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Abstract

The notion of stress tensor is introduced to characterize the internal forces in continuum media.
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1 Forces in a continuous media

Consider some substance/material under stress. Introduce an inertial, cartesian,

coordinate system, ~x. Let S be some surface within the material. For any surface

element d~S, with unit normal n̂ (see the figure and item a2), let:

~F = ~F (n̂, ~x) = force per unit area across the surface, by the

material on side B, on the material on side A.
(1.1)

Note that ~F = linear momentum flux. Hence, by the same argument as in the

problem “The flux for a conserved quantity must be a vector”, we conclude that:

Figure 1.1

~F is given by a tensor; that is: † ~F = τ · n̂ or, by components, Fn = τnm nm. (1.2)

In elasticity, τ is called the Cauchy stress tensor. † See the notation subsection, §1.6, at the end.

Figure 1.2: The meaning of τ in 2-D

Forces on an “elementary” square, lined up with the coordinate

axis, by the media outside. For the edges parallel to the y-axis, the

components of the forces are τ11 and τ12. For the edges parallel to

the x-axis, the components of the forces are τ21 and τ22.

1
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Examples: In elasticity τ is a function of the strain tensor σ; for Newtonian fluids τ is a function of the

pressure and the gradients of the fluid velocity.

1.1 Assumptions

Here are some important assumptions.

a1. Continuum hypothesis. The media can be characterized in terms of various fields defined in space

and time. As functions of (~x, t) these fields are reasonably well behaved: they are smooth almost

everywhere, and their singularities (if any) do not give rise to physical contradictions (e.g.: infinite

energy, infinite accelerations, and so on). The main theoretical objective is then to provide equations

that uniquely characterize the evolution of these fields.

a2. Cauchy’s postulate. The stress tensor, as introduced above, depends on the assumption that the

force between the sides of an arbitrary surface across the material is a function of the surface normal

only — this is Cauchy’s postulate. Note that this assumption is not always valid; for example: at

interfaces between different fluids other forces arise, such as surface tension and Marangoni effects.

1.2 The stress tensor is symmetric

Here we show that (as a consequence of the continuum hypothesis a1) τ is symmetric: τnm = τmn.

Proof. Consider a sphere of radius R > 0 centered at some arbitrary point, ~x0, in the media. Denote this

sphere by Ω, and its boundary by ∂Ω. The torque on the sphere is then †

~T = −
∫
∂Ω

(~x− ~x0)× (τ · n̂) dA = −
∫

Ω
div ((~x− ~x0)× τ ) dV

= −
∫

Ω
(~x− ~x0)× div(τ ) dV︸ ︷︷ ︸

I1

−
∫

Ω
{εnpq τqp} dV︸ ︷︷ ︸

I2

(1.3)

where n̂ is the outside unit normal to the sphere, dA is the area differential, and dV is the volume differential.
†Details.

Equality #1. Follows from the definition of torque and the definition of τ .

Equality #2. (~z × (τ · n̂))n = εnpq zp τqm nm. Then use Gauss’ theorem.

Equality #3. (div (~z × τ ))n = (εnpq zp τqm)xm
= εnpq δpm τqm + εnpq zp (τqm)xm

= εnpq τqp + (~z × div(τ ))n.

However, for Ω fixed
d

dt

∫
Ω
ρ~v × (~x− ~x0) dV︸ ︷︷ ︸

I3

= ~T +

∫
Ω

~f × (~x− ~x0) dV︸ ︷︷ ︸
I4

(1.4)

where ρ is the mass density, ~v is the substance flow velocity, and ~f are the body forces (if any). Now, at any

non-singular point ~x0, as R → 0, the various integrals above satisfy Ij = O(R4), except for I2, which

behaves like O(R3) if {εnpq τqp} 6= 0. It follows that it must be {εnpq τqp} = 0, which is equivalent to τ

being symmetric. ♣
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1.3 Transformation properties

Consider two cartesian coordinate systems, ~xa and ~xb, related by

an orthogonal transformation T . Specifically: ~xb = T ~xa. Then τb = T τa T
T . (1.5)

Proof. From (1.2), ~Fa = τa n̂a and ~Fb = τb n̂b. However, it must also be ~Fb = T ~Fa and n̂b = T n̂a.

Thus τb T n̂a = τb n̂b = T ~Fa = T τa n̂a. Since this must apply for all n̂a, it must be τb T = T τa. ♣

1.4 Pressure-shear decomposition

Let p = −1
3

Tr(τ ) = −1
3
τnn. Then τ = −p I + τ ∗, (1.6)

where τ ∗ is symmetric and trace-less, †, and p is the pressure.

†Hence the sum of the three principal forces by τ∗ vanishes — see §1.5.

The pressure is the isentropic part of the stress tensor. If τ ∗ vanishes, the stress is normal to any surface,

and independent of the direction. The response to pressure only by an isentropic media is a volume change.

Vice-versa, in isentropic materials (elastic or fluid) a volume change causes a pressure. ‡
‡ In dissipative media a pressure can be caused by the rate of change of the volume (opposing the change). For

example, in Newtonian fluids there can be a pressure due to viscous effects: p = κ div(~v), where κ is the

bulk viscosity and ~v is the flow velocity.

On the other hand, if p ≡ 0, the response of an isentropic material is an equi-volume shape change.

In Newtonian fluids τ ∗ is produced by shear (proportional to the shear viscosity), while in elastic media

undergoing small local deformations it results from the shear component of the deformations.

1.5 Principal axes

Because τ is symmetric, in an infinitesimal neighborhood of any point

a cartesian system of coordinates exist where τ is diagonal — select

the appropriate T in (1.5). These are the principal axes.

In the principal axes coordinates (see the 2-D example in the picture),

the forces are normal to any surface parallel to a coordinate plane.

Then, for an “elementary cube” aligned with the axes only squeeze

and pull happens; there is no shear along the facets of this cube.

Figure 1.3

1.6 Notation

Here we summarize some of the conventions and notations that we use.

n1. For the purpose of these notes, there are only two types of tensors: rank-one, or (column) vectors, and

rank-two or (square) matrices. A dot between two tensors is used to mean “contraction” of the last

index of the left factor with the first index of the second factor. Thus for vectors ~a ·~b =
∑

n an bn is

the scalar product, while for matrices (either (A · B)nm =
∑

j Anj Bjm or (A · ~b)n =
∑

j Anj bj)

it is matrix multiplication. However, note that ~b · A = ~bT A since (~b · A)m =
∑

m bnAnm.

n2. The divergence operator is defined either by div(~f) =
∑

n(fn)xn for a vector (the result is a scalar)

or div(τ ) = {
∑

m(τnm)xm} for a matrix (the result is a vector).
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n3. We will often use the repeated index summation convention to simplify the notation. For

example, using this convention div(τ ) = (τnm)xm , and the summation symbol over m is not needed

(because m is repeated).

n4. ∇ is the vector operator with components ∂xn .

n5. τT is the transpose of τ , defined by (τT )nm = τmn.

n6. δnm is the Kronecker delta: δnm = 0 if n 6= m and δnm = 1 if n = m.

n7. εnpq is the permutation index: εnpq = 0 if there are repeated indexes, εnpq = 1 if (n, p, q) has

the same ordering as (1, 2, 3), and εnpq = −1 if (n, p, q) has the reverse ordering to (1, 2, 3).

n8. The vector product is defined by: For two vectors ~x and ~y it is the vector (~x× ~y)n = εmpq xp yq.

For a vector ~x and a matrix A it is a matrix;

either (A× ~x)nm = εmpqAnp xq or (~x×A)nm = εnpq xpAqm.

The End.
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