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1 Generalized Cantor sets

Statement: Generalized Cantor sets

Suppose that we construct a new kind of Cantor set, by removing the middle half of each subinterval, rather than

the middle third.

a. Show that the length of the resulting set still vanishes, same as for the regular Cantor set.

b. Find the similarity dimension of the set.

c. Generalize the construction so as to produce a Cantor set with zero length and with a similarity dimension

that can be picked as any arbitrary number in 0 < d < 1.

2 Nonlinear stability of a discrete map, and flip bifurcation

Statement: Nonlinear stability of a discrete map, and flip bifurcation

Consider a 1-D map, xn+1 = f(xn), where f is smooth. Assume a fixed point xf = f(xf), where f ′(xf) = −1

— hence linearization does not determine the stability of

xf . Without loss of generality, assume x∗ = 0, and write f(x) = −x+ ax2 + b x3 + O(x4), (2.1)

where a and b are constants. These are your tasks:

t1. Find condition on a and b that determines wether x = 0 is a stable or unstable fixed point. Hint:

t1.a The condition looks like: stability if h(a, b) > 0, and instability if h(a, b) < 0, for some function h.

t1.b Consider what happens upon iterating g(x) = f(f(x)), which you can ascertain by expanding g to O(x4),

using (2.1). Then note: if x2n+2 = g(x2n) decays/grows, then so does x2n+3, because f is continuous.

t2. Answer this question: why do you have to expand g up to O(x4), in item t1.b, to determine stability? Note

that here expect the mathematical/technical reason for this.

t3. Let a and b in (2.1) be such that x = 0 is stable,

i.e.: h(a, b) > 0, and take a map F such that F (x) = −(1 + δ)x+ ax2 + b x3 + O(x4), (2.2)

where 0 < δ � 1. Then x is a linearly unstable

fixed point, and a period two (stable) solution x∗n+2 = x∗n, x∗n+1 = F (x∗n), (2.3)

appears,‡ where x∗n has size O(
√
δ).
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This is called a supercritical (or soft) flip bifurcation.

‡ Argument: the same we made to explain the scaling behind supercritical pitchfork and Hopf bifurcations.

The new solution appears as a balance between the destabilizing linearity, and the stabilizing nonlinearity.

Your task. Pick an example F where this happens, with a 6= 0 6= b, and show a numerically computed picture

of cobwebs† converging to the period two stable solution.

† Use two cobwebs (with different colors), one converging from “inside” and the other from “outside”.

I suggest that you write a “generic” program for F (x) = −(1 + δ)x+ ax2 + b x3 and initial data x0, and

then play with the parameters till you get a pretty picture. Further: choose your colors well; e.g.: yellow on a

white background is a bad idea! Note: something like 1 < a < 2, b ∼ −2/3, and δ ∼ 0.32, worked for me.

3 Sierpinski gasket

Statement: Sierpinski gasket

Consider the fractal (a “Sierpinski gasket”) in the plane, made in the following recursive fashion:

1. Start with an equilateral triangle, with sides of length L.

2. Draw the lines joining the sides mid-points, and divide it into four

equal equilateral sub-triangles.

3. Remove the sub-triangle at the center.

4. Repeat the process with each of the other three remaining sub-

triangles.

Figure 3.1: The picture on the right illustrates the recursion, showing the

result of the first iteration in the process described above.

 Triangular Sierpinski
 Gasket construction.

 First stage in iterative
 construction process.

Now, do the following:

A. Calculate the box dimension of the fractal.

B. Calculate the self-similar dimension of the fractal.

C. Calculate the surface area of the fractal.

D. Optional. Show that the fractal has as many points as a full square — This part is hard(er).

E. Optional. Let ds be the dimension calculated in part A. Modify the construction of the fractal, in such a way

that the modified fractal can be selected to have any given box dimension 0 < d < ds.

Hint: take out bigger chunks at each stage.

F. Optional. Construct fractals (subsets of the plane) such that their box dimensions can be selected to have any

given box dimension ds < d < 2.

THE END.


