
18.376 - The Laplace Transform

Examples of its use for pde
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Theme: Laplace Transform (LT) for Initial Value Problem (IVP). (1) Solve using Green’s functions. (2) Use

inverse LT and residues to get solution in terms of normal modes.
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1 Heat equation in an interval, with Dirichlet BC (example 1)

Consider the heat equation in an interval ut − uxx = 0, 0 < x < 1 and t > 0, (1.1)

with boundary conditions u(0, t) = u(1, t) = 0 and initial condition u(x, 0) = f(x). Let

U = U(x, s) =

∫ ∞
0

e−s tu(x, t) dt (1.2)

be the Laplace transform in time of u. Then

1. Write the equation that U satisfies. It is a forced (by f) ode problem in 0 < x < 1, for every s, with some

boundary conditions at x = 0, 1.

2. Find the Green’s function for the problem, so that you can write

U(x, s) =

∫ 1

0

G(x, y, s) f(y) dy. (1.3)

3. G may have no branch points, but it has infinitely many poles. Find these poles.

Note: even though s = 0 appears to be a singularity of G, it is not one.

4. Compute the residue rn of G at the pole sn.

5. Note that the residues are functions of x and y, rn = rn(x, y). Show now that

u =

∞∑
n=1

∫ 1

0

rn(x, y) f(y) dy esn t (1.4)

is the same formula for the solution of (1.1) as the one that results from normal modes.

Where/how does (1.4) arise? Recall the formula for the inverse Laplace transform

u =
1

2π i

∫
Γ

U(x, s) es t ds, (1.5)

where Γ is a path in the complex plane of the form s = a+ i µ, with −∞ < µ <∞ and a > 0 large enough. If this

path is “moved” to the left (a→ −∞), every time it crosses a pole of U it picks up the residue of U es t there. Because

of (1.3), these residues are precisely the terms in the sum in (1.4).

1
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Warning. The reduction of (1.5) to a sum over residues is not always possible. For this the function U must have

pole singularities only, and (for example) vanish as Re(s)→ −∞. This is not always true. For example: 1 sometimes

U is not even defined for Re(s) < some constant, or it may have singularities other than poles, or it may not behave

properly as Re(s)→ −∞.

Answer: Heat equation in an interval, with Dirichlet BC (example 1)

1. From the definition of U , we have sU − Uxx = f, 0 < x < 1, (1.6),

with U(0, s) = U(1, s) = 0.

2. The Green’s function for (1.5) satisfies the equation and boundary conditions for f = δ(x− y). Thus it has the

form

G = β1(y) sinh(
√
s x) for x < y and G = β2(y) sinh(

√
s (x− 1)) for x > y,

for some functions β1 and β2. In addition,

(a) G is continuous at x = y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . β1(y) sinh(
√
s y) = β2(y) sinh(

√
s (y − 1)).

(b) Gx “jumps” by −1 as x crosses x = y,

so that −Gxx produces the δ function

on the right. That is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
√
s β1(y) cosh(

√
s y)−

√
s β2(y) cosh(

√
s (y − 1)) = 1

These two conditions determine β1 and β2, and we get

G =
−1√

s sinh(
√
s)

sinh(
√
s x) sinh(

√
s (y − 1)) for x < y. (1.7)

G =
−1√

s sinh(
√
s)

sinh(
√
s y) sinh(

√
s (x− 1)) for y < x. (1.8)

Equation (1.3) applies with G given as above. Furthermore: from these formulas it should be obvious that G

does not depend on which root
√
s is selected. Changing

√
s→ −

√
s does not alter G. Thus G is single valued,

with no branch points.

3. Clearly, singularities of G can occur only at the places where
√
s sinh(

√
s) vanishes, that is, at: 2 s = 0 and

s = sn = −n2 π2, where n = 1, 2, 3, . . . In fact, by expanding near s = 0 both the numerators and denominators,

we obtain

G =
−1

s+ 1
6 s

2 + . . .

(
s x (y − 1) +

1

6

(
x (y − 1)3 + x3 (y − 1)

)
s2 + . . .

)
= −x (y − 1) +O(s) for x < y and s small. (1.9)

G = −y (x− 1) +O(s) for y < x and s small. (1.10)

Thus, s = 0 is not a singularity of G. Similarly, expanding for s close to sn, we obtain

√
s sinh(

√
s) = 1

2 cosh(i n π) (s− sn) +O
(
(s− sn)2

)
= 1

2 (−1)n (s− sn) +O
(
(s− sn)2

)
,

sinh(
√
s x) sinh(

√
s (y − 1)) = − sin(nπ x) sin(nπ (y − 1)) +O(s− sn)

= (−1)n+1 sin(nπ x) sin(nπ y) +O(s− sn),

sinh(
√
s y) sinh(

√
s (x− 1)) = (−1)n+1 sin(nπ x) sin(nπ y) +O(s− sn).

Thus

G =
2 sin(nπ x) sin(nπ y)

(s− sn)
+O(1) (1.11)

for s− sn small, and both x < y or y < x.

1 All of these things occur quite often in problems that arise in applications.
2 Note that

√
sn = ±i n π.
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4. From (1.11) it follows that sn is a simple pole of G, with residue

rn = 2 sin(nπ x) sin(nπ y). (1.12)

5. Substituting (1.12) into (1.4) yields

u =

∞∑
n=1

2

(∫ 1

0

sin(nπ y) f(y) dy

)
sin(nπ x) e−n

2 π2 t, (1.13)

which is precisely the same as the solution by normal modes to the problem in (1.1).

Why is it that are the poles the two expressions for G — i.e.: for x > y and x < y — become the same? The

singularities of G occur at the values of s for which there is no solution of the equation for G. That is, the places

where the equations determining β1 and β2 are singular. But these are exactly the values of s at which the functions

sinh(
√
s x) and sinh(

√
s (x− 1)) are proportional to each other.

2 Wave equation in an interval, with Dirichlet BC (example 2)

Consider the wave equation in an interval utt − uxx = 0, 0 < x < 1 and t > 0, (2.1)

with boundary conditions: u(0, t) = u(1, t) = 0; and initial conditions: u = 0 and ut = f(x) at t = 0. Let

U = U(x, s) =

∫ ∞
0

e−s tu(x, t) dt (2.2)

be the Laplace transform in time of u. Now

1. Write the equation that U satisfies.

2. Find the Green’s function for the problem for U , so that you can write

U(x, s) =

∫ 1

0

G(x, y, s) f(y) dy. (2.3)

3. G has infinitely many poles. Find these poles.

Note: even though s = 0 appears to be a singularity of G, it is not one.

4. Let r±n be the residue of G at the pole s±n. Compute these residues.

5. Note that the residues are functions of x and y, r±n = r±n(x, y). Show that

u =

∞∑
n=1

∫ 1

0

(
rn(x, y) esn t + r−n(x, y) es−n t

)
f(y) dy (2.4)

is the same formula for the solution of (2.1) as the one that results from normal modes.

6. Use the results above to write the formula equivalent to (2.4), but for the case when u satisfies the initial

conditions: u = g(x) and ut = 0 at t = 0.

Where/how does (2.4) arise? Recall the formula for the inverse Laplace transform

u =
1

2π i

∫
Γa

U(x, s) es t ds, (2.5)

where Γa is a path in the complex plane of the form s = a+ i µ, with −∞ < µ <∞ and a > 0 (fixed) large enough.

If this path is “moved” to the left (a→ −∞), every time it crosses a pole of U it picks up the residue of U es t there.

Because of (2.3), these residues are precisely the terms in the sum in (2.4).

Warning. The reduction of (2.5) to a sum over residues is not always possible. For this U must have pole singularities

only, and (for example) vanish as Re(s)→ −∞. This is not always true. Sometimes U is not even defined for Re(s) <

some constant, or it has singularities other than poles, or it does not behave properly as Re(s)→ −∞, or . . . (all

these things occur in problems that arise in applications).



18.376 MIT, (Rosales) Wave equation in an interval, with Dirichlet BC (example 2). 4

Answer: Wave equation in an interval, with Dirichlet BC (example 2)

1. From the definition of U , we have s2 U − Uxx = f, 0 < x < 1, (2.6),

with U(0, s) = U(1, s) = 0.

2. The Green’s function for (2.6) satisfies the ode and boundary conditions, with f = δ(x− y). Thus

G = β1(y) sinh(s x) for x < y and G = β2(y) sinh(s (x− 1)) for x > y,

for some functions β1 and β2. In addition,

(a) G is continuous at x = y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . β1(y) sinh(s y) = β2(y) sinh(s (y − 1)).

(b) Gx “jumps” by −1 as x crosses x = y,

so that −Gxx produces the δ function

on the right. That is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s β1(y) cosh(s y)− s β2(y) cosh(s (y − 1)) = 1

These two conditions determine β1 and β2, and we get

G =
−1

s sinh(s)
sinh(s x) sinh(s (y − 1)) for x < y. (2.7)

G =
−1

s sinh(s)
sinh(s y) sinh(s (x− 1)) for y < x. (2.8)

Equation (2.3) applies with G given as above.

Note that, for each (x, y), G above is the ratio of two entire functions of s, with denominator

W = s sinh(s) = s sinh(s x) cosh(s(x− 1))− s cosh(s x) sinh(s(x− 1)) (2.9)

equal to the Wronskian of the solutions Ũ1 = sinh(s x) and Ũ2 = sinh(s (x− 1)), each satisfying one of the two

boundary conditions U must satisfy (the Wronskian of two solutions is constant).

3. Clearly, singularities of G (in fact, poles) can occur only at the places where s sinh(s) vanishes, that is, at:

s = 0 and s = s±n = ±i n π, where n = 1, 2, 3, . . . In fact, by expanding near s = 0 both the numerators and

denominators, we can see that

G = −x (y − 1) +O(s2) for x < y and G = −y (x− 1) +O(s2) for x > y. (2.10)

Thus, s = 0 is not a singularity of G.

Similarly, expanding for s close to s = s±n = ±i n π, it is easy to see that

G = ± sin(nπ x) sin(nπ y)

i n π (s− sn)
+O(1) (2.11)

for s− sn small. Hence these points are, actually, poles.

Note: the leading order in (2.11) is the same for both x < y and y < x. Why? This is because the singularities

of G occur at the values of s for which there is no solution to the equations determining G. That is, where

the equations for β1 and β2 are singular. But these are the values of s at which sinh(s x) and sinh(s (x − 1))

are proportional to each other: where W = 0. Thus, for s very close to s±n, G should be (approximately)

proportional to the same function of x for both x < y and x > y.

4. From (2.11) it follows that s±n = ±i n π is a simple pole of G, with residue

r±n = ± 1

i n π
sin(nπ x) sin(nπ y). (2.12)

5. Substituting (2.12) into (2.4) yields

u =

∞∑
n=1

(
2

∫ 1

0

sin(nπ y) f(y) dy

)
︸ ︷︷ ︸

fn

sin(nπ x)
sin(nπ t)

nπ
, (2.13)

which is precisely the same as the solution by normal modes to the problem in (2.1) — written in terms of the

sine-Fourier coefficients fn for the initial data f .
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6. The case with initial data u = g(x) and ut = 0 can be treated in a similar way to the one above. However, let

v(x, t) =
∫ t
0
u(x, τ ) dτ . Then

— v(0, t) = v(1, t) = 0.

— v(x, 0) = 0 and vt(x, 0) = g(x).

— vxx =
∫ t

0
uxx(x, τ) dτ =

∫ t
0
utt(x, τ) dτ = ut(x, t) = vtt.

It follows that v satisfies a problem like the one in (2.1). Thus

v =

∞∑
n=1

gn sin(nπ x)
sin(nπ t)

nπ
=⇒ u =

∞∑
n=1

gn sin(nπ x) cos(nπ t), (2.14)

where gn = 2

∫ 1

0

sin(nπ y) g(y) dy.

3 Wave equation in an interval: Dirichlet/Radiation BC (example 3)

Consider the small transversal vibrations of a semi-infinite string under tension, with the motion restricted to a

plane, and the string end tied. Assume a string that consists of two homogeneous pieces, seamlessly joined. In

appropriately selected a-dimensional variables, the string is described by the equations

0 = u(0, t), for t ≥ 0,

0 = utt − uxx, for t ≥ 0 and 0 < x < 1,

0 = utt − c2 uxx, for t ≥ 0 and 1 < x,

where 0 < c < 1 is a constant, 3 and both u and ux are continuous at x = 1.

Let us now assume that the initial conditions for the string are such that they include no perturbations to the string

heavier piece on x > 1. In fact, we will assume that no perturbations ever arise from the region x > 1. This does

not mean that u vanishes for x > 1. In fact, what it means is:

— For x > 1, u = uR(x− c t), for some wave uR generated from the region 0 < x < 1.

There is no left moving component: 4 uL(x+ c t) ≡ 0.

— For 0 < x < 1, u = ur(x− t) + ul(x+ t), for some functions ul and ur. At x = 1 the incoming right

moving wave ur produces a reflected left moving wave ul, and a transmitted right moving wave uR.

There is never an incoming left moving wave, uL, from the right (x > 1).

The relationship between ur, ul, and uR, can be calculated using the continuity of u and ux. However, we do not

need it right now.

Because of the assumptions above, the problem can be reduced to an equation for the string in the region 0 < x < 1,

without the need to solve in the region x > 1. The reduced problem is: (3.1)

a. Equation: 0 = utt − uxx, for 0 < x < 1 and t > 0.

b. Left boundary condition: 0 = u(0, t).

c. Right boundary condition: 0 = ut(1, t) + c ux(1, t).

d. Initial data: u(x, 0) = α(x) and ut(x, 0) = β(x), for some α and β.

3 Assume that the x > 1 string piece is the heavier/denser one. This yields c < 1.
4 The general solution (on x > 1) must have the form: u = uR(x− c t) + uL(x+ c t), for some functions uL and uR.
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e. Assume α and β are smooth,

and consistent with the BC: 0 = α(0) = β(0) = β(1) + c α′(1) (where ′ = d
dx

).

In fact, assume that the initial

perturbation is fully contained within 0 ≤ x < 1.

Thus: Assume that α, β, and all their derivatives, vanish at x = 1. (3.1e)

About item c: Immediately to the right of x = 1 the solution should have the form u = uR(x − c t). Because of the

continuity of u and ux at x = 1, this yields ut + c ux = 0 at x = 1. This condition is exactly equivalent to the statement

that no disturbances from x ≥ 1 reach into x < 1.

The reduced problem (3.1) gives rise to a strange normal modes problem, 5 where the eigenvalue shows up in

both the equation and the boundary conditions. While this eigenvalue problem is neither self-adjoint, nor normal

(at least, not in any obvious form), it turns out that the normal modes are “OK”, and that the solutions can be

expanded in terms of them. The purpose of this problem is to show this.

Let
U = U(x, s) =

∫ ∞
0

e−s tu(x, t) dt (3.2)

be the Laplace transform in time of u. Then

1. Write the equation that U satisfies.

It is a forced ode in 0 < x < 1, for every s, with boundary conditions at x = 0, 1. The forcing term is given by

γ = γ(x, s) = β(x) + sα(x).

Note: (3.1e) yields u(1, 0) = 0. This plays a role simplifying the BC for U at x = 1.

2. Find the Green’s function of the problem for U , so that you can write

U(x, s) =

∫ 1

0

G(x, y, s) γ(y, s) dy. (3.3)

3. G has infinitely many poles. Find them.

Note: even though s = 0 appears to be a singularity of G, it is not one. Show this.

4. Let rn be the residue of G at the pole sn. Compute these residues.

5. Note that the residues are functions of x and y, rn = rn(x, y). Show that:

u =

∞∑
n=−∞

∫ 1

0

rn(x, y) γ(y, sn) dy esn t (3.4)

provides a normal mode expansion for the

solution to (3.1). That is, (3.4) has the form u =
∑
un φn(x) eλn t, (3.5)

where the φn(x) esn t are normal modes, and

the coefficients un are determined by the initial data (via formulas that you should obtain).

Recall that the normal modes satisfy the equation and the BC, but initial conditions are not imposed on them. The initial

conditions are obtained by doing linear combinations of normal modes, as in (3.5).

Where/how does (3.4) arise? Recall the formula for the inverse Laplace transform

u =
1

2π i

∫
Γa

U(x, s) es t ds, (3.6)

where Γa is a path in the complex plane of the form s = a+ i µ, with −∞ < µ <∞ and a > 0 (fixed) large enough.

If this path is “moved” to the left (a→ −∞), every time it crosses a pole of U it picks up the residue of U es t there.

Because of (3.3), these residues are precisely the terms in the sum in (3.4).

Warning. The reduction of (3.6) to a sum over residues is not always possible. For this U must have pole singularities

only, and (for example) vanish as Re(s)→ −∞. This is not always true. Sometimes U is not even defined for Re(s) <

some constant, or it has singularities other than poles, or it does not behave properly as Re(s) → −∞, or . . . (all

these things occur in problems arising in applications, but not here).

5 Seek solutions of the form u = φ(x) eλ t.
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Answer: Wave equation in an interval: Dirichlet/Radiation BC (example 3)

1. From the definition of U , we have s2 U − Uxx = β + s α = γ, 0 < x < 1, (3.7)

with 0 = U(0, s)

and 0 = sU(1, s) + cUx(1, s) — this second BC is equivalent to (3.1c).

Taking the Laplace Transform of the BC in (3.1c) leads, in general, to sU(1, s)+cUx(1, s) = u(1, 0). However,

because of (3.1e), u(1, 0) = α(1) = 0 — which simplifies the BC.

2. The Green’s function for (3.7) satisfies the ode and boundary conditions, with γ = δ(x− y). Thus

G = β1(y) sinh(s x) for x < y and G = β2(y) J(x, s) for x > y,

for some functions β1 and β2, where J = 1+c
2
e−s (x−1) − 1−c

2
es (x−1). (3.8)

Note: J satisfies the right BC. Further,

(a) G is continuous at x = y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . β1(y) sinh(s y) = β2(y) J(y, s).

(b) Gx “jumps” by −1 as x crosses x = y,

so that −Gxx produces the δ function

on the right. That is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s β1(y) cosh(s y)− β2(y) Jx(y, s) = 1.

These two conditions determine β1 and β2, so that

G(s, x, y) =
1

s (c cosh(s) + sinh(s))

{
sinh(s x) J(y, s) for 0 ≤ x ≤ y ≤ 1,

sinh(s y) J(x, s) for 0 ≤ y ≤ x ≤ 1.
(3.9)

Equation (3.3) applies with G given as above.

Note that, for each (x, y), G above is the ratio of two entire functions of s, with denominator 6

W = s (c cosh(s) + sinh(s)) = J(x, s) (sinh(s x))′ − (J(x, s))′ sinh(s x) (3.10)

equal to the Wronskian of the solutions Ũ1 = J(x, s) and Ũ2 = sinh(s x), each satisfying one of the two boundary

conditions that U must satisfy (the Wronskian of two solutions is constant).

3. Clearly, singularities of G (in fact, poles) can occur only at places where W (s) vanishes, that is, at:

sn =
1

2
ln

(
1− c
1 + c

)
+ i n π = −ν + i n π, where n ∈ Z (3.11)

and 0 < ν is defined by the formula. This follows because W (s) = 0 and s 6= 0 if and only if tanh(s) = −c,
which is easily seen to be equivalent to (1 + c) e2 s = 1 − c. Note that we have excluded the root s = 0. The

reason is that s = 0 is not a singularity of G, because it is also a root of the numerator of G. In fact, by

expanding near s = 0 both the numerator and denominator of G, we see that

G = x+O(s) for x < y and G = y +O(s) for x > y.

On the other hand, expanding for s close to s = sn, it is easy to see that 7

G = − sinh(sn x) sinh(sn y)

sn (s− sn)
+O(1) (3.12)

for s− sn small. Hence these points are, actually, poles.

Note: the leading order in (3.12) is the same for both x < y and y < x. Why? This is because the singularities

of G occur at the values of s for which there is no solution to the equations determining G. That is, where the

equations for β1 and β2 are singular. But these are the values of s at which sinh(s x) and J(x, s) are proportional

to each other: where W = 0. Thus, for s very close to sn, G should be (approximately) proportional to the

same function of x for both x < y and x > y.

6 Here the primes indicate derivatives with respect to x.
7 For a list of useful formulas, see remark 3.2.
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4. From (3.12) it follows that sn (as given by (3.11)) is a simple pole of G, with residue

rn = − 1

sn
sinh(sn x) sinh(sn y). (3.13)

5. Substituting (3.13) into (3.4) yields (after some manipulation)

u =

n=+∞∑
n=−∞

(
αn +

1

sn
βn

)
esn t sinh(sn x), (3.14)

where
αn = −

∫ 1

0

sinh(sn x)α(x) dx and βn = −
∫ 1

0

sinh(sn x)β(x) dx. (3.15)

Clearly: (3.14) is a sum over the normal modes of (3.1), with coefficients un = αn + 1
sn
βn given by (3.15).

It is easy to check that u = esn t sinh(sn x) is a normal mode. It clearly satisfies the equation, and the BC at

x = 0. The BC at x = 1 reduces to sn (sinh(sn) + c cosh(sn)) = 0, also satisfied. Because Re(sn) =

−ν < 0, the normal modes decay like e−ν t, and oscillate with angular frequencies ωn = nπ.

Remark 3.1 The expansion in (3.14–3.15) has several un-usual features, born from the fact that it arises from a

non-normal problem. Two examples:

— The eigenmodes are not orthogonal.

— The expansion for the initial data mixes the two functions. That is

α(x) =

n=+∞∑
n=−∞

(
αn +

1

sn
βn

)
sinh(sn x) and β(x) =

n=+∞∑
n=−∞

(sn αn + βn) sinh(sn x).

Hence the coefficients in the expansion for α (or β) depend on both α and β.

Remark 3.2 Some useful formulas satisfied by the sn = −ν + i n π, n ∈ Z.

a) ν > 0 is defined by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ν = −1
2
ln
(

1−c
1+c

)
.

b) Thus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sinh(ν) = c cosh(ν) = c√
1−c2

and eν =
√

1+c
1−c .

c) The sn are the solutions to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sinh(sn) = −c cosh(sn).

d) In particular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cosh(sn) = (−1)n√
1−c2

and esn = (−1)n
√

1−c
1+c

.

e) Since W = s (c cosh(s) + sinh(s)), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W (sn) = 0.

f) Furthermore, they are simple zeros of W , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dW
ds

(sn) = (−1)n sn
√
1− c2.

g) Finally, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J(x, sn) = (−1)n+1
√
1− c2 sinh(sn x).

THE END.


