Hopf bifurcations using two timing and complex notation

Rodolfo R. Rosales, Department of Mathematics, Massachusetts Inst. of Technology, Cambridge, Massachusetts, MA 02139

November 24, 2018

Abstract

In these notes we illustrate how the use of complex notation can dramatically simplify calculations for (at least some) problems. In particular, we show a Hopf bifurcation calculation. You should compare these notes with the section Hopf bifurcation for second order scalar equations in the Hopf bifurcation notes.

Contents

1 Problem formulation

2 Two times expansion - no quadratic terms

List of Figures

1 Problem formulation

Consider a system in the plane dependent on a parameter r

$$
\begin{equation*}
\frac{d \vec{u}}{d t}=\vec{f}(\vec{u}, r), \quad \vec{f} \text { is smooth. } \tag{1.1}
\end{equation*}
$$

Assume now that (1.1) has an isolated critical point that, at some value $r=r_{c}$, changes stability: from a stable to an unstable spiral (or the reverse). Without loss of generality, we will assume that the critical point is the origin, and that $r_{c}=0$. Then, for \vec{u} and r small we can write ${ }^{1}$

$$
\begin{equation*}
\frac{d \vec{u}}{d t}=A \vec{u}+\vec{I}_{2}(\vec{u})+\vec{I}_{3}(\vec{u})+r B \vec{u}+O\left(\epsilon^{4}, r^{2} \epsilon\right), \tag{1.2}
\end{equation*}
$$

where $\epsilon=\|\vec{u}\|, A$ and B are 2×2 matrices, \vec{I}_{2} involves only quadratic terms in \vec{u}, and \vec{I}_{3} involves only cubic terms in \vec{u}. Furthermore, because the origin is a center for $r=0$, we know that A has a (complex) eigenvector \vec{v}, with eigenvalue $i \mu$ (where $\mu>0$). That is:

$$
\begin{equation*}
A \vec{v}=i \mu \vec{v} \quad \Longleftrightarrow \quad A \vec{v}_{1}=\mu \vec{v}_{2} \text { and } A \vec{v}_{2}=-\mu \vec{v}_{1}, \tag{1.3}
\end{equation*}
$$

where $\vec{v}=\vec{v}_{1}-i \vec{v}_{2}\left(\vec{v}_{j}\right.$ real) and we can write any vector as a linear combination of the \vec{v}_{j}. In particular

$$
\begin{equation*}
\vec{u}=x \vec{v}_{1}+y \vec{v}_{2}, \quad \text { so that } \quad A \vec{u}=\mu\left(-y \vec{v}_{1}+x \vec{v}_{2}\right) . \tag{1.4}
\end{equation*}
$$

Note then that, in terms of the complex number $z=x+i y$, the action by A is equivalent to multiplication by $i \mu$. Hence we can write (1.2) in the equivalent complex form

[^0]\[

$$
\begin{equation*}
\dot{z}=i \mu z+r\left(a_{1} z+a_{2} \bar{z}\right)+\left(b_{1} z^{2}+b_{2} z \bar{z}+b_{3} \bar{z}^{2}\right)+\left(c_{1} z^{3}+c_{2} z^{2} \bar{z}+c_{3} z \bar{z}^{2}+c_{4} \bar{z}^{3}\right)+O\left(\epsilon^{4}, r^{2} \epsilon\right) \tag{1.5}
\end{equation*}
$$

\]

where (i) \bar{z} denotes the complex conjugate and (ii) the a_{j}, b_{j}, and c_{j} are complex constants (for a generic system, they are unrestricted).

2 Two times expansion - no quadratic terms

Consider the situation where the quadratic terms in (1.5) vanish. ${ }^{2}$ Then we assume $\boldsymbol{r}=\boldsymbol{\nu} \boldsymbol{\epsilon}^{\mathbf{2}}, \nu= \pm 1$, so that the linear perturbation term and the cubic nonlinearity have the same size, and propose a two-times expansion of the form

$$
\begin{equation*}
z=\epsilon z_{1}(t, \tau)+\epsilon^{3} z_{3}(t, \tau)+\ldots \tag{2.1}
\end{equation*}
$$

where $\boldsymbol{\tau}=\boldsymbol{\epsilon}^{\mathbf{2}} \boldsymbol{t}$ and the dependence on t is periodic - it should be easy to see that no $O\left(\epsilon^{2}\right)$ terms are needed. ${ }^{3}$ Then $\boldsymbol{z}_{0}=\mathcal{A}(\boldsymbol{\tau}) e^{i \mu t}$ and the $O\left(\epsilon^{3}\right)$ yield

$$
\begin{equation*}
\dot{z}_{3}-i \mu z_{3}=-\dot{\mathcal{A}} e^{i \mu t}+\nu a_{1} \mathcal{A} e^{i \mu t}+c_{2}|\mathcal{A}|^{2} \mathcal{A} e^{i \mu t}+\text { NRT } \tag{2.2}
\end{equation*}
$$

where the Non Resonant Terms (NRT) have t-dependences proportional to $e^{-i \mu t}, e^{-i 3 \mu t}$, and $e^{i 3 \mu t}$. Suppressing resonant terms then yields

$$
\begin{equation*}
\frac{d \mathcal{A}}{d \tau}=\nu a_{1} \mathcal{A}+c_{2}|\mathcal{A}|^{2} \mathcal{A} \tag{2.3}
\end{equation*}
$$

Write now $\mathcal{A}=\rho e^{i \phi}$, with ρ and ϕ real. Then (2.3) becomes

$$
\begin{equation*}
\frac{d \rho}{d \tau}=\left(\nu \operatorname{Re}\left(a_{1}\right)+\operatorname{Re}\left(c_{2}\right) \rho^{2}\right) \rho \quad \text { and } \quad \frac{d \phi}{d \tau}=\nu \operatorname{Im}\left(a_{1}\right)+\operatorname{Im}\left(c_{2}\right) \rho^{2} \tag{2.4}
\end{equation*}
$$

Note now that $\operatorname{Re}\left(a_{1}\right) \neq 0$, because of the assumption that the origin switches stability and the expansion in (1.5) - which yields linearized equations $\dot{z}=i \mu z+r\left(a_{1} z+a_{2} \bar{z}\right)+O\left(r^{2} \epsilon\right)$. Thus, the condition for a Hopf bifurcation is $\operatorname{Re}\left(c_{2}\right) \neq 0$. Then

1. If $\operatorname{Re}\left(a_{1}\right) / \operatorname{Re}\left(c_{2}\right)=\kappa^{2}>0$, a limit cycle with radius $\rho=\kappa$ arises for $\nu=-1$. The bifurcation is supercritical (soft) if $\operatorname{Re}\left(a_{1}\right)<0$, and subcritical (hard) if $\operatorname{Re}\left(a_{1}\right)>0$.
2. If $\operatorname{Re}\left(a_{1}\right) / \operatorname{Re}\left(c_{2}\right)=-\kappa^{2}<0$, a limit cycle with radius $\rho=\kappa$ arises for $\nu=1$. The bifurcation is supercritical (soft) if $\operatorname{Re}\left(a_{1}\right)>0$, and subcritical (hard) if $\operatorname{Re}\left(a_{1}\right)<0$.
3. In either case, the second equation in (2.4) indicates that the angular frequency for the limit cycle, up to the order considered, is $\omega=\mu+r \operatorname{Im}\left(a_{1}\right)+\epsilon^{2} \operatorname{Im}\left(c_{2}\right) \kappa^{2}$.

Recall that for a supercritical bifurcation the limit cycle that arises is stable, while it is unstable for a subcritical bifurcation.

The End.

[^1]
[^0]: ${ }^{1}$ Because $\vec{u}=0$ is assumed to be a critical point for all r small, there are no $O\left(r^{n}\right)$ terms.

[^1]: ${ }^{2}$ We leave it as an exercise to consider the general case.
 ${ }^{3}$ They are needed when the quadratic terms in (1.5) do not vanish.

