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1 Irreversible switch using saddle node and transcritical bifurcations

1.1 Statement: Irreversible switch using saddle node and transcritical bifurcations

Imagine a system1 with a controlling parameter r, and with (at most) two distinct stable equilibrium states:

x1 = x1(r) and x2 = x2(r). In particular, such that infinity is unstable — that is: for every solution x = x(t)

there exists a constant M > 0 such that |x| < M for t large enough. Furthermore:

A. There is a value r = rs = switch value such that: for r > rs both states exist and are stable — so that the

system can be in either one of them.

B. For r < rs only the state x1 exists and it is stable.

C. Both x1(r) and x2(r) are continuous functions of r (though, maybe, not smooth), and |x1(r)− x2(r)| is bounded

away from zero.

Such a system, if started in the state x2 for r > rs, remains in x2 for as long as r varies (slowly enough) in the

range r > rs. Once r crosses below the threshold rs, the system switches to x1, and remains there for all values of

r. A switch back to x2 is not produced by slow variations in r. The condition in item C is important, for otherwise

small perturbations could produce an “accidental” switch if x1 and x2 get very close.

Remark 1.1 A “standard” (reversible) switch [e.g.: a thermostat], operates using hysteresis. For such systems there

are two switching values r1 < r2, with only x2 stable for r > r2, only x1 stable for r < r1, and both states stable for

r1 ≤ r ≤ r2. Then the system jumps from x2 to x1 as r is lowered below r1, and goes back to x2 as r is raised above

r2. ♣

Construct an irreversible switch, using a 1-D system of the form

dx

dt
= f(x, r), (1.1)

with the behavior caused by two bifurcations: a trans-critical and a saddle node (no other bifurcations should

occur!) Then draw the bifurcation diagram.

Hint: It is very easy to construct an explicit example in which f in equation (1.1) is a cubic polynomial in x, and it

is linear in the parameter r.

1 A “switch”.
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Remark 1.2 (Switch uniqueness). Even for a 1-D system such as the one in (1.1), there is an infinite number

of possible bifurcation diagrams that yield a switch, with various types of bifurcations involved. 2 However, if the

restriction that there should be only two bifurcations (one saddle-node and one transcritical) is imposed, then there

are only two possible topologies for the switch bifurcation diagram. This problem asks you to produce an example of

one such switch. ♣

1.2 Answer: Irreversible switch using saddle node and transcritical bifurcation

Take f = (r − (x− 1)2)x in (1.1), so that the equation becomes

dx

dt
= (r − (x− 1)2)x. (1.2)

The bifurcation diagram for this equation is easily computed — see figure 1.1. It should be clear that the switch
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Figure 1.1: Bifurcation diagram for the irreversible switch given by equation (1.2).

value is rs = 0, with the (stable) equilibrium states given by: (1) x2 = 1 +
√
r for r ≥ 0, and (2) x1 = 0 if r ≤ 1

and x1 = 1−
√
r if r ≥ 1.

Interestingly, the bifurcation diagram in figure 1.1 is the one that occurs when a perturbation

breaks the symmetry of a system with a soft pitchfork bifurcation (but without destroying

the continuity of the middle fork).‡ An example of a physical system that behaves like the

“switch” in figure 1.1 is a measuring tape subject to longitudinal pressure, though you would

not think of it as a “switch”. In fact, for this system a “switch” to the state x2 is bad, as it

carries the risk of permanently deforming the tape. ♣
‡ See the problems “Perturbed pitchfork, with root preserved”.

Remark 1.3 Note that x1 and x2 are both continuous functions of r, but neither is smooth everywhere: x′1(r) is

discontinuous at r = 1, and x′2(r)→∞ as r ↓ 0. ♣

Figure 1.2 shows another possible bifurcation diagram for an irreversible switch involving a saddle node and a single

transcritical bifurcation. Any 1-D bifurcation diagram for an irreversible switch involving a saddle node and a single

transcritical bifurcation is topologically equivalent to one of the diagrams in figures 1.1 or 1.2 — shown in problem:

Irreversible switches; classification.

2 This is the subject of another problem: Irreversible switches; classification.
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Figure 1.2: The alternative bifurcation diagram

for an irreversible switch using a saddle-node and

a transcritical bifurcation. The equation for this

plot is:

ẋ = (x− 1.3)2 − r(r − 1)2/(0.7 + r1.5)2.

Remark 1.4 Best and worse switches. Note that both the switch in figure 1.1 and the switch in figure 1.2 have

potential problems. For the switch in figure 1.1, when r is close to one, a jump back from x1 to x2 is possible with

very small perturbations — switch failure. In the same fashion, the switch in figure 1.2 can fail for r close to one,

with the system jumping from x2 to x1 where it is not supposed to. The best type of switch that a system like (1.1)

can produce is one where the unstable branch of solutions separating x1 from x2 remains as far away from x1 and x2
as possible (of course, it has to join x2 for r = rs). Thus the best switch has just a saddle-node bifurcation, and no

other.

2 Perturbed pitchfork, with root preserved (bifurcation diagram)

2.1 Statement: Perturbed pitchfork, with root preserved (bifurcation diagram)

Consider the structural stability for a (soft) pitchfork bifurcation, with the restriction that the “main” solution

branch is preserved across the bifurcation. Specifically, consider the situation where:

dx

dt
= g(x, r) (g odd in x), (2.1)

has a (soft) pitchfork bifurcation at (x, r) = (0, 0). Assume that the

problem depends on a hidden parameter h — i.e. let g(x, r) = f(x, r, h)
h=0

,

where you only know that h is small (but it may not be zero). Assume

also that you know that f(0, r, h) = 0, though f may not be odd for h 6= 0. Provided that f is reasonably smooth,

and f is generic, it can be shown that the canonical equation 3 describing this situation is

dx

dt
= r x+ hx2 − x3. (2.2)

Tasks: Assume h 6= 0 small (say, h = 0.05), and draw the bifurcation diagram for (2.2), including the flow lines

— recall that the bifurcation diagram is, basically, all the phase portraits (one for each r) stacked in one single 2-D

plot. What happens to the pitchfork? Furthermore: estimate the level of noise (in x) under which the distinction

between the pitchfork and the new behavior will be hidden — do this in terms of h.

3 That is, near the bifurcation, the full problem can be mapped into equation (2.2).
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2.2 Answer: Perturbed pitchfork, with root preserved (bifurcation diagram)

The critical points for (2.2) are given by x = 0 for all values of (r, h), and

xu =
h

2
+

√
r +

h2

4
, xd =

h

2
−
√
r +

h2

4
, for r ≥ −h

2

4
. (2.3)

Alternatively, instead of (2.3), we can write

r = x2 − hx = (x− 1
2 h)2 − 1

4 h
2, (2.4)

which parameterizes the nonzero critical points by giving r as a function of x. Before drawing the bifurcation

diagram, we notice that we can scale-out h from equation (2.2) by the transformation

x = hX, r = h2R, and t = T/h2, (2.5)

as long as h 6= 0. This reduces (2.2) to
dX

dT
= RX +X2 −X3. (2.6)

The bifurcation diagram for this equation can be found in figure 2.1. Note that the pitchfork is broken into a

transcritical and a saddle node (separated by a distance which is O(h) in x — this follows from the scaling in (2.5).
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 Bifurcation diagram for dX/dT = RX + X2  X3.
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 X  

 

Figure 2.1: Scaled perturbation diagram for a

perturbed pitchfork, with perturbation preserving

the “main” solution. The canonical equation for

the situation is (2.2), which (for h 6= 0) can be

transformed into: dX/dT = RX +X2 −X3.

The diagram on the left corresponds to this equa-

tion. The stable branches of solutions are indi-

cated by solid blue lines, while the unstable ones

are in dashed red. The black dots indicate the

location of the bifurcations.

Remark The scaling in (2.5) indicates that the changes to the pitchfork bifurcation diagram occur within a neigh-

borhood of the critical point at x, whose size is O(h). Outside this neighborhood the diagram looks the same as that

of the pitchfork. It follows that if the system is noisy, with a level of noise above O(h), it becomes impossible to

detect the difference between the diagram in figure 2.1, and that of the unperturbed system. ♣

3 Perturbed pitchfork, with root preserved (canonical form)

3.1 Statement: Perturbed pitchfork, with root preserved (canonical form)

Consider the structural stability for a (soft) pitchfork bifurcation, with the restriction that the “main” solution

branch is preserved across the bifurcation. Specifically, consider the situation where:

ẏ = g(y, λ) (g odd in y), (3.1)
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has a (soft) pitchfork bifurcation at (y, λ) = (0, 0). Assume that the

problem depends on a hidden parameter ρ — i.e. let g(y, λ) = f(y, λ, ρ)
ρ=0

,

where you know that ρ is small (but it may not be zero). Assume

also that you know that f(0, λ, ρ) = 0, though f may not be odd for ρ 6= 0. Provided that f is reasonably smooth,

and f is generic, it can be shown that the canonical equation 4 describing this situation is

ẋ = r x+ hx2 − x3. (3.2)

SHOW THIS by using a Taylor expansion in the regime where (y, λ, ρ) are all small. ♣
Hint. The easiest approach is to expand f in powers of y, with coefficients that are functions of λ and ρ. Then use what you know

of f to estimate the size of the coefficients (when λ and ρ are small), and then neglect any term that is majored by another term.†
Then, upon re-scaling,‡ the resulting equation will be (3.2).

† A term neglected must be smaller than the terms retained for all (y, λ, ρ) in some neighborhood of (0, 0, 0). Making an

expansion as suggested (as opposed to expanding in all three (y, λ, ρ)), simplifies this step quite a bit.

‡ Note that r and h are generally not directly λ and ρ, but functions of λ and ρ.

3.2 Answer: Perturbed pitchfork, with root preserved (canonical form)

First thing we need to do is compute a “leading order” Taylor approximation to f near y = λ = ρ = 0. We follow

the hint and write

f = f(0, λ, ρ) + fy(0, λ, ρ) y + 1
2 fyy(0, λ, ρ) y2 + 1

6 fyyy(0, λ, ρ) y3 + . . . (3.3)

Now, using the properties of f we see that

1. The first coefficient vanishes identically: f(0, λ, ρ) = 0

2. The second coefficient is small, of size O (max(|λ|, |ρ|)).
This follows because fy(0, 0, 0) = 0, the condition for a bifurcation.

3. The third coefficient is small, of size O (max(|λ|, |ρ|)).
This follows because fyy(0, 0, 0) = 0, a consequence of f(y, λ, 0) being odd.

4. The second and third coefficients are independent of each other, in general. Thus, through cancellations, one

could be much smaller than the other. All we know is that their size is bounded by O (max(|λ|, |ρ|)).

5. The fourth coefficient is not small (stays away from zero), and it is negative.

This follows from the generic assumption that anything not specifically known to be zero, is non-zero. Thus fyyy(0, 0, 0) 6= 0,

so that fyyy(0, λ, ρ) 6= 0 for λ and ρ small. In fact fyyy(0, 0, 0) < 0, because the bifurcation is a soft pitchfork.

6. From item 5 it follows that all the terms beyond O(y3) in (3.3) are higher order.

Thus we approximate the equation by

ẏ = a1 y + a2 y
2 + a3 y

3, (3.4)

where a1 = fy(0, λ, ρ) (small), a2 = 1
2 fyy(0, λ, ρ) (small), and a3 = 1

6 fyyy(0, λ, ρ) < 0. Now define:

x =
√
|a3| y, r = a1 and h = a2 /

√
|a3|.

This transforms (3.4) into (3.2). ♣

4 That is, near the bifurcation, the full problem can be mapped into equation (3.2).
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4 Toy model for shell buckling

4.1 Statement: Toy model for shell buckling

Hold a ping-pong ball between your thumb and index fingers and squeeze it. If you do not apply enough force, the

ball will deform slightly with a purely elastic response. But, if you push hard enough, the ball will buckle and you

will make a (permanent) dent on it — and the ball will be ruined. This is the phenomena of (thin) shell buckling.

Shell buckling is a very rich phenomena, 5 way beyond the scope of this course. Here we will study an extremely

simplified (1-D) version of this phenomena (the emphasis here being on “toy” model) where all the geometrical

richness of the original setting is gone, and only the buckling bifurcation remains.

 k k

 m

 rod
 support  support

A bead of mass m (black square) can slide along a

rigid vertical rod (in red). The bead is connected

by two equal springs (in blue), with spring constant

k, to two supports placed symmetrically on each

side of the rod. See the text for further details.

Figure 4.1: Toy model for shell buckling.

A sketch depicting the model is shown in figure 4.1. Further assumptions and notation are:

1. Idealize the bead as a point mass.

2. Let x be the vertical distance, along the rod, of the bead from the horizontal line joining the spring supports.

Let x > 0 if the bead is above the supports and x < 0 if below.

3. Let h > 0 be the distance of the spring supports from the rod, and let L > 0 be the springs equilibrium length.

Assume L > h, so that the springs are under compression for x = 0.

4. Hook’s law applies to the springs. Thus they exert a force of magnitude F = k (`− L), where ` is the spring

length, along the spring axis, pushing if ` < L, and pulling if ` > L.

5. When the bead slides along the rod, the motion is opposed by a friction force of magnitude b ẋ, where b > 0 is

a constant.

6. Because the rod is rigid, we need to consider only the vertical components of the various forces that act on

the bead. These forces are: (i) Gravity, of magnitude mg, pointing down. (ii) The forces by the springs.

(iii) Friction along the rod. Note that here we assume that the force gravity is significant, so that there is no

up-down symmetry in this problem.

PROBLEM TASKS:

A. Derive an ode for the bead position, and write it in appropriate a-dimensional variables. 6

B. Assume that friction is large, so that inertia can be neglected. Exactly which a-dimensional number has to be

small for friction to be “large”?

5 Lots of interesting and important questions arise. For example: What is the shape of the dent that forms? The dent’s edges have sharp

corners: why these corners form, and how do they propagate as further pressure is applied?
6 Suggestion: to a-dimensionalize use h for length and b/(2 k) for time.
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C. Analyze the bifurcations that occur for the equation resulting from item B, as the bead mass changes — in this

toy model, increasing the bead mass plays the role of squeezing harder on the ping-pong ball. What type of

bifurcation(s) occur?

Hint: It is a bad idea to try to do this by attempting to solve for the critical points and bifurcation thresholds

analytically. A qualitative, graphical, analysis is the best way to go.

D. The picture in figure 4.1 corresponds, in this toy model, to the ping-pong ball in a more-or-less spherical shape.

What is the “buckled” state?

E. What a-dimensional parameter controls when bifurcations happen? This under the assumption:

The ratio γ = L/h > 1 is kept fixed. (4.1)

Thus γ is not the bifurcation parameter to use; something else is.

4.2 Answer: Toy model for shell buckling

Newton’s law for the motion of the bead takes the form

mẍ+ b ẋ = −mg + 2 k
x√

x2 + h2

(
L−

√
x2 + h2

)
, (4.2)

where the factor 2 k arises because there are two springs, and the factor x/
√
x2 + h2 is to compute the projection

along the rod of the spring’s forces. Note also that the signs are correct: when the springs are under compression

(
√
x2 + h2 < L), and x > 0, the springs should be pushing x up — with the force sign switching if either x < 0 or√
x2 + h2 > L.

Select a-dimensional variables via x = h x̃ and t =
b

2 k
t̃. The equation then becomes

ε ẍ+ ẋ = −r +
x√

1 + x2

(
γ −

√
1 + x2

)
, (4.3)

where we have not written the tildes to simplify the notation,

ε =
2 km

b2
, and r =

mg

2 k h
. (4.4)

If ε� 1, we can neglect inertia. Thus we arrive at the final equation (the toy model equation)

ẋ = −r +
x√

1 + x2

(
γ −

√
1 + x2

)
︸ ︷︷ ︸

p=p(x)

= p(x)− r. (4.5)

Since γ is kept fixed, the bifurcation parameter is r. To understand the critical point structure of this equation, in

figure 4.2 we plot y = p(x) and y = r — this for some value of γ (there is no qualitative difference if γ is changed).

Let rc > 0 be the value of p at the (single) local maximum for x > 0 — that is rc = p(xc), where xc is the

location at which the local maximum occurs. Note that here we operate as if γ were a fixed constant, but (in fact)

both rc and xc are functions of γ — which must be computed numerically, if needed.

Three cases arise:
c1. Case 0 < r < rc. Three critical points: x1, x2, and x3 — which satisfy x1 < 0 < x2 < xc < x3 <

√
γ2 − 1.

Both x1 and x3 are stable, while x2 is unstable.

– x3 corresponds to the configuration in figure 4.1, with the bead being supported by the two (compressed)

springs above the level x = 0.
– x1 corresponds to a configuration where the bead is hanging from the two (stretched) springs. As follows

from item c3, this is the “buckled” state in this model.

c2. Case rc < r. Only one critical exists: the “buckled” state x1 — which is stable. 7

7 Because we are assume a situation where gravity matters, there is no truly “un-buckled” state — at best a slightly deformed one.
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 y = p(x)

 y = r

 x

 y  y = rc

 x = xc

Figure 4.2: Critical points for the toy model for shell buckling. The critical points occur at the values of x where

y = r intersects y = p(x) — where p is defined in equation (4.5).

c3. Case rc = r. Critical threshold value at which a saddle-node bifurcation occurs. As r increases through rc,

x3 looses stability, and the system jumps to x1 (if it was in x3).

5 Problem 03.02.06 - Strogatz (Eliminate the cubic term)

5.1 Statement for problem 03.02.06

Consider the system
dX

dt
= RX −X2 + aX3 +O(X4), (5.6)

where R 6= 0. We want to find a new variable x such that the system transforms into

dx

dt
= Rx− x2 +O(x4). (5.7)

This would be a big improvement, since the cubic term has been eliminated and the error term has been bumped

to fourth order. 8 In fact, the procedure to do this (sketched below) can be generalized to higher orders. 9 This

generalization is the subject matter of problem 03.02.07.

Let x = X + bX3 + O(X4), where b is chosen later to eliminate the cubic term in the differential equation for

x. This is called a near-identity transformation, since x and X are practically equal: they differ by a cubic term. 10

Now we need to rewrite the system in terms of x; this calculation requires a few steps.

1. Show that the near-identity transformation can be inverted to yield X = x+ cx3 + O(x4), and solve for c.

2. Write ẋ = Ẋ + 3bX2Ẋ + O(X4), and substitute for X and Ẋ on the right hand side, so that everything

depends only on x. Multiply the resulting series expansions and collect terms, to obtain ẋ = Rx − x2 +

kx3 + O(x4), where k depends on a, b, and R.

8 Obviously we are considering here a situation where X (and x) is small.
9 That is, one can successively eliminate all the higher order terms: O(x3), O(x4), . . . , etc.

10 We have skipped the quadratic term X2, because it is not needed — you should check this later.
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3. Now the moment of triumph: choose b so that k = 0.

4. Is it really necessary to make the assumption that R 6= 0? Explain.

5.2 Answer for problem 03.02.06

We now fill in the steps outlined in the problem statement:

1. Replacing X = x+ cx3 +O(x4) into x = X + bX3 +O(X4) yields:

x = (x+ cx3) + b(x+ cx3)3 +O(x4) = x+ (c+ b)x3 +O(x4). Thus, it must be c = −b.

This process can be carried out to any order. If x = X + aX2 + bX3 + cX4 + · · ·+O(XN ), we can find the

inverse transformation X = x+Ax2 +Bx3 + Cx4 + · · ·+O(xN ) by successively selecting the coefficients A,

B, C, . . . to eliminate the coefficients of the powers x2, x3, x4, . . . in a substitution like the one above.

2. Write ẋ = Ẋ + 3bX2Ẋ +O(X4), use equation (5.6) to eliminate Ẋ on the right hand side, and substitute

X = x− bx3 +O(x4) — as obtained in the first step — to eliminate X. This yields:

ẋ = Ẋ + 3bX2Ẋ +O(X4)

= (RX −X2 + aX3) + 3bX2(RX −X2 + aX3) +O(X4)

= RX −X2 + (a+ 3bR)X3 +O(X4)

= R(x− bx3)− (x− bx3)2 + (a+ 3bR)(x− bx3)3 +O(x4)

= Rx− x2 + kx3 +O(x4), where k = a+ 2 bR.

3. Now choose b so that k = 0. That is b = −
a

2R
. (5.8)

4. Equation (5.8) shows that R 6= 0 is crucial for all of this to work. When R = 0, X2 is the dominant term on the

right in (5.6), and the proposed form of the expansion does not work. It is still possible to eliminate the O(X3)

term in (5.6) — as well as any other higher order terms — when R = 0, but a DIFFERENT EXPANSION

IS NEEDED, including logarithmic terms. The first two terms in this expansion are: x = X+aX2 lnX+. . .

Remark 5.5 What would have happened if we started with a more general form of the transformation relating x

and X, that is: x = X + qX2 + bX3 +O(X4)? Then, in the second step above the final answer would have taken the

form ẋ = Rx− px2 + kx3 +O(x4). Then the next step would have been to select q and b so that p = 1 and k = 0.

This would have given q = 0 and k = −a/2R. That is: the same answer as above. We have simplified the algebra by

taking q = 0 from the very beginning.

6 Stability index for flows in the circle

6.1 Statement: Stability index for flows in the circle

Show that the stability index S for any flow in the circle vanishes. To be precise, consider an equation of the form

dθ

dt
= f(θ), (6.1)

where θ is an angle (in radians), and f is periodic of period 2π and Lipschitz continuous. Assume also that the

equation has a finite number of critical points: 11 θ1 < θ2 < · · · < θN < θ1 + 2π. Now assign a weight w = 1 to each

11 The critical points are the zeros of f .
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stable critical point, a weight w = −1 to each unstable critical point, and a weight w = 0 to each semi-stable critical

point. Then show that

S =

N∑
n=1

wn = 0. (6.2)

Hint 6.1 Consider the intervals In, 1 ≤ n ≤ N , where In is the interval θn < θ < θn+1 — here θN+1 = θ1 + 2π,

which is the same point as θ1 because we are in the circle. Then in each such interval either 12 f > 0 or f < 0.

Define σn = 1 if f > 0 in In, and σn = −1 if f < 0 in In. Then relate the wn to the σn to show (6.2). What

information do the σn capture? ♣

6.2 Answer: Stability index for flows in the circle

The σn characterize the direction of the flow given by (6.1). If σn = 1, then the flow is from θn towards θn+1. If

σn = −1, the flow is in the opposite direction. It is then easy to see that

wn =
1

2
(σn−1 − σn) for 1 ≤ n ≤ N, (6.3)

where σ0 = σN (again, we are in a circle, so that I0 is the same as IN ). It follows that

S =
1

2

N∑
n=1

(σn − σn−1) =
1

2

N∑
n=1

σn −
1

2

N−1∑
0

σn = 0, (6.4)

where we have used that σ0 = σN .

7 Bifurcations in the circle problem #06

7.1 Statement: Bifurcations in the circle problem #06

For equation (7.1) find the values of r at which a bifurcation occurs, and classify them as saddle-node, transcritical,

supercritical pitchfork, or subcritical pitchfork. Finally, sketch the bifurcation diagram for the fixed points versus r,

including the flow direction and the stability of the various branches of solutions (solid lines for stable branches and

dashed ones for unstable ones).
dθ

dt
= (r + sin(2 θ)) sin(θ), (7.1)

where θ is an angle (in radians). Note that the bifurcation diagram — which is periodic in θ — should be for a 2π

range in θ, and a range of r that includes all the bifurcations.

7.2 Answer: Bifurcations in the circle problem #06

The critical points for equation (7.1) are given by θ = nπ (n an integer), and the solutions to the equation

r = − sin(2 θ). (7.2)

Equation (7.2) has no solutions for r < −1 or r > 1, and four solutions (per 2π-period) for −1 < r < 1. The

bifurcations occur for the values of r at which the number of solutions changes: r = ±1, as well as r = 0 — where

12 If f were to switch sign in In, then (since it is continuous) it would have a zero in In. This zero would no be one of the θn, which are

supposed to be all the zeros.
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−1.5 −1 −0.5 0 0.5 1 1.5

 Bifurcation diagram for d!/dt = (r + sin(2!)) sin(!).

 r

 ! 

 −"/4

 0

 "/4

 3"/4

 "

 5"/4
In each region (yellow or cyan), the black arrows indicate

the direction of the

flow for the equation θ̇ = (r + sin(2 θ)) sin(θ).

Stable branches of critical points are plotted in solid blue,

and unstable branches in dashed red. The black dots indi-

cate the bifurcation points:

- Saddle node at r = −1 and θ = 1
4
π + nπ.

- Saddle node at r = +1 and θ = 3
4
π + nπ.

- Transcritical at r = 0 and θ = nπ.

Figure 7.1: Bifurcation diagram for equation 7.1.

there are crossings of critical point curves. By looking at the sign of θ̇ in the regions into which the r-θ plane is

divided by the curves r = − sin(2 θ) and θ = nπ, it is easy to ascertain the stability of the critical points, as well as

the nature of the various bifurcations that occur. The results are summarized in figure 7.1.

– Saddle node bifurcations occur at r = −1 and θ = 1
4
π + nπ, n integer.

– Saddle node bifurcations occur at r = 1 and θ = 3
4
π + nπ, n integer.

– Transcritical bifurcations occur at r = 0 and θ = nπ, n integer.

8 Bifurcations in the torus #01

8.1 Statement: Bifurcations in the torus #01

Bifurcations in the torus, phase-locking, and oscillator death. This problem is based on a paper on systems of

neural oscillators by G. B. Ermentrout and N. Kopell, 13 where they illustrate the notion of oscillator death (see

§ 10) with the following model

θ̇1 = ω1 + sin θ1 cos θ2 and θ̇2 = ω2 + sin θ2 cos θ1, (8.1)

where ω1, ω2 > 0. Here θ1 and θ2 are to be interpreted as the phases of two coupled stable and attracting limit cycle

oscillators, which are assumed to “survive” the coupling, so that the notion of their “individual phases” remains —

see § 10.

a. Classify all the different behaviors that the solutions to (8.1) have, as the parameters vary in the positive

quadrant of the [ω1, ω2]–plane. Do a diagram in this quadrant, indicating the regions that correspond to each

behavior.

The final answer should look something like this: (i) In such and such region the solutions are attracted to a

limit cycle [Note that this is phase locking]. (ii) In such and such region the solutions are attracted to a stable

13 Oscillator death in systems of coupled neural oscillators. SIAM J. Appl. Math. 50:125 (1990).



18.385 MIT, (Rosales) Bifurcations in the torus #01. 13

node [Note that this is oscillator death]. (iii) In such and such region the solutions are quasi-periodic with two

periods [Phase locking fails]. (iv) . . .

Plus a drawing of the regions . . . will all the statements properly justified.

b. Draw the bifurcation curves in the [ω1, ω2]–plane. Describe each bifurcation.

Hints. I did not find an elegant way to analyze the system geometrically. The hints below lead you to an approach

that is (mostly) analytical, but allows a systematic and thorough investigation.

h1. Consider the equations satisfied by φ = θ1 + θ2 and ψ = θ1 − θ2.

h2. You may find the following result useful

Let α > 1. Then the solutions to the equation χ̇ = α+ sinχ

can be written in the form χ = µ (t− t0) +X(µ (t− t0)),

where µ > 0 is a constant, X is 2π-periodic,

X(0) = 0, and t0 is an arbitrary constant.

Furthermore: µ is an increasing function of α, with lim
α→1

µ = 0 and lim
α→∞

µ =∞.

All this follows from § 11, upon using a change of variables to transform χ̇ = α+ sinχ into equation (11.1). In

particular, note that the “µ” in § 11 (call it µ̃) is related to the one here by µ = α µ̃, with κ = 1
α .

8.2 Answer: Bifurcations in the torus #01. Answer

With φ = θ1 + θ2 and ψ = θ1 − θ2, standard trigonometric formulas show that the system has the equivalent form

φ̇ = ω1 + ω2 + sinφ and ψ̇ = ω1 − ω2 + sinψ. (8.2)

Hence the system is uncoupled in these variables. It follows that (see figure 8.1)

1. Case ω1 > ω2 + 1. Oscillators “independent”, The solutions are quasi-periodic, with two periods. Since

ω1 + ω2 > ω1 − ω2 > 1, from item h2 in the hints 14

φ = µ1 t+ Φ and ψ = µ2 t+ Ψ, where µ1 > µ2 > 0, (8.3)

Φ is periodic of period T1 = 2π
µ1

, and Ψ is periodic of period T2 = 2π
µ2

.

There is neither phase locking, nor oscillator death. Each oscillator oscillates independently, albeit with

greatly modified phases:

θ1 =
µ1 + µ2

2
t+

1

2
(Φ + Ψ) and θ2 =

µ1 − µ2

2
t+

1

2
(Φ−Ψ), (8.4)

instead of the uncoupled phases θj = ωj (t− t0 j). The frequencies (see § 10) are not constant either, that is:

θ̇1 = µ1+µ2

2
+ 1

2
(Φ̇ + Ψ̇) and θ̇2 = µ1−µ2

2
+ 1

2
(Φ̇− Ψ̇).

Finally, note that the solutions are quasi-periodic, with periods T1 and T2.

When checking periodicity, or quasi-periodicity, it is important to keep in mind that θ1 and θ2 are angles, so that

behavior of the form θj = µ t corresponds to a period T = 2π/µ.

2. Case ω1 = ω2 + 1. Bifurcation into (out of) phase locking. Φ has the same form as in (8.3), but the

equation for Ψ in (8.2) has a semi-stable critical point Ψ = π/2 + 2nπ. Phase locking is semi-stable: small

perturbations can take the system out of phase lock. Then the phase Ψ difference increases by 2π, and phase

locking occurs again.

14 To be precise: Φ(t) = X1(µ1(t− t01)) − µ1 t01 and Ψ(t) = X2(µ2(t− t02)) − µ2 t02, in the hints’ notation.
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Consider the situation in item 1 as ω1 − ω2 ↓ 1. Then µ2 ↓ 0 and T2 ↑ ∞. Hence ψ becomes very slowly

varying — a constant for “short enough” time periods, and the oscillator’s behavior approximates that of a

phase locked one, with a a common frequency.

Consider the situation in item 3 as ω1 − ω2 ↑ 1. Then ψu and ψs coalesce into ψu = ψs = π/2, and the behavior

limits to the one here.

3. Case | − ω2 + 1| < ω1 < ω2 + 1. Phase lock is a global attractor. Since |ω1 − ω2| < 1, the equation for

ψ in (8.2) has two critical points, one unstable (call it ψu), and another a stable global attractor (call it ψs).

Thus a constant phase difference ψ = ψs is a global attractor. On the other hand ω1 + ω2 > 1, and item h2 in

the hints yields

φ = µ1 t+ Φ where µ1 > 0 and Φ is periodic of period T1 =
2π

µ1
. (8.5)

Thus, the attracting solution is θj =
1

2
µ1 t+

1

2
(Φ− (−1)j ψs), (8.6)

so that the two oscillators run with a common (variable) frequency ω = 1
2
µ1 + 1

2
Φ̇. This solution is limit

cycle, with period T1

4. Case ω1 + ω2 = 1. Bifurcation from/to oscillator death to/from phase locking. The equation for ψ in

(8.2) has “the same” two critical points, ψu and ψs, in item 3, while the equation for φ has a the single, semi-

stable, critical point π/2 + 2nπ. The system then approaches, as t→∞, the critical point φ = π/2 + 2nπ

and ψ = ψs. But this point is semi-stable, so a small perturbation can take φ out of equilibrium. Then φ

increases by 2π, till it reaches the critical point again (n→ n+ 1).

The case in item 5 approaches the behavior here as ω1 + ω2 ↓ 1,

because then µ1 ↓ 0 and T1 ↑ ∞.

Hence φ becomes very slowly varying — a constant for “short enough” time periods.

The case in item 5 approaches the behavior here as ω1 + ω2 ↑ 1,

because then φu and φs coalesce into π/2 + 2nπ.

5. Case ω1 + ω2 < 1. Oscillator death. Since the ωj are positive, |ω1 − ω2| < 1. Thus both equations in (8.2)

have critical points, one unstable in each (φu & ψu), and another a stable global attractor in each (φs & ψs).

Thus the system in (8.1) has a global

attractor (a stable node), given by (θ1, θ2) =
1

2
(φs + ψs, φs − ψs). (8.7)

Note: 1
2 (φs +ψu, φs−ψu) & 1

2 (φu +ψs, φu−ψs) are saddles, while 1
2 (φu +ψu, φu−ψu) is an unstable node.

6. Case ω2 = ω1 + 1. Bifurcation into (out of) phase locking. This case is the same as the one in item 2, via

the system symmetry θ1 ↔ θ2.

7. Case ω2 > ω1 + 1. Oscillators “independent”, The solutions are quasi-periodic, with two periods. This

case is the same as the one in item 2, via the system symmetry θ1 ↔ θ2.

To finish with the problem answer, next we prove the statements in item h2 of the hints, using the results from § 11.

Lemma 8.1 Let α > 1. Then the solutions to the equation χ̇ = α+ sinχ, (8.8)

have the form

χ = µ (t− t0) +X(µ(t− t0)), (8.9)

where 0 < µ < α is a constant, X is periodic of period 2π, X(0) = 0, and t0 is some constant. Furthermore: µ is an

increasing function of α such that:

(i) For 0 < α− 1� 1, µ = O
(√
α− 1

)
. (ii) For α� 1, µ/α ∼ 1.
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Figure 8.1: (Problem 08.06.01). Oscillator death and bi-

furcations in the plane. Regions in the positive quadrant of

the [ω1, ω2]–plane corresponding to different behaviors (8.1)

can have. The boundaries between the regions correspond

to bifurcations. These are:

2, where ω1 − ω2 = 1;

4, where ω1 + ω2 = 1; and

6, where ω2 − ω1 = 1.

Consider equation (11.1) with κ = 1/α. Then we can write

φ(t̂) = µ̂ (t̂− t̂0) + Φ
(
µ̂ (t̂− t̂0)

)
, (8.10)

where µ̂ and Φ̂ have the properties stated in § 11. Now let

t̂ = −α t, t̂0 = −α t0, µ = α µ̂, χ(t) = −φ( t̂ ) and X(ζ) = −Φ(−ζ). (8.11)

Then (8.10) reduces to (8.9). Furthermore, via the transformation χ(t) = −φ(−α t), (11.1) and (8.8) are equivalent. Then all

the properties in the statement of the lemma follow from § 11, except for one: That µ is an increasing function of α.

To show that µ is an increasing function of α, we proceed as follows. Let χ∗ be the solution obtained by setting t0 = 0 in (8.9).

Then χ∗(T ) = 2π, where T = 2π/µ. Furthermore, since χ∗(0) = 0 and χ∗ is strictly increasing, this defines T uniquely. Then,

from (8.8), it should be obvious that T is a strictly decreasing function of α. Q.E.D.

9 First order equation with a periodic right hand side

9.1 Statement: First order equation with a periodic right hand side

Consider the equation

φ̇ = 1− κ sinφ, where 0 < κ < 1. (9.1)

Since φ̇ ≥ 1− κ > 0, φ is monotone increasing. Prove the statements below.

1. There is a constant 0 < µ < 1, and a function Φ = Φ(ζ) — periodic of period 2π — such that any solution to

(9.1) has the form

φ = µ (t− t0) + Φ(µ (t− t0)), (9.2)

where t0 is a constant and Φ(0) = 0. It follows that sin(φ) is periodic in t, with period T = 2π
µ

2. The period-average M for sin(φ) is given by M = average(sinφ) = 1−µ
κ

> 0. (9.3)

M = M(κ) only (µ depends only on κ).
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3. Let φ∗ be the solution to (9.1) defined by φ∗(0) = 0 — i.e.: set t0 = 0 in (9.2). Then

Θ(µ t) =

∫ t

0

(sin(φ∗(s))−M) ds = − 1

κ
Φ(µ t), (9.4)

where Θ is defined by the first equality.

4. Assume that 0 < κ� 1. Then a Poincaré-Lindstedt expansion yields

φ∗ = µ t− κ (1− cos(µ t)) +O(κ2) and µ = 1− 1

2
κ2 +O(κ4). (9.5)

It follows that T = 2π + π κ2 +O(κ4) and M =
1

2
κ+O(κ3).

5. Assume that 0 < 1− κ� 1. Then µ = O(
√

1− κ) (9.6)

Hints.

a. Define T > 0 as the (unique) time at which φ∗(T ) = 2π — why is the solution unique?

b. Show that φ∗(t+ T ) = 2π + φ∗(t) — sub-hint: both sides are solutions!

c. Define Φ by Φ(µ t) = φ∗(t)− µ t, with µ = 2π/T , and show that Φ is periodic of period 2π.

d. Write the general solution in terms of φ∗.

e. Show that T = O
(
1/
√

1− κ
)

as κ→ 1 — sub-hint: critical slowing-down.

f. To show that µ < 1, use (9.1) and separation of variables to write T as an integral over φ from 0 to 2π. Then

show T > 2π

g. To show (9.3), take the average of (9.1).

h. To obtain the second equality in (9.4), substitute φ∗ = µ t+ Φ(µ t) into (9.1), and obtain a formula for sin(φ∗)

in terms of Φ.

9.2 Answer: First order equation with a periodic right hand side.

A. Since φ∗(0) = 0 and φ̇∗ ≥ 1− κ > 0, there is a unique T > 0 at which φ∗(T ) = 2π.

B. φ1(t) = φ∗(t+ T ) and φ2(t) = 2π + φ∗(t) are both solutions to (9.1),

with the same initial data φ1(0) = φ2(0) = 2π. Thus φ1 = φ2, i.e.: φ∗(t+ T ) = 2π + φ∗(t) for all t.

C. Define Φ = Φ(ζ) by Φ(µ t) = φ∗(t)− µ t, with µ = 2π/T . Then: Φ has period 2π.

Proof. Φ(µ t+ 2π) = Φ(µ (t+ T )) = φ∗(t+ T )− µ (t+ T ) = 2π + φ∗(t)− µ t− 2π = Φ(µ t),

where we have used the result in item B. Note also that Φ(0) = 0.

D. Let φ be an arbitrary solution to (9.1). Since φ̇ ≥ 1− κ > 0, φ is strictly increasing and takes all values ⇒
there is a t0 such that φ(t0) = 0. Hence φ(t) = φ∗(t− t0), since both sides are solutions to (9.1) with the

same value at t = t0. On the other hand, by the definition of Φ in item C, φ∗(t) = µ t+ Φ(µ t). Thus,

equation (9.2) follows.

E. Since T > 0, µ > 0. Below we show T > 2π, thus completing the proof of 0 < µ < 1.

Proof. Separate variables in (9.1), use that φ∗(0) = 0, φ∗(T ) = 2π, and integrate, to obtain

T =

∫ 2π

0

dφ

1− κ sinφ
>

∫ 2π

0

(1 + κ sinφ) dφ = 2π.
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Here the inequality in the middle follows because (1− s)−1 < 1 + s for −1 < s < 1. Furthermore, integrate (9.1), and

use the definition of M , to obtain

2π =

∫ T

0

(1− κ sinφ) dt = T (1− κM) =⇒ M =
1− µ
κ

.

This proves (9.3).

F. Suppose that 0 < 1− κ� 1. Then, when φ ≈ π/2, equation (9.1) has a critical slow-down, which takes a

∆t = O
(
1/
√

1− κ
)

to traverse. In addition, there are no other critical slow-downs for 0 ≤ φ ≤ 2π. Therefore

T = O
(
1/
√

1− κ
)
, from which (9.6) follows.

G. Now we prove the second equality in (9.4).

Proof. Substitute φ∗ = µ t+ Φ(µ t) into the left hand side of (9.1), and solve for sinφ∗. This yields, after using the

expression for M in (9.3), sin(φ∗) = M − 1

κ

d

dt
Φ(µ t). Substitute into the integral in (9.4), and use Φ(0) = 0, to obtain

the desired equality.

H. Assume that 0 < κ� 1, and expand φ∗ as follows (Poincaré-Lindstedt)

φ∗ = µ t+ κΦ0(µ t) + κ2 Φ1(µ t) + . . . where µ = 1 + κµ1 + κ2 µ2 + . . . (9.7)

and Φj(ζ) is periodic of period 2π. Substitute this into (9.1), and solve order by order — determining µj by

requiring Φj to be periodic. This yields (9.5).

Part I

Supplementary notes on oscillators and ode

10 Notes: coupled oscillators, phase locking, oscillator death, etc.

10.1 On phases and frequencies

Consider a system made by two coupled oscillators, where each of the oscillators (when not coupled) has a sta-

ble attracting limit cycle. Let the limit cycle solutions for the two oscillators be given by ~x1 = ~F1(ω1 t) and

~x2 = ~F2(ω2 t), where ~x1 and ~x2 are the vectors of variables for each of the two systems, the ~Fj are periodic func-

tions of period 2π, and the ωj are constants (related to the limit cycle periods by ωj = 2π/Tj). In the un-coupled

system, the two limit cycle orbits make up a stable attracting invariant torus for the evolution. Assume now that

either the coupling is weak, or that the two limit cycles are strongly stable. Then the stable attracting invariant

torus survives for the coupled system. 15 The solutions (on this torus) can be (approximately) represented by

~x1 ≈ ~F1(θ1) and ~x2 ≈ ~F2(θ2), (10.1)

where θ1 = θ1(t) and θ2 = θ2(t) satisfy some equations, of the general form

θ̇1 = ω1 +K1(θ1, θ2) and θ̇2 = ω2 +K2(θ1, θ2). (10.2)

Here K1 and K2 are the “projections” of the coupling terms along the oscillator limit cycles. For example, take

K1(θ1, θ2) = sin θ1 cos θ2 and K2(θ1, θ2) = sin θ2 cos θ1. Another example is the one in § 8.6 of Strogatz’ book

(Nonlinear Dynamics and Chaos), where a model system with

15 With a (slightly) changed shape and position.
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K1(θ1, θ2) = −κ1 sin(θ1 − θ2) and K2(θ1, θ2) = κ2 sin(θ1 − θ2)

is introduced, with constants κ1, κ2 > 0. Note that:

1. In (10.2), K1 and K2 must be 2π-periodic functions of θ1 and θ2.

2. The phase space for (10.2) is the invariant torus T , on which θ1 and θ2 are the angles. We can also

think of T as a 2π × 2π square with its opposite sides identified. On T a solution is periodic if and only

if θ1(t+ T ) = θ1(t) + 2nπ and θ2(t+ T ) = θ2(t) + 2mπ, where T > 0 is the period, and both n and m are

integers.

3. In the “Coupled oscillators # 01” problem an example of the process leading to (10.2) is presented.

4. The θj ’s are the oscillator phases. One can also define oscillator frequencies, even when the θj ’s do not have

the form θj = ωj t, with ωj constant.

The idea is that, near any time t0 we can write θj = θj(t0) + θ̇j(t0) (t− t0) + . . .,

identifying θ̇j(t0) as the local frequency. Hence, we define the oscillator frequencies by ω̃j = θ̇j . These

frequencies are, of course, generally not constants.

5. The notion of phases can survive even if the limit cycles cease to exist (i.e.: oscillator death). For example: if

the equations for θ1 and θ2 have an attracting critical point. We will see examples where this happens in the

problems, e.g.: “Bifurcations in the torus # 01”.

10.2 Phase locking and oscillator death

The coupling of two oscillators, each with a stable attracting limit cycle, can produce many behaviors. Two of

particular interest are

1. Often, if the frequencies are close enough, the system phase locks. This means that a stable periodic solution

arises, in which both oscillators run at some composite frequency, with their phase difference kept constant.

The composite frequency need not be constant. In fact, it may periodically oscillate about a constant average

value.

2. However, the coupling may also suppress the oscillations, with the resulting system having a stable steady

state. This even if none of the component oscillators has a stable steady state. This is oscillator death. It can

happen not only for coupled pairs of oscillators, but also for chains of oscillators with coupling to the nearest

neighbors.

On the other hand, we note that it is also possible to produce an oscillating system, with a stable oscillation, by

coupling non-oscillating systems (e.g., the coupling of excitable systems can do this).

11 Notes: first order equation with a periodic right hand side

You will be asked to justify the statements below in one of the problems. They are stated here because these results

are used/needed in the answers to some of the other problems.

Consider the equation

φ̇ = 1− κ sinφ, where 0 < κ < 1. (11.1)

Since φ̇ ≥ 1− κ > 0, φ is monotone increasing. It can be shown that:
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1. There is a constant 0 < µ < 1, and a function Φ = Φ(ζ) — periodic of period 2π — such that any solution to

(11.1) has the form

φ = µ (t− t0) + Φ(µ (t− t0)), (11.2)

where t0 is a constant and Φ(0) = 0. It follows that sin(φ) is periodic in t, with period T = 2π
µ

2. The period-average M for sin(φ) is given by M = average(sinφ) = 1−µ
κ

> 0. (11.3)

M = M(κ) only (µ depends only on κ).

3. Let φ∗ be the solution to (11.1) defined by φ∗(0) = 0 — i.e.: set t0 = 0 in (11.2). Then

Θ(µ t) =

∫ t

0

(sin(φ∗(s))−M) ds = − 1

κ
Φ(µ t), (11.4)

where Θ is defined by the first equality.

4. Assume that 0 < κ� 1. Then a Poincaré-Lindstedt expansion yields

φ∗ = µ t− κ (1− cos(µ t)) +O(κ2) and µ = 1− 1

2
κ2 +O(κ4). (11.5)

It follows that T = 2π + π κ2 +O(κ4) and M =
1

2
κ+O(κ3).

5. Assume that 0 < 1− κ� 1. Then µ = O(
√

1− κ) (11.6)

THE END.


