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1 Elasticity: Set up and Forces

We begin by precisely defining the assumptions/idealizations that characterize elastic solids.

Definition 1.1 An elastic solid is characterized by: each infinitesimal element in the solid has an equilibrium shape,

to which it returns if all the external forces on the element are relaxed. To be more precise: deformations of the

equilibrium shape generate forces that oppose the deformations, and the forces depend on the deformations only.†
The forces are short range (infinitesimal in the continuum limit) and can be described by a stress tensor.

† For example, the forces do not depend on the rate of deformation, which would cause dissipation — see remark 1.3. ♣

Definition 1.2 The stress tensor τ = {τij} is defined as follows: Consider an arbitrary surface S within the solid,

dividing the solid into two parts, say #1 and #2. Let n̂ be the unit normal to S, pointing into the region #2. Then

the force per unit area, exerted by region #2 on region #1 across the surface, is given by ~fa = τ · n̂. ♣
As defined, τ is called the Cauchy stress tensor (see item a5 in §1.1).

Note 1.2a Component by component, ~fa = τ · n̂ means: fa
i =

∑
j τij nj . Similarly: div(τ) =

{∑
j(τij)xj

}
.

Note 1.2b We will often use the repeated index summation convention to simplify the notation. For example, using

this convention div(τ) = (τij)xj , and the summation symbol over j is not needed (because j is repeated).

Note 1.2c Starting from Cauchy’s postulate (see item a5 in §1.1), that the forces are characterized by a stress tensor

can be shown by an argument entirely analogous to the one used in the problem: The flux for a conserved

quantity must be a vector.
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Note 1.2d It is important to point out that: in this definition normals and areas are in the “physical space” (Eulerian)

coordinates ~x, not the reference frame (Lagrangian) coordinates ~s we introduce below (1.1).

Remark 1.1 The stress tensor is symmetric. See §2. ♣

Definition 1.3 A non pre-stressed elastic solid is an elastic solid such that the whole solid (not just each infinites-

imal element) possesses an equilibrium shape, where the stress tensor vanishes.

In these notes we deal with non pre-stressed elastic solids only.

Pre-stressed elastic solids are quite common; it is very hard to obtain truly non pre-stressed materials. Most elastic

objects, when all the external forces are removed, relax to an equilibrium state where some stresses remain: each

element could relax to a zero stress shape, but their arrangement in space does not allow this simultaneously.

However, as long as the deformation scales are much larger than the scale of the “residual” stresses, the non pre-

stressed approximation is reasonable. ♣

Given a non pre-stressed elastic solid, introduce an inertial, cartesian, coordinate system and, for each point ~x in the

solid, let:

~s = coordinates of the point when the solid is at rest and in its equilibrium shape. (1.1)

Then ~s provides a system of Lagrangian coordinates for the solid — i.e.: a label for each mass point. The solid is

completely described, at any time, by the function

~x = ~X(~s, t), or its inverse ~s = ~S(~x, t), (1.2)

relating the current and equilibrium positions of each mass point. We can also write

~x = ~s+ ~u or ~s = ~x− ~u, where ~u = ~u(~x, t) = ~u(~s, t) = displacement field. (1.3)

The objective is now to describe the equations that govern the time evolution of ~X.

Remark 1.2 The definition of ~s in (1.1) is not unique. Given some Lagrangian solid coordinates ~s, for any R =

constant rotation matrix † and ~s0 = constant vector, ~s∗ = R~s+ ~s0 are also acceptable Lagrangian coordinates. Here

we assume that some choice has been made.

†A rotation is characterized by R−1 = RT and det(R) = 1. ♣

Definition 1.4 Pure shear occurs when there is a cartesian system of axes such that the deformation is either

elongation, or contraction, along each of the axis; while the volume is preserved. Example: a rubber ball deformed

by pressing along opposite ends of a ball diameter. Note that there is no rotation associated with pure shear.

Simple shear is a deformation in which some family parallel planes in the material remain parallel and maintain a

constant distance, while translating relative to each other. Example: a rod under torsion along its axis. In general,

simple shear involves rotation. ♣

1.1 Summary of assumptions

Here is a list of important assumptions that are used throughout these notes, often implicitly. The consequences

of these assumptions are far-reaching, but listing them every time they are used would lead to a rather awkward

presentation. These apply to non pre-stressed, elastic solids.

a1. Some of the formulas apply for isotropic media only. We will identify these explicitly.

a2. We neglect dissipation — see remark 1.3.

a3. Work done on (or by) the media is stored in the media deformations as elastic energy.
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a4. The properties of the media (e.g.: forces/stresses, elastic energy) are local, and depend on the local deformations

only. In particular, these properties do not depend on how the current state was achieved. That is: no path

(history) dependence.

Mathematically: the media properties are point functions of the strain tensor σ, defined in §1.2.1. For example:

τ(~x, t) depends only on σ(~x, t), and media “constants” that may be functions of ~s. Nothing else.

a5. The stress tensor, as introduced it in definition 1.1, depends on the assumption that the force between the sides

of an arbitrary surface across the solid is a function of the surface normal only — this is called the Cauchy’s

postulate. Generally this is only valid for relatively small deformations. For larger deformations dependences

beyond the local normal n̂ might also play a role — e.g.: the curvature of the surface may matter.

a6. We will only consider solids such that there is a “deformation path” that connects the solid state to its

equilibrium configuration in a continuous way. This is a stronger restriction than non-prestressed; i.e.: not

only does an equilibrium shape exists, but it must be reachable through a continuous deformation process.

Remark 1.3 On dissipation and plasticity. When a plastic deformation occurs, the media’s equilibrium state

changes. Then the assumption in a4 is violated, and memory of the past deformations is required to reconstruct

the media properties. In this case equations for how the equilibrium state evolves (as well as the media parameters

— e.g.: elastic stiffness) are needed. † There may be other ways in which a4 is violated.

†The theory then becomes considerably more complicated that non-linear elasticity, which is already quite challenging.

When a plastic deformation occurs, energy is lost. However, this is not the only way in which dissipation arises, as

the example of a damped mass-spring system illustrates. This type of dissipation does not invalidate the assumptions

in items a3–a4, provided that it can be described in terms of “dissipative forces”. Then, when work is done on (or

by) the media some of the work is done against the dissipative forces, and the elastic energy only changes due to the

net work. But the basic framework of the theory survives. †
† Important proviso: The framework survives, but the mathematical properties of the theory can change dramatically.

We will deal with neither of these issues here, nor item a5. ♣

1.2 Local description: infinitesimal neighborhood

Consider an infinitesimal neighborhood of some fixed point, and write

~x = ~x0 + δ~x and ~s = ~s0 + δ~s, (1.4)

where ~x0 = ~X(~s0, t). Then
δ~x = Gδ~s and δ~s = H δ~x, (1.5)

where G and H are the matrices defined by Gij =
∂xi

∂sj
and Hij =

∂si

∂xj
. Note that: G = H−1.

We can write 1

G = dGr Gs
(
thus: δ~x = dGr Gs δ~s

)
, (1.6)

where d > 0 is a scalar, Gr is a rotation matrix (orthogonal with determinant one), and Gs is a symmetric matrix

with positive eigenvalues, Gs > 0, and determinant one. This factorization of G shows that all the local

deformations of the solid can be reversed by first applying a rotation (G−1
r ), followed by pure shear (G−1

s ), and

either expansion (if d < 1) or contraction (if d > 1). Since we can also write G = d G̃s G̃r, the order (pure shear

first) of these operations can be changed. The expansion/contraction can be done first, second, or last.

The factorization in (1.6) follows from the fact that any matrix can be written as the product of a rotation matrix

times a symmetric matrix (polar decomposition), and item a6 in §1.1:

the solid deformations are the result of a continuous process starting from equilibrium. (1.7)

1 Note that a similar decomposition exists for H.
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The proof is as follows: From the polar decomposition we can write G = Gr S, where S is symmetric. But G is not

singular, hence G = dGr Gs, where d = (det(S))1/3, and Gs = d−1 S. This formula should apply at every step of

the deformation process from equilibrium — hence neither d, nor any of the eigenvalues of Gs can cross zero. But,

at equilibrium: d = 1 and Gr = Gs = identity. Hence d > 0 and Gs > 0. ♣

Example 1.1 (Small deformations). Use (1.3) to write H = 1−D, where Dij =
∂ui

∂xj
. (1.8)

Now assume small deformations: D = O(ε), where 0 < ε� 1. Then G = 1 +D + O(ε2)

and G = 1 + α+Da +Ds +O(ε2) = (1 + α) (1 +Da) (1 +Ds) +O(ε2) = (1 + α) eDa eDs +O(ε2), (1.9)

where α = Tr(D), Da = 1
2

(D − DT ) is the anti-symmetric part of D, and Ds = −α + 1
2

(D + DT ) is the

trace-less symmetric part of D. Thus

d = (1 + α) + O(ε2), Gr = eDa + O(ε2), and Gs = eDs + O(ε2), (1.10)

which follows by comparing (1.6) and (1.9). ♣

1.2.1 The strain tensor and the elastic energy

Let V denote the elastic energy per unit mass — see item a3 in §1.1. This energy should only be a function of the

shape changes in the solid. Now, the information about the deformations (shape changes) in the solid is encoded

in the dGs factor of the representation in (1.6). The rotations, encoded in Gr, affect neither the geometry† of the

forces (stresses) generated when the elastic solid is deformed, nor the elastic energy accumulated. Hence the elastic

energy should be a function of dGs only, and the same should apply to the geometry of the stresses.

†The force “diagram” should just rotate with the media, without any change in its geometry.

At this point it is convenient to introduce the strain tensor

σ =
1

2
(GTG− 1), i.e: σij =

1

2

(
∂x`

∂si

∂x`

∂sj
− δij

)
, (1.11)

where δij is the Kronecker delta and we use the repeated index summation convention. Note that σ is both a-

dimensional and symmetric. Further: σ = 1
2

(
d2G2

s − 1
)
. Hence, since d > 0 and Gs = GTs > 0, it should be

clear that σ encodes † the same information as dGs.

† dGs is the (unique) symmetric and positive definite solution to (dGs)
2 = GTG = 2σ + 1. Then d = (det(dGs))

1/3.

Hence, for an elastic non pre-stressed solid

V = V (σ), τ = GÑ(σ)GT , and Ñ(0) = 0, (1.12)

where Ñ = Ñ(σ) is some tensor, symmetric because τ is symmetric — see §2.

Remark 1.4 Equation (1.12) applies in the case of an homogeneous elastic solid.

If the solid is not homogeneous, then . . . . . . . . . . . . . . . . . . . . . . . . . . . Ñ = Ñ(~s, σ), with Ñ(~s, 0) ≡ 0.

Of course, G = G(~s, t) and σ = σ(~s, t), as follows from (1.5) and (1.11). ♣

The definition of σ in (1.11), and (1.12), require some clarifications:

A. As mentioned earlier (below (1.10), we can also write G = d G̃s G̃r, where G̃s > 0 is symmetric with det G̃s = 1,

and G̃r is a rotation. So, why not use GGT = d2 G̃2
s to define the strain tensor? The reason is that GTG

cancels out rotations in the physical space (which should not affect the geometry of the forces), while GGT

cancels out rotations in the reference space (which might affect the forces: see §1.2.3). Specifically:

(i) Applying a rotation, R, in physical space should not change the elastic energy, and just rotate the forces.

Thus V should remain invariant, while the forces should transform by ~f → R ~f .
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(ii) A rotation, R, in physical space changes G → RG, and normals by n̂ → R n̂. Thus (1.12) behaves

precisely as required: V does not change, while the forces produced by τ , ~fa = τ · n̂, rotate by R.

B. Why not use H to define σ? Well, since H = G−1, it is fully equivalent to G, and one could use it as well —

the appropriate object is then HHT . Since here we will think of ~X(~s, t) as the variable to be solved for, G is

more convenient.

C. As the arguments in item A show, the pre and post-factors G and GT in (1.12) are there to ensure τ behaves

correctly under rotations. This could also be achieved by, for example,† τ = HT N∗(σ)H. Then N∗ and Ñ are

related by N∗ = GTGÑ GTG = (2σ + 1) Ñ (2σ + 1). Which form to use is a matter of convenience.

†Mixed forms, such as τ = GN# H are not good because they require a non-symmetric N#.

D. Finally: (i) Why do we subtract 1 from GTG to define σ? So that σ characterizes departures from equilibrium.

(ii) What is the purpose of the pre-factor 1
2 in (1.11)? So that, in the limit of infinitesimal deformations, the

formula yields the standard one in linear elasticity. (iii) Why is the prefactor positive and not negative? Because

then stretching/compression correspond to positive/negative eigenvalues of σ — this is just convention.

1.2.2 Tracking angles and lengths (scalar products and the strain tensor)

Another way to see why σ is the correct object is as follows: the amount of deformation in an elastic solid can be

determined if we know how the distances and angles change. This is equivalent to knowing how the scalar product

changes. It is easy to see that
< δ~x1, δ~x2 >=< δ~s1, (2σ + 1)δ~s2 >, since δ~x = Gδ~s. (1.13)

The strain tensor encodes the information on how distances and angles change by the deformation of the solid

from equilibrium. This argument does not differentiate GTG from GGT . To do so an extra restriction must be

imposed: invariance under rotation of the coordinates in the physical frame — see item A in §1.2.1

1.2.3 Transformation properties of the strain tensor and isotropic media

By construction the strain tensor σ = 1
2

(GTG − 1) is invariant under rotations in the Eulerian frame, δ~x →
Re δ~x (here Re is a rotation), because these correspond to G→ ReG. However,

σ is not invariant under rotations in the Lagrangian frame,

δ~s→ Rl δ~s. These correspond to G→ GRTl , † so that σ → Rl σR
T
l . (1.14)

†Proof. Let δ~s∗ = Rl ~s be the rotated coordinates. Then δ~x = G~s = GRTl ~s∗.

A similar argument shows that δ~x→ Re δ~x yields G→ ReG.

It then follows that V → V (Rl σR
T
l ) and τ → GRTl Ñ(Rl σR

T
l )RlG

T . (1.15)

But, what is the physical meaning of a rotation in the reference frame? It means that the same solid “shape” has

been achieved by deforming the at-equilibrium solid along different axes. Thus the resulting stresses and elastic

energy need not be the same, unless the solid is isotropic. We conclude that:

A solid is isotropic ⇐⇒ V (σ) = V (Rl σR
T
l ) and Ñ(σ) = RTl Ñ(Rl σR

T
l )Rl. (1.16)

for any rotation matrix Rl.

1.2.4 Other fields used

ρ0 = ρ0(~s) mass density at equilibrium.

ρ = ρ(~x, t) = ρ0 det(H) mass density (mass per unit volume).

~v = ~v(~x, t) = Xt(~s, t) mass flow velocity = d~x
dt

keeping ~s constant.
~f = ~f(~x, t) body force per unit mass.
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2 Problem: The stress tensor is symmetric

2.1 Statement: The stress tensor is symmetric

Consider a continuous media filling some region of space R, such that the inter-media forces in it are characterized

by a stress tensor τ = {τij}, defined at every point ~x ∈ R.

Note: the stress tensor is defined as follows: Consider an arbitrary surface S within R, dividing the region into two

parts, say #1 and #2. Let n̂ be the unit normal to S, pointing into the region #2. Then the force per unit area,

exerted by region #2 on region #1 across the surface, is given by ~f = τ · n̂.

Under the assumptions listed below, show that: The stress tensor τ is symmetric. (2.1)

Assumptions

a1. The following fields can be defined: ρ = ρ(~x, t) = mass density (mass per unit volume), ~v = ~v(~x, t) = mass

flow velocity, ~f = ~f(~x, t) = body force per unit mass, and (of course) the stress tensor τ = τ (~x, t).

a2. The only forces present in the system are those associated with ~f and τ .

a3. Mathematical assumptions: R is open, and all the fields in item a1 are continuously differentiable.

Remark 2.5 For a complete description of the system more fields than the ones introduced in item a1 are needed

(e.g.: pressure, temperature, chemical composition, internal energy, etc.). In addition, equations of state that relate

the various fields are needed; examples: (i) For inert gases the internal energy is given as a function of the density

and the pressure. (ii) For non pre-stressed elastic solids, a map to a reference (equilibrium) frame ~s is introduced,

~x = ~X(~s, t). Then τ is given in terms of the strain tensor σ = 1
2 (GT G− 1), where G = {Gij = ∂xi

∂sj
}.

However, here we will not be concerned with the full set of governing equations for the media. ♣

Hints

h1. Let ~x0 be an arbitrary point in R, and let Bh be a small 2 ball of radius h, 0 < h� 1, centered at ~x0. Then write the

equation for the conservation of

the angular momentum. That is:
d

dt
~A = ~Ts + ~Tb + ~Fs, (2.2)

where: (a) ~A is the angular momentum contained within Bh,

(b) ~Ts is the torque provided by the forces from the media outside Bh, applied along the boundary ∂Bh of the ball, (c)
~Tb is the torque provided by the body forces, and (d) ~Fs is the flow of angular momentum across the boundary ∂Bh
(advection). Note: define the angular momentum, and torque, relative to the ball’s center.

Recall that the angular momentum of a particle is m ~V ×~r, where m is the mass, ~V is the velocity, and ~r is the position

vector. Similarly, the torque is ~F × ~r, where ~F is the applied force. Thus, in the case here, the angular momentum

density is ρ~v × (~x− ~x0), the applied torque per unit volume is ρ ~f × (~x− ~x0), and so on. In particular, you should be

able to write the toque density applied along ∂Bh in terms of the stress tensor.

Each of the terms in (2.2) is thus given by an integral (volume or surface) of the corresponding density.

h2. Estimate the size of the terms in (2.2) as h → 0, and use this to conclude that ~Ts + ~Fs must satisfy ~Ts + ~Fs = O(h4).

Then use Gauss’ theorem to rewrite ~Ts + ~Fs as a volume integral of the divergence of a rank two tensor. Examination

of this divergence should now allow you to conclude that ~Ts + ~Fs = O(h4) requires that τ be symmetric.

h3. Some mathematical facts that you will need.

Let Ω be some region, with boundary ∂Ω and external unit normal vector n̂ = {nj}. Let a = {aij} be a rank two tensor

field, continuously differentiable

and defined in Ω. Then

∫
∂Ω

a · n̂dS =

∫
Ω

div(a) dV , (2.3)

where a · n̂ = {aij nj}, div(a) = {(aij)xj}, and we use the repeated index summation convention. ♣

Let εijk be defined as follows: (i) εijk = 0 if there are repeated indexes. (ii) εijk = 1 if indexes are in one of these

orders: (1, 2, 3), (2, 3, 1), or (3, 1, 2). (iii) εijk = −1 otherwise.

Then the vector product can be written as ~p× ~q = εijk qj pk. (2.4)

2 Small enough to be contained in R.
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3 Problem: Uniform strain elasticity solution

3.1 Statement: Uniform strain elasticity solution

Consider an homogeneous elastic solid, with equilibrium density ρ0 > 0.

Let G = G(t) be a 3× 3 matrix valued smooth function of time, such that: G = GT > 0. (3.1)

That is: G is symmetric and positive definite (positive eigenvalues).

Assume that the elastic solid is described, see (1.1–1.5), by ~x = G(t)~s, with inverse ~s = H(t) ~x, (3.2)

where H = G−1 (also symmetric and positive definite).

This corresponds to:
velocity field † (~v = d~x/dt with ~s constant) ~v = dG

dt
H ~x = −G dH

dt
~x, (3.3)

strain tensor (see (1.11)) σ = 1
2

(G2 − 1), (3.4)

and density ρ = ρ0 det(H). (3.5)

†Here we use that dG
dt
H +G dH

dt
= 0, which follows from GH = 1.

The stress tensor depends on the deformations only, (i.e.: G), thus: τ is a function of time only: τ = τ (t).

Recall that τ is symmetric as well.

Remark 3.6 Since G can be selected to take any positive definite symmetric matrix value, it should be clear [see

(1.6) and (1.11)] that σ can be made to take any possible value that a strain tensor can have.

These are the tasks in this problem:

A. Show that the equation for the conservation of mass, ρt + div(ρ~v) = 0, (3.6)

is satisfied

B. Show that appropriate body forces ~f can be selected

to make the equation for momentum conservation, (ρ~v)t + div(ρ~v ⊗ ~v) = div(τ ) + ρ ~f , (3.7)

apply. Compute ~f .

Note. ⊗ is the tensor product. It is defined by:

~p⊗ ~q = {pi qj}, for any vectors ~p and ~q.

C. Use the equation for the conservation of energy, (ρE)t + div(ρ~v E) = div(τ · ~v) + ρ ~f · ~v, (3.8)

to derive a relationship between dV
dt and τ . Here

V = V (σ) is the elastic deformation energy per unit mass (potential

energy density), so that in (3.8) the energy per unit mass is given by: E = 1
2
~v · ~v + V . (3.9)

Note that V is also a function of time only.

Specifically, the relationship that you are expected to justify is ρ
dV

dt
= Tr

(
τ H

dσ

dt
H

)
. (3.10)

Remark 3.7 The body forces needed for (3.7) are (generally) impossible to achieve, globally, for G arbitrary. How-

ever, any smooth configuration can be approximated by this situation in a sufficiently small region. Hence equation

(3.10) gives us information about the dynamics that relates the stress tensor to the elastic potential energy. ♣

Hints. The following facts will be useful: Let U = U(t) be a differentiable matrix valued function, with U nonsingular.

Then, in general, dU
dt

and U do not commute. However
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1. dU2

dt
= dU

dt
U + U dU

dt
. 2. dU−1

dt
= −U−1 dU

dt
U−1.

3. ẏ/y = d(ln y)
dt

= Tr
(
U−1 dU

dt

)
= Tr

(
dU
dt
U−1

)
, where Tr is the trace of a matrix and y = det(U).

4 Elasticity: Energy considerations

4.1 Potential energy

Elastic deformations have a potential energy associated with them. This energy should be a function of the media

deformations only. Hence

V = elastic energy per unit mass = V (σ). (4.1)

Remark 4.8 A question/ambiguity would seem to arise here: Which one of V (elastic energy per unit mass), or

ρ V (elastic energy per unit volume), should be a function of the media deformations (i.e.: σ)? The answer is both,

there is no ambiguity. The reason is that the density can be written in terms of the equilibrium density (a constant),

and the volume change. The volume change, in turn

is encoded in the strain tensor. The key formulas are ρ = ρ0 det(H) and det(2σ + 1) = (det(H))−2.

These formulas follow because the ratio of the volumes

(equilibrium/current) is det(H) > 0 (equation (1.5)), from the definition of σ in (1.11), and the fact that H = G−1.

Finally, note that for infinitesimal deformations det(H) = 1, so there are no volume changes. ♣

For an isotropic elastic solid V should be invariant under rotations — see (1.16), hence only a function of

Tr(σ) = p1(σ) + p2(σ) + p3(σ), (4.2)

Tr(σ2) = p2
1(σ) + p2

2(σ) + p2
3(σ), (4.3)

Tr(σ3) = p3
1(σ) + p3

2(σ) + p3
3(σ), (4.4)

where the pj(σ) are the principal strains (eigenvalues of σ). Note that an alternative to Tr(σ3) in (4.4) is given by

the determinant: det(σ) = p1(σ) p2(σ) p3(σ). However, Tr(σ3) is easier to differentiate, so it has some analytical

advantages. In fact, nice functional dependence is the main reason to use (4.2–4.4), instead of the pj .

In particular: in the small deformation limit V should be a quadratic function of σ, hence

ρV =
1

2
λ (Tr(σ))

2
+ µTr(σT σ), (4.5)

where ρ is the mass density, and (λ, µ) are the same constants as in (7.4) — as shown below in (4.8–4.9). Note that,

in this case, ρ = ρ0 (no volume changes); hence both V and ρ V are quadratic functions of σ — see remark 4.8.

Remark 4.9 Extension of V = V (σ) to non-symmetric σ. The elastic energy V is defined for symmetric tensors

only (i.e.: no elastic energy can be attributed to a tensor that does not correspond to a deformation). Yet, it is often

convenient to operate as if σ was an arbitrary tensor, with its entries un-restricted [for example, this makes it easier

when using the chain rule of differentiation]. To do this we

“extend” V to a function defined for any tensor: V (σ) = V∗(1
2
(σ + σT )),

where V∗ is the “regular” elastic energy, defined for symmetric tensors only. ♣
This is a mathematical trick; however: once you think of V as a function of σ̃ = 1

2
(σ+σT ), not only it is obvious that M (defined

below) is symmetric (and a function of σ̃ as well), but you can freely use the chain rule as if there were no restrictions on σ.

(1) In index notation: V∗ is a function of σij for i ≤ j only. To get V we replace the argument σij by (σij + σji)/2, when i < j.

(2) Other ways of doing this may exist. This one has the “advantage” (?) that M is symmetric, even when σ is not.
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Let now M be the symmetric tensor (Mij = Mji) defined by Mij =
∂

∂σij
V . (4.6)

Below we show that M mediates the relationship between V and τ .

4.2 The relationship between V and τ

Here we will show that

ρM = H τ HT . Equivalently: τ = ρGM GT . (4.7)

Hence, in equation (1.12), Ñ = ρM .

In the small deformations limit (see example 1.1) we approximate: †
G = identity, ρ = ρ0, and σ = 1

2
(D +DT );

where D is defined in (1.8). Then (4.7) becomes τij = ρ
∂

∂σij
V . (4.8)

Using this for V as in (4.5) yields

τ = λTr(σ) + 2µσ, (isotropic case) (4.9)

which is the same as (7.4). Hence the constants in (4.5) and (7.4) are the same.

†We have G = 1 +D +O(ε2), where D = O(ε) and 0 < ε� 1 — see (1.8). Then,

to leading order, G = 1, ρ = ρ0/det(G) = ρ0, and σ = 1
2
(GTG− 1) = 1

2
(D +DT ).

Note that, generally, ρ = ρ(~x) — since ρ0 = ρ0(~s), and ~x = ~s in this limit.

Remark 4.10 Why should the stress tensor, and the gradient of the elastic deformation energy density with respect

to the strain, be related — as in (4.6–4.7) above? The reason(s) are:

(i) V has to be the result of the work done by the forces (as described by τ) when deforming the body from

equilibrium to some configuration.

(ii) Work is force (characterized by τ) times distance (characterized by σ).

Note that the total work in item (i) has to be independent of the “deformation path” by which the media is taken

from rest to a particular configuration. This is automatically guaranteed by the fact that the forces are given via the

gradient of a single function, V . An alternative way to say this is: The condition that the work done be independent

of the deformation-path, so that an elastic energy can be defined, imposes restrictions on the stress tensor. These

restrictions are expressed by (4.7). ♣

Proof of (4.7). Conservation of mass, momentum, and energy yield the equations: ‡
[Ma] ρt + dive(ρ~v) = 0, [Mo] (ρ~v)t + dive(ρ~v ⊗ ~v) = dive(τ) + ρ ~f , and [En] (ρE)t + dive(ρ~v E) = dive(~v · τ) + ρ ~f · ~v,

where (i) E = 1
2
~v · ~v + V , (ii) ~v ⊗ ~v is the tensor with components (~v ⊗ ~v)ij = vi vj , and (iii) (dive(a))i = (aij)xj for any tensor

with components aij . Note that: (a) We use the repeated index summation convention, and (b) We use the subindex e to make

it explicit that the derivatives are in the Eulerian frame.

‡Verifying that these equations apply is a task left to the reader.

Using [Ma] to eliminate ρt in [Mo] and [En] yields: ‡ [Mo2] ρ D~v
Dt

= dive(τ) + ρ ~f and [En2] ρ DE
Dt

= dive(~v · τ) + ρ ~f · ~v,

where D
Dt

= ∂t + ~v · ∇e. Note that D
Dt

is the same as

∂t in the Lagrangian frame.

Now substitute the formula for E into [En2], and subtract from the

resulting equation the scalar product of [Mo2] with ~v. This yields: ‡ [En3] ρ DV
Dt

= Tr(τ · q), where qij = 1
2

(
∂vi
∂xj

+
∂vj

∂xi

)
.

Now:#1 ∂vi
∂xj

= ∂vi
∂sn

∂sn
∂xj

= ((Xi)t)sn Hnj = (GtH)ij .

It follows that q = 1
2

(
GtH +HTGTt

)
.

}
Hence:#2 [R1] Tr(τ q) = Tr(τ GtH) = Tr(H τ Gt).

Furthermore, using the definition of M and σ, and the fact that M is symmetric:#3 [R2] DV
Dt

= Tr
(
M Dσ

Dt

)
= Tr

(
M GTGt

)
.

#1 Here we use the definition of ~v. Note that the time derivatives here are in the Lagrangian frame.

#2 The symmetry of τ collapses the two terms in q into one. Then we use that Tr(a b) = Tr(b a).
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#3 The time derivative has two terms, transposes of each other. The symmetry of M collapses them into one.

Finally, substitute [R1] and [R2] into [En3], to obtain: [En4] Tr((ρM GT −H τ)Gt) = 0. This has to be satisfied for all solutions,

which means that it must be:#4 ρM GT −H τ = 0. This is (4.7). QED

#4 The argument here is: The full evolution of ~X(~s, t) is determined by [Mo2] — see remark 4.11, which admits initial

values prescribed for ~X(~s, 0) (initial deformation) and ~Xt(~s, 0) (initial velocity). Alternatively: because the forces ~f

in [Mo2] can be “arbitrary”, ~X and ~v are independent. It follows that G and Gt are independent. Hence, an equation

of the form Tr (function(G)Gt) = 0 can apply for all solutions if and only if function(G) = 0.

Remark 4.11 What exactly have we proved above?The “fundamental” dependent variable in this problem is ~X(~s, t), since

everything else can be written in terms of it. Given a stress tensor, the time evolution of ~X is completely determined

by the conservation of momentum, i.e.: [Mo], or [Mo2] — the second because mass is conserved “by construction” (i.e.:

ρ = ρ0 det(H)), so one can use [Ma] to simplify [Mo]. Then the conservation of angular momentum is equivalent to τ being

symmetric — this is shown in §2. Finally, what we have shown here is that conservation of energy is equivalent to (4.7). ♣

4.2.1 The general isotropic media case

For an isotropic media, see (4.2–4.4), we have V = V (ζ1, ζ2, ζ3), where ζn = 1
n

Tr(σn). (4.10)

Then (4.6–4.7) yields
τ = ρG

(
α1 + α2 σ + α3 σ

2
)
GT , where αn = Vζn . (4.11)

In the small deformations case: α1 = λTr(σ), α2 = 2µ, and α3 = 0 — see (4.5), (4.8) and (4.9).

5 Elasticity: The 1-D case

Here we consider the longitudinal vibrations of an elastic rod, for which we make the approximation that mo-

tion/deformation occurs only † along the axis of the rod.

†Note that this is an idealization, because when the stress is unidirectional, some strain has to occur in the transversal

directions, as shown in (7.10–7.11).

Introduce a cartesian coordinate system, x, along the rod’s axis. Then we can describe the state of the rod via the

function x = X(s, t), with inverse s = S(x, t). Here x is the position of a rod “slice” perpendicular to the axis, and s

is a label for the slices, defined by: x = s when the rod is at equilibrium [no forces]. Note that s is then a Lagrangian

coordinate, attached to the mass elements (slices) along the rod.

Following the notation from prior sections, introduce

1. The functions: G = ∂X/∂s and H = ∂S/∂x — see (1.5). Units: none.

Note that: G = 1/H > 0 [rod cannot deformed and “pushed” through itself].

2. The strain tensor: σ = 1
2 (G2 − 1) — see (1.11). Note that σ > −1/2. Units: none.

3. The density: ρ = ρ0(s)H, where ρ0 is the equilibrium density — see (3.5). Units: mass/length.

4. The elastic energy per unit mass: V = V (σ) — see (4.1). Units: velocity2.

5. The stress tensor: τ = ρG2 dV/dσ. — see (4.7). Units: force.

Of course, in this case the stress tensor is just the tension along the rod.

In this 1-D case it is convenient to think of τ and V as functions of G =
√

1 + 2σ, instead of σ. (5.1)

Remark 5.12 Elastic forces in 1-D are most easily/intuitively understood in terms of how much force a relative

change in length generates (i.e.: each small section of the rod behaves like a spring). That is: consider a small section

of the rod of length L at equilibrium, stretched/contracted to a length L+ δL. Then the force should be a function
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of δL/L — in fact: proportional to δL/L when Hooke’s law applies. However, note that δL/L = G− 1

in the limit L→ 0. ♣

Remark 5.13 We use this example to make a direct/intuitive verification of the formula for τ in item 5 above. The

relationship between V and τ can be obtained by computing how much work does it take to stretch (or compress)

a small rod segment of equilibrium length L to some other length L1. Let the change be done by keeping the left

end fixed and moving right end at constant speed vr. If the segment is small enough we can assume that the length

change is uniform (thus τ and V are constants along the segment at any

time, and ρ0 = constant). Then the rod segment is described by x = X(s, t) = (1 + (vr/L) t) s, (5.2)

where 0 ≤ s ≤ L, and the right end of the segment is at xr = L+ vr t.

The total mass in the segment is ρ0 L, so that the elastic energy in it is ρ0 LV (G), where G = 1 + (vr/L) t. On the

other hand, work is being done † at the rate τ(G) vr. Since

the elastic energy vanishes at equilibrium, we have ρ0 LV (G1) =
∫ t1

0
τ(G(t)) vr dt, (5.3)

where t1 is the time at which xr = L1, and G1 = G(t1).

† For example, by a force applied to the right end of the segment, to change its length.

Changing variables, using vr dt = LdG, yields: ρ0 V (G1) =
∫ G1

1
τ(G) dG. Hence τ = ρ0

dV

dG
. (5.4)

Using σ = 1
2 (G2 − 1) and ρG = ρ0 item 5 above follows. QED

Note that it should be τ (1) = 0, hence G = 1 should be an extremum of V , in fact: a minimum, see (5.6). ♣

5.1 Equations of motion

A standard conservation law argument shows that conservation of momentum leads to the equation

ρ0Xtt = τs = γ(Xs)Xss, where γ =
dτ

dG
(note G = Xs) . (5.5)

Note that this equation is in Lagrangian coordinates — i.e.: in terms of the reference frame for the media.

Remark 5.14 This equation “makes sense” only for γ ≥ 0, in which case it is a nonlinear wave equation, with speed

c2 = γ/ρ0. If this is violated the equation becomes ill-posed as an evolution in time, which means that the model

fails: at least one of the physical assumptions leading to (5.5) no longer applies, and another model is needed.

Note that γ < 0 means that (for G > 0) the resistance of the rod to stretching goes down as the rod is stretched, and

(for G > 0) the resistance to compression goes down as the rod is compressed. These are very unstable situations.

They actually happen when the elasticity limit is reached (too much stretching or compression) and, for example,

plastic deformation starts. Then standard elasticity no longer applies. ♣

For a “normal” elastic media γ = ρ0 c
2 > 0. This, coupled with τ(1) = 0 and (5.5), means that

V is a strictly concave function of G, with minimum at G = 1. (5.6)

5.1.1 Other conservation laws

Conservation of mass is automatic, by construction (in the Lagrangian reference fame, the density ρ0 is time inde-

pendent). As for the conservation of energy, it is easy to check that (5.4) and (5.5) lead to

(ρ0E)t − (Xt τ )s = 0, where E =
1

2
X2
t + V . (5.7)

An alternative way to derive (5.4) is: (5.5) and (5.7) must both apply, which implies (5.4).
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5.1.2 Eulerian coordinates

We can also write the equations with (x, t) as the independent variables. For this purpose we introduce G = Xs,

v = Xt, and ρ = ρ0/G, as the dependent variables. Next we note the following three equations (valid in the

Lagrangian coordinates): (ρG)t = 0, Gt − vs = 0, and Gρvt − τs = 0.

Then we use the derivative transformation rules: ∂t → ∂t + v ∂x and ∂s → G∂x to get the equations:

ρt + (ρ v)x = 0, (5.8)

vt + v vx −
1

ρ
τx = 0, (5.9)

Gt + v Gx −Gvx = 0, (5.10)

with τ = τ (G). Note that, when ρ0 = constant, G = ρ0/ρ and we do not need the third equation. Then the other

two equations are the same as the equations of isentropic Gas Dynamics, with p = −τ the

pressure. In general, the third equation can also be written in terms of H = 1/G; then: Ht + (vH)x = 0.

Combining (5.8) and (5.9) yields the equation for the

conservation of momentum in Eulerian coordinates: (ρ v)t + (ρ v2 − τ )x = 0.

6 Problem: Conservation laws in elasticity

6.1 Statement: Conservation laws in elasticity

Note: despite the problem title, this exercise applies to any continuum media.

Consider a continuum media (solid or liquid) in some region of space, with an inertial cartesian coordinate system

~x. Let the media have the following fields associated with it: ρ = ρ(~x, t) = mass density, ~v = ~v(~x, t) = mass flow

velocity, τ = τ(~x, t) = stress tensor, ~f = ~f(~x, t) = body forces per unit mass, and V = V (~x, t) = internal energy

per unit volume. Assume that all these fields are smooth functions of (~x, t), and:

1. Derive pde that the fields above should satisfy. Use conservation of mass, (linear) momentum, and energy.

2. Use the equations in item 1 to obtain expressions for the flow velocity

and internal energy material derivatives. That is, for:
D~v

Dt
= ~vt + (~v · ∇)~v and

DV

Dt
= Vt + (~v · ∇)V .

Note that in the equation for
DV

Dt
the body forces should not appear.

3. Write the equation for the conservation of angular momentum

and show that, given the equations in item 1, . . . . . . . . . . . . . . . . . . . it is satisfied if and only if τ is symmetric.

Remark 6.15 The equations above have to be completed with appropriate equations of state. For example, in gas

dynamics τ is given in terms of the pressure p and ~v, while V is given in terms of p and ρ. In elasticity τ is a function

of the strain tensor. ♣

Recall that the stress tensor is defined as follows: for any surface with unit normal n̂, the force per unit area (by the

media on the side the normal points towards, onto the other side) is given by τ · n̂ = {τij nj} — where we use the

repeated index summation convention.

Important: for parts 1-2 be careful to not use the symmetry of τ , since then part 3 would become pointless.

Notation: Let ~a and ~b be vectors, c a rank-two tensor, and εknm the permutation multi-index. † Then
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(1) div(~a) = (aj)xj — a scalar.

(2) div(c) = {(cij)xj} — a vector.

(3) ~a⊗~b is a rank-two tensor defined by (~a⊗~b)ij = aibj .

(4) ~a · c = {aicij} and c · ~a = {cijaj} — both vectors. Generally, ~a · c 6= c · ~a (unless c is symmetric).

(5) ~a×~b = {εjnm an bm} — a vector.

(6) ~a×c and c×~a are rank-two tensors defined by (~a×c)ij = {εinm an cmj}, and (c×~a)ij = {εinm cjn am}.
† εknm is defined by: εknm = 1 if (k, n,m) = (1, 2, 3), (2, 3, 1), (3, 1, 2); εknm = 0 if two of the indexes

are equal; εknm = −1 otherwise.

7 Elasticity: The small deformations limit

Here we assume that D in (1.8) is small — O(ε) with 0 < ε� 1, and neglect O(ε2) terms.

Then, since ~s = ~x− ~u, H = 1−D with Dij = (ui)xj . †
But G = H−1 = 1 +D +O(ε2). Thus, in this limit H = 1−D and G = 1 +D. (7.1)

†Recall: all of these variables are introduced in (1.1–1.11).

Furthermore ~s = ~x and σ =
1

2

(
D +DT

)
, (7.2)

as follows from 2σ = GTG− 1.

Remark 7.16 In this limit the assumption is that the displacements are small (in fact: infinitesimal), so that the

distinction between ~s and ~x disappears. However, it is possible to have small deformations, while having significant

displacements — e.g.: A thin flat plate (or a thin rod) can undergo significant lateral displacements while keeping

the deformations small.

This situation occurs when dGs in (1.6) is close to the identity. That is, when G = R (1+D), where R is a rotation

and D = DT is small/infinitesimal. In this case the distinction between ~s and ~x remains, but Hooke’s law can still

be used for the strain-stress relationship. ♣

Remark 7.17 Relationship between V and τ , and isotropy.

Because in this limit G = H = 1 at leading order, (4.7) becomes τij = ρ
∂

∂σij
V , (4.8)

where ρ = ρ0(~x). Similarly, the conditions

for an isotropic media in §1.2.3 reduce to † τ (Rl σR
T
l ) = Rl τ (σ)RTl , (7.3)

where Rl is a rotation in the reference space. Of course, V (Rl σR
T
l ) = V (σ)

must also hold — note that this last identity, together

with (4.8) yields (7.3).

†To prove (7.3), note that we cannot directly apply here the arguments in §1.2.3, because a rotation in reference space would

destroy the small deformation limit in which G ≈ 1. What we need to do is simultaneously apply a counter-rotation in physical

coordinates, so that G→ RlGR
T
l — this causes both: D → RlDRTl and σ → Rl σ R

T
l . Then τ does not change because of the

rotation in configuration space, but it changes as in (7.3) because of the counter-rotation — see item A in §1.2.1.

An consequence of the small deformation limit here is that τ is a function of σ only: τ = τ (σ). This is not the

case in the general case, where a separate dependence on G is also needed — see (1.12). ♣

7.1 Hooke’s law

If σ is small, and τ is a smooth function of σ, we can approximate τ by a linear function of σ: Hooke’s law. This

requires 36 coefficients (because the symmetric tensors τ and σ involve 6 independent entries each). However, if the
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media is isotropic, the relationship between σ and τ has to be invariant under rotations — that is: (7.3) applies.

This reduces the number of free

parameters to two (see §7.1.2), so that † τ = λTr(σ) + 2µσ, (7.4)

where λ > 0 and µ > 0 are the Lamé constants (µ is

the shear modulus), σ is as in (7.2), and (1.8) yields Tr(σ) = div(~u) =
∂ui

∂xi
. (7.5)

† For more on this formula, see remark 7.18 and §4.

Notes:

A. See remark 7.19 for the inequalities λ, µ > 0. In particular, regarding λ > 0, note that λ > −(2/3)µ is

the only “hard” restriction, though for most common materials λ > 0.

B. For a non-homogeneous solid, λ = λ(~x) and µ = µ(~x).

Remark 7.18 Equation (7.4) implies stress and strain colinearity: τ and σ have the same principal axes. At

every point there is a rotation matrix R such that both Rτ RT and RσRT are diagonal.

Conversely, if colinearity is assumed, (7.4) follows. In this case the problem reduces to characterizing all the linear

transformations between 3 by 3 diagonal matrices, with the property that the transformations are invariant under

permutations of the diagonal elements. The most general linear transformation between 3 by 3 diagonal matrices

involves 9 coefficients cij — defined by the equations d(τ)i = cij d(σ)j , where d(τ)i and d(σ)j are the diagonal

elements. Further: there are 6 permutations to enforce invariance under. A little work then shows that it must be

cij = a if i = j and cij = b if i 6= j, for some constants a and b. This is (7.4), with a = λ+ 2µ and b = 2µ.

That colinearity should apply is intuitively “obvious”. Consider a deformation that involves no rotation (pure shear,

definition 1.4) — there is no loss of generality in this, because the stress tensor ignores rotations. Observe now what

happens with an infinitesimal cube whose facets are normal to the principal axes of strain: the cube is deformed in

such a way that each facet moves normal to itself by some amount determined by the corresponding principal strain.

Under these conditions, how can shear stresses (parallel to the facets) arise? Such a situation would not be invariant

under rotation, for the shear stresses would determine special directions in space which are not encoded within σ.

Hence no such shear stresses can arise, meaning that colinearity applies. Unfortunately, this argument is not 100%

tight. † Another argument leading to (7.4), using the relationship between the stress tensor and the elastic energy

stored in the solid, is presented in: §4, equation (4.9). ♣
†The argument only works in the small deformation limit, because of the merging of ~s and ~x into one single system, and

the consequences that this has (e.g.: see remark 7.17). In fact, colinearity fails in the general case — see (4.11).

Remark 7.19 Should the Lamé constants in (7.4) be positive? This cannot follow from symmetry arguments.

It (partly) follows from the fact that the stresses generated by an elastic solid oppose the deformations that cause

them: in order to deform an elastic solid, energy must be spent. 3 This spent energy then goes into stored elastic

deformation energy. In §4, equation (4.5), we show that the elastic deformation energy V (per unit mass) associated

with (7.4) has the form

ρV = 1
2
λ (Tr(σ))

2
+ µTr(σT σ) = 1

2
λ (
∑
i pi(σ))

2
+ µ

∑
i p

2
i (σ), (7.6)

where the pi(σ) are the principal strains (eigenvalues of σ), and ρ is the density. From the arguments above, it

should be V > 0 for any non-trivial σ. In other words, the quadratic form in (7.6) should be positive definite.

A simple calculation (see below) shows

that this is equivalent to µ > 0 and 3λ+ 2µ > 0, (7.7)

which allows λ non-positive in the range −(2/3)µ < λ ≤ 0.

See the Poisson ratio discussion in §7.1.1. ♣
3 The opposite would give rise to very unstable (and rather un-physical) situations, with deformations growing without bound in the absence

any applied forcing. Within the linear regime, energy out of nothing!
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Calculation leading to (7.7). We show that:

Q = a (x+ y + z)2 + b (x2 + y2 + z2) is positive definite ⇐⇒ 3 a+ b > 0 and b > 0. [A]

Proof of ⇒. (1) Take y = z = −x/2 6= 0. Then Q > 0 shows that b > 0.

(2) Take x = y = z 6= 0. Then Q > 0 shows that 3 a+ b > 0.

Proof of ⇐. If a ≥ 0 and b > 0, it is obvious that Q > 0. Thus assume b > 0 and −b/3 < a < 0. Then

Q ≥ (3 a+ b) (x2 + y2 + z2), using (#) below. Thus Q > 0 as well.

(#) 3 (x2 + y2 + z2)− (x+ y + z)2 = (x− y)2 + (y − z)2 + (z − x)2 ≥ 0.

7.1.1 The other constants

The bulk modulus B = λ+
2

3
µ > 0 relates the traces of τ and σ.

That is, from (7.4) Tr(τ ) = 3B Tr(σ). (7.8)

Note that:

A. The pressure (the shear-less component of the stress) is given by p = −1
3

Tr(τ).

B. The volume change relative to the equilibrium state is given by ∆Vol = det(G)− 1,

as follows from the definition of G in (1.5).

Now we use (7.1), G = 1 +D, the fact that that D is small, and

(7.2), to write detG = 1 + Tr(D) = 1 + Tr(σ). Hence ∆Vol = Tr(σ).

Recall that D is defined in (1.8), and that Tr(σ) = div(~u).

We conclude that p = −B∆Vol. (7.9)

By contrast, the shear modulus µ > 0 relates the trace-less part of σ (deformation

without volume change; i.e.: shear) with the trace-less part of τ (what remains of τ after the pressure is removed).

Now consider a situation where the stress is uni-directional, † that is: only one principal stress is non-zero. Then the

ratio of the non-zero stress to its corresponding strain is the Young’s modulus E.

† Example: pull along its axis a thin rod of the elastic material

To get an expression for E, align the coordinate axes with the stress (and strain) tensors principal axes. This leads,

using (7.4), to
E σ11 = τ11 = (λ+ 2µ)σ11 + λ (σ22 + σ33),

0 = τ22 = (λ+ 2µ)σ22 + λ (σ11 + σ33),

0 = τ33 = (λ+ 2µ)σ33 + λ (σ11 + σ22),

(7.10)

where τ11 is the non-vanishing principal stress. Thus ‡

E =
3λ+ 2µ

λ+ µ
µ > 0 and σ22 = σ33 = −

λ

2 (λ+ µ)
σ11. (7.11)

‡The last two equations in (7.10) are a non-singular system (determinant 4µ (λ+ µ) > 0) for (σ22, σ33) in terms of σ11.

The Poisson’s ratio ν is the (negative of) the ratio between the side strains and the main strain in the uni-axial

stress situation defining E. From (7.11)

− 1 < ν =
λ

2 (λ+ µ)
<

1

2
, (7.12)

where the inequalities follow from (7.7). The Poisson ratio is a measure of the transverse contraction (or expansion)

when the material is under uni-axial stress: ν > 0 corresponds to contraction when the material is under tension

(stretched), both τ11 and σ11 positive, and expansion in the opposite situation. Most material behave like this,

hence (in general)

ν > 0 =⇒ λ > 0. (7.13)

However this is a consequence of the “typical” microscopic structure of common materials, and not of some deep

physical principle. In fact man made materials for which ν < 0, hence λ < 0, exist. † These materials have a
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rather counter-intuitive behavior: when a rod made of them is stretched along the axis, its cross-sectional area grows.

By the same token, the cross-section decreases when pushing the rod inwards from its ends.

†They are known by various names, such as: anti-rubber, auxetic, dilatational, or metamaterials.

Finally, notice that we can write

ν =
3 γ − 2

2 (3 γ + 1)
, where γ =

B

µ
. (7.14)

Hence, materials with ν < 0 have γ “small”, and resist shear better than compression. On the other hand, materials

that resist compression much better than shearing (e.g.: rubber) have γ “large”, hence ν close to 0.5. An example

of a material with ν small (i.e.: γ close to 2/3) is cork — an advantage when making bottle corks, though this is not

the main reason for its use.

7.1.2 The consequences of symmetry

Here we show how (7.4) follows from (7.3), and the fact that the transformation σ → τ is linear. We begin by

considering what τ should be when σ is diagonal.

Using the linearity, we can write τ(Λ) = ζ1A1 + ζ2A2 + ζ3A3 (7.15)

when Λ = diag(ζj), where the Aj are some (constant) symmetric tensors.

Now introduce the rotations Rj , which exchange diagonal elements of a diagonal tensor. For example: R1 exchanges

ζ2 and ζ3, and is given by

R1 =

 1 0 0

0 0 1

0 −1 0

 . Note that: R2
1 =

 1 0 0

0 −1 0

0 0 −1

 . (7.16)

Using (7.3) we can then write τ(R` ΛRT` ) = R` τ(Λ)RT` =
∑

ζj R`Aj R
T
` . On the other hand, since R` ΛRT` is

diagonal, we can also use (7.15) directly. Comparing the two expressions, and using the fact that the ζj are arbitrary,

we obtain

R1A1R
T
1 = A1, R1A2R

T
1 = A3 and R1A3R

T
1 = A2

(
=⇒ R2

1 A2 (R2
1)T = A2 and R2

1 A3 (R2
1)T = A3

)
when ` = 1, and similar for the other two cases. Then, from R2

2 A1 (R2
2)T = A1 and R2

3 A1 (R2
3)T = A1, we conclude

that A1 is diagonal — similarly A2 and A3 must be diagonal. Next we use that R1A1R
T
1 = A1 to conclude that

A1 = diag(a, b, b) for some constants a and b. Then A2 = R3A1R
T
3 and A3 = R2A1R

T
2 yield A2 = diag(b, a, b)

and A3 = diag(b, b, a). Now let λ = b and

µ = (a− b)/2, so that (7.15) takes the form τ(Λ) = (ζ1 + ζ2 + ζ3)λ+ 2µΛ. (7.17)

This is exactly (7.4) for the case σ = Λ. The

general case follows by writing σ = RΛRT and then using (7.3) and (7.17).

The argument above shows that any τ satisfying (7.3) must have the form in (7.4).

Vice-versa, it should be obvious that τ as given by (7.4) satisfies (7.3). ♣

8 Problem: Energy in linear elasticity

The objective of this problem is to verify that the equations of linear elasticity guarantee the conservation of energy.

8.1 Statement: Energy in linear elasticity

In linear elasticity we label each point in the elastic solid by its position at equilibrium, ~x, and describe the dynamics

by the displacement vector ~u = ~u(~x, t), which is assumed “infinitesimal”. The displacement vector is defined as
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follows: the position at time t of the point with label ~x is ~x+ ~u. Then, for an isentropic 4 solid the equations are

ρ~vt = ρ ~f + div(τ ), (8.1)

where ρ = ρ(~x) is the density (constant if the media is homogeneous), ~v = ~ut is the velocity, ~f = ~f(~x, t) is the

body force per unit mass, τ is the stress tensor (symmetric), and div(τ ) = {(τij)xj)}.
Note: we use the repeated index summation convention.

The stress tensor is given by τ = λ div(~u) + 2µσ, (8.2)

where

σi j =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
(8.3)

is the strain tensor, and (λ, µ) are the Lamé “constants” — though they may be functions of ~x if the media is not

homogeneous. Note that it must be µ > 0 and λ > −(2/3)µ.

Equation (8.1) expresses the conservation of momentum, where ρ~v is the momentum density and the stress tensor

(forces) is the negative of the momentum flux. Recall that the stress tensor is defined by: For any unit vector n̂, τ · n̂
is the force per unit area, across a surface normal to n̂, by the solid

on the side of the surface n̂ points towards, onto the other side.

Write the appropriate equation for the conservation of energy, and verify that it is satisfied.

Hint. The required equation has the form Et + div(F) = W, where E is the (total) energy density (per unit volume),

F is the energy flux vector, and W is the work per unit volume done by the body force. You will need (8.4) in order

to write E .

The elastic deformation energy per unit mass V is given by ρV =
1

2
λ (Tr(σ))

2
+ µTr(σT σ). (8.4)

9 Euler-Lagrange equations (variational formulation)

In the variational formulation of the equations, we start with the Lagrangian L =
1

2
ρ0 ~v

2 − ρ0 V , (9.1)

formulated in the reference (or Lagrangian) frame, where V is thought as a

function of G,† and ρ0 = ρ0(~s) = mass density in the reference frame. Then the Euler-Lagrange equations follow

ρ0 ~vt = divl

(
T (1)

)
, where T (1)

ij = ρ0

∂V

∂Gij
= first Piola-Kirchhoff stress tensor. ‡ (9.2)

† Since σ = 1
2
(GTG− 1), this does not contradict the fact that V is a function of σ.

‡The second Piola-Kirchhoff stress tensor is introduced in (9.10).

These equations are formulated in the reference frame: divl stands for the divergence in the ~s variables, and

the time derivatives are for ~s constant. Notation: we use a subscript l to denote operators in the Lagrangian frame

(e.g.: ∇l = (∂s1 , ∂s2 , ∂s3)T ) and a subscript e to denote operators in the Eulerian frame. Recall that:(i) ∂t in the

Lagrangian frame becomes ∂t + ~v · ∇e = D
Dt in the Eulerian frame. (ii) div applies to the last index in a tensor; e.g.:

divl(T (1)) = ∂sj (T (1))ij — see note 1.2a in definition 1.2, and the “notation” paragraph below remark 6.15.

Next we use (9.11) to write T (1) in terms of M , as defined in (4.6).

T (1)
ij = ρ0Mpq

∂σpq
∂Gij

=
1

2
ρ0 (Mjq Giq +Mpj Gip) , i.e.: T (1) = ρ0GM , (9.3)

where we use the repeated index summation convention and the symmetry of M . Using (4.7) we can write

T (1) = J τ HT , with J = det(G) and ρ0 = J ρ, (9.4)

where ρ = mass density in the Eulerian frame — i.e.: the “physical” frame. Note that T (1) is not symmetric.

4 Properties are invariant under rotation.
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9.1 Conservation of angular momentum

The angular momentum per unit mass is ~A = ~v × ~X. Thus the vector product of (9.2) with ~X yields

(ρ0
~A)t = − ~X × divl(T (1)) = −divl( ~X × T (1)) +

{
εipq Gpj (T (1))qj

}
= −divl( ~X × T (1)). (9.5)

Here we use: (i) ρ0 does not depend on t; (ii) ~At = ~vt × ~X, because ~Xt = ~v; (iii) the repeated index summation

convention; and (iv)
{
Gpj (T (1))qj

}
= T (1)GT is symmetric, as follows from (9.3) — this justifies the last identity.

9.2 Transformation to Eulerian coordinates

Consider an arbitrary (fixed) region, Ωl, in the reference frame, with boundary ∂Ωl. Let Ωe and ∂Ωe be the

corresponding region, and boundary, in the Eulerian frame (note: Ωe may vary in time, even though Ωl does not).

Next examine the total momentum balance in the Ω’s. We have:

#1.
∫
Ωe
ρ~v dVe =

∫
Ωl
ρ0 ~v dVl.

#2. d
dt

∫
Ωe
ρ~v dVe =

∫
Ωe

(ρ~v)t dVe +
∫
∂Ωe

ρ~v (~v · n̂e) dAe =
∫
Ωe

((ρ~v)t + dive(ρ~v ⊗ ~v)) dVe. †

#3. d
dt

∫
Ωl
ρ0 ~v dVl =

∫
Ωl

divl(T (1)) dVl =
∫
∂Ωl
T (1) · n̂l dAl =

∫
∂Ωe

(T (1) ·GT n̂e) J−1 dAe

=
∫
Ωe

dive
(

1
J
T (1) ·GT

)
dVe.

† Important: The partial derivatives with respect to time of the integrands are in the Eulerian frame; thus with ~x frozen.

Further: the tensor product ⊗ is defined in the “notation” paragraph below remark 6.15.

Proofs (below, in items with more than one equality, (i), (ii), etc. is the argument justifying successive equalities).

#1. This follows because ρ0 = J ρ, and the volume elements are related by dVe = J dVl.

#2. (i) Here the second integral follows from the fact that Ωe changes in time. This integral accounts for the change in

momentum as the boundary ∂Ωe moves normal to itself at velocity ~v · n̂e. (ii) Use Gauss’ theorem.

#3. (i) Use (9.2) and the fact that Ωl is fixed. (ii) Use Gauss’ theorem. (iii) Use (9.12) to change the integration from

∂Ωl to ∂Ωe. (iv) Use Gauss’ theorem. ‡

‡Key point here: Note that if we attempted to jump directly from the second to the last formula in #3, the

result would involve divl, not dive. Since we need dive, we are forced to introduce two intermediate steps.

From #1 above, it follows that #2 and #3 are equal. But Ωe is arbitrary. Thus it must be

(ρ~v)t + dive(ρ~v ⊗ ~v) = dive

(
1

J
(T (1) ·GT n̂e)

)
. (9.6)

Comparing this with the equation for the conservation of momentum in Eulerian coordinates (e.g.: see the answer

to the problem in §6) we conclude that J τ = T (1)GT — this reproduces (9.4).

Note that obtaining (9.6) from (9.2) by a direct change of variables calculation (~s→ ~x) is a rather cumbersome, and

error prone, calculation. It is generally true that calculations that can be done at the integral level tend to be shorter

and more elegant. This is one of the reasons why variational formulations are advantageous whenever possible.

9.2.1 Forces and stress tensors

In the Eulerian frame the forces across an arbitrary surface

surface within the solid, are given by (see definition 1.2) d~fe = τ · n̂e dAe. (9.7)

On the other hand, from the third formula in #3 above, and

#1, we have d
dt

∫
Ωe
ρ~v dVe =

∫
∂Ωl
T (1) · n̂l dAl. Thus d~fe = T (1) · n̂l dAl. (9.8)

This also follows by substituting (9.12b-c) into (9.7) and using
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(9.4). Finally, if we introduce the pull-back of the force elements

to the reference frame, d~fl = Hd~fe, we have d~fl = T (2) · n̂l dAl, (9.9)

where T (2) = H T (1) = J H τ HT = ρ0M (9.10)

is the second Piola-Kirchhoff stress tensor (it is symmetric).

9.3 A few useful formulas

So as not to interfere with the continuity of the exposition in this section, we list (and prove) here some formulas

that are needed. Recall that

~x = ~X(~s, t), ~s = ~S(~x, t), δ~x = Gδ~s, δ~s = H δ~x, H = G−1, Gij =
∂xi

∂sj
, and Hij =

∂si

∂xj
.

Furthermore: note that we use the repeated index summation convention.

1. We have
∂σpq

∂Gnm
=

1

2
(δpmGnq + δqmGnp) and

∂Hnm

∂Gij
= −HniHjm. (9.11)

Proofs:

(A) For any parameter: σζ = 1
2 (GTζ G+GTGζ). Now use this with ζ = Gnm, so that (Gζ)ij = δinδjm.

(B) Let ζ = Gij . Then ∂ζ of δnk = Hn`G`k yields: 0 = (Hζ)n`G`k +Hni δkj . Now multiply by Hkm. ♣

2. On surfaces: how tangents, normals, and areas transform. Consider a surface in the Lagrangian frame, Sl,
with its corresponding surface in the Eulerian frame, Se. Consider now: (i) t̂l, a tangent vector at some point

in Sl. (ii) n̂l, a normal vector at some point in Sl. (iii) dAl, the area element on Sl. Furthermore, let t̂e, n̂e,

and dAe be the corresponding objects on Se. Then †

[a] t̂e = aG t̂l, [b] n̂e = bHT n̂l, and [c] bdAe = J dAl, (9.12)

where: a = 1/‖G t̂l‖ = ‖H t̂e‖ and b = 1/‖HT n̂l‖ = ‖GT n̂e‖.

†Note that here we consider the map between surfaces at a given arbitrary, but fixed, time.

Proofs: [a] Consider a curve in Sl, ~s = ~s(µ). The corresponding curve in Se is ~x = ~x(µ) = ~X(~s(µ), t). Then take

the derivative with respect to µ of this last formula, and normalize to unit length.

[b] Any smooth surface can be realized, at least locally, as a level set. Thus let φe(~x) = 0 define Se. Thus

0 = φl(~s) = φe( ~X(~s, t)) for Sl. Hence ∇lφl = GT∇eφe, or H∇lφl = ∇eφe. Now normalize to unit length.

[c] Consider the surface Sl, and the nearby surface Snl defined by: Displace Sl by the amount n̂l drl at

every point along the surface, for some “infinitesimal” drl (drl need not be constant, but is smooth). Since the

map ~s → ~x takes ~s + n̂l drl to ~x + (G n̂l) drl, we see that Snl gets mapped to Sne — which is defined relative

to Se in the same way as Sl, using dre = (n̂e · G n̂l) drl. Hence using [b] we see that dre = bdrl. Now consider

the volume between a surface element in Sl and Snl ; which is given by dVl = dAl drl. The corresponding volume,

attached to Se, is dVe = dAe dre. Now, using dre = bdrl and dVe = J dVl, [c] follows. ♣

The End.
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