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                            Lecture 11: More on Persistence 
                           and Self Avoiding Walk 
 
                                   Panadda Dechadilok 
                                            March 16, 2003 
 
 
In the last lecture, the discussed topics were Markov Chain for Persistent Random Walk 
on integers, which was examined in the continuum limit with diffusive scaling.  The 
lecture also covered the derivation of Telegraph Equation with ballistic scaling.  This 
lecture, therefore, starts with a different way of deriving the Telegraph Equation by using 
Fick’s Law.  It, then, proceeds to solve the Telegraph Equation using the Fourier and 
Laplace transforms.  A One-Dimensional Persistent Random Walk is also solved 
asymptotically using Green’s Function, confirming the validity of the Central Limit 
Theorem once again.  Eventually, the lecture introduces the concepts of Self-Avoiding 
Walk, which will be further examined in the next lecture. 
 
 

1) Derivation of One-dimensional Persistent Random Walk by 
Generalizing Fick’s Law 

         
   Recall that, in the last lecture, we derived the Telegraph Equation  
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The derivation was from a one-dimensional persistent random walk with a “ballistic 
scaling” )1( →ρ   
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In this lecture, however, we will derive the Telegraph Equation by generalizing Fick’s 
Law as a “continuum” constitutive equation.  First, define a flux density J   and the 
density ρ .  We start the derivation by stating the Conservation Law and the Constitutive 
Equation or Fick’s Law:          
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Fick’s Law                              ρ∇−= DJ                                                         (1.3) 
 
 
More generally, one can postulate a “relaxation time”  τ c

   for the flux density  
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 By taking the gradient of equation (4), we can easily show that  
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 which, if multiplied by τ c

on both sides, will be the telegraph equation that we derived 
in the last lecture and in section 1.     
 
 
 
 
2) Exact Solution to a One-Dimensional Telegraph Equation in Free Space        
 
After deriving the telegraph Equation in two different ways, we are going to solve it 
using the Fourier Transform and Laplace transform.    From Equation (1.1), the 
Telegraph Equation is expressed as       
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 We are going to solve this second-order PDE using the Green’s function with the initial 
conditions 
 



 3

                                                0)0,( =
∂
∂ x
t
ρ           (2.1) 

and                                        )()0,( xx δρ =                                                         (2.2) 
 
First, we Fourier-transform ),( txρ in space and Laplace-transform it in time.  As a result, 
we can show that 
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and by invert fourier transforming and invert laplace transforming back, we get 
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In addition, from ),(~̂ skρ , we can obtain moments )(txn  by inverting the derivative 
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3) Exact Solution to a Persistent Random Walk in One-Dimension 
 
Recall from the previous lecture that we have considered a one-dimensional persistent 
random walk with a probabilityα of stepping to the right, and a probability αβ −= 1  of 
stepping to the left.  In the last lecture, we have defined  
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and we have also shown that 
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Please note that each step of a one-dimensional persistent random walk is only depended 
upon its previous step without any dependence on any other earlier steps.  Therefore, we 
can conclude that the one-dimensional persistent random walk is a “Markov Chain”.  For 
simplicity, we also assume that the “walker” does not have a velocity at the starting point 
 
Initial conditions 
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1)(

m
mA =      (3.5) 

     

                δ 0,0 2
1)(

m
mB =      (3.6) 

 
We will start solving Equation (3.3) and (3.4) with the initial conditions (3.5) and (3.6) 
by first using the discrete Fourier transform (See the appendix.) 
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which has an invert function defined as following 
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After the Fourier transforms, we can write Equation (3.3) and (3.4) in the matrix form as 
following  
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Now, with the assumption that each step is identical and independent, we can write 
Equation (3.9) in terms of the initial conditions 
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For simplicity, we will re-write equation (3.10) as following 
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In order to further-simplify the problem, we notice that equation (3.11) is a system of 
eigenvalue equations and a matrix M can be written as  
 
                  ΛSMS =                                                                (3.12) 
 
where S  is a matrix whose columns are the eigenvectors corresponding to the 
eigenvalues in the diagonal matrix Λ .  Multiply both sides by the inverse of  S , we get 
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The next calculation is to find the eigenvalues ( )λ , which requires that they satisfy the 
following equation 
 
        0)det( =−MIλ      (3.15) 
with matrix I as an identity matrix.  The solutions (or the eigenvalues) of equation (3.15) 
are expressed in the quadratic equation 
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The solutions of this quadratic equation are 
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with the help from the geometric identity 1)()( cossin 22 =+ kk .  When k is 
asymptotically small, we can Taylor expand  
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We can write the approximated eigenvalues as 
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and we can further made use of the asymptotically small k by stating the asymptotic 
expansion 
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and re-write the eigenvalues once again as 
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We have defined from the beginning that 1)( =+ βα  
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Here, we define nk=ω  and make use of the asymptotic expansion )exp(~1 εε n
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Next, we proceed to find the other eigenvalue, using the similar techniques. 
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Notice that )( βα − <0 and, in the limit of n approaching infinity, 0→−

nλ .  Substituting 
the two eigenvalues back into equation (3.12), we obtain 
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We then compute the non-trivial eigenvector (columns of S), using the expression 

0M)SI( =−λ , and get 
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Substituting the eigenvalues and newly-obtained eigenvectors into Equation (3.14), we 
can show that asymptotically 
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Substituting the asymptotic expression for nM , Equation (3.11) becomes 
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We then proceed into finding the Fourier transform of the probability density function 
(PDF) which is the sum of the probability of going to the left and to the right 
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The asymptotic value for the characteristic function (or the Fourier transform of PDF) is 
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Inverting the Fourier Transform, we eventually arrive at the answer of 
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Please note that this is a value of the PDF in the limit of ∞→n , which is in a Gaussian 
form, confirming that the Central Limit Theorem still holds.  As a last notice of this 

section, one can also observe that the variance of this Gaussian is .
β
αn  Then, we can 

conclude that 
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4) Introduction to Self-Avoiding Walk 
 
We would like to finish this lecture by introducing the idea of Self-Avoiding Walk, 
which will be discussed further in the next lecture. Roughly defined, Self-Avoding Walk 
(SAW) of length N is a set of random walks of length N that do not “self-intersect”.  For 
instance, if a random walker is on a lattice, it does not visit the same site twice.  For a 
continuum random variable, it cannot get too close to the path it has travel through.   
 
Some Interesting Facts about SAW (Reference: Hughes, volume 1) 
 

1) Define d = surface/volume = constant.  The variance of the displacement the 
random walker travels from the starting point will be 
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where    v =1            when d  = 1                
                =3/4          when d = 2            

                      =0.593      when d = 3   
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        2) Let   nC  =  numbers of SAW of length N    
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        Please note that NCn ~log  where N is the length of the walk which is a constant. 
        If n

n zC =    where z = coordinate.   For instance, z = 2d for a cubic.  We can find                             
        the connectivity constant z<µ  as following 
 
     4.1515  when  d =2     
                 µ =   2.683    when   d=3 
                          4.683     when  d=4 
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3) “Mass Distribution”  
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The discussion on Self-avoiding Walk will be resumed in the next lecture.                                
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Appendix : Discrete Fourier Transform 
 
The discrete fourier transform we have applied in equation (3.7) and (3.8) can also be 
viewed as the coefficients of a Laurent series in the complex plane. 
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If we set z= exp(ik)  with k being a real number, or on the other hand, take the contour 
integral to be that of the unit circle, we will get the discrete Fourier transform as in 
Section 3.   
 
 
 
 
           
 
             
 


