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Abstract

Abstract

Detonation waves exhibit complex dynamics, with longitudinal and transversal
instabilities. Much of our understanding relies on extensive and costly numerical
simulations of the reactive compressible Euler equations. Simplified theories are
needed to better understand the physical processes involved. The first attempt at
a reduced description was by Fickett (1979), who proposed a qualitative model.
Others followed. However, these earlier models lack important physical details,
and are ”too stable”. This lead to the statement (Joulin and Vidal, 1998):
The phenomenon of detonation structures belongs to the ”no theory” category because

it might not be reducible to less than the compressible reactive Euler equations.

Recently improved models (yet still simple) have been proposed. The new models

reproduce the complex dynamics, and can be justified asymptotically. Here I will

describe one of these models, concentrating on its 1-D version, so as to describe

the sequence of period doubling bifuractions associated with “galloping”

detonations, as well as the resulting strange attractor; the “manta ray”.
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Overview

Overview

Background and observations.

Simplest model: scalar 1D. What it does.

The 2D simplest model. Introduction and motivation.

Stability analysis: numerical results.

Nonlinear 2D dynamics (numerical). Cellular detonations.
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Background Detonation wave structure

Detonation wave structure

Shock waves with attached reaction, which drives the shock.

Fresh mixtureReaction zoneProducts

SupersonicSubsonicSonic

Shock

p

Self-sustaining detonations (Chapman-Jouguet) have a sonic point, insulating

them from the flow behind — sound waves from behind cannot reach it.

Notation: u, c, s = flow, sound, and shock speeds; p = pressure; and ρ = density. The

arrows indicate the left/right sound waves (speeds u ± c) and particle paths (speed u).

DW’s have complex dynamics, with many instabilities.
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Background ZND theory

ZND theory# for Chapman Jouguet (CJ) detonations

Reaction zone travels with shock. Sonic point is an event horizon — key to

self-sustaining — the CJ condition s = u − c determines the CJ speed.

Over-compressed detonations: faster than CJ; no sonic point.

ZND dets. are planar/steady. Real detonations rarely so (ZND wave is
generally unstable); exhibit regular patterns, as well as chaotic dynamics.
Cellular and spinning detonations. Transversal instability.
Pulsating or “galloping” detonations. Longitudinal instability.

# Zeldovich, von Neumann, and Doering — during WW II.
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Background Cellular detonations; schematics from observations

12.3 Structure      329 

steadily decreasing and so is the temperature and pressure behind its front. 
The distance between the deflagration and shock fronts is, concomi-

tantly, increasing, so that, at later stages of its traverse across the detona-
tion cell, the double front system is at the verge of extinction.  Propagation 
of the detonation front depends then crucially on the subsequent collisions 
between Mach intersections that occur at a frequency commensurate with 
the eigenvalue of oscillations satisfying the zero normal velocity condition 
at the walls.  It is by the same action that the size of the detonation cells is 
controlled. 

 
Fig. 12.29. Schematic diagram of a self-sustained detonation front displaying its 
cellular structures formed by collisions between Mach intersections (Oppenheim 
1985) 

The maintenance of the remarkably constant propagation velocity of a 
Chapman-Jouguet detonation front is thus clarified.  The velocity is fixed 
by chocked flow of the Chapman-Jouguet condition, MCJ = 1, reached by 
detonation products behind the front.  This constraint is communicated to 
the front by the expansion wave that is formed whenever it tends to accel-
erate.  The propagation velocity of the self-sustained detonation is there-
fore established by the mechanism for maintaining the frequency of colli-
sions between Mach intersections at a frequency commensurate with the 
boundary conditions – a physical modus operandi of a closed-loop control 
system. 

Schematic diagram:
self-sustained detonation
front displaying cellular
structures formed by
triple point collisions.

Dynamics of Combustion
Systems, 2nd ed.,
A. K. Oppenheim,
Springer Verlag, 1965.
Fig 12.29 p 329.

Rodolfo R. Rosales (MIT) Manta ray attractor December 1 2020, 18.385 6 / 18



Background Observations
12.3 Structure      323 

 
Fig. 12.23. Imprint of a self-sustained detonation front on a soot covered wall and 
its cinematographic schlieren record (Oppenheim 1985) 

The open shutter photographs led Soloukhin 1963 to realize that a self-
sustained detonation front ought to have the biblical property of ‘writing 
on the walls.’  This fact was recorded by covering the walls of the detona-
tion tube with a thin layer of soot.  An example of such a record is pro-
vided on the top of Fig. 12.23, while below it is a cinematographic 
schlieren record taken under the same conditions. The irregular pattern is 

 

Observations

Imprint of a self-sustained detona-
tion front on a soot covered wall,
and its cinematographic schilieren
record.

Dynamics of Combustion Systems, 2nd
ed., A. K. Oppenheim, Springer Verlag,
1965. Fig 12.23 p 323.
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Background Observations

324      12 Detonations 

due to wave fronts that slap across the 1” depth of the rectangular 1”x1.5” 
detonation tube.   

By having one of the glass walls of the test section in a rectangular 
cross-section tube coated with a soot layer, the detonation front has been 
caught in the act of ‘writing on the wall.’  A cinematographic schlieren re-
cord of this event is displayed by Fig. 12.24. 

 
Fig. 12.24. Cinematographic schlieren record of a propagating self-sustained 
detonation front with its simultaneously recorded imprint on a soot covered wall 
(Oppenheim 1985) 

A more distinct record of ‘writing on the wall’ was obtained with a 
stoichiometric hydrogen-oxygen mixture initially at a sufficiently low 
pressure to reduce the power density of deposited exothermic energy to a 
minimum so that the number of the 'writing heads' is reduced to one, as 
depicted in Fig. 12.25. 

Observations

Cinematographic
schlieren record of a
self-sustained
detonation front with its
simultaneously recorded
imprint on a
soot covered wall.

Dynamics of Combustion
Systems, 2nd ed.,
A. K. Oppenheim,
Springer Verlag, 1965.
Fig 12.24 p 324.
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The scalar 1D model

Simplest model: scalar 1D

Model: Fluid by inviscid Burgers’ eqn. (min. needed for shocks). Reaction
by source term with shock
strength dependent position: ut + (u − D) ux = f(x, us) for x < 0.
Here u = 0 for x > 0, there is
a shock at x = 0 (shock attached coordinates) with “lab” frame speed
D = 1

2 us, us = us(t) = u(0, t), & the heat release f is a function of us.

Example:1 f = 1
16
√

π β
exp

(
− ξ2

4 β

)
, ξ = x − xf , xf = −(2 D)−α,

where: 0 < β = reaction zone width,
and 0 < α = activation energy (reaction’s sensitivity to shock strength).

These are the key physical effects controlling longitudinal instabilities.
Model develops pulsating detonations — from periodic to chaotic,

via a sequence of period doubling bifurcations.
Model can be justified asymptotically.

1In this example the heat release profile is a fixed shape centered at xf .
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The scalar 1D model Chapman Jouguet steady state

Scalar 1D model Chapman Jouguet (CJ) steady state

Recall model: ut + (u − D) ux = f (x − xf ) for x < 0,

where D = 1
2 u(0, t), f (ξ) = 1

16
√
π β

exp
(
− ξ2

4β

)
, and xf = −(2D)−α.
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Steady state solution, and heat
release function, for various β’s.
Given β there is an αc such that
this solution is stable for α < αc .
At αc a Hopf bifurcation of the
steady state occurs, followed by
period doubling bifurcations.

Numerical experiments: keep β = 0.1 (αc ≈ 4.04) fixed and increase α.
The Feigenbaum constant for the period doubling is δ ≈ 4.669 (same as
the logistic map). A chaotic attractor occurs for α ≈ 5.1.
Similar to behavior obtained via calculations with the full reacting
Euler equations [Henrick-Aslam-Powers JCP2006].
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The scalar 1D model Period doubling

Scalar 1D model period doubling

Model: ut + (u − D) ux = f (x − xf ) for x < 0, xf = −(2D)−α.

β = 0.1 for both.

Left to right:

α = 4.7 periodic,

α = 5.1 chaotic.

Above: solution u(x , t) and characteristics ẋ = u − D (in white).

Period “one” and period “two”

limit cycles in the (D, Ḋ) plane,

for β = 0.1 and α = 4.7, 4.85.

Recall: D = shock velocity.
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The scalar 1D model Chaos and attractor

Scalar 1D model chaos and attractor

Model: ut + (u − D) ux = f (x − xf ) for x < 0, xf = −(2D)−α.
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Left: local max.’s of shock

strength us , versus α.

Right: Lorenz map: shock

strength of consecutive

local max.’s for α = 5.1.

Rendering of attractor by Olga Kasimov.

Chaotic attractor, α = 5.1,
projected on (D, Ḋ, D̈) “space”.
Recall D = shock velocity.

In this page β = 0.1.

Rodolfo R. Rosales (MIT) Manta ray attractor December 1 2020, 18.385 12 / 18



The 2D model Introduction and motivation

The 2D model: Introduction and motivation

Simplest 2D extension of ut + 1
2 (u2)x = 0 (canonical eqn. for weakly nonlinear

1D shocks) is the canonical eqn. for weakly nonlinear quasi planar shocks 2

ut + 1
2(u2)x + vy = 0 and vx − uy = 0,

where v = transversal velocity. Thus the model 3

ut + 1
2(u2)x + vy = f(x − xs, us) and vx − uy = 0 for x < xs,

where xs = xs(y , t) = shock position, us = us(y , t) = u-value behind the shock,

f = heat release function, and u = v = 0 for x > xs . At the shock:

(xs)t us − 1
2 u2

s + (xs)y vs = 0 and (xs)y us + vs = 0,

where vs = value of v right behind shock, and us > 0 (entropy condition).

These eqns. have plane steady solutions (ZND detonations).

2
Small disturbance transonic flow [Lin-Reissner-Tsien 1947], nonlinear acoustics [Zabolotskaya-Khokhlov 1969], etc.

3
Extension to 3D: use potential form of the equations. Note: we no longer use shock-attached coordinates.
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Nonlinear 2D dynamics (numerical) Cellular detonations

Nonlinear 2D dynamics (numerical): Cellular detonations

Numerically we investigate the long time dynamics of the instabilities, starting

from a slightly perturbed (unstable) ZND detonation. When the stability is weak,

a very regular multi-D cellular pattern emerges, with smooth transverse waves:

Large time dynamics (t = 800) for β = 0.1, α = 3.5, ζ = 1.05 (left u, right f ).

As the instability grows the transverse waves get sharper, the structure becomes

more complex, and eventually (possibly) chaotic.4 We illustrate this next.

4
We have not studied the various bifurcations that seem to be involved.
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Nonlinear 2D dynamics (numerical) Cellular detonations (vary overdrive)

Cellular detonations (vary overdrive ζ = speed/CJ-speed)

Waves closer to the C-J case (ζ = 1) are more unstable and display stronger

transverse variations. Furthermore, for smaller overdrive the cells become larger

(consistent with linear stability).

Plots of u at t = 1000 showing cellular patterns for α = 4.05 and β = 0.1.
Here ζ = 1.10 on the left, and ζ = 1.05 on the right.
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Nonlinear 2D dynamics (numerical) Cellular detonations (vary activation energy)

Cellular detonations (vary activation energy α)

Here we explore the reaction shock-state sensitivity effect on the slns. As α grows,

so does the plane waves instability ⇒ increasingly complex cellular patterns.

Large time (t = 1000) behavior: ζ = 1.05, β =
0.1, and α = 4.05, 4.30, 4.50 (top, left to right).
Bottom: corresponding f for α = 4.50.
The increasing complexity of the pattern is evident as
α grows, with a fairly irregular behavior for α = 4.50.

A quantitative characterization of the 2D dynamics, of the sort shown earlier for the
1D model, is challenging. It does seem, however, that the solutions do go through
a series of bifurcations as α grows.
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Simplest 2D model Transversal Instabilities (movies)

Simplest 2D model: Transversal Instabilities (movies)

Eqns.: ut + (1
2 u2)x + vy = f(x − σ − xf), and vx = uy,

where σ = σ(t, y) = shock position, D = σt = shock speed, u = v = 0 for

x > σ, etc. In particular f(ξ) = 1
8
√

π β
exp

(
− ξ2

4 β

)
and xf = −(2 D)−α.

Examples of transversal instabilities, α = 3.9 (left) and α = 4.5 (right) β = 0.1.
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The End

The End
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