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1 The flux for a conserved quantity must be a vector

1.1 Statement: The flux for a conserved quantity must be a vector

Note: Below (for simplicity) we present many arguments/questions in 2D. However they apply just as well in nD; n = 3, 4, . . .

Consider some conserved quantity, with density ρ = ρ(~x, t) and flux vector ~q = ~q(~x, t) in 2D. Then, in the absence of

sources or sinks, we made the argument that conservation leads to the (integral) equation

d

dt

∫
Ω

ρdx1dx2 = −
∫
∂Ω

~q · n̂ds, (1.1)

for any region Ω in the domain where the conserved “stuff” resides, where ∂Ω is the boundary of Ω, s is the arc-length

along ∂Ω, and n̂ is the outside unit normal to ∂Ω.

There are two implicit assumptions used above

1. The flux of conserved stuff is local: stuff does not vanish somewhere and re-appears elsewhere (this would

not violate conservation). For most types of physical stuff this is reasonable. But one can think of situations

where this is not true — e.g.: when you wire money, it disappears from your local bank account, and reappears

elsewhere (with some loses due to fees, which go to other accounts).

2. The flux is given by a vector. But: ⇒ Why should this be so? ⇐ (1.2)

The objective of this problem is to answer this question.

Given item 1, the flux can be characterized/defined as follows †

For any surface element d~S (at a point ~x, with unit normal n̂)

the flux indicates how much stuff, per unit time and unit area,

crosses d~S from one side to the other, in the direction of n̂.

 (1.3)

†This is in 3D. For a 2D, change “surface element” to “line element”.

It follows that the flux should be a scalar function of position, time, and

direction. That is:

q = q(~x, t, n̂), (1.4)

where q is the amount of stuff, per unit time and unit length, crossing a curve 1 with unit normal n̂ from one side to

the other (with direction 2 given by n̂). Then (1.1) takes the form

d

dt

∫
Ω

ρ dx1dx2 = −
∫
∂Ω

q(~x, t, n̂) ds. (1.5)

However, in this form we cannot use Gauss’ theorem to transform the integral on the right over ∂Ω, into one over

Ω. This is a serious problem, for this is the crucial step in reducing (1.1) to a pde.

Your task: Show that, provided that ρ and q are “nice enough” functions (e.g.: continuous partial derivatives),

equation (1.5) can be used to show that q has the form

q = n̂ · ~q, (1.6)

for some vector valued function ~q(~x, t).

Hints.
1 In 3D: “... and unit area, crossing a surface ...”
2 A positive q means that the net flow is in the direction of n̂.
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A. It should be obvious that the flux going across any curve (surface in 3D) from one side to the other should be

equal and of opposite sign to the flux in the opposite direction. That is, q in (1.4) satisfies

q(~x, t, −n̂) = −q(~x, t, n̂). (1.7)

Violation of this would result in the conserved “stuff” accumulating (or being depleted) at a finite rate from a

region with zero area (zero volume in 3D), which is not compatible with the assumption that ρt is continuous

and equation (1.5). Note: there are situations where it is reasonable to make models where conserved “stuff” can

have a finite density on curves or surfaces (e.g.: surfactants at the interface between two liquids, surface electric

charge, etc.). Dealing with situations like this requires a slightly generalized version of the ideas behind (1.7).

B. Given an arbitrary small curve segment 3 of length h > 0 and unit normal n̂, realize it as the hypotenuse of a

right triangle where the other sides are parallel to the coordinate axes. Then write (1.5) for the triangle, divide

the result by h, and take the limit h ↓ 0. Note that, if the segment of length h is parallel to one of the coordinate

axis, then one of the sides of the triangle has zero length, and the triangle has zero area — but the argument

still works, albeit trivially (it reduces to the argument in A).

1.2 Answer: The flux for a conserved quantity must be a vector

Consider a small (straight) segment of length 0 < h � 1, which is not parallel to

the coordinate axes. Let n̂ be the unit normal to the segment with a positive first

component n1 > 0. Assume that n2 > 0. Construct a right triangle Ω, with two

sides parallel to the coordinate axes and hypotenuse the given segment (see figure).

Then ∂Ω has outside unit normals n̂, −ı̂, and −̂ (where ı̂ and ̂ are the coordinate

axes unit vectors), and equation (1.5) yields

O(h2) = −q(~x, t, n̂)h− q(~x, t, −ı̂)hn1 − q(~x, t, −̂)hn2 +O(h2),

= −q(~x, t, n̂)h+ q(~x, t, ı̂)hn1 + q(~x, t, ̂)hn2 +O(h2), (1.8)

where ~x is any point in Ω and we use (1.7) to obtain the second line from the first.

Now divide (1.8) by h, and take the limit h ↓ 0. This yields (1.7) with

~q = q(~x, t, ı̂) ı̂+ q(~x, t, ̂) ̂. (1.9)

To complete the proof we need to consider the cases:

— Case n1 > 0 and n2 < 0. The argument is exactly analogous to the one above.

— Case n1 < 0 and n2 6= 0. Follows from the result in (1.7).

— Case n1 = 0 or n2 = 0. Trivial, given ~q as in (1.9), and (1.7).

2 Small transversal vibrations of a beam

2.1 Statement: Small transversal vibrations of a beam

A beam is a structure where one dimension (the axial dimension) is much larger than the other two (the transversal

dimensions), see item c. In this problem you are asked to derive an equation for the small transversal vibrations of

an homogeneous elastic beam with (constant) rectangular cross section, which is not under tension or compression.

Further simplifying assumptions are:
3 You can assume it is straight, since a limit h ↓ 0 will occur.
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a. The wavelength of the vibrations is much bigger than the transversal dimensions of the beam.

b. The vibrations are in-plane. This means that the motion of the beam is restricted to the plane determined by

its axis, and the direction of one of the sides of the rectangular cross section.

Think of a blade. When the two transversal dimensions are very different, it is much harder to excite vibrations along

the larger direction.

Under the conditions stated above, the beam motion can be described in terms of the position of the beam axis

y = u(x, t). Let ρ = constant > 0 be the mass per unit length of the beam. Then:

Task #1 of 5. Use conservation of the transversal momentum to derive an equation for u.

Task #2 of 5. Use conservation of energy to derive another equation for u.

Task #3 of 5. Show that the solutions to the task #1 equation satisfy the task #2 equation.

To do the problem you will need a few things from § 2.1.1, as follows:

— To do task #1 you need (fo.8), where fs is defined in item 5 — E and I are constants.

— In addition, to do task #2, you need (fo.6) and (fo.9), where τb is defined in item 6.

— The summary of facts in (fo.10) may be useful.

You do not need anything else, but I strongly encourage you to read, and understand, § 2.1.1.

Hint for task #2. Do not forget that energy flow is not only produced by forces [force times velocity], but by torque

as well [torque times angular velocity]

More tasks

Task #4 of 5. Show that the task #1 equation yields conservation of angular momentum.

Task #5 of 5. Take a thin steel blade with a rectangular cross section (e.g.,

the blade from a metal hand saw, see the picture). Clamp one end using a

bench vise, and leave the other end free. For the equation in task #1, in this

situation, what boundary conditions on u should be imposed at each end?

What if there is a frictionless-hinge at each end of the blade, that keeps the end fixed, but allows the blade to freely rotate

there. What boundary conditions should be used in this case?

Hints for task #4. (1) Recall that the angular momentum of a mass point moving in a plane 4 is given by A = ±mv d,

where: m is the mass; v is the speed; d is the distance from the straight line through the point along the direction

of motion, to some fixed point in space; and the sign is positive if the mass is moving counter-clockwise around the

selected point in space. For example, if the point in space is the origin, and the point path is x = a = constant and

y = v t, then A = mav. To do task #4, take the selected point to be the origin of coordinates. (2) Recall also that

angular momentum is produced by torque, and that torque can manifest in two ways: “directly” (as in the torque

applied through the axle to a wheel), or through forces (as when you rotate a wheel by pushing through the edge):

a wheel-chair can either have a motor, or the user can move the wheels with his/her hands, or both (or someone else

can push the chair).

Side remarks

c. In a string the transversal dimensions are neglected (thus a string has no bending resistance). On the other

hand, for a beam they are assumed small, but their effect is not neglected (thus a beam can support a transversal

load).

d. An elastic beam can support vibrations along each of the two transversal directions, as well as longitudinal

vibrations. It can support torsional vibrations (twist along the axis) as well. In principle it can also support

torsion along the transversal directions — but these are not consistent with the beam approximation (Euler-

Bernoulli assumptions, see § 2.1.1).

4 In general the angular momentum is a vector, but for in-plane motion it is a scalar.
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Euler-Bernoulli beam theory states that the beam cross sections

move as rigid planes when the beam vibrates, and remain nor-

mal to the beam axis (or, in 2-D, the beam center plane, in red

here). Thus the beam motion can be described in terms of the

axis behavior.  z

 y

Figure 2.1: Cross section of a (rectangular) vibrating beam, of width w and height h.

The blue lines are the edge of the beam. The red line is the beam

axis. The green lines are typical “fibers” — see paragraph above

(fo.5). The magenta lines are typical beam cross sections, which

move as rigid planes, and remain normal to the axis and fibers.

 x

 y

Figure 2.2: Side view of a beam undergoing in-plane motion, as per Euler-Bernoulli theory.

2.1.1 Beam elastic energy, shear force, and toque

This subsection’s purpose is to provide contextual information needed to understand and do the

problem. It does not include any further tasks to be done.

For beams under deformations that are not too large (basically, the situation in item a above), the Euler-Bernoulli

assumptions apply 5 (see figures 2.1 and 2.2)

eb1. Cross sections of the beam do not deform in a significant manner under the application of transverse or axial

loads, and can be assumed as rigid.

eb2. During deformation, the cross section of the beam remains planar, and normal to the deformed axis of the

beam.

From this assumptions, and item b, it follows that we can describe the motion of the beam using just two 1D functions

(see (fo.1) below, as follows:

1. Take a coordinate system such that the beam at equilibrium is 0 < x < L, |y| < 1
2 h, and |z| < 1

2 w, where L

is the beam length, h is its height, and w is its width. Here x is the axial coordinate, and the motion is in the

x-y plane (no dependence on z).

2. We label each mass-element in the beam by its (x, y, z) coordinates at equilibrium, and describe the beam at

any time by giving the coordinates of each mass-element as a function of time and the equilibrium coordinates,

that is: X = X(x, y, t), Y = Y (x, y, t), Z = z, where we have used item b to simplify the dependence on z.

3. Let v = v(x, t) = X(x, 0, t) − x and u = u(x, t) = Y (x, 0, t) be the two functions describing the

motion of the beam axis. Then, from eb1 and eb2,

X = x+ v − 1
d y ux,

Y = u+ 1
d y (1 + vx),

}
where d =

√
(1 + vx)2 + u2

x. (fo.1)

This follows because the unit normal vector to each planar cross section of the beam (which moves as a rigid

body, as per eb1–eb2) is given by

n̂ =
1

d
(1 + vx, ux, 0)T =⇒ t̂ =

1

d
(−ux, 1 + vx, 0)T . (fo.2)

5 These assumptions have been extensively confirmed for (solid cross section) slender beams made of isotropic materials.
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Here t̂ is the unit vector tangent to the planar cross section, in the z = 0 plane, pointing towards y > 0 (since

1 + vx > 0, because vx is small, as explained below).

Detail: n̂ is the unit tangent vector to the beam axis: X = x+ v, Y = v, and Z = 0.

4. Finally, the condition of small vibrations for a beam which is not under tension/compression translates into

Both ux and vx are small. Furthermore: vx = O(u2
x). (fo.3)

Thus we neglect quadratic terms in ux, and write

X = x− y ux and Y = y + u. (fo.4)

The assumption here is that the deviations of the beam shape from horizontal and straight are small. Under this condition,

in the absence of (significant) axial stretching or compression, the changes in horizontal dimensions of the beam cannot be

larger than quadratic in ux..

Because the beam cross sections do not deform, and behave as rigid surfaces, 6 all the deformation occurs along the

curves y = constant and z = constant, 7 which are either stretched or compressed. We can thus obtain the elastic

energy in the beam by computing the elastic energy in each fiber, and integrating over all of them. Along each fiber

the change in arclength (relative to equilibrium) is

∆Lds =
(√

X2
x + Y 2

x − 1
)
dx = −y uxx dx, (fo.5)

upon use of (fo.3–fo.4). From remark 2.1, 1
2 E dz dy y

2
∫
u2
xx dx is the elastic energy in each fiber. Thus

V =
1

2
E I

∫
u2
xx dx = beam elastic energy, where I =

1

12
h3 w (fo.6)

is the second moment of the beam’s cross section I =
∫∫

y2 dz dy.

Next we will use (fo.6) to compute both the shear force, fs, and the torque, τb, along the beam:

5. At any point along the beam, fs = fs(x, t) is the force in the y-direction (transversal) that the section of

the beam to the left of the point applies on the section to the right of the beam (the opposite force is applied

by the right section on the left section). If the beam were to be cut, these are the forces that would be needed

to keep in position the lips of the cut.

6. At any point along the beam, τb = τb(x, t) is the torque that the section of the beam to the left of the point

applies on the section to the right of the beam (the opposite torque is applied by the right section on the left

section). If the beam were to be cut, these are the torques that would be needed to keep the beam ends at the

cut from rotating.

Let us now investigate how V changes as we deform the beam, from some configuration to another. To do this we

need to apply forces to the beam, which do work against the opposite forces generated by the elastic deformation of

the beam (this is how the energy changes). Thus, by looking at how the energy changes as the beam is deformed,

we can ascertain the elastic forces in the beam for any given configuration.

Hence assume that u = u(x, τ), where τ is a parameter that we use to describe the successive configurations of the

beam as its shape changes. 8 Then, for any arbitrary interval a < x < b, the energy within the interval varies as

6 This is an approximation. There is some deformation and there are forces. But they are small and we neglect them.
7 We will call these curves “fibers”.
8 The idea is that we deform the beam very, very, slowly. Thus, at every moment the applied forces, and the elastic forces generated by the

deformation equilibrate each other exactly. There is no kinetic energy; all the work done by the applied forces go into the beam’s elastic energy.

Thus τ is a very “special” time.
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follows

dV
dτ

= E I

∫ b

a

uxx uxxτ dx (integrate by parts twice)

= E I (uxx uxτ )
b

a
− E I (uxxx uτ )

b

a
+ E I

∫ b

a

uxxxx uτ dx. (fo.7)

This equation tells us that

7. The terms E I uxxx uτ at x = a, and −E I uxxx uτ at x = b, are the work (per unit τ -time) done by the applied

forces to move the ends of the beam at the velocity uτ of each end. This means that forces E I uxxx and

−E I uxxx must be applied there. These must be the forces applied by the beam regions on each

side of the interval. We conclude that fs = E I uxxx. (fo.8)

8. Since uxτ is the rate of change in beam angle, and work is also torque times angle, an argument entirely similar

to the one in 7 shows that τb = −E I uxx. (fo.9)

9. The last term in (fo.7) yields the force per unit length that must be applied along the beam to cause the

deformation: −E I uxxxx. The force per unit length needed to keep the beam with the given shape, and

equilibrate the force E I uxxxx with which the beam pushes back.

Note that the forces producing beam deformation need not be “external forces” applied to the beam. When the

beam is vibrating, the forces involved are those caused by the inertia of the beam.

Summary of useful facts. (fo.10)

u is the beam transversal deformation. The beam axis is y = u(x, t) (small vibrations).

ut is the beam transversal velocity.

ux is the beam angle.

uxt is the beam angular velocity.

τb is the torque (see item 6), given by τb = −E I uxx.

fs is the shear force (see item 5), given by fs = E I uxxx.

The elastic energy density is 1
2 E I u

2
xx.

I is the second moment of the beam’s cross section. given by I =
∫∫

y2 dz dy.

Remark 2.1 What is the energy stored in a slightly stretched/compressed elastic thin string?

The calculation below is valid as long as Hooke’s law applies. In addition, we neglect any changes in the area

of the string cross section when under tension or compression. In fact, the Euler-Bernoulli assumptions

require that changes of this type be ignored.

First consider the energy stored in a short straight segment of length L(t), as we stretch/compress it from length

L0 = L(0) to L1 = L(T ), where L0 is the equilibrium length. From Hooke’s law, the elastic force is

F = E L(t)−L0

L0
A, where A = area of string cross section, (fo.11)

and E = Young’s modulus (E has units of force over area). The energy at the end of the process is

Vseg =

∫ T

0

F (t)
dL

dt
dt =

1

2
E A

(L1 − L0)2

L0
. (fo.12)

Note that this formula depends only on L1 and L0, not how we go from one to the other. Think now of the whole

string as composed of a sequence of infinitesimal straight segments. Then we can use (fo.12) to write

Vstr =
1

2
E A

∫ (√
Ẋ2 + Ẏ 2 − 1

)2

ds, (fo.13)

where points on the string is labeled by s (the arclength along the string at equilibrium), the string is given by x = X(s)

and y = Y (s), and the dots indicate derivatives with respect to s.

Detail: Take, in (fo.12), L0 = ds. Then L1 =
√
Ẋ2 + Ẏ 2 ds, and Vseg = 1

2
EA

(√
Ẋ2 + Ẏ 2 − 1

)2
ds.
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2.2 Answer: Small transversal vibrations of a beam

With the approximations used, the transversal momentum density (momentum per unit length) is ρ ut. The mo-

mentum flux is given by the shear force fs in (fo.8). Conservation yields

(ρ ut)t + (E I uxxx)x = 0. Homogeneous beam equation. (2.1)

Conservation of energy. Equation (fo.6) yields the potential (elastic) energy. The energy density is ed = 1
2 ρ u

2
t +

1
2 E I u

2
xx. The energy flux is provided by the work per unit time done by the shear force, fs ut, and the work done

per unit time by the torque, τb uxt (note that ux = tan θ = θ in this linear approximation, thus θt = uxt). Putting

this all together gives the conservation of energy equation(
1

2
ρ u2

t +
1

2
E I u2

xx

)
t

+

(
E I uxxx ut − E I uxx uxt

)
x

= 0. (2.2)

By direct differentiation it is easy to see that the solutions to (2.1) satisfy (2.2).

One may ask the question: why is it that conservation of energy does not yield a new equation? The answer (or,

at least, one answer) is that, in the situation being considered there is no mechanism for energy transfer between

mechanical and internal energy. There are no losses of mechanical energy. Of course, in the real world a beam does

not vibrate for ever (unless energy is continuously supplied to it). The vibrations are damped, and eventually become

heat.

Conservation of angular momentum. If we use the origin as the center for the angular momentum, the angular

momentum density is x ρut. The angular momentum flux is given by τb, and the torque produced by the shear force:

x fs. The conservation of angular momentum gives the equation

(x ρut)t + (E I xuxxx − E I uxx)x = 0. (2.3)

It is easy to see that this is the same as (2.1).

Note. Let ~r = (X, Y , z) be the position vector for a mass-element in the beam — as given by (fo.4) for each fixed (x, y, z).

Then the angular momentum of the element is mop = µ~r × ~v dx dy dz, where ~v = d
dt
~r = (−y uxt, ut, 0) is the parcel velocity

and µ is the mass-density (mass per unit volume) of the beam material — assumed constant. To be consistent with prior

approximations, we should neglect the longitudinal component of the velocity, and write ~v ≈ (0, ut, 0). Thus mop ≈
µ (−z ut, 0, X ut) dx dy dz. Upon neglecting the nonlinear terms as well, this yields mop ≈ µ (−z ut, 0, x ut) dx dy dz. Finally,

integrating over the beam cross-section — |z| ≤ 1
2
w and |y| ≤ 1

2
h — we obtain the angular momentum density (0, 0, ρ x ut).

This has a single non-zero component, whose conservation yields (2.3).

Boundary conditions. Using (fo.10) we see that:

At a clamped end both u and ux are prescribed — e.g., u = ux = 0.

At a free end the torque and the shear should vanish, thus uxx = uxxx = 0.

At a hinged end there should be no torque, but position is given — e.g., u = uxx = 0.

A situation where ux = uxxx = 0 at an end could be devised as follows: have a vise that can freely (no friction) slide

up and down a vertical rod at, say, x = 0. Then clamp the blade to the vise. In this case there is no shear at the

end, so that uxxx = 0, and ux = 0 because of the clamping. But neither the torque, nor the position of the beam

are prescribed there.

Challenge questions:

Is it possible to design a situation such that u = uxxx = 0 at an end? How about ux = uxx = 0?
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3 Kelvin waves in a rotating basin

3.1 Statement: Kelvin waves in a rotating basin

Waves trapped near a boundary can occur via a wave-guide effect, when the waves velocity is lower near the boundary

than elsewhere; e.g.: edge waves. Rotation can do the same. The simplest example exhibiting this behavior are the

(linear) shallow water waves with constant rotation (f-plane approximation)

ηt + h (ux + vy) = 0, (3.1)

ut + g ηx = f v, (3.2)

vt + g ηy = −f u, (3.3)

where η is the surface deviation from equilibrium, h > 0 is the (constant) depth, u and v are the two components of

the flow velocity, g is the acceleration of gravity, and f 6= 0 is the (constant) rotation angular velocity.

Consider these equations in the region y > 0, with boundary condition v = 0 at y = 0, and search for (non-trivial)

solutions that

(i) Are functions of (x− s t), and y only, where s is some constant.

(ii) Are exponentially trapped near the y = 0 boundary.

Hint. Look for solutions of the form η = N(x− s t) e−λ y, u = U(x− s t) e−λ y, etc., where s and λ are constants

such that Re(λ) > 0. Eliminate from consideration solutions where N and U are constants — that is: “trivial” solutions.

3.2 Answer: Kelvin waves in a rotating basin

Notice that, if v = V (x− s t) e−λ y, then (since v = 0 at y = 0) it must be v ≡ 0. Hence the equations reduce to

−sN ′ + hU ′ = 0, −sU ′ + g N ′ = 0, and g λN = f U. (3.4)

From the first two equations it follows that −sN + hU = α and g N − sU = β, where α and β are constants. For

a non-trivial solution — i.e.: we do not want N and U both constant — the determinant of this linear system for N

and U must vanish. This gives

s2 = g h and U = γ +
s

h
N, (3.5)

where γ = α/h and β = −s γ. Then, from the equation g λN = f U , we conclude that γ = 0 and f s = g hλ = s2 λ.

But λ must have positive real part. Hence

s = σ
√
g h and λ =

|f |
√
g h

, (3.6)

where σ = sign(f). The solutions are then

η = N(x− s t) e−λ y, u =
s

h
N(x− s t) e−λ y, and v = 0, (3.7)

where N is an arbitrary function.

4 Amplitude modulation with frozen carrier frequency

4.1 Statement: Amplitude modulation with frozen carrier frequency

Consider a dispersive equation in n-D of the form ut + iΩ(−i∇)u = 0, (4.1)

where: (i) u = u(~x, t) is a scalar function, (ii) ∇ is the gradient operator in

n-D, and (iii) ω = Ω(~k) is a smooth, real valued (scalar), of the wave-number vector ~k ∈ Rn. †
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† If you want to, you may assume that Ω is a polynomial: a finite sum Ω =
∑

ai1i2...ink
i1
1 ki22 . . . kinn ,

for some coefficients ai1i2...in . However, this is not actually necessary.

This equation is dispersive, with dispersion relation ω = Ω(~k).

Consider now solutions of the form u ∼ A(~χ, τ ) ei θ, (4.2)

with ~χ = ε ~x, τ = ε t, and θ = ~k0 · ~x− ω0 t, where: (i) 0 < ε� 1 is a

constant, (ii) ~k0 is a constant wave-number vector, and (iii) ω0 = Ω(~k0).

Derive the leading order equation satisfied by A.

Hint. Think of u as a function of ~x and ~χ, with ~x and ~χ

independent variables (same for t and τ).

Then the equation can be written in the form ut + ε uτ + iΩ(−i∇1 − i ε∇2)u = 0, (4.3)

where ∇1 is the gradient operator for ~x and ∇2 is the

gradient operator for ~χ. Now expand the operator Ω(−i∇1 − i ε∇2) in powers of ε, and notice that evaluating

functions of −i∇1 is easy — just replace −i∇1 by ~k0 (do you see why this?).

Remark 4.1 Consider a function, f = f(x), evaluated on an operator (or matrix) f = f(A). † When doing this we

need to keep in mind that, because operators do not commute, the “regular” rules of calculus may not apply. For

example: (i) Generally we can write d
dtf(A(t)) = f ′(A)dA

dt only if A and dA
dt commute. (ii) Generally we can “Taylor”

expand f(A+B), for B small, only if A and B commute. ♣
†This can certainly be done when f is a polynomial. But this is not the only case: For example, if f is analytic, we

can use Cauchy’s theorem to write f(A) = 1
2πi

∮
(z − A)−1f(z)dz, where the contour of integration includes the

spectrum of A.

4.2 Answer: Amplitude modulation with frozen carrier frequency

We follow the hint, and write † iΩ(−i∇1 − i ε∇2) = iΩ(−i∇1) + ε~cg(−i∇1) · ∇2 + O(ε2). (4.4)

Using this in (4.3), with u as

in (4.2), yields (
−i ω0A+ εAτ + iΩ(~k0)A+ ε~cg(~k0) · ∇2A+O(ε2)

)
ei θ = 0. (4.5)

Since ω0 = Ω(~k0), we obtain (at leading order) Aτ + ~cg(~k0) · ∇2A = 0. (4.6)

†We can do this because ∇1 and ∇2 commute. See remark 4.1.

5 Two strings connected by a third one

5.1 Statement: Two strings connected by a third one

Consider two semi-infinite strings under tension, connected by a short piece of another string. If u = u(x, t) denotes

the transverse deviations of the strings, in the linear (small deviations and small slopes), the equation describing the

system is

0 = utt − c2 uxx (5.1)

where c = c1 for x < 0, c = c2 for 0 < x < L, c = c3 for L < x, the cj > 0 are constants, 9 and L is the

length of the connecting piece. This equation must be supplemented by the conditions

u and ux are continuous across the joints at x = 0 and x = L. (5.2)

9 Given by cj =
√
T/ρj , where T is the (common) string tension and ρj are the respective string densities. As usual, we assume a tension

that is constant throughout, so that neglecting longitudinal movements is justified.
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Assume now that a monochromatic wave of wave-frequency ω arrives at the (composite) junction. Then:

1. Calculate the reflection and transmission coefficients across the (composite) junction. That is, find solutions

to the equation of the following form:

u =


ei ω (t−x/c1) + Rei ω (t+x/c1) for x < 0

a ei ω (t−x/c2) + b ei ω (t+x/c2) for 0 < x < L

Tc ei ω (t−x/c3) for L < x

(5.3)

where ω > 0, a, b, R, and Tc are constants. Note: ω is a free constant, everything else is a function of ω.

Important: Make sure that your calculations do not involve division by zero!

2. Why do all the terms in (5.3) have the same time dependence? How does this follow from (5.2)?

3. Under which conditions is there no reflection, R = 0 (i.e.: impedance matching)?

4. Is it possible to get no transmission, Tc = 0?

This problem illustrates the principle behind lens coating, used in optics to prevent reflection losses in complex

multi-lense devises, — in a very simplified context.

5.2 Answer: Two strings connected by a third one

Part 2

The equations in (5.2) must hold for all times, at x = 0 and at x = L. Hence, when the waves have an exponential

dependence in time (as in this problem), (5.2) can apply only if all the exponentials are the same. Hence the use of

the same time dependence for all the terms in (5.3).

Physically: if the piece of string immediately to the left of some point x∗ vibrates with frequency ω, the piece immediately to the

right of x∗ (which is attached to the piece on the left) must vibrate with the same frequency. Hence, the whole string must vibrate

with the same frequency. These arguments apply to a string in “steady” state only, else we cannot even talk about “frequency”.

Part 1

Substituting (5.3) into (5.2) yields the following set of equations

1 +R = a+ b and 1−R =
c1
c2

(a− b) (5.4)

from the x = 0 equation, and

A+B = D and A−B =
c2
c3
D ⇐⇒ A =

c3 + c2
2 c3

D and B =
c3 − c2

2 c3
D (5.5)

from the x = L equation, where

A = a e−i φ, B = a ei φ, D = Tc e−i ψ, φ = ω L/c2, and ψ = ω L/c3. (5.6)

Hence

a =
c3 + c2

2 c3
Deiφ and b =

c3 − c2
2 c3

D e−i φ. (5.7)

But (5.4) is equivalent to

1 =
c2 + c1

2 c2
a+

c2 − c1
2 c2

b and R =
c2 − c1

2 c2
a+

c2 + c1
2 c2

b. (5.8)
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The first of these two equations then yields

ei ψ =

(
c2 + c1

2 c2

c3 + c2

2 c3
ei φ +

c2 − c1
2 c2

c3 − c2
2 c3

e−i φ
)
Tc, (5.9)

which determines the transmission coefficient Tc. Then, from the second equation

R =

(
c2 − c1

2 c2

c3 + c2

2 c3
ei φ +

c2 + c1

2 c2

c3 − c2
2 c3

e−i φ
)
Tc e−i ψ, (5.10)

which gives the reflection coefficient R.

Remark 5.1 Note that (c2 + c1) (c3 + c2) > |(c2 − c1) (c3 − c2)|, since all the cj’s are positive. Thus, the

coefficient in front of Tc on the right in (5.9) never vanishes.

Hence the transmission coefficient is always defined. In fact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 < |Tc| <∞.

Alternatively, introduce

Ri j =
ci − cj
ci + cj

and γ =
4 c2 c3

(c1 + c2) (c2 + c3)
= (1−R1 2) (1−R2 3), (5.11)

where we notice that −1 < Ri j < 1. Then the equations above take the form

eiψ =
ei φ

γ

(
1 +R1 2R2 3 e

−i 2φ
)
Tc and R = −e

i φ

γ

(
R1 2 +R2 3 e

−i 2φ
)
Tc e−i ψ. (5.12)

Hence

Tc =
γ ei(ψ−φ)

1 +R1 2R2 3 e−i 2φ
and R = −

R1 2 +R2 3 e
−i 2φ

1 +R1 2R2 3 e−i 2φ
, (5.13)

where we note that the coefficients depend on ω L via ψ and φ.

Part 3

No reflection, R = 0. This can happen only for R1 2 = ±R2 3, which leads to the following cases

Case c3 = c1. Then R1 2 = −R2 3.

The no-reflection condition is φ = ω L
c2

= nπ, where n is an integer. That is:

A wave in the connecting segment travels back and forth (distance 2L) in n wave periods.

Not an interesting case, since no connection segment is needed at all to suppress reflection!

Case c22 = c1 c3. Then R1 2 = R2 3.

The no-reflection condition is φ = ω L
c2

=
(
n+ 1

2

)
π, where n is an integer. That is:

A wave in the connecting segment travels back and forth (distance 2L) in n + 1
2

wave periods. This situation

corresponds to the “simplest” explanation of how come there is no reflection. The idea is that, because of the

1/2 period fraction in the travel time, the waves reflected from the first interface (at x = 0), and those from

the second (at x = L), have a π phase difference, and hence cancel each other. This is, basically, correct, but

it is also an over-simplification. It predicts no reflection for any value of c2, which (as shown here) is not true.

Part 4

From remark 5.1, it follows that there is always transmission. Total reflection is not possible.
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6 Optical ray in a stratified media

6.1 Statement: Optical ray in a stratified media

Consider a nearly straight and nearly horizontal light ray

in a slightly stratified media. The equation for the ray is
d

dτ

(
n

v

d~x

dτ

)
= v∇n, (6.1)

where τ is some arbitrary parameter, c0 is the speed of light in vacuum,

n = c0/c is the index of refraction, and v = |d~x
dτ
|. You can find this equation in the Lectures on Average Lagrangian,

section: Examples, subsection: Wave equation and the Eikonal equation, subsubsection: Fermat’s principle.

Here we will assume 2-D, with ~x = (x, y) (x being the horizontal coordinate and y the vertical), with the weak

stratification characterized by n = n0 (1− ε (y − y0)), with n0 > 0 and 0 < |ε|L� 1 (L is a length scale).

You have now the following tasks:

Task #1. Approximately compute the ray defined by the properties: it is horizontal at x = 0, with y = y0.

Task #2. What value of ε yields y = y0 − 10 m for x = 10 km?

For task #1. Use x as the parameter for the ray, i.e.: y = y(x),

and show that the two equations in (6.1) reduce to the single one
d

dx

n

v
= 0. (6.2)

To do this, first show that y′ = dy
dx

cannot vanish — except for

isolated points; e.g.: x = 0. That is: show that solutions to (6.2) that vanish on an interval do not correspond to

solutions to (6.1). As a side issue, answer the question:

Task #3. Does (6.2) have solutions such that y′ vanishes of an interval, but not everywhere?

Task #4. The approximate solution that you will obtain using hint #1 below is not be valid for all values of x,

because it does not satisfy “y′ is small” everywhere. Where is this solution valid?

Important: when doing task #2, verify that you use the approximate solution within its range of validity.

Task #5. Finally, describe real world phenomena that this calculation can help to elucidate.

Hint #1. Use that y ≈ y0 to solve (6.2). In particular, that dy
dx

= y′ is small.

Hint #2. For task #3, look at what the equation reduces to when y′ is small (i.e.: use the result of hint #1).

6.2 Answer: Optical ray in a stratified media

For y = y(x), v =
√

1 + (y′)2. Then (6.1) reduces to: (6.2) and
d

dx

(
n

v
y′
)

= v ny. (6.3)

Note: (6.2) follows because nx = 0.

It is easy to see that this equation does not allow y′ = 0 on an interval, because then (in the interval) the left

hand side would vanish, while the right hand side would not.

Next we note that (6.2) can be integrated to n(y) = µ v = µ
√

1 + (y′)2, (6.4)

where µ is a constant. Differentiating this yields ny y
′ = (µ/v) y′ y′ ′,

which (since y′ 6= 0) leads to v ny = µy′ ′. (6.5)

However (6.3) is equivalent to 0 =
d

dx

(
n

v

)
y′ +

(
n

v
y′ ′ − v ny

)
=

d

dx

(
n

v

)
y′ + (µy′ ′ − v ny), (6.6)

where we used n/v = µ. From

(6.2) and (6.5), (6.6) is satisfied. We conclude that (6.2) implies (6.3), as long as we avoid solutions with y′ ≡ 0.

Hence we only need to solve (6.2) — equivalently (6.4).

Next we use hint #1, approximate

v =≈ 1 + 1
2

(y′)2, and substitute in (6.4), to get
n0

µ
(1− ε (y − y0) ≈ 1 +

1

2
(y′)2. (6.7)

It follows that µ ≈ n0 and (y′)2 ≈ −2 ε (y − y0). (6.8)

See note #1 below.

Given the condition at x = 0 in task #1, we conclude that y ≈ y0 − 1
2
ε x2. (6.9)
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See note #2 below.

Answer to task #2. Clearly ε = 2× 10−7m−1. (6.10)

Note that the condition in Note #2 is valid for x = 10 km.

Note #1. Equation (6.8) has solutions that satisfy y′ = 0 in an interval. Specifically: y = y0 for x1 ≤ x ≤ x2,

y = y0 − 1
2
ε (x − x1)2 for x ≤ x1, and y = y0 − 1

2
ε (x − x2)2 for x ≥ x2 — where x1 ≤ x2 are arbitrary.

However, as shown earlier, only the case x1 = x2 is consistent with (6.3). The same result applies to (6.2 / 6.4), since

(6.8) describes the behavior of (6.2) when y′ is small. This is task #3.

Note #2. (6.9) breaks the y′ small assumption for large x, and it is valid for |x| � |ε|−1 only. This is task #4.

Finally, discussion; task #5. The index of refraction of air, at sea level, is n = 1.0003 + O(10−5), where the

“uncertainty” is due to temperature, humidity, and pressure dependence. Hence a stratification of the size displayed

in (6.10), or even much larger, is not only possible, but likely. Of course, just as possible are horizontal variations in

n, which bend the ray’s laterally. These are examples of phenomena caused by these variations:

1. Mirrors on the road. While driving in hot, dry, weather, you may see the road “wet” far ahead of you. This is

caused because the hot asphalt in the road causes a temperature stratification, which then causes n to decrease

with height (ε < 0), so light rays are bent upwards, “reflecting” from the road.

2. Seeing things over the horizon, particularly over a cold body of water (or, at least, cooler than the atmosphere

above it). This is the reverse of item 1.

3. Star position shifting. Bending causes the apparent direction the rays are coming from to change, leading to

the star seeming to shift position in the sky.

4. Twinkling of stars. This is also attributed to ray paths being perturbed by variations in n. But I do not buy

the explanations in the “popular” science literature.10 So I am not going to say much here, other than I think

that the difference between items 3 and 4 is one of scale: item 3 requires all the rays arriving to your eye (or

instrument used to observe) being deviated in the same way, while item 4 happens when the rays have varying

directions on the scale of the eye.

A 2000+ year old conspiracy, spanning from the Greeks to NASA.

The ancient Greeks already knew that the Earth was round, and managed to calculate its radius with less than a 1%

error. This was done by Eratosthenes around 200 B.C. He knew that at noon on the first day of summer, the Sun

passed directly overhead at Syene, Egypt (current Aswan). At midday of the same day, he measured the angular

displacement of the Sun from overhead at Alexandria, Egypt (7.2 degrees). Knowing the distance from Syene to

Alexandria, he could then compute the radius of the Earth. In current units the number he obtained was 6366 km

— compare this with the 6378 km modern value obtained from satellite measurements, astoundingly accurate!

In 1838, Samuel Rowbotham [alias Paralax], a medical doctor, decided to directly verify the Earth curvature. For

this he selected a straight stretch of a canal (about 6 miles long) in Cambridgeshire, UK. He then secured a small

boat with a 3 ft high mast, and went into the water with a small telescope which he held above the water level

at about 8 in. The boat was then moved away from him (by someone else, I assume), as he watched it with the

telescope. He observed that the mast was still visible at a distance of 6 miles. Prior to this he had computed that, at

that distance, the curvature of the Earth should have dropped the boat well below his “straight line of vision” — by

several feet, see (6.11). Hence, assuming that light moves in a straight line, he concluded that the Earth was flat. 11

Unfortunately he collected no data on water/air temperature, humidity, pressure, etc., from which to estimate what

10Many include pictures showing one ray going from the star to the eye, forgetting that the star illuminates the whole Earth (and more). One

ray randomly kicked out of your pupil will be replaced by a nearby one; so why does this change apparent luminosity? This is too imprecise.
11The parameters in task #2 are inspired by this experiment; with 10 km ≈ 6 miles. See note #3.
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the index of refraction was along the 6 miles of the channel. He did not seem to be aware that this was an issue.

Rowbotham describes his experiment, as well as other observations (all ignoring refraction), in a book (reference

below) — you can read there what “zetetic” means. This was the beginning of the modern “Flat Earth” phenomena.

Note #3. Let ` be the distance between two points, P1 and P2, on the Earth surface. Consider the tangent line

to the surface at P1, in the plane determined by the two points and the center of the Earth, C. Let d be the distance

from this line to P2. We want to determine d as a function of `.

Let θ be the angle between the straight segmentsCP1 andCP2. If θ is small,12 we can make the following approximations:

d = r (1− cos θ) ≈ 1
2
r θ2, and θ ≈ `

r
, where

r ≈ 6378 km is the radius of the Earth. Hence d ≈
`2

2 r
, (6.11)

which is valid for `� r. For ` = 10 km, this yields d ≈ 7.84 m.

Reference. Zetetic astronomy: earth not a globe! by Paralax.

A description of Several Experiments which prove that the surface of the sea is a perfect plane and that the Earth is

not a globe. (Dec. 8, 1848) Paper read before the Royal Astronomical Society.

You can find the book at:

https://ia802705.us.archive.org/30/items/zeteticastronom00rowbgoog/zeteticastronom00rowbgoog.pdf

THE END.

12Note that, for |θ| � 1, it does not matter if we measure ` along the surface, or along the straight segment P1P2.


