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1 Edge waves for a pice-wise constant wave equation

1.1 Statement: Edge waves for a pice-wise constant wave equation

Consider the wave equation
utt − c2 (uxx + uyy)) = 0, for y > 0, (1.1)

where c = c2 for y > L, c = c1 for 0 < y < L, c2 > c1 > 0 are constants, and L > 0 is a constant. Furthermore,
u and uy are continuous across the y = L interface, and the boundary condition u = 0 applies at y = 0.

Find all the edge waves for this problem. Namely, non-vanishing solutions to the problem above of the form

u = U(y) exp (i (k x− ω t)) , (1.2)

where k > 0 and ω are real constants, and U vanishes (exponentially) as y →∞.

Hint. For any given fixed k, the problem will lead to an eigenvalue problem, with eigenvalue ω2, and eigenfunction
U = U(y). This problem can be then reduced to a transcendental equation that ω2 must satisfy. In order to study the

solutions to this later equation, it may be useful to write it down in terms of the variable ∆ = (L/c1)
√
ω2 − k2 c21,

which is restricted to the range

0 < ∆ < ∆M = k (L/c1)
√
c22 − c21, (1.3)

because it must be that k2 c2
1 < ω2 < k2 c2

2. By the way: you MUST show that this restriction on ω2 is needed.
You cannot use this just because I said so here.

1.2 Answer: Edge waves for a pice-wise constant wave equation

Substituting (1.2) into (1.1) leads to the eigenvalue problem (for any given k), with eigenvalue ω2,

−c2 U ′ ′ + (k2 c2 − ω2)U = 0, (1.4)

where U(0) = 0, U is not identically zero, U and U ′ are continuous across y = L, and U vanishes as y →∞.

Let us first show that the eigenvalue problem above can have a solution only if

k2 c21 < ω2 < k2 c22. (1.5)

a. Case 0 ≤ ω2 ≤ k2 c2
1. Then k2 c2 − ω2 ≥ 0 everywhere. Hence: (i) If U ′(0) > 0, U ′(y) is a non-decreasing

function, and the condition that U vanishes as y →∞ cannot be satisfied. (ii) If U ′(0) < 0, U ′(y) is a non-
increasing function, and the condition that U vanishes as y →∞ cannot be satisfied. (iii) If U ′(0) = 0, U ≡ 0.

b. Case k2 c2
2 < ω2. Then U is a sinusoidal for y ≥ L. It can vanish as y →∞ only if it vanishes identically. But

then U has to vanish everywhere.

c. Case k2 c2
2 = ω2. Then U is a linear function for y ≥ L. It can vanish as y →∞ only if it vanishes identically.

But then U has to vanish everywhere.
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Given (1.5), the fact that U(0) = 0, and the fact that U → 0 as y →∞, we can write

U = α sin

(√
ω2 − k2 c21
c1

y

)
for 0 ≤ y ≤ L, (1.6)

U = β exp

(
−
√
k2 c22 − ω2

c2
(y − L)

)
for L ≤ y, (1.7)

where α and β are two constants, both of which cannot vanish. Continuity of U at y = L gives

β = α sin ∆, where ∆ =

√
ω2 − k2 c21
c1

L. (1.8)

Continuity of U ′ at y = L gives

∆ cos ∆ = −
√
k2 c22 − ω2

c2
L sin ∆ = −c1

c2

√
∆2
M −∆2 sin ∆, (1.9)

where 1

0 < ∆ < ∆M =
k L

c1

√
c22 − c21. (1.10)
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Figure 1.1: Edge wave eigenvalue equation.

Writing (1.9) in the form ∆
cos ∆

sin ∆
= −c1

c2

√
∆2
M −∆2, (1.11)

it is easy to see that (see figure 1.1)

1. For ∆M ≤ π
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . there is no solution for ∆ in the range given by (1.10),

2. For π
2
< ∆M ≤ 5π

2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . there is one solution for ∆ in the range given by (1.10),

3. For 5π
2
< ∆M ≤ 9π

2
. . . . . . . . . . . . . . . . . . . . . . . . . there are two solutions for ∆ in the range given by (1.10),

and so on.

2 Elastic Hanging String

2.1 Statement: Elastic hanging string

Consider an elastic string, with constant mass per unit length ρ, and constant cross-sectional area A. Assume
small deformations, so that the elastic forces (tension) generated on any small portion of the string have the form

T = E A
∆`

`
= κ

∆`

`
(2.1)

1 Note that 0 < ∆ < ∆M is equivalent to (1.5).
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where ` is the un-stretched length of the string segment, ∆` is the length change, E is the Young’s modulus for the
string material, and κ = EA. Notice that we ignore any changes in A that may occur because of the stretching.

Assume now that the string is hanging vertically, and straight — no lateral displacements, from some fixed point, so
that it can be described by a function Z = Z(ζ, t), where

A. z is the vertical coordinate, z = 0 is the position of the point to which the string is attached, and the relaxed
length of the string is L

B. z = ζ, −L ≤ ζ ≤ 0, would be the vertical position of a mass element along the string when not stretched. Thus
ζ serves as a label for the mass elements of the string.

C. z = Z(ζ, t) is the actual position of the mass element whose label is ζ. Hence the displacement field along
the string is given by u = u(ζ, t) = Z − ζ.

Perform the following tasks:

1. Derive an equation for u, assuming that the only external force on the string is gravity, characterized by g.

2. What are the boundary conditions for the equation derived in 1?

3. How do the boundary conditions change if there is a mass m attached to the lower end of the string?

4. What is the equilibrium (no motion) state for the string, as described by the equation and boundary conditions
in 2 and 3? Call this solution u∗ = u∗(ζ).

5. The fundamental modes of vibration for the system in this problem are described by solutions of the form
u = u∗(ζ) + a cos(ω t) sin(k ζ), where (obviously) a, k 6= 0. Find equations for ω and k. Why is the ζ
dependence via a sine?

2.2 Answer: Elastic hanging string
1. From equation (2.1), the tension along the string is given by

T = κ
(dZ − dζ)

dζ
= κuζ . (2.2)

Consider now an arbitrary section of the string, described by a < ζ < b. The conservation of momentum on
this section can be written in the form

d

dt

∫ b

a

ρ ut dζ = T (b, t)− T (a, t)− g ρ (b− a) =

∫ b

a

(Tz − g ρ) dζ. (2.3)

Since this must be true for any string segment, it follows that

ρutt − κuζ ζ = −g ρ, or utt − c2 uζ ζ = −g, (2.4)

where c =
√
κ/ρ is the wave speed, and we have used (2.2) to express Tζ .

2. At the upper, attached, end of the string there should be no motion. At the lower, free, end of the string the
tension should vanish (since there is no force that can balance T there). Hence, the boundary conditions for
equation (2.4) are

u(0, t) = 0 and uζ(−L, t) = 0. (2.5)

3. If there is a mass m attached to the lower end of the string, then the tension there must be such that it
balances the forces produced by that mass: weight and inertia. Hence, in this case the boundary conditions
for equation (2.4) are

u(0, t) = 0 and m utt(−L, t) = −m g + κuζ(−L, t). (2.6)

Obviously, this reduces to (2.5) for m = 0.
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4. The equilibrium state for the string, as described by the equation and boundary conditions above, is obtained
by setting all the time derivatives to zero, and solving the resulting o.d.e. for u. The answer is

u =

(
1

2
γ

(
ζ

L

)2

+ γ

(
1 +

m

M

) (
ζ

L

))
L, (2.7)

where M = ρL is the total mass of the string, and γ =
gM

κ
is a non-dimensional parameter measuring the

relative strengths of the two forces in the problem.

5. We now consider the fundamental modes of vibration. Substituting into the equation and boundary condition,
it is easy to see that it should be ω = k c, with

m

M
(k L) =

cos(k L)

sin(k L)
. (2.8)

The case m = 0 is trivial, and can be solved explicitly.
Notes:
— The dependence of the mode on ζ is via a sine because it must be u = 0 at ζ = 0.
— Strictly speaking, the time dependence for the mode should be written as cosω (t− t0).
— The equation relating ω and k, ω2 = c2 k2, has two roots. However, they give the

same answer, so we selected ω = k c.

3 Gravity water waves (dispersion relation)

3.1 Statement: Gravity water waves (dispersion relation)

The equations for (infinitesimal) irrotational surface waves on a liquid over a flat impermeable bottom, when surface
tension and dissipative effects are neglected, are

∆Φ = 0, for 0 < z < h (incompressibility). (3.1)

Φz = 0, for z = 0 (impermeable bottom). (3.2)

ηt − Φz = 0, for z = h (kinematic boundary condition). (3.3)

Φt + g η = 0, for z = h (dynamic boundary condition). (3.4)

Here (i) ∆ = ∂2
x + ∂2

y + ∂2
z is the Laplace operator, (ii) Φ = Φ(x, y, z, t) is the velocity potential — the flow velocity

is given by ~u = grad Φ, (iii) ~x = (x, y) are the horizontal coordinates, (iv) z is the vertical coordinate — z = 0 is
the bottom and z = h is the equilibrium level for the liquid (h is a constant), (v) η is the deviation from equilibrium
of the surface — the surface is at z = h + η(x, y, t), and (vi) g is the acceleration of gravity. Equation (3.2) is the
statement that there is no flow through the bottom, equation (3.3) states that the velocity of the surface normal to
itself is equal to the flow velocity normal to the surface, and equation (3.4) follows from the balance of forces at the
interface — Bernoulli’s principle.

Compute the dispersion relation for these equations: separate the time and horizontal dependence as ei θ — where
θ = ~k · ~x− ω t and ~x = (x, y), solve for the vertical dependence, and find the equation that relates ω and ~k.

3.2 Answer: Gravity water waves (dispersion relation)

Write Φ = φ(z) ei θ and η = a ei θ, where a is a constant (complex wave amplitude). The equations then become

φ′ ′ − k2 φ = 0, for 0 < z < h, (3.5)

φ′ = 0, for z = 0, (3.6)

i ω a+ φ′ = 0, for z = h, (3.7)

i ω φ− g a = 0, for z = h, (3.8)
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where k2 = k2
1 +k2

2 = ‖~k‖2. Solving (3.5) and (3.6) we obtain φ = A cosh(k z), where A is a constant. Substituting
this into (3.7) and (3.8) then yields

i ω A cosh(k h) = g a and ω2 = g k tanh(k h). (3.9)

4 Narrow band wave packages #01

4.1 Statement: Narrow band wave packages #01

Consider a solution to a 1-D linear dispersive system with a narrow band spectrum and a single branch of the
dispersion relation active. 2 Using the Fourier Transform, this means that the solution can be written in terms of a
scalar function of the form

u = u(x, t) =

∫ ∞
−∞

U(k) ei (k x−ω t) dk, where: (4.1)

a. The wave-frequency ω = ω(k) is given by the dispersion relation. Assume that ω is a smooth, real valued,
function.

b. The complex amplitude U is concentrated near some wave-number k0.

That is 3 U =
1

ε
A

(
k − k0

ε

)
, (4.2)

where 0 < ε� 1 and A is a smooth function that decays rapidly at infinity.
We use a-dimensional variables, otherwise a statement like 0 < ε� 1 has no meaning.

Assume that
d2ω

dk2
(k0) = 0 and µ0 =

d3ω

dk3
(k0) 6= 0. Thus the Taylor expansion for ω centered at k0 has the form

ω(k) = ω0 + c0 (k − k0) +
1

6
µ0 (k − k0)3 + . . . , (4.3)

where ω0 = ω(k0) and c0 = cg(k0) =
dω

dk
(k0) is the group speed at k0. Then show that u in (4.1) has the form of a

modulated carrier wave
u = a(X, T ) ei (k0 x−ω0 t), (4.4)

where X = ε x, T = ε t, and the modulation amplitude satisfies the equation

aT + c0 aX −
1

6
ε2 µ0 aXXX = O(ε3). (4.5)

What equation does a satisfy in terms of the variables χ = X − c0T and τ = ε2 T = ε3 t?

Hint. Write k = k0 + ε κ and substitute this into (4.2–4.3). Then use the result in (4.1).

4.2 Answer: Narrow band wave packages #01

Substituting k = k0 + ε κ into (4.3) yields

ω(k) = ω0 + ε c0 κ+ ε3
1

6
µ0 κ

3 + . . . , (4.6)

Then, using this and (4.2) in (4.1) yields

u =

∫ ∞
−∞

A(κ) ei (κX−ΩT ) dκ︸ ︷︷ ︸
a

ei (k0 x−ω0 t), (4.7)

2 If more than one exists.
3 The purpose of the pre-factor 1/ε is so that the integral of U does not vanish as ε→ 0.
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where Ω = c0 κ+ ε2
1

6
µ0 κ

3 + ..., and a is defined by the equation. Clearly: a is the solution by Fourier Transform

of (4.5). Finally, in terms of χ and τ the amplitude satisfies the linear KdV equation

aτ −
1

6
µ0 aχχχ = 0. (4.8)

5 Radiation damping #02

5.1 Statement: Radiation damping #02

Consider a semi-infinite shallow water channel, with a rectangular cross-section of width w, and a paddle at the end.
The paddle has mass m, and it is kept in place by a spring — with spring constant κ. In addition, a force f = f(t)
is applied by the paddle. We model the system using the shallow water wave equations in the channel

ht + (hu)x = 0 for x > σ(t), (5.1)

ut + uux + g hx = 0 for x > σ(t), (5.2)

where h = h(x, t) is the water depth, u = u(x, t) is the flow velocity, g is the acceleration of gravity, and x = σ(t) is
the position of the paddle. At the paddle position, x = σ, we have

σ̇ = u, (5.3)

mσ̈ = −κ (σ − x0)− 1

2
g ρw h2︸ ︷︷ ︸
pw

+f, (5.4)

where ρ is the density of water, pw is the pressure 4 force by the water on the paddle, and x0 corresponds to the
equilibrium position for the spring — see (5.5). Note that a forcing done by moving the spring attachment point, so
that the spring force has the form −κ (σ − x0 − χ(t)), is the particular case of (5.4) where f = κχ — in fact, we can
always write f in this form.

At equilibrium
σ = 0, u = 0, h = H = constant, f = 0, and κx0 =

1

2
g ρwH2. (5.5)

Assume now an “infinitesimal” force and “infinitesimal” perturbations from equilibrium,5 with h = H + η, and write
linearized equations of motion for σ, η, and u. The equations for η and u will apply for x > 0, with boundary

conditions at x = 0 involving both f and σ. Introduce the velocity potential φ, with u = φx and η = −1

g
φt, and

write the equations in terms of φ and σ.

For the situation where all the transient waves in the channel are gone, and the waves there are solely the product
of the forcing f , derive an ode for σ. This ode will have a damping coefficient, due to radiated energy carried away
by the waves. Finally, write the solution for the case when f = a ei ω t — where a and ω are constants.

5.2 Answer: Radiation damping #02

The linearized equations are
ηt +H ux = 0, and ut + g ηx = 0, (5.6)

valid for x > 0. The boundary conditions at x = 0 follow from (5.3 – 5.4)

σ̇ = u, and mσ̈ + κσ = −g ρwH η + f. (5.7)

4 Hydrostatic equilibrium, with pressure variations in the air above the water neglected.
5 That is: u, σ, and η are “infinitesimal.”
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In terms of the velocity potential φ, such that u = φx and η = −1

g
φt, the second equation in (5.6) is automatically

satisfied, and the system reduces to

φtt − c2 φxx = 0 for x > 0, (5.8)

σ̇ = φx at x = 0, (5.9)

mσ̈ + κσ = ρwH φt + f at x = 0, (5.10)

where c =
√
g H.

After the transient waves are gone, the solution must have the form

φ = y
(
t− x

c

)
, (5.11)

for some function of a single variable y = y(t). Substituting this into (5.9 – 5.10) yields the ode

mσ̈ − ρwH c σ̇ + κσ = f, where y = −c σ + constant (5.12)

and νR = ρwH c is the damping coefficient. The constant in the expression for y has no physical relevance, since
it has no effect on η or u.

If f = a ei ω t, then

σ =
a

κ−mω2 − i ω νR
ei ω t, y = −c σ, and φ follows from (5.11). (5.13)

Important point. The homogeneous solutions to (5.12) are exponentially damped. If these solutions are plugged into
(5.11), they yield solutions that blow up exponentially as x→∞. This is absurd, how can it be? The problem arises
because the homogeneous solutions to (5.12) are transients. We cannot assume that they have existed for all times,
as this requires infinite energy as t→ −∞. On the other hand, if such a solution is initiated at a finite time t0, and
vanishes before the starting time t0, then (5.11) yields a reasonable answer, with no waves beyond x = c (t− t0).

6 Reflected wave from an active boundary #01

6.1 Statement: Reflected wave from an active boundary #01

Calculate the reflected wave for the linear wave equation problem in figure 6.1. Note that:
1. There are no waves on x < 0. The equation applies for x > 0 only.
2. There is a critical angle θc at which something very special happens.

Find θc, and explain the physical meaning of what you found.
3. Show also that the model is stable: none of the normal modes grows — see remark 6.1.

The equation to be solved is

Φtt − c2 ∆ Φ = 0 for x > 0, where c > 0 is a constant, (6.1)

with the boundary condition

Φxt + γ2 Φyy = 0 at x = 0, where γ > 0 is a constant. (6.2)

This is a made-up mathematical model for something that happens when there is an “active” boundary — i.e.: extra
energy is available there. The motivating example here is combustion, where the boundary is a plane detonation
wave (where a chemical reaction occurs) and we look at the linearized problem near this solution. The “real” problem
is far more complicated than the model here, with more waves (here only the acoustic waves have been allowed to
survive), and more variables. But the basic wave phenomena that occurs is the same that you will find here.
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Figure 6.1: Reflected wave from an active boundary. Here c, γ > 0 are constants. The incident wave has the form
I = exp (i k (−x cos θ + y sin θ − c t)), with 0 < θ < π/2 and k 6= 0 constants.

Remark 6.1 Because the equation and boundary condition are translational invariant in the y-direction, the problem
can be Fourier Transformed in this variable, and we can write

Φ =

∫ ∞
−∞

φ(`, x, t) ei ` y d`, where φ =
1

2π

∫ ∞
−∞

Φ e−i ` y dy (6.3)

satisfies φtt − c2 φxx + `2 c2 φ = 0 for x > 0, (6.4)
and φxt − γ2 `2 φ = 0 at x = 0, (6.5)
where −∞ < ` <∞.
The normal modes are solutions of this problem of the form φ = ϕ(`, x) eλ t, decaying as x→∞, where λ is a
constant. Since the equation for ϕ is a constant coefficients ode, it must be ϕ ∝ e−αx, where α is a constant such
that Re(α) > 0. ♣

6.2 Answer: Reflected wave from an active boundary #01

The solution that we need to compute has the form

Φ = exp (i k (−x cos θ + y sin θ − c t)) +R exp (i k (x cos θ + y sin θ − c t)) , (6.6)

where R is the reflection coefficient. By construction this is a solution to the wave equation (6.1). Substitution into
the boundary condition (6.2) yields

(c cos θ + γ2 sin2 θ)− (c cos θ − γ2 sin2 θ)R = 0 (6.7)

(note that this equation is independent of k). 6 Hence R =
c cos θ + γ2 sin2 θ

c cos θ − γ2 sin2 θ
. (6.8)

Notice now that there is a critical angle θc, defined by 7 c cos θc = γ2 sin2 θc. (6.9)

At the critical angle R(cos θc) =∞. (6.10)

The infinity in the reflection coefficient corresponds to the fact that spontaneous emission of radiation by the active
boundary, at the critical angle, is possible. That is

Φ = exp (i k (x cos θc + y sin θc − c t)) , (6.11)

6 Not surprising, since the wave equation has no dispersion.
7 See figure 6.2.
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Figure 6.2: Critical angle, 0 < θc < π/2, defined by the intersection of the curves c cos θ and γ2 sin2 θ.

is a solution to (6.1–6.2), for any k, because of (6.9). In other words, a “reflected wave” can occur without the need
of an incident wave!

Does this mean that this problem is un-physical? Does the system have solutions that extract energy out of the
boundary, and grow without bounds? To ascertain this issue, we investigate the “normal modes” for the equation.
Substituting φ = e−αx+λ t into (6.4–6.5), with α and λ constants to be found (Re(α) > 0), leads to

λ2 − c2 α2 + c2 `2 = 0 and αλ+ γ2 `2 = 0. (6.12)

Note that, for ` = 0, the only solution of these equations is α = λ = 0, which does not satisfy Re(α) > 0. Thus:
without loss of generality, we assume ` 6= 0. (6.13)

Next we show stability: Re(λ) < 0, all the normal modes decay. (6.14)

Proof: we can write α = ρ ei ψ, where ρ > 0 and −π/2 < ψ < π/2. Hence, from the second equation
in (6.12), λ = −(γ2 `2/ρ) e−i ψ, from which it follows that Re(λ) < 0. ♣

The equations in (6.12) can be solved explicitly, as follows: Multiply the first equation by α2, and then use the
second to eliminate λ2 α2. This gives

c2 α4 − c2 `2 α2 − γ4 `4 = 0. (6.15)

Thus

α = |`|

√
c+

√
c2 + 4 γ4

2 c
> 0 and λ = −2 |`|

√
−c+

√
c2 + 4 γ4

2 c
< 0, (6.16)

where the other three roots are excluded because they give α either pure imaginary, 8 or negative. Hence, in fact,
both α and λ are real.

Remark 6.2 It is easy to see that the purely imaginary roots of (6.15) correspond to the solution in (6.11), and the
one obtained by the symmetry y → −y — equivalently: θc → −θc.

To see this, take one of the two solutions with α pure
imaginary. For example, assume that ` > 0, and take

α = −i `
√(√

c2 + 4 γ4 − c
)
/(2 c).

Write ` = k sin θ and α = −i k cos θ, where 0 < θ < π/2 and 0 < k =
√
`2 − α2. Then (6.15) yields

0 = c2 cos2 θ − γ4 sin4 θ = (c cos θ − γ2 sin2 θ) (c cos θ + γ2 sin2 θ).
Since cos θ > 0, this is (6.9). The other cases can be done in the same fashion. ♣

Remark 6.3 To have a complete argument that shows that there is nothing wrong with the model in (6.1–6.2), we
would need to show that the initial value problem for the system behaves properly. This can be done by, for example,
using the Laplace transform to produce the solution to (6.4–6.5) — hence, via (6.3) the solution to (6.1–6.2). This
is left as a challenge to the reader. ♣

8 See remark 6.2.
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7 Shallow water waves at the beach

7.1 Statement: Shallow water waves at the beach

Modulation theory for a slowly varying linear wave in a dispersive media states that the wave-number ~k = ∇ θ, and
the wave-frequency ω = −θt, must satisfy the dispersion relation

G(ω, ~k) = 0, (7.1)

where θ is the wave-phase. The wave-amplitude, in turn, satisfies the energy equation 9

(a2)t + div(~cg a
2) = 0, (7.2)

where ~cg = ∇~k ω is the group speed.

Example 1: For the Klein-Gordon equation utt − c2 ∆u+m2 u = 0, where c > 0 and m > 0 are constants,

G = ω2 − c2 k2 −m2 and ~cg = (c2/ω)~k. The theory works even if the waves are not dispersive, as in the case of linear shallow

water G = ω2 − g h k2 and ~cg = (g h/ω)~k, (7.3)

where h > 0 is the water depth. ♣
If the media is slowly varying in space (changes happen on scales much larger than the wave-length) the theory still
applies, with (7.1) replaced by

G(ω, ~k, ~x) = 0, (7.4)

and ~cg = ~cg(~k, ~x) in (7.2).

Example 2: Take h = h(~x) in (7.3). ♣
In particular, for single frequency waves, we can take θ = φ(~x)− ω t, and a = a(~x), where ω is a constant. Then

G(ω, ~k, ~x) = 0 and div(~cg a
2) = 0, (7.5)

where ~k = ∇φ.

Problem tasks/questions: Consider the case of shallow water, in 1-D, for the situation where single frequency wave
is approaching the shore at a gently sloped beach (thus h = h(x) approaches zero slowly). Answer the following
questions:
A. How do the wave-number and wave-length behave as h vanishes?
B. How does the wave-amplitude behave as h vanishes?
C. How does the maximum wave slope behave as h vanishes?
D. Does the linear approximation remain valid all the way to the shore?

7.2 Answer: Shallow water waves at the beach.

The equations are ω2 = g h k2 and (
√
g h a2)x = 0, where k = φx. (7.6)

Hence k = O(h−1/2), λ = O(h1/2), a = O(h−1/4), and s = a k = O(h−3/4), (7.7)

where s is the wave slope. 10 It follows that the wave-length shrinks, and the amplitude grows, as the wave approaches
the shore. Eventually the linear approximation must break down — what happens then is that the nonlinearity makes
the waves break.

9 The wave-energy flows at the group speed. Note that here we assume a > 0.
10 Let η = a sin(θ) be the wave height. Then the slope is η = a k cos(θ).
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8 Slowly varying harmonic signaling for a string on a bed

8.1 Statement: Slowly varying harmonic signaling for a string on a bed

The equation for the (linear) vibrations of an homogeneous string under tension, over an homogeneous elastic bed,
has the form

ρ utt − T uxx + κu = 0, (8.1)

where u = u(x, t) is the deviation from equilibrium of the string, and the (positive) constants ρ, T , and κ are the
string density, the string tension, and the bed elastic constant, respectively.

In the lectures we analyzed the signaling problem, for a semi-infinite string 0 < x <∞, characterized by the boundary
condition

u(0, t) = Re
(
a e−iΩ t

)
, (8.2)

where a is a complex constant, and Ω > 0 is a real constant. If Ω > ωc =
√
κ/ρ, this signaling problem has the

general “steady state” solution

u(x, t) = Re
(

(a− b) ei (K x−Ω t) + b ei (−K x−Ω t)
)
, with K =

√
(ρ/T )(Ω2 − ω2

c ) > 0, (8.3)

where b is a constant. By calculating the average (over one time period 2π/Ω) energy flux produced by a plane
harmonic wave — namely: < −T ut ux > — we showed that it must be b = 0, since the component b ei (−K x−Ω t)

in (8.3) corresponds to an energy flux from infinity towards x = 0.

This problem aims at arriving to the same result, but using a different approach. (8.4)

We begin by considering the a-dimensional version of the problem above, namely:

utt − uxx + u = 0, for x > 0, (8.5)

with boundary condition
u(0, t) = Re

(
a e−iΩ t

)
, where Ω > 1 = ωc. (8.6)

The corresponding wave number is then K =
√

Ω2 − 1.

Next we generalize the problem to a situation where the forcing at the starting end of the string is turned on slowly.
Namely, instead of taking a constant in (8.6), we assume that a is a slow 11 function of time

a = a(τ), where τ = ε t and 0 < ε� 1. (8.7)

Because the amplitude a(τ) varies slowly, we expect that the solution to (8.5 – 8.7) will be, at least at leading order,
close to the solution to the steady state that occurs when a is a constant — hence, it will have the same form.
On the other hand, because the forcing amplitude is not constant, we expect that the amplitude of the solution
to (8.5 – 8.7) will change slowly. Furthermore, the speed of propagation of changes in the forcing is bounded, 12

hence the amplitude of the solution to (8.5 – 8.7) cannot be independent of x, as this would require infinite speed of
propagation. But, because the forcing varies slowly, a finite speed of propagation suggests that the space dependence
should also be slow, as the amplitude has time to adjust (anywhere) to some sort of local steady state amplitude.

The arguments in the prior paragraph are somewhat vague, but they suggest that we should look for solutions of
(8.5 – 8.7) of the form

u ≈ Re
(
A(χ, τ ) ei (K x−Ω t)

)
, where χ = ε x. (8.8)

TASK #1: Seek such solutions, and find the equation that A = A(χ, τ ) must satisfy.

Hint. The idea is that the right hand side in (8.8) should be a solution up to some small error. Hence write

u = Re
(
A(χ, τ) ei (K x−Ω t)

)
+ ε u1(x, t; χ, τ) + . . . (8.9)

11 The reason we need to use a-dimensional variables in this problem is that, otherwise, “small” has no meaning.
12 (8.5) is hyperbolic, with characteristic speeds ±1. It can be shown that no signal propagates faster than 1.
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substitute into the equation, and find an equation that u1 must satisfy as a function of x and t. This equation will be
forced by terms produced by the χ and τ dependence of A. Now select this dependence in such a way that no growing
component in u1 is triggered by the forcing — if u1 grows, then the error in the approximate solution in (8.8) will
not be small, so that (8.8) will not really be an approximate solution.

TASK #2: Perform the same analysis, but now look for solutions of (8.5 – 8.7) of the form

u ≈ Re
(
B(χ, τ) ei (−K x−Ω t)

)
, (8.10)

and find the equation that B satisfies.

TASK #3: The equations that you find for A and B will be fairly simple, and you will be able to write their general
solution explicitly. By looking at these solutions, argue that (8.9) is an acceptable solution to the problem in (8.5 –
8.7), but (8.10) is not. This is the result promised in (8.4).

TASK #4: What role does the group speed play in all of this? Where does it appear?

8.2 Answer: Slowly varying harmonic signaling for a string on a bed

Substitute
u = A(χ, τ) ei (k x−ω t) + ε u1(x, t; χ, τ) + . . .︸ ︷︷ ︸

error E

, (8.11)

where k and ω are (real) constants satisfying ω2 = 1 + k2, into (8.5). This yields the following leading order equation
for the error

(u1)tt − (u1)xx + u1 = 2 i (ωAτ + kAχ)︸ ︷︷ ︸
C

ei (k x−ω t) +O(ε), (8.12)

where C is independent of x and t, hence a constant as far as the operator on the left for u1. Thus 13

u1 = − t
ω

(ωAτ + kAχ) ei (k x−ω t) + U1, (8.13)

where U1 is a solution to the homogeneous equation. However, in order for the first term in (8.11) to be a good
approximate solution to the equation, the error should remain small as t grows. Hence we argue that A should satisfy
the equation

ωAτ + kAχ = 0 ⇐⇒ Aτ + cg Aχ = 0, (8.14)

where cg =
k

ω
=
dω

dk
is the group speed.

TASKS #1 and #2. From (8.14), the equations for A in (8.9) and for B in (8.10) are

Aτ + cAχ = 0 and Bτ − cBχ = 0, where c =
K

Ω
> 0. (8.15)

TASK #3. The solutions to (8.15) that correspond to the boundary condition in (8.7) are

A = a
(
τ − χ

c

)
and B = a

(
τ +

χ

c

)
. (8.16)

The solution for A shows the wave amplitude changes propagating from the origin to the right, while the solution for
B corresponds to information moving from infinity towards the origin. Hence (8.9) is an acceptable solution, while
(8.10) is not.

TASK #4. From equation (8.14), it should be obvious that the information about changes in the wave amplitude
(hence energy) propagates at the group speed.

13 In calculating u1, we neglect the O(ε) in (8.12), with the argument that it will be absorbed into the calculation of the next term in (8.11);
i.e.: ε2 u2.
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9 String on an elastic bed: harmonic forcing at the critical frequency

Before doing this problem, check the Lecture topics for 18376 notes: Section: Radiation damping. Subsection:
Semi-infinite string over elastic bed with mass-spring at end. Subsubsection: Harmonic forcing.

9.1 Statement: String on an elastic bed: harmonic forcing at the critical frequency

Consider a semi-infinite string over an elastic bed, under tension, with a forced mass-spring system attached at its
end (assume also small, in-plane, motion). With properly selected a-dimensional variables, the equations are

utt − uxx + u = 0 for x > 0, (9.1)

utt + Ω2 u = 2 ν ux +G at x = 0, (9.2)

where Ω and ν are positive constants, G = G(t) is the force applied to the mass attached to the string, and 2νux(0, t)
is the force by the string (due to its tension) on the mass. We will make the following assumptions:

a1. The forcing is harmonic, specifically: G = ei ω t, with 0 < ω < 1. (9.3)

a2. The following applies: Ω2 < 1. (9.4)

A particular solution to (9.1–9.3) is given by up = a ei ω t−` x, with a = 1/(Ω2 + 2ν`− ω2), (9.5)
where ` =

√
1− ω2.

Below we show how to use this solution to generate the solution to the initial value problem for (9.1–9.3). However,
note: there is a critical value of ω, ωc, at which (9.5) fails — the value such that Ω2 + 2ν`− ω2 = 0.

Remark 9.1 Ω2 + 2ν`− ω2 = 0 has exactly one solution for 0 < ω < 1, ωc.
Proof. Let f(ω) = ω2 − 2ν`. This function is increasing, and satisfies f(0) = −2ν < Ω2 and f(1) = 1 > Ω2. ♣

Problem task: Find a particular solution for the case ω = ωc.

Hint. Use the technique illustrated by the following example: Consider the ode: ÿ + y = ei ω t [A]. This has the
solution yp = (1 − ω2)−1ei ω t, valid as long as ω2 6= 1. To find a solution for ω = 1, notice that z = ei ω t satisfies,
for any ω, the ode: z̈ + z = (1 − ω2) ei ω t [B]. Now let ξ = ∂z

∂ω , and take the derivative of [B] with respect to ω.

This yields the equation: ξ̈ + ξ = −2ω ei ω t + i t (1− ω2) ei ω t [C]. Evaluating now [C] at ω = 1 leads to the desired
particular solution, specifically: yp = −1

2
ξ(ω = 1) = −1

2
i t eit.

Note also that the answer to this problem is just slightly longer than this hint. ♣

From particular to the general solution.

Here we show how to use a particular solution of (9.1–9.3), to reduce the initial value problem to one that can be
solved by ode techniques and Fourier Transforms. Note: you do not need to read this to do the problem!
Disclaimer: the approach presented below is probably not “the best”. Think of it as a proof of concept only.

We begin by writing u = up + w, where w solves (9.1–9.2) with G = 0 and initial data:
w(x, 0) = w0(x) = u(x, 0)− up(x, 0) and wt(x, 0) = w1(x) = ut(x, 0)− (up)t(x, 0). (9.6)

Introduce now v = v(x, t) by v = Lw = wxx − (1− Ω2)w − 2 ν wx, (9.7)
where the operator L is defined
by the equation. Then vtt − vxx + v = 0 for x > 0, with v(0, t) = 0. (9.8)

The initial conditions for this equation
(
v(x, 0) = v0(x) and vt(x, 0) = v1(x)

)
follow from (9.6–9.7).

Why is it v(0, t) = 0? This is because w satisfies (9.1), so that v = wtt + Ω2w − 2 ν wx as well.

Then
v =

∫ ∞
0

(
v̂0(k) sin(k x) cos

(√
1 + k2 t

)
+ v̂1(k) sin(k x)

sin
(√

1 + k2 t
)

√
1 + k2

)
dk, (9.9)

where v̂0 and v̂1 are the sine-Fourier Transforms of v0 and v1.

The issue is now: Given v, how do we recover w? To
do this we observe that, from the definition of v, we have Lw = v. (9.10)
Thus

w(x, t) = w1(x, t) + α(t) eλ1 x, where w1(x, t) =

∫ ∞
0

G(x, y) v(y, t) dy, (9.11)
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α is a function to be determined, λ1 is defined below, and G is the Green’s function for L−1 with zero boundary
condition at x = 0. That is:

G =
1

λ1 − λ2

(
eh (x−y) − eλ1x−λ2 y

)
(9.12)

where h = λ2 if x < y, h = λ1 if x > y, λ1 = −ν −
√
ν2 + (1− Ω2) < 0,

and λ2 = −ν +
√
ν2 + (1− Ω2) > 0.

The λj are the two roots of λ2 − 2 ν λ = 1− Ω2, the characteristic equation for L.
Why (9.11)? Because Lw = v determines w up to an homogeneous solution, but eλ2 x is not allowed because λ2 > 0.

Now, because v satisfies (9.1), and Lw1 = v,
we have L((w1)tt − (w1)xx + w1) = 0, hence (w1)tt − (w1)xx + w1 = β(t) eλ1 x. (9.13)
But both v and w1 vanish at x = 0. Hence evaluating (9.10) and
(9.13) at x = 0 we obtain: (w1)xx = 2 ν (w1)x and (w1)xx = −β. Thus β(t) = −2 ν (w1)x(0, t). (9.14)

Finally, substituting w = w1 + α(t) eλ1 x into wtt − wxx + w = 0,
and using (9.13), yields an equation that determines α. That is α̈+ (1− λ2

1)α+ β = 0. (9.15)
The task of finding how to get initial conditions for this equation
is left to the reader. Note that w, as defined by all these steps, satisfies the boundary condition at x = 0. Why?
Because using wtt − wxx + w = 0 in Lw = v yields v = wtt + Ω2 w − 2 ν wx, and v vanishes at x = 0.

Remark 9.2 Provided that the initial data are reasonably smooth: as t→∞, v vanishes; consequently, w as well.
It follows that: As t→∞, the solution to (9.1–9.3) is dominated by the particular solution, u ∼ up. ♣
Here you may wonder: wait a second, the particular solution is not unique; what if I use a different one from the one above?

The answer is that it does not matter: the difference between any two particular solutions vanishes.

9.2 Answer: String on an elastic bed: harmonic forcing at the critical frequency

Let z = ei ω t−` x, with ` as in (9.5). Then z satisfies (9.1–9.2) with G = (Ω2 + 2 ν `− ω2) ei ω t. Now take the
derivative of these equations with respect to ω. This gives

ξtt − ξxx + ξ = 0 for x > 0, (9.16)

ξtt + Ω2 ξ = 2 ν ξx −
2ω

`
(ν + `) ei ω t + i t (Ω2 + 2 ν `− ω2) ei ω t at x = 0, (9.17)

where ξ = ∂ z/∂ ω =
(
i t+ ω

`
x
)
z. Evaluating this at ωc shows that we can take

up = −
`c

2ωc (ν + `c)

(
i t+

ωc

`c
x

)
ei ωc t−`c x. (9.18)

Note that, since ω2 = 1− `2, the critical equation is 0 = Ω2 + 2 ν `c − ω2
c = Ω2 + 2 ν `c + `2c − 1, with `c > 0. Thus

`c = −λ1, where λ1 is defined in (9.12). Hence, in (9.15), 1− λ2
1 = ω2

c .

THE END.


