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Abstract

In these notes we illustrate how the use of complex notation can dramatically simplify calculations for (at

least some) problems. In particular, we show a Hopf bifurcation calculation. You should compare these notes

with the section Hopf bifurcation for second order scalar equations in the Hopf bifurcation notes.
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1 Problem formulation

Consider a system in the plane dependent on a parameter r

d~u

dt
= ~f(~u, r), ~f is smooth. (1.1)

Assume now that (1.1) has an isolated critical point that, at some value r = rc, changes stability: from a

stable to an unstable spiral (or the reverse). Without loss of generality, we will assume that the critical

point is the origin, and that rc = 0. Then, for ~u and r small we can write 1

d~u

dt
= A~u+ ~I2(~u) + ~I3(~u) + r B ~u+O(ε4, r2 ε), (1.2)

where ε = ‖~u‖, A and B are 2 × 2 matrices, ~I2 involves only quadratic terms in ~u, and ~I3 involves only

cubic terms in ~u. Furthermore, because the origin is a center for r = 0, we know that A has a (complex)

eigenvector ~v, with eigenvalue i µ (where µ > 0). That is:

A~v = i µ~v ⇐⇒ A~v1 = µ~v2 and A~v2 = −µ~v1, (1.3)

where ~v = ~v1 − i ~v2 (~vj real) and we can write any vector as a linear combination of the ~vj . In particular

~u = x~v1 + y ~v2, so that A~u = µ (−y ~v1 + x~v2). (1.4)

Note then that, in terms of the complex number z = x+ i y, the action by A is equivalent to multiplication

by i µ. Hence we can write (1.2) in the equivalent complex form

1 Because ~u = 0 is assumed to be a critical point for all r small, there are no O(rn) terms.
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ż = i µ z + r (a1 z + a2 z) + (b1 z
2 + b2 z z + b3 z

2) + (c1 z
3 + c2 z

2 z + c3 z z
2 + c4 z

3) +O(ε4, r2 ε), (1.5)

where (i) z denotes the complex conjugate and (ii) the aj , bj , and cj are complex constants (for a generic

system, they are unrestricted).

2 Two times expansion – no quadratic terms

Consider the situation where the quadratic terms in (1.5) vanish. 2 Then we assume r = ν ε2, ν = ±1, so
that the linear perturbation term and the cubic nonlinearity have the same size, and propose a two-times

expansion of the form
z = ε z1(t, τ) + ε3 z3(t, τ) + . . . (2.1)

where τ = ε2 t and the dependence on t is periodic — it should be easy to see that no O(ε2) terms are

needed. 3 Then z0 = A(τ ) ei µ t and the O(ε3) yield

ż3 − i µ z3 = −Ȧ ei µ t + ν a1A ei µ t + c2 |A|2A ei µ t +NRT, (2.2)

where the Non Resonant Terms (NRT) have t-dependences proportional to e−i µ t, e−i 3µ t, and ei 3µ t.

Suppressing resonant terms then yields

dA
dτ

= ν a1A+ c2 |A|2A. (2.3)

Write now A = ρ ei φ, with ρ and φ real. Then (2.3) becomes

dρ

dτ
=

(
ν Re(a1) + Re(c2) ρ

2
)
ρ and

dφ

dτ
= ν Im(a1) + Im(c2) ρ

2. (2.4)

Note now that Re(a1) 6= 0, because of the assumption that the origin switches stability and the expansion

in (1.5) — which yields linearized equations ż = i µ z+ r (a1 z+ a2 z) +O(r2 ε). Thus, the condition for a

Hopf bifurcation is Re(c2) 6= 0. Then

1. If Re(a1)/Re(c2) = κ2 > 0, a limit cycle with radius ρ = κ arises for ν = −1. The bifurcation is

supercritical (soft) if Re(a1) < 0, and subcritical (hard) if Re(a1) > 0.

2. If Re(a1)/Re(c2) = −κ2 < 0, a limit cycle with radius ρ = κ arises for ν = 1. The bifurcation is

supercritical (soft) if Re(a1) > 0, and subcritical (hard) if Re(a1) < 0.

3. In either case, the second equation in (2.4) indicates that the angular frequency for the limit cycle,

up to the order considered, is ω = µ+ r Im(a1) + ε2 Im(c2)κ
2.

Recall that for a supercritical bifurcation the limit cycle that arises is stable, while it is unstable for a

subcritical bifurcation.

The End.
2 We leave it as an exercise to consider the general case.
3 They are needed when the quadratic terms in (1.5) do not vanish.


