the critical point, E is decreasing. This shows that the

point must be a stable spiral — without any need to invoke (5.11).

b) Nullclines.

Figures 5.1 and 5.2 show plots of the nullclines (and the flow field) for the four typical cases (as outlined in

(a1) through (a4) at the beginning of part (a)) that can arise for a > 0.

It is clear that instability of the critical point (figure 5.2) corresponds to the nullclines intersecting on the

middle branch of the cubic nullcline.

c) Case µ� 1.

When µ� 1, the flow is nearly horizontal 7to the right, for y > (1/3)x3 − x; and nearly horizontal to the

left, for y < (1/3)x3 − x. It is only in a neighborhood of size O(1/µ) near the nullcline y = (1/3)x3 − x that

significant motion in the vertical direction takes place. In this neighborhood the orbits move down for x > a

and up for x < a. Two distinct situations can then arise:

6 This is possible: the vanishing of ∆Ec means that the O(ε4) terms on the right hand side in (5.10) are exact derivatives.
7 Parallel to the x-axis.
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 Phase portrait. Fixed point: unstable node 
 Biased van der Pol:  µ >> 1  and  a = 0.15
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 Phase portrait. Fixed point: stable node 
 Biased van der Pol:  µ >> 1  and  a = 1.60

Figure 5.3: (Problem 07.05.06). Biased van der Pol. Phase portrait for equation (5.2) with µ� 1.

A (left). Case with a limit cycle: a2 < 1. B (right). Case without a limit cycle: 1 < a2.

c1) Limit cycle: a < ac = 1.

A typical phase portrait for this case is shown in figure 5.3-A. Because the dividing point 8 between y

increasing and y decreasing (near the nullcline y = 1
3 x

3 − x) is in the middle branch of the cubic; a

situation arises where all the orbits approach a limit cycle. The argument is exactly the same we used

for the relaxation oscillations in the un-biased van der Pol equation.

Figure 5.3-A shows some typical orbits, the limit cycle, the nullcline y = 1
3x

3−x, and the principal curves

for the node at the critical point. Note that the middle branch of the nullcline approximates the principal

curve along which all orbits but two leave the node.

You should think carefully about what is going on with the orbits as they approach the nullcline. They

do not merge with it, but stay so close than in the figure they end up looking as the same curve. In

particular, sketch a blown up picture of the local orbit geometry near the points (x, y) = ±(1, −2/3) (the

local maximum and minimum of the nullcline), and along the middle branch of the nullcline.

c2) Global attracting fixed point a > ac = 1.

A typical phase portrait for this case is shown in figure 5.3-B. Now the dividing point between y increasing

and y decreasing is not in the middle branch of the cubic. It is then clear that this leads to the situation

shown in figure 5.3-B, without a limit cycle, and with all solutions approaching the critical point as

t→∞.

Again: think carefully about the behavior of the orbits near the nullcline; in particular of the local orbit

geometry near (x, y) = ±(1, −2/3) and the middle branch of the nullcline.

A final note: figure 5.3-B corresponds to the case a < 2. For a > 2 the critical point moves beyond the S

shaped part of the nullcline and some minor (and obvious) changes are needed in the phase portrait.

An interesting question arises now:

What happens near the critical threshold, i.e.: a ≈ ac = 1?

From (a2) and (a3) we see that 9 as a decreases through a = 1, the critical point switches from a stable spiral

to an unstable spiral. On the other hand, (5.13) shows that the nonlinearity is stabilizing near the critical

8 That is: the critical point for the equations.
9 For µ > 0 fixed.
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point. Thus:

A supercritical Hopf bifurcation occurs at a = 1 (µ > 0 fixed).

This fact creates a slight puzzle when viewed in the light of the the result above in (c1) and the phase portrait

in figure 5.3-A. Namely: for a slightly less than 1, the limit cycle is supposed to have size O(
√

1− a), while

figure 5.3-A indicates a limit cycle of size O(1). The puzzle is resolved by realizing that the situations considered

in (c1) and (c2) correspond to a fixed and µ→∞. Then:

c3) This explains why the critical point is a node in figure 5.3-A. In the situation considered in (c1) the critical

point is always a node, as follows from (a4) for a < 1 fixed and µ→∞.

c4) The Hopf bifurcation theory assures us that, for a < 1 “close” to 1, the limit cycle will have size O(
√

1− a).

But it says nothing about how close is close. In this particular case with the large parameter µ in the

equation, close means very close. Clearly, much closer that O(1/µ), since the Hopf bifurcation theory

assumes a situation where the departure of the critical point from a center is small — if 1− a = O(1/µ),

(5.5) shows that the departures will be anything but small. Thus, in the regime considered in (c1) and in

figure 5.3-A, the limit cycle need not be small at all.

0.7 0.9 1.1 1.3
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 Fixed point: unstable spiral
 Biased van der Pol:  a = 0.999 limit cycles.

 µ = 10

 µ = 11.2

 µ = 11.21411...
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 Fixed point: unstable spiral
 Biased van der Pol:  a = 0.990 limit cycles.

 µ = 3.65

 µ = 3.65053

 µ = 3.650553
 µ = 3.6506

 µ = 3.655

Figure 5.4: (Problem 07.05.06). Biased van der Pol; equation (5.2) for 0 < 1− a� 1 fixed. The limit cycles grow in

size as µ grows. A (left). Case a = 0.999. B (right). Case a = 0.990.

The behavior of the limit cycle for 0 < 1− a� 1 fixed, as µ changes, is illustrated in figure 5.4 — where the

nullclines and limit cycles for various values of µ are plotted. When 1− a� 1/µ the limit cycle is in the

regime where the asymptotic Hopf bifurcation theory applies, but it is very small.10 As µ grows, the limit

cycle also grows in size. The cycle grows at first in such a way that it approximates the right dip in the ẋ = 0

nullcline, with the loop completed by a nearly horizontal jump from the middle unstable branch to the right

stable branch of the nullcline. Once it reaches the maximum size it can achieve in this fashion, it continues

growing by having a jump across to the left (instead of the right) stable branch from the middle branch. This

switch is done when the jumping place to the right reaches the top of the left “mountain”. At first the jump

to the left is small — cutting across the top. But, as µ continues to grow, it travels down. Eventually the limit

cycle ends up enclosing the whole S shaped part of the nullcline. Then a situation like the one described in

figure 5.3 is reached.

10 For µ large it is smaller than the O(1/µ) region near the nullcline — which in the figures it is approximated by a just line.
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The behavior described in the prior paragraph is true in only a very rough sense when (1− a) is moderately

small. However, when (1− a) is very small, the limit cycle reaches a finite size only for µ fairly large. Then the

description in the paragraph above is quite accurate. Computation of the limit cycle as it follows the described

behavior is very hard, for two reasons:

A. The jumps across from the middle branch to the side branches of the nullcline are very sensitive to

numerical errors, since the middle branch is extremely unstable for µ� 1. Thus, very small errors can

dramatically alter the jumping place — thus the overall result of the calculation.

B. The limit cycle shape is very sensitive to the value of µ (this is, actually, a consequence of A.) This can

be seen in figure 5.3-A, where very small changes in µ cause large changes in the limit cycle size.

It is because of this difficulty that the limit cycles shown in figure 5.3 are for regimes where µ is not very large.

Thus the jumps across from the middle to the side branches of the nullcline are not very sharp. Had we been

able to compute the evolution (as µ grows) of the limit cycle for some real small value of (1− a), the departures

of the limit cycles from curves made up from parts of the nullcline and horizontal segments would have been

indistinguishable. This is one of those examples where theory and analytical reasoning are much better that a

numerical calculation.

d) Excitable system: 0 < a− 1� 1.

Consider the situation depicted in figure 5.3-B. If the fixed point is perturbed in such a way that the solution

is sent to a point on the phase plane with y < −2/3, then the solution will undergo a whole swing around the

nullcline,11 before returning to the critical point. If a− 1 is small, then the perturbation needed to do this will

be small. Since the critical point is a global attractor in this case, it follows that the system is excitable.

In problem 4.5.3 the threshold of excitability was given by the presence of a second critical point. Here there

is no other critical point and the role of the second critical point is taken by the the point (x, y) = (1, −2/3)

— notice that, in the limit µ→∞ this point behaves very much like a critical point of some strange sort, as

can be seen in figure 5.3-B.

6 Problem 08.02.05 - Strogatz (Hopf bifurcation using a computer)

6.1 Statement for problem 08.02.05

For the following system
dx

dt
= y + µx and

dy

dt
= −x+ µ y − x2 y, (6.1)

a Hopf bifurcation occurs at the origin when µ = 0. Using a computer, plot the phase portrait and determine whether

the bifurcation is subcritical or supercritical. For small values of µ, verify that the limit cycle is nearly circular. Then

measure the period and radius of the limit cycle, and show that the radius R scales with µ as predicted by theory.

6.2 Answer for problem 08.02.05

See figure 6.1 for the phase portrait with µ = −0.1. It indicates a stabilizing nonlinearity, thus a supercritical (soft)

Hopf bifurcation.

Figure 6.2 shows a picture of the phase portrait for µ = 0.1 on the left and the limit cycles for various values of

0 < µ� 1 on the right. A stable limit cycle appears around the critical point for 0 < µ� 1. This confirms that a

11 Going first to the left branch of the nullcline, then up to the local maximum, etc.
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 dx/dt=µx+y  &  dy/dt=-x+ µy-x 2y,  for: µ = -0.1 

Problem 08.02.05.

System (6.1) for µ = −0.1 < 0.

All the orbits spiral towards the origin, even those O(1)

away. Since µ is fairly small, this is a good hint that the

nonlinearity is stabilizing, which should lead to a super-

critical (soft) Hopf bifurcation.

Figure 6.1: (Problem 08.02.05). Phase portrait for the system in (6.1) when µ = −0.1 < 0
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 dx/dt=µx+y  &  dy/dt=-x+ µy-x 2y,  for: µ = 0.1 
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 Limit cycles for:  xt=µx+y  &  yt=-x+ µy-x 2y.

 µ = 0.01
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Figure 6.2: (Problem 08.02.05). Left: phase portrait for the system in (6.1) when µ = 0.1 > 0. The picture on the

right shows the limit cycles for various values of 0 < µ� 1.

supercritical (soft) Hopf bifurcation occurs.

For 0 < µ� 1 it is easy to see (in figure 6.2) that the

limit cycles are nearly circular. The table on the right

shows a listing of various parameters for these cycles.

It should be clear that the theoretical predictions (e.g.:
R
√
µ
∼ constant, and period ∼ linear period) are satis-

fied.

Limit Cycle Parameters, 0 < µ� 1.

µ R =radius.
R
√
µ

Period

π
.

0.0160 0.35775 2.8283 2.0014

0.0100 0.28285 2.8285 2.0005

0.0025 0.14142 2.8284 2.0000

Furthermore, the limit cycle for µ = 0.1 is not very circular, but if we interpret its radius as the value of x when y = 0,

we obtain R ≈ 0.89235, which yields
R
√
µ

= 2.8219 (quite close to the values in the table). In this case the period is
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P ≈ 2.0579π.

7 Problem 08.02.07 - Strogatz

(Hopf and homoclinic bifurcations using a computer)

7.1 Statement for problem 08.02.07

For the following system
dx

dt
= µx+ y − x2 and

dy

dt
= −x+ µ y + 2x2, (7.1)

a Hopf bifurcation occurs at the origin when µ = 0. Using a computer, plot the phase portrait and determine

whether the bifurcation is subcritical or supercritical. For small values of µ, verify that the limit cycle is nearly

circular. Then measure the period and radius of the limit cycle, and show that the radius R scales with µ as

predicted by theory.

In addition to a Hopf bifurcation, this system also exhibits an homoclinic bifurcation of the limit cycle. FIND IT.

7.2 Answer for problem 08.02.07

See figure 7.1 for the phase portrait with µ = −0.04. It indicates a stabilizing nonlinearity, thus a supercritical (soft)

Hopf bifurcation.

-0.3 -0.15 0 0.15 0.3 0.45

-0.3

-0.15

0

0.15

0.3

0.45

 for µ = -0.04

 x

y

 xt = µ x + y - x 2    &    yt = -x + µ y + 2x2,

Problem 08.02.07.

System (7.1) for µ = −0.04 < 0, when the critical point

is a stable spiral.

All the orbits spiral towards the origin, even those O(1) away.

Since µ is fairly small, this is a good hint that the nonlinearity

is stabilizing, which should lead to a super-critical (soft)

Hopf bifurcation. See remark 7.4.

Figure 7.1: (Problem 08.02.07). Phase portrait for the system in (7.1) when µ = −0.04 < 0.

Figure 7.2 shows a picture of the phase portrait for µ = 0.04 on the left and the (stable) limit cycles for various small

positive values of 0 < µ� 1 on the right. A stable limit cycle appears around the critical point for 0 < µ� 1. Thus

a super-critical (soft) Hopf bifurcation occurs.
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Figure 7.2: (Problem 08.02.07). Left: phase portrait for the system in (7.1) for µ = 0.04 < 0. Right: the limit cycles

for three values of 0 < µ� 1 — larger values of µ correspond to larger limit cycles.

For 0 < µ� 1 it is easy to see (in figure 7.2) that the

limit cycles are nearly circular. The table on the right

shows a listing of various parameters for these cycles.

It should be clear that the theoretical predictions (e.g.:
R
√
µ
∼ constant, and period ∼ linear period) are satis-

fied.

Limit Cycle Parameters, 0 < µ� 1.

µ R =radius.
R
√
µ

Period

2π
.

0.010 0.1259 1.2590 1.0396

0.005 0.0926 1.3096 1.0318

0.003 0.0731 1.3346 1.0113

Furthermore, for this system an homoclinic bifurcation of the limit cycle also happens, as follows:

As µ grows from µ = 0, the limit cycle grows in size, till it eventually reaches the critical point at x = 1+µ2

2+µ and

y = x2 − µx (which is a saddle). At this point an homoclinic bifurcation of the limit cycle happens — see figure 7.3

— with the period of the limit cycle diverging to ∞, and the limit cycle becoming an homoclinic connection for the

saddle.

Remark 7.4 The distinction between a sub and super critical Hopf bifurcation arises solely from the stability of

the involved limit cycle. If the limit cycle is stable, then the bifurcation is super-critical (or soft). If the limit cycle

is unstable, then the bifurcation is sub-critical (or hard). In turn, this is determined by the role of the nonlinearity

at the bifurcation point (where the linear terms are neutrally stable). If the nonlinear terms are stabilizing, then

the bifurcation is super-critical; if the nonlinear terms are destabilizing, then the bifurcation is sub-critical; if the

nonlinear terms are neutrally stable, then the situation is singular and the Hopf bifurcation scenario does not apply.

In the particular case of the system in (7.1), the fact that the limit cycle appears for µ > 0 is completely irrelevant to

the classification of the type of Hopf bifurcation that occurs. What matters is that the limit cycle that is born is stable.
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 for µ = 0.065
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 xt = µ x + y - x 2    &    yt = -x + µ y + 2x2,

Problem 08.02.07.

Limit cycle for the system in (7.1) for µ = 0.065, when

the limit cycle has grown and it is about to become an

homoclinic orbit for the saddle at x = 1+µ2

2+µ
, y = x2 −

µx. The limit cycle period is about 52 for this value of µ.

Note that an homoclinic bifurcation of this limit cycle is

about to happen.

Figure 7.3: (Problem 08.02.07). Limit cycle for the system in (7.1) when µ = 0.65.

8 Problem 08.04.03 - Strogatz (Homoclinic bifurcation via computer)

8.1 Statement for problem 08.04.03

Using numerical integration, find the value of µ at which the system

dx

dt
= µx+ y − x2 and

dy

dt
= −x+ µ y + 2x2, (8.1)

undergoes a homoclinic bifurcation. Sketch the phase portrait just above and below the bifurcation. In fact:

1. Find and classify all the critical points for all values of µ.

2. For µ = 0 the origin is a center for the linearized equations. What happens for the nonlinear equations? Are the

nonlinear terms stabilizing or destabilizing? What sort of critical point is the origin for the full equations: stable

spiral, unstable spiral, or center? You should be able to do this analytically — See hint 8.1.

3. What happens at µ crosses 0? (Justify your answer). The result in item 2 should help here!

4. Increase µ from µ = 0, and find the homoclinic bifurcation (this is where you’ll need a computer).

5. Optional: Compute the period of the limit cycle as the homoclinic bifurcation is approached, and verify the

theoretical prediction: period ∼ − log |µ− µc|.

Remark 8.5 This problem is very similar (same system of equations) to Strogatz problem 8.2.7. However: 8.2.7 is

purely computational, while here you are being asked to do the analysis behind the problem.

Hint 8.1 To do the analysis in item 2, you have two alternatives:

A. Do a “two-times expansion” for orbits near the critical point. Namely: write the equations in terms of x = εX

and y = ε Y (where 0 < ε� 1). Then expand.

B. Find a “local Liapunov function”, E = (x2 + y2)+ higher order terms, such that dE
dt
< 0 near the origin. In

fact dE
dt ≤ 0 is O.K., as long as dE

dt = 0 only for curves the orbits cross — e.g. the axis.

The first alternative is a straightforward application of the methods in the “Weakly Nonlinear Things” notes. The

second actually provides a rigorous proof of the result. However, it turns out that getting E is not completely
trivial! The naive approach to searching for E is
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0. Define E0 = x2 + y2 and compute its time derivative. This yields

dE0

dt
= (3rd-order terms) + (4th-order terms).

Of course, this is not good enough: the 3rd-order terms can have any sign. Hence:

1. Add 3rd-order term “corrections” to E0, to eliminate the 3rd-order terms in Ė0. That is, define E1 = E0+ 3rd-order

terms, so that
dE1

dt
= (4th-order terms) + (5th-order terms).

There is only one way to do this. Unfortunately, some of the 4th-order terms are positive. Hence:

2. Add 4th-order terms “corrections” to E1, to eliminate the bad 4th-order terms in Ė1. That is, define E2 = E1+ 4th-order

terms, so that
dE2

dt
= (negative 4th-order terms) + (5th-order terms) + (6th-order terms).

Again: there is only one way to do this. Unfortunately, this still does not work. Some of the higher order terms here

are always smaller than the negative 4-th order terms, but some are not. For example, if −x2 y2 is a negative 4-th order

term, then: (i) −x2 y2 + x3 y2 is always negative for x2 + y2 � 1, so x3 y2 is not a problem, but (ii) −x2 y2 + x4 y can

switch sign (if 0 < y < x2 � 1), so x4 y is a “bad” term. Hence:

3. Add 5th-order terms “corrections” to E2, to eliminate the bad 5th order terms ... Unfortunately, you then end up with

“bad” 6th order terms!

This never ends! Fortunately: if you do the process above correctly, you will notice that: while the terms in En
involve ever higher powers of y, there is only a very small set of powers of x that appear. Hence, look for a Liapunov

function of the form E = g(y) + x2 f(y) + . . ., where g, f , etc., are to be determined. This will work: there is a

finite (and small) numbers of terms involved. After you have obtained E in this fashion, you will see that it can be

expanded as in item B above.

8.2 Answer for problem 08.04.03

Before we start, let us find the critical points for the system in (8.1). Multiplying the first equation by µ, and

subtracting from the result to the second equation, yields 0 = (1 + µ2)x− (2 + µ)x2 at the critical points. From

this, and y = −µx+ x2 (also valid at the critical points), we obtain:

• P0 = (x, y) = (0, 0) is a stable spiral for µ < 0, and an unstable spiral for µ > 0. It can be shown (see

§ 8.2.1) that a supercritical (soft) bifurcation occurs for µ = 0, and a stable limit cycle appears enclosing

the origin for µ > 0.

• Ps = (x, y) = 1+µ2

2+µ

(
1, 1−2µ

2+µ

)
is a critical point for µ 6= −2. Always a saddle.

The homoclinic bifurcation occurs as the limit cycle created by the Hopf bifurcation at µ = 0 grows in size with µ,

till at a critical µ = µc ≈ 0.0661 it collides with the saddle at Ps, and it is destroyed. This process is illustrated

by figures 8.1 and 8.2.

On the left in figure 8.1, for µ = 0.055, we see how the limit cycle has grown from its original position close to the

origin, and it is now large enough to get very close to the saddle at Ps. Notice how the stable manifold for the

saddle approaches the limit cycle, while the unstable one “hugs” it closely (going backwards in time) and then leaves

towards infinity.

On the right in figure 8.1, for µ = 0.066, only the limit cycle is shown. This µ is very close to the critical value. The

limit cycle is very close to the saddle, and is very hard to distinguish it from an homoclinic connection. Precisely

at µ = µc the limit cycle becomes an homoclinic connection, with the period going to infinity. As µ→ µc, the limit

cycle period behaves like | log(µc − µ)| — see the table below.

Finally, figure 8.2 shows the phase portrait for µ = 0.077, above critical. The limit cycle has disappeared, the left

un-stable manifold from the saddle approaches the spiral point as t→ −∞, while the stable one approaches infinity

as t→∞.
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Figure 8.1: (Problem 8.4.3). Phase portraits for the system (8.1), ẋ = µx + y − x2 & ẏ = −x + µ y + 2x2. Left:

µ = 0.055, slightly below µc ≈ 0.0661. Right: limit cycle for µ = 0.066, below but very close to µc.
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Phase plane portrait for the system in (8.1), that

is ẋ = µx+ y − x2 and

ẏ = −x+ µy + 2x2,

with µ = 0.077. This value is slightly above

the value µc ≈ 0.061, at which an homoclinic

bifurcation of a limit cycle occurs.

Horizontal axis = x. Vertical axis = y.

Figure 8.2: (Problem 8.4.3). Phase portrait for (8.1) with µ = 0.077, slightly above µc ≈ 0.0661.

In general, homoclinic bifurcations are hard to find by means other than numerical integration of the equations — this

example is no exception to this rule. Perhaps there is an argument one can make to find (and approximate) the

critical value at which the bifurcation occurs, but I was unable to find one. I was not even able to produce an

argument indicating that a bifurcation should occur, other than the following (very gross) one: Once the Hopf

bifurcation occurs, the size of the limit cycle grows like
√
µ. Since the saddle starts fairly close to the origin, even

rather small values of µ give values of
√
µ that make the limit cycle large enough to “reach” the saddle. Hence, it

is not unreasonable to expect a bifurcation to occur for some small µ. This is what happens, with
√
µc ≈ 0.26 and

Ps(µc) at a distance ≈ 0.53 from P0.
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For 0 < |µ− µc| � 1 the period of a limit cycle about to disappear (due

to an homoclinic bifurcation) behaves like − log(|µ− µc|). The table on

the right illustrates this, with α = Period
− log(µc−µ) = constant at leading

order.

Note that the calculation of µc is not very reliable, so getting very close

to it is not quite possible. Nevertheless, the table shows reasonable agree-

ment with the theoretical expectation.

µ Period α

0.055 8.969 1.993

0.057 9.265 1.971

0.059 9.636 1.948

0.061 10.130 1.919

0.063 10.877 1.883

0.065 12.458 1.829

8.2.1 Analysis for the Hopf bifurcation

The origin switches from a stable to an unstable spiral point as µ crosses µ = 0. Hence, in order to show that a

supercritical Hopf bifurcation occurs for µ = 0, all we need to do is to show that the origin is (nonlinear) stable spiral

for µ = 0. Namely, for the system

dx

dt
= y − x2 and

dy

dt
= −x+ 2x2. (8.2)

Following the hint (I will not display here the calculations described in the hint that motivate this form), we search

for a Liapunov function of the form

E = g(y) + x2 f(y) + x3 h(y). (8.3)

It is then easy to check that
d

dt
(g) = −x g′ + 2x2 g′, (8.4)

d

dt

(
x2 f

)
= 2x y f − 2x3 f − x3 f ′ + 2x4 f ′, (8.5)

and
d

dt

(
x3 h(y)

)
= 3x2 y h− 3x4 h− x4 (1− 2x)h′. (8.6)

The terms linear in x cancel if g′ = 2 y f , and the cubic ones cancel if f ′ = −2 f . Thus

f = e−2 y > 0 and g =
1

2

(
1− e−2 y

)
− y e−2 y (8.7)

yield
dE

dt
= 4x2 y f − 4x4 f + 3x2 y h− 3x4 h− x4 (1− 2x)h′. (8.8)

Now take h = −
4

3
f , to obtain

dE

dt
= −

8

3
x4 (1− 2x) f. (8.9)

This is precisely what we were looking for. For x small, Ė < 0, except along the coordinate line x = 0 where Ė = 0.

Since non-trivial orbits cross x = 0 (i.e.: ẋ 6= 0 for x = 0 and y 6= 0) E is a decreasing function along them. Further:

E = x2 + y2 +O((x2 + y2)3/2), (8.10)

so that the origin is a local minimum for E. In addition, it is easy to see that θ̇ = −1 +O((x2 + y2)1/2), where θ is

the polar angle. Hence the origin is a stable spiral point.

THE END.


