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1  Review

Recall (from Lectures 5 and 6) that if the first two moments of a PDF are finite and a
higher moment diverges, then the Central Limit Theorem will still hold. However, that
particular distribution will be characterized by “fat tails” with additive tail amplitude.

In this lecture we consider a general PDF with a diverging second moment, <x2>=∞,
which can lead to anomalous diffusion.

2  Borderline cases of the CLT

First we consider borderline cases of the CLT to examine how the shape of the PDF and
the diffusive scaling change in the large N limit. For iid random displacements:

X N = ∆ xn

n =1

N

∑
p(x) ≡ PDF for ∆xn

PN (x) ≡ PDF for N displacements

We define the Strong Central Limit Theorem as (M. Feller, Introduction to Probability,
1971):

Let U(x) = y2 p(y)dy
− x

x

∫
If U(x) ~ L(x) where L(x) i s"s lowly varying",

(i.e. lim x→∞
L(sx)

L(x)
=1 for s ≠ 0, fixed),

then
xN

f (N)
→ a gaussian random variable

for some scaling function f (N).
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Note, that the scaling function f(N) is not required to be N0.5 (normal diffusion). For
example consider:

p(x) =
A

1+ | x3 |
, U(x) ~

1

x
dx∫ ~ log(x)

lim x→ ∞
log(sx)

log(x)
= 1 +

log(s)

log(x)
= 1

if N =
xN

N logN
, then N( ) = a N log N PN( N log N ) ~

e
−

2

2

2

So we get back the Gaussian distribution, however the half-width scales as (N logN)0.5.
This example of anomalous diffusion represents a “superdiffusive” process. Essentially,
the normal diffusive scaling breaks down before the Gaussian shape of the distribution
breaks down for borderline cases.

3  Levy Distributions

3.1  Definition
A symmetric Levy distribution, denoted as lα(a,x) is a PDF with a characteristic function:

l
∧

(a, k) = e−a| k |

Note that this can only be a valid characteristic function for 0 < α < 2 because the

variance of lα(a,x) does not exist (i.e. <x2>=0) for α > 2. We have already seen some

examples of Levy distributions. The Gaussian distribution is l2(σ2/2,x):

p
∧
(k) = e

−
2 k 2

2  →  p(x) =
e

− x
2

2 2

2 2

And the Cauchy distribution is l1(a,x):

p
∧
(k) = e− a| k |  →  p(x) =

a

(a2 + x2)

Actually, these are the only two Levy distributions that can be inverted and expressed as
elementary functions. We saw that the Cauchy distribution had infinite variance. In fact,
for 0 < α < 2, all Levy distributions have infinite variance. Two important features of
Levy distributions are: 1) They are stable under addition, i.e. a distribution of iid random
Levy variables approaches a Levy distribution (Levy stable laws) and 2) the parameter a
controls the tail amplitude, which we will see to be additive for N steps. As an aside, note
that <|x|>=∞ for α < 1.

[1]
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3.2  Large x expansion
The large x asymptotic expansion for lα(a,x) is:

l (a, x) ~
1

| x |

am sin(
m

2
)Γ( m +1)(−1)m −1

m!| x | m
m =1

∞

∑ , | x |→ ∞

This series diverges for α>1 and converges (Laurent) for α<1 where |x|α>a.

At leading order, it reduces to:

l (a, x) ~
sin(

2
)Γ( + 1) a

| x |1+
, | x |→ ∞

where we have a familiar power-law tail with amplitude a.

3.3 Small x expansion

We first simplify the inverse transform, realizing that only the even portion of e-ikx

contributes to the integral:

l (a, x) = e−ikx e− a| k| dk

2−∞

∞

∫ ~ 2 cos(kx) e−ak dk

2
0

∞

∫
For small x, expand cos(kx):

l (a, x) ~
(−1)m

(2m)!
(kx)2 m

0

∞

∫ e− ak dk

m = 0

∞

∑ , x → 0

Define the Gamma function:

Γ(z + 1) ≡ t z

0

∞

∫ e− tdt

and define a new variable, ω:
= ak , d = k −1dk

This simplifies Equation 2 to:

l (a, x) ~
(−1)m

(2m)!
x2m

a
 
 

 
 

2m

0

∞

∫ e− 1

a
a

 
 

 
 

−1

d

m = 0

∞

∑ , x → 0

~
1 (−1)m

(2m)!

x 2m

a
2 m +1 Γ

2m + 1 
 

 
 

m =0

∞

∑ , x → 0

This series diverges for α<1 and converges (Taylor series) for 1 < a < 2 for |x|α<a.

At leading order it reduces to:

[2]
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l (a, x) ~
Γ

1 
 

 
 

a
1 , x → 0

Thus lα(a,x)à∞ as αà0, so the center of the distribution gets sharper and higher and the

tails get fatter. Figure 1 shows the Gaussian distribution, the Cauchy distribution, and a
general Levy distribution as αà0.

Figure. 1 Shapes of the Gaussian and Cauchy distributions compared with the Levy distribution as αà0.

In addition, note the asymptotic form of the Levy distribution as both αà0 and xà0:

l (a, x) ~
Γ 1 

 
 
 

e
−

x 2

2 2

, x → 0 & → 0

=
2

1−1/ e( )
1/

Thus, the central region of a Levy distribution in the low α limit looks like a Gaussian
distribution with width~α3/2.

4 Levy flights

Because of the possibility of taking “large” steps (due to the slow decay of the tails) we
must address how time is measured during a random Levy process. We distinguish
between a random “walk” and a random “flight.” Each step of a random walk takes a
variable time dependent on the length of the step. For example, a random walk correctly
models a random process at constant velocity. On the other hand, a random flight means
that the time between both large and small random steps is constant. Here we consider
Levy flights, realizing that the diffusive scaling for Levy walks will differ.

P(
x)

x

 Gaussian
 Cauchy(a=0.5)
 Levy( α->0)

Tail decay ~
1/x1+α
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The position after N iid Levy steps is:

X N = ∆ xn

n =1

N

∑

We define:
p(x) = l (a,x) ≡ PDF for ∆xn

PN (x) ≡ PDF for N Levy displacements

So:

l
∧

(a, k) = e−a| k |

P
∧

N(k) = e−a N | k | where aN = Na

Now we solve for PN(x) and address how the width scales with N. First, take the inverse
Fourier transform to solve for PN(x):

PN (x) = e−ikx e− Na| k | dk

2−∞

∞

∫

Next we introduce ω and ζ:

= kN
1

⇒| | =| k | N

= x

N
1

Substituting back into Equation 3 gives:

PN (x) = e−i e− a| | d

2−∞

∞

∫
1

N
1

which is a scaled Levy distribution:

PN (x) =
1

N
1 l a,

x

N
1

 

 
 

 

 
 

Most importantly, note that the width of the distribution ~ N1/α. So for α < 2, we have N1/α

>>N, characteristic of a “superdiffusive” process.

[3]
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5 Examples of Levy flights

Figure 2. A characteristic Levy walk

Figure 2 shows a characteristic Levy flight for a low value of α. Note that the
characteristic size of the system is the size of the largest step and that the flight is self-
similar at higher magnifications.

5.1 Low density gases (“Nano”-systems)
One physical example of a Levy flight is a low-density gas. Here we consider a gaseous
system where the characteristic system dimension (L) is much less than the mean free
path of the gas (λmfp), L<< λmfp. Note that λmfp~10-7 m at STP. The dimensionless
parameter to consider here is the Knudsen number, Kn= λmfp/L, so Kn>>1 in these nano-
systems.

In the Kn>>1 regime, the gas molecules essentially travel in straight lines and collisions
with the system walls are dominant. Here we assume the wall is rough so that a colliding
molecule rebounds at a random angle. Figure 3 depicts high Kn transport in a rough
container.

Figure 3. Transport of a gas with Kn>>1 in a rough-walled contained

L

θ

random deflection angle θ
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We can use a geometric argument to determine the distribution of step sizes (x):

                                      

tan = x
L

d

cos2 =
dx

L

d =
L2

x2 + L2

dx

L

The distribution of rebounding angles is uniform so:

p =
1

p d = p xdx

∴ px =
L

x2 + L2

1

Therefore the distribution of N steps is the Cauchy distribution with amplitude L.

PN (x) =
1

N
l1(L ,

x

N
)

Note that this distribution is only valid for displacements smaller than the mean free path.
The distribution width grows ~N, so at large enough N diffusive behavior will return.
Therefore, this nano-system may be modeled as a “truncated Levy flight” (cf. Fig. 4).

Figure 4. A truncated Levy flight. Note the transition from molecular transport (Cauchy) to diffusive
transport (Gaussian).

5.2 Financial time series
Financial time series can also be modeled with a truncated Levy flight where the cutoff
can be applied analytically. For more information, refer to Bouchard and Potters.

1−1
log(λmfp/L) logN

width

1

1/2

L θ

x
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5.3 Polymer surface adsorption
A polymer adsorbed to a surface has a finite number of contact points with the surface
that can be modeled as a Levy flight (Bouchard and George, 1998) (cf. Fig. 5).

Figure 5. Polymer adsorbed to a surface

Levy flight 
connecting surface 
contact points


