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1 Problem 14.09.22 (Attracting and Liapunov stable)

1.1 Statement for problem 14.09.22

Recall the definitions for the various types of stability that concern critical points:

Let x∗ be a fixed point of the system ẋ = f(x). Then:

1. x∗ is attracting if there is a δ > 0 such that limt→∞ = x∗ whenever ‖x(0)− x∗‖ < δ. That is: any trajectory

that starts within δ of x∗ eventually converges to x∗. Note that trajectories that start nearby x∗ need not stay

close in the short run, but must approach x∗ in the long run.

2. x∗ is Liapunov stable if for each ε > 0, there is a δ > 0 such that ‖x(t)− x∗‖ < ε for t > 0, whenever

‖x(0)− x∗‖ < δ. Thus, trajectories that start within δ of x∗ stay within ε of x∗ for all t > 0.

In contrast with attracting, Liapunov stability requires nearby trajectories to remain close for all t > 0.

3. x∗ is asymptotically stable if it is both attracting and Liapunov stable.

4. x∗ is repeller if there exist ε > 0 and δ > 0 such that: if 0 < ‖x(0)− x∗‖ < δ, then (after some critical time) it

will be ‖x(t)− x∗‖ > ε (i.e., for t > tc). Repellers are a special kind of unstable critical points.

For each of the following systems, decide whether the origin is attracting but not Liapunov stable, Liapunov stable,

asymptotically stable, repeller, or unstable but not a repeller.

a) ẋ = 2 y and ẏ = −3x.

b) ẋ = y cos(x2 + y2) and ẏ = −x cos(x2 + y2).

c) ẋ = −x and ẏ = −|y| y.

d) ẋ = 2x y and ẏ = y2 − x2. Hint: what happens along x = 0?

e) ẋ = x− 2 y x2 − 4 y3 and ẏ = y + x3 + 2x y2.

f) ẋ = y and ẏ = x.

g) Finally, consider the critical point (x, y) = (1, 0), for the system

ẋ = (1− r2)x− (1− x
r ) y and ẏ = (1− r2) y + (1− x

r )x, (1.1)

defined in the “punctured” plane r =
√
x2 + y2 > 0. Hint: write the equations in polar coordinates.

Additional hints. In some cases you can get the answer by finding a function J = J (x, y) with a local minimum at

the origin such that dJ
dt > 0 along trajectories — or maybe one such dJ

dt < 0, or maybe one such dJ
dt = 0. In other

cases look for special trajectories that either leave, or approach, the origin.
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1.2 Answer for problem 14.09.22

These are the answers, for each system:

a) It is easy to check that J = 3x2 + 2 y2 is constant along the trajectories.

The origin is a center, thus Liapunov stable — it is, in fact, a linear, stable, node.

b) It is easy to check that J = x2 + y2 is constant along the trajectories.

The origin is a center, thus Liapunov stable.

c) In terms of the initial values, the solution for t > 0 is x = x0 e
−t and y = y0/(1 + |y0| t).

The origin is asymptotically stable — it is, in fact, a nonlinear, stable, node.

d) The first equation shows that, if x vanishes anywhere, then it vanishes everywhere — i.e., x = 0 is an invariant

curve. The other equation then reduces to ẏ = y2. Thus x = 0 and y > 0 is an orbit leaving the origin, and

x = 0 and y < 0 is an orbit approaching the origin.

The origin is unstable, but not a repeller.

Note: for this system it can be shown that all the trajectories that have x 6= 0 somewhere (thus everywhere, why?)

approach the origin as t→∞.

e) It is easy to check that J = x2 + 2 y2 satisfies dJ
dt = 2J along the trajectories.

The origin is a repeller.

Note: in fact, the origin is a nonlinear, unstable, spiral. This follows from the fact that the equations yield, for the polar

angle θ, θ̇ = J /r2 — where r2 = x2 + y2.

f) It is easy to check that J = x2 − y2 is constant along the trajectories.

The origin is a saddle (in fact, a linear saddle), thus unstable, but not a repeller.

g) In polar coordinates equation (1.1) takes the form

ṙ = (1− r2) r and θ̇ = 1− cos θ. (1.2)

From this it should be clear that, for any initial data 0 < r0 and 0 < θ < 2π, the solution approaches the

critical point as t→∞. Furthermore, the real positive axis (i.e., θ = 0) is an invariant curve, and along it

the system reduces to ẋ = (1− x2)x — thus, again, the trajectories approach the critical point as t→∞. It

follows that the critical point is attracting.

On the other hand, consider the trajectory r ≡ 1 and 0 < θ < 2π. This trajectory starts at the critical point

at t = −∞, goes around the unit circle counterclockwise, and arrives back at the critical point at t =∞. In

fact, any solution starting near the critical point with y > 0, initially moves away from the critical point (as

far as a distance ≈ 2), before returning to the critical point as t→∞. Thus the critical point is not Liapunov

stable.

2 Problem 06.01.10 - Strogatz (Computer generated phase portrait)

2.1 Statement for problem 06.01.10

First, plot a computer generated phase plane portrait for the ”two-eyed monster”

dx

dt
= y + y2 and

dy

dt
= −1

2
x+

1

5
y − x y +

6

5
y2. (2.1)

In particular, make a plot that covers the region −5 ≤ x ≤ 3 and −3 ≤ y ≤ 2.

Next find the critical points and classify them. Does what you observe in the plot match what the theory predicts?

Explain any discrepancies. Hint: Explore carefully what happens close to the critical points.
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2.2 Answer for problem 06.01.10

Figure 2.1 (left) shows a computer generated phase portrait for the solutions of (2.1). This is a “large” scale picture

and (to avoid crowding) we have not indicated the orbit directions with arrows.
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Figure 2.1: (Problem 06.01.10). ”Two-eyed monster”. Critical points marked by the dots at the eye’s pupils.

Figure 2.1 (right) shows a smaller region of the phase plane, with the flow directions indicated by arrows. Note that

something “funny” is going on near the critical points, as we explain next

The critical points of equation (2.1) are Pl = (−2, −1) and Pr = (0, 0). It is clear, from a linearized analysis,

that

A. Pl is a stable spiral, with eigenvalues λ = −0.1± i
√
0.49.

B. Pr is an un-stable spiral, with eigenvalues λ = +0.1± i
√
0.49.

On the other hand, the picture in figure 2.1 (right) gives the impression that the orbits are leaving Pl and approaching

Pr, which certainly contradicts A and B above. How do we explain this?

The answer to the mystery in the prior paragraph is provided by figure 2.2, which shows a detail near Pr. The

-1 -0.5 0 0.5 1 1.5
-0.5

0

0.5

1
 Two-eyed monster.

 x

 y

Figure 2.2: (Problem 06.01.10). Detail near the critical point Pr (un-stable spiral), marked by the dot at.

picture shows that, indeed, the critical point is an un-stable spiral, but it is enclosed by a stable limit cycle. Thus,

all the orbits that seem to be approaching Pr in figure 2.1 (right), in fact are approaching this limit cycle. Similarly,

there is an un-stable limit cycle near Pl, so that the orbits that seem to be leaving Pl, are in fact leaving the unstable

limit cycle near Pl (the phase plane portrait near Pl looks quite similar to the picture shown in figure 2.2, except

that the orbits move away from the limit cycle, rather than towards it).
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In summary, this is the global behavior for all the orbits:

1. Orbits starting within the limit cycle enclosing Pl, approach Pl as t→∞ and the limit cycle as t→ −∞.

2. Orbits starting within the limit cycle enclosing Pr, approach Pr as t→ −∞ and the limit cycle as t→∞.

3. All other orbits approach the limit cycle enclosing Pr (resp. Pl) as t→∞ (resp. t→ −∞).

Remark 2.1 Explain why all the orbits, for |x| � 1, seem to either approach a curve with y ≈ −0.5 (for x > 0) or

leave it (for x < 0). (Extra task #1).

3 Problem 06.02.02 - Strogatz (A trapped solution)

3.1 Statement for problem 06.02.02

Consider the system
dx

dt
= y,

dy

dt
= −x+ (1− x2 − y2) y.

 (3.1)

a. Let D be the open disk x2 + y2 < 4. Verify that the system satisfies the hypothesis of the existence and

uniqueness theorem 1 throughout the domain D.

b. By substitution, show that x(t) = sin(t) and y(t) = cos(t) is an exact solution of the system.

c. Now consider a different solution, in this case starting from the initial conditions

x(0) =
1

2
and y(0) = 0.

Without doing any calculations, explain why this solution must satisfy x(t)2 + y(t)2 < 1 for all t <∞.

3.2 Answer for problem 06.02.02

a. The hypothesis we must verify are those stated in the theorem at the start of section 6.2 of the book. Now: The

set D is open and connected, and the right hand side of the system in (3.1) is in fact analytic (a polynomial

in the variables), which is far more than needed.

b. This part is rather trivial, since x2 + y2 ≡ 1 for the given solution.

c. Since x(0)2 + y(0)2 = 0.25 < 1, uniqueness (see part a) guarantees that x(t)2 + y(t)2 < 1 for all times. Other-

wise this solution would have to cross the solution given in part b, and there would be two different solutions

going through the same point in phase space.

1 See § 6.2 of Strogatz book — p. 149 (1st edition), p. 150 (2nd edition). A stronger version was stated during Lectures 1-2.
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4 Problem 06.03.11 - Strogatz

(A nonlinearity changes a star into a spiral)

4.1 Statement for problem 06.03.11

Here is an example showing that borderline fixed points are sensitive to nonlinear terms. Consider the system in

polar coordinates given by
dr

dt
= −r and

dθ

dt
=

1

ln(r)
, where 0 ≤ r < 1. (4.1)

a) Write the system in x, y coordinates, in the form
dx

dt
= f(x, y) and

dy

dt
= g(x, y).

b) Show that the linearized system about the origin is
dx

dt
= −x and

dy

dt
= −y.

Thus the origin is a stable star for the linearization. See remark 4.2.

c) Find r = r(t) and θ(t) explicitly, given initial conditions (r0, θ0) — with 0 < r0 < 1.

d) Show that the solutions in item c satisfy r(t)→ 0 and θ(t)→ −∞ as t→∞. Therefore the origin is a stable

spiral for the nonlinear system.

Remark 4.2 This system is not smooth at the origin, since both f and g fail to have second derivatives there.

Nevertheless, both have continuous partial derivatives for r < 1. Hence, (i) a linearized system at the origin is well

defined, (ii) the theorem guaranteeing existence and uniqueness for the solutions applies.

4.2 Answer for problem 06.03.11

Part (a)

From x = r cos(θ) and y = r sin(θ), we have: ẋ = ṙ cos(θ)− r sin(θ)θ̇ and ẏ = ṙ sin(θ) + r cos(θ)θ̇. Thus:

ẋ = −x− 2y

ln(x2 + y2)
and ẏ = −y +

2x

ln(x2 + y2)
. (4.2)

Part (b)

Linearizing (4.2) about the origin gives the system on the right (note

that the flow vector is not smooth at the origin, nevertheless: it still

has a linearization, with the error term O(r/ ln(r)), instead of the

usual O(r) for smooth systems).

(
ẋ

ẏ

)
=

(
−1 0

0 −1

)(
x

y

)
.

This system has a stable star node (see page 135 of Strogatz book, figure 5.2.5).

Part (c)

Here we find the solution of (4.1), with initial conditions 0 < r(0) = r0 < 1 and θ(0) = θ0, explicitly. To do this, we

fist solve the equation for r = r(t) and substitute the answer into the equation for θ = θ(t), which we then solve.

This yields:

r(t) = r0e
−t and θ(t) = − ln(t− ln r0) + ln(− ln(r0)) + θ0, (4.3)

which is defined for t > ln(r0) only. Note that t = ln(r0) < 0 is the time when the solution to (4.1) — evolving

backwards in time — reaches r = 1, where the system is singular.

Part (d)

From (4.3) we see that r(t)→ 0 and θ(t)→ −∞ as t→∞. Thus the origin is a stable spiral point for this

nonlinear system.
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5 Problem 06.03.13 - Strogatz

(A linear center that is a nonlinear spiral)

5.1 Statement for problem 06.03.13

(Another linear center that is actually a nonlinear spiral). Consider the system

dx

dt
= −y − x3 and

dy

dt
= x. (5.1)

Show that the origin is a spiral, although the linearization predicts a center.

5.2 Answer for problem 06.03.13

The linearized equations near the (single) critical point at the origin are

dx

dt
= −y and

dy

dt
= x. (5.2)

These, obviously, have a center at the origin (they are, essentially, the harmonic oscillator equations). On the other

hand, for the full system, we have:
dE

dt
= −x4 ≤ 0, (5.3)

where E = 1
2
(x2 + y2) is the “energy”. This is not quite a Liapunov function (by the book’s definition) because

dE
dt vanishes for x = 0. However, for any non-trivial orbit, dx

dt 6= 0 when x = 0, so that we can conclude that E is a

(strictly) monotone decreasing function of t along any orbit. It follows that

A. All orbits approach the origin as t→∞.

On the other hand, using polar coordinates (x = r cos(θ) and y = r sin(θ)), it is clear that

dθ

dt
= 1 + r2 sin(θ) cos3(θ), so that

B. For r < 1, θ is a monotone increasing function of t.

From (A) and (B), it immediately follows that the origin is a spiral point.

Remark 5.3 Eliminating the variable x in (5.1) yields d2y
dt2 +

(
dy
dt

)3

+ y = 0. Thus, (5.1) is the harmonic oscillator

with the nonlinear damping coefficient given by
(
dy
dt

)2

.

6 Problem 06.05.07 - Strogatz

(General relativity and planetary orbits)

6.1 Statement for problem 06.05.07

The relativistic equation for the orbit of a planet around the Sun is

d2u

dθ2
+ u = α+ ε u2, (6.1)

where u = 1/r and (r, θ) are the polar coordinates for the planet’s position in the plane of motion. The parameter α

is positive and can be found explicitly from classical Newtonian mechanics. 2 The term ε u2 is Einstein’s correction,

where ε is a very small positive parameter.
2 The parameter α is related to the angular momentum of the orbit.
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a) Rewrite the equation as a system in the (u, v) plane, where v = du/dθ.

b) Find all the equilibrium points of the system.

c) Show that one of the equilibria is a center in the (u, v) phase plane, according to the linearization. Is it a

nonlinear center?

d) Show that the equilibrium point found in (c) corresponds to a circular planetary orbit.

e) Extra questions, not in the book version. The equation has solutions where u is a periodic function of θ. (1)

Do this solutions correspond to periodic orbits around the Sun? (2) If not, what do they correspond to? (3)

What happens when ε = 0 (Newtonian mechanics)?

6.2 Answer for problem 06.05.07

a) Introducing v = du/dθ, the equation can be written as the phase plane system:

du

dθ
= v,

dv

dθ
= −u+ α+ ε u2.

 (6.2)

b) The equilibrium points for the system in (6.2) are given by v = 0 and

u =
1

2ε

{
1±
√

1− 4 ε α
}
.

Thus, either u = u1 ∼
1

ε
− α+ . . . or u = u2 ∼ α+ ε α2 . . .

c) Note that the equation in (6.1) is a conservative system, with energy E =
1

2
v2 + V (u),

where the potential V is given by V = 1
2
u2 − αu − 1

3
ε u3. Furthermore, u2 is a local minimum for this

potential, while u1 is a local maximum. It follows that, for the two critical points in part (b) above, we have:

c1. (u, v) = (u1, 0) is a saddle.

c2. (u, v) = (u2, 0) is a center.

d) The equilibrium points have u = 1/r constant, thus they correspond to circular orbits.

Remark 6.4 Near the critical point (u, v) = (u2, 0), the solutions of the system in (6.2) are all periodic functions

of θ. Does this mean then that the planet orbits around the Sun following a closed periodic orbit? The answer to this

is no, unless the period of the solution of (6.2) is 2π (and u does not vanish on the orbit). Otherwise, as the planet

goes around the Sun one turn, it does not return to its prior position, but some other and the orbit does not quite

close.

For ε = 0 (Newtonian Mechanics) the solutions of (6.1), given by

u = α+ c sin(θ + θ0),

are all periodic of period 2π, and the orbits with α > |c| are all closed and periodic (Kleper ellipses). In the Relativistic

case, however, the period is a function of the amplitude of the deviation from the center, and the orbits are then not

closed (for small enough deviations, they look like ellipses whose principal axes rotate slowly in space).
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7 Problem 06.08.09 - Strogatz (Counter-rotating limit cycles)

7.1 Statement for problem 06.08.09

A smooth vector field on the phase plane is known to have exactly two closed trajectories, one of which lies inside

the other. The inner circle runs counterclockwise, and the outer runs clockwise.

True or False: there must be at least one fixed point in the region between the cycles.

If true, prove it. If false, provide a simple counterexample.

Hint: Beware of “gut feeling” instinctive answers. There is a good chance that your intuition is wrong!

7.2 Answer for problem 06.08.09

False. Consider systems of the form
dx

dt
= a x− b y and

dy

dt
= b x+ a y, (7.1)

where a and b are smooth functions of the square of the radius, r2 = x2 + y2. Namely: a = a(r2) and b = b(r2). The

system in (7.1) yields a smooth vector field. In polar coordinates this is the same as:

dr

dt
= a r and

dθ

dt
= b. (7.2)

Now select the functions a and b so that

A. a = a(r2) has exactly two zeros, r2 = a1 > 0 and r2 = a2 > a1. e.g.: a = (1− r2)(r2 − 3).

B. b = b(r2) is such that b(a1) > 0 and b(a2) < 0. e.g.: b = 2− r2.

-4 -2 0 2 4
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-3

-2

-1
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1

2

3

4

 x

 y

 Counter-rotating limit cycles.

Here a = 0.03 (1− r2)(r2 − 9)/(3 + 2r2)

and b = arctan(0.3 (4− r2)).

These values are selected to get plots where the struc-

ture is clearly visible (e.g. avoid “crowded” spirals near

the critical point). The two limit cycles, the critical

point at the origin, and one typical orbit in each region

are shown. Other orbits follow by rotation of these, since

the system is invariant under rotation. The arrows indi-

cate the flow direction.

Figure 7.1: (Problem 06.08.09). Phase plane portrait for equation (7.1).

Any system of the type above provides a counterexample, since

• Exactly one critical point: the origin — a stable or unstable spiral depending on the sign of a(0). No other

point is a fixed point, since nowhere for r > 0 do both ṙ and θ̇ vanish simultaneously.

• Exactly two closed orbits: the circles r ≡
√
a1 (runs counterclockwise) and r ≡

√
a2 (runs clockwise).

Figure 7.1 shows the phase portrait for a system of this type.
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8 Problem 07.02.17 - Strogatz (Dulac’s criterion on an annulus)

8.1 Statement for problem 07.02.17

Assume the hypothesis of Dulac’s criterion. However, assume that the region of interest, R, is (instead of simply

connected) topologically equivalent to an annulus (i.e.: it has exactly one hole in it). Using Green’s theorem, show

that there exists at most one closed orbit in R — this result can be useful as a way of proving that a closed orbit is

unique.

8.2 Answer for problem 07.02.17

We begin by considering the possible ways in which a limit cycle can fit inside the region R. It is easy to see that

either:

A. The limit cycle does not enclose the hole in the region, as in the example of the limit cycle Γ2 in the left

panel of figure 8.1. It is clear that a cycle of this type can always be enclosed in a simply connected sub–region

of R. Then Dulac’s criteria tells us that such a cycle is not possible.

B. The limit cycle encloses the hole in the region, as in the example of the limit cycle Γ1 in the left panel of

figure 8.1. Such a cycle can only go once around the hole (it cannot have self-crossings). We show below that,

with the hypothesis above, there can be at most one such limit cycle.

 Annular region: two types of limit cycles.

 x

 y

 R

 !1

 !2

 Annular region: enclosing limit cycles.

 x

 y

 R

 !1
 !2

Figure 8.1: (Problem 07.02.17). The left panel illustrates the two possibilities for limit cycles in an annular region:

either the cycle encloses the hole, Γ1, or it does not, Γ2. The right panel shows two cycles enclosing the hole in the

region. They must also enclose each other, since orbits cannot cross. The flow directions shown for the cycles are

arbitrary — any one of them can be reversed, independently of the others.

Let us begin by assuming that there are two limit cycles in the region R. Then they must both enclose the hole and

one of them must enclose the other, as in the example of the limit cycles Γ1 and Γ2 in the right panel of figure 8.1.

Consider now the region enclosed between these two limit cycles (call it Ω, with ∂Ω = Γ1 + Γ2 its boundary),

and let us write the equations the limit cycles satisfy as

ẋ = F(x),

where x = (x, y) and F = (f, g) are 2-vector valued. What we know (these are the hypothesis of Dulac’s criterion)

is that:
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There exists a continuously differentiable, real valued function h = h(x) such that ∇ · (hF) has one sign through-

out R. Green’s theorem then tells us that:

0 6=
∫

Ω

∇ · (hF) dA =

∮
∂Ω

hF · n dS = 0,

where n is the unit normal to the boundary ∂Ω, the first inequality follows from Dulac’s hypothesis above, and the

last equality follows from the assumption that the boundary of Ω is made up by limit cycles. This is a contradiction,

thus we cannot have two limit cycles.

9 Problem 07.03.10 - Strogatz

(Existence/non-existence of a limit cycle)

9.1 Statement for problem 07.03.10

Consider the two dimensional system
dx

dt
= Ax− r2 x, (9.1)

where r = ‖x‖ =
√
x2
1 + x2

2, A is a 2× 2 constant real matrix with complex eigenvalues α± i β, and β 6= 0. Show

that there exists at least one periodic orbit if α > 0, and that there are none for α < 0.

Hint. Think before you do anything. This is quite easy if you go at it the right way, but if not ...

Think of ṙ for r large — what can you say about it?

Useful vector stuff: for any matrix and vector, ‖Ax‖ ≤ ‖A‖ r, where ‖A‖ ≥ 0 is the norm of the matrix.

Useful vector stuff: |a · b| ≤ ‖a‖‖b‖, where the dot · indicates the scalar product.

9.2 Answer for problem 07.03.10

Clearly the origin is the only critical point of the system, since any nonzero critical point would require that the

corresponding r2 be an eigenvalue of A.

A. Case α > 0. Then

r
dr

dt
= x · (Ax)− r4. (9.2)

Since |x · (Ax)| ≤ ‖A‖ r2, it follows that

dr

dt
< 0 for r >

√
‖A‖. (9.3)

Thus the orbits cannot approach ∞ as t→∞. Further: they cannot approach the (single) critical point at the

origin — because it is an unstable spiral. Hence, from the Poincaré Bendixon theorem, there must be at least

one periodic orbit.

B. Case α < 0. A simple calculation shows that

∇ ·
(
Ax− r2 x

)
= Trace(A)− 4 r2 = 2α− 4 r2 < 0. (9.4)

Thus, from Dulac’s criteria, there are no periodic orbits.

#1. Extra task to the reader. Note that the result in B does not depend on β 6= 0. In fact, it only needs the trace

of A to be non positive to apply. 3 On the other hand, A depends crucially on β 6= 0. Question: Does the system

3 Dulac’s criteria, as stated in the book, requires a strict inequality < in (9.4). However, violation of this at a single point does not invalidate

the proof — which relies on an integral of the left hand side being nonzero over.



18.385 MIT, (Rosales) Multiple scales and limit cycles #01. 12

have any periodic orbits when the eigenvalues of A are real, and at least one of them is positive? In particular:

describe the phase plane for the system when A corresponds to a star, with positive eigenvalue α.

#2. Challenge to the reader. When α > 0 (the case in item A) the periodic orbit is, in fact, unique — hence a

globally attracting limit cycle. Can you prove this?

Hint. The way to do it is by using “Dulac’s criterion on an annulus” (see problem 7.2.17), the annulus being the region 0 < r.

A function g such that div(g ẋ) > 0 can be obtained as a function of a single variable, but this variable is not something simple

as r. In fact, let u and v be unit vectors along the principal directions of the ellipses associated 4 with A, and write any vector

as x = au+ bv. Then g = g(R), where R =
√
a2 + b2.

10 Multiple scales and limit cycles #01

10.1 Statement: Multiple scales and limit cycles #01

Consider the equation
d2x

dt2
− ε cosx

dx

dt
+

1√
ε

sin(
√
ε x) = 0, where 0 < ε� 1. (10.1)

Use a multiple scales analysis to calculate the frequency, stability and amplitude of any limit cycle (the frequency

up to the first correction beyond linear and the amplitude up to leading order).

Hint. (i) Using the method in the “Weakly Nonlinear Oscillators” notes, you will find that the leading order approx-

imation has the form x0 = A(τ ) ei t + c.c., and then you will find an equation for A by suppressing resonances.

As in the notes, substitute A = 1
2
ρ ei φ in this equation, to reduce it to two real valued equations for ρ and φ.

(ii) To write the equation for ρ in a compact way, use the equality π J1(ρ) =
∫ 2π

0
sin(ρ cos(s)) cos(s) ds, where

J1 is the index one Bessel function of the first kind. Because J1 is well studied and understood, this will allow you

to conduct the required analysis.

10.2 Answer: Multiple scales and limit cycles #01

This problem is very similar to the van der Pol equation problem in the “Weakly Nonlinear Oscillators” notes. Thus,

consider a two times expansion of the form

x = x0(t, τ) + ε x1(t, τ) + ε2 x2(t, τ) + . . . (10.2)

where τ = ε t. Substituting this expansion into equation (10.1) and collecting equal powers of ε we find:

At O(1):
∂2x0

∂ t2
+ x0 = 0 =⇒ x0 = A(τ) ei t + c.c., (10.3)

where c.c. denotes the complex conjugate and A = A(τ) is a function to be determined at higher order.

At O(ε):

∂2x1

∂t2
+ x1 = −2

∂2x0

∂t ∂τ
+ cos(x0)

∂x0

∂t
+

1

6
x3

0

=

(
−2 i

dA

dτ
ei t +

1

2
|A|2Aei t +

1

6
A3 e3 i t

)
+ c.c. +

∂

∂t
sin
(
Aei t + c.c.

)
.

(10.4)

This has the form
∂2x1

∂t2
+ x1 = F (t, τ), (10.5)

4 Take an eigenvector for A. Then u and v are unit vectors along the real and imaginary parts of the eigenvector.
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where the forcing F = F (t, τ) is a real valued function of period 2π in t. In terms of the Fourier series

F =

∞∑
n=−∞

Fn(τ) ei n t,

we see that we only have to worry about the forcing given by the Fourier terms with n = ±1, since all the others

cause a periodic response in x1. Since F−n is the complex conjugate of Fn, the elimination of secular terms in x1

leads to the condition:

0 = F1(τ) =
1

2π

∫ 2π

0

F (t, τ) e−i tdt = −2 i

{
dA

dτ
+
i

4
|A|2A− 1

4π

∫ 2π

0

sin(Aei t + c.c.)e−i tdt

}
. (10.6)

Introduce now A =
1

2
ρeiφ, where both ρ = ρ(τ) > 0 and φ = φ(τ) are real valued. Then

0 5 10 15 20

-0.3

0

0.3

0.6

 !

              
 J1(!)

 Bessel function of the first kind J1.

  FIRST FEW NONTRIVIAL ZEROS OF J1(x).    
 z1 = 03.83170597020751231561443588630 ...
 z2 = 07.01558666981561875353704998147 ...
 z3 = 10.17346813506272207718571177677 ...
 z4 = 13.32369193631422303239368412694 ...
 z5 = 16.47063005087763281255246047099 ...
 z6 = 19.61585851046824202112506588413 ...

Figure 10.1: Bessel function of the first kind J1

∫ 2π

0

sin(Aeit + c.c.)e−itdt =

∫ 2π

0

sin(ρ cos(t+ φ))e−itdt

= 2eiφ
∫ π

0

sin(ρ cos(s)) cos(s)ds = 2πeiφJ1(ρ),

where J1 is the index one Bessel function of the first kind. Thus equation (10.6) becomes 5

dρ

dτ
= J1(ρ) and

dφ

dτ
= −

1

16
ρ2. (10.7)

If z0 = 0 < z1 < z2, . . . are the zeros of J1 (see figure 10.1), then z1, z3, z5, . . . correspond to stable limit cycles,

z2, z4, . . . correspond to unstable limit cycles, and the origin is an unstable spiral point.

Putting it all together we see that approximate expressions for the limit cycles are given by

x ∼ zn cos(ω (t− t0)) + O(ε), where ω = 1−
1

16
z2n ε+ O(ε2) (10.8)

5 Note that the right hand side for the phase φ equation is due exclusively to the influence of the term ε−1 sin(εx) in (10.1), while the

forcing on the radial evolution is due exclusively to the influence of the term involving ẋ.
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and t0 is an arbitrary constant. Of course, here n cannot be too large, since the expansion assumes that the xj ’s

in (10.2) are O(1) quantities.

THE END.


